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Introduction by the Organisers

The workshopKomplexe Analysis, organised by Jean-Pierre Demailly (Grenoble), Klaus
Hulek (Hannover), Ngaiming Mok (Hong Kong) and Thomas Peternell (Bayreuth) was
held August 24th–August 30, 2008. This meeting was well attended with 46 participants
from Europe, US, and the Far East. The participants includedseveral leaders in the field
as well as many young (non-tenured) researchers.

The aim of the meeting was to present recent important results in several complex
variables and complex geometry with particular emphasis ontopics linking different areas
of the field, as well as to discuss new directions and open problems. Altogether there were
nineteen talks of 60 minutes each, a programme which left sufficient time for informal
discussions and joint work on research projects.

One of the topics at the center of the conference was the classification theory of higher
dimensional varieties. Y. Kawamata lectured on the connections between the minimal
model programme and derived categories; A. Corti discussedan approach to the finite
generation of the canonical ring without minimal models, but still in connection with the
seminal work which was presented by J. McKernan in the last Complex Analysis meeting
in Oberwolfach 2006, where the finite generation of the canonical ring of varieties of
general type was announced. Extension theorems, non vanishing and positivity result for
certain direct image sheaves play a role in the global classification of complex manifolds.
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This was largely discussed by M. Paun and B. Berndtsson. In their work analytic methods
are central, whereas the talks by Kawamata and Corti were more of an algebraic nature.
Also very much on the analytic side and connected to Berndtsson’s talk, H. Tsuji lectured
on generalised Kähler-Einstein metrics. Families of projective manifolds over higher-
dimensional base spaces were considered in the talk by S. Kebekus. Direct images of
coherent sheaves also play a central role in this context.

About five years ago, Campana introduced new variations on the concept of “orb-
ifolds”; they were already the suject of talks in past sessions and have turned out to be of
increasing interest – in the present session, new results onthe hyperbolicity of orbifolds
were presented in the talk by E. Rousseau.

As to varieties with special geometry, K. Oguiso spoke on non-algebraic hyperkähler
manifolds and, with a rather different flavour, F. Catanese on complex and real threefolds
fibered by rational curves, with a special emphasis on real algebraic geometry. J. Chen
discussed the influence of terminal singularities in three-dimensional geometry, a more
algebraic topic. On the analytic side, A. Teleman reported on recent progress in the classi-
fication of non-Kähler surfaces in the so called Kodaira class VII, using gauge-theoretical
methods, and S. K. Yeung lectured on new results on fake projective planes. Group ac-
tions and envelopes of holomorphy were the topics of the talkby X. Zhou. S. Boucksom
discussed equidistribution of Fekete points on complex manifolds, in relation with energy
functionals for Monge-Ampère operators.

R. Lazarsfeld presented a very interesting new approach to study properties of linear
systems and line bundles via convex geometry.

Overall, moduli spaces appeared to be a central theme in the workshop, and were
discussed extensively in at least four talks: V. Gritsenko considered moduli spaces of K3-
surfaces; S. Grushevsky spoke on intersection numbers of divisor on the moduli space of
curves, and K. Ludwig and G. Farkas lectured on the moduli spaces of spin and Prym
curves, their singularities, Kodaira dimension and enumerative geometry.
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Abstracts

Positivity properties of twisted relative canonical bundles
B B

(joint work with Mihai Paun)

The object of the talk is to construct certain metrics on relative canonical bundles,
using (generalized) Bergman kernels. In order to explain the method we will start with a
discussion of such metrics on one fixed manifold, and then move on to the relative case.

Let Z be a compact complex manifold and letL be a holomorphic line bundle overZ,
equipped with a (possibly singular) metric,φ. This metric will always be assumed to have
positive curvature current, so thati∂∂̄φ ≥ 0. This metric onL induces a naturalL2-metric
on the space of sections to the adjoint bundleKZ + L, through

‖u‖2φ = ‖u‖2 =
∫

Z
|u|2ε.

From thisL2-metric we get aBergman kerneldefined by

Bφ(z) = B(z) = sup|u(z)|2,

with the supremum taken over all global holomorphic sections of KZ + L with L2-norm at
most 1. (In case there is no global holomorphic section of finite norm, we let the Bergman
kernel be 0.) Here of course the pointwise value ofu(z) depends on the choice of a local
frame, soB is not a function but defines a metric onKZ + L, ψ = log B. More precisely,
we can letχ be an arbitrary smooth metric onKZ + L, and defineB by

B(z)e−χ = sup|u(z)|2e−χ.

Jointly with the Bergman kernel, we shall also consider an analogous construction for
twisted multiples of the canonical bundle. This is defined byfirst letting

‖u‖2m =
∫

Z
|u|2/me−φ/m.

Then one can imitate the definition of the Bergman kernel by putting

Bφ,m(z) = sup|u(z)|2,

this time taking the supremum over all global holomorphic sections tomKZ+L of m-norm
not exceeding 1(see [8], [6], [10]) . By construction,Bm,φ is a metric onmKZ + L with
the property that any global section of this bundle having finite L2/m-norm, ispointwise
bounded with respect to this metric.
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0.1. The relative case.Let nextX andY be projective manifolds and letp be a surjective
holomorphic map. (More generally, we could allow a proper surjective map fromX to an
open manifoldY and assume thatX has some holomorphic line bundleF with a metric of
strictly positive curvature.) We consider the relative canonical bundle

KX/Y = KX − p∗(KY).

For genericy in Y, the fiberp−1(y) = Xy is then smooth and the restriction ofKX/Y to Xy is
(isomorphic to)KXy . Let L be a line bundle overX, and letφ be a metric with semipositive
curvature current onL. Over the generic fibers we can then construct the Bergman kernel,
and them-Bergman kernel in the way described in the introduction. This way we get
naturally defined metrics onKX/Y + L andmKX/Y + L over the Zariski open set of generic
fibers. These metrics have no immediate regularity properties as the fibers vary, but it is
not too hard to check (using normal families) that they are atleast upper semicontinuous.

Our first result says that the (relative) Bergman kernel metric that we obtain in this way
over the set of generic fibers has nonegative curvature current, and extends to a metric on
KX/Y+L over all ofX that also has nonnegative curvature. This holds under the assumption
that the Bergman kernel is not identically equal to zero, i e that there is at least some fiber
on whichKXy + L has a section with finiteL2-norm.(The first result in this direction, in a
non-twisted situation, is the very influential theorem of Fujita, [4].)

After that we consider the (Zariski open) set ofy:s in the baseY where the dimension
of H0(Xy,KXy + L) is minimal. Over this set we have a naturally defined vector bundle
with fibersH0(Xy,KXy + L), and this bundle has a naturally defined metric, namley the
L2-metric. Note that this is a singular metric, and that (just like what happens for singular
metrics on line bundles), some sections may have infinite norm. We define a notion of
positivity for such singular metrics which generalizes Griffiths positivity in the nonsingu-
lar case, and prove that theL2-metric is positive in this sense. This follows in the same
way as the positivity of the Bergman kernel metric, but is a stronger property.

Using these notions we finally prove analogous results for them-Bergman kernel, gen-
eralizing to the twisted case Kawamata’s positivity theorem, [7], for multiples of the
canonical bundle.

Our first result is a fairly simple consequence of the main result from [1] on positivity
of direct image bundles, if we assume that the metric onL is smooth of nonnegative
curvature, and that moreover our surjective mapp is a smooth fibration. The main point
in the present work is the extension to nonsmooth metrics andgeneral surjective maps. To
overcome the difficulty coming from nonsmoothness of the metric, we work in a Zariski
dense Stein manifold, where we can regularize our metric, and then extend. The difficulty
coming from nonsmoothness of the fibration is handled via an apriori estimate where the
Ohsawa-Takegoshi extension theorem is the key point.

Both these issues require new ideas in the case of them-Bergman kernel. In particular,
it is not enough to work in a Stein subdomain since divisors are not removable forL2/m if
m > 1. This is where our use of nonsmooth metrics onvectorbundles comes in. Instead
of regularizing our metric onL we regularize the nonsmooth metric on the vector bundle
with fiber H0(Xy,KXy + L), which is a much simpler, local problem.
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One application of these results is a Bergman kernel proof ofthe Kawamata subad-
junction theorem, [7], another is an estimate for restricted volumes due to Takayama and
Hacon-McKernan, [9],[5].

R
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Convergence towards equilibrium on complex manifolds
Ś B

(joint work with Robert Berman, David Witt Nystrom)

1. T 

Let L be a holomorphic line bundle over a compact complex manifoldX of complex
dimensionn. Following [3], let (E, φ) be aweighted subset, that is a compact subsetE of
X together with the weightφ of a continuous Hermitian metrice−φ on the restrictionL|E.
Finally letµ be a probability measure supported byE.

The asymptotic study ask→ ∞ of the space of global sectionss ∈ H0(X, kL) endowed
with either theL2 norm

‖s‖2L2(µ,kφ) :=
∫

X
|s|2e−2kφdµ

or theL∞ norm
‖s‖L∞ (E,kφ) := sup

E
|s|e−kφ

is a natural generalization of the classical theory of orthogonal polynomials. The latter
indeed corresponds to the case

E ⊂ Cn ⊂ Pn =: X

endowed with the tautological ample bundleO(1) =: L. It is of course well-known that
H0(Pn,O(k)) identifies to the space of polynomials of total degree at most k. The section
of L cutting out the hyperplane at infinity induces a flat Hermitian metric onL overCn, so
that a continuous weightφ on L|E is naturally identified with a function inC0(E). On the
other hand, a psh function onCn with at most logarithmic growth at infinity gets identified



2172 Oberwolfach Report 38/2008

with the weightφ of a non-negatively curved (singular) Hermitian metric onL, which will
thus be referred to as apsh weight.

Our geometric setting is therefore seen to be a natural (and more symmetric) extension
of so-calledweighted potential theoryin the classical case. It also contains the case of
spherical polynomialson the round sphereSn ⊂ Rn+1.

Indeed, the space of spherical polynomials of total degree at mostk is by definition
the image by restriction toSn of the space of all polynomials onRn+1 of degree at most
k. It thus coincides with (the real points of)H0(X, kL) with X being the smooth quadric
hypersurface

{X2
1 + .. + X2

n = X2
0} ⊂ Pn+1

endowed with the very ample line bundleL := O(1)|X. Here we takeE := Sn = X(R), and
the section cutting out the hyperplane at infinity again identifies weights onL to certain
functions on the affine piece ofX.

In view of the above dictionary, one is naturally led to introduce theequilibrium weight
of (E, φ) as

(1.1) φE := sup
{
ψpsh weight onL, ψ ≤ φ onE

}
,

whose upper semi-continuous regularizationφ∗E is a psh weight onL as soon asE is
non-pluripolar, which will always be assumed.

Theequilibrium measureof (E, φ) is then defined as the Monge-Ampère measure of
φ∗E normalized to unit mass:

µeq(E, φ) := M−1MA (φ∗E).

This measure is concentrated onE, and we haveφ = φ∗E a.e. with respect to it.
This approach is least technical whenL is ample, but the natural setting appears to be

the more general case of abig line bundle, which is the one considered in the present
paper, following our preceding work [3]. As is shown there, the Monge-Ampère measure
MA (ψ) of a psh weightψ with minimal singularities, defined as the Beford-Taylor top-
power (ddcψ)n of the curvatureddcψ on its bounded locus, is well-behaved. Its total mass
M is in particular an invariant of the big line bundleL, and in fact coincides with the
volumevol(L), characterized by

Nk := dimH0(kL) = vol(L)
kn

n!
+ o(kn).

The main goal of the present paper is to give a general criterion involving spaces of
global sections that ensures convergence of certain sequences of probability measures on
E towards the equilibrium measureµeq(E, φ).

2. F 

Let (E, φ) be a weighted subset as above. AFekete configurationis a finite subset of
points maximizing the determinant in the interpolation problem.

More precisely, letN := dimH0(L) and

P = (x1, ..., xN) ∈ EN



Komplexe Analysis 2173

be a configuration of points in the given compact subsetE. ThenP is said to be a Fekete
configuration for (E, φ) iff it maximizes the determinant of the evaluation operator

evP : H0(L)→ ⊕N
j=1Lx j

with respect to a given basiss1, ..., sN of H0(L), that is the Vandermonde-type determinant
∣∣∣det(si(x j))

∣∣∣e−(φ(x1)+...+φ(xn)).

This condition is independent of the choice of the basis (sj).
If P = (x1, ..., xN) ∈ XN is a configuration, then we let

δP :=
1
N

N∑

j=1

δx j .

Our first main result is an equidistribution result for Fekete configurations.

Theorem A. Let Pk ∈ ENk be a Fekete configuration for (E, kφ). Then thePk equidis-
tribute towards the equilibrium measure, that is

lim
k→∞

δPk = µeq(E, φ)

in the weak topology of measures.

Theorem A first appeared in the first two named authors’ preprint [4]. It will be ob-
tained here as a consequence of a more general convergence result (Theorem C below).

In the classical one-variable situation, this result is well-known. In the several-variable
classical situation, this result has been conjectured for quite some time, probably going
back to the pioneering work of Leja in the late 50’s.

As explained above, the spherical polynomials situation corresponds to the round
sphereSn embedded in its complexification, the complex quadric hypersurface inPn+1.
This special case of Theorem A thus yields:

Corollary A. Let E ⊂ Sn be a compact subset of the roundn-sphere, and for eachk let
Pk ∈ ENk be Fekete configuration of degreek for E (also calledextremal fundamental
systemin this setting). ThenδPk converges to the equilibrium measureµeq(E) of E.

This is a generalization of the recent result of Morza and Ortega-Cerdà [8] on equidis-
tribution of Fekete points on the sphere, which correspondsto the caseE = Sn whose
equilibrium measureµeq(Sn) is just the rotationally invariant probability measure onSn.

3. B-M 

Let again (E, φ) be a weighted subset, and letµ be a probability measure onE. The
distorsion between the naturalL2 and L∞ norms onH0(L) introduced above is locally
acounted for by thedistorsion functionρ(µ, φ), whose value atx ∈ E is defined by

(3.1) ρ(µ, φ)(x) = sup
‖s‖L2(µ,φ)=1

|s(x)|2φ,

the squared norm of the evaluation operator atx.
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The functionρ(µ, φ) is known as theChristoffel-Darboux functionin the orthogonal
polynomials literature. It sometimes also appears under the namedensity of states func-
tion, since theprobabilitymeasure

(3.2) β(µ, φ) := N−1ρ(µ, φ)µ,

which will be referred to as theBergman measure, can be interpreted as a dimensional
density forH0(L).

Whenµ is a smooth positive volume form onX andφ is smooth and strictly psh, the
celebrated Bouche-Catlin-Tian-Zelditch theorem assertsthatβ(µ, kφ) admits a full asymp-
totic expansion in the space of smooth volume forms, withM−1(ddcφ)n as the dominant
term.

As was shown by the first named author (in [1] for thePn case and in [2] for the general
case), part of this result still holds when the positive curvature asumption onφ is dropped.
More specifically, the norm distorsion still satisfies

(3.3) sup
X
ρ(µ, kφ) = O(kn)

and the Bergman measures still converge towards the equilibrium measure:

(3.4) lim
k→∞

β(µ, kφ) = µeq(X, φ)

now in the weak topology of measures.
Both of these results fail whenE, µ andφ are more general. Howeversub-exponential

growth of the distorsion betweenL2(µ, kφ) andL∞(E, kφ) norms, that is

(3.5) sup
E
ρ(µ, kφ) = O(eεk) for all ε > 0,

appears to be a much more robust condition. Following a standard terminology, the mea-
sureµ will be said to beBernstein-Markovfor (E, φ) when (3.5) holds.

WhenE = X, any continuous measure is Bernstein-Markov for (X, φ) by the mean-
value inequality.

Our second main result asserts that convergence of Bergman measures to equilibrium
as in (3.4) holds for arbitrary Bernstein-Markov measure.

Theorem B. Let µ be a Bernstein-Markov measure for (E, φ). Then

lim
k→∞

β(µ, kφ) = µeq(E, φ)

in the weak topology of measures.

In the classical one-variable setting, this theorem was obtained, using completely dif-
ferent methods, by Bloom and Levenberg [7]. A slightly less general version of Theorem
B (dealing only withstablyBernstein-Markov measures) was first obtained in the first and
third named author’s preprint [5]. Theorem B will here be obtained as a special case of
Theorem C below.



Komplexe Analysis 2175

4. D’ L-    

We now state our third main result, which is a general criterion ensuring convergence of
Bergman measures to equilibrium in terms ofL-functionals, first introduced by Donald-
son. This final result actually implies Theorem A and B above,as well as a convergence
result for so-calledoptimal measuresfirst obtained in [6].

TheL2 andL∞ norms onH0(kL) introduced above are described geometrically by their
unit balls, that will be denoted respectively by

B∞(µ, kφ) ⊂ B2(E, kφ) ⊂ H0(kL).

We fix a reference weighted subset (E0, φ0), which should be taken to be the compact torus
endowed with the standard flat weight in the classicalCn case. We can then normalize the
Haar measure vol onH0(kL) by

volB∞(E0, kφ0) = 1,

and we introduce the following slight variants of Donaldson’s L-functional:

Lk(µ, φ) :=
1

2kNk
log volB2(µ, kφ)

and

Lk(E, φ) :=
1

2kNk
log volB∞(E, kφ).

The main result of [3] can then be reformulated as

(4.1) lim
k→∞
Lk(E, φ) = Eeq(E, φ).

Here
Eeq(E, φ) := E(φ∗E)

denotes theenergy at equilibriumof (E, φ) (with respect to (E0, φ0)), with E(ψ) standing
for theAubin-Yau energyof a psh weightψ with minimal singularities, characterized as
the primitive of the Monge-Ampère operator:

d
dt t=0+

E(tψ1 + (1− t)ψ2) =
1
M

∫

X
(ψ1 − ψ2)MA (ψ2)

normalized by
E(φ∗0,E0

) = 0.

Note that we have actually divided the Aubin-Yau energy considered in [3] by the
harmless constant (n+ 1)M for convenience.

SinceLk(µ, φ) ≥ Lk(E, φ) for any probability measureµ onE, (4.1) shows in particular
that the energyEeq(E, φ) at equilibrium is ana priori asymptotic lower bound forLk(·, φ).
Our final result describes what happens for asymptotically minimizing sequences:

Theorem C. Let µk be a sequence of probability measures onE such that

lim
k→∞
Lk(µk, φ) = Eeq(E, φ).

Then the associated Bergman measures satisfy

lim
k→∞

β(µk, kφ) = µeq(E, φ)
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in the weak topology of measures.

The condition bearing on the sequence (µk) in Theorem C is independent of the choice
of the reference weighted subset (E0, φ0). In fact (4.1) shows that it can equivalently be
written as the condition

log
volB2(µk, kφ)
volB∞(E, kφ)

= o(kNk),

which can be understood as aweak Bernstein-Markov conditionon the sequence (µk),
relative to (E, φ).

The proof of Theorem C is closely related to the generalization of Yuan’s equidistribu-
tion theorem for generic points of asymptotically minimal heigh obtained in [3].

As a consequence of Theorem C, we also recover the main resultof [6]. Following the
latter paper, we say that a measureµ is optimal for (E, φ) if it realizes the minimum of
L(·, φ) over the setPE of all probability measures onE. This is equivalent to requiring
that the norm distorsion supE ρ(·, φ) achieves its minimum overPE, to wit N, atµ. As a
corollary to Theorem C, we get

Corollary C. If µk is an optimal measure for (E, kφ), then

lim
k→∞

µk = µeq(E, φ).

R

[1] R. Berman, Bergman kernels and weighted equilibrium measures ofCn, preprint (2007)
arXiv:math/0702357. To appear in Indiana Univ. Journ. of Math.

[2] R. Berman,Bergman kernels and equilibrium measures for line bundles over projective manifolds, preprint
(2007) arXiv:0710.4375.

[3] R. Berman, S. Boucksom,Capacities and weighted volumes for line bundles, preprint (2008)
arXiv:0803.1950.

[4] R. Berman, S. Boucksom,Equidistribution of Fekete points on complex manifolds, preprint (2008)
arXiv:0807.0035.

[5] R. Berman, D. W. Nyström,Convergence of Bergman measures for high powers of a line bundle, preprint
(2008) arXiv:0805.2846.

[6] T. Bloom, L. Bos, N. Levenberg, S. Waldron,On the convergence of optimal measures, preprint (2008)
arXiv:0808.0762.

[7] T. Bloom, N. Levenberg,Strong asymptotics for Christoffel functions of planar measures, preprint (2007)
arXiv: 0709.2073.
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Threefolds fibred by rational curves and the Nash conjecture
F C

(joint work with Frédéric Mangolte)

1. I

An established principle in complex algebraic geometry is that the Kodaira dimension
of a smooth complex projective varietyW of dimensionn strongly influences the topol-
ogy of the setW(C) of its complex points. This principle is clearly manifest already in
dimension 1, and related to other points of view, as the uniformization theorem, and the
concept of curvature. This principle, although in a more difficult and complicated way,
still goes on to hold in higher dimensions. Indeed the principle holds also in some way in
real algebraic geometry.

Assume in fact thatW is a smooth real projective variety and consider the topology
of the setW(R) of its real points. In dimension 1, the connected components are just
diffeomorphic to the circleS1, and the so called Harnack inequality says that their number
m is bounded from above byg+ 1, g being the genus ofW.

In dimension 2, Comessatti proved in 1914 that ifM is a connected component of the
setW(R) of real points of a (geometrically) rational real surfaceW, andM is orientable,
thenM is not of hyperbolic type. This means that eitherM is diffeomorphic to a sphere
S2 (a quadric of elliptic type), or to a torusS1 × S1 (a quadric of parabolic type).

The theorem is sharp since in the non orientable case, every non orientable surface of
Euler numbere = 2 − b1 (we consider here homology with coefficients inZ/2) can be
obtained by blowing upb1 real points on the sphereS2.

Unaware of Comessatti’s work, John Nash in 1952, while showing that every compact
differentiable manifold is diffeomorphic to a connected componentM of the setW(R) of
real points of a smooth real algebraic varietyW, asked whether the same could be true if
one also requiresW to be a rational variety.

As we saw, this is false by Comessatti’ theorem.
Comessatti’s result can today be easily understood and indeed extended to the case of

real algebraic surfaces with geometric genuspg = 0. Its proof is based on the following
facts:

1) If M is orientable, its cohomology class is nontrivial and invariant for the involution
determined by complex conjugation

2) the Algebraic Index Theorem (proved by Severi in 1913), shows that (since the
hyperplane class is anti-invariant and with positive selfintersection) on the invariant part
of the second cohomology group ofW(C) the intersection form is semi-negative definite

3) complex conjugation yields an isomorphism of the real normal bundle toM with its
real tangent bundle, hence the self intersection ofM equals 2− 2g, whereg is the genus
of M.

What happens of Nash’s question in higher dimension ?
One may ask to which extent Kodaira dimension equal to−∞ poses strong restrictions

on the topology of a connected componentN of W(R). Or, ask the same question under
the more stringent condition thatW be rationally connected.
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In an extremely interesting series of four papers Janos Kollár used the recent progress
on the minimal model program for threefolds in order to understand the topology of the
connected componentsN ⊂W(R) in the case whereW has Kodaira dimension−∞, espe-
cially in the case where the minimal model program yields a conic bundle fibration or a
del Pezzo fibration.

In joint work with Mangolte ( [1] [2] ) we answered in the positive four questions
posed by Kollár in the paper [4, Theorem 1.1].

The situation is as follows: letf : W → X be a real smooth projective threefold fi-
bred by rational curves. Suppose thatW(R) is orientable. Then, by [4, Theorem 1.1], a
connected componentM ⊂ W(R) is obtained from a Seifert fibred manifoldN′ or from
a connected sumN′ of lens spaces by taking connected sums with a finite numbera of
copies ofP3(R) and a finite numberb of copies ofS1 × S2, and one may assume that the
numbera+ b be maximal, and this decomposition is unique by a theorem of Milnor [5].

Consider the integersk := k(N) andnl := nl(N), l = 1 . . .k defined as follows (and
again well defined by Milnor’s theorem):

(i) if g: N′ → F is a Seifert fibration,k denotes the number of multiple fibres ofg
and 2≤ n1 ≤ n2 ≤ · · · ≤ nk denote the respective multiplicities;

(ii) if N′ is a connected sum of lens spaces,k denotes the number of lens spaces
andn1 ≤ n2 ≤ · · · ≤ nk, nl ≥ 3, ∀l, the orders of the respective fundamental
groups (thus we have a decompositionN′ = #k

l=1(L(nl, ql) for some 1≤ ql < nl

relatively prime tonl).

Theorem 1. Let W→ X be a real smooth projective threefold fibred by rational curves
over a geometrically rational surface X ( these assumptionsare equivalent to: W ratio-
nally connected and fibred by rational curves). Suppose thatW(R) is orientable. Then,
for each connected component N⊂W(R), k(N) ≤ 4 and

∑
l(1− 1

nl (N) ) ≤ 2. Furthermore,

if N′ is Seifert fibred over S1 × S1, then k(N) = 0.

The above result should be viewed as an analogue of Comessatti’s theorem in dimen-
sion three, since it asserts that, if the base of the Seifert fibration is orientable, then it is
not an orbifold of hyperbolic type.

The proof of Theorem 1 goes by reducing the proof of the estimate for the integers
nl(N) to an inequality depending on the indices of certain singular points of a real com-
ponentM of the topological normalization ofX(R) (obtained by replacing the singular
points ofX(R) by its local branches).

Recall that a real surface singularity will be said to beof type A+µ if it is real analytically
equivalent to

x2 + y2 − zµ+1 = 0, µ ≥ 1 ;

andof type A−µ if it is real analytically equivalent to

x2 − y2 − zµ+1 = 0, µ ≥ 1 .

In the above mentioned process, the numberk(N) can be made to correspond to the
number of real singular points onM which are of typeA+µ , and globally separating when
µ is odd; each numbernl(N) − 1 corresponds to the indexµl of the singularityA+µl

of M.
One of the main technical results of the second paper is the following.
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Main Theorem. Let X be a projective surface defined overR. Suppose that X is ge-
ometrically rational with Du Val singularities. Then a connected component M of the
topological normalizationX(R) contains at most 4 singular points xl of type A+µl

which
are globally separating forµl odd. Furthermore, their indices satisfy

∑
(1− 1

µl + 1
) ≤ 2 .
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Three dimensional terminal singularities, Riemann-Roch formula and its
applications to birational geometry

J A C

(joint work with Meng Chen, Christopher Hacon)

Three dimensional terminal singularises are classified dueto the work od Reid and Mori.
Basically, they are isolated singularities, cyclic quotient of compound DuVal singulari-
ties, usually denoted bycDV/µr . Each singularises can be deformed into a collection of
cyclic quotient singularities of type1r (1,−1, b). The collection of these cyclic quotient
singularities coming from the singularties ofX is called thebasketof X.

Miles Reid derived a Riemann-Roch form for threefolds with canonical singularities,
by considering the contribution from singularities. It turns out that there is a formula for
Euler characteristics depending on basket odX.

We study the baskets and Riemann-Roch in a more systematicalway. We obtained a
method which allows us to solve for baskets with given Euler characteristic. This method
gives various application in birational geometry.

For example, ifX is a minimal threefold of general type. Suppose thatχ(mKX) ≥ 2 for
some 2≤ m ≤ 12, then one can obtained a lower bound onVol(X) by some geometric
method. Our method allows us to classified baskets withχ(mKX) ≤ 2 for all 2≤ m≤ 12.
Combining all theses, we prove that:

Theorem 1. Let X be a threefold of general type. Then the following holds.

(i) P12 > 0,P24 > 1.
(ii) Vol(X) ≥ 1/2660.
(iii) The pluricanonical mapϕm is birational for allm≥ 77.

Similar technique can be applied to weakQ-Fano threefolds as well.
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Theorem 2. Let X be a weakQ-Fano threefold. Then the following holds.

(i) P−6 > 0,P−2k > 1 for all k ≥ 4.
(ii) −K3 ≥ 1/330. This bound is sharp.

Moreover, we consider basket ofX as an invariant ofX and then study its behavior
under some elementary birational map. Using this, we are able to give an effective termi-
nation of flips.

A final remark is that we also derived some new inequalities between Euler character-
istics. One can check out [1] for a brief introduction and [2,3, 4, 5] for more details.
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Towards finite generation without Minimal Models (work of V. Lazić)
A C

The finite generation of the canonical ring of (nonsingular,projective) algebraic vari-
eties in characteristic 0 is now a theorem [1]. In this talk I propose a new direct approach
to the proof, based on a sort of hyperplane section principleand induction on dimension.

Let X be a nonsingular projective variety,Λ a finitely generated semigroup andD : Λ→
Div X an additive map to the space of (integral, say, or rational) divisors onX. A divisorial
algebraon X is an algebra of the form

R(X,D) = ⊕λ∈ΛH0(X,D(λ)
)

A divisorial algebra isadjoint if

D(λ) = r(λ)
(
K + ∆(λ)

)

for some additive mapr : Λ→ Q+ and∆ : Λ→ Div X such that the pair
(
X,∆(λ)

)
is klt.

The finite generation conjecture states that a divisorial adjoint algebra is always finitely
generated; as I said, this is now a theorem.
Property P. Fix a general small ampleQ-divisor A on X. Consider a snc divisorB =∑

Bi ⊂ X; denote byB the “box” {Θ = ∑
bi Bi | 0 ≤ bi ≤ 1}. We say that propertyP holds

if for every componentG of B:

(i) PG
A = {Θ ∈ B | G 1 B(K+A+Θ)} is a rational polyhedron. (Where, for a divisor

D, B(D) denotes the stable base locus.)
(ii) Θ ∈ PG

A(Q) if and only if the ‘Lelong number:’

νG||K + A+ Θ|| := lim
n→∞

1
n

multG |K + A+ Θ| = 0.
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In the talk I explain some ideas in the proof the following somewhat tentative state-
ment:
Theorem (Lazić). Assume PropertyP. Then, if finite generation holds in dimensionn−1,
then finite generation holds in dimensionn.

The proof is a transparent induction on the dimension. (I should say that this is work
in progress and the statement just given is still provisional.) I believe that PropertyP is
within reach of the analytic methods in nonvanishing theory, seefor example the work of
Mihai Paun. Hence, these ideas constitute a new approach to finite generation not relying
on the detailed machinery of the minimal model program.

R
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varieties of log general type, arXiv:math/0610203.

The birational type of moduli spaces of curves with level structure
G F

The main aim of this work is to determine the birational type of two moduli spaces of
curves with level two structure, the moduli spaceRg of Prym curves and the moduli space

S
+

g of even spin curves.
First we study the moduli stackRg classifying pairs (C, η) where [C] ∈ Mg is a smooth

curve of genusg andη ∈ Pic0(C)[2] is a torsion point of order 2 giving rise to an étale
double cover ofC. We denote byπ : Rg→Mg the natural projection forgetting the point
of order 2 and byP : Rg → Ag−1 the Prym map given by

P(C, η) := Ker{ f∗ : Pic0(C̃)→ Pic0(C)}0,
where f : C̃ → C is the étale double covering determined byη. It is known thatP is
generically injective forg ≥ 7 (cf. [FS]), hence one can viewRg as a birational model for
the moduli stack of Prym varieties of dimensiong − 1. If Rg denores the normalization
of the Deligne-Mumford moduli spaceMg in the function field ofRg, then it is known
thatRg is isomorphic to the coarse moduli stack of Beauville admissible double covers (cf.
[B]), and also to the stack of Prym curves in the sense of [BCF], that is,Rg =Mg(BZ2). It
is known that the spaceRg is unirational forg ≤ 6 (cf. [D]). Verra has recently announced
a proof of the unirationality ofR7. The main result (obtained jointly with K. Ludwig) is
the following:

Theorem 0.1. The moduli spaceRg is of general type for allg > 13, g , 15.

The strategy of the proof is similar to the one used by Harris and Mumford for proving
thatMg is of general type for largeg (cf. [HM]). One first computes the canonical class
KRg

in terms of the generators of Pic(Rg) and then shows thatKRg
is effective forg > 13

by explicitly computing the class of a specific effective divisor onRg and comparing it to
KRg

. The divisors we construct are of two types, dpending on whetherg is even or odd.

We also show that forg ≥ 4 any pluricanonical form onRg,reg automatically extends to
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any desingularization. This is a key ingredient in carryingout the program of computing
the Kodaira dimension ofRg.

In the odd genus case we we setg = 2i + 1 and consider the vector bundleQC defined
by the exact sequence

0 −→ Q∨C −→ H0(KC) ⊗ OC → QC −→ 0.

(If other words,QC is the normal bundle ofC embedded in its Jacobian). It is well-known
that QC is a semi-stable vector bundle of rankg − 1 onC of slopeν(QC) = 2 ∈ Z, so it
makes sense to look at the theta divisors of its exterior powers. Recall that

Θ∧iQC
= {ξ ∈ Picg−2i−1(C) : h0(C,∧iQC ⊗ ξ) ≥ 1},

and the main result from [FMP] identifies this locus with the difference varietyCi −Ci ⊂
Pic0(C).

Theorem 0.2. For g+ 2i + 1, the locusEi consisting of those points [C, η] ∈ R2i+1 such
thatη ∈ Θ∧i QC

, is an effective divisor onR2i+1. Its class onR2i+1 is given by the formula

Ei ≡
2
i

(
2i − 2
i − 1

)
·
(
(3i + 1)λ − i

2
δu

0 −
2i + 1

4
δr

0 − ( higher boundary divisors)
)
.

This proves our main result in the odd genus case. The divisors we consider for even
genus are of Koszul type in the sense of [F].

Theorem 0.3. For g = 2i + 6, the locusDi of those [C, η] ∈ R2i+6 such that the Koszul
cohomology groupKi,2(C,KC + η) does not vanish (or equivalently, (C,KC + η) fails the
Green-Lazarsfeld property (Ni)), is a virtual divisor onR2i+6. Its class onR2i+6 is given
by the formula:

Di ≡
1
2

(
2i + 2

i

)(6(2i + 7)
i + 3

λ − 2δu
0 − 3δr

0 − · · ·
)
.

In both Theorems 0.2 and 0.3,λ ∈ Pic(Rg) denotes the Hodge class andπ∗(δ0) =
δu

0 + 2δr
0 (that isδr

0 is the ramification divisor ofπ whereasδu
0 is the complement of the

ramification divisor in the pull-back of the boundary divisor δ0 fromMg.). The boundary
divisorsδu

0 andδr
0 have clear modular description in terms of Prym curves and the same

holds for the higher boundary divisors.
We have similar results for moduli spaces of spin curves. We mention the following

theorem cf. [F1]:

Theorem 0.4. The compact moduli spaceS+g of even spin curves of genusg is of general
type forg > 8.
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Moduli spaces and Automorphic forms
V G

(joint work with Klaus Hulek and Gregory Sankaran)

In my talk I give a review of our joint project (see [3]–[7]) onthe geometry of modular
varieties of orthogonal type. The basic example of such varieties isthe moduli spaceF2d

of polarisedK3 surfaces of degree2d.
Let L be an integral lattice of signature (2, n). The latticeL determines the hermitian

homogeneous domain of type IV

D(L) = {Z ∈ P(L ⊗ C) | (Z,Z) = 0, (Z, Z̄) > 0}+

(+ denotes a connected component). O+(L) is the subgroup of index 2 of the integral
orthogonal group fixingD(L). We define the stable integral orthogonal groupÕ+(L) =
{g ∈ O+(L) | g|AL = id} whereAL = L∨/L is the discriminant group. The main object to
study is a quasi-projective modular variety

F (L) = Õ+(L) \ D(L).

Examples. 1) Let beL2d = 2U ⊕ 2E8(−1)⊕ < −2d > whereU is the hyperbolic plane.
ThenF (L2d) = F2d according to the global Torelli theorem for the polarised K3surfaces.

2) Let beL2,2d = L2d⊕ < −2 >. ThenF (L2,2d) is the periodic domain of the split-
polarised irreducible symplectic 4-folds deformationally equivalent to K3[2] (see [6]). We
note that dimF (L2,2d) = 20.

The programm on the K3 surfaces and their moduli spaces was formulated by A. Weil
in 1956. In the next twenty years all questions were solved except the problem on the
birational type of the moduli spaces of polarised K3 surfaces. Our main result is the
following.

Main Theorem (see [4], [6]).The moduli spaceF2d of K3 surfaces with a polarisation
of degree2d is of general type for any d> 61 and for d= 46, 50, 54, 57, 58 and60. If
d ≥ 40and d, 41, 44, 45or 47 then the Kodaira dimension ofF2d is non-negative.

The moduli space of polarised deformationK3[2] manifolds with polarisation of degree
2d and split type is of general type if d≥ 12.

We note that Mukai proved that the spaceF2d is unirational ifd ≤ 10 andd = 12, 17,
19 (see [8] and the references there).

The proof of the main theorem is based on the three general principles.

Principle of high rank (see [4]).Let L be a lattice of signature(2, n) with n ≥ 9. Then
there exists a toroidal compactificationF (L) having only canonical singularities. There
are no fixed divisors in the boundary. The branch divisors ofD(L) → F (L) are induced
by elements g∈ Õ+(L) such that±g is a reflection with respect to a vector in L.
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In fact, if 6 ≤ rank(L) ≤ 8 then non-canonical singularities are rather rare and there is
a possibility to describe all of them for any fixedL.

Automorphic principle (see [4]).Let L be an integral lattice of signature(2, n), n ≥ 9.
The modular varietyF (L) is of general type if there exists a non-zero cusp (with zero of
order one at infinity) form Fa ∈ Sa(Õ+(L), χ) of small weight a< n that vanishes along
the branch divisor of the projectionπ : D(L) → F (L).

We note that the characterχ of Õ+(L) in the last principle is usually equal to determi-
nate. This is explained by the next theorem.

Theorem (see [7]). Let L be an even integral lattice containing at least two hyperbolic
planes, such thatrank2(L) ≥ 6 andrank3(L) ≥ 5. Then

Õ+(L)/[Õ+(L), Õ+(L)] � Z/2Z.

For such L the orthogonal group̃O+(L) has only one non-trivial characterdet.

As a corollary we obtain that ifL = 2U ⊕ L0 is a lattice of signature (2, n) andF is a
modular form with character det or trivial character forÕ+(L), then the order of vanishing
of F along any boundary component ofD(L) is an integer.

The branch divisor of the projectionπ : D(L) → F (L) determines the main obstruction
for continuation of the pluri-canonical differential forms on a smooth compact model of
F (L). If the branch divisor would be smaller, then using the automorphic forms from [2]
we get a much better result than in the main theorem.
Theorem(see [4]).The moduli spaceSF 2d = S̃O

+
(L2d)\D(L2d) of K3 surfaces of degree

2d with a spin structure is of general type if d≥ 3.

For the orthogonal group̃O+(L) the branch divisor is much larger and we use

E8-principle . Let assume that there exists an embedding of a lattice M in theeven uni-
modular lattice E8 such that the number of roots in E8 orthogonal to M is positive and is
smaller than12+ 2(rankM). Then the modular varietyF (2U ⊕ 2E8(−1)⊕ M(−1)) is of
general type.

We did not formulate theE8-principle in our papers but it was one of the basic point
of [4] and [6]. To make it a theorem we have to add some technical conditions on the
lattice M (a condition on the discriminant group and on the rank ofM) but in principle
it works. The main technical tool in this part is the Borcherds modular formΦ12 of the
(singular) weight 12 with character det onD(2U ⊕ 3E8(−1)) (see, e.g. [1]). In fact the
E8-principle gives us a cusp form of a small weight (smaller than the canonical weight)
with a big divisor containing the branch divisor of the modular projection.

In order to apply theE8-principle to the cases of the moduli spaces of polarised K3
surfaces and the irreducible symplectic 4-folds we want to know for which 2d > 0 there
exists a vector

l ∈ E8, l2 = 2d, l is orthogonal to at least 2 and at most 12 roots

(the case of the polarised K3 surfaces) and

l ∈ E7, l2 = 2d, l is orthogonal to at least 2 and at most 14 roots

(the case of the polarised symplectic 4-folds).



Komplexe Analysis 2185

Theorem (see [4], [6]).Such a vector l in E8 does exist if

4NE7(2d) > 28NE6(2d) + 63ND6(2d)

and such a vector l in E7 does exist if

30NA1⊕D4(2d) + 16NA5(2d) < 5ND6(2d)

where NL(2d) denotes the number of representations of2d by the lattice L.

To calculate the numberNL(2d) for a lattice of odd rank we use a new variant of the
Siegel formula in terms of the Cohen–ZagierL-function (see [6]). As a corollary we
proved that the last inequalities are true ford ≥ 144 ord ≥ 20 respectively. We obtain the
remaining vales ofd in the main theorem considering some special vectors.

We note that using the three principles given above we can prove that many modular
varieties of dimension 19≤ n ≤ 25 are of general type. For example we have a result
on the moduli spaces of dimension 21 of the O’Grady exceptional irreducible symplectic
manifolds of dimension 10 with a polarisation.

In order to study modular varieties with dimF (L) > 25 we can use the Mumford-
Hirzebruch proportionality principle together with automorphic results of [2]. The exact
formula for the Mumford–Hirzebruch volume (an analogue of the Euler–Poincare charac-
teristic) of any indefinite orthogonal group was found in [3]. This method works perfectly
for modular varieties of big dimensions.

Theorem (see [5]).Let L be an even unimodular lattice of signature(2, n). ThenF (L) is
of general type if n≥ 42.

Analysing the results of [5] I can formulate the following conjecture.

Conjecture. Let L be an even integral lattice of signature (2, n).
1) The modular varietyF (L) is of general type ifn is big enough.
2) This is true forn ≥ 36.
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Intersection numbers of divisors onAg

S G

(joint work with Cord Erdenberger, Klaus Hulek)

Abstract. In this talk we report on our joint work with Cord Erdenbergerand Klaus
Hulek on intersection numbers of divisors on toroidal compactifications of the moduli
spaceAg of principally polarized complex abelian varieties. We compute all intersections
numbers of divisors for the first and second Voronoi compactifications ofA4, and for
arbitraryg compute those intersection numbers of the Hodge and boundary divisor on the
first Voronoi compactification that are supported away from the stratum which lies over
the closure ofAg−3 in the Satake compactification. The results of this work are presented
in papers [2, 3].

The moduli stackAg of g-dimensional complex principally polarized complex abelian
varieties is the set of isomorphisms classes of pairs (A,Θ), whereA is a g-dimensional
complex abelian variety, andΘ is a principal polarization onA, i.e. an ample line bundle
such thath0(A,Θ) = 1. There in fact exists (as a stack) the universal familyπ : Xg→ Ag,
with the fiber over [A] ∈ Ag being the ppavA itself. The Hodge vector bundle is the rank
g vector bundle onAg given byE := π∗(Ω1

Xg/Ag
), and we denoteλi := ci(E) its Chern

classes.
The stackAg is one of the classical central objects in algebraic geometry and number

theory, and its geometric invariants are of obvious interest. Similarly to the case of the
moduli space of curvesMg, computing the entire homology and Chow rings is presum-
ably extremely hard, and one can instead study its tautological ring: the subring of the
Chow ringCH∗(Ag) generated byλi . In [4] van der Geer proves that the only relations in
the tautological ring ofAg areλg = 0 and

(1+ λ1 + . . . + λg)(1− λ1 + . . . + (−1)gλg) = 1 (∗).

The stackAg is not compact, and a compactification needs to be consideredfor the
intersection theory to make sense. From general theory it follows thatL := detE is an
ample line bundle onAg, and thus a sufficiently high power of it defines an embedding of
Ag into a projective space. By definition the Satake-Baily-Borel compactificationASat

g ⊃
Ag is the closure of the image of this embedding; as a set,ASat

g = Ag ⊔Ag−1 ⊔ . . . ⊔A1.

In the 1970s the toroidal compactificationsAg of Ag were constructed. Any such
compactification admits a contractionπ : Ag → ASat

g , and we denoteβi := π−1(ASat
g−i) the

boundary strata. The Hodge bundleE extends to a vector bundle over anyAg, and it was
also shown in [4] that the only relation in tautological subring of CH∗

Q
(Ag) is (∗) above.

However, this subring captures very little information aboutAg and, similarly to the case
ofMg, it is natural to try to determine the subring ofCH∗(Ag) generated by the classes
λi andβi .

This ring may of course depend on the choice of a toroidal compactification. Two
common choices of toroidal compactifications are the so-called first and second Voronoi
compactifications, denotedAF

g andAS
g . Alexeev [1] showed that there exists a universal
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family Xg → AS
g . However, lim

g→∞
rk PicQ(AS

g ) = ∞ (see [8]: for exampleE := β4 ⊂ AS
4 is

a divisor) and thusCH∗(AS
g ) is likely very complicated. On the other hand, the boundary

D ⊂ AF
g is an irreducible divisor, and thus PicQ(AF

g ) = QL ⊕ QD for g > 1; moreover
codimAF

g
βi = i. Shepherd-Barron [9] showed thatAF

g is the canonical model forAg for
g ≥ 12, and thus also a natural compactification to study.

The Chow rings and intersection theory onA1 andA2, and compactifications are
known classically. The Chow ring and the intersection theory ofAF

3 = AS
3 was computed

by van der Geer in [5]. The resulting intersection numbers ofdivisors are

L6 L5D L4D2 L3D3 L2D4 LD5 D6

1
181440 0 0 1

720 0 − 203
240 − 4103

144

.

The explicit solution to the Schottky problem in genus 4 is known:M4 ⊂ A4 is given
by the Schottky modular form, and the class of its closure inAF

4 andAS
4 is computed by

Harris and Hulek [7]. Using this, we computed the intersection numbers onAF
4 using the

known intersection theory onM4.

Theorem (Erdenberger, Grushevsky, Hulek, [2])). The intersection numbers of divisors
onAF

4 are

L10 L9D L8D2 L7D3 L6D4 L5D5 L4D6 L3D7 L2D8 LD9 D10

1
907200 0 0 0 − 1

3780 0 0 − 1759
1680 0 1636249

1080
101449217

1440

We also determined the intersection theory of divisors onAS
4 : a toroidal computation is

used to computeE10, from which all the other numbers can be obtained.

The many zero intersection numbers in the tables above have naturally led us to make
the following

Conjecture (Erdenberger, Grushevsky, Hulek, [3]).). The intersection number
〈LnD

g(g+1)
2 −n〉AF

g
is zero unlessn = k(k+1)

2 for some 0≤ k ≤ g.

To approach this conjecture, we first recall thatL is a pullback of a line bundle onASat
g

under the blowdown mapπ : AF
g → ASat

g , and thus for dimension reasonsL
(g−i)(g−i+1)

2 +1 =

0 ∈ CH∗(βi). We now start computing the intersection numbers forn large.
The top self-intersection number ofL can be computed by the Hirzebruch-Mumford

proportionality principle. For anyn > g(g−1)
2 we see thatLn = 0 ∈ CH∗(β1), and thus the

intersection number〈LnDm〉AF
g
= 〈Ln(D|D)m〉D = 0; so we get the firstg− 1 zeroes for the

conjecture (this is essentially already present in [5]).
Next, for g(g−1)

2 ≥ n > (g−1)(g−2)
2 , the corresponding power ofL is zero onβ2. Since it is

known thatD|D = −2Θ + L, whereΘ is the universal theta divisor onXg−1 = β1 \ β2, we
can compute

〈LnDm〉AF
g
= 〈LnDm〉AF

g \β2
= 〈Ln(D|D)m−1〉β1\β2

= 〈Ln(−2Θ + L)m−1〉Xg−1 = 〈Lnπ∗((−2Θ + L)m−1)〉Ag−1.
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In [4] van der Geer uses an argument essentially due to Mumford to show that these
pushforwards are zero form > g, so that〈L g(g−1)

2 −kDg+k〉AF
g
= 0 for k = 1 . . .g− 2, while

the only non-zero pushforward gives

〈L
g(g−1)

2 Dg〉AF
g
= (−2)g−1(g− 1)!〈L

g(g−1)
2 〉Ag−1.

To deal with the intersection numbers〈L (g−3)(g−2)
2 +kD3g−3−k〉AF

g
, for 1 ≤ k ≤ g − 2 we

first note that they are supported away fromβ3. The fiber of the mapπ over someB ∈
Ag−2 can be identified with the universal family of semiabelian varieties overB, and
thus the intersection theory techniques for the Poincaré bundle developed in [6] can be
applied to determine the pushforward of the relevant powersof the theta divisor for that
case. To finish the computation of this intersection number,one needs to understand
the combinatorics of the intersections of the boundary components of the level cover of
AF

g , and to apply the singular version of the Grothendieck-Riemann-Roch formula for the
pushforward mapβ1 \ β3 → Ag−1 ⊔ Ag−2, which has singular fibers. The result is the
following

Theorem (Erdenberger, Grushevsky, Hulek, [3]). The conjecture above holds forn >
(g−3)(g−2)

2 = dimAg−3. Moreover, explicit formulas are given in [3] for the non-zero

numbers in this range: the non-trivial one is〈L (g−2)(g−3)
2 D2g−1〉AF

g
, and the formula for it

involves a finite hypergeometric sum.
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Minimal Model Program and Semi-Orthogonal Decompositionsof Derived
Categories

Y K

Bondal and Orlov found a close parallelism between the operations in the minimal model
program (Mori fiber spaces, divisorial contractions and flips) and the semi-orthogonal
decompostions of bounded derived categories of coherent sheaves ([1]). But, although
the MMP works for singular and logarithmic varieties, the derived categories behave
nicely only for smooth varieties. The reason is that the derived categoryDb(Coh(X))
for a smooth projective varityX satisfies the following 3 nice properties: (1) it is of finite
type, (2) it has a Serre functor, (3) it is saturated.

If the variety has a singularity, then the derived category is no more of finite type.
The Serre duality holds only betweenDb(Coh(X)) and the subcategory Perf(X) of per-
fect complexes. The latter is of finite type, but is not saturated. The question is to find
something betweenDb(Coh(X)) and Perf(X) for a singular varietyX which satisfies the
above 3 properties, like the intersection homology which lies between the homology and
the cohomology.

If the variety has only quotient singularities, then the associated Deligne-Mumdord
stack has a nice derived category. By using this “crepant resolution”, one can prove that
the derived category corresponding to a projectiveQ-factrorial toric variety is generated
by an exceptional collection consisting of sheaves ([3]).

As a variant of this result, we can prove the following:

Theorem 1. Let f : X → Y be a birational morphism between projectiveQ-factrorial
toric varieties. LetX andY be smooth Deligne-Mumford stacks associated toX andY
respectively. Assume that an inequalityf ∗KY ≥ KX holds. Then there exists an excep-
tional collection inDb(Coh(Y)) such that its semi-orthogonal complement is equivalent
to Db(Coh(X)).

The assumption is satisfied for example by minimal resolutions and maximal resolu-
tions of singularities forY.

Next we consider a terminal singularity in dimension 3 whichis non-toric. Namely we
consider a varietyX having an odd Pagoda singularity defined by an equationxy+ z2 +

w2n+1. By blowing-up at pointsn times, we obtain a resolutionf : Y → X. There aren
exceptional divisors, where the firstn−1 divisorsE1, . . . ,En−1 are minimal ruled surfaces
of degree 2 overP1, and the last oneEn is a singular quadric cone. Correspondingly, we
have an exceptional collection of lengthn in Db(Coh(Y)). LetD be its semi-orthogonal
complement. We claim thatD is a desired “categorical crepant resolution” ([5]):

Theorem 2. The categoryD is a minimal saturated subcategory ofDb(Coh(Y)) which
containsf ∗Perf(X). The right orthogonal subcategoryf ∗Perf(X)⊥ is generated by objects
c1, . . . , cn such that the firstn− 1 objectsc1, . . . , cn−1 are 2-spherical objects, and the last
onecn satisfies Hom∗(cn, cn) � k[t]/t3 as graded rings, where deg(t) = 1. The objects
ci define autoequivalences ofD, called twistings, which leavef ∗Perf(X) invariant. The
Serre functorSD satisfiesSD(ci) � ci [2] for all i.
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We note that the objectsc1, . . . , cn−1 are 2-spherical instead of 3-sperical. The object
cn is similar to aP2 object ([2]) except that the degree of the generatort is 1 instead of 2.
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The structure of surfaces and threefolds mapping to the moduli stack of canonically
polarized varieties

S K

(joint work with Sándor J. Kovács)

Let Y◦ be a quasi-projective manifold that admits a morphismµ : Y◦ → M to the moduli
stack of canonically polarized varieties. Generalizing the classical Shafarevich hyperbol-
icity conjecture [6], Viehweg conjectured in [7] thatY◦ is necessarily of log general type
if µ is generically finite. Equivalently, iff ◦ : X◦ → Y◦ is a smooth family of canonically
polarized varieties, thenY◦ is of log general type if the variation off ◦ is maximal, i.e.,
Var( f ◦) = dimY◦. We refer to [4] for the relevant notions, for detailed references, and for
a brief history of the problem, but see also [5].

Viehweg’s conjecture was confirmed for 2-dimensional manifoldsY◦ in [4] using ex-
plicit surface geometry. In this talk, we employ recent extension theorems for logarithmic
forms to study families over threefolds. If dimY◦ ≤ 3, we establish a strong relationship
between the moduli mapµ and the logarithmic minimal model program ofY◦: in all rel-
evant cases, any logarithmic minimal model program necessarily terminates with a fiber
space whose fibration factors the moduli map. This allows us to prove a much refined ver-
sion of Viehweg’s conjecture for families over surfaces andthreefolds, and give a positive
answer to the conjecture even for families of varieties withonly semi-ample canonical
bundle. IfY◦ is a surface we recover the results of [4] in a more sophisticated manner.
In fact, going far beyond those results we give a complete geometric description of the
moduli map in those cases when the variation cannot be maximal.

The proof of our main result is rather conceptual and independent of the argumentation
of [4] which essentially relied on combinatorial argumentsfor curve arrangements on
surfaces and on Keel-McKernan’s solution to the Miyanishi conjecture in dimension 2,
[3]. Many of the techniques introduced here generalize wellto higher dimensions, most
others at least conjecturally.

We work over the field of complex numbers.
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Main results. The main results are summarized in the following theorems which describe
the geometry of families over threefolds.

Theorem 1 (Viehweg conjecture for families over threefolds). Let f◦ : X◦ → Y◦ be a
smooth projective family of varieties with semi-ample canonical bundle, over a quasi-
projective manifold Y◦ of dimensiondimY◦ ≤ 3. If f ◦ has maximal variation, then Y◦ is
of log general type. In other words,

Var( f ◦) = dimY◦ ⇒ κ(Y◦) = dimY◦.

�

For families ofcanonicallypolarized varieties, we can say much more. The following
much stronger theorem gives an explicit geometric explanation of Theorem 1.

Theorem 2 (Relationship between the moduli map and the MMP). Let f◦ : X◦ → Y◦

be a smooth projective family of canonically polarized varieties, over a quasi-projective
manifold Y◦ of dimensiondimY◦ ≤ 3. Let Y be a smooth compactification of Y◦ such that
D := Y \ Y◦ is a divisor with simple normal crossings.

Then any run of the minimal model program of the pair(Y,D) will terminate in a
Kodaira or Mori fiber space whose fibration factors the modulimap birationally. �

Remark3. If κ(Y◦) = 0 in the setup of Theorem 2, then any run of the minimal model
program will terminate in a Kodaira fiber space that maps to a single point. Since this
map to a point factors the moduli map birationally, Theorem 2asserts that the familyf ◦

is necessarily isotrivial ifκ(Y◦) = 0.

Remark4. Neither the compactificationY nor the minimal model program discussed in
Theorem 2 is unique. When running the minimal model program,one often needs to
choose the extremal ray that is to be contracted.

In the setup of Theorem 2, ifκ(Y◦) ≥ 0, then the minimal model program terminates
in a Kodaira fiber space whose base has dimensionκ(Y◦). The following refined version
of Viehweg’s conjecture is therefore an immediate corollary of Theorem 2.

Corollary 5 (Refined Viehweg conjecture for families over threefolds, cf. [4]) . Let f◦ :
X◦ → Y◦ be a smooth projective family of canonically polarized varieties, over a quasi-
projective manifold Y◦ of dimensiondimY◦ ≤ 3. Then either

i) κ(Y◦) = −∞ andVar( f ◦) < dimY◦, or
ii) κ(Y◦) ≥ 0 andVar( f ◦) ≤ κ(Y◦). �

As a further application of Theorem 2, we describe the familyf ◦ : X◦ → Y◦ explicitly
if the base manifoldY◦ is a surface and the variation is not maximal.

Outline of the proof. The proof of Theorems 1 and 2 relies heavily on the minimal model
program, on results of Viehweg and Zuo concerning the existence of pluri-forms on the
base of a family, and on extension theorems for differential forms. For convenience, we
summarize these results first.
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Theorem 6 (Existence of pluri-differentials on the base of a family, [8]). Let f◦ : X◦ →
Y◦ be a smooth projective family of canonically polarized varieties, over a quasi-projective
manifold Y◦. Let Y be a smooth compactification of Y◦ such that D:= Y \ Y◦ is a divisor
with simple normal crossings.

Then there exists a number m∈ N and an invertible subsheaf

A ⊂ SymmΩ1
Y(logD)

such thatκ(A ) ≥ Var( f ◦). �

Theorem 7 (Extension theorem for log canonical pairs, [2]). Let Z be a normal variety
of dimension n and∆ ⊂ Z a reduced divisor such that the pair(Z,∆) is log canonical. Let
π : Z̃→ Z be a log resolution, and set

∆̃lc := largest reduced divisor contained inπ−1(∆ ∪ centers of log canonicity).

If p ∈ {n, n− 1, 1}, then the sheafπ∗Ω
p
Z̃
(log∆̃lc) is reflexive. �

One corollary of Theorem 7 is the following generalization of the well-known Bogo-
molov-Sommese vanishing theorem for snc pairs, cf. [1].

Theorem 8 (Bogomolov-Sommese vanishing for log canonical threefolds and surfaces,
[2]). Let Z be a normal variety of dimensiondimZ ≤ 3 and let∆ ⊂ Z be a reduced divisor
such that the pair(Z,∆) is log canonical. LetA ⊂ Ω[p]

Z (log∆) be a reflexive subsheaf of
rank one. IfA isQ-Cartier, thenκ(A ) ≤ p. �

In order to prove Theorem 2, we use the existence of the sheafA to prove that the tan-
gent sheaf of a minimal model (Yλ,Dλ) of the pair (Y,D) is unstable in all relevant cases.
The sheaf of reflexive differentialsΩ[1]

Yλ
(logDλ) is also unstable, with maximally destabi-

lizing subsheafB, of rankp < dimY. We obtain a subsheaf detB ⊂ Ω[p]
Yλ

(logDλ) which,
by Theorem 8, must have small Kodaira-Iitaka dimension. Using thatYλ is minimal, a
detailed and rather involved analysis of possible cases gives the result.
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[5] S. K  L. Ś C: Existence of rational curves on algebraic varieties, minimal rational
tangents, and applications, Global aspects of complex geometry, Springer, Berlin, 2006, pp. 359–416.
MR2264116

[6] I. R. S: Algebraic number fields, Proc. Internat. Congr. Mathematicians (Stockholm, 1962),
Inst. Mittag-Leffler, Djursholm, 1963, English translation: Amer. Math. Soc.Transl. (2)31 (1963), 25–39,
pp. 163–176.MR0202709 (34 #2569)

[7] E. V: Positivity of direct image sheaves and applications to families of higher dimensional mani-
folds, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000), ICTP
Lect. Notes, vol. 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001, Available on the ICTP web site
athttp://www.ictp.trieste.it/∼pub off/services, pp. 249–284.MR1919460 (2003f:14024)



Komplexe Analysis 2193

[8] E. V  K. Z: Base spaces of non-isotrivial families of smooth minimal models, Complex ge-
ometry (Göttingen, 2000), Springer, Berlin, 2002, pp. 279–328.MR1922109 (2003h:14019)

Convex bodies associated to linear series
R L

(joint work with Mircea Mustaţă)

Let X be a smooth projective variety, and letD be a big divisor onX. Inspired by a
construction introduced in passing by Okounkov [6], [7] in the classical setting of ample
divisors, we associate toD a convex body∆(D) ⊆ Rd. We use these to recover and
extend many facts about the asymptotic properties of linearseries. We give here a quick
invitation to this work, borrowed from the Introduction to [4].

Okounkov’s construction depends on the choice of a fixed flag of subvarieties:

Y• : X = Y0 ⊇ Y1 ⊇ Y2 ⊇ . . . ⊇ Yd−1 ⊇ Yd = {pt},
whereYi is a smooth irreducible subvariety of codimensioni in X. This flag determines
in a natural way a valuation-like function

(*) ν = νY• = νY• ,D :
(
H0(X,OX(D)

) − {0}) −→ Zd , s 7→ ν(s) =
(
ν1(s), . . . , νd(s)

)
.

on the non-zero sections of any big divisorD. For example, whenX = Pd andY• is a flag
of linear spaces,νY• is essentially the lexicographic valuation on polynomials. Write

v(D) = Im
(
(H0(X,OX(D)

) − {0}) νY−→ Zd )

for the set of valuation vectors of non-zero sections ofOX(D). It is not hard to check that

#v(D) = h0(X,OX(D)).

Then finally set

∆(D) = ∆Y• (D) = closed convex hull
( ⋃

m≥1

1
m · v(mD)

)
.

Thus∆(D) is a convex body inRd = Zd⊗R, which we call theOkounkov bodyof D (with
respect to the fixed flagY•).

As one might suspect, the standard Euclidean volume of∆(D) in Rd is related to the
rate of growth of the groupsh0(X,OX(mD)

)
. In fact, Okounkov’s arguments in [7,§3] –

which are based on results of Khovanskii – go through withoutchange to prove

Theorem A. If D is any big divisor on X, then

volRd
(
∆(D)

)
=

1
d!
· volX(D).

The quantity on the right is thevolumeof D, defined as the limit

volX(D) =def lim
m→∞

h0(X,OX(mD)
)

md/d!
.

In the classical case, whenD is ample, volX(D) =
∫

c1(OX(D))d is just the top self-
intersection number ofD. In general, the volume is an interesting and delicate invariant
of a big divisor, which has lately been the focus of considerable work.
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One of our main results involves the variation of these bodies as functions ofD. It is
not hard to check that∆(D) depends only on the numerical equivalence class ofD, and
that∆(pD) = p · ∆(D) for every positive integerp. It follows that there is a naturally
defined Okounkov body∆(ξ) ⊆ Rd associated to every rational numerical equivalence
classξ ∈ N1(X)Q, and as before volRd(∆(ξ)) = 1

d! · volX(ξ). We prove:

Theorem B. There exists a closed convex cone

∆(X) ⊆ Rd × N1(X)R

characterized by the property that in the diagram

∆(X)

$$
H

HH
H

H
H

H
H

H
⊆ Rd × N1(X)R

pr2
xxqqqqqqqqqqq

N1(X)R,

the fibre∆(X)ξ ⊆ Rd × {ξ} = Rd of ∆(X) over any big classξ ∈ N1(X)Q is ∆(ξ).

The image of∆(X) in N1(X)R is the so-called pseudo-effective coneEff(X) of X, i.e. the
closure of the cone spanned by all effective divisors: its interior is the big cone Big(X) of
X. Thus the theorem yields a natural definition of∆(ξ) ⊆ Rd for any big classξ ∈ N1(X)R,
viz. ∆(ξ) = ∆(X)ξ.

Theorem B renders transparent several basic properties of the volume function volX

established by the first author in [5, 2.2C, 11.4.A], and independently by Boucksom [1] in
the analytic setting. First, since the volumes of the fibres∆(ξ) = ∆(X)ξ vary continuously
for ξ in the interior of pr2(∆(X)) ⊆ N1(X)R, one deduces that the volume of a big class is
computed by a continuous function

volX : Big(X) −→ R.

Moreover∆(ξ) + ∆(ξ′) ⊆ ∆(ξ + ξ′) for any two big classesξ, ξ′ ∈ N1(X)R, and so the
Brunn-Minkowski theorem yields the log-concavity relation

volX(ξ + ξ′)1/d ≥ volX(ξ)1/d + volX(ξ′)1/d

for any two such classes.
The Okounkov construction also reveals some interesting facts about the volume func-

tion that had not been known previously. For instance, letE ⊆ X be a very ample divisor
on X that is general in its linear series, and choose the flagY• in such a way thatY1 = E.
Now construct the Okounkov body∆(ξ) ⊆ Rd of any big classξ ∈ Big(X), and consider
the mapping

pr1 : ∆(ξ) −→ R

obtained via the projectionRd −→ R onto the first factor, so that pr1 is “projection onto
theν1-axis.” Writee ∈ N1(X) for the class ofE, and givent > 0 such thatξ − te is big, set

∆(ξ)ν1=t = pr−1
1 (t) ⊆ Rd−1 , ∆(ξ)ν1≥t = pr−1

1
(
[t,∞)

) ⊆ Rd.
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We prove that

∆(ξ)ν1≥t =up to translation∆(ξ − te)

volRd−1
(
∆(ξ)ν1=t

)
=

1
(d− 1)!

· volX|E(ξ − te).

Here volX|E denotes the restricted volume function fromX to E studied in [3]: whenD is
integral, volX|E(D) measures the rate of growth of the subspaces ofH0(E,OE(mD)

)
con-

sisting of sections that come fromX. Since one can compute thed-dimensional volume
of ∆(ξ) by integrating the (d− 1)-dimensional volumes of its slices, one finds:

Corollary C. Let a> 0 be any real number such thatξ − ae∈ Big(X). Then

volX(ξ) − volX(ξ − ae) = d ·
∫ 0

−a
volX|E(ξ + te) dt.

Consequently, the function t7→ volX(ξ + te) is differentiable at t= 0, and

d
dt

(
volX(ξ + te)

)|t=0 = d · volX|E(ξ).

This leads to the fact that volX isC1 on Big(X). Corollary C was one of the starting points
of the interesting work [2] of Boucksom–Favre–Jonsson, whofound a nice formula for
the derivative of volX in any direction, and used it to answer some questions of Teissier.
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Singularities of the moduli space of spin curves and Prym curves
K L

(joint work with Gavril Farkas)

Both moduli spaces considered, the moduli spaceSg of spin curves and the moduli space
Rg of Prym curves, parametrise pairs (C, L) of a smooth curveC of genusg and a line
bundleL onC. In the case of spin curves, the line bundle is a square root ofthe canonical
bundleωC, in the case of Prym curves, it is a non-trivial square root ofthe trivial bundle
OC. There are natural forgetful morphismsπ : ⋆g → Mg, ⋆ ∈ {S,R}, sending the
isomorphism class [C, L] to [C].
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Since the Kodaira dimension of⋆g is, by definition, that of a smooth projective model
⋆̃g, one needs a compactification⋆g ⊃ ⋆g and a desingularisatioñ⋆g→ ⋆g. A geometri-
cally meaningful compactificationSg of Sg over the Deligne-Mumford compactification
Mg was given by M. Cornalba [3] in terms of line bundles on so called quasistable curves.
E. Ballico, C. Casagrande and C. Fontanari [1] constructed an analogous compactification
Rg of Rg and proved that it is isomorphic to the compactification via admissible covers
by A. Beauville [2]. The compactifications are coarse modulispaces for the following
objects.

Definition 1. A spin resp. Prym curve of genusg ≥ 2 is a triple (X, L, b), whereX is a
quasistable curve of genusg, i.e. there exists a stable curveC and a blow upβ : X → C
of C at a setN ⊂ singC of nodes,L ∈ Pic(X) \ {OX} is of degreeg − 1 resp. 0 and
b : L⊗2 → β∗ωC resp.b : L⊗2 → OX is a homomorphism such that for every exceptional
componentE of β we haveL|E = OE(1) andb is non-zero at the generic point of every
non-exceptional component ofX.

An automorphism of (X, L, b) is a pair (σ, γ) whereσ ∈ Aut X andγ : σ∗L → L is an
isomorphism compatible with the homomorphismsb andσ∗b.

The moduli spaces⋆g are normal and have quotient singularities. Locally at a point
[X, L, b] ∈ ⋆g the moduli space is isomorphic to the quotient of the versal deforma-
tion spaceC3g−3

τ of (X, L, b) by the linear action of the automorphism group Aut(X, L, b).
Studying the automorphisms acting as quasireflections, i.e. having 1 as an eigenvalue of
multiplicity 3g− 4, gives the following characterisations of the smooth locus.

Proposition 2 ([4, 6]). Let g≥ 4.
[X, L, b] ∈ Rg is smooth if and only ifAut(X, L, b) is generated by elliptic tail invo-

lutions, i.e. automorphisms such that there exists an irreducible component C1 of X of
genus1 meeting the rest of the curve in exactly one node such thatσ is the involution on
C1 fixing the node and the identity onX \C1.

[X, L, b] ∈ Sg is smooth if and only if the image of the natural homomorphism
Aut(X, L, b) → AutC is generated by elliptic tail involutions and a certain graph Σ(X)
is tree-like, i.e. removing all loops ofΣ(X) gives a tree. HereΣ(X) has a vertex for ev-
ery connected component of the partial normalisation of C atN and an edge for every
exceptional component E of the blow upβ.

Quotienting out the subgroup of Aut(X, L, b) generated by quasireflections gives a de-
scription of the quotient singularity at [X, L, b] asC3g−3

u /K whereK contains no quasire-
flections, hence the Reid–Shepherd-Barron–Tai criterion is applicable. A careful study of
the occuring quotients gives the following

Proposition 3 ([4, 6]). Let g ≥ 4. [X, L, b] ∈ ⋆g is a non-canonical singularity if and
only if X has an elliptic tail C1 of j-invariant0 such that L|C1 = OC1.

With this detailed local information we can prove the following global result.

Theorem 4 ([4, 6]). For g ≥ 4 every pluricanonical formω on the smooth locus⋆
reg
g

extends holomorphically to a desingularisation⋆̃g, i.e.

H0(⋆reg
g ,mK⋆g

) = H0(⋆̃g,mK̃⋆g
).
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Remark 5. This implies that the Kodaira dimension of⋆g can be computed on the moduli
space⋆g itself without refering to a smooth model⋆̃g. See the article of G. Farkas in this
report for the results on the Kodaira dimensions.

idea of proof.Letω be any pluricanonical form on⋆reg
g and [X, L, b] ∈ ⋆g. If [ X, L, b] is

a canonical singularity, the formω extends locally to a desingularisation. If [X, L, b] is a
general non-canonical singularity, the stable modelC has two irreducible componentsC1

andC2 meeting in one node,C2 is a general smooth curve of genusg− 1,C1 is an elliptic
curve with j-invariant 0 andL|C1 = OC1. Deforming the elliptic tailC1 gives a projective
curve in⋆g through [X, L, b]. We prove that there exists an open neighbourhoodS of this
curve such thatω extends holomorphically to a desingularisation ofS. The basic idea is
to contract a divisor containing the singularity to a codimension two locus in a smooth
varietyS0, where the form naturally extends.

Now let [X, L, b] be any non-canonical singularity. For every elliptic tailof j-invariant
0 such that the restriction ofL is trivial consider a deformation to the general spin/Prym
curve having this elliptic tail. The corresponding point in⋆g is a general non-canonical
singularity. The above considerations then give an open subset of a neighbourhood of
[X, L, b] fulfilling the conditions of a generalised Reid–Shepherd-Barron–Tai criterion by
Harris and Mumford [5] which implies thatω lifts to a desingularisation. �
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Non-algebraic hyperkähler manifolds
K O

(joint work with Frédéric Campana, Thomas Peternell)

Let X be a compact Kähler manifold. Then, by the Moishezon criterion, X is projective
if and only if it is algebraic in the sense thata(X) = dimX. Herea(X) is the algebraic
dimension ofX, i.e., the transcendental degree of the meromorphic function field of X.
Also, by the famous criterion of Kodaira,X is projective ifH2(X,OX) = 0, or equivalently,
by the Hodge symmetry, ifH0(X,Ω2

X) = 0.

A hyperkähler manifold is in some sense the simplest class of manifolds which donot
satisfyH0(X,Ω2

X) = 0:



2198 Oberwolfach Report 38/2008

Definition. A simply connected compact Kähler manifold is called a holomorphic irre-
ducible symplectic manifold or a hyperkähler manifold, ifX admits an everywhere non-
degenerate holomorphic2-form σX such that H0(X,Ω2

X) = CσX. (Hence of an even
dimension, say2n, and∧nσX is a 2n−form without zeroes.)

By the famous Bogomolov decomposition theorem [Be83], hyperkähler manifolds,
Calabi-Yau manifolds of dimension≥ 3 and complex tori form three important building
blocks among all compact Kähler manifolds of vanishing first Chern class. Among these
three, Calabi-Yau manifolds are always projective, and theset of algebraic dimensions of
complex tori of dimensionn(≥ 2) is {a ∈ Z|0 ≤ a ≤ n}.

By Fujiki [Fu83], both projective and non-projective hyperkähler manifolds are in fact
dense in the Kuranishi space ofX. We are then interested in hyperkähler manifolds,
particularly with their algebraic dimensionsa(X) < 2n and their algebraic reductions
f : Xd B, which are unique up to bimeromorphic modification ofB [Ue75]. These two
are the most fundamental invariants in the classification ofnon-algebraic manifolds.

Before discussing hyperkähler case, we recall the case of surfaces. LetS be a compact
smooth surface. Then, the intersection form (cup product) on the Néron-Severi group
NS(S) is of signature either (1, 0, ρ(S)−1) in which case we say thatNS(S) is hyperbolic,
(0, 1, ρ(S)−1) (NS(S) is parabolic), or (0, 0, ρ(S)) (NS(S) is elliptic). According to these
three cases,a(S) = 2, 1, 0. Moreover, ifa(S) = 1, then we have a holomorphic algebraic
reductionf : S −→ C whose general fiber is an elliptic curve [BHPV04].

For a hyperkähler manifoldX, we have the Beauville-Bogomolov-Fujiki’s form

qX : H2(X,Z) × H2(X,Z)→ Z .

This is a bilinear symmetric form of signature (3, 0, b2(X) − 3) [Be83] (see also [Bo75],
[Fu87]). In many aspects, the Beauville-Bogomolov-Fujiki’s form plays a very similar
role to the interesection form on a surface. For instance, itinduces a symmetric bilin-
ear form on the Néron-Severi groupNS(X), and the signature is either (1, 0, ρ(X) − 1)
(hyperbolic), (0, 1, ρ(X) − 1) (parabolic), or (0, 0, ρ(X)) (elliptic).

Example. (1) LetS be a K3 surface. ThenS[n] , the Hilbert scheme ofn points onS, is a
hyperkähler manifold of dimension 2n. This is due to Fujiki [Fu83] and Beauville [Be83].
We havea(S[n]) = 0, n, 2n according toa(S) = 0, 1, 2. In addition, whena(S) = 1, the
algebraic reduction mapS −→ P1 induces a natural surjective morphismS[n] −→ Pn.
This is the algebraic reduction ofS[n] and it is also Lagrangian.

(2) Let T be a 2-dimensional complex torus. The generalized Kummer manifold
Kn(T) is also a hyperkähler manifold of dimension 2n [Be83]. One can also check that
a(Kn(T)) = 0,n, 2n according toa(T) = 0, 1, 2. In addition, whena(T) = 1, the algebraic
reduction mapf : T −→ E induces a natural morphismSn+1T −→ Sn+1E, which is com-
patible withSn+1T −→ T, Sn+1E −→ E (natural addition maps), andf . From this, one
obtains a surjective morphismKn(T) −→ Pn. This morphism is nothing but the algebraic
reduction ofKn(T) and it is again Lagrangian.

In much deeper level, we have the following fundamental:
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Theorem (Huybrechts [Hu99]). A hyperkähler manifold X is projective if and only if
NS(X) is hyperbolic.

Theorem (Matsushita [Ma99]). Let f : X −→ B be a surjective holomorphic map from
a hyperkähler manifold X to a normal projecive variety B with 0 < dim B < dim X. Then
f is necesarily Lagraingian, that is,dim B = dim X/2 andσX|F ≡ 0 for a general fiber
of f .

Motivated by these, we formulated the following:

Conjecture ([COP08]).Let X be a hyperkähler manifold of dimension2n. Then its alge-
braic dimension takes only the values0, n, 2n. Moreover, if a(X) = n, then the algebraic
reduction has a holomorphic model f: X −→ B with B a normal projective variety of
dimension n (in particular, f is Lagrangian).

In this conjecture, we also expected thatif NS(X) is parabolic, then a(X) = dim X/2.
However, we have no answer for this stronger assertion except for the examples discussed
above.

At the workshop, I have reported the following answer towardthe conjecture, obtained
in our joint work, with some idea of proof:

Theorem ([COP08]).(1) If dimX = 4, then the conjecture above is true.
(2) Let X be a non-algebraic hyperkähler manifold of dimension2n. Then0 ≤ a(X) ≤

2n. More precisely we have:
(i) If NS(X) is elliptic, then a(X) = 0.
(ii) If NS(X) is parabolic, then0 ≤ a(X) ≤ n = dim X/2.
(iii) Assume that any compact Kähler manifold Y ofdim Y ≤ 2n − 1, of algebraic

dimension a(Y) = 0 and of Kodaira dimensionκ(Y) = 0 and with effective canonical
divisor KY, has a minimal model with numerically trivial canonical divisor. Then the
conjecture above is true.
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Relative critical exponents and non-vanishing
M P̆

The main goal of our talk was to give a general outline of the proof of the following result
see [3].

Theorem 0.1. Let X be a smooth projective manifold, and let B be anR-divisor such
that:

(i) The pair(X, B) is klt, and B is big ;

(ii) The adjoint bundle KX + B is pseudoeffective.

Then there exist an effectiveR-divisor
∑N

j=1 ν
j [Yj ] numerically equivalent with KX + B.

�

Firstly, we would like to mention that the above result generalizes the classical “non-
vanishing” theorems of V. Shokurov and Y. Kawamata.

Secondly, the above result is not new : it was established by C. Birkar, P. Cascini,
C. Hacon and J. McKernan as a by-product of their fundamentalwork [1], by using the
minimal model program and characteristicp techniques.

One important aspect of our proof is that is Charp-free ; moreover we avoid theexplicit
use of the minimal model program algorithm. A theorem similar to 0.1 was established
by Y.-T. Siu in [5], pages 31-46. Even if the hypothesis in hisstatement are much more
restrictive than above, a substantial part of the argumentsfrom his work are used here.
Most of the subtle points in our arguments are equally observable in the algebraic geome-
try proof mentioned above, as it was kindly explained to us byJ. McKernan and S. Druel;
it would be very interesting to have a precise comparison between the two approaches.

�

We comment here few aspects of the proof. If the dimension ofKX + B is equal to zero,
then the theorem 0.1 is a consequence of a result due to N. Nakayama (generalized by S.
Boucksom). If this is not the case, we use the numerical positivity of KX+B, together with
(a version of) the usual log-canonical threshold, in order to identify a hypersurfaceS (the
minimal center) of some modification ofX such that by restriction toS we reproduce the
same context as in 0.1, except that the dimension drops. Thispart of our proof could be
seen as a generalization of the classical arguments used in the Fujita conjecture literature
(see [5], [6] and the references therein).

During the restriction to the minimal center process, we will use in an essential manner
the regularization techniques of J.-P. Demailly (see [2]) ;a diophantine approximation ar-
gument is also involved, to reduce to the case where the geometric objects we are dealing
with are rational (see also [1]). Finally, we use the extension techniques of Y.-T. Siu ([4])
and C. Hacon-J. McKernan adapted to the present situation. The main technical point in
our proof is anad hocversion of the invariance of plurigenera : this is the part where the
difference between the classical approach (Shokurov, Kawamata,...) and our arguments is
quite important.
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Hyperbolicity of geometric orbifolds
E R

F. Campana has introduced in [1] orbifold structures, namely pairs (X/∆) with X a com-
plex manifold and a divisor∆ =

∑
i(1− 1

mi
)Zi where theZi are distinct irreducible divisors

andmi ∈ N ∪ {∞}, as a new frame for the classification of compact Kähler manifolds.
These structures appeared naturally for fibrationsf : X → Y. Indeed the multiple fibres
of f lead to the definition of the orbifold base off , (Y/∆( f )) where

∆( f ) :=
∑

D⊂Y

(
1− 1

m( f ,D)

)
D

m( f ,D) being the multiplicity of the fiber off above the generic point ofD. A new class
of varieties was then introduced, thespecial varieties, as the varieties which do not admit
fibrations of general type i.e with an orbifold base of general type. Campana [1] proves
the existence for every complex algebraic manifoldX of a fibrationcX : X → C(X), the
core ofX, such that its general fibers are special and ifX is not special,cX is of general
type.

These geometric orbifolds should be considered as true geometric objects as one can
define for them differential forms, fundamental groups, Kobayashi pseudo-distance...
Here we study the hyperbolic aspects of these objects. An important conjecture of Cam-
pana [1] is thatX is special if and only if the Kobayashi pseudo-distancedX vanishes
identically onX × X. This is known only for curves, projective surfaces not of general
type and rationally connected manifolds.

This conjecture then implies thatdX should be the pull-back bycX of the Kobayashi
pseudo-distanceδX of the orbifold base of the core.

The study of the hyperbolic aspects of one-dimensional orbifolds has been done in
[3]. In this work we study hyperbolicity of higher dimensional orbifolds following the
philosophy of Campana that one should study these objects generalizing the tools we use
for manifolds without orbifold structures or logarithmic manifolds.

First, we define the classical and non-classical Kobayashi hyperbolicity for orbifolds.
Then we illustrate these notions in the case of orbifold curves. We compute explicitly the
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orbifold Kobyashi pseudo-distance for

(X/∆) = (D/(1− 1
n

){0}), 0 < n ∈ N ∪ {∞},

whereD is the unit disk. This answers a question of Campana and Winkelmann (see
[3]) and enables us to recover as a corollary the equivalenceof classical and non-classical
hyperbolicity for orbifold curves. Finally, we show that this is not the case in higher
dimension giving an example of an orbifold surface which is classically hyperbolic but
not hyperbolic.

Then, we define and use orbifold jet differentials. The main applications are algebraic
degeneracy statements for entire curves with ramification in situations where no Second
Main Theorem is known from value distribution theory. Namely, we prove

Theorem 1. Let (X/∆) be a smooth projective orbifold surface of general type where
∆ has the following decomposition into irreducible components, ∆ =

∑n
i=1(1 − 1

mi
)Ci .

Suppose that gi := g(Ci) ≥ 2, h0(Ci ,OCi (Ci)) , 0 for all i and that the logarithmic Chern
classes of(X, ⌈∆⌉) verify

(0.1) c1
2 − c2 −

n∑

i=1

1
mi

(2gi − 2+
∑

j,i

CiC j) > 0,

then there exists a proper subvariety Y⊂ X such that every entire curve f: C → X
which is an orbifold morphism, i.e ramified over Ci with multiplicity at least mi , verifies
f (C) ⊂ Y.

This result can be seen as an orbifold version of results of McQuillan [5] (see also [6]
and [4] for the logarithmic case) on the Green-Griffiths-Lang conjecture which can be
generalized to the orbifold setting

Conjecture 2. Let (X/∆) be a smooth projective orbifold of general type. Then there
exists a proper subvariety Y⊂ X such that every orbifold morphism f: C → (X/∆)
verifies f(C) ⊂ Y.

The methods used also enable us to generalize a result of Campana and Paun on
weakly-special manifolds [2].
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Moduli spaces of holomorphic bundles over non-k̈ahlerian surfaces and
applications

A T

1. Moduli spaces of stable and polystable bundles.Let X be a compact complexn-
dimensional manifold. A Hermitian metricg on X is called Gauduchon if its Kähler form
ωg satisfies∂∂̄(ωn−1

g ) = 0 [6]. In every conformal class of Hermitian metrics onX there
exists a Gauduchon metric (which is unique up to constant factor if n ≥ 2), so there is no
obstruction to the existence of Gauduchon metrics. A Gauduchon metric onX defines a
degree map degg : Pic(X) → R, given by degg(L) :=

∫
X

c1(L, h) ∧ ωn−1
g , wherec1(L, h)

denotes the first Chern form of the Chern connection of any Hermitian metric onL (a rep-
resentative of its first Chern class in Bott-Chern cohomology). For an arbitrary coherent
sheafF one puts as usually degg(F ) := degg(det(F )), µg(F ) := degg(det(F ))/rk(F ) (de-
fined for non-trivial torsion-free sheaves) and introducesthe stability and semi-stability
condition in the usual way, by requiring the same inequalities as in the classical Mumford-
Takemoto theory for bundles on projective manifolds. Similarly, a bundleE onX is called
polystable if it is either stable, or isomorphic to a direct sum of stable bundles of same
slope.

Consider now aC∞ rank r-bundleE over the Gauduchon manifold (X, g), and fix a
holomorphic structureD on the determinant line bundleD := ∧r (E). We denote by
Ms
D(E),Mst

D(E),Mpst
D (E) the moduli sets of equivalence classes of simple (respectively

stable, polystable) holomorphic structures onE which induceD onD.Ms
D(E) has a natu-

ral structure of (in general non-Hausdorff) finite dimensional complex space, andMst
D(E)

is a (in generalg-dependent) Hausdorff open subset of this space, hence it inherits a natu-
ral Hausdorff complex space structure [8]. In order to put a natural topology on the larger
moduli setMpst

D (E) in the non-Kählerian framework one needs the Kobayashi-Hitchin
correspondence [4], [2], [9], [8]. Suppose for simplicityn = 2. We fix a Hermitian metric
h on E and denote bya the Chern connection of the pair (D, det(h)). The Kobayashi-
Hitchin correspondence yields a bijectionMASD

a (E)
≃−→ Mpst

D (E) which mapsMASD
a (E)∗

ontoMst
D(E). HereMASD

a (E) stands for the moduli space of projectively anti-selfdual
Hermitian connectionsA on E which inducea on D, andMASD

a (E)∗ denotes the open
subspace of irreducible such connections. The restrictionMASD

a (E)∗ → Mst
D(E) is a real

analytic isomorphism [8]. In this way we get a natural Hausdorff topology onMpst
D (E)

(induced from the topology ofMASD
a (E)) with respect to whichMst

D(E) is open. Note
however that, in general, on non-Kählerian manifolds, thecomplex space structure of
Mst
D(E) cannot be extended toMpst

D (E). This shows that in the non-Kählerian framework
there cannot exist a coherent way to define moduli spaces of S-equivalence classes of
semistable bundles within the complex geometric category.Moreover, the local structure
ofMpst

D (E) around a split polystable bundle cannot be described with complex geomet-
ric methods; one has to study the Kuranishi local model of thecorresponding reducible
instanton with gauge-theoretical techniques [5], [15], [16].

For n = 2 the isomorphismMASD
a (E)

≃−→ Mpst
D (E) plays a crucial role in Donaldson

theory: it was used by Donaldson as a tool to compute instanton moduli spaces with com-
plex geometric methods [4], [5]. Unfortunately, on non-algebraic surfaces, describing
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the complex geometric termMpst
D (E) becomes very difficult because the appearance of

non-filtrable bundles. These bundles are stable with respect to any Gauduchon metric, but
there exists no method to classify them.

Class VII surfaces.The Enriques-Kodaira classification of complex surfaces isnot yet
complete. The main obstacle is the Kodaira class VII. According to the modern terminol-
ogy a class VII surface is a compact complex surfaceX havingb1(X) = 1, kod(X) = −∞.
The subclassVIIb2=0 of class VII surfaces withb2 = 0 is completely classified: such a
surface is biholomorphic either to a Hopf surface or to an Inoue surface [1], [10], [14]. It
remains to classify the classVIIb2>0

min of minimal class VII surfaces withb2 > 0, which is a
difficult, long-standing problem. The standard conjectures concerning this classification
are:

C1. Any surface X∈ VIIb2>0
min has b2 rational curves.

C2. Any surface X∈ VIIb2>0
min contains a cycle of rational curves.

By the fundamental result of Dloussky-Oeljeklaus-Toma [3]any surfaceX ∈ VIIb2>0
min

with b2 rational curves is biholomorphic to a Kato surface (i.e. a surface with global
spherical shell). Kato surfaces are well understood [7], [13], so (if true) C1 would solve
the classification problem for class VII surfaces completely.

On the other hand, by a fundamental result of Nakamura [11] weknow that any sur-
faceX ∈ VIIb2>0

min containing a cycle of rational curves is a degeneration of a 1-parameter
family of blown-up primary Hopf surfaces; therefore (if true) the weaker conjecture C2
would solve the classification problem for class VII surfaces up to deformation equiva-
lence. Therefore, the main problem in understanding classVIIb2>0

min surfaces is to prove
the existence of (sufficiently many) rational curveson these surfaces.

The classVIIb2>0 is interesting from a differential topological point of view: the in-
tersection formqX : H2(X,Z)/Tors× H2(X,Z)/Tors→ Z of such a surface is negative
definite, so by Donaldson’s first theorem, it is standard overZ i.e. there exists a basis
(e1, . . . , eb) of H2(X,Z)/Tors satisfyingqX(ei , ej) = −δi j (with b := b2(X)). Taking into
account thatc1(X)2 = −b and thatk := −c1(X) is a characteristic class, we see that, re-
placing some of theei by their opposite if necessary, one can assume thatk =

∑
ei , and a

basis with this property is unique up to order.

Existence of curves.In [15], [16] we showed that one can use a combination of complex
geometric and gauge theoretical techniques to make progress in the classification of class
VII surfaces, namely to prove existence of curves.

Theorem: C1 is true for X∈ VIIb2=1
min and C2 is true for X∈ VIIb2=2

min .

Let X ∈ VIIb2>0
min . The fundamental object coming up in the proof is the moduli space

M :=Mpst
K (E), whereE is a differentiable rank 2 bundle withc2(E) = 0 and det(E) = K

(the underlyingC∞ bundle ofK). Any filtrable bundleE with c2(E) = 0, det(E) ≃ K is
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an extension ofK ⊗ L−1 byL, whereL is a line bundle withc1(L) = eI :=
∑

i∈I ei , for a
subsetI ⊂ {1, . . .b}. M is always compact, and it is ab2-dimensional complex space in
the complement of the reductions (split polystable bundles). SinceH1(K) ≃ C, we obtain
a non-trivial extension 0→ K → A → O → 0. The bundleA is stable if degg(K) < 0
(which can be assured by choosingg suitably) andX contained no cycle. LetN ⊂ M be
the union of connected components containing split polystable bundles. The proof starts
with the question:DoesA belong toN? If yes, one can prove thatX must contain a cycle.
If not, the connected componentY of A inM is a smooth, compactn-fold contained in
Mst
K (E) consisting generically of non-filtrable points. Forb2 ∈ {1, 2} the appearance of

such a component in the moduli space leads to a contradiction. For instance, forb2 = 1,Y
would be a Riemann surface, and the contradiction comes fromthe fact thatY is algebraic,
whereasa(X) = 0.
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Generalized Kähler-Einstein metrics
H T

In 2006, I proved that the normalized limit of the dynamical system of Bergman kernels
constructed in [T0] is nothing but the canonical Kähler-Einstein current on a smooth pro-
jective variety of general type ([T1]). The importance of this discovery is that this implies
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the plurisubharmonicity of the logarithm of the relative canonical Kähler-Einstein volume
form on a projective family of varieties of general type ([T1]) by the result of Berndtsson
on the variation of Bergman kernels ([B, T1]).

Since the dynamical systems had already been constructed not only for varieties of
general type, but also for varieties with pseudoeffecitve canonical divisors, I expected a
similar theory also in this case. However I could not find it for a year. But once I looked
at the canonical bundle formula in [F-M, p.183, Theorem 5.2], I immediately realized
that the corresponding metric satisfies thelog-versionof the Kähler-Einstein equation on
the base of the Iitaka fibration with the boundary term comingfrom the curvature of the
Hodge metric of the HodgeQ line bundle.

Let X be a smooth projective variety with nonnegative Kodaira dimension and letf :
X− · · · → Y be the Iitaka fibration associated with the complete linear system|m0!KX| for
some sufficiently large positive integerm0. By taking a suitable modifications, we may
assume the followings:

(i) Y is smooth andf is a morphism.
(ii) f∗OX(m0!KX/Y)∗∗ is a line bundle onY, where∗∗ denotes the double dual.

We define theQ line bundleL (independent ofm0) on Y by L := 1
m0! f∗OX(m0!KX/Y)∗∗.

L carries a natural singular hermitian metric (the Hodge metric) hL (independent ofm0)
defined by

hm0!
L (σ, σ) =


∫

Xy

|σ|
2

m0!


m0!

(σ, σ′ ∈ m0!Ly).

Let a be positive integer such thatf∗OX(aKX/Y) , 0. Then we see that

H0(X,OX(maKX)) ≃ H0(Y,OY(ma(KY + L)))

holds for everym ≥ 0 and Kod(X) = dimY holds, where Kod(X) denotes the Kodaira
dimension ofX. Hence we see thatKY + L is big. Let A be a very ample line bundle
on Y such that for every pseudoeffective singular hermitian line bundle (F, hF) on Y,
OY(KY+A+F)⊗I(hF) is globally generated. LethA be aC∞ hermitian metric onA with
strictly positive curvature. We shall construct a sequenceof Bergman kernels{Km} and a
sequence of singular hermitian metrics{hm}m≥1 as follows. First we set

K1 :=



K(Y,KY + A, hA), if a > 1,

K(Y,KY + L +m0!(KY + L), hL · hA), if a = 1,

where for a singular hermitian line bundle (F, hF) K(Y,KY + F, hF) denotes (the diagonal
part of) the Bergman kernel ofH0(Y,OY(KY + F) ⊗ I(hF)) with respect to theL2-inner
product:

(σ, σ′) := (
√
−1)n

2
∫

Y
hF · σ ∧ σ̄′,

wheren denotes dimY. Then we seth1 := (K1)−1. We continue this process. Suppose
that we have constructedKm and the singular hermitian metrichm on⌊m

a ⌋a(KY+ L)+ (m−
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⌊m
a ⌋a)KY, where for a real numberλ, ⌊λ⌋ denotes the largest integer less than or equal to
λ. Then we define

Km+1 :=



K(Y, (m+ 1)KY + ⌊m+1
a ⌋aL+ A, hm) if m+ 1 . 0 moda,

K(Y, (m+ 1)(KY + L) + A, ha
L ⊗ hm) if m+ 1 ≡ 0 moda

andhm+1 := (Km+1)−1. Thus inductively we construct the sequences{hm}m≥1 and{Km}m≥1.
This inductive construction is essentially the same one originated by the author in [T0].
The following theorem asserts that the above dynamical system yields the canonical
Kähler current onY.

Theorem 1. ([T2]) Let X be a smooth projective variety of nonnegative Kodairadimen-
sion and let f: X −→ Y be the Iitaka fibration as above. Let m0 and{hm}m≥1 be as above
and let n denotedimY. Then h∞ := lim inf m→∞

m
√

(m!)n · hm is a well defined singular
hermitian metric on KY + L such that

(i) h∞ is an AZD of KY + L, i.e.,
√
−1Θh∞ is a closed positive current on Y and

H0(Y,O(am(KY + L) ⊗ I(ham
∞ )) ≃ H0 (Y,O(am(KY + L))) holds for every m≥ 1.

(ii) We setωY :=
√
−1Θh∞ . Then there exists a nonempty Zariski open subset U

such thatωY|U is a C∞ Kähler form on U and it satisfies the equation:

−RicωY +
√
−1ΘhL = ωY.

(iii) We define the volume form dµcan on X by dµcan := f ∗( 1
n!ω

n
Y · h−1

L ). Then dµ−1
can is

an AZD of KX.

dµcan is unique and independent ofA andhA. dµcan is said to bethe canonical measure
on X. And ωX := −Ricdµcan is said to bethe canonical semipositive current onX.
These are birationally invariant. We note thatdµcan as constructed independently by Song
and Tian ([S-T]) in different context.

Theorem 2. ([T2]) Let f : X −→ S be a projective family such that X,S are smooth and
f has connected fibers. Suppose that f∗OS(mKX/S) , 0 for some m> 0. Then there exists
a singular hermitian metric hK on KX/Y such that

(i) ωX/S :=
√
−1ΘhK is semipositive on X.

(ii) For a general smooth fiber Xs := f −1(s), hK |Xs is an AZD of KXs and h−1
K |Xs is

the canonical measure on Xs.

Theorems 1 and 2 generalize the results in [T1], whereX = Y andL is trivial.
Theorem 2 strengthen the semipositivity of the direct imageof relative multicanonical

bundles due to Kawamata ([K]). Also we may prove a similar theorem for a projective
family of KLT pairs. I would like to propose the following conjecture:

Conjecture 3. Let f : X −→ Y be an algebraic fiber space, i.e., X,Y are smooth pro-
jective and f is surjective with connected fibers. Then everysufficiently large m>> 1,
f∗OX(mKX/Y) is globally generated outside of the discriminant locus of f.
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I have proved the following partial answer to Conjecture 3.

Theorem 3. Let f : X −→ Y be an algebraic fiber space. Then f∗OX(mKX/Y) is almost
globally generated as m tends to infinity outside of the discriminant locus D of f , in the
sense that for there exists a nonempty Zariski open subset U of Y such that for every
y ∈ U,

lim sup
m→∞

Q(am, y) = 1

holds, where a is a positive integer such that f∗OX(aKX/Y) , 0 and

Q(am, y) :=
rank Image{H0(Y, f ∗OX(amKX/Y))→ f∗OX(amKX/Y) ⊗ Cy}

rank f∗OX(amKX/Y)
.

The proof uses Theorem 2. In fact
√
−1ΘhK in Theorem 2 defines a (singular) Monge-

Ampère foliation on the total spaceX which descends to a Monge-Ampère foliation onY.
Then we see that the leaf of the Monge-Ampère foliation corresponds to the fiber of the
moduli map to the moduli space of pairs of the bases of the relative Iitaka fibration and the
Hodge line bundles with the Hodge metrics. Then the desired sections can be constructed
by the pull back of the sections on the moduli space. We can generalize the above results
to the case of KLT pairs without any efforts. Theorem 4 implies the inequality : Kod(X) ≥
Kod(Y) + Kod(X/Y), where Kod(X/Y) denotes the Kodaira dimension of a general fiber
of f : X −→ Y.
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Fake projective planes and arithmetic fake compact hermitian symmetric spaces
S-K Y

The main theme of the talk is to present a joint project of Gopal Prasad and the author
on classification and construction of fake projective planes and their higher dimensional
analogues.

A fake projective plane is a smooth complex surface which hasthe same Betti num-
bers asP2

C
but which is not biholomorphic toP2

C
. It is special in the sense that it has

the smallest Euler number among smooth surfaces of general type. Furthermore, a fake
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projective plane turns out to be a quotient of the complex twoball by a torsion-free dis-
crete subgroup ofPU(2, 1). Hence it is a Shimura surface and carries rich geometric and
arithmetic structures.

The first example of fake projective plane was constructed byMumford [6], utilizing
p-adic uniformization. Two more examples were later found byIshida and Kato in [2],
utilizing related methods. More recently, Keum constructed a fake projective plane with
an order 7 automorphism in [3], starting with Ishida’s analysis on Mumford’s example.
The main purpose of the project of Gopal Prasad and myself is to classify and construct
examples of fake projective planes, as well as their higher dimensional analogues in arith-
metic fake compact hermitian symmetric spaces.

As mentioned above, a fake projective planeM is uniformized by the complex ball
(complex hyperbolic space of complex dimension 2), a consequence of Bogomolov-
Miyaoka-Yau Inequality and results of Aubin and Yau on complex Monge-Ampere equa-
tion. Hence we may writeM = Π\PU(2, 1)/P(U(2)×U(1)),with Π a cocompact torsion-
free subgroup ofPU(2, 1). It is proved independently in the work of Klingler [4] and
myself [11] thatΠ is an arithmetic lattice inPU(2, 1). Both of the approaches rely on
analysis related to harmonic maps into Bruhat-Tits buildings associated toΠ. As arith-
metic lattices have been classified and are listed in [13], the classification problem is
reduced to classification of arithmetic lattices with restricted topological invariants. This
is the approach taken by Prasad and the author in [8].

Crucial to the results of [8] is the volume formula of Prasad in [5]. Equipped with the
volume formula, we set out to list all arithmetic latticesΓ of PU(2, 1) with Euler number
χ(Γ) ≤ 3. This is done with the help of various techniques in analytic number theory,
which allow us to derive a reasonably sharp bound on the discriminants of the defining
number fields. Once we are reduced to a small list of examples,we either construct ex-
amples with the help of Bruhat-Tits theory and number theory, or eliminate by conditions
imposed on the values of associated Dedekind zeta andL functions. Here is the main
result of [8].

Theorem 1. (a) There are twenty-six non-empty classes of fake projective planes.
(b) There can at most be five more classes of fake projective planes, corresponding to very
specific number fields.

We remark that according to a conjecture of Rogawski, there should not be any fake
projective planes of the type listed in (b). In fact, Cartwright and steger [1] have been
able to eliminate three of the five classes in (b) as possible candidates for fake projective
planes. For each of the twenty-six non-empty classes in (a),we have constructed at least
one example. Very recently, Cartwright and Steger [1] succeeded in listing all examples
in 23 classes above.

Theorem 2. (Cartwright-Steger) There are precisely forty-five fake projective planes
among twenty-three classes in Theorem 1(a).

A potential application of the research of [8] and [1] is thatthey provide a list of
projective algebraic surfaces equipped with a finite non-trivial automorphism group and
small Chern numbers that may be useful in constructing new interesting surfaces to chart
geography of surfaces of general type. In fact, quite a few ofthe list of examples in
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(a) have non-trivial finite group actions whose quotients give rise to interesting algebraic
surfaces after resolving singularities. In particular, ithas been verified by Cartwright and
Steger that such resolutions include examples of simply connected surfaces of general
type with K2 = 3, q = 0 = pg, surfaces which have been sought after by algebraic
geometers. This is parallel to a completely different recent construction of examples due
to H. Park, J. Park and D. Shin [7].

As a generalization of the notion of fake projective planes in complex dimension two,
Prasad and the author study arithmetic fake compact hermitian symmetric spaces in [9],
[10]. LetG be a connected semi-simple real algebraic group of adjoint type. LetX be the
symmetric space ofG(R) andXu be the compact dual ofX. We shall say that the quotient
X/Π of X by a cocompact torsion-free arithmetic subgroupΠ of G(R) is an arithmetic
fakeXu if its Betti numbers are same as that ofXu; X/Π is an irreducible arithmetic fake
Xu if, further,Π is irreducible (i.e., no subgroup ofΠ of finite index is a direct product of
two infinite normal subgroups). The main results of [9], [10]are the followings.

Theorem 3. (a) There exists no arithmetic fake projective space of dimension different
from 2 and4.
(b) There are at least four classes of arithmetic fake projective spaces in dimension4.
(c) There are at least four distinct arithmetic fakeGr2,5 and at least five irreducible arith-
metic fake P2

C
× P2

C

Theorem 4. There is no arithmetic fake Hermitian symmetric space of type Bn Cn, Dn

with n> 4, E6 or E7.

We may define a fake compact hermitian symmetric space to be a Kähler manifold
which has the same Betti numbers as a hermtian symmetric space of compact type of the
same dimension. A natural geometric problem is to decide when a fake compact hermtian
symmetric space is an arithmetic fake compact hermitian symmetric space. The two no-
tions are the same for fake projective planes, but the problem is much more complicated
and essentially open in higher dimensions. In particular, it is not true for fake projec-
tive spaces of odd dimension, where there are the examples ofhyperquadrics. Hence the
problem is interesting for fake projective spaces only in even dimensions. The following
result in [12] is a positive result in this direction.

Theorem 5. A fake projective four space has to be an arithmetic fake projective four
space if any of the following conditions is satisfied.
(i) c4

1(M) , 225,
(ii) H 4(M,Z) modulo torsion is generated byθ ∪ θ, whereθ is a generator of H2(M,Z)
modulo torsion, or
(iii) The cycle corresponding to the canonical line bundle KM is not a generator of the
Neron-Severi group.

It will be interesting to clarify the situations in other cases.
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Rigidity and envelopes of holomorphy in group actions
X-Y Z

We discuss the rigidity property for automorphism groups ofinvariant domains in Stein
manifolds which are homogenous under the complex reductiveLie groups.

Let D ⊂⊂ (C∗)n be a Reinhardt domain. The automorphism groupAut(D) of D ob-
viously contains the n-dimensional torus group Tn. Are there additional positive dimen-
sional symmetries? In one dimensional case, it’s well-known that for the annulus, the
automorphism group is justT ⋊ Z2. For higher dimensional case, there are many works
about this problem for the rigidity property ofAut(D), the answer says thatAut(D) is
compact and the identity componentAut(D)0 of Aut(D) is exactly Tn. This result was
established in several papers by different methods, see [2], [1], [5], [7].

Let K be a connected compact Lie group andL be a closed subgroup ofK, KC and
LC be (universal) complexifications ofK andL, thenX = K/L is a compact homogenous
space andXC = KC/LC is a complexification ofX which is a Stein manifold. There is a
natural holomorphic action ofKC on XC given by the left translation. LetD ⊂ XC be a
K-invariant domain. Throughout this report, a domain means aconnected open set.

In [13], Zhou proved the following result.
Theorem ([13]). LetD ⊂⊂ KC/LC be aK-invariant domain, thenAut(D) is compact.
Under more assumption that (K, L) is a symmetric pair, the result is due to Fels and

Geatti [4].
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We present our new results based on [11]. Without loss of generality, we may assume
that K acts effectively onX = K/L. In this setting, for aK-invariant domainD, it’s
easy to see thatAut(D) obviously containsK. We may ask if there are not additional
positive dimensional symmetries. It should be noted that it’s not the case for general
homogeneous spaceK/L. However, our results show that for some homogeneous spaces
including symmetric spaces it’s the case.

Theorem. LetD be an orbit connectedK-invariant domain inXC = KC/LC. Let W be
a connected compact subgroup ofAut(D) containingK, thenW can be naturally realized
as a subgroup of the isometry groupIso(X, g) of (X g), whereX = K/L andg is some
K-invariant Riemannian metric onX.

As an immediate corollary, we have the following: let (K, L) be a symmetric pair,K be
semisimple, thenIso(X, g) = K for anyK-invariant Riemannian metric onX. Let D be a
relatively compactK-invariant domain inXC. ThenAut(D)0 = K.

The above corollary can be extended to the isotropy irreducible homogeneous spaces.
A homogeneous spaceK/L is said to be isotropy irreducible if the adjoint representation
of L is irreducible on the vector space k/ l, where k and l are Lie algebras ofK andL; to
be strongly isotropy irreducible if the adjoint representation of the identity componentL0

of L is irreducible on the vector space k/ l. These spaces are classified, and the isometry
groups of the spaces are explicitly given and just equal toK for effective action ofK ex-
cept a couple of cases, see [10, 9]. Consequently we haveAut(D)0 = K for these spaces.

In the proof, a result of Zhou’s about the univalence of the envelope of holomorphy of
invariant domains plays a key role.

Theorem ([12]). LetM be a Stein manifold,KC holomorphically act onM. Let D ⊂ M
be aK-invariant orbit connected domain. Then the envelope of holomorphyE(D) of D is
schlicht and orbit convex if and only if the envelope of holomorphyE(KC · D) of KC · D
is schlicht. Furthermore, in this case,E(KC · D) = KC · E(D).

This result unifies and extends many known results. In particular, we have the follow-
ing theorem which is essentially used in the proof.

Theorem ([12]). LetK be a connected compact Lie group andL be a closed subgroup
of K. If L is connected, then anyK-invariant domainD in XC = KC/LC has schlicht
envelope of holomorphy.
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