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Introduction by the Organisers

The workshop Mathematical Approaches to Collective Phenomena in Large Quan-
tum Systems, organised by Stefan Adams (Warwick) and Robert Seiringer (Prince-
ton) was held August 31st–September 6th, 2008. This meeting was well attended
with 17 participants with broad geographic representation from all continents and
with a good mixture of younger Postdocs/researchers (Boland, Bru, Crawford,
Schlein, and Starr) and senior researchers. This workshop was a nice blend of re-
searchers with various backgrounds ranging from analysis, probability theory, and
functional integration. The fifteen talks are focused along the three general re-
search directions developing mathematical theories of quantum phase transitions:

(1) Dilute gas limit and nonlinear effective theories
(2) Random walk representations via Feynman-Kac formula
(3) Field theory/semiclassical representations via coherent states
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Area (1) is represented with new developments in talks by Lieb and Solovej
focused on the Bogoliubov theory to derive second order correction to the ground
state energy and in a talk by Yngvason on rotating trapped Bose gases. New
developments for quantum spin systems have been reported by Nachtergaele and
Starr. A new probabilistic approach has been introduced in a talk by König which
shows a modelling of the free energy in the thermodynamic limit, and future will
show if this approach goes beyond the existing theory on finite temperature Bose
gases. An interesting area has been summarised by Ueltschi on random permu-
tations. This area is recently under much focus in the probability community.
The contribution from the youngest participant, the PhD-student Boland, showed
an interesting result concerning the Bose condensate density and the density of
so-called long cycles. Long cycles appear if probability mass of finite cycles gets
lost in the thermodynamic limit, an area which is studied in the combinatorics
community via shape measure analysis.

The schedule of the workshop allowed intensive discussion during the after-
noons including Friday. The workshop has been closed with an informal dis-
cussion/meeting on Friday evening which was attended by the majority of the
participants. The workshop showed interesting new developments, and it is the
hope of the organisers that there will be more interdisciplinary collaborations, in
particular between the analysis and the probability community.
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Long Cycles in the Infinite-Range-Hopping Bose-Hubbard Model with
Hard Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2276

Mnfred Salmhofer (joint with W. Pedra)
A simple solution of the Matsubara UV problem for many fermions . . . . 2278

Shannon Starr (joint with Marek Biskup, Lincoln Chayes)
Quantum Spin Systems at Positive Temperature . . . . . . . . . . . . . . . . . . . . . 2279
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Abstracts

Review of some mathematical results on the Bose gas

Elliott H. Lieb

The low temperature properties of quantum-mechanical many-body systems
(bosons) at low density, ρ, can be examined experimentally and it is therefore im-
portant to verify mathematically some of the theories deduced about these systems
by many authors over a period of six decades. For systems with two-body interac-
tion potentials the experimental low temperature state and the ground state are
nearly synonymous – and this concentration on the ground state is used in most
modeling.

The Hamiltonian that is usually used to describe these gases of N atoms or
particles (with coordinates x ∈ Rd) is

(1) HN = −
∑

1≤j≤N
∆xj +

∑

1≤i<j≤N
v(xi − xj)

with the two-body interaction v taken to be non-negative in most rigorous work.
The first really serious mathematical, but non-rigorous treatment was by Bo-

golubov in 1947 [1] and this was reviewed in the talk. Many of the predictions of
the theory are still deemed valid but unproved rigorously. He deduced the small
ρ leading asymptotic term in the ground state energy (= smallest eigenvalue) E0:

(2) E0 ≈ 4πNρa

for n = 3, where a is the scattering length of the two-body, short-range potential
v.

Owing to the delicate and peculiar nature of bosonic correlations (such as the
strange N7/5 law for charged bosons), four decades of research failed to establish
this plausible formula (2) rigorously. In 1957 [2] Dyson derived an upper bound
for E0 that agreed with (2). The only previous lower bound for the energy was in
[2] but it was 14 times too small. The more modern theory starts with the rigorous
derivation [3] of this asymptotic formula (2). A different formula, postulated as
late as 1971 by Schick, holds in two dimensions and this, too, was shown to be
correct.

With the aid of the methodology developed to prove the lower bound for the
homogeneous gas, several other problems have been successfully addressed. One
is the proof [4] that, with the appropriate scaling v(x) → N2v(Nx), the Gross-
Pitaevskii equation correctly describes the ground state density and energy in
the ‘traps’ actually used in the experiments. For this system it is also possible
to prove complete Bose-Einstein condensation and superfluidity [5, 6]. There is
also a Gross-Pitaevskii equation for a rotating, trapped Bose gas, but it was not
known if this equation correctly describes the ground state. The problem is that
the absolute ground state of the Hamiltonian for a rotating gas need not be the
same as the ground state in the class of symmetric (i.e., Bose) functions – as it is if
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rotation is absent. Purely physical reasoning could not quite decide the issue, but
it turns out that the GP equation correctly describes the ground state of bosons
[7].

Another recent development about the Gross-Pitaevskii equation is the analysis
of its time dependent version, which ought to predict the density of a gas whose
wave function ψ evolves under the Schrödinger time evolution: i∂ψ/∂t = HNψ.
This has been shown to be the case in the non-rotating case by Erdös et al [8] for
suitable initial data.

Another topic is a proof that Foldy’s 1961 calculation [9] (based on Bogolubov’s
theory) of a one-component, high density Bose gas of electrically charged particles
correctly describes its ground state energy, even though the Coulomb electrostatic
interaction is very long-ranged. He predicted a −C1Nρ

1/4 law for E0. A proof
has also been given of the E0 ≈ −C2N

7/5 formula for the ground state energy of
the two-component charged Bose gas predicted by Dyson. Both power laws (1/4
and 7/5) were proved in [10] in 1988. The sharp constants C1, C2 were proved in
[11, 12], thereby showing the correctness of the preceding predictions.

Many of these results were presented in a book which was an outgrowth of
lectures [13] given at an Oberwolfach seminar.

Despite these partial successes there are still big open problems. Does Bose-
Einstein condensation occur for homogeneous Bose gases in the thermodynamic
limit (i.e., not in traps)? Can one go beyond the first term, eq. (2), in the
asymptotics of the ground state energy? And what about the excitation spectrum,
which is so important for understanding superfluidity? These, and others, are left
for the future.
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Lieb-Robinson Bounds for Quantum Spin Dynamics and Applications

Bruno Nachtergaele

(joint work with Yoshiko Ogata, Hillel Raz, Benjamin Schlein, Robert Sims)

Locality is a fundamental property of all current physical theories. Sets of
observables can be associated with points or bounded regions in space or space-
time and a relativistic dynamics will preserve this structure. There is a wide
range of important physical systems, however, which we prefer to describe by
very effective non-relativistic quantum theories with Hamiltonian dynamics. Even
if the Hamiltonian has only finite-range interactions, the dynamics it generates
generally does not preserve locality, i.e., there is no strict equivalent to the finite
speed of light. However, locality still holds in an approximate sense, and there is
an associated finite velocity, which is sometimes referred to as the group velocity.
We call it the Lieb-Robinson velocity since Lieb and Robinson were the first to
prove its existence and to obtain a bound for it [9]. They proved that to a high
degree of accuracy locality is preserved by quantum spin dynamics in the sense
that any local observable evolved for a time t > 0 remains localized in a region of
space with diameter proportional to t, up to an arbitrarily small correction. This
also means that spatial correlations between observables separated by a distance
d cannot be established faster than a time of order d.

The fundamental issue of locality may be sufficient motivation to extend the
Lieb-Robinson bounds to more general situations, but there are other good reasons
to try to generalize their result and to improve the estimates they obtained. We
discuss in this talk how locality, or the approximate locality of the dynamics,
has been shown to be responsible for a considerable number of other important
properties relevant for models of many-body systems. In many situations, however,
the implications of locality have yet to be fully explored.

We will begin by presenting a short proof of the new Lieb-Robinson bounds
obtained successively in [12], [6],[14], and [10]. This improved result sharpens the
bounds previously obtained in that the prefactor now only grows as the smallest
surface area of the supports of the local observables. An application where this
surface area dependence, rather than volume dependence, is important can be
found in [3].

Lieb-Robinson bounds can be used to provide explicit estimates on the local
structure of the time evolution. As a consequence, one easily derives bounds on,
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for example, multiple commutators and the rate at which spatial correlations can
be established in normalized product states.

Lieb-Robinson bounds are an essential element in the proof of the so-called
Exponential Clustering Theorem. In the relativistic context it has been known for
a long time that a gap in the spectrum above the vacuum state implies exponential
decay of spatial correlations in that state [4]. That a similar result should hold
in the non-relativistic setting such as quantum spin systems was long expected
and taken for granted by theoretical physicists. In [5], Hastings proposed to use
Lieb-Robinson bounds to obtain such a result and a complete proof was recently
given in [12, 6].

As a final application of these locality bounds, we describe a new proof of the
Lieb-Schultz-Mattis theorem, see [5, 13]. These results can be traced back to [5]
where Hastings introduced a new way to construct and analyze variational states
for low-lying excitations of gapped Hamiltonians. He developed a notion of a quasi-
adiabatic evolution [7] which he then used to present a multi-dimensional analogue
of the celebrated Lieb-Schultz-Mattis theorem [8]. Such a theorem is applicable,
for example, to the standard spin-1/2, anti-ferromagnetic Heisenberg model and
yields an upper bound on the first excited state of order c(logL)/L for systems
of size L. His arguments rely on Lieb-Robinson bounds and the Exponential
Clustering Theorem in an essential way, and we have recently obtained a rigorous
proof of this result which holds in a rather general setting, see [13].

We expect that the ideas currently emerging from recent applications of Lieb-
Robinson bounds will continue to lead to interesting new results for quantum spin
systems in the near future.
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A Variational Formula for the Free Energy of a Many-Boson System

Wolfgang König

(joint work with Stefan Adams and Andrea Collevecchio)

(This is work in progress.)
We consider the N -particle Hamilton operator

HN = −
N∑

i=1

∆i +
∑

1≤i<j≤N
v(|xi − xj |),

in a centred box ΛN in Rd with periodic boundary condition. The volume |ΛN |
of the box is equal to N/ρ, where ρ ∈ (0,∞) is the particle density. The pair-
interaction potential v is supposed to be nonnegative, explodes at zero and vanishes
at infinity sufficiently fast. We want to study bosons at positive temperature
1/β ∈ (0,∞) and consider the symmetrised trace of the operator e−βHN . It is our
goal to derive an explicit variational formula for the limiting free energy, in the
hope to derive a proof for Bose-Einstein condensation from this in future.

It is known since decades that the above mentioned trace can be represented in
terms of a Feynman-Kac formula (an expectation over N Brownian bridges with
symmetrised initial-terminal conditions) and that this formula can be expanded
in a combinatorial way according to the structure of the cycles. Our new input is
the introduction of a marked random Poisson process such that this formula may
be represented as an expectation over the stationary empirical field, RN , of the
Poisson process. Here the marks are the cycles. This enables us to write the trace
in the form

Tr+
(
e−βHN

)
= E

[
e−|ΛN |F (RN )1{G(RN)=ρ}

]
,

where F expresses all the interactions between the marks of the process, and G
expresses the total length of all the cycles of the process in the unit box. This
representation makes the study of the system amenable to a large-deviation anal-
ysis, in particular to the application of Varadhan’s lemma, which formally turns
the exponential rate of the right-hand side into the variational formula

lim
N→∞

1

|ΛN | log Tr+
(
e−βHN

)
= − inf{F (P ) + I(P ) : G(P ) = ρ},

where I denotes the rate function for a large-deviation principle that is satisfied by
(RN )N∈N, according to work of Georgii and Zessin (1994), and P runs through the
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set of all random marked stationary point fields. This assertion is only formal, since
both F and G are not continuous neither bounded. Actually, only the upper bound
with ‘=’ replaced by ‘≤’, has been proved, and the question if the lower bound
also holds is intimately connected with the presence of Bose-Einstein condensation
(BEC). This famous effect is signalled by a significant appearance of the ‘infinitely
long cycles’ (those cycles whose lengths increase to ∞ with N) in the formula,
and these cycles do not explicitly appear in the formula. It is conjectured that the
absence of BEC is equivalent to the validity of the lower bound, which describes
the part of the system that comes only from ‘small’ cycles. Future work is devoted
to the study of this relation and to the question for what values of the parameters
β and ρ the two variational formulas coincide. Even more ambitious will be the
search for a reformulation in a setting that is also able to describe all the ‘infinitely
long cycles’.

Lieb-Robinson Bounds for Harmonic and Anharmonic Lattice Systems

Benjamin Schlein

(joint work with Bruno Nachtergaele, Hillel Raz, and Robert Sims)

We discuss locality properties of the dynamics of quantum harmonic and anhar-
monic lattice models. Since these are non-relativistic models there is no a priori
bound on the speed of propagation of signals in these systems. In the case of
quantum spin systems with finite-range interactions, Lieb and Robinson showed
in [1] that there is nevertheless an upper bound on the speed of propagation in
the sense that disturbances in the system remain confined in a “light” cone up to
small corrections that decay exponentially fast away from the light cone.

More precisely, if τt denotes the time evolution (a one-parameter group of au-
tomorphisms on the algebra of observables) of a spin system with short range
interaction, Lieb-Robinson proved that, for any observable A supported in a set
X and every observable B supported in Y , one has

(1) ‖[τt(A), B]‖ ≤ C‖A‖‖B‖ e−µ(d(X,Y )−v|t|)

where d(X,Y ) = minx∈X,y∈Y |x−y| and |x| =
∑ν
j=1 |xj |. The physical interpreta-

tion of this inequality is straightforward; if two observables A and B are supported
in disjoint regions, then even after evolving the observable A, apart from exponen-
tially small contributions, their supports remain essentially disjoint up to times
t ≤ d(X,Y )/v. In other words, this bound asserts that the speed of propagation
of perturbations in quantum spin systems is bounded.

It seems natural to ask whether Lieb-Robinson bounds such as (1) can be ex-
tended to systems defined on infinite dimensional Hilbert spaces, and described
by unbounded Hamiltonians. Although the constant C and the velocity v in (1)
can be chosen independently of the dimension of the spin spaces (see [2, 3]), they
depend on the operator norm of the interactions Φ(X), and thus the generaliza-
tion is not simple. In [4], we prove that Lieb-Robinson bounds of the form (1) can
be established for three different types of models with unbounded Hamiltonians:
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1) systems with bounded interactions (described by Hamiltonians with bounded
nonlocal terms and, possibly, unbounded local terms), 2) harmonic lattice systems,
3) anharmonic lattice systems (for a certain class of bounded anharmonicity).
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On the Switching Lemma for the Transverse Ising Model

Nicholas Crawford

(joint work with Dmitry Ioffe)

We outline work in progress [6], [7] generalizing powerful techniques used to
study the classical Ising model at the critical temperature βc to the transverse
Ising model on a general graph G, where

(1) ĤG = −
∑

<ij>

J<ij>σ̂
(z)
i σ̂

(z)
j −

∑

i∈G
(hσ̂

(z)
i + λσ̂

(x)
i ).

is the transverse Ising Hamiltonian on G acting on the |G| particle vector space

(2) HG := ⊗i∈GC
2

and σ̂xi , σ̂
z
i denote the usual Pauli operators acting only on the i’th factor of HG.

The first sum here is over all bonds of G.
In [1], M. Aizenman introduced a graphical representation called the Random

Current Representation (RCR), which is a variation of the usual high tempera-
ture expansion from classical statistical mechanics. Combining this representation
with a combinatorial identity known as the Switching Lemma leads to a unified
derivation of many (old and new) correlation inequalities which played a crucial
role in the analysis of the Ising model on Zd, proving, among other things, the
triviality of the scaling limit in d ≥ 5 when the strength of the external field h = 0.
The subsequent paper Aizenman and R. Fernandez [3] extended this analysis to
the h > 0 regime, while Aizenman, D. Barsky, and Fernandez [2] used the Switch-
ing Lemma along with a certain random walk decomposition to derive differential
inequalities which lead to a proof that the magnetic transition is sharp (i.e. there
is no intermediate phase).

Our talk consists of two topics: Using the path integration techniques intro-
duced in [5], we formulate a version of the RCR directly for the transverse Ising
model and described how to recover a (weak) form of the Switching Lemma in
this context. This sort of generalization should be expected on the basis of the
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representation of the transverse Ising model as a strong coupling limit classical
Ising models [4], though it does not easily follow from this limiting procedure.

The second topic (work done with Ioffe and Y. Velenik) is a brief sketch of a
relatively simple proof that the truncated correlation functions

(3) 〈σ̂zi ; σ̂xj 〉G , 〈σ̂zi ; σ̂zj 〉G〈σ̂xi ; σ̂xj 〉G ,
all decay exponentially in the graph distance di,j under the assumptions that h > 0
and Ji,j ≥ J > 0
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Rotating Bose gases

Jakob Yngvason

Ultra-cold Bose gases display remarkable quantum phenomena under rotation,
in particular quantized vortices related to superfluidity. The article [1] reviews
the subject from the physics point of view, the monograph [2] is concerned with
more mathematical aspects. Most of the theoretical work has been within the
framework of the Gross-Pitaevskii (GP) equation for the wave function of the
Bose-Einstein condensate. This non-linear Schrödinger equation is the variational
equation obtained by minimizing the GP energy functional

(1) EGP[ψ] =

∫

Rd

{
|(i∇ + A)ψ|2 + (V − 1

4Ω2r)|ψ|2 + g|ψ|4
}

dx

with d = 3 or 2 and the normalization condition
∫

Rd |ψ|2 = 1. Here A(x) = 1
2Ω∧x

with Ω the angular velocity, V the external confining potential and r the distance
from the rotation axis. The interaction between the gas particles is encoded in a
single parameter, g = 4πaN/L, where a is the scattering length of the interaction
potential, N the particle number and L a length scale associated with the external
potential. For rotating gases in their ground state the GP equation was derived in
[3] and [4] from the quantum mechanical many-body Hamiltonian with repulsive,
short range interactions and fixed values of Ω and g as N → ∞. The extension of
this derivation to the case when Ω and g tend to infinity (or Ω approaches a critical
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value in the case of harmonic traps) has not yet been completed, but the leading
order asymptotics of the many-body ground state energy for large coupling and
rotational velocity in an anharmonic trap was computed in [5].

Detailed results on the emergence of vortices as the rotational velocity is in-
creased have been obtained within two-dimensional GP theory when the GP in-
teraction parameter g is large (‘Thomas-Fermi’ limit) and the rotational velocity
Ω is of the order of the logarithm of this parameter, see [2] and [6] and references
quoted there. In this case the number of vortices remains finite as the interac-
tion parameter tends to infinity. For faster rotation, new effects that are briefly
reviewed in [7] come into play.

It is customary to write g = 1/ε2, so large g corresponds to small ε. The
dimensionless parameter ε is a measure for the size of the vortices relative to the
size of the confining trap. The main part of the lecture at the workshop was based
on recent joint work [8] with Michele Correggi on the energy and vorticity of the
minimizers of the functional (1) in the parameter range

(2) | log ε| ≪ Ω ≪ 1/(ε2| log ε|).

We have proved the following

Theorem 1 (Energy to subleading order). Let EGP denote the two-dimensional
GP energy, i.e., the minimum of the GP energy functional (1) with d = 2, in a
flat trap of radius 1 with Neumann boundary conditions. Let ETF denote the
minimal energy of the GP functional without the first (kinetic energy) term. If
| log ε| ≪ Ω ≪ 1/ε as ε→ 0, then

(3) EGP = ETF + (Ω/2)| log(ε2Ω)|(1 + o(1)).

If 1/ε . Ω ≪ 1/(ε2| log ε|) then

(4) EGP = ETF + (Ω/2)| log ε|(1 + o(1)).

Previous results [9] in the parameter range (2) where limited to the the leading
order contribution. The subleading terms in Eqs. (3) and (4) correspond to the
energy of trial functions where vortices of degree one are distributed on a regular
lattice with density Ω/(2π). For matching lower bounds the problem is reformu-
lated in such a way that results from Ginzburg-Landau (GL) theory obtained in
[10] and [11] can be employed. The strong inhomogeneity of the density in fast
rotating condensates due to the centrifugal forces causes problems that make the
reduction to the GL case not entirely straightforward.

When the rotational velocity reaches O(1/(ε2| log ε|)) a different trial function,
with all the vorticity concentrated in a region where the density is small (‘giant
vortex’), gives a lower energy than the vortex lattice. In this region a lower bound
matching the variational upper bound has not yet been derived and the details of
the transition from the vortex lattice to the giant vortex merit further study. A
further challenging problem is to derive the subleading term in the energy from
the full quantum mechnical many-body problem.
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Ground state properties of the weak coupling 2D Hubbard model on
the honeycomb lattice

Alessandro Giuliani

(joint work with Vieri Mastropietro)

We consider a 2D Hubbard model on the honeycomb lattice, as a model for a
single layer graphene sheet in the presence of screened Coulomb interactions. At
half filling and for weak enough coupling, we construct the whole set of correlation
functions via a resummed convergent series, stemming from a multiscale analysis
based on constructive fermionic renormalization group. The result is that in the
interacting theory the large distance asymptotic behavior of correlations is the
same as in the absence of interactions, modulo a finite renormalization of the Fermi
velocity and of the wave function. The large distance asymptotics is described by
a massive QED theory in 2+1 dimensions, in the presence of an ultraviolet cutoff.
Remarkably, the U(1) symmetry of QED is dynamically restored, thanks to a
discrete rotational symmetry of the original Hubbard model.

In order to state our results in a more precise form, let us introduce the Hamil-
tonian of the 2D Hubbard model on the honeycomblattice at half filling in second
quantized form:
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H = −
∑

~x∈Λ
i=1,2,3

∑

σ=↑↓

(
a+
~x,σb

−
~x+~δi,σ

+ b+
~x+~δi,σ

a−~x,σ

)
+

+
U

3

∑

~x∈Λ
i=1,2,3

(
a+
~x,↑a

−
~x,↑a

+
~x,↓a

−
~x,↓ + b+

~x+~δi,↑
b−
~x+~δi,↑

b+
~x+~δi,↓

b−
~x+~δi,↓

)
+

+ U ′
∑

~x∈Λ
i=1,2,3

∑

σ,σ′=↑↓
a+
~x,σa

−
~x,σb

+

~x+~δi,σ′
b−
~x+~δi,σ′

where:

(1) Λ is a periodic triangular lattice, defined as Λ = B/LB, where L ∈ N and

B is the triangular lattice with basis ~a1 = 1
2 (3,

√
3), ~a2 = 1

2 (3,−
√

3).

(2) The vectors ~δi are defined as

~δ1 = (1, 0) , ~δ2 =
1

2
(−1,

√
3) , ~δ3 =

1

2
(−1,−

√
3) .

(3) a±~x,σ are creation or annihilation fermionic operators with spin index σ =↑↓
and site index ~x ∈ Λ, satisfying periodic boundary conditions in ~x

(4) b±
~x+~δi,σ

are creation or annihilation fermionic operators with spin index

σ =↑↓ and site index ~x+ ~δi ∈ Λ + ~δ1, satisfying periodic boundary condi-
tions in ~x.

(5) U is the strength of the on–site density–density interaction and U ′ is the
strength of the nearest neighbor density–density interaction; they can both
be either positive or negative.

Note that the Hamiltonian above is particle-hole symmetric (i.e., it is invariant
under the exchanges a±~x,σ → a∓~x,σ, b

±
~x,σ → −b∓~x,σ), so that in particular < N >=

2|Λ|, where < · >= limβ→∞ Tr{e−βH}/Tr{e−βH}.
We define the two component fermionic operators Ψ±

~x,σ =
(
a±~x,σ, b

±
~x+~δ1,σ

)
and

we write Ψ±
~x,σ,1 = a±~x,σ and Ψ±

~x,σ,2 = b±
~x+~δ1,σ

. We also consider the operators

Ψ±
x,σ = eHx0Ψ±

~x,σe
−Hx0 with x = (x0, ~x) and x0 ∈ [0, β], for some β > 0; we

shall call x0 the time variable. We write Ψ±
x,σ,1 = a±

x,σ and Ψ±
x,σ,2 = a±

x+δ1,σ
, with

δ1 = (0, ~δ1).
We are interested in computing the specific ground state energy

e(U,U ′) = lim
β→∞

lim
|Λ|→∞

(β|Λ|)−1 log Tr e−βH

and the zero temperature Schwinger functions:

Sn(x1, ε1, σ1, ρ1; . . . ;xn, εn, σn, ρn) = lim
β→∞

lim
|Λ|→∞

Tr e−βHT(Ψε1
x1,σ1,ρ1 · · ·Ψεn

xn,σn,ρn
)

Tre−βH

where xi,yi ∈ [0, β] × Λ, σi =↑↓, εi = ±, ρi = 1, 2 and T is the operator of
fermionic time ordering. Our main result is the following.



2276 Oberwolfach Report 40/2008

Theorem [1] For U,U ′ small enough, the specific ground state energy and the
zero temperature Schwinger functions are analytic functions of U,U ′. In particular,
if S(x− y)ρ,ρ′ = S2(x,−, σ, ρ;y,+, σ, ρ′) and ~p ±

F = (2π
3 ,± 2π

3
√

3
), we can write

S(x − y) =
∑

ω=±
ei~p

±
F (~x−~y)Sω(x − y)

where

Ŝω(k0, ~k
′)−1 = Z

(
−ik0 −vF (ik′1 + ωk′2)

−vF (−ik′1 + ωk′2) −ik0

) (
1 +R(k′)

)
,

with: (i) k′ = (k0, ~k
′), where k0 ∈ R and ~pωF +~k′ ∈ R

2/Λ∗, Λ∗ being the dual lattice
of Λ; (ii) Z and vF two real constants such that |Z−1|, |vF −3/2| ≤ C(|U |+ |U ′|);
R(k′) is a higher order correction satisfying ||R(k′)|| ≤ C|k′|ϑ as |k′| → 0, for
some constants C, ϑ > 0.

The theorem above is proven by rigorous fermionic renormalization group meth-
ods, see [2] and references therein. The convergence of the (resummed) perturba-
tion series is achieved by determinant bounds, and by a step by step modification
of the propagator, combined with the fact that at half filling all quartic or higher
order interactions are irrelevant in a renormalization group sense.
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Long Cycles in the Infinite-Range-Hopping Bose-Hubbard Model with
Hard Cores

Gerry Boland

(joint work with J.V. Pulé)

We consider the relation between long cycles and Bose-Einstein Condensation
(BEC) in the Infinite range Bose-Hubbard Model with a hard core interaction[3].
We calculate the density of particles on long cycles in the thermodynamic limit
and find that the existence of a non-zero long cycle density coincides with the oc-
currence of BEC but this density is not equal to that of the condensate.

In 1953, Feynman[5] analysed the partition function of an interacting Bose gas
in terms of the statistical distribution of permutation cycles of particles and em-
phasised the roles of long cycles at the transition point. Penrose and Onsager[6],
pursuing his arguments, observed that BEC occurs when the fraction of the total
particle number belonging to long cycles is strictly positive. A precise formulation
of the relation between BEC and long cycles was lacking until the work of Sütö
[8] but its validity has been checked only in a few models: the free and mean field
Bose gas[8] (see also [10]), and the perturbed mean field model of a Bose gas[4].
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In these models it is shown that the density of particles on long cycles is equal to
the condensate density.

We test the validity of the hypothesis in yet another model of a Bose gas, the
Infinite-Range Bose-Hubbard Model. Its Hamiltonian is given by

HIR =
1

2V

∑

x,y=1...V

(a∗x − a∗y)(ax − ay) + λ
∑

x=1...V

nx(nx − 1)

where a∗x and ax are the usual Bose creation and annihilation operators satisfying
[a∗x, ay] = δx,y and nx = a∗xax. The properties of this model is studied in [2] and
[1]. Here we choose a special case, introduced and analysed by Tóth [9], where
λ = +∞, that is complete single-site exclusion (hard-core). Penrose [7] obtained
equivalent results and in addition, calculated the density of the BEC, ρcβ .

In the canonical ensemble, we re-formulate this problem by applying a hard-core

projection Phc
n to the symmetrised n-particle Hilbert space with V sites, H(n)

V ,+, to

exclude states violating the hard-core condition. We may write HIR
λ=+∞ as

Hhc

n,V := Phc

n (n− P
(n)
V )Phc

n

applied to Hhc
n,V ,+ := Phc

n H(n)
V ,+, where

P
(n)
V = PV ⊗ I ⊗ · · · ⊗ I + I ⊗ PV ⊗ I ⊗ · · · ⊗ I + · · · + I ⊗ I ⊗ · · · ⊗ PV

and PV is the single particle ground state operator. P
(n)
V can be thought of as

representing the hopping of the particles. The structure of the proof is as follows:

1. Using a combinatorial argument, we express the density of particles on cycles
of length q for n particles, cnV (q), in terms of the trace of the exponential of the
Hamiltonian for n− q bosons and q distinguishable particles (no statistics):

cnV (q) =
1

Zβ(n, V )

1

V
traceHhc

q,n,V

[
Uqe

−βHhc

n,V

]

where Hhc
q,n,V := Phc

n (H(q)
V ⊗H(n−q)

V ,+ ), H(q)
V is the unsymmetrised q-particle space,

Uq is the unitary representation of a q-cycle on H(q)
V , and Zβ(n, V ) is the canonical

partition function. Summing this over all cycle lengths yields
∑n
q=1 c

n
V (q) = n/V .

The long and short cycle densities are defined in the thermodynamic limit (n, V →
∞ with n

V = ρ) as

ρshort = lim
Q→∞

lim
n,V →∞

n/V =ρ

Q∑

q=1

cnV (q) and ρlong = ρ− ρshort.

2. We prove that in the thermodynamic limit that we can neglect the hopping of
the q distinguishable particles. This is almost equivalent to the reduction of the
lattice by q sites. Moreover these particles are on a cycle of length q.

3. As these distinguishable particles may now be taken not to hop, but are cycled,
due to the hard-core condition only cycles of unit length contribute. For short
cycles, the thermodynamic limit and the sum over cycle lengths can be reversed.
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long

β
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Thus we obtain

ρlong = ρ− lim
n,V →∞

n/V =ρ

cnV (1).

4. The one-cycle density, apart from
some scaling, is the partition function for
the boson system with one site and one
particle removed, which can be calcu-
lated using a large-deviation argument.
G.B. would like to thank the Irish Research Council for
Science, Engineering and Technology (IRCSET) for its
financial support.
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A simple solution of the Matsubara UV problem for many fermions

Mnfred Salmhofer

(joint work with W. Pedra)

It is known that perturbation theory converges in fermionic field theory at weak
coupling if the interaction and the covariance are summable and if certain deter-
minants arising in the expansion can be bounded efficiently, e.g. if the covariance
admits a Gram representation with a finite Gram constant. The covariances ob-
tained from the grand canonical ensemble of quantum statistical mechanics do
not fall into this class due to the slow decay of the covariance at large Matsubara
frequency. This causes an ultraviolet problem in the integration over degrees of
freedom with Matsubara frequencies larger than some Ω (usually the first step
in a multiscale analysis). I discuss a simple solution of this problem, obtained
in collaboration with Walter Pedra [PS]. We show that these covariances do not
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have Gram representations on any separable Hilbert space. We then prove a gen-
eral bound for determinants associated to chronological products which is stronger
than the usual Gram bound and which applies to the many–fermion case. This
allows us to prove convergence of the first integration step in a rather easy way,
for a short–range interaction which can be arbitrarily strong, provided Ω is chosen
large enough. The method allows to give nonperturbative bounds on all scales for
the case of scale decompositions of the propagator which do not impose cutoffs
on the Matsubara frequency. Applications include an easy proof of ℓ1 cluster-
ing of truncated correlation functions in weakly interacting fermion systems, and
ultraviolet smoothing of Hubbard–Stratonovich transformations.
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Quantum Spin Systems at Positive Temperature

Shannon Starr

(joint work with Marek Biskup, Lincoln Chayes)

It is a challenge to prove that spin systems possess phase transitions, for both
classical and quantum spins. However, in a number of cases the classical phase
transition was proved where the quantum phase transition is also expected but
not proved. Taking j ∈ { 1

2 , 1,
3
2 , 2, . . . } to be the spin magnitude of each site, one

knows that the limit j → ∞ is supposed to recover the classical model. Therefore,
one may hope, at least, to prove a phase transition for the quantum model for large
enough j, assuming one has proved a phase transition for the classical model. This
is what we proved, in the paper [1], for models satisfying the following conditions:

(i) The quantum Hamiltonian is reflection positive for each j.
(ii) The classical model is also reflection positive and can be proved to have a

phase transition via the Peierls argument, using the Chessboard estimates
of Frohlich and Lieb [2] at inverse temperature β.

(iii) The upper and lower symbols of the spin-j Hamiltonian converge, and con-
verge to the classical Hamiltonian, in the j → ∞ limit. More specifically,
we require all the local interactions to converge in Lipschitz norm (i.e., to
converge in the Hölder space C0,1).

(iv) The parameter j/β2 is sufficiently large.

Conditions (i) and (ii) are the most restrictive. But, on the other hand, there are
a variety of models where these conditions are known, which we will describe at
the end. Condition (iii) is guaranteed for any Hamiltonian whose interactions are
polynomials in spin matrices by a calculation of Lieb [3], which covers essentially
all models of interest. Condition (iv) is a technical restriction of the proof. It has
the following unfortunate consequence: suppose by a Peierls argument that you
can prove that the quantum model has a phase transition for all β > β0. Then for
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each β > β0 you can prove that the quantum model also has a phase transition
for j sufficiently large, but you cannot prove it for the same j if you make β much
larger. Solving this problem would be an extension of considerable interest (but
is open).

Coherent states are vectors in C2j+1, the spin-j representation of SU(2), indexed
by points on the sphere ω = (ωx, ωy, ωz) ∈ S2 ⊆ R3 such that

(ωxSx + ωySy + ωzSz)ψjω = jψjω .

This condition (and the normalization condition) uniquely characterizes the co-
herent state vector ψjω modulo a phase factor, which drops out of the coherent
state projector |ψjω〉〈ψjω |. An important formula is the resolution of the identity:

I =
2j + 1

4π

∫

S2

dω |ψjω〉〈ψjω| .

Given any continuous function f : S2 → C, the coherent states give a method to

obtain an operator f̂ j : C2j+1 → C2j+1 as

f̂ j =
2j + 1

4π

∫

S2

dω f(ω) |ψjω〉〈ψjω | .

If f̂ j = A then one says that f is an upper symbol for A. But there are many
upper symbols for A, so the upper symbol is not unique. The fact that upper
symbols exist for every operator A on C2j+1 is also important and follows from
calculations in Lieb’s paper on the classical limit of quantum spin systems [3].
Let us write Ǎj for the set of all upper symbols for the operator A. Lieb showed
that for any reasonable Hamiltonian one can choose a sequence of upper symbols
fj ∈ Ȟj such that fj converges, in the j → ∞ limit to the classical Hamiltonian.
The same is true for the lower symbol of H which is the function ω 7→ 〈ψjω , Hψjω〉.
For example, for the Heisenberg interaction hr,r′ = Sr · Sr′/j2, one can choose
the upper symbol to be [1 + j−1]2ωr · ωr′ and the lower symbol is ωr · ωr′ .

Lieb, and independently Berezin shortly before, proved a pair of inequalities
known as the Berezin-Lieb inequalities:

(1)

∫

S2

dω

4π
e〈ψ

j
ω,Aψ

j
ω〉 ≤ Tr(eA)

2j + 1

for any self-adjoint operator A : C2j+1 → C2j+1, and

(2)
Tr(ef̂

j

)

2j + 1
≤

∫

S2

dω

4π
ef(ω)

for any real, continuous function f(ω). As a historical note, while Lieb’s proof of
(1) used essentially just Jensen’s inequality, his original proof of (2) used an idea
similar to the Golden-Thompson inequality, which is a truly quantum mechanical
bound. But later, Lieb derived a proof of (2) also just using Jensen’s inequality,
and this is reported in Barry Simon’s survey of coherent states [4]. Taking A to
be a quantum Hamiltonian – such as a polynomial in spin operators – and taking
f to be an upper symbol for the same Hamiltonian, Lieb was able to prove that
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the free energy of a quantum model converges to the free energy of the classical
model in the j → ∞ limit.

In order to prove a phase transition, one has to go beyond this. In our paper
[1], we proved a bound which reads as follows.

Theorem 1. Suppose that Hj
Λ =

∑
〈r,r′〉⊂Λ h

j
r,r′ is translation invariant and

hj
r,r′ is a polynomial in Sxr/j, . . . S

z
r′/j (the same polynomial for all j) then for

each M <∞, there is a K <∞ such that for all β ≤Mj1/2,
∣∣∣〈ψjω, e−βH

j
Λψj

ω′〉
∣∣∣ ≤ e−βȞ

j(ω)+d(ω,ω′)+Kβj−1/2|Λ| ,

where ψjω is the tensor-product vector
⊗

r∈Λ[ψjωr

]r for each ω = (ωr)r∈Λ and

d(ω,ω′) =
∑

r∈Λ

min{j1/2‖ωr − ωr′‖, j‖ωr − ωr′‖2} .

In this theorem Ȟj(ω) is an upper symbol for Hj, chosen appropriately accord-
ing to the method of Lieb. The proof follows by a differential inequality, and then
an application of Gronwall’s theorem. Note that for β = 0 the theorem follows
trivially. By differentiating with respect to β and keeping careful track of all the
terms, one can derive this bound. But one problem with it is that the error term in
the exponent seems quite large since Kβj−1/2|Λ| is of the order of the system size.
It is here, however, that Frohlich and Lieb’s chessboard estimate is particularly
useful.

Denote by 〈· · · 〉βH the Gibbs state 〈A〉βH = Tr(Ae−βH)/Tr(e−βH). For a
reflection-positive Hamiltonian, HΛ, Frohlich and Lieb proved [2] that for an op-
erator A acting on a single spin site, r0,

|〈A〉βHΛ | ≤ ‖A‖βHΛ :=

(〈 ∏

r∈Λ

θr(A)

〉

βHΛ

)1/|Λ|
,

where θr is the appropriate reflection of the observable algebra for spin site r0 to
r, used in the definition of reflection positivity. This is their Chessboard estimate
(or generalized Hölder’s inequality). Here one has disseminated the operator A,
acting on a single site, to the entire lattice so it is now acting on all sites. For the
case that A is a projector (or an indicator function in the classical case) Frohlich
and Lieb call the disseminated operator

∏
r∈Λ θr(A) the “universal projector.”

Using Theorem 1, we see that for any measurable set of configurations for a single
spin E ⊂ S

2, and for each M <∞ there is a K <∞ such that

‖1̂E‖βHj
Λ
≤ ‖1E‖βH∞

Λ
eKβj

−1/2

,

for all β ≤ Mj1/2, where 1E is the indicator function of E (the definition of

f 7→ f̂ j extends naturally to nonnegative measurable functions) and H∞
Λ denotes

the classical Hamiltonian which is also the limit of the upper and lower symbols for
Hj

Λ in the j → ∞ limit. In particular, as long as βj−1/2 is sufficiently small this
inequality is effective. The same inequality works for finite blocks of spins instead
of single sites. Using Frohlich and Lieb’s version of the Peierls argument, with
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Chessboard estimates, the small parameter in the expansion into Peierls contours
is exactly ‖1E‖βH∞

Λ
where E is a set of “bad” block events whose disseminated

probability is small at sufficiently large β. Therefore, one can essentially run the
same Peierls argument for the quantum model, assuming conditions (i) to (iv) are
satisfied.

References

[1] M. Biskup, L. Chayes and S. Starr. Quantum spin systems at positive temperature. Com-
mun. Math. Phys. 69 (2007), 611–657.
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Local semicircle law and complete delocalization for Wigner matrices

László Erdős

(joint work with Benjamin Schlein and Horng-Tzer Yau)

The Wigner semicircle law states that the empirical density of the eigenvalues of
a random matrix is given by the universal semicircle distribution. This statement
has been proved for many different ensembles, in particular for the case when the
distributions of the entries of the matrix are independent, identically distributed
(i.i.d.). To fix the scaling, we normalize the matrix so that the bulk of the spectrum
lies in the energy interval [−2, 2], i.e., the average spacing between consecutive
eigenvalues is of order 1/N . We now consider a window of size η in the bulk so
that the typical number of eigenvalues is of order Nη. In the usual statement of
the semicircle law, η is a fixed number independent of N and it is taken to zero
only after the limit N → ∞. This can be viewed as the largest scale on which
the semicircle law is valid. On the other extreme, for the smallest scale, one may
take η = k/N and take the limit N → ∞ followed by k → ∞. If the semicircle
law is valid in this sense, we shall say that the local semicircle law holds. Below
this smallest scale, the eigenvalue distribution is expected to be governed by the
Dyson statistics related to sine kernels.

In this talk, I establish the local semicircle law up to logarithmic factors in the
energy scale, i.e., for η ∼ N−1(logN)8. The result holds for any energy window in
the bulk spectrum away from the spectral edges. Prior to our work the best result
was obtained in [1] for η ≫ N−1/2. See also [4] and [5] for related and earlier
results.

It is widely believed that the eigenvalue distribution of the Wigner random ma-
trix and the random Schrödinger operator in the extended (or delocalized) state
regime are the same up to normalizations. Although this conjecture is far from
the reach of the current method, a natural question arises as to whether the eigen-
vectors of random matrices are extended. More precisely, if v = (v1, . . . , vN ) is
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an ℓ2-normalized eigenvector, ‖v‖ = 1, we say that v is completely delocalized if
‖v‖∞ = maxj |vj | is bounded from above by CN−1/2, the average size of |vj |. We
prove that all eigenvectors with eigenvalues away from the spectral edges are com-
pletely delocalized (modulo logarithmic corrections) in probability. This result, in
particular, answers (up to logarithmic factors) the question posed by T. Spencer
that ‖v‖4 should be of order N−1/4.

Denote the (i, j)-th entry of an N ×N hermitian matrix H by hij = hji. These
matrices form a Hermitian Wigner ensemble if

(1) hij = N−1/2[xij +
√
−1 yij ], (i < j), and hii = N−1/2xii,

where xij , yij (i < j) and xii are independent real random variables with mean
zero. We assume that xij , yij (i < j) all have a common distribution ν with
variance 1/2 and we assume that it satisfies the logarithmic Sobolev inequality.
The diagonal elements, xii, also have a common distribution that may be different
from dν. Let P denote the probability w.r.t the joint distribution.

Let H be the N ×N Wigner matrix with eigenvalues µ1 ≤ µ2 ≤ . . . ≤ µN . The
Stieltjes transform of the empirical distribution function of the eigenvalues is

(2) mN (z) =
1

N
Tr

1

H − z

for any spectral parameter z = E + iη ∈ C, η > 0. Its imaginary part is the
normalized density of states of H around energy E and regularized on scale η.

The semicircle law is a distribution on the real line with density function

̺sc(x) =
1

2π

√
4 − x21(|x| ≤ 2) .

Its Stieltjes transform is

msc(z) =

∫

R

̺sc(x)dx

x− z

Theorem 2. Let z = E + iη with |E| < 2 and η ≥ (logN)8/N . For any ε > 0,
the Stieltjes transform mN (z) of H satisfies

(3) P

{
|mN (z) −msc(z)| ≥ ε

}
≤ e−cε(logN)2

This result identifies the density of states away from the spectral edges in a
window where the typical number of eigenvalues is of order bigger than (logN)8.
The following theorem shows that all eigenfunctions are fully delocalized.

Theorem 3. For any κ > 0 and C large, there exists c > 0 such that

P

{
∃ v with Hv = µv, ‖v‖ = 1, µ ∈ [−2 + κ, 2 − κ] and ‖v‖∞ ≥ C(logN)9/2

N1/2

}

≤ C e−c(logN)2 .

The proofs of these theorems are found in [2, 3].
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On the Brockett Flow Equations

Jean-Bernard Bru

(joint work with V. Bach and M.W. Walser)

Flow equations for operators are defined by Brockett [1] and Wegner [2] as the
following non-linear operator-valued first-order differential equations for positive
time t ≥ 0 :

(1)

{
∂tYt = [Yt, [Yt, At]]
Yt=0 := Y0

with (possibly unbounded) operators At and Y0 acting on a Banach space X or
Hilbert space H, and with [Yt, At] := YtAt −AtYt being the commutator between
the operators Yt and At.

The existence of a solution Yt of this differential equation is not obvious but
interesting since it defines an isospectral flow on the fixed operator Y0. Indeed,
the flow equation (1) is closely related to non–autonomous evolution equations.
For instance, let Ut,s be an evolution operator. In other words, let Ut,s be a
jointly strongly continuous in s and t operator satisfying the “cycle condition”
Ut,τUτ,s = Ut,s for any t ≥ τ ≥ s ≥ 0 with Ut,t = I being the identity1. Take in
particular a solution Ut,s of the non-autonomous evolution equation2

(2)

{
∂tUt,s = −iGtUt,s
Ut,t := I

with infinitesimal generator Gt := i [At, Yt]. Then, the operator

(3) Yt = Ut,sYsU
−1
t,s = UtY0U

−1
t

would be a solution of (1), where by definition Ut := Ut,0 and U−1
t is its right

inverse. In the context of self-adjoint operators At and Y0 on a Hilbert space H,
the flow equation (1) generates a family of unitarly equivalent operators Yt. Now,
the next question is to understand how this isospectral flow can be used. In fact,

1I is always the identity operator on the corresponding Hilbert or Banach space.
2∂sUt,s = iUt,sGs is a consequence of (2) combined with the “cycle condition”.
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a solution Yt of (1) should converge, at least for real symmetric matrices Y0 and
(time-independent) A := At, to a symmetric matrix Y∞ commuting with A.

Their mathematical foundations were missing until [3], which proves the well–
posedness of the Brockett flow for bounded operators acting on a Banach space X ,
as well as some asymptotic properties. The talk was devoted to these results and to
a rigorous application of the Brockett flow to diagonalize (unbounded) quadratic
bosonic Hamiltonians [4].
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Rigorous Bethe Ansatz

Tony C. Dorlas

(joint work with Alexander Povolotsky, Maxim Samsonov)

The Hamiltonian for the isotropic Heisenberg chain with periodic boundary condi-
tions was diagonalised by Bethe in 1931 using his famous Ansatz where the eigen-
functions are written in terms of a linear combination of waves with permuted
wavenumbers k1, . . . , kM , where M is the number of down-spins:

(1) ψ(i1, . . . , iM ) =
∑

σ∈SM

exp


i

M∑

j=1

kσ(j)xj + i
∑

j<l
σ(j)>σ(l)

φσ(j)σ(l)


 .

Here i1, . . . , iM denote the positions of the down spins, and the phase factors
φjl are related to the wavenumbers by 2 cot(φjl) = cot(kj/2) − cot(kl/2). The
wavenumbers k1, . . . , kM have to satisfy the following set of nonlinear equations,
called the Bethe Ansatz Equations (BAEs),

(2) eikjN =
M∏

l=1
l 6=j

exp(iφjl), (j = 1, . . . ,M).

It was suggested already by Bethe that the solutions of these equations, when
written in terms of the new variables

(3) Λj = cot(1
2kj),

form n-tuples of complex numbers with equal real parts and with imaginary parts
which are equally separated and centred about the real axis, up to an error which
is exponentially small in N . This is known as the “string hypothesis”. Assuming
that this string hypothesis is valid, one can derive equations for the real parts of
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the strings, which involve integers (or half-odd integers) I
(n)
α , where n labels the

length of the string and α numbers the different strings of length n. All I
(n)
α can

be assumed to satisfy |I(n)
α | < N−n

2 .
The Bethe Ansatz has since been applied to many other models in statistical

mechanics and field theory, but the mathematical status of the string hypothesis
is still unclear. (It was however proven by Tarasov and Varchenko [4] that the
total set of solutions of (2) yields a complete basis of eigenstates. See also [5].)

In the talk I demonstrated that even in the case M = 2, the string hypothesis
needs to be modified, but that it is essentially true, in that it holds for the majority
of solutions (namely those with |I| < N −

√
N lnN), and the error term is not

exponentially small in N , but does vanish as N → ∞. This claim can also been
proven for higher values of M in the case of real solutions as well as for a single
string. In the case M = 3, for example, the solutions in the case of a single string
are shown in the following figure:

-4 -2 2 4

-2

-1

1

2

Figure 2. Solutions of the BAEs for a string of length 3 with N = 16. Notice that
the outer most points (I = ±6) are missing; these do not converge.

It is clear from the figure that the hypothesis holds for solutions away from the
edges. The general case of several strings is still under investigation.
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Rigorous applications of the Bogolubov approximation

Jan Philip Solovej

In this talk I discuss an approach to making rigorous the Bogolubov approxima-
tion [1].

I will discuss the application of the Bogolubov approximation to three different
examples.

Example (a). The dilute Bose gas with Hamiltonian

HN =
N∑

i=1

−∆i +
∑

1≤i<j≤N
V (xi − xj),

where V is a sufficiently fast decaying non-negative potential and the Hilbert space

is H =
⊗N L2(Λ). Here Λ ⊂ R3 is a cube and −∆ is the Laplacian with Dirichlet

boundary conditions.
We are interested in the thermodynamic ground state energy

e(ρ) = lim
|Λ|→∞

N/|Λ|=ρ

|Λ|−1 inf specHHN .

It is expected that Bogolubov theory gives the energy asymptotics in the dilute
limit ρa3 → 0, where a is the scattering length of the potential V .

Example (b). The one-component charge Bose gas with Hamiltonian

HN =

N∑

i=1

(−∆i−ρ
∫

Λ

|xi−y|−1dy)+
∑

1≤i<j≤N
V (xi−xj)+

1

2
ρ2

∫∫

Λ×Λ

|x−y|−1dxdy.

The Hilbert space is again H =
⊗N

L2(Λ). Again the quantity of interest is the
thermodynamic ground state energy

e(ρ) = lim
|Λ|→∞

N/|Λ|=ρ

|Λ|−1 inf specHHN .

Bogolubov theory gives the energy asymptotics in the high density limit ρ→ ∞.
Example (c). The two-component charged Bose gas with Hamiltonian

HN =

N∑

i=1

−∆i +
∑

1≤i<j≤N

qiqj
|xi − xj |

.

This time the Hilbert space is H =
⊗N

L2(R3) We study the energy optimized
over the charges qi = ±1:

E(N) = inf{inf specHHN | qi = ±1}.
Bogolubov theory gives the energy asymptotics in the limit N → ∞.

In case (b) the energy asymptotics based on the Bogolubov approximation was
suggested by Foldy [3] and proved rigorously in [5, 7]. The result is

e(ρ) =
45/4Γ(3/4)

5π1/4Γ(5/4)
ρ5/4 + o(ρ5/4)

as ρ→ ∞.
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In case (c) the following result was conjectured by Dyson [2] and proved rigor-
ously in [6, 7]

lim
N→∞

N−7/5E(N) = inf

{∫

R3

|∇Φ|2− 45/4Γ(3/4)

5π1/4Γ(5/4)

∫

R3

Φ5/2

∣∣∣∣ 0 ≤ Φ,

∫

R3

Φ2 = 1

}
.

For the dilute gas in Example (a) the situation is more complicated. Recently,
in joint work with Lieb the method in [5, 6, 7] has been extended to prove the
asymptotics

e(ρ) = 4πρ2a

(
1 +

128

15
√
π

√
ρa3 + o(

√
ρa3)

)

under the assumption that V (x) = R−3v(x/R) and (ρa3)1/2 ≪ a/R < (ρa3)1/3−ε

for some small, but fixed, positive ε. In particular, this includes the case when
R ≪ ρ−1/3 which implies, of course, that the gas is low density in the sense that
particles rarely ”see” each other. The opposite is true if R ≫ ρ−1/3.

In the case when V is a cut-off Yukawa potential the asymptotics above has
been announced by Giuliani and Seiringer in the narrow range (ρa3)1/2 ≪ a/R <
(ρa3)1/2−ε. It is believed that the asymptotic formula originally derived in [4]
should hold for all (ρa3)1/2 ≪ a/R.
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Feynman-Kac representation of the Bose gas and spatial random
permutations

Daniel Ueltschi

Let Λ ⊂ Rd be a cube of size L and volume V = Ld, and let N ∈ N. The state
space of the model of spatial permutations is

(1) ΩΛ,N = ΛN × SN ,
with SN the symmetric group of permutations of N elements. We are interested
in the properties of permutations, and all our random variables are functions
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θ : SN → R. Their probability distributions depend on spatial variables in an
indirect but essential way. Let ℓi(π) denote the length of the cycle that contains
i, i.e. the smallest integer n ≥ 1 such that πn(i) = i. The most important random
variable is the density of points in cycles of certain lengths. For n, n′ ∈ N, let

(2) ̺n,n′(π) =
1

V
#

{
i = 1, . . . , N : n ≤ ℓi(π) ≤ n′}.

The expectation of the random variable θ is defined by

(3) EΛ,N (θ) =
1

Z(Λ, N)N !

∫

ΛN

dx
∑

π∈SN

θ(π) e−H(x,π) .

Here, the normalization factor Z(Λ, N) is chosen so that EΛ,N (1) = 1. The integral
is over N points in Λ, denoted x = (x1, . . . , xN ).

We consider Hamiltonians of the form

(4) H(x, π) =
N∑

i=1

ξ(xi − xπ(i)) +
∑

1≤i<j≤N
V (xi, xπ(i), xj , xπ(j)),

with ξ a spherically symmetric function Rd → [0,∞], and V a translation invariant
function R

4d → R. We also suppose that ξ is increasing and that ξ(0) = 0. One
should think of typical permutations as involving finite jumps, i.e. |xi−xπ(i)| stays
bounded as Λ, N → ∞.

The major question concerns the occurrence of infinite cycles. It turns out that
the distribution of cycles can be well characterized in the absence of interactions,
with the potential V ≡ 0. We need a few hypotheses on ξ, namely that

∫
e−ξ = 1,

and that e−ξ has positive Fourier transform, which we denote e−ε(k) . The case
of physical relevance is ξ(x) = 1

4β |x|2 with β the inverse temperature, in which

case ε(k) = 4π2β|k|2.
We define the critical density by

(5) ρc =

∫

Rd

dk

eε(k) − 1
.

The critical density is finite for d ≥ 3, but it can be infinite for d = 1, 2.

THEOREM [Sütő 2002; Betz, U 2008]
Let ξ satisfy the assumptions above. Then for any 0 < a < b < 1, and any

s ≥ 0,

(a) lim
V→∞

EΛ,ρV (̺1,V a) =

{
ρ if ρ ≤ ρc;

ρc if ρ ≥ ρc;

(b) lim
V→∞

EΛ,ρV (̺V a,V b) = 0;

(c) lim
V→∞

EΛ,ρV (̺V b,sV ) =






0 if ρ ≤ ρc;

s if 0 ≤ s ≤ ρ− ρc;

ρ− ρc if 0 ≤ ρ− ρc ≤ s.
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This theorem shows that infinite cycles occur above the critical density, and
that they are macroscopic. The proof can be found in [1]. It extends an earlier
result of Sütő for the ideal Bose gas [2].

Two-body interactions between quantum particles translate into many-body
interactions for permutations. But we can perform an expansion and see that, to
lowest order, we obtain a two-body interaction between permutation jumps. A
computation reveals that the interaction between jumps x 7→ y and x′ 7→ y′ is
given by

(6) V (x, y, x′, y′) =

∫ [
1 − e−

1
4

R

4β
0

U(ω(s))ds
]
dŴ 4β

x−x′,y−y′(ω).

See [3]. The model of spatial permutations is simpler than the Feynman-Kac
representation of the Bose gas, and is therefore better suited to Monte-Carlo sim-
ulations. It is expected, but not proved, that this model is exactly related to the
original quantum boson model, to lowest order in the scattering length a.
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