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Introduction by the Organisers

The workshogKomplexe Analysjorganised by Jean-Pierre Demailly (Grenoble), Klaus
Hulek (Hannover), Ngaiming Mok (Hong Kong) and Thomas Retér(Bayreuth) was
held August 24th—August 30, 2008. This meeting was welhaliéel with 46 participants
from Europe, US, and the Far East. The participants inclgégdral leaders in the field
as well as many young (non-tenured) researchers.

The aim of the meeting was to present recent important segsulseveral complex
variables and complex geometry with particular emphastspics linking diferent areas
of the field, as well as to discuss new directions and opergmuh Altogether there were
nineteen talks of 60 minutes each, a programme which Iéficgnt time for informal
discussions and joint work on research projects.

One of the topics at the center of the conference was thefatasion theory of higher
dimensional varieties. Y. Kawamata lectured on the conoestbetween the minimal
model programme and derived categories; A. Corti discuasedpproach to the finite
generation of the canonical ring without minimal modelg, 41ill in connection with the
seminal work which was presented by J. McKernan in the lagtfilex Analysis meeting
in Oberwolfach 2006, where the finite generation of the c@@ning of varieties of
general type was announced. Extension theorems, non vamishd positivity result for
certain directimage sheaves play a role in the global dleason of complex manifolds.
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This was largely discussed by M. Paun and B. Berndtsson einwlork analytic methods
are central, whereas the talks by Kawamata and Corti were wfaan algebraic nature.
Also very much on the analytic side and connected to Berodiss$alk, H. Tsuji lectured
on generalised Kahler-Einstein metrics. Families of @ctye manifolds over higher-
dimensional base spaces were considered in the talk by Skkisb Direct images of
coherent sheaves also play a central role in this context.

About five years ago, Campana introduced new variations ercéimcept of “orb-
ifolds”; they were already the suject of talks in past sess@nd have turned out to be of
increasing interest — in the present session, new resuliiseohyperbolicity of orbifolds
were presented in the talk by E. Rousseau.

As to varieties with special geometry, K. Oguiso spoke on-algebraic hyperkahler
manifolds and, with a ratherfiierent flavour, F. Catanese on complex and real threefolds
fibered by rational curves, with a special emphasis on reggbaihic geometry. J. Chen
discussed the influence of terminal singularities in thitemensional geometry, a more
algebraic topic. On the analytic side, A. Teleman reportectaent progress in the classi-
fication of non-Kahler surfaces in the so called KodairasMIl, using gauge-theoretical
methods, and S. K. Yeung lectured on new results on fake gihegeplanes. Group ac-
tions and envelopes of holomorphy were the topics of theliglK. Zhou. S. Boucksom
discussed equidistribution of Fekete points on complexifolals, in relation with energy
functionals for Monge-Ampére operators.

R. Lazarsfeld presented a very interesting new approactutty properties of linear
systems and line bundles via convex geometry.

Overall, moduli spaces appeared to be a central theme in thkshop, and were
discussed extensively in at least four talks: V. Gritserasidered moduli spaces of K3-
surfaces; S. Grushevsky spoke on intersection numbersigbdion the moduli space of
curves, and K. Ludwig and G. Farkas lectured on the modukepaf spin and Prym
curves, their singularities, Kodaira dimension and enatiex geometry.
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Abstracts

Positivity properties of twisted relative canonical bundes
Bo BErRNDTSSON
(joint work with Mihai Paun)

The object of the talk is to construct certain metrics ontiedacanonical bundles,
using (generalized) Bergman kernels. In order to explagmtlethod we will start with a
discussion of such metrics on one fixed manifold, and thenenoomo the relative case.

Let Z be a compact complex manifold and lebe a holomorphic line bundle ovét
equipped with a (possibly singular) metric, This metric will always be assumed to have
positive curvature current, so tH@¢ > 0. This metric orL induces a naturdl?-metric
on the space of sections to the adjoint buriile+ L, through

2 2 2
U2 = ful? = f uPe.
zZ

From thisL?-metric we get 88ergman kernetlefined by
By(2) = B(9) = suplu@)l?,

with the supremum taken over all global holomorphic seatiofKz + L with L?-norm at
most 1. (In case there is no global holomorphic section aifinorm, we let the Bergman
kernel be 0.) Here of course the pointwise valuei@ depends on the choice of a local
frame, soB is not a function but defines a metric &3 + L, ¢ = log B. More precisely,
we can lefy be an arbitrary smooth metric &y + L, and defineB by

B(2e™ = sup|u(2)|’e™.

Jointly with the Bergman kernel, we shall also consider aal@yous construction for
twisted multiples of the canonical bundle. This is defineditst letting

2 2 —
o= [ wemeerm
Z

Then one can imitate the definition of the Bergman kernel kijinm
By.m(2) = suplu(2l?,

this time taking the supremum over all global holomorphitiems tomKz + L of m-norm
not exceeding 1(see [8], [6], [10]) . By constructid®y,s is a metric oomKz + L with

the property that any global section of this bundle havinigeih®™-norm, ispointwise
bounded with respect to this metric.
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0.1. The relative case.Let nextX andY be projective manifolds and Igtbe a surjective
holomorphic map. (More generally, we could allow a propejestive map fromX to an

open manifoldy and assume that has some holomorphic line bundtewith a metric of
strictly positive curvature.) We consider the relativeaaigal bundle

KX/Y = Kx - p*(Ky)

For generig/in Y, the fiberp=1(y) = X, is then smooth and the restrictionif,v to X, is
(isomorphic toKy,. LetL be aline bundle ovexX, and letp be a metric with semipositive
curvature current oh. Over the generic fibers we can then construct the Bergmareker
and them-Bergman kernel in the way described in the introductionisMmay we get
naturally defined metrics oikix,v + L andmKy,y + L over the Zariski open set of generic
fibers. These metrics have no immediate regularity progeets the fibers vary, but it is
not too hard to check (using normal families) that they aleadt upper semicontinuous.

Our first result says that the (relative) Bergman kernel im#état we obtain in this way
over the set of generic fibers has nonegative curvaturerdyard extends to a metric on
Kx,v+L over all of X that also has nonnegative curvature. This holds under sugrgstion
that the Bergman kernel is not identically equal to zerohiat there is at least some fiber
on whichKy, + L has a section with finite2-norm.(The first result in this direction, in a
non-twisted situation, is the very influential theorem ofitai [4].)

After that we consider the (Zariski open) setyd§ in the basé&’ where the dimension
of HO(X,, Kx, + L) is minimal. Over this set we have a naturally defined vectordte
with fibersHO(Xy, Kx, + L), and this bundle has a naturally defined metric, namley the
L2-metric. Note that this is a singular metric, and that (jilet What happens for singular
metrics on line bundles), some sections may have infinitenndie define a notion of
positivity for such singular metrics which generalizesfi@ttis positivity in the nonsingu-
lar case, and prove that thé-metric is positive in this sense. This follows in the same
way as the positivity of the Bergman kernel metric, but isrargger property.

Using these notions we finally prove analogous results ntfBergman kernel, gen-
eralizing to the twisted case Kawamata’'s positivity theorg7], for multiples of the
canonical bundle.

Ouir first result is a fairly simple consequence of the mainltésom [1] on positivity
of direct image bundles, if we assume that the metrid_ois smooth of nonnegative
curvature, and that moreover our surjective npaip a smooth fibration. The main point
in the present work is the extension to nonsmooth metricgandral surjective maps. To
overcome the diiculty coming from nonsmoothness of the metric, we work in aska
dense Stein manifold, where we can regularize our metrittlzen extend. The fliculty
coming from nonsmoothness of the fibration is handled via jaicei estimate where the
Ohsawa-Takegoshi extension theorem is the key point.

Both these issues require new ideas in the case aftBergman kernel. In particular,
it is not enough to work in a Stein subdomain since divisoestet removable fok?/™ if
m > 1. This is where our use of nonsmooth metricssentorbundles comes in. Instead
of regularizing our metric oh we regularize the nonsmooth metric on the vector bundle
with fiber H°(Xy, Kx, + L), which is a much simpler, local problem.
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One application of these results is a Bergman kernel protieKawamata subad-
junction theorem, [7], another is an estimate for restdstelumes due to Takayama and
Hacon-McKernan, [9],[5].
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Convergence towards equilibrium on complex manifolds
SEBASTIEN Boucksom
(joint work with Robert Berman, David Witt Nystrom)

1. THE SETTING

Let L be a holomorphic line bundle over a compact complex manifotesf complex
dimensiom. Following [3], let E, ¢) be aweighted subsgethat is a compact subsgtof
X together with the weight of a continuous Hermitian metrie? on the restriction_|g.
Finally letu be a probability measure supportediby

The asymptotic study ds— o of the space of global sectioss H°(X, kL) endowed
with either thelL.? norm

[El fx |si%e 2 du
or theL*™ norm
ISleex) = suplse™
is a natural generalization of the classical theory of agthm@l polynomials. The latter
indeed corresponds to the case
EcC'cP'=X

endowed with the tautological ample bund}¢l) =: L. It is of course well-known that
HO(P", O(K)) identifies to the space of polynomials of total degree astkoThe section
of L cutting out the hyperplane at infinity induces a flat Hermitiaetric onL overC", so
that a continuous weightt on L| is naturally identified with a function i€°(E). On the
other hand, a psh function @ with at most logarithmic growth at infinity gets identified
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with the weightp of a non-negatively curved (singular) Hermitian metriclgrvhich will
thus be referred to aspsh weight

Our geometric setting is therefore seen to be a natural (amd symmetric) extension
of so-calledweighted potential theorin the classical case. It also contains the case of
spherical polynomialsn the round spher@" c R™1.

Indeed, the space of spherical polynomials of total degreeostk is by definition
the image by restriction t8" of the space of all polynomials dd™! of degree at most
k. It thus coincides with (the real points df)°(X, kL) with X being the smooth quadric
hypersurface

X2+ . +X2=X3 cpm!

endowed with the very ample line bundle= O(1)|x. Here we takd ;= S" = X(R), and
the section cutting out the hyperplane at infinity again idiexs weights orlL to certain
functions on the line piece ofX.

In view of the above dictionary, one is naturally led to imluee theequilibrium weight
of (E, ¢) as

(1.1) ¢e = sup{y psh weight ori, ¥ < ¢ onE},

whose upper semi-continuous regularizatiginis a psh weight orl. as soon a£ is
non-pluripolar, which will always be assumed.

Theequilibrium measuref (E, ¢) is then defined as the Monge-Ampeére measure of
¢ normalized to unit mass:

Ueq(E, @) := M™IMA (¢g)-

This measure is concentrated Bnand we have) = ¢ a.e. with respect to it.

This approach is least technical whieiis ample but the natural setting appears to be
the more general case ofbég line bundle, which is the one considered in the present
paper, following our preceding work [3]. As is shown thetes Monge-Ampére measure
MA (y) of a psh weighty with minimal singularities, defined as the Beford-Taylopto
power @d°)" of the curvatur@d®y on its bounded locus, is well-behaved. Its total mass
M is in particular an invariant of the big line bundle and in fact coincides with the
volumevol(L), characterized by

n
Nk := dimHO(kL) = voI(L)% + o(k".

The main goal of the present paper is to give a general aitérivolving spaces of
global sections that ensures convergence of certain segsief probability measures on
E towards the equilibrium measutigy(E, ¢).

2. FEKETE CONFIGURATIONS

Let (E, ¢) be a weighted subset as aboveFékete configuratiors a finite subset of
points maximizing the determinant in the interpolationkpeon.
More precisely, leN := dimH°(L) and

P= (Xl, veey XN) € EN
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be a configuration of points in the given compact sulisefhenP is said to be a Fekete
configuration for E, ¢) iff it maximizes the determinant of the evaluation operator

eve : HO(L) - o}l Ly
with respect to a given basss, ..., sy of H(L), that is the Vandermonde-type determinant
|det(3 (XJ))l g ((xa)+.. +6(x))

This condition is independent of the choice of the basis (
If P =(Xg,...,xn) € XN is a configuration, then we let

1 N
5P = N Z 5)(].
j=1
Our first main result is an equidistribution result for Fekebonfigurations.

Theorem A. Let P, € EN« be a Fekete configuration foE(k¢). Then theP, equidis-
tribute towards the equilibrium measure, that is

lim 5p, = peq(E, ¢)
in the weak topology of measures.

Theorem A first appeared in the first two named authors’ pn¢pdi. It will be ob-
tained here as a consequence of a more general convergsulté Teeorem C below).

In the classical one-variable situation, this result islvebwn. In the several-variable
classical situation, this result has been conjectured didegome time, probably going
back to the pioneering work of Leja in the late 50’s.

As explained above, the spherical polynomials situatiorresponds to the round
sphereS" embedded in its complexification, the complex quadric hypeace inP"™1.
This special case of Theorem A thus yields:

Corollary A. Let E c S" be a compact subset of the roumdphere, and for eadhlet
P« € EM be Fekete configuration of degridor E (also calledextremal fundamental
systemin this setting). Theidp, converges to the equilibrium measwg(E) of E.

This is a generalization of the recent result of Morza ané@atCerda [8] on equidis-
tribution of Fekete points on the sphere, which correspaodbe caseE = S" whose
equilibrium measurgeq(S") is just the rotationally invariant probability measure$h

3. BERNSTEIN-MARKOV MEASURES

Let again E, ¢) be a weighted subset, and Jebe a probability measure da. The
distorsion between the naturat and L norms onH(L) introduced above is locally
acounted for by thdistorsion functiom(u, ¢), whose value ax € E is defined by

(3.1) P, @)(¥) = sup Is(X)I3,
ISl 2, =1

the squared norm of the evaluation operatox.at
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The functionp(u, ¢) is known as theChristgfel-Darboux functiorin the orthogonal
polynomials literature. It sometimes also appears undenttimedensity of states func-
tion, since theprobability measure

(3:2) B, 9) = N7 p(u, p)u,
which will be referred to as thBergman measurecan be interpreted as a dimensional
density forHO(L).

Wheny is a smooth positive volume form o and¢ is smooth and strictly psh, the
celebrated Bouche-Catlin-Tian-Zelditch theorem asseat8(., k¢) admits a full asymp-
totic expansion in the space of smooth volume forms, WitH (dd°¢)" as the dominant
term.

As was shown by the first named author (in [1] for ffecase and in [2] for the general
case), part of this result still holds when the positive atmve asumption oa is dropped.
More specifically, the norm distorsion still satisfies

(3.3) supp(u, kg) = O(K")

X
and the Bergman measures still converge towards the exquitibmeasure:
(3.4) 1im Ao, kg) = pec(X, ¢)

now in the weak topology of measures.
Both of these results fail whe, u and¢ are more general. Howeveub-exponential
growth of the distorsion betweerf(u, k¢) andL*> (E, k¢) norms, that is

(3.5) sup(u, kp) = O(e*) for all £ > 0,
E

appears to be a much more robust condition. Following a statérminology, the mea-
sureu will be said to beBernstein-Markovor (E, ¢) when (3.5) holds.

WhenE = X, any continuous measure is Bernstein-Markov & ) by the mean-
value inequality.

Our second main result asserts that convergence of Bergreasures to equilibrium
as in (3.4) holds for arbitrary Bernstein-Markov measure.

Theorem B. Letu be a Bernstein-Markov measure f&, ¢). Then
Ilmoﬂ(ﬂ’ k¢) = IuEQ(E7 ¢)
in the weak topology of measures.

In the classical one-variable setting, this theorem waainbtl, using completely dif-
ferent methods, by Bloom and Levenberg [7]. A slightly lesaeral version of Theorem
B (dealing only withstablyBernstein-Markov measures) was first obtained in the firdt an
third named author’s preprint [5]. Theorem B will here beaibed as a special case of
Theorem C below.
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4. DONALDSON'S L-FUNCTIONALS AND GENERAL CONVERGENCE CRITERION

We now state our third main result, which is a general coteensuring convergence of
Bergman measures to equilibrium in termsffunctionals, first introduced by Donald-
son. This final result actually implies Theorem A and B ab@agewell as a convergence
result for so-calle@ptimal measurefirst obtained in [6].

ThelL? andL™ norms orH%(kL) introduced above are described geometrically by their
unit balls, that will be denoted respectively by

B(u, kp) c B3(E, k¢) c HOkL).

We fix a reference weighted subsEp(#o), which should be taken to be the compact torus
endowed with the standard flat weight in the classi®atase. We can then normalize the
Haar measure vol oH°(kL) by

V0|3D°(Eo, k¢o) =1,
and we introduce the following slight variants of Donaldsafi-functional:

L 2
Li(u, @) = RN log vol B%(, ke)
and 1
Ly(E, ¢) = KN log vol B%(E, k¢).
The main result of [3] can then be reformulated as
(4.1) Jim L (E, ¢) = Eed( E. ¢).
Here

Ee(E. ¢) := E(¢e)
denotes thenergy at equilibriunof (E, ¢) (with respect to Eo, ¢o)), with E(¥) standing
for the Aubin-Yau energgf a psh weighty with minimal singularities, characterized as
the primitive of the Monge-Ampere operator:

dgt Sty + (1-tyo) = % f(‘/’l = Y2)MA (y2)
t=0, X
normalized by
8(¢3,E0) =0.

Note that we have actually divided the Aubin-Yau energy @ered in [3] by the
harmless constant(+ 1)M for convenience.

SinceLk(u, ¢) > Lk(E, ¢) for any probability measuneonE, (4.1) shows in particular
that the energ@.q(E, ¢) at equilibrium is ara priori asymptotic lower bound fali(, ¢).
Our final result describes what happens for asymptoticaihimizing sequences:

Theorem C. Let ux be a sequence of probability measuresgsuch that
I!m Li(uk, ¢) = Eeo(E. ¢).

Then the associated Bergman measures satisfy
lim By, k) = e, 9)
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in the weak topology of measures.

The condition bearing on the sequengg (h Theorem C is independent of the choice
of the reference weighted subs&h(¢p). In fact (4.1) shows that it can equivalently be
written as the condition

vol B2(uy, kp)
VoI 5=(E. kp) ~ CKN-

which can be understood asngeak Bernstein-Markov conditioon the sequence),
relative to €, ¢).

The proof of Theorem C is closely related to the generabiratif Yuan'’s equidistribu-
tion theorem for generic points of asymptotically minimaldh obtained in [3].

As a consequence of Theorem C, we also recover the main o$6]t Following the
latter paper, we say that a measuris optimalfor (E, ¢) if it realizes the minimum of
L(-, ¢) over the sefPe of all probability measures oB. This is equivalent to requiring
that the norm distorsion sgp(-, ¢) achieves its minimum ove®g, to wit N, atu. As a
corollary to Theorem C, we get

Corollary C. If y is an optimal measure foE( k¢), then

i!mﬂk = teq(E. ¢).
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Threefolds fibred by rational curves and the Nash conjecture
FaBRr1z10 CATANESE
(joint work with Frédéric Mangolte)

1. INTRODUCTION

An established principle in complex algebraic geometripé the Kodaira dimension
of a smooth complex projective variety of dimensionn strongly influences the topol-
ogy of the seW(C) of its complex points. This principle is clearly manifesteady in
dimension 1, and related to other points of view, as the umifzation theorem, and the
concept of curvature. This principle, although in a mor&dlilt and complicated way,
still goes on to hold in higher dimensions. Indeed the pglecholds also in some way in
real algebraic geometry.

Assume in fact thatV is a smooth real projective variety and consider the topolog
of the setW(R) of its real points. In dimension 1, the connected compoant just
diffeomorphicto the circl&?, and the so called Harnack inequality says that their number
mis bounded from above hy+ 1, g being the genus Aiv.

In dimension 2, Comessatti proved in 1914 thatlifis a connected component of the
setW(R) of real points of a (geometrically) rational real surfAleandM is orientable,
thenM is not of hyperbolic type. This means that eitiris diffeomorphic to a sphere
S? (a quadric of elliptic type), or to a toru! x St (a quadric of parabolic type).

The theorem is sharp since in the non orientable case, eeergrentable surface of
Euler numbee = 2 — b; (we consider here homology with déieients inZ/2) can be
obtained by blowing ujb; real points on the sphe&?.

Unaware of Comessatti’s work, John Nash in 1952, while shgihat every compact
differentiable manifold is dieomorphic to a connected compon&hbf the setW(R) of
real points of a smooth real algebraic varigty asked whether the same could be true if
one also required/ to be a rational variety.

As we saw, this is false by Comessatti’ theorem.

Comessatti’s result can today be easily understood anédheletended to the case of
real algebraic surfaces with geometric gepys= 0. Its proof is based on the following
facts:

1) If M is orientable, its cohomology class is nontrivial and ifaat for the involution
determined by complex conjugation

2) the Algebraic Index Theorem (proved by Severi in 1913pwshthat (since the
hyperplane class is anti-invariant and with positive stdfisection) on the invariant part
of the second cohomology group\f(C) the intersection form is semi-negative definite

3) complex conjugation yields an isomorphism of the reahmadbundle taM with its
real tangent bundle, hence the self intersectioMaquals 2- 2g, whereg is the genus
of M.

What happens of Nash’s question in higher dimension ?

One may ask to which extent Kodaira dimension equaltoposes strong restrictions
on the topology of a connected componBnbf W(R). Or, ask the same question under
the more stringent condition the{ be rationally connected.
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In an extremely interesting series of four papers JanosaKaBed the recent progress
on the minimal model program for threefolds in order to ustierd the topology of the
connected componenitsc W(R) in the case wheré/ has Kodaira dimensiofco, espe-
cially in the case where the minimal model program yields micbundle fibration or a
del Pezzo fibration.

In joint work with Mangolte ( [1] [2] ) we answered in the pasé four questions
posed by Kollar in the paper [4, Theorem 1.1].

The situation is as follows: let: W — X be a real smooth projective threefold fi-
bred by rational curves. Suppose tN#(R) is orientable. Then, by [4, Theorem 1.1], a
connected componeiM c W(R) is obtained from a Seifert fibred manifolf or from
a connected sul\’ of lens spaces by taking connected sums with a finite numloér
copies ofP3(R) and a finite numbel of copies ofS* x S?, and one may assume that the
numbera + b be maximal, and this decomposition is unique by a theoremilwfavi[5].

Consider the integetis := k(N) andn; := ni(N), | = 1...k defined as follows (and
again well defined by Milnor’s theorem):

() if g: N’ — F is a Seifert fibrationk denotes the number of multiple fibresgf
and 2< n; < n < --- < ng denote the respective multiplicities;

(ii) if N’ is a connected sum of lens spacksglenotes the number of lens spaces
andn; < n; < --- < ng, N > 3, VI, the orders of the respective fundamental
groups (thus we have a decompositih= #}‘zl(L(n|,q|) for some 1< g < n
relatively prime ton).

Theorem 1. Let W — X be a real smooth projective threefold fibred by rationahas
over a geometrically rational surface X ( these assumptamesequivalent to: W ratio-
nally connected and fibred by rational curves). Suppose\t{@) is orientable. Then,
for each connected componentd\W(R), k(N) < 4and}; (1 - ) < 2. Furthermore,

if N’ is Seifert fiored over 5x S*, then KN) = 0.

1
ni(N)

The above result should be viewed as an analogue of Conisstsetbrem in dimen-
sion three, since it asserts that, if the base of the Seifegtion is orientable, then it is
not an orbifold of hyperbolic type.

The proof of Theorem 1 goes by reducing the proof of the esénfar the integers
n(N) to an inequality depending on the indices of certain siagpbints of a real com-
ponentM of the topological normalization oX(R) (obtained by replacing the singular
points of X(R) by its local branches).

Recall that a real surface singularity will be said tadbéype A4 if it is real analytically
equivalent to

Xy -7 =0, u>1;
andof type 4 if it is real analytically equivalent to

X—y—#"1=0,u>1.

In the above mentioned process, the nunk{dh) can be made to correspond to the
number of real singular points dfl which are of typeA*, and globally separating when
wis odd; each numben(N) — 1 corresponds to the indgx of the singularityA of M.

One of the main technical results of the second paper is tleniog.
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Main Theorem. Let X be a projective surface defined ower Suppose that X is ge-
ometrically rational with Du Val singularities. Then a coggted component M of the
topological normalizationX(R) contains at most 4 singular points af type A, which
are globally separating for; odd. Furthermore, their indices satisfy

1
Z(l—m+1)s2.
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Three dimensional terminal singularities, Riemann-Roch érmula and its
applications to birational geometry

Jungkal ALFRED CHEN
(joint work with Meng Chen, Christopher Hacon)

Three dimensional terminal singularises are classifiedaltiee work od Reid and Mori.
Basically, they are isolated singularities, cyclic quiotief compound DuVal singulari-
ties, usually denoted bgDV/y,. Each singularises can be deformed into a collection of
cyclic quotient singularities of typé(l, —-1,b). The collection of these cyclic quotient
singularities coming from the singularties ¥fis called thebaskebf X.

Miles Reid derived a Riemann-Roch form for threefolds wigimanical singularities,
by considering the contribution from singularities. Itarout that there is a formula for
Euler characteristics depending on baskekod

We study the baskets and Riemann-Roch in a more systematgal\We obtained a
method which allows us to solve for baskets with given Eullaracteristic. This method
gives various application in birational geometry.

For example, iX is a minimal threefold of general type. Suppose fh@atKy) > 2 for
some 2< m < 12, then one can obtained a lower boundwwi(X) by some geometric
method. Our method allows us to classified baskets w(ithKy) < 2 forall2< m < 12.
Combining all theses, we prove that:

Theorem 1. Let X be a threefold of general type. Then the following holds.
(I) P12 > 0,Py4 > 1.
(i) Vol(X) = 1/2660.
(iii) The pluricanonical magn, is birational for allm > 77.

Similar technique can be applied to we@iano threefolds as well.



2180 Oberwolfach Report 32008

Theorem 2. Let X be a weakQ-Fano threefold. Then the following holds.

(i) P.g>0,P_x>1forallk > 4.
(i) —K3 > 1/330. This bound is sharp.

Moreover, we consider basket ¥fas an invariant oKX and then study its behavior
under some elementary birational map. Using this, we aetaldive an &ective termi-
nation of flips.

A final remark is that we also derived some new inequalitieg/ben Euler character-
istics. One can check out [1] for a brief introduction and324, 5] for more details.
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Towards finite generation without Minimal Models (work of V. Lazit)
ALEssio CorTr

The finite generation of the canonical ring of (nonsingytaojective) algebraic vari-
eties in characteristic 0 is now a theorem [1]. In this talkdgose a new direct approach
to the proof, based on a sort of hyperplane section prineipteinduction on dimension.

Let X be a nonsingular projective variety,a finitely generated semigroup abd A —
Div X an additive map to the space of (integral, say, or ratioriaiars onX. A divisorial
algebraon X is an algebra of the form

R(X, D) = @,eaH%(X, D(1))
A divisorial algebra isadjoint if
D(1) = r()(K + A1)

for some additive map: A — Q, andA: A — Div X such that the paifX, A(1)) is Klt.
The finite generation conjecture states that a divisorigliathlgebra is always finitely
generated; as | said, this is now a theorem.
Property P. Fix a general small ampl@-divisor A on X. Consider a snc divisoB =
>, Bi c X; denote byB the “box”{® =}, bB; | 0 < b; < 1}. We say that propertly holds
if for every componen® of 8:
0] 732 ={0@ € 8| G ¢ B(K+A+0)} is arational polyhedron. (Where, for a divisor
D, B(D) denotes the stable base locus.)
(i) ® € P$(Q) if and only if the ‘Lelong number:’

1
velK + A+ 0| = r!lm ﬁmuItG|K+A+ Q) =0.
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In the talk | explain some ideas in the proof the following swhat tentative state-
ment:
Theorem (Lazi€). Assume Propert?. Then, if finite generation holds in dimensipa 1,
then finite generation holds in dimension

The proof is a transparent induction on the dimension. (ukheay that this is work
in progress and the statement just given is still providipraelieve that Property is
within reach of the analytic methods in nonvanishing thesegfor example the work of
Mihai Paun. Hence, these ideas constitute a new approagtitodeneration not relying
on the detailed machinery of the minimal model program.
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The birational type of moduli spaces of curves with level stucture

GAVRIL FARKAS

The main aim of this work is to determine the birational tygeéveo moduli spaces of
curves with level two structure, the moduli spd_{"geof Prym curves and the moduli space
3; of even spin curves.

First we study the moduli stadk classifying pairsC, 7) where [C] € My is a smooth
curve of genug andn € Pic’(C)[2] is a torsion point of order 2 giving rise to an étale
double cover oC. We denote byr : Ry — Mg the natural projection forgetting the point
of order 2 and byP : Ry — Ay-1 the Prym map given by

P(C,n) = Ker{f, : Pi®(C) — Pic’(C)}°,
wheref : C — C is the étale double covering determinedspylt is known thatP is
generically injective fog > 7 (cf. [FS]), hence one can vieRy as a birational model for
the moduli stack of Prym varieties of dimensigr 1. If Ry denores the normalization
of the Deligne-Mumford moduli spackfy in the function field ofRg, then it is known
thatRy is isomorphic to the coarse moduli stack of Beauville adibisslouble covers (cf.

[B]), and also to the stack of Prym curves in the sense of [B&R} is,Ry = mg(BZZ). It

is known that the spad® is unirational forg < 6 (cf. [D]). Verra has recently announced
a proof of the unirationality oR;. The main result (obtained jointly with K. Ludwig) is
the following:

Theorem 0.1. The moduli spacgzg is of general type for alyy > 13,g # 15.

The strategy of the proof is similar to the one used by HantsMumford for proving
that Mg is of general type for largg (cf. [HM]). One first computes the canonical class
Kﬁg in terms of the generators of PT_Q{) and then shows thdﬁﬁg is effective forg > 13

by explicitly computing the class of a specififfextive divisor orﬁg and comparing it to
Kﬁg. The divisors we construct are of two types, dpending on kadref is even or odd.

We also show that fog > 4 any pluricanonical form oRyeq automatically extends to
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any desingularization. This is a key ingredient in carrying the program of computing
the Kodaira dimension Ry,

In the odd genus case we we get 2i + 1 and consider the vector bundle defined
by the exact sequence

0— Q% — H%Kc)®O0c — Qc — 0.

(If other words Qc is the normal bundle & embedded in its Jacobian). It is well-known
that Q¢ is a semi-stable vector bundle of ragk- 1 onC of slopev(Qc) = 2 € Z, so it
makes sense to look at the theta divisors of its exterior pawRecall that

O, = 1€ € PIF2C) : h%(C,A'Qc ®¢) > 1),

and the main result from [FMP] identifies this locus with thfatence varietg; — C;
Pic’(C).
Theorem 0.2. Forg + 2i + 1, the locusE; consisting of those point€n] € Rai.1 such
thatn € ©,iq., is an dfective divisor orRyi,1. Its class orRyi 1 is given by the formula

2(2i - 2i+1 . .
P = i_( il IT+6{) — (‘higher boundary d|V|sor§s)

This proves our main result in the odd genus case. The d#/igerconsider for even
genus are of Koszul type in the sense of [F].

12) (@i+1)2- %53 -

Theorem 0.3. Forg = 2i + 6, the locusD; of those C, 5] € Rai.6 such that the Koszul
cohomology groufK;2(C, K¢ + 17) does not vanish (or equivalently,(Kc + n) fails the
Green-Lazarsfeld property()), is a virtual divisor onRy.¢. Its class oy .6 is given
by the formula:
_1(2i+2\,/6(2+7) u r
DiZE( i )(WA_Z(SO_?’éO_"')'
In both Theorems 0.2 and 0.3, € Pic(ﬁg) denotes the Hodge class ant{6p) =
dg + 267 (that isdy, is the ramification divisor of whereassy is the complement of the

ramification divisor in the pull-back of the boundary divisg from ﬂg.). The boundary
divisorsdy anddy have clear modular description in terms of Prym curves aadséme
holds for the higher boundary divisors.

We have similar results for moduli spaces of spin curves. \Wation the following
theorem cf. [F1]:

Theorem 0.4. The compact moduli spaé_é-; of even spin curves of gengds of general
type forg > 8.
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Moduli spaces and Automorphic forms
VALERY GRITSENKO
(joint work with Klaus Hulek and Gregory Sankaran)

In my talk I give a review of our joint project (see [3]-[7]) ahe geometry of modular
varieties of orthogonal type. The basic example of suctetias isthe moduli spacé 4
of polarisedK3 surfaces of degre2d.

Let L be an integral lattice of signature, (9. The latticeL determines the hermitian
homogeneous domain of type IV

D) ={ZeP(L®C)|(Z2) =0, (Z2) >0}

(* denotes a connected component)t(lQ is the subgroup of index 2 of the integral
orthogonal group fixingD(L). We define the stable integral orthogonal gr@l‘r(L) =

{g € O*(L) | gla, = id} whereA_ = L"/L is the discriminant group. The main object to
study is a quasi-projective modular variety

F(L) = O (L) \ D(L).

Examples 1) Let belyy = 2U & 2Eg(-1)® < —2d > whereU is the hyperbolic plane.
Then¥ (Lag) = F24 according to the global Torelli theorem for the polariseddtsfaces.

2) Let belyog = Lygd < =2 >. Then¥ (L,2q) is the periodic domain of the split-
polarised irreducible symplectic 4-folds deformatiopaigjuivalent to K& (see [6]). We
note that din¥ (L 24) = 20.

The programm on the K3 surfaces and their moduli spaces wamifated by A. Weil
in 1956. In the next twenty years all questions were solverkpixthe problem on the
birational type of the moduli spaces of polarised K3 surdac®ur main result is the
following.

Main Theorem (see [4], [6]). The moduli spac&,y4 of K3 surfaces with a polarisation
of degree2d is of general type for any ¢ 61 and for d = 46, 50, 54, 57, 58 and60. If
d > 40and d# 41, 44, 45 or 47 then the Kodaira dimension @f,q4 is non-negative.

The moduli space of polarised deformati8?l manifolds with polarisation of degree
2d and split type is of general type ifxl12.

We note that Mukai proved that the spgg is unirational ifd < 10 andd = 12, 17,
19 (see [8] and the references there).

The proof of the main theorem is based on the three generdaliples.

Principle of high rank (see [4]).Let L be a lattice of signaturé, n) with n > 9. Then
there exists a toroidal compactificatioi(L) having only canonical singularities. There
are no fixed divisors in the boundary. The branch divisor®¢f) — ¥ (L) are induced
by elements g O*(L) such thattg is a reflection with respect to a vector in L
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In fact, if 6 < rank(L) < 8 then non-canonical singularities are rather rare anetiser
a possibility to describe all of them for any fixéd

Automorphic principle (see [4]).Let L be an integral lattice of signatui@, n), n > 9.
The modular varietyr (L) is of general type if there exists a non-zero cusp (with zéro o
order one at infinity) form k Sa(6+(L),X) of small weight a< n that vanishes along
the branch divisor of the projection: D(L) — F(L).

We note that the characterof 6+(L) in the last principle is usually equal to determi-
nate. This is explained by the next theorem.

Theorem (see [7]). Let L be an even integral lattice containing at least two jppéc
planes, such thaianle(L) > 6 andrank(L) > 5. Then

O (L)/[0*(L), O*(L)] = Z/2Z.
For such L the orthogonal group* (L) has only one non-trivial charactetet

As a corollary we obtain that if = 2U & Lg is a lattice of signature (2) andF is a
modular form with character det or trivial characterﬁj*r(L), then the order of vanishing
of F along any boundary component®{L) is an integer.

The branch divisor of the projectian D(L) — # (L) determines the main obstruction
for continuation of the pluri-canonicalftiérential forms on a smooth compact model of
¥ (L). If the branch divisor would be smaller, then using the endgphic forms from [2]
we get a much better result than in the main theorem.

Theorem(see [4]).The moduli spac&F o4 = 56+(L2d)\Z)(L2d) of K3 surfaces of degree
2d with a spin structure is of general type ifd3.

For the orthogonal group* (L) the branch divisor is much larger and we use

Eg-principle. Let assume that there exists an embedding of a lattice M irvba uni-
modular lattice g such that the number of roots irgBrthogonal to M is positive and is
smaller thanl2 + 2(rankM). Then the modular variet§ (2U & 2Eg(-1) ® M(-1)) is of
general type.

We did not formulate th&g-principle in our papers but it was one of the basic point
of [4] and [6]. To make it a theorem we have to add some techomaditions on the
lattice M (a condition on the discriminant group and on the rankHfbut in principle
it works. The main technical tool in this part is the Borctendodular form®d, of the
(singular) weight 12 with character det @(2U & 3Eg(-1)) (see, e.g. [1]). In fact the
Eg-principle gives us a cusp form of a small weight (smallentttze canonical weight)
with a big divisor containing the branch divisor of the maalyprojection.

In order to apply theEg-principle to the cases of the moduli spaces of polarised K3
surfaces and the irreducible symplectic 4-folds we wantowkfor which 21 > 0 there
exists a vector

leEg I?=2d, | is orthogonal to at least 2 and at most 12 roots
(the case of the polarised K3 surfaces) and
leEs, 12=2d, | is orthogonal to at least 2 and at most 14 roots

(the case of the polarised symplectic 4-folds).
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Theorem (see [4], [6]).Such a vector | in Edoes exist if
4Ng, (2d) > 28Ng,(2d) + 63Np, (2d)
and such a vector | in f£does exist if
30N, ep,(2d) + 16Na.(2d) < 5Np, (2d)

where N (2d) denotes the number of representation2aby the lattice L.

To calculate the numbeM, (2d) for a lattice of odd rank we use a new variant of the
Siegel formula in terms of the Cohen—Zaglefunction (see [6]). As a corollary we
proved that the last inequalities are truedior 144 ord > 20 respectively. We obtain the
remaining vales ofl in the main theorem considering some special vectors.

We note that using the three principles given above we cavegimat many modular
varieties of dimension 1% n < 25 are of general type. For example we have a result
on the moduli spaces of dimension 21 of the O’Grady exceptibreducible symplectic
manifolds of dimension 10 with a polarisation.

In order to study modular varieties with difi(L) > 25 we can use the Mumford-
Hirzebruch proportionality principle together with automphic results of [2]. The exact
formula for the Mumford—Hirzebruch volume (an analoguenef Euler—Poincare charac-
teristic) of any indefinite orthogonal group was found in [Bhis method works perfectly
for modular varieties of big dimensions.

Theorem (see [5]).Let L be an even unimodular lattice of signatygn). ThenF (L) is
of general type if iz 42.

Analysing the results of [5] | can formulate the followingrgecture.

Conjecture. LetL be an even integral lattice of signaturerfp
1) The modular variety (L) is of general type ifiis big enough.
2) This is true fom > 36.
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Intersection numbers of divisors onﬁg
SAMUEL GRUSHEVSKY
(joint work with Cord Erdenberger, Klaus Hulek)

Abstract. In this talk we report on our joint work with Cord Erdenberged Klaus
Hulek on intersection numbers of divisors on toroidal couotifigations of the moduli
spaceAy of principally polarized complex abelian varieties. We quute all intersections
numbers of divisors for the first and second Voronoi comfiaations of A4, and for
arbitraryg compute those intersection numbers of the Hodge and boyddésor on the
first Voronoi compactification that are supported away fréwa stratum which lies over
the closure ofA,_3 in the Satake compactification. The results of this work aesgnted
in papers [2, 3].

The moduli stackAy of g-dimensional complex principally polarized complex aheli
varieties is the set of isomorphisms classes of padr®j, whereA is ag-dimensional
complex abelian variety, ar@ is a principal polarization oA, i.e. an ample line bundle
such thah®(A, ®) = 1. There in fact exists (as a stack) the universal famiiyXy — Ay,
with the fiber over A] € Ay being the ppaW itself. The Hodge vector bundle is the rank
g vector bundle onAy given byE := n*(Q}(g/ﬂg), and we denotg; := ¢(E) its Chern
classes.

The stackAy is one of the classical central objects in algebraic geonzetd number
theory, and its geometric invariants are of obvious inter&milarly to the case of the
moduli space of curvesty, computing the entire homology and Chow rings is presum-
ably extremely hard, and one can instead study its tautddging: the subring of the
Chow ringCH*(Ag) generated by. In [4] van der Geer proves that the only relations in
the tautological ring ofAy aredy = 0 and

L+l+... +2)A- A +...+(-1)%g) =1 ().

The stackAy is not compact, and a compactification needs to be considergbe
intersection theory to make sense. From general theoryldvwie thatL := deft is an
ample line bundle otAy, and thus a diiciently high power of it defines an embedding of
Ag into a projective space. By definition the Satake—BainyB«rlompactificatiom?(gat o)
Ay is the closure of the image of this embedding; as ag@gti = Ay U Ag-1 U... U A

In the 1970s the toroidal compactificatiory of A, were constructed. Any such
compactification admits a contractian A; — A5, and we denotg; := 7Y (AGY) the
boundary strata. The Hodge bun@extends to a vector bundle over a@ and it was
also shown in [4] that the only relation in tautological Sagrof CH(*@(y_lg) is (x) above.

However, this subring captures very little information abﬁg and, similarly to the case
of Wg it is natural to try to determine the subring(bH*(ﬁg) generated by the classes
Ai andg.

This ring may of course depend on the choice of a toroidal aatification. Two
common choices of toroidal compactifications are the steddirst and second Voronoi
compactifications, denoteﬁg andﬂgs. Alexeev [1] showed that there exists a universal
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family Xg — A3 However,glimrk Picy(A3) = oo (see [8]: for exampl& = B4 C A is

a divisor) and thu€ H*(ﬂgs) is likely very complicated. On the other hand, the boundary
Dc 715 is an irreducible divisor, and thus I@i(ci(g) = QL ® QD for g > 1; moreover
codimﬂgﬁi = i. Shepherd-Barron [9] showed thﬂgE is the canonical model faA for
g > 12, and thus also a natural compactification to study.

The Chow rings and intersection theory gy and A,, and compactifications are
known classically. The Chow ring and the intersection tymmg = ﬂ§ was computed
by van der Geer in [5]. The resulting intersection numberdivitors are

L® |L°D|L*D? | L°D® | L?D* | LD®| DS

1 1 203 | 4103 |
181440 0 0 720 0 T 240 | T 144

The explicit solution to the Schottky problem in genus 4 iswn: M, c A4 is given
by the Schottky modular form, and the class of its closurﬂinand?lf is computed by
Harris and Hulek [7]. Using this, we computed the intersectiumbers orﬂz using the

known intersection theory oi,.

Theorem (Erdenberger, Grushevsky, Hulek, [2])yhe intersection numbers of divisors
on Al are

LY |L°D|L8D?| L"D3| L®D*| L°D®| L*D| LD7 | L?D®| LD° D10

1 1 1759 1636249| 101449217
907200 0 0 0 3780 0 0 1680 0 1080 1440

We also determined the intersection theory of divisorsftin a toroidal computation is
used to comput&*®, from which all the other numbers can be obtained.

The many zero intersection numbers in the tables above Faueatly led us to make
the following

Conjecture (Erdenberger, Grushevsky, Hulek, [3]).)The intersection number

9(g+1) .
(L"D™2 "™ is zero unlessa = KD for some O< k < 0.
Ag 2

To approach this conjecture, we first recall thas a pullback of a line bundle Qﬁga‘

under the blowdown map : A; — A, and thus for dimension reasop& 241 =
0 € CH*(8i). We now start computing the intersection numbersiftarge.

The top self-intersection number bfcan be computed by the Hirzebruch-Mumford
proportionality principle. For ang > @ we see thaL" = 0 € CH*(81), and thus the
intersection numbe(rL“Dmyﬂg = (L"(D|p)™p = 0; so we get the firgy— 1 zeroes for the
conjecture (this is essentially already present in [5]).

Next, for@ >n> &2@’_2) the corresponding power &fis zero org,. Sinceitis
known thatD|p = —20 + L, where® is the universal theta divisor o¥ig_1 = 81 \ B2, we
can compute

(L"DM g = (L"D™ g5, = (L"(DIp)™ gy,
=(L"(-20 + L)™ hyy, , = (L"1((-20 + L)™ ))a, ..
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In [4] van der Geer uses an argument essentially due to Muhttoishow that these
pushforwards are zero fon > g, so that(ng—El)*kD9+k>ﬂ5 =0fork=1...g-2, while

the only non-zero pushforward gives

9g-1) 9(g-1)

(L7 D9ge = (-2 Hg- UL 7 Yy,

To deal with the intersection numbe(rls(g%)z(g*z)+"D39‘3"‘>ﬂ5, forl<k<g-2we
first note that they are supported away frgg) The fiber of the map over someB €
Ag-2 can be identified with the universal family of semiabeliamieties overB, and
thus the intersection theory techniques for the Poincar&lle developed in [6] can be
applied to determine the pushforward of the relevant powetie theta divisor for that
case. To finish the computation of this intersection numbeg needs to understand
the combinatorics of the intersections of the boundary aomepts of the level cover of
715, and to apply the singular version of the Grothendieck-RiemRoch formula for the
pushforward ma; \ 83 — Ag-1 U Ag_2, Which has singular fibers. The result is the
following

Theorem (Erdenberger, Grushevsky, Hulek, [3]Jhe conjecture above holds far>
&Z@"Z) = dimAg_3. Moreover, explicit formulas are given in [3] for the nonrae
numbers in this range: the non-trivial one(ls =52 ngfl)ﬂg, and the formula for it

involves a finite hypergeometric sum.
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Minimal Model Program and Semi-Orthogonal Decompositionsof Derived
Categories
Y usiro KAWAMATA

Bondal and Orlov found a close parallelism between the dipergin the minimal model
program (Mori fiber spaces, divisorial contractions andsjlipnd the semi-orthogonal
decompostions of bounded derived categories of coheresavselk ([1]). But, although
the MMP works for singular and logarithmic varieties, theided categories behave
nicely only for smooth varieties. The reason is that thewaericategoryD?(Coh(X))
for a smooth projective varitX satisfies the following 3 nice properties: (1) it is of finite
type, (2) it has a Serre functor, (3) it is saturated.

If the variety has a singularity, then the derived categermé more of finite type.
The Serre duality holds only betwe®?(Coh(X)) and the subcategory Pexiy of per-
fect complexes. The latter is of finite type, but is not satata The question is to find
something betweeB°(Coh(X)) and PerfK) for a singular varietyX which satisfies the
above 3 properties, like the intersection homology whieb hetween the homology and
the cohomology.

If the variety has only quotient singularities, then theoatsted Deligne-Mumdord
stack has a nice derived category. By using this “crepaiwgen”, one can prove that
the derived category corresponding to a projecf+&actrorial toric variety is generated
by an exceptional collection consisting of sheaves ([3]).

As a variant of this result, we can prove the following:

Theorem 1. Let f : X — Y be a birational morphism between projectiefactrorial
toric varieties. LetX andY be smooth Deligne-Mumford stacks associateX andY
respectively. Assume that an inequalitiKy > Kx holds. Then there exists an excep-
tional collection inDP(Coh(Y)) such that its semi-orthogonal complement is equivalent
to DP(Coh(X)).

The assumption is satisfied for example by minimal resohstiand maximal resolu-
tions of singularities foly..

Next we consider a terminal singularity in dimension 3 whighon-toric. Namely we
consider a varietyX having an odd Pagoda singularity defined by an equatjionz® +
w21 By blowing-up at points times, we obtain a resolutioh: Y — X. There aren
exceptional divisors, where the first- 1 divisorsE;, . . ., En—; are minimal ruled surfaces
of degree 2 oveP?, and the last on&, is a singular quadric cone. Correspondingly, we
have an exceptional collection of lengthin D°(Coh(Y)). Let D be its semi-orthogonal
complement. We claim thab is a desired “categorical crepant resolution” ([5]):

Theorem 2. The categoryD is a minimal saturated subcategory®@#(Coh(Y)) which
containsf*Perf(X). The right orthogonal subcategofyPerf(X)* is generated by objects
Ci1,...,Cn such that the firsh — 1 objectscy, ... ., ¢,-1 are 2-spherical objects, and the last
onec, satisfies Horf(c,, c,) = k[t]/t° as graded rings, where dég& 1. The objects

¢; define autoequivalences &, called twistings, which leavé*Perf(X) invariant. The
Serre functoSy, satisfiesSy(ci) = ¢i[2] for all i.
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We note that the objects, ..., c,-1 are 2-spherical instead of 3-sperical. The object
¢y is similar to aP? object ([2]) except that the degree of the generaistl instead of 2.
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The structure of surfaces and threefolds mapping to the modiistack of canonically
polarized varieties

SreraN KEBEKUS
(joint work with Sandor J. Kovacs)

Let Y° be a quasi-projective manifold that admits a morphismy® — Mt to the moduli
stack of canonically polarized varieties. Generalizing¢hassical Shafarevich hyperbol-
icity conjecture [6], Viehweg conjectured in [7] thdt is necessarily of log general type
if u is generically finite. Equivalently, if° : X° — Y° is a smooth family of canonically
polarized varieties, thel° is of log general type if the variation df is maximal, i.e.,
Var(f°) = dimY°. We refer to [4] for the relevant notions, for detailed refezes, and for
a brief history of the problem, but see also [5].

Viehweg's conjecture was confirmed for 2-dimensional n@dgY* in [4] using ex-
plicit surface geometry. In this talk, we employ recent esten theorems for logarithmic
forms to study families over threefolds. If divii < 3, we establish a strong relationship
between the moduli mgp and the logarithmic minimal model programf: in all rel-
evant cases, any logarithmic minimal model program neciéssarminates with a fiber
space whose fibration factors the moduli map. This allows psdve a much refined ver-
sion of Viehweg'’s conjecture for families over surfaces timdefolds, and give a positive
answer to the conjecture even for families of varieties witly semi-ample canonical
bundle. IfY° is a surface we recover the results of [4] in a more sophisticenanner.
In fact, going far beyond those results we give a completengtioc description of the
moduli map in those cases when the variation cannot be méaxima

The proof of our main result is rather conceptual and inddpahof the argumentation
of [4] which essentially relied on combinatorial argumefds curve arrangements on
surfaces and on Keel-McKernan’s solution to the Miyanisinjecture in dimension 2,
[3]. Many of the techniques introduced here generalize welligher dimensions, most
others at least conjecturally.

We work over the field of complex numbers.
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Main results. The main results are summarized in the following theoremnishutescribe
the geometry of families over threefolds.

Theorem 1 (Viehweg conjecture for families over threefoldd)et f° : X° — Y° be a
smooth projective family of varieties with semi-ample ¢acal bundle, over a quasi-
projective manifold Y of dimensiordimY® < 3. If f° has maximal variation, then°Ms
of log general type. In other words,

Var(f°) =dimY°® = «(Y°) =dimY°.
m]

For families ofcanonicallypolarized varieties, we can say much more. The following
much stronger theorem gives an explicit geometric expianatf Theorem 1.

Theorem 2 (Relationship between the moduli map and the MMBgt f° : X° — Y°
be a smooth projective family of canonically polarized g&&s, over a quasi-projective
manifold ¥ of dimensiordimY° < 3. Let Y be a smooth compactification éfstich that
D := Y\ Y°is a divisor with simple normal crossings.

Then any run of the minimal model program of the p@irD) will terminate in a
Kodaira or Mori fiber space whose fibration factors the moaudip birationally. O

Remark3. If x(Y°) = 0 in the setup of Theorem 2, then any run of the minimal model
program will terminate in a Kodaira fiber space that maps tmgle point. Since this
map to a point factors the moduli map birationally, Theoreas&erts that the familf?

is necessarily isotrivial ik(Y°) = 0.

Remark4. Neither the compactificatiodf nor the minimal model program discussed in
Theorem 2 is unique. When running the minimal model prograng often needs to
choose the extremal ray that is to be contracted.

In the setup of Theorem 2, ifY°) > 0, then the minimal model program terminates
in a Kodaira fiber space whose base has dimengigt). The following refined version
of Viehweg's conjecture is therefore an immediate corgltarTheorem 2.

Corollary 5 (Refined Viehweg conjecture for families over threefolds[4]). Let f° :
X° — Y° be a smooth projective family of canonically polarized etigs, over a quasi-
projective manifold Y of dimensiordimY® < 3. Then either

i) «x(Y°) = —co andVar(f°) < dimY®, or

i) k(Y°) = 0andVar(f°) < «(Y°). O

As a further application of Theorem 2, we describe the farfiily X° — Y° explicitly
if the base manifold” is a surface and the variation is not maximal.

Outline of the proof. The proof of Theorems 1 and 2 relies heavily on the minimalehod
program, on results of Viehweg and Zuo concerning the exest®f pluri-forms on the
base of a family, and on extension theorems fdiredéntial forms. For convenience, we
summarize these results first.
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Theorem 6 (Existence of pluri-dierentials on the base of a family, [8]het f° : X° —
Y° be a smooth projective family of canonically polarized etigs, over a quasi-projective
manifold Y. Let Y be a smooth compactification ¢f&uch that D:= Y \ Y° is a divisor
with simple normal crossings.

Then there exists a numberarN and an invertible subsheaf

o < Sym" Qi (log D)
such thai(«) > Var(f°). O

Theorem 7 (Extension theorem for log canonical pairs, [2Det Z be a normal variety
of dimension n and c Z a reduced divisor such that the p4#, A) is log canonical. Let
n:Z — Z be alog resolution, and set

Ay 1= largest reduced divisor contained #7*(A U centers of log canonicily
If pe{n,n-1,1}, thenthe sheaf*Qg(Iog &C) is reflexive. |

One corollary of Theorem 7 is the following generalizatidritee well-known Bogo-
molov-Sommese vanishing theorem for snc pairs, cf. [1].

Theorem 8 (Bogomolov-Sommese vanishing for log canonical threef@ldd surfaces,
[2]). Let Z be a normal variety of dimensidimZ < 3and letA c Z be areduced divisor
such that the paifzZ, A) is log canonical. Let c Q[Z”] (logA) be a reflexive subsheaf of
rank one. lfe/ is Q-Cartier, thenk(«) < p. m|

In order to prove Theorem 2, we use the existence of the skidafprove that the tan-
gent sheaf of a minimal modeY(, D,) of the pair ¥, D) is unstable in all relevant cases.
The sheaf of reflexive dierentialsQ{l)(log D,) is also unstable, with maximally destabi-

lizing subsheaf?, of rankp < dimY. We obtain a subsheaf dgtc Qgﬁ](log D.,) which,
by Theorem 8, must have small Kodaira-litaka dimension.ngshatY, is minimal, a
detailed and rather involved analysis of possible casessdhe result.
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Convex bodies associated to linear series
RoBERT L AZARSFELD
(joint work with Mircea Mustata)

Let X be a smooth projective variety, and Btbe a big divisor onX. Inspired by a
construction introduced in passing by Okounkov [6], [7]he tlassical setting of ample
divisors, we associate tD a convex bodyA(D) ¢ RY. We use these to recover and
extend many facts about the asymptotic properties of lisedes. We give here a quick
invitation to this work, borrowed from the Introduction ]|
Okounkov’s construction depends on the choice of a fixed flaglovarieties:

Yo : X=Yo2VY12Y22 ... 2 Yg1 2 Yq = {pt},
whereY; is a smooth irreducible subvariety of codimension X. This flag determines
in a natural way a valuation-like function
*) v=w,=w.p: (HO(X, Ox(D)) - {0}) — Z%, s v(s) = (va(9), ..., va(9)).
on the non-zero sections of any big divigdr For example, wheX = P9 andY, is a flag
of linear spacesyy, is essentially the lexicographic valuation on polynomisisite

V(D) = Im((H(X, 0x(D)) - {0}) — Z¢)
for the set of valuation vectors of non-zero section®gfD). It is not hard to check that
#v(D) = h°(X,0x(D)).

Then finally set

A(D) = Ay,(D) = closed convex hL(”U 1 -v(mD)).

m>1
ThusA(D) is a convex body iiR? = Z9® R, which we call theDkounkov bodgf D (with
respect to the fixed flay.).
As one might suspect, the standard Euclidean volum&Dj) in RY is related to the
rate of growth of the group®’(X, Ox(mD)). In fact, Okounkov’s arguments in [§3] —
which are based on results of Khovanskii — go through witlebiainge to prove

Theorem A. If D is any big divisor on X, then
1
Volge(A(D)) = a -volx(D).

The quantity on the right is theolumeof D, defined as the limit
h%(X, Ox(mD))
mé/d!
In the classical case, whebd is ample, vok(D) = fcl(Ox(D))d is just the top self-

intersection number dD. In general, the volume is an interesting and delicate iawar
of a big divisor, which has lately been the focus of considkravork.

VOlx(D) =get lim
m—oo
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One of our main results involves the variation of these bod®functions ob. It is
not hard to check that(D) depends only on the numerical equivalence clas®,and
that A(pD) = p - A(D) for every positive integep. It follows that there is a naturally
defined Okounkov body(¢) € RY associated to every rational numerical equivalence
class¢ € N1(X)q, and as before vgi(A(¢)) = d—1| -volx (). We prove:

Theorem B. There exists a closed convex cone
A(X) € RYx NY(X)r
characterized by the property that in the diagram

A(X) RY x NY(X)r

N A

N*(X)R,
the fibreA(X); € RY x {¢} = RY of A(X) over any big clasg € N*(X)q is A(¢).

The image ofA(X) in N}(X)R is the so-called pseuddFective conéff(X) of X, i.e. the
closure of the cone spanned by dlleetive divisors: its interior is the big cone BK)) of
X. Thus the theorem yields a natural definitiom\g§) c R for any big clasg € N*(X)g,
viz. A(¢) = A(X);.

Theorem B renders transparent several basic propertideeofdlume function vgj
established by the first authorin [5, 2.2C, 11.4.A], and petelently by Boucksom [1] in
the analytic setting. First, since the volumes of the filzx@y = A(X), vary continuously
for £ in the interior of ps(A(X)) € NY(X)r, one deduces that the volume of a big class is
computed by a continuous function

voly : Big(X) — R.

MoreoverA(é) + A(£’) < A(£ + &) for any two big classes, & € NY(X)g, and so the
Brunn-Minkowski theorem yields the log-concavity relatio

vol (& + &)Y > voly (&)Y + voly (&) Y?

for any two such classes.

The Okounkov construction also reveals some interestictg &bout the volume func-
tion that had not been known previously. For instanceklet X be a very ample divisor
on X that is general in its linear series, and choose the¥lag such a way that; = E.
Now construct the Okounkov body(¢) ¢ RY of any big clasg € Big(X), and consider
the mapping

pr;: A(¢) — R

obtained via the projectioRY —s R onto the first factor, so that pis “projection onto
thev;-axis.” Writee € N(X) for the class of, and givert > 0 such that — teis big, set

A(f)v1=t = prIl(t) c Rdil ) A(f)Vth = pql([t’ OO)) c Rd'
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We prove that
A(f)vlzt =upto translationA(f - te)

VOIga-1(A(é)y,=t) = (d_—ll)l

Here voke denotes the restricted volume function frofito E studied in [3]: wherD is
integral, voke(D) measures the rate of growth of the subspace$%E, Og(mD)) con-
sisting of sections that come frok Since one can compute thdedimensional volume
of A(¢) by integrating thed — 1)-dimensional volumes of its slices, one finds:

- VOIxe(¢ — te).

Corollary C. Let a> 0be any real number such that- ae € Big(X). Then

0
Volx (&) — volx(¢ — ae) = d-f volye(€ + te) dt.

Consequently, the function volx (¢ + te) is differentiable at t= 0, and
d
at (volx(£ +t€))li=o = d - volxe(£).

This leads to the fact that wpls C* on Big(X). Corollary C was one of the starting points
of the interesting work [2] of Boucksom—Favre—Jonsson, fdumd a nice formula for
the derivative of vol in any direction, and used it to answer some questions o§iggis

REFERENCES
[1] Sébastien Boucksom, On the volume of a line bundlerivate J. Mathl3 (2002), pp. 1043-1063.

[2] Sébastien Boucksom, Charles Favre and Mattias Jon&iffierentiability of volumes of divisors and a
problem of Teissier, to appearrXiv:math/0608260

[3] Lawrence Ein, Robert Lazarsfeld, Mircea Mustata, Miel Nakmaye and Mihnea Popa, Restricted vol-
umes and base loci of linear series, Amer. J. Math. (to appear

[4] Robert Lazarsfeld and Mircea Mustata, Convex bodesoeiated to linear series, to appear.
[5] Robert LazarsfeldPositivity in Algebraic Geometry,& Il Ergebnisse der Mathematik und ihrer Grenzge-
biete, Vols. 48 & 49, Springer Verlag, Berlin, 2004.

[6] Andrei Okounkov, Brunn-Minkowski inequality for muiicities, Invent. Math125(1996), po. 405-411.

[7] Andrei Okounkov, Why would multiplicities be log-congz?, in The orbit method in geometry and
physics Progr. Math213 2003, pp. 329-347

Singularities of the moduli space of spin curves and Prym cures
KATHARINA LUDWIG
(joint work with Gavril Farkas)

Both moduli spaces considered, the moduli sggef spin curves and the moduli space
Ry of Prym curves, parametrise pailS, () of a smooth curve&e of genusg and a line
bundleL onC. In the case of spin curves, the line bundle is a square rdbeafanonical
bundlewc, in the case of Prym curves, it is a non-trivial square rodheftrivial bundle
Oc. There are natural forgetful morphisms: xg3 — Mg, * € {S R}, sending the
isomorphism clas<], L] to [C].
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Since the Kodaira dimension af; is, by definition, that of a smooth projective model
*g, One needs a compactificatiaig > x4 and a desingularisatiory — *g. A geometri-
cally meaningful compactificati0§g of Sy over the Deligne-Mumford compactification
Mg was given by M. Cornalba [3] in terms of line bundles on soezhfjuasistable curves.
E. Ballico, C. Casagrande and C. Fontanari [1] construateahalogous compactification
ﬁg of Ry and proved that it is isomorphic to the compactification \dangssible covers
by A. Beauville [2]. The compactifications are coarse modpkces for the following
objects.

Definition 1. A spin resp. Prym curve of gengs> 2 is a triple , L, b), whereX is a
guasistable curve of gengsi.e. there exists a stable cur@eand a blow ugg : X —» C
of C at a setN c singC of nodes,L € Pic(X) \ {Ox} is of degreeg — 1 resp. 0 and
b: L% — B*wc resp.b : L®2 — Oy is a homomorphism such that for every exceptional
component of g we haveL g = Og(1) andb is non-zero at the generic point of every
non-exceptional component Xt

An automorphism ofX, L, b) is a pair ¢, y) whereo € AutX andy : o*L — L is an
isomorphism compatible with the homomorphisorendo™*b.

The moduli spacesy are normal and have quotient singularities. Locally at apoi
[X,L,b] € x4 the moduli space is isomorphic to the quotient of the versébmina-
tion spac@fg_3 of (X, L, b) by the linear action of the automorphism group AUt(, b).
Studying the automorphisms acting as quasireflectionshaeng 1 as an eigenvalue of

multiplicity 3g — 4, gives the following characterisations of the smooth $ocu

Proposition 2 ([4, 6]). Letg> 4.

[X,L,b] € ﬁg is smooth if and only iAut(X, L, b) is generated by elliptic tail invo-
lutions, i.e. automorphisms such that there exists an irodllle component Cof X of
genusl meeting the rest of the curve in exactly one node suchuthigthe involution on
C, fixing the node and the identity o6\ C;.

[X,L,b] € Sq is smooth if and only if the image of the natural homomorphism
Aut(X, L,b) — AutC is generated by elliptic tail involutions and a certain graX(X)
is tree-like, i.e. removing all loops &f(X) gives a tree. Her&(X) has a vertex for ev-
ery connected component of the partial normalisation of @and an edge for every
exceptional component E of the blowgip

Quotienting out the subgroup of AX(L, b) generated by quasireflections gives a de-
scription of the quotient singularity aX[L, b] as(Cﬁg’3/K whereK contains no quasire-
flections, hence the Reid—Shepherd-Barron—Tai crited@pplicable. A careful study of
the occuring quotients gives the following

Proposition 3 ([4, 6]). Let g> 4. [X,L,b] € %4 is a non-canonical singularity if and
only if X has an elliptic tail G of j-invariantO such that l¢, = Oc,.

With this detailed local information we can prove the foling global result.
Theorem 4 ([4, 6]). For g > 4 every pluricanonical formw on the smooth locus;
extends holomorphically to a desingularisatieg, i.e.

HO(xg % MK, ) = HO(rg, MK, ).
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Remark 5. This implies that the Kodaira dimension®§ can be computed on the moduli
spacexy itself without refering to a smooth mode},. See the article of G. Farkas in this
report for the results on the Kodaira dimensions.

idea of proof. Let w be any pluricanonical form org ° and [X, L, b] € %g. If [X, L, b] is
a canonical singularity, the form extends locally to a desingularisation. X,[L, b] is a
general non-canonical singularity, the stable maibhs two irreducible componerts
andC,; meeting in one nod&;; is a general smooth curve of gerys 1, C; is an elliptic
curve with j-invariant 0 and_c, = Oc,. Deforming the elliptic tailC, gives a projective
curve inkg through [X, L, b]. We prove that there exists an open neighbourt®od this
curve such thad extends holomorphically to a desingularisatiorsofThe basic idea is
to contract a divisor containing the singularity to a codmsien two locus in a smooth
variety Sp, where the form naturally extends.

Now let [X, L, b] be any non-canonical singularity. For every elliptic @iilj-invariant
0 such that the restriction af is trivial consider a deformation to the general gpitym
curve having this elliptic tail. The corresponding pointig is a general non-canonical
singularity. The above considerations then give an opesetulif a neighbourhood of
[X, L, b] fulfilling the conditions of a generalised Reid—ShephBatron—Tai criterion by
Harris and Mumford [5] which implies thai lifts to a desingularisation. O
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Non-algebraic hyperkéahler manifolds
Kent Oguriso
(joint work with Frédéric Campana, Thomas Peternell)

Let X be a compact Kahler manifold. Then, by the Moishezon catgiX is projective
if and only if it is algebraic in the sense thatX) = dim X. Herea(X) is the algebraic
dimension ofX, i.e., the transcendental degree of the meromorphic fomdield of X.
Also, by the famous criterion of KodairX,is projective ifH2(X, Ox) = 0, or equivalently,
by the Hodge symmetry, ifi°(X, Q3) = 0.

A hyperkahler manifold is in some sense the simplest cléssamifolds which daot
satisfyH(X, Q%) = 0:
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Definition. A simply connected compact K&ahler manifold is called a halphic irre-
ducible symplectic manifold or a hyperkahler manifoldXiidmits an everywhere non-
degenerate holomorphiz-form ox such that H(X,Q2) = Cox. (Hence of an even
dimension, sagn, andA"ox is a 2n—form without zeroes.)

By the famous Bogomolov decomposition theorem [Be83], hiygleler manifolds,
Calabi-Yau manifolds of dimensian 3 and complex tori form three important building
blocks among all compact Kahler manifolds of vanishing f@kern class. Among these
three, Calabi-Yau manifolds are always projective, ands#tef algebraic dimensions of
complex tori of dimensiom(> 2) is{fa e Z|0 < a< n}.

By Fujiki [Fu83], both projective and non-projective hygéhler manifolds are in fact
dense in the Kuranishi space ¥f We are then interested in hyperkahler manifolds,
particularly with their algebraic dimensior@$X) < 2n and their algebraic reductions
f : X -->» B, which are unique up to bimeromorphic modificatiorBofue75]. These two
are the most fundamental invariants in the classificatiomoof-algebraic manifolds.

Before discussing hyperkahler case, we recall the caserfafces. Let be a compact
smooth surface. Then, the intersection form (cup producthe Néron-Severi group
NS(S) is of signature either (D, p(S)—1) in which case we say th&tS(S) is hyperbolic,
(0,1,0(S)—1) (NS(S) is parabolic), or (00, o(S)) (NS(S) is elliptic). According to these
three cases(S) = 2, 1, 0. Moreover, ia(S) = 1, then we have a holomorphic algebraic
reductionf : S — C whose general fiber is an elliptic curve [BHPV04].

For a hyperkahler manifol, we have the Beauville-Bogomolov-Fujiki’'s form
ax : HAX, Z) x H3(X,Z) - Z .

This is a bilinear symmetric form of signature (Bb,(X) — 3) [Be83] (see also [Bo75],
[Fu87]). In many aspects, the Beauville-Bogomolov-Ftgikbrm plays a very similar
role to the interesection form on a surface. For instanciediices a symmetric bilin-
ear form on the Néron-Severi grolyS(X), and the signature is either,@ p(X) — 1)
(hyperbolic), (01, p(X) — 1) (parabolic), or (00, p(X)) (elliptic).

Example. (1) LetS be a K3 surface. The8l", the Hilbert scheme af points onS, is a
hyperkahler manifold of dimensiom2This is due to Fujiki [Fu83] and Beauville [Be83].
We havea(S[") = 0, n, 2n according taa(S) = 0, 1, 2. In addition, whea(S) = 1, the
algebraic reduction mag — P! induces a natural surjective morphissH! — P".
This is the algebraic reduction 8" and it is also Lagrangian.

(2) Let T be a 2-dimensional complex torus. The generalized Kummeanifold
Kn(T) is also a hyperkahler manifold of dimension [Be83]. One can also check that
a(Kn(T)) = 0,n, 2naccording tea(T) = 0, 1, 2. In addition, whea(T) = 1, the algebraic
reduction magf : T — E induces a natural morphis8f*'T — S™E, which is com-
patible withS™'T — T, SYE — E (natural addition maps), anid From this, one
obtains a surjective morphisky(T) — P". This morphism is nothing but the algebraic
reduction ofK,(T) and it is again Lagrangian.

In much deeper level, we have the following fundamental:
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Theorem (Huybrechts [Hu99]). A hyperkahler manifold X is projective if and only if
NS(X) is hyperbolic.

Theorem (Matsushita [Ma99]). Let f : X — B be a surjective holomorphic map from
a hyperkahler manifold X to a normal projecive variety Bwit< dim B < dim X. Then

f is necesarily Lagraingian, that iglim B = dim X/2 andox|F = O for a general fiber
of f.

Motivated by these, we formulated the following:

Conjecture ([COPO08]). Let X be a hyperkahler manifold of dimens2m Then its alge-

braic dimension takes only the valugs, 2n. Moreover, if £X) = n, then the algebraic
reduction has a holomorphic model:fX — B with B a normal projective variety of
dimension n (in particular, f is Lagrangian).

In this conjecture, we also expected tifatl S(X) is parabolic, then éX) = dim X/2.
However, we have no answer for this stronger assertion ¢kuefhe examples discussed
above.

At the workshop, | have reported the following answer towthrdconjecture, obtained
in our joint work, with some idea of proof:

Theorem ([COPO08]).(1) If dim X = 4, then the conjecture above is true.

(2) Let X be a non-algebraic hyperkahler manifold of dimengonThen0 < a(X) <
2n. More precisely we have:

(i) If NS(X) is elliptic, then &X) = 0.

(i) If NS(X) is parabolic, therD < a(X) < n=dim X/2.

(iif) Assume that any compact Kahler manifold Ydoh Y < 2n — 1, of algebraic
dimension &) = 0 and of Kodaira dimensior(Y) = 0 and with gfective canonical
divisor Ky, has a minimal model with numerically trivial canonical @ier. Then the
conjecture above is true.
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Relative critical exponents and non-vanishing
Minar PAUN

The main goal of our talk was to give a general outline of treopof the following result
see [3].

Theorem 0.1. Let X be a smooth projective manifold, and let B beRadivisor such
that:

(i) The pair(X, B)is klt, and B is big ;
(i) The adjoint bundle K+ B is pseudogective.

Then there exist anffectiveR-divisor Z'j\‘zl vI[Y;j] numerically equivalent with K+ B.
m]

Firstly, we would like to mention that the above result gatiees the classical “non-
vanishing” theorems of V. Shokurov and Y. Kawamata.

Secondly, the above result is not new : it was established .bBiRar, P. Cascini,
C. Hacon and J. McKernan as a by-product of their fundamevasgh [1], by using the
minimal model program and characterigtitechniques.

One important aspect of our proof is that is Cpdree ; moreover we avoid thexplicit
use of the minimal model program algorithm. A theorem simita0.1 was established
by Y.-T. Siu in [5], pages 31-46. Even if the hypothesis in $tstement are much more
restrictive than above, a substantial part of the argunfeons his work are used here.
Most of the subtle points in our arguments are equally olzdsevin the algebraic geome-
try proof mentioned above, as it was kindly explained to ud.iMcKernan and S. Druel;
it would be very interesting to have a precise comparisowéen the two approaches.

m]

We comment here few aspects of the proof. If the dimensidfyof B is equal to zero,
then the theorem 0.1 is a consequence of a result due to Nyhladea(generalized by S.
Boucksom). If this is not the case, we use the numericalipagiof Ky + B, together with
(a version of) the usual log-canonical threshold, in ordedéntify a hypersurfacg (the
minimal centey of some modification oK such that by restriction t8 we reproduce the
same context as in 0.1, except that the dimension drops.pBniof our proof could be
seen as a generalization of the classical arguments uske Fuijita conjecture literature
(see [5], [6] and the references therein).

During the restriction to the minimal center process, wéugé in an essential manner
the regularization techniques of J.-P. Demailly (see [2]liophantine approximation ar-
gument is also involved, to reduce to the case where the geicrobjects we are dealing
with are rational (see also [1]). Finally, we use the ext@msechniques of Y.-T. Siu ([4])
and C. Hacon-J. McKernan adapted to the present situatio@.nfain technical point in
our proof is anad hocversion of the invariance of plurigenera : this is the parevethe
difference between the classical approach (Shokurov, Kawanjaad our arguments is
quite important.
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Hyperbolicity of geometric orbifolds
ErwAN RousseAu

F. Campana has introduced in [1] orbifold structures, ngipalrs (X/A) with X a com-
plex manifold and a divisok = };(1- %)Zi where thez; are distinct irreducible divisors
andm, € N U {co}, as a new frame for the classification of compact Kahler folds.
These structures appeared naturally for fibratibnsX — Y. Indeed the multiple fibres
of f lead to the definition of the orbifold base bf (Y/A(f)) where

A(f) = Z(l— ﬁ)o

DcY

m(f, D) being the multiplicity of the fiber of above the generic point @. A new class
of varieties was then introduced, thpecial varietiesas the varieties which do not admit
fibrations of general type i.e with an orbifold base of gehgge. Campana [1] proves
the existence for every complex algebraic manifgldf a fibrationcy : X — C(X), the
core of X, such that its general fibers are special and i§ not specialcy is of general
type.

These geometric orbifolds should be considered as true geignobjects as one can
define for them dferential forms, fundamental groups, Kobayashi pseudauiis...
Here we study the hyperbolic aspects of these objects. Anritapt conjecture of Cam-
pana [1] is thatX is special if and only if the Kobayashi pseudo-distadgevanishes
identically onX x X. This is known only for curves, projective surfaces not ofigral
type and rationally connected manifolds.

This conjecture then implies thdk should be the pull-back bgx of the Kobayashi
pseudo-distanc&y of the orbifold base of the core.

The study of the hyperbolic aspects of one-dimensionaffaids has been done in
[3]. In this work we study hyperbolicity of higher dimensmrorbifolds following the
philosophy of Campana that one should study these objentrglizing the tools we use
for manifolds without orbifold structures or logarithmiamifolds.

First, we define the classical and non-classical Kobayagtetiolicity for orbifolds.
Then we illustrate these notions in the case of orbifold earWWe compute explicitly the
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orbifold Kobyashi pseudo-distance for
(X/8) = (D/(1~ 1)(0).0<nENU (),

whereD is the unit disk. This answers a question of Campana and Wirdan (see
[3]) and enables us to recover as a corollary the equivalehdassical and non-classical
hyperbolicity for orbifold curves. Finally, we show thatighs not the case in higher
dimension giving an example of an orbifold surface whichlassically hyperbolic but
not hyperbolic.

Then, we define and use orbifold jefidirentials. The main applications are algebraic
degeneracy statements for entire curves with ramificatisgituations where no Second
Main Theorem is known from value distribution theory. Nay&te prove

Theorem 1. Let (X/A) be a smooth projective orbifold surface of general type wher
A has the following decomposition into irreducible compdasen = >, (1 - %)Ci.
Suppose thatig= g(Ci) > 2, h°(C;, Oc, (Ci)) # 0 for all i and that the logarithmic Chern
classes ofX, [A]) verify

n

—2 1

(0.1) Clz_cz_;:ﬁ(zgi_2+Zcic")>0’

= j#i
then there exists a proper subvarietycY X such that every entire curve fC — X
which is an orbifold morphism, i.e ramified over @ith multiplicity at least m verifies
f(C)cy.

This result can be seen as an orbifold version of results @diéan [5] (see also [6]
and [4] for the logarithmic case) on the Greenffatis-Lang conjecture which can be
generalized to the orbifold setting

Conjecture 2. Let (X/A) be a smooth projective orbifold of general type. Then there
exists a proper subvariety ¥ X such that every orbifold morphism :fC — (X/A)
verifies {C) C Y.

The methods used also enable us to generalize a result of &angnd Paun on
weakly-special manifolds [2].
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Moduli spaces of holomorphic bundles over non-&hlerian surfaces and
applications
ANDREI TELEMAN

1. Moduli spaces of stable and polystable bundletet X be a compact comples-
dimensional manifold. A Hermitian metriggon X is called Gauduchon if its K&hler form
wy satisfiesaa(wg‘l) = 0 [6]. In every conformal class of Hermitian metrics Xrthere
exists a Gauduchon metric (which is unique up to constamiféicn > 2), so there is no
obstruction to the existence of Gauduchon metrics. A Gadiuenetric onX defines a
degree map dgg Pic(X) — R, given by deg(£) := fx c(L,h) A wg‘l, wherecy (L, h)
denotes the first Chern form of the Chern connection of anyrtitem metric onZ (a rep-
resentative of its first Chern class in Bott-Chern cohomgjo§or an arbitrary coherent
sheafF” one puts as usually dg(@) := deg,(det(F)), ug(F) := deg,(det(F))/rk(F) (de-
fined for non-trivial torsion-free sheaves) and introduttesstability and semi-stability
condition in the usual way, by requiring the same inequeliéis in the classical Mumford-
Takemoto theory for bundles on projective manifolds. Siny, a bundleE on X is called
polystable if it is either stable, or isomorphic to a diregtrsof stable bundles of same
slope.

Consider now &* rankr-bundleE over the Gauduchon manifolck(g), and fix a
holomorphic structureD on the determinant line bunde := A"(E). We denote by
M, (E), M(E), MpDSt(E) the moduli sets of equivalence classes of simple (respgti
stable, polystable) holomorphic structuresowhich induceD onD. M3,(E) has a natu-
ral structure of (in general non-Hauséfinite dimensional complex space, and' (E)
is a (in generag-dependent) Hausdfftopen subset of this space, hence it inherits a natu-
ral Hausdoff complex space structure [8]. In order to put a natural togyptin the larger
moduli setMpDSt(E) in the non-Kahlerian framework one needs the Kobayastuhifih
correspondence [4], [2], [9], [8]. Suppose for simpliaity: 2. We fix a Hermitian metric
h on E and denote by the Chern connection of the paiD(detfh)). The Kobayashi-
Hitchin correspondence yields a bijectiaiSP(E) = MBS(E) which mapsM4SP(E)*
onto M (E). Here M4SP(E) stands for the moduli space of projectively anti-selfdual
Hermitian connection# on E which inducea on D, and M4SP(E)* denotes the open
subspace of irreducible such connections. The restrictitffi®(E)* — MS(E) is a real
analytic isomorphism [8]. In this way we get a natural Haufidmpology onMpDSt(E)
(induced from the topology oM5SP(E)) with respect to whichMS\(E) is open. Note
however that, in general, on non-Kahlerian manifolds, ¢cbenplex space structure of
MGZ(E) cannot be extended mgft(E). This shows that in the non-Kahlerian framework
there cannot exist a coherent way to define moduli spacesenfusalence classes of
semistable bundles within the complex geometric cateddoyeover, the local structure
of MpDSt(E) around a split polystable bundle cannot be described vathptex geomet-
ric methods; one has to study the Kuranishi local model ofctbreesponding reducible
instanton with gauge-theoretical techniques [5], [156][1

Forn = 2 the isomorphism\4SP(E) = MPSY(E) plays a crucial role in Donaldson
theory: it was used by Donaldson as a tool to compute ingtantduli spaces with com-
plex geometric methods [4], [5]. Unfortunately, on nonedigpic surfaces, describing
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the complex geometric tert:M%St(E) becomes very dicult because the appearance of
non-filtrable bundles. These bundles are stable with réspeny Gauduchon metric, but
there exists no method to classify them.

Class VIl surfaces.The Enriques-Kodaira classification of complex surfacasoisyet
complete. The main obstacle is the Kodaira class VII. Actaytb the modern terminol-
ogy a class VIl surface is a compact complex surfddwvingb;(X) = 1, kod(X) = —co.
The subclas¥ 11%2=0 of class VIl surfaces witlo, = 0 is completely classified: such a
surface is biholomorphic either to a Hopf surface or to arumsurface [1], [10], [14]. It
remains to classify the clas4d Ifnziio of minimal class VIl surfaces with, > 0, which is a
difficult, long-standing problem. The standard conjectureseaning this classification
are:

C1. Any surface X VI Igfizo has by rational curves

C2. Any surface X VI IE;;O contains a cycle of rational curves

By the fundamental result of Dloussky-Oeljeklaus-Tomad8y surfaceX e Vllﬁfiio
with b, rational curves is biholomorphic to a Kato surface (i.e. dase with global
spherical shell). Kato surfaces are well understood [7],[4o (if true) C1 would solve
the classification problem for class VII surfaces completel

On the other hand, by a fundamental result of Nakamura [11kmesv that any sur-
faceX e Vllﬁfiio containing a cycle of rational curves is a degeneration cparameter
family of blown-up primary Hopf surfaces; therefore (if éuthe weaker conjecture C2
would solve the classification problem for class VIl surfacg to deformation equiva-
lence. Therefore, the main problem in understanding dl‘ai;ﬁio surfaces is to prove
the existence of (giiciently many) rational curvesn these surfaces.

The classV11%2>0 s interesting from a dierential topological point of view: the in-
tersection formgy : H?(X, Z)/Torsx H?(X,Z)/Tors — Z of such a surface is negative
definite, so by Donaldson’s first theorem, it is standard &ee. there exists a basis
(ew, ..., &) of H3(X, Z)/Tors satisfyinggx(e, ;) = —di; (with b := by(X)). Taking into
account that;(X)? = —b and thatk := —cy(X) is a characteristic class, we see that, re-
placing some of the by their opposite if necessary, one can assumektha}’ e, and a
basis with this property is unique up to order.

Existence of curvesin [15], [16] we showed that one can use a combination of cempl
geometric and gauge theoretical techniques to make pogrése classification of class
VIl surfaces, namely to prove existence of curves.

Theorem: C1 is true for Xe V11" and Q2is true for Xe V1122,

LetX e Vllfrfiio. The fundamental object coming up in the proof is the mochdice
M= quf‘(E), wherekE is a diterentiable rank 2 bundle witty(E) = 0 and detE) = K
(the underlyingC*® bundle ofK). Any filtrable bundle& with c,(&) = 0, det€) ~ K is
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an extension o€ ® £7* by £, where, is a line bundle witrey(£) = g = Y &, fora
subset c {1,...b}. M s always compact, and it isk&-dimensional complex space in
the complement of the reductions (split polystable bud®mceH*(X) ~ C, we obtain
a non-trivial extension 6> K — A — O — 0. The bundleA is stable if deg(K) < 0
(which can be assured by choosimguitably) andX contained no cycle. LeV c M be
the union of connected components containing split pobysthundles. The proof starts
with the questionDoesA belong toN'? If yes, one can prove that must contain a cycle.
If not, the connected componevtof A in M is a smooth, compactfold contained in
M§}(E) consisting generically of non-filtrable points. Rmr € {1, 2} the appearance of
such a component in the moduli space leads to a contradi¢t@ninstance, fob, = 1,Y
would be a Riemann surface, and the contradiction comestfrerfact thaty is algebraic,
whereasa(X) = 0.
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Generalized Kahler-Einstein metrics
Haime Tsun

In 2006, | proved that the normalized limit of the dynamicgtem of Bergman kernels
constructed in [TO] is nothing but the canonical Kahlendtein current on a smooth pro-
jective variety of general type ([T1]). The importance déttiscovery is that this implies
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the plurisubharmonicity of the logarithm of the relativanoaical Kahler-Einstein volume
form on a projective family of varieties of general type ([lty the result of Berndtsson
on the variation of Bergman kernels ([B, T1]).

Since the dynamical systems had already been constructezhhofor varieties of
general type, but also for varieties with pseufieeitve canonical divisors, | expected a
similar theory also in this case. However | could not find itéoyear. But once | looked
at the canonical bundle formula in [F-M, p.183, Theorem 5l2inmediately realized
that the corresponding metric satisfies kibg-versionof the Kahler-Einstein equation on
the base of the litaka fibration with the boundary term confiog the curvature of the
Hodge metric of the Hodg® line bundle.

Let X be a smooth projective variety with nonnegative Kodairaafision and leff :
X—--- > Y be the litaka fibration associated with the complete lingatesn|mg! K| for
some sficiently large positive integamn,. By taking a suitable modifications, we may
assume the followings:

(i) Y is smooth and is a morphism.

(i) f.Ox(mo!'Kx,y)** is aline bundle orY, wherexx denotes the double dual.
We define theQ line bundleL (independent ofrp) onY by L := %f*OX(mO!KX,Y)**.
L carries a natural singular hermitian metric (the Hodge itiely (independent ofng)

defined by
WY () = [ |

y

Let a be positive integer such th&iOx(aKx,y) # 0. Then we see that
HO(X, Ox(makK)) = H(Y, Oy(maKy + L))

holds for everym > 0 and KodK) = dimY holds, where Kod{) denotes the Kodaira
dimension ofX. Hence we see thay + L is big. LetA be a very ample line bundle
on Y such that for every pseudfective singular hermitian line bundlé-(hg) on Y,
Ov(Ky + A+ F)® I (he) is globally generated. Léta be aC* hermitian metric orA with
strictly positive curvature. We shall construct a sequearid@ergman kernel§K,} and a
sequence of singular hermitian metribs}m-1 as follows. First we set

K(Y, Ky+A,hA), if a>1,

>\
|0—|W] (0, 0" € mplLy).

Ky =
K(Y, KY +L+ nb'(KY + L),hL . hA), if a= 1,

where for a singular hermitian line bundlg, fg) K(Y, Ky + F, hg) denotes (the diagonal
part of) the Bergman kernel ¢1°(Y, Oy(Ky + F) ® 7(hg)) with respect to thé.?-inner
product:

(0,07) = (V—_l)”szhpo-/\E',

wheren denotes dinY. Then we seh; := (K;)™1. We continue this process. Suppose
that we have constructé, and the singular hermitian metiig, on | 3 Ja(Ky + L) + (m—
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L 3 1a)Ky, where for a real numbe, | 1] denotes the largest integer less than or equal to
A. Then we define

K(Y, (Mm+ 1)Ky + [ Jal + A hy)  if m+ 1% 0 moda,
K1 i=
K(Y,(m+1)(Ky + L) + Ah?®hy) if m+1=0 moda

andhp, 1 := (Kms1) 1. Thus inductively we construct the sequentggms1 and{Km}ms1.
This inductive construction is essentially the same ongimaied by the author in [TO].
The following theorem asserts that the above dynamicaksystields the canonical
Kahler current ory.

Theorem 1. ([T2]) Let X be a smooth projective variety of nonnegative Koddiraen-
sion and let f: X — Y be the litaka fibration as above. Leg and {hn}n-1 be as above
and let n denotelimY. Then i := liminf 5. Y(M)" - hy, is a well defined singular
hermitian metric on k + L such that

() he is an AZD of K + L, i.e., V-1@y_ is a closed positive current on Y and
HO(Y, O(@am(Ky + L) ® 7(ha™) =~ HO (Y, O(am(Ky + L))) holds for every m 1.

(i) We setwy := V=10y_. Then there exists a nonempty Zariski open subset U
such thatwy|U is a C* Kahler form on U and it satisfies the equation:

—-Ric,, + V-10y, = wy.

(i) We define the volume formug, on X by dican := *(Fw - hY). Then digl,is
an AZD of K.

O

ducan is unique and independent Afandha. ducan is said to behe canonical measure
on X. And wx = —Ricducan is said to bethe canonical semipositive current onX.
These are birationally invariant. We note tlat,, as constructed independently by Song
and Tian ([S-T]) in diferent context.

Theorem 2. ([T2]) Let f : X — S be a projective family such that X are smooth and
f has connected fibers. Suppose thals{mKx,s) # 0 for some m> 0. Then there exists
a singular hermitian metric pon Kx,y such that
() wxs = \/—_1@hK is semipositive on X.
(i) For a general smooth fiberX= f~1(s), hx|Xs is an AZD of K and h!|Xs is
the canonical measure ongX

O

Theorems 1 and 2 generalize the results in [T1], whéreY andL is trivial.

Theorem 2 strengthen the semipositivity of the direct imaigelative multicanonical
bundles due to Kawamata ([K]). Also we may prove a similaioteen for a projective
family of KLT pairs. | would like to propose the following cetture:

Conjecture 3. Let f : X — Y be an algebraic fiber space, i.e., ¥ are smooth pro-
jective and f is surjective with connected fibers. Then esgficiently large m>> 1,
f.Ox(mKy,y) is globally generated outside of the discriminant locus g f
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| have proved the following partial answer to Conjecture 3.

Theorem 3. Let f : X — Y be an algebraic fiber space. The@k(mKx,v) is almost
globally generated as m tends to infinity outside of the dsicrant locus D of f, in the
sense that for there exists a nonempty Zariski open subsdtYJ snch that for every
yeU,

limsupQ(amy) = 1

m—oo

holds, where a is a positive integer such thady(aKx,y) # 0 and

rank ImagéH®(Y, f*Ox(amKxy)) — f.Ox(amKy,y) ® Cy}
rank f.Ox(amKx,v) '

Q(amy) :=
O

The proof uses Theorem 2. In fa&f—_lG)hK in Theorem 2 defines a (singular) Monge-
Ampére foliation on the total spa¢éwhich descends to a Monge-Ampere foliation¥an
Then we see that the leaf of the Monge-Ampere foliationesponds to the fiber of the
moduli map to the moduli space of pairs of the bases of théivelbtaka fibration and the
Hodge line bundles with the Hodge metrics. Then the deseetians can be constructed
by the pull back of the sections on the moduli space. We caargépe the above results
to the case of KLT pairs without anyferts. Theorem 4 implies the inequality : Kot)(>
Kod(Y) + Kod(X/Y), where Kod¥/Y) denotes the Kodaira dimension of a general fiber
off:X—Y.
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Fake projective planes and arithmetic fake compact hermitan symmetric spaces
Sar-KEege YEUNG

The main theme of the talk is to present a joint project of G&pasad and the author
on classification and construction of fake projective ptaaed their higher dimensional
analogues.

A fake projective plane is a smooth complex surface whichthasame Betti num-
bers astc but which is not biholomorphic t@é. It is special in the sense that it has
the smallest Euler number among smooth surfaces of gewypeal Furthermore, a fake



Komplexe Analysis 2209

projective plane turns out to be a quotient of the complexihaib by a torsion-free dis-
crete subgroup dPU(2, 1). Hence it is a Shimura surface and carries rich geometric and
arithmetic structures.

The first example of fake projective plane was constructeMbynford [6], utilizing
p-adic uniformization. Two more examples were later founddhida and Kato in [2],
utilizing related methods. More recently, Keum constrdcdake projective plane with
an order 7 automorphism in [3], starting with Ishida’s aségyon Mumford’s example.
The main purpose of the project of Gopal Prasad and myseifétassify and construct
examples of fake projective planes, as well as their higheedsional analogues in arith-
metic fake compact hermitian symmetric spaces.

As mentioned above, a fake projective plavieis uniformized by the complex ball
(complex hyperbolic space of complex dimension 2), a comsece of Bogomolov-
Miyaoka-Yau Inequality and results of Aubin and Yau on coexglonge-Ampere equa-
tion. Hence we may writél = IT\PU(2, 1)/P(U(2)x U (1)), with IT a cocompact torsion-
free subgroup oPU(2,1). It is proved independently in the work of Klingler [4] and
myself [11] thatlT is an arithmetic lattice ifPU(2, 1). Both of the approaches rely on
analysis related to harmonic maps into Bruhat-Tits bugdiassociated til. As arith-
metic lattices have been classified and are listed in [13,dhassification problem is
reduced to classification of arithmetic lattices with riestd topological invariants. This
is the approach taken by Prasad and the author in [8].

Crucial to the results of [8] is the volume formula of Prasadh]. Equipped with the
volume formula, we set out to list all arithmetic lattidesf PU(2, 1) with Euler number
x([) < 3. This is done with the help of various techniques in analytimber theory,
which allow us to derive a reasonably sharp bound on theidigwants of the defining
number fields. Once we are reduced to a small list of exampleither construct ex-
amples with the help of Bruhat-Tits theory and number themrgliminate by conditions
imposed on the values of associated Dedekind zetal afiathctions. Here is the main
result of [8].

Theorem 1. (a) There are twenty-six non-empty classes of fake preggiianes.
(b) There can at most be five more classes of fake projectweep| corresponding to very
specific number fields.

We remark that according to a conjecture of Rogawski, thieoailsl not be any fake
projective planes of the type listed in (b). In fact, Cartylxti and steger [1] have been
able to eliminate three of the five classes in (b) as possibididates for fake projective
planes. For each of the twenty-six non-empty classes im@}Jave constructed at least
one example. Very recently, Cartwright and Steger [1] seded in listing all examples
in 23 classes above.

Theorem 2. (Cartwright-Steger) There are precisely forty-five fakejective planes
among twenty-three classes in Theorem 1(a).

A potential application of the research of [8] and [1] is thia¢y provide a list of
projective algebraic surfaces equipped with a finite nanarautomorphism group and
small Chern numbers that may be useful in constructing nésveasting surfaces to chart
geography of surfaces of general type. In fact, quite a fewheflist of examples in
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(a) have non-trivial finite group actions whose quotient®gise to interesting algebraic
surfaces after resolving singularities. In particulahds been verified by Cartwright and
Steger that such resolutions include examples of simplynected surfaces of general
type with K? = 3, q = 0 = pg, surfaces which have been sought after by algebraic
geometers. This is parallel to a completelffelient recent construction of examples due
to H. Park, J. Park and D. Shin [7].

As a generalization of the notion of fake projective plamesdamplex dimension two,
Prasad and the author study arithmetic fake compact hamsgimmetric spaces in [9],
[10]. LetG be a connected semi-simple real algebraic group of adjgiet tLetX be the
symmetric space d&(R) andX, be the compact dual &f. We shall say that the quotient
X/II of X by a cocompact torsion-free arithmetic subgraupf G(R) is an arithmetic
fake X, if its Betti numbers are same as thatgf; X/II is an irreducible arithmetic fake
X, if, further, ITis irreducible (i.e., no subgroup of of finite index is a direct product of
two infinite normal subgroups). The main results of [9], [40& the followings.

Theorem 3. (a) There exists no arithmetic fake projective space of dsion djferent
from 2 and4.

(b) There are at least four classes of arithmetic fake pdjecspaces in dimensiagh

(c) There are at least four distinct arithmetic fa®e, 5 and at least five irreducible arith-
metic fake B x P2

Theorem 4. There is no arithmetic fake Hermitian symmetric space oé tgpC,,, Dn
with n> 4, Eg or E;.

We may define a fake compact hermitian symmetric space to béhteKmanifold
which has the same Betti numbers as a hermtian symmetrie sff@ompact type of the
same dimension. A natural geometric problem is to decidenatfake compact hermtian
symmetric space is an arithmetic fake compact hermitiamsgtric space. The two no-
tions are the same for fake projective planes, but the pnoidenuch more complicated
and essentially open in higher dimensions. In particutas nhot true for fake projec-
tive spaces of odd dimension, where there are the examplggefquadrics. Hence the
problem is interesting for fake projective spaces only iaresimensions. The following
result in [12] is a positive result in this direction.

Theorem 5. A fake projective four space has to be an arithmetic fakegotdje four
space if any of the following conditions is satisfied.

(i) cj(M) # 225

(i) H*(M, Z) modulo torsion is generated I#yu 6, whered is a generator of B(M, Z)
modulo torsion, or

(iii) The cycle corresponding to the canonical line bundlg i not a generator of the
Neron-Severi group.

It will be interesting to clarify the situations in other
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Rigidity and envelopes of holomorphy in group actions
XI1aNG-YU ZHOU

We discuss the rigidity property for automorphism groupsweériant domains in Stein
manifolds which are homogenous under the complex redukciivgroups.

Let D cc (C*)" be a Reinhardt domain. The automorphism gréu(D) of D ob-
viously contains the n-dimensional torus group Are there additional positive dimen-
sional symmetries? In one dimensional case, it's well-kmolat for the annulus, the
automorphism group is judt < Z,. For higher dimensional case, there are many works
about this problem for the rigidity property &ut(D), the answer says th&ut(D) is
compact and the identity componehtit(D), of Aut(D) is exactly T. This result was
established in several papers bffelient methods, see [2], [1], [5], [7]-

Let K be a connected compact Lie group dnthe a closed subgroup &f, Kc and
Lc be (universal) complexifications &f andL, thenX = K/L is a compact homogenous
space anc = Kc/Lc is a complexification oX which is a Stein manifold. There is a
natural holomorphic action dfc on Xc given by the left translation. Ldd c X be a
K-invariant domain. Throughout this report, a domain meac@rmected open set.

In [13], Zhou proved the following result.

Theorem ([13]). LeD cc K¢/Lc be aK-invariant domain, theAut(D) is compact.

Under more assumption that (L) is a symmetric pair, the result is due to Fels and
Geatti [4].
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We present our new results based on [11]. Without loss of igdite we may assume
that K acts dfectively onX = K/L. In this setting, for aK-invariant domainD, it's
easy to see thadut(D) obviously containK. We may ask if there are not additional
positive dimensional symmetries. It should be noted thatnibt the case for general
homogeneous spa¢€/L. However, our results show that for some homogeneous spaces
including symmetric spaces it's the case.

Theorem. LeD be an orbit connecteld-invariant domain inXc = K¢/Lc. LetW be
a connected compact subgroupfaft(D) containingK, thenW can be naturally realized
as a subgroup of the isometry grolgn(X, g) of (X g), whereX = K/L andg is some
K-invariant Riemannian metric oX.

As an immediate corollary, we have the following: &t () be a symmetric paiK be
semisimple, thehso(X, g) = K for anyK-invariant Riemannian metric oX. LetD be a
relatively compacK-invariant domain inXz. ThenAut(D)o = K.

The above corollary can be extended to the isotropy irrddeitiomogeneous spaces.
A homogeneous spa¢€/L is said to be isotropy irreducible if the adjoint represédota
of L is irreducible on the vector space kwhere k and | are Lie algebras KfandL; to
be strongly isotropy irreducible if the adjoint represeiotaof the identity componerity
of L is irreducible on the vector space k These spaces are classified, and the isometry
groups of the spaces are explicitly given and just equ#l for effective action oK ex-
cept a couple of cases, see [10, 9]. Consequently weAaiB), = K for these spaces.

In the proof, a result of Zhou'’s about the univalence of thestape of holomorphy of
invariant domains plays a key role.

Theorem ([12]). LeM be a Stein manifold{c holomorphically act oM. LetD c M
be aK-invariant orbit connected domain. Then the envelope afimalrphyE(D) of D is
schlicht and orbit convex if and only if the envelope of hotmphy E(K¢ - D) of K¢ - D
is schlicht. Furthermore, in this cad&(Kc - D) = K¢ - E(D).

This result unifies and extends many known results. In pddicwe have the follow-
ing theorem which is essentially used in the proof.

Theorem ([12]). LeK be a connected compact Lie group dnbe a closed subgroup
of K. If L is connected, then an-invariant domainD in Xc = K¢/Lc has schlicht
envelope of holomorphy.
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