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Introduction by the Organisers

The principal aim of stochastic geometry is the mathematical analysis of random
geometric structures. Fundamental examples of such structures are point processes
of geometric objects, random tessellations of space into convex or non-convex
regions, random systems of non-overlapping balls (or more general convex bodies),
or excursion and level sets of Gaussian random fields. The workshop was devoted
to the discussion and exploration of recent advances in stochastic geometry and
its related areas. Among the 23 participants were many leading figures in the field
as well as some very promising young scientists.

One main theme of the workshop concerned new results and methodology in
classical stochastic geometry. In recent years it has become possible not only
to make conclusions about mean values of geometric quantities, but also to de-
rive distributional properties, to prove limit theorems and large deviation results,
and to explore higher-order moment properties. Examples include: Hug, Reitzner
(approximation of polytopes), Calka (visibility properties of the Boolean model),
Schreiber (polygonal Markov fields), Penrose (normal approximation in random
geometric graphs), Yukich (limit theorems), Reitzner (random tessellations), Bac-
celli (point processes and information theory).
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A second main theme of the workshop concerned allocation and matching proce-
dures for point processes and random measures. The study of such allocations has
resulted in some remarkable progress in the understanding of invariance proper-
ties of Palm probability measures and associated transport and coupling questions.
There are deep and striking relationships with random tessellations, classical op-
timal transport theory, potential theory, and complex analysis. Examples include:
Peres (fair allocations, optimal matchings, gravitational allocation, . . . ), Sturm
(optimal transportation of measures on metric spaces), Thorisson (transport ker-
nels and mass-stationarity), Last (Cox and Bernoulli transports).

Three series of lectures formed the organizational backbone of the workshop.
They were delivered by Matthias Reitzner on “Recent results in stochastic geom-
etry”, by Yuval Peres on “Fair allocations” and by Theo Sturm on “New trends
in optimal transportation on Riemannian and singular spaces”. Many of the con-
tributed talks were related to one or more issues covered by these lectures. Another
integral part of the programme was provided by three discussion sessions “Proba-
bility models with geometric flavour” organized by Jesper Møller and Sergei Zouev,
“Asymptotics in stochastic geometry” organized by Peter Mörters and Mathew
Penrose, and “From convex to metric and fractal geometry” organized by Martina
Zähle and Wolfgang Weil. These sessions provided space for participants to bring
up new ideas and discuss open problems in an informal manner.

Many participants of the workshop co-authored a collection of papers “New
Perspectives in Stochastic Geometry” edited by W.S. Kendall and I. Molchanov
that will be published by the Oxford University Press in 2009.
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Abstracts

A Palm Theory Approach to Capacity and Error Exponents in

Information Theory

François Baccelli

(joint work with Venkat Anantharam)

Let µn be a sequence of stationary ergodic marked point processes. We assume
that for all n, µn is a simple point process in Rn. Let λn denote the intensity of
the point process µn. We denote by {T nk } the points of µn. The mark of the point
T nk is a pair (Xn

k , C
n
k ), where Xn

k is an vector in Rn and Cnk is a measurable subset
of Rn. The countable collection of sets {Cnk } is assumed to form a decomposition
of Rn. We call Xn

k the displacement vector associated to the point T nk and Cnk the
decoding region associated to the point T nk .

Each point T nk of µn may be thought of as a codeword. When this codeword
is transmitted, the channel adds to it the displacement vector Xn

k , so that the
received signal is T nk + Xn

k . We would want the received signal to land in the
correct decoding region. With this interpretation, we define the probability of
error as

(1) pe(n) = lim
W→∞

∑
k 11Tk

n∈B(0,W )11Tn
k

+Xn
k
/∈Cn

k∑
k 11Tk

n∈B(0,W )

,

with Bn(x, r) the ball with center x and radius r in the n-dimensional Euclidean
space Rn. The probability of success is defined as ps(n) = 1 − pe(n). The limit
in (1) exists almost surely from the assumption that the marked point process µn

with marks (Xn
k , C

n
k ) is stationary and ergodic.

Let P0
n denote the Palm probability of µn. The pointwise ergodic theorem

implies that

(2) pe(n) = P0
n (Xn

0 /∈ Cn0 ) .

Gaussian Case.

Capacity. Let us restrict attention to the case where the displacement vectors are
independent of the points, each displacement vector being Gaussian with i.i.d.
coordinates having mean zero and variance σ2 and with the displacement vectors
being i.i.d. from point to point. Further, Cnk is the Voronoi cell of T nk in the point
configuration µn. Write λn as enRn . Then we can prove:

Theorem 1 For any subsequence nk → ∞ such that lim infk→∞Rnk
> 1

2 ln 1
2πeσ2 ,

we have limk→∞ pe(nk) = 1. �

Further, we can prove:
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Theorem 2 Let µn be a Poisson process of intensity λn = enRn. For any subse-
quence nk → ∞, if lim supk→∞Rnk

< 1
2 ln 1

2πeσ2 , we have limk→∞ pe(nk) = 0. �

Together these theorems are the analog of the Shannon–Poltyrev capacity the-
orem for stationary ergodic point process in the case of Gaussian noise.

Error Exponent. We have the following representation for the probability of suc-
cess in this Gaussian case:

(3) ps(n) =

∫

r≥0

∫

~v∈Sn−1

P0
n(µ

n(B(r~v, r)) = 0)
gσn(r)

An−1
d~vdr ,

with Sn−1(r) the sphere of radius r in Rn centered at the origin, An−1 the area of
Sn−1(1) and

gσn(r) = 1r>0e
− r2

2σ2
1

2n/2
rn−1

σn
2

Γ(n/2)
.

Using this formula for Poisson and Mattérn point processes, we were able to recover
the Poltyrev error exponent [4].

Additive noise capacity of a stationary point process. Starting with point
processes µn of rate λn = enRn in Rn, with the displacement vectors independent
of the points, each displacement vector having i.i.d. coordinates having some den-
sity with differential entropy h, the displacement vectors being i.i.d. from point
to point, we can prove the following:

Theorem 3 For any subsequence nk → ∞ such that lim infk→∞Rnk
+ h > 0,

and any choice Cnk for the points T nk of the process (that are subsets of Rn jointly
stationary with the points and the displacements, forming a decomposition of Rn),
we have limk→∞ pe(nk) = 1. �

Further, we can prove:

Theorem 4 Let µn be a Poisson process of intensity λn = enRn. For any subse-
quence nk → ∞, if lim supk→∞Rnk

+ h < 0, it is possible to choose Cnk for the
points T nk of the process (that are subsets of Rn jointly stationary with the points
and the displacements, forming a decomposition of Rn), such that limk→∞ pe(nk) =
0. �

Together these results give a kind of capacity theorem for stationary point
process perturbed by additive noise. This result is closely related to the concept
of information theoretic sphere packing coined by Loeliger [3].

Suggestions for further work. The viewpoint described here suggests an ap-
proach to attack the gap between the best currently known upper and lower bounds
on the error exponent of the AWGN channel. For instance by considering se-
quences of stationary point processes µn in Rn with intensity λn = enR for fixed
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R = − 1
2 ln 2πeα2σ2, with α ≥ 1, specifically those having a repulsive structure

between the points. This research program appears to offer a novel viewpoint to
attack a classical problem in information theory.
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Maximal visibility in a Boolean model

Pierre Calka

(joint work with Julien Michel, Sylvain Porret-Blanc)

Let X be a homogeneous Poisson point process of intensity one. For a fixed
distribution µ charging [R∗, R∗] ⊂ (0,+∞), we consider a collection of i.i.d. µ-
distributed variables Rx, x ∈ X. We then construct the associated Boolean model
[4] whose occupied phase is O =

⋃
x∈X

Bd(x,Rx), where Bd(x, r) denotes the ball
centered at x and of radius r > 0. Moreover, the process is conditioned on the
event A = {O 6∈ O}.

We aim at studying the maximal visibility V of an observer placed at the origin
O, i.e. the length of the largest segment emanating from the origin and contained
in the unoccupied phase. We show that an explicit calculation of the distribution
of V and precise tail estimates can be obtained in dimension two. These results
can be extended to some extent in two directions: in dimension two when the disks
are replaced by a rotation-invariant random convex body and in dimension three
with deterministic balls.

In [5] G. Polya introduced the question of the visibility in a forest such that
identical trees (discs with constant radius R) are situated at all but one point of
the regular square lattice. He showed that in order to see in a fixed direction at
a distance r the radius R should be (asymptotically when r is large) taken as 1/r
(see also [3]). Very recently, I. Benjamini, J. Jonasson, O. Schramm & J. Tykesson
[1] have considered the problem of maximal visibility in the hyperbolic disk. In
particular, they have obtained a critical intensity for the almost-sure visibility
to infinity. Such a behaviour will not occur in the two and three-dimensional
Euclidean spaces.

Let us restrict to the two-dimensional case. Our key result is the connection
between the distribution function of the maximal visibility V and a covering prob-
ability of the circle. Indeed, let P (ν, n) be the probability of covering the circle
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with perimeter one by the union of n independent identically distributed random
arcs with uniformly distributed centres and with lengths distributed according to
the probability distribution ν. We have

P{V ≥ r} = e−π(2rR+r2)
∑

n≥0

(π(2rR + r2))n

n!
(1 − P (νr, n))

where νr is the probability measure

νr(du) =
πr

rR + r2

2

1[0, 1π arctan R
r ](u)



r sin(2πu) +
sin(πu)(R2 + r2 cos(2πu))√

R2 − r2 sin2(πu)



du

+
πR2

rR + r2

2

1[ 1
π

arctan(R
r ), 12 ]

(u)
cos(πu)

sin3(πu)
du.

In particular, an explicit formula for P (νr, n) has been provided by A. F. Siegel
and L. Holst [6].

In order to get lower and upper bounds for the probability P{V ≥ r}, it seems
natural to try to replace the covering probability P (νr, n) with a more elementary
one. As a matter of fact, it can be shown in the same spirit as in [2] that for
any probability distributions ν1 and ν2 on [0, 1] satisfying ν1 ≤cv ν2 (where ≤cv
denotes the convex order), we have P (ν1, n) ≤ P (ν2, n). In particular, denoting
by mr the mean of νr, we can compare νr with δmr

and
(
(1 − 2mr)δ0 + 2mrδ1/2

)
.

Consequently, for r large enough, there exist two positive constants C1 and C2

such that

P{V ≥ r} ≥ C1r exp(−πmr(2E (R)r + r2))

and

P{V ≥ r} ≤ C2r
2 exp(−πmr(2E (R)r + r2)).

Moreover, we have

lim
r→+∞

1

r
log P{V ≥ r} = −2E (R)

where R is distributed according to µ.
In a more general setting, let K be a random convex body which is rotation-

invariant. When the balls of the Boolean model are replaced by i.i.d. copies of K,
it can be shown that the maximal visibility V satisfies

lim
r→+∞

1

r
log P{V ≥ r} = −E (b(K))

where b(K) denotes the mean width of K.
Other minor results concern the distribution of V conditionally on the distance

from the origin to the first obstacle and asymptotic results in the three-dimensional
case with deterministic balls. Some of the open problems related to our work are
the following:

• What can be said about the visibility in one particular direction or the
maximal visibility when the obstacles of the Boolean model absorb only
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a fraction of the “light”, which will be proportional to the length of the
portion of the ray inside the obstacle?

• The set T of all points which are visible from the origin is finite almost
surely and the first moment of its area can be easily calculated. The
distributions of the radii of the largest disk centered at the origin included
in T (spherical contact distribution) and of the smallest disk centered
at the origin and containing T (maximal visibility) are known. Can the
boundary of T be described in more details?

• The question of maximal visibility can also be considered in other random
media, such as bicolored random tessellations.
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[3] Janković, V. (1996). Solution of one problem of G. Pólya. Mat. Vesnik 48, 47–50.
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From Palm Theory to Mass-Transport-Principles

Daniel Gentner

(joint work with Günter Last)

By mass-transport-principles we mean mass-conservation laws in expectation for
certain random transports between certain random measures. To motivate such
principles we start with the purely deterministic special case. Take a set S and
imagine some mass being distributed over the points of S. By transport we simply
mean a map m : S × S → [0,∞] with the interpretation that m(s, t) denotes the
mass being transported from s to t. This gets interesting if we consider some group
G operating on S and require that m fulfills the invariance condition

m(gs, gt) = m(s, t), g ∈ G, s, t ∈ S.

As a concrete example consider Z2 operating on itself via translation and a map
m : Z2 ×Z2 → [0,∞] that fulfills the invariance condition m(g+ s, g+ t) = m(s, t)
for all g, s, t ∈ Z2. Then one may easily verify that the total mass transported out
of some fixed b ∈ Z2 equals the total mass being transported into some possibly
different b′ ∈ Z2, that is we have

∑

s∈Z2

m(b, s) =
∑

s∈Z2

m(s, b′).
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A similar, but different equation arises for non-transitive operations. For instance
consider SO(2) operating naturally on R2. Denoting Haar measure on SO(2) by
λ the corresponding equation for any two representatives b and b′ of orbits under
this operation is

∫
m(b, ϕ(b′))λ(dϕ) =

∫
m(ϕ(b), b′)λ(dϕ) which may be written as

∫
m(b, s)µb′(ds) =

∫
m(s, b′)µb(ds)

using the push-forwards µs := λ ◦ π−1
s of the Haar measure under the projections

πs : G → S, πs(g) = gs. The topological structure of the operating group turns
out to play a crucial role for such balance equations. Consider for instance the
ξ-grandfather graph ξ(T3) of the regular 3-tree T3 with respect to some fixed end
ξ of T3 (this example is taken from [5]):

ξ

x

xξ
ξ(x)

This graph is constructed starting from T3 by inserting for each vertex x of T3

an edge connecting x and the second vertex (which we call the ξ-grandfather of x
and denote by ξ(x)) on the unique ray in ξ starting in x. Denote the vertex set of
ξ(T3) by V .

One easily verifies that any graph automorphism ϕ of ξ(T3) leaves ξ fixed and
hence that the transport m(s, t) := 1{t = ξ(s)} is Aut(ξ(T3))-invariant. Here∑

s∈V m(b, s) is the number of ξ-grandfathers of b, which is 1, while
∑
s∈V m(s, b)

is the number of ξ-grandchildren of b, which is 4. It turns out that the modular
function of the operating group (here Aut(ξ(T3))) is the right tool to rescue a
mass-conservation principle: We have

∑

s∈V
m(b, s)∆(ϕ−1

b,s ) =
∑

s∈V
m(s, b′), b, b′ ∈ V,

where for s, t ∈ V ϕs,t is an element of Aut(ξ(T3)) with the property that ϕs,t(s) =
t. This version of a deterministic MTP finds applications in percolation theory, see
[1]. A more general deterministic situation is to consider two G-invariant measures
µ, ν on S and to transfer the modular function from G to S × S by use of some
function k > 0 on S satisfying µsk < ∞, s ∈ S, (such functions exist if and only
if the operation of G on S is proper in the sense that the pushforwards µs, s ∈ S,
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are uniformly σ-finite) by setting ∆k(s, t) = µtk
µsk

. Then we have
∫∫

m(s, t)∆k(s, t)1B(s)ν(ds)µ(dt) =

∫∫
m(s, t)1B(t)ν(ds)µ(dt).(1)

for any B ∈ S satisfying the following symmetry condition with respect to k:

µsB

µsk
=
µtB

µtk
, s, t ∈ S.

This condition is crucial for the mass-conversation (1) to hold and means that the
set B consists of constant k-weighted proportions from each orbit. Note that k
may be chosen identically 1 iff G is compact. This equation contains all previous
examples as special cases and points the way to the following generalization from
G-invariant deterministic measures to jointly G-stationary random measures ξ and
η and random G-invariant transports m : Ω × S × S → [0,∞] in expectation (a
G-stationary random measure is a random measure ξ whose distribution is a G-
invariant measure on the space of all measures on S, i.e. fulfills P(ξ ∈ gA) = P(ξ ∈
A) for all measurable subsets A of the space of all measures on S and g ∈ G.) :

E

∫∫
m(idΩ, s, t)∆k(s, t)1B(s)η(ds)ξ(dt) = E

∫∫
m(idΩ, s, t)1B(t)η(ds)ξ(dt),

(2)

where B satisfies the same symmetry condition as above. Proving this requires
an advanced Palm theoretical machinery for G-stationary random measures under
arbitrary (possibly non-transitive and non-unimodular) group operations which is
developed in [2] and relies heavily on results of Olav Kallenberg in [3]. (Classical
Palm theory focusing exclusively on the (transitive) case of groups operating on
themselves via left-translation and random measures on such groups does not
suffice.)

Here is a brief sketch: For a random measure ξ on some measurable space
(S,S) the expected value of integrals with respect to ξ of random functions is of
interest, i.e. expressions of the form E

∫
f(idΩ, s)ξ(ds) =: Cξf where f is an

arbitrary measurable function on Ω × S. The induced measure Cξ on Ω × S is
called the Campbell measure of ξ and any invariant desintegration (ν,Q) from S
to Ω (i.e. ν is an invariant supporting measure of ξ and Q an invariant kernel from
S to Ω such that Cξ = ν ⊗ Q) is called invariant Palm pair of ξ. Now consider
some group G operating measurably on S. Results of Olav Kallenberg (see [3])
justify the following convenient model of G-stationarity: Replace the underlying
probability space by a σ-finite measure space (Ω,A,P), let G also operate on Ω,
assume P to be G-invariant and adapt G-stationary random elements τ in some
space (E, E) (on which G operates) to the operation on Ω by replacing them by
versions satisfying τ(gω) = gτ(ω), g ∈ G,ω ∈ Ω. In particular this means a G-
stationary random measure can be represented by a G-covariant version satisfying
ξ(gω,A) = ξ(ω, g−1A) for g ∈ G,ω ∈ Ω and A ∈ S. In this setting the following
special case of a strong generalization of Neveus classical exchange formula (see
[6] for the classical version) to the case of general G-covariant random measures ξ
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and η on a space S (see [2]) leads to a short proof of (2). Namely if (νξ, Qξ) and
(νη, Qη) are invariant Palm pairs of ξ and η respectively then

∫
EQη,b

∫
m(θe, b, s)∆

∗(s)ξ(ds)ν∗η (db) =

∫
EQξ,b

∫
m(θe, s, b)η(ds)ν

∗
ξ (db),

where, fixing any measurable system of representatives O of the orbits in S,
∆∗(s) := ∆(g−1

s ), gs such that gsRep(s) = s and for a G-invariant measure ν
on S the measure ν∗ denotes the unique measure concentrated on O satisfying
ν =

∫
µb(·)ν∗(db).

We hope for manifold applications of (2). A first quickly derived application of
it deals with Voronoi tesselations of isotropic point processes in Rd. Here we have
for any SO(d)-invariant set A and a set B containing constant proportions from
each orbit the following result for the expected volume of V (B), the union of all
Voronoi cells induced by the isotropic point process with centers in B:

E [λd(A ∩ V (B))] = λd(A ∩B).
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Random polytopes: geometric aspects

Daniel Hug

(joint work with Károly J. Böröczky, Ferenc Fodor, Lars Hoffmann)

The theory of random polytopes has been subject to a dramatic development
in the last decade. Various classical results concerning the convergence of mean
values have been generalized for instance to sharp estimates of higher moments,
thus leading to central limit theorems. Moreover, several results which were only
available in the plane and under strong smoothness and curvature assumptions
are understood much better now. This progress is due to new techniques coming
from probability and also to new geometric arguments. Here we mainly describe
progress on the geometric side. In particular, geometric duality arguments in
combination with integralgeometric transformations are applied for the study of
random polyhedral sets.
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1. Random polytopes

Let K ⊂ Rd be a convex body (compact convex set with nonempty interior).
In K we choose random points x1, . . . , xn independently and according to the
uniform distribution. The convex hull K(n) of these random points is a random
polytope in K. As the number n of points increases, at least on the average
the random polytope K(n) will provide an increasingly better approximation of
K. The degree of approximation can be measured by comparing, for suitable
geometric functionals F of convex bodies, F (K) and the expected value EF (K(n))
of F (K(n)). An appropriate class of functionals is provided by the intrinsic volumes
Vi, i = 0, . . . , d, which can be defined via the Steiner formula

Vd(K + λBd) =

d∑

i=0

λd−iκd−iVi(K), λ ≥ 0,

where Vd is the volume functional, Bd is the d-dimensional unit ball Bd, and κd is
its volume. Also note that W = 2κd−1/(dκd)V1 is the mean width functional and
Vd−1 is proportional to the surface area.

Bounds for the mean volume deficit, due to Bárány and Larman [1], are

c · lnd−1 n

n
≤ E

(
Vd(K) − Vd(K(n))

)
≤ C · n− 2

d+1

with positive constants c, C. A general asymptotic result is

(1) lim
n→∞

(
n

Vd(K)

) 2
d+1

E
(
Vd(K) − Vd(K(n))

)
= cd

∫

∂K

κ(x)
1

d+1 Hd−1(dx),

where ∂K is the boundary ofK, κ(x) is the generalized Gauss-Kronecker curvature
(defined for almost all boundary points), Hd−1 is the (d−1)-dimensional Hausdorff
measure, and cd is an explicitly known constant. This result is stated in [8] and
generalized substantially in [3], where a new approach is developed.

Theorem 1 ([3]). For a convex body K in Rd, a probability density function ̺
on K, and an integrable function λ : K → R such that, on a neighborhood of ∂K
relative to K, λ and ̺ are continuous and ̺ is positive,

(2) lim
n→∞

n
2

d+1 E ̺,K

∫

K\K(n)

λ(x) dx = cd

∫

∂K

̺(x)
−2

d+1λ(x)κ(x)
1

d+1 Hd−1(dx)

where K(n) is the convex hull of random points chosen according to the density ̺
(E ̺,K indicates this dependence on ̺,K).

Observe that (1) is recovered by choosing constant functions λ, ̺. Let f0(P ) denote
the number of vertices of a polytope P . Applying an argument due to Efron, we
obtain the following consequence.

Corollary 2 ([3]). For a convex body K in Rd, and for a probability density
function ̺ on K which is continuous and positive in a neighborhood of ∂K relative
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to K,

lim
n→∞

n− d−1
d+1 E ̺,K(f0(K(n))) = cd

∫

∂K

̺(x)
d−1
d+1 κ(x)

1
d+1 Hd−1(dx).

The case of uniform random points is well known.
For the other intrinsic volumes, results similar to (1) have been obtained by

Bárány [2] and Reitzner [7] under additional smoothness and curvature assump-
tions. In the special case of the mean width, these assumptions are relaxed in
[5]. Generalizing the concepts of a Macbeath region and a convolution body and
introducing some new approximation arguments, an extension of the result in [5]
to all intrinsic volumes is achieved in [4].

Theorem 3 ([4]). Let K ⊂ Rd be a convex body in which a ball rolls freely, and
let j ∈ {1, . . . , d− 1}. Then

lim
n→∞

(
n

V (K)

) 2
d+1

E
(
Vj(K) − Vj(K(n))

)
= cd,j

∫

∂K

σd−1(x)
1

d+1σd−j(x)Hd−1(dx)

where cd,j is a constant and σd−j(x) is the normalized elementary symmetric func-
tion of order d− j of the principal curvatures of K at x ∈ ∂K.

For j = 1 (mean width), an extension of Theorem 3 including a suitable weight
function can be proved. This turns out to be useful for the study of random
polyhedral sets.

2. Random polyhedral sets

Polytopes can be defined as (bounded) intersections of halfspaces. This remark
leads to random polyhedral sets which provide an alternative model of a random
polytope (if bounded). More specifically, given a convex body K, we consider
n random hyperplanes H1, . . . , Hn which intersect K1 := K + Bd, but not the
interior of K. The intersection of the closed halfspaces, bounded by the given
hyperplanes and containing K, is a random polyhedral set K(n). The distribution
of the random hyperplanes is defined by restricting the motion invariant Haar
measure on the space of hyperplanes to the hyperplanes hitting K1, but not the
interior of K; see [6] for recent related work.

The following asymptotic result for the mean width is established in [3]. The
proof is based on duality arguments and on an application of Theorem 1.

Theorem 4 ([3]). Let K be a convex body in Rd and ωd := dκd. Then

lim
n→∞

n
2

d+1 E (W (K(n) ∩K1) −W (K)) = 2 cd ωd
− d−1

d+1

∫

∂K

κ(x)
d

d+1 Hd−1(dx).

The intersection with K1 can be avoided if on restricts the expectation to bounded
realizations of K(n) (as n → ∞, unbounded realizations become increasingly un-
likely).

An analogue of Corollary 2 for the number of facets fd−1(P ) of a polyhedral
set P is available.
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Theorem 5 ([3]). If K is a convex body in Rd, then

lim
n→∞

n−d−1
d+1 E (fd−1(K

(n))) = cd ω
−d−1

d+1

d

∫

∂K

κ(x)
d

d+1 Hd−1(dx).

The preceding two theorems have been proved more generally for random polyhe-
dral sets which are derived from not necessarily uniform hyperplane distributions.

3. Polarity

For a convex body K ⊂ Rd with o ∈ int(K), let K∗ denote the polar body
of K. With a suitable choice of a density ̺ (concentrated on K∗), the random
polyhedral sets K(n) and (K∗

(n))
∗ are equal in distribution, where K∗

(n) is defined

in terms of ̺. This connection can be exploited to show that the limit in Theorem
4 is an integral over ∂K∗ involving the Gaussian curvature κ∗ of K∗. Then one
has to transform this curvature integral into one over ∂K, involving the Gaussian
curvature κ of K. This is accomplished by the following result. A major difficulty
is the lack of any smoothness assumptions on K.

Proposition 6 ([3]). Let K ⊂ Rd be a convex body with o ∈ int(K). Let f :

[0,∞)×Sd−1 → [0,∞) be measurable and f̃(x) := f
(
‖x‖−1, ‖x‖−1x

)
for x ∈ ∂K∗.

Then

∫

∂K∗

f̃(x)
κ∗(x)

1
d+1

‖x‖−1
Hd−1(dx) =

∫

∂K

f(h(K,σK(x)), σK (x))κ(x)
d

d+1 Hd−1(dx).

An analogue of Theorem 4 for the volume functional can be established by duality
methods. Here the assumption that K is a summand of a ball seems to be needed.

References

[1] I. Bárány, D. G. Larman, Convex bodies, economic cap coverings, random polytopes, Math-
ematika, 35 (1988), 274–291.

[2] I. Bárány, Random polytopes in smooth convex bodies, Mathematika, 39 (1992), 81–92.
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Networks and Poisson line patterns: fluctuation asymptotics

Wilfrid Kendall

(joint work with David Aldous)

In [1] it was shown how to construct networks connecting arbitrary configurations
xn of n cities in a square of area n which for example (i) involve only εn more total
network length than the Euclidean Steiner tree connecting all n cities, and yet (ii)
establish a network connection length between two randomly chosen cities which
is on average only O(log n) more than average Euclidean connection length [1,
Theorem 3, version (b)]. Moreover, under a certain quantitative equidistribution
condition on the city locations xn (which can be phrased either analytically or in
terms of a truncated Wasserstein coupling between a randomly chosen city and the
uniform distribution on the square), a complementary result shows that for O(n)
total connection length the average network connection length must have an excess
over the average Euclidean connection length of at least Ω(

√
logn) [1, Theorem

5]. The methods of proof involve stochastic geometry: in the case of the lower
bound [1, Theorem 5] the idea is to associate the uniform choice of two cities with
approximately uniform random lines, and then to use simple ideas from stereology.
In the case of the upper bound [1, Theorem 3] one augments the Euclidean Steiner
tree by a sparse Poisson line process, to obtain good long-distance communication,
and adds an additional relatively infinitesimal amount of additional connectivity,
to ensure efficient passage from Steiner tree to line process network.

The key calculation for [1, Theorem 3] concerns construction of an augmented
Poisson line network connecting two planar points at (−n

2 , 0) and (n2 , 0). Let Cn
be the cell containing the two planar points formed by the tessellation Π∗

n of all
lines from a unit intensity Poisson line process Π which do not separate (−n

2 , 0)
from (n2 , 0). We can consider connecting (−n

2 , 0) to (n2 , 0) as in the figure, by first
proceeding from (−n

2 , 0) towards (−∞, 0) until the perimeter ∂Cn is met, then
proceeding around ∂Cn either clockwise or anti-clockwise (according to taste),
until encountering the ray from (n, 0) to (∞, 0), then finally proceeding back to
(n2 , 0) along this ray.
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Line process properties and Palm distribution theory are used in [1] to express
the mean length of the perimeter ∂Cn as a double integral: analysis shows that
this is asymptotic to 2n+ 8

3 (logn+ γ+ 5
3 ) + o(1) (this agrees with similar higher-

dimensional results in [2, Theorem 1.3], also compare [6, Satz 5]). The result
provides an asymptotic upper bound for the mean network length between (−n

2 , 0)
and (n2 , 0) in the network formed by augmenting Π by two Exponential(1) random
segments required to connect (−n

2 , 0) and (n2 , 0) to Π as above.
This augmented Poisson line network has an intrinsic interest, and various nat-

ural questions arise. For example, how far will the clockwise path following ∂Cn
deviate laterally from the Euclidean path running directly from (−n

2 , 0) to (n2 , 0)?
and where will the maximum lateral deviation occur? How much random vari-
ation in the length of the path should one expect to see? To what extent will
the true network geodesic deviate from one of the two paths running clockwise or
anti-clockwise around the cell?

The question of vertical deviation is best addressed by using the methods used to
evaluate the mean length of ∂Cn. Almost surely a point (x, y) of ∂Cn of maximal
y-coordinate must be an intersection of two lines of Π∗

n, for which one line has
positive and the other has negative slope, and for which no further lines of Π∗

n

separate (x, y) from (−n
2 , 0) and (n2 , 0). Almost surely there is exactly one such

point, and Palm distribution arguments then show that its probability density is
as follows, for −∞ < x <∞ and y > 0:

(1)
1

4
(sinα+ sinβ − sin(α+ β))×

× exp
(
− 1

2

(√
(x − n

2 )2 + y2 +
√

(x+ n
2 )2 + y2 − n

))
dxdy .

Here α β ∈ (0, π) are the interior angles at (−n
2 , 0), and (n2 , 0) of the triangle

formed by (x, y), (−n
2 , 0), and (n2 , 0). Using new coordinates u = 2

nx and v =

y/
√
n, it follows that the limiting density for large n in (u, v) coordinates is given

by

(2)
v3

(1 − u2)2
exp

(
− v2

1 − u2

)
dudv .

Hence asymptotically the point of maximal y-coordinate has x-coordinate dis-
tributed uniformly over (−n

2 ,
n
2 ), and has y-coordinate which has conditional dis-

tribution the length of a Gaussian 4-vector of zero mean and variance parameter
n
2 (1 − 4x2

n2 ).
Questions of random variation can be addressed by reformulating the problem

in terms of a simple growth process. Slightly abusing notation, let Π∗
∞ be the

tessellation obtained from the Poisson line process by deleting all lines intersecting
the positive x-axis. Construct the cell C∞ containing the origin formed by Π∗

∞,
and consider the path from the origin to (∞, 0) formed as above, and proceeding
clockwise round the cell. The y-coordinate of this path grows to infinity, and we can
understand the asymptotic random variation of the length of ∂Cn by investigating
the stochastic dynamics of this growth.



2672 Oberwolfach Report 47/2008

Let the path be parametrized by τ , the excess of arc-length S over x-coordinate
X . Let Θ be the angle that the path makes with the positive x-axis, so that
Θ0 = π and Θ decreases with increasing τ . Poisson line process computations
show that in τ -time the angle Θ changes at instants of a Poisson point process of
intensity 1

2 ; moreover the jump in angle Θ − Θ− is such that

(3) P [Θ− − Θ ≤ φ | Θ−] =
1 − cosφ

1 − cosΘ−
for 0 ≤ φ ≤ Θ− .

Using Rebolledo’s martingale central limit theorem [5] for a compensated version
of − logΘ as a function of excess τ , and applying dτ = (sec Θ − 1)dX , we may
obtain asymptotic expressions using Brownian motion B. Omitting analytical
details which actually require careful attention, the argument runs as follows,

(4) Xτ ≈ 2

∫ τ

0

exp
(

3
2u−

√
7Bu

)
du .

This leads to the existence of a field of Brownian motions {B̃τu : u ≥ 0} (related to
B by time-reversal) parametrized by τ and such that the excess τ at x-coordinate
X satisfies

(5) τ ≈ 2
3

(
logXτ +

√
7Bτ − log 2 − log

∫ ∞

0

exp
(
− 3

2u+
√

7B̃τu

)
du

)
.

Hence it follows that the mean excess of τ at distance x is asymptotically 2
3 log x

(in fact suggesting yet another approach to the asymptotics of [1]) and the excess
has random variation of order O(

√
log x) when X = x, agreeing with simulations.

Note that the integral
∫ ∞
0

exp
(
− 3

2u+
√

7B̃τu

)
du is of Dufresne type, hence is

proportional to the reciprocal of a Gamma random variable [4, 7]; see also [3].
However approximation errors will be of the same order as the contribution of this
term.

A fully rigorous argument, with applications to the behaviour of true geodesics
in the augmented network (the third of the questions mentioned above), will be
published elsewhere.
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Bernoulli and Cox transports of stationary random measures

Günter Last

(joint work with Hermann Thorisson)

Let ξ be a random measure on a locally compact Abelian group G and X a
random element which G acts on, for instance a random field indexed by G. The
pair (X, ξ) is mass-stationary if the origin is a typical location for (X, ξ) in the
mass of ξ. This concept was introduced in [2] as an extension to random measures
of point-stationarity, which in turn was introduced in [3] for simple point processes
in Rd having a point at the origin. Point-stationarity formalizes the intuitive idea
that the point at the origin is a typical point of the point process In [3] and [1] it
was shown that point-stationarity is an intrinsic characterization of Palm versions
of stationary point processes, and the same is proved in [2] for mass-stationarity
and random measures. In this talk we discuss further characterizations of mass-
stationarity based on Bernoulli and Cox randomizations.

An allocation τ is a map taking each location s ∈ G to another location τ(s) ∈ G
depending on ξ(· − s), and τ is preserving if the image of ξ under τ is ξ itself. An
allocation τ is a matching if τ is its own inverse. The term ‘Bernoulli transport’
refers to a randomized allocation that allows staying at a location s with a proba-
bility p(s) depending on ξ(· −s), and otherwise chooses another location according
to a (non-randomized) allocation. This makes it possible to preserve discrete point-
masses even if there are point-masses of different sizes. Our first result shows that
mass-stationarity of discrete random measures can be reduced to distributional
invariance under shifts of the origin by preserving Bernoulli transports.

A Cox process ζ is a Poisson process with a random intensity measure ξ. Such
a process can be thought of as a collection of points scattered independently over
the space G according to the mass distribution of ξ, so these points are at typical
locations in the mass of ξ. Thus if ξ is mass-stationary and we add a point at the
origin to the Cox process to obtain ζ0 := ζ + δ0, then also the points of ζ0 are at
typical locations in the mass of ξ. In fact, one might expect that the new point at
the origin is a typical point of ζ0, in other words that ζ0 is point-stationary, and
even that the pair (ξ, ζ0) is point-stationary. Actually, one might expect that the
pair (ξ, ζ0) is point-stationary if and only if ξ is mass-stationary. We show that this
is indeed the case. The term ‘Cox transport’ refers to applying allocations for point
processes to general random measures through the Cox process. In particular,
mass-stationarity of ξ then reduces to point-stationarity with respect to ζ0. Also,
it follows that mass-stationarity is characterized by applying preserving Bernoulli
transports to the Cox process. In the special case of a diffuse random measures
mass-stationarity is characterized by applying matchings to the Cox process.

The application of an allocation to the Cox process ζ0 can also be interpreted as
a transport kernel redistributing the mass of ξ in an invariant way. We show that
the distribution of a mass-stationary ξ is invariant under such kernels. Whether
or not this property is even characteristic for mass-stationarity is an interesting
open problem.
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Probability models with geometric flavour

Jesper Møller

There is a lack of models in stochastic geometry with interaction and tractable
likelihoods. We discuss some exceptions and open problems.

First, a germ-grain model with interaction is presented. The model is viewed
as the result of a spatio-temporal process of growing germs, with constant speed
along all rays, and where the germs are started to grow at different times after a
certain dependent thinning of a primary Poisson point process has happened. The
likelihood has a closed form expression and maximum likelihood estimates may
easily be derived.

Second, a flexible model for points along linear structures is presented, consid-
ering again a spatio-temporal construction of independent primary Poisson point
processes, which results in secondary point processes for ”independent” and ”de-
pendent” cluster points. Here a simulation-based Bayesian analysis is feasible.

A class of random measures and their fractal geometry

Peter Mörters

We show that a wide class of random measures have very similar fractal geometry
and argue that this can be traced back to their similar local hitting, scaling and
conditioning behaviour. This is a contribution to, and significant extension of, an
exciting research programme initiated by Kallenberg in [4].

Typical random measures Ξ belonging to our class are

• occupation measures of stable subordinators with stability index 0 < α < 1
• states of a Dawson-Watanabe superprocesses in Rd, d ≥ 2,
• intersection local times of two Brownian paths in Rd, d = 2, 3.

Very roughly, with some modification in the critical cases d = 2, the following
basic common properties of these examples can be identified:

• The local hitting properties are related to the local intensity, i.e. for some
scaling index α > 0 we have,

εα P{ΞBε(x) > 0} ∼ EΞ(Bε(x)).
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• Given that Ξ charges a small ball B, its neighbourhood looks like a trans-
lation of the Palm distribution P0 associated with a stationary version of
the process.

• Given that Ξ charges two balls with distance of larger order than their
size, the behaviour of Ξ inside these balls is (up to constant factors) con-
ditionally independent.

• Local self-similarity holds with scaling index α,

Ξ(r ·) ≈ rαΞ( · ) under P0.

• There is a finite annular lacunarity index ξ such that

P0{Ξ(B1 \Br) = 0} ≈ rξ as r ↓ 0.

The indices associated with our examples are the stability index α and ξ = 2α in
the case of stable subordinators; α = 2, ξ = 4 for the superprocess example; and
in the intersection example α = 2, ξ = 35

12 if d = 2, α = 1, 1 < ξ < 2 unknown if
d = 3. The lacunarity index in the planar case of the intersection example goes
back to the seminal work of Lawler, Schramm and Werner.

Coming to the fractal geometry, in all our examples, the measure Ξ can be ap-
proximated by the Lebesgue measure on ε-neighbourhoods of the support. More
precisely, let

S(ε) =
{
x ∈ Rd : Ξ(Bε(x)) > 0

}
.

Then, at least in probability, as ε ↓ 0,

φ(ε) Leb
(
· ∩S(ε)

)
−→ Ξ

for a suitable function of the form φ(ε) = εα−d L(ε), where L is a slowly varying
correction required in the critical cases. See [6] for the subordinators, [8] for
intersections, and [5] for the superprocess case. In the subordinator case the result
was probably known to the pioneers of local time, like Paul Lévy, as early as
the 1940s.

All our examples have an interesting multifractal spectrum that does not conform
to the classical multifractal spectrum of statistical physics. While

lim inf
r↓0

log Ξ(Br(x))

log r
= α for all x ∈ S,

we have variations of the limsup behaviour. For every α ≤ a ≤ ξα
ξ−α ,

dim
{
x ∈ S : lim sup

r↓0

log Ξ(Br(x))

log r
= a

}
= α− ξ +

ξα

a
.

This is shown in [3] for subordinators, [13] for superprocesses and [7] for intersec-
tions. Note that the latter paper includes intersections of Brownian paths in the
critical dimension d = 2, but the critical case for superprocesses is still open.
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An average density, as introduced by Bedford and Fisher [1], can be defined in the
non-critical cases as

lim
ε↓0

1

log(1/ε)

∫ 1

ε

Ξ(Br(x))

rα
dr

r
= D2 for Ξ-almost every x.

In the critical cases this order-two average diverges, but an order-three average

lim
ε↓0

1

log log(1/ε)

∫ 1/e

ε

Ξ(Br(x))

rαL(r)

dr

r log(1/r)
= D3 exists for Ξ-almost every x.

See [2] for subordinators, [10] for intersections and [12] for superprocesses.

Finally, and only in the non-critical cases, we have an integral test for the packing
measures of the support S,

Pψ(S) =

{
0
∞ iff

∫

0+

r−1−ξψ(r)
ξ
α dr

{
<∞,
= ∞.

See [14] for subordinators, [9] for superprocesses, and [11] for intersections.

At this moment, proofs rely on specific features of the examples, in particular on
the Markov property. It is an interesting challenge for the future to provide proofs
that follow directly from the hitting, scaling and conditioning properties of the
random measures, and to add further examples of different flavour.
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Multivariate probability and geometry

Ilya Molchanov

The talk highlights some relationships between distributions of random vectors on
one side and convex and star-shaped sets on the other one. In particular, it aims
to relate the cumulative distribution function and the characteristic function of a
random vector ξ to some functions that are common in convex geometry, namely
the support function defined as

hK(u) = sup{〈u, x〉 : x ∈ K} , u ∈ Rd ,

for a bounded set K and the Minkowski functional

‖u‖F = inf{s ≥ 0 : u ∈ sF}
defined for a star-shaped set F . If F is also convex, then ‖ · ‖F defines a norm on
Rd. In this case, ‖u‖F = hK(u), where F and K are polar to each other.

It will be seen that possible candidates for sets K and F stem from expectations
of random sets. Recall that the expectation of a random convex compact set X is
defined by

EhX(u) = hEX(u) for all u ∈ Rd ,

see [1]. Its Lp-variant EpX comes from [E(hX(u))p]
1/p

= hEpX(u) with p ∈ [1,∞).
A zonoid Z is an expectation of a random segment, correspondingly an Lp-

zonoid is the Lp-expectation. Up to a translation, the random segment can be
chosen to be centred or have one end-point at the origin. For instance, if X = [0, ξ],
then

hZ(u) = Emax(0, 〈u, ξ〉) = E(〈u, ξ〉)+.
It is known that this zonoid does not determine uniquely the distribution of ξ, see
[5]. The distribution of ξ ∈ Rd is determined uniquely by the lift zonoid defined
in the space Rd+1 with the support function

hẐξ
(u0, u) = E(u0 + 〈u, ξ〉)+ , u0 ∈ R , u ∈ Rd .

This support function admits an obvious financial interpretation as the basket
option price, where the extra added coordinate represents the bond. For d = 1
one obtains the classical call and put options.

Symmetry properties of financial options form an important financial topic. In
particular, the central symmetry property of lift zonoids translates into the call-
put parity. The planar symmetries of lift zonoids is equivalent to the put-call
symmetry, i.e. the symmetry of the function

f(u0, u1, . . . , ud) = E(u0 + u1ξ1 + · · · + udξd)+



2678 Oberwolfach Report 47/2008

with respect to permutations of its arguments, see [4]. This property is stronger
than the exchangeability of the coordinates of ξ. For instance, in the log-normal
case it holds if and only if log ξ has the covariance matrix

Σ = σ2




1 1
2 · · · 1

2
1
2 1 · · · 1

2
...

...
...

...
1
2

1
2 · · · 1




and the expectation µ = σ2(− 1
2 , . . . ,− 1

2 ).
Another relationship between multivariate probability distributions and stable

laws comes from the representation of strictly stable random vectors, namely those
which satisfy

a1/αξ1 ⊕ b1/αξ2
d
= (a+ b)1/αξ

for all a, b > 0, where ξ1 and ξ2 are iid copies of ξ. The operation ⊕ may be the
arithmetic sum or coordinatewise maximum or any other semigroup operation on
Rd. If the exponent α equals 1, ⊕ is the arithmetic addition and ξ is symmetric
(i.e. S1S law), then

φ(u) = Eei〈u,ξ〉 = e−hZ(u) ,

where Z is a zonoid. If the main operation is the coordinatewise maximum on Rd+,
then

P{ξ ≤ u} = e−hM(u−α) , u ∈ Rd+ ,

where the power of u is understood coordinatewisely and M is a max-zonoid,
i.e. the expectation of a random crosspolytope, see [3]. For general α ∈ (0, 2],
symmetric ξ and the arithmetic addition (SαS law),

(1) φ(u) = e−‖u‖α
F ,

where F is an Lα-ball, meaning that (Rd, ‖ · ‖F ) is isometrically embeddable in
Lα([0, 1]). If α ∈ [1, 2], then F is the polar set to Lα-zonoid Z, see [2]. If ξ is a
non-negative strictly stable vector with α ∈ (0, 1), then

Ee−
P

uiξi = e−hZ(uα) ,

where Z is the expectation of randomly rescaled ℓq-ball with q = 1/(1 − α), e.g.
expectation of an ellipsoid if α = 1

2 , see [2].
Representations of SαS-laws using star-shaped sets can be useful, for instance,

to identify sub-Gaussian laws as those corresponding to ellipsoids F . Among
others, this leads to a conclusion that a probability distribution on Rd is SαS if
and only if it can be approximated by sums of independent sub-Gaussian laws.

Furthermore, it is possible to use the representation (1) to calculate various
characteristics of multivariate SαS laws. For instance, the value of the density of
ξ at the origin is given by

f(0) =
1

(2π)d
Γ(1 +

d

α
)Vold(F ) ,
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and the moments of the norm of ξ are

E‖ξ‖λ =
2λ−1

πd/2
Γ(
d+ λ

2
)
Γ(1 − λ

α )

Γ(1 − λ
2 )

∫

Sd−1

‖u‖λFdu

for λ ∈ (−d, α). Furthermore, integrals of the density f over linear subspaces
are related to the volumes of intersection of F with the corresponding orthogonal
subspaces, that establishes links to the Busemann problem from convex geometry.

Among open problems one can mention geometric representation of not nec-
essarily symmetric and not totally skewed strictly stable laws. The geometric
representation of general infinitely divisible or self-decomposable distributions is
also open.
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Shapes, Projections, Proteins

Victor M. Panaretos

What can be said about an unknown density function on R3 given a finite collection
of two-dimensional marginals at random and unknown orientations?

This question arises in single particle electron microscopy, a powerful method
that biophysicists employ to learn about the structure of biological macromolecules.
The method images unconstrained particles -as opposed to particles fixed on a lat-
tice (crystallography)- and yields random profiles of the particle potential density
from unknown directions (see Glaeser [1]).

Let ρ : ∆ → [0,∞) be a centred and bounded probability density function
defined on a compact domain ∆ ⊂ R3. We define a random projection of ρ, Π{ρ},
as

(Π{ρ}(A))(x, y) :=

∫ +∞

−∞
Aρ(x, y, z)dz,

where Aρ(x) := ρ(ATx) and A is a random element of SO(3), distributed ac-
cording to Haar measure. Then, given a realisation of n independent copies of the
random field Π{ρ} – interpreted as a stochastic Radon transform– we ask what can
be inferred about the density ρ. Since the random rotations generating the projec-
tions are not observable, this problem is qualitatively different from the classical
problem of tomography, where inversion of a Radon transform crucially depends
on the observation of the projection orientations (e.g. Helgason [2]).
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The right invariance of Haar measure implies that ρ cannot be recovered, except
perhaps up to a rotation/reflection. However, it is seen that the shape of the
density [ρ] := {Aρ : A ∈ O(3)} is identifiable, i.e. uniquely determined by the law
of the random field Π{ρ}: we can potentially statistically invert this stochastic
Radon transform without observing the corresponding projection angles. The
random shape of the field Π{ρ} is seen to be a sufficient statistic for the infinite
dimensional parameter [ρ], suggesting that statistical inference should be modular
both in terms of the parameter as well as in terms of the sample space.

An explicit statistical inversion is then carried out in the case when ρ can be
finitely expanded in a radial basis, exploiting the interface with Kendall’s Eu-
clidean shape theory (Kendall et al. [3]; Kendall & Le [4]), via the framework
introduced in Panaretos [5, 6]. The radial basis expansion allows for a finite-
dimensional representation of the shapes [ρ] and [Π{ρ}] through a global coordi-
nate system induced by the Gram matrix of the centres of the basis functions,
and the expansion coefficients. A direct connection between the mean projected
shape and the original shape is established using these Euclidean coordinates, and
a consistent Method of Moments / Maximum Likelihood hybrid estimator is con-
structed and studied. The ill-posedness of the inversion problem manifests itself
through a delicate deconvolution step required in the inversion procedure. More
details can be found in Panaretos [7].

Radial basis densities are especially appropriate as coarse approximations to
biological particles. Such “low-resolution” approximations can be used as ini-
tial estimates of the potential density corresponding to the unknown particle, in
order to initialise an iterative procedure which at each step estimates the projec-
tion angles given the current model , and then updates the model via traditional
tomographic techniques. Obtaining these coarse approximations is a challenging
problem in practice. The results described can potentially be of practical use in the
construction of objective data-dependent initial models for particle reconstruction.
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Normal approximation in geometrical and combinatorial probability

Mathew D. Penrose

(joint work with Larry Goldstein)

Let B1, . . . , Bn be interpenetrating unit balls, independently uniformly ran-
domly scattered in a cube Cn of volume n in d-space (with periodic boundary
conditions). Define the variables

Vn := Volume (∪ni=1Bi) ,

Sn :=

n∑

i=1

1 {Bi ∩ (∪j 6=iBj) = ∅} .

Thus Vn is the total volume covered by the balls, and Sn is the number of isolated
balls. Alternatively, Sn may be thought of as the number of singletons in a random
geometric graph on n uniform vertices in Cn with distance parameter 2. Such
coverage processes and random geometric graphs are fundamental objects of study
in stochastic geometry; see [3, 5, 8].

Let θ denote the volume of the unit ball in Rd. It is easy to see that as n→ ∞,

EVn ∼ n(1 − e−θ); ESn ∼ ne−2dθ,

and it is also straightforward to show that there are constants c1, c2 such that

Var(Vn) ∼ c1n; Var(Sn) ∼ c2n,

and to give formulae for c1 and c2. It is not so clear from the formulae for c1 and
c2 that their values are non-zero for all d and all choices of radius (our choice of
unit radius was arbitrary).

Let Z ∼ N(0, 1) be a standard normal random variable, and let =⇒ denote
convergence in distribution. Let SD(·) denote standard deviation. In the ther-
modynamic limit of n → ∞ (with the radii of the balls fixed at 1), we have the
following central limit theorems:

(Vn − EVn)/SD(Vn) =⇒ Z;(1)

(Sn − ESn)/SD(Sn) =⇒ Z.(2)

The first result (1) is due to Moran [4], and both results, and also the proof that
c1 and c2 are strictly positive (an issue apparently not addressed in [4]) can be
obtained via general results of Penrose and Yukich [7].

It is natural to ask about the rate of normal approximation in (1) and (2).
Let dK denote the Kolmogorov distance between probability distributions, i.e.
dK(F,G) = supt∈R

|F (t) − G(t)|. In the work described in this talk, we provide
explicit Berry-Esséen type error bounds which show that (writing dK(X,Y ) for
dK(FX , FY )) as n→ ∞ we have

dK ((Vn − EVn)/SD(Vn), Z) = O(n−1/2);(3)

dK ((Sn − ESn)/SD(Sn), Z) = O(n−1/2).(4)
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Since Sn is integer valued, it is not hard to show that there is a lower bound
on the Kolmogorov distance to the normal with the same rate of decay in the case
of Sn, i.e., that we can change the right hand side of (4) to Θ(n−1/2). The same
ought to be true in the case of (3) but we do not have a proof of this.

Chatterjee [1] obtains similar bounds to (3) and (4) for the Kantorovich-Wasser-
stein (rather than the Kolmogorov) distance between probability distributions (but
also states that new ideas are needed for Kolmogorov distance bounds). In the
Poissonized case with a Poisson point process of unit intensity on Cn, rather than
exactly n points as considered here, the Kolmogorov distance bounds correspond-
ing to (3) and (4) were already known (see [6] and references therein). However, it
is not clear that the proof of error bounds in the Poissonized setting, using spatial
independence properties of the Poisson process, is of any use in deriving (3) and
(4).

Our proof uses the idea of size biasing. For a nonnegative random variable Y
with distribution F and finite mean µ, the size biased distribution of Y is defined
to be the distribution F̃ with dF̃ (x) = xdF (x)/µ, x ≥ 0. We prove (3) and (4)
using a result of Goldstein [2] which says, loosely speaking, that if one can closely
couple a random variable (in this case Vn or Sn) to another variable with the
size-biased distribution of the original variable, then one may be able to obtain a
good bound on its Kolmogorov distance from the normal.
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Lectures on fair allocations

Yuval Peres

(joint work with several coauthors)

In the first lecture we deal with the “extra head” problem. Our starting point
is the beautiful “extra head” result of Thorisson that, in particular, shows one can
shift a Poisson process to obtain its Palm version. Determining explicit “extra
head” rules is equivalent to finding fair allocations, i.e. shift-invariant partitions
of space into cells of equal volume, matched to the points of the process. This has
been called a stable marriage of Poisson and Lebesgue. The Gale-Shapley stable
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marriage algorithm suggests how to do this. The lecture is based on joint work [4]
with A. Holroyd, motivated also by earlier work of Liggett.

In the second lecture we discuss estimates for the stable allocation, and Krikun’s
connected allocation in the plane. Maxim Krikun found a beautiful allocation of
Lebesgue measure to a Poisson process by combining the minimal spanning forest,
stable allocation ideas and the Riemann mapping theorem. But does Krikun’s
method yield bounded cells? The tail estimates we discuss are based on works [2]
with Hoffman, Holroyd, Pemantle and the late Oded Schramm.

The topic of the third lecture are gravitational allocation to Poisson points.
Motivated by an idea of Sodin and Tsirelson, we partition space into domains of
attraction for Newtonian gravity. The expression for the total gravity force con-
verges in dimensions 3 and higher, as discovered by Chandrasekar (1942). The
equal volume property of the partition follows from properties of Newtonian po-
tentials and a surprising identity obtained by changing the order of summation.
Ideas from dependent percolation allow a bound on the diameters of the cells. The
lecture is based on joint work [3] with S. Chatterjee, R. Peled and D. Romik.
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Lévy bases and Cox processes

Michaela Prokešová

(joint work with Eva B. Vedel Jensen, Gunnar Hellmund)

In the talk we discuss the notion of a Lévy basis and use this object to define
two new classes of spatial Cox point processes. In the paper [7] was introduced
and studied the notion of independently scattered and infinitely divisible random
measure, i.e. a collection of real-valued random variables L = {L(A), A ∈ A},
where A is the δ-ring of bounded Borel subsets of R ⊆ Rd, which have infinitely
divisible distributions and L(∪nAn) =

∑
n L(An) a.s. for every sequence {An} of

disjoint sets in A, provided ∪nAn ∈ A. Thus actually this object does not have to
be a random measure in that respect, that the equality holds a.s. for each sequence
of sets separately, but does not have to hold for all sequences simultaneously
a.s. A short terminology of the Lévy basis was introduced in [1, 2] where it was
succesfully used for turbulence modelling.

Even though Lévy bases does not have to be random measures (like e.g. nonato-
mic Gaussian random measures) they do include random measures in the strict
sense like e.g. Poisson random measures, mixed Poisson random measures as well
as so-called G−measures [3] and it is possible to define integration with respect to
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them [7]. Thus having in mind the construction of the shot noise Cox processes [5]
the second step in defining the driving intensity Λ(·) of the spatial Cox process
should be a kernel smoothing of the Lévy basis

Λ(ξ) =

∫
k(ξ, η)L(dη), ξ ∈W ⊂ Rd,

where k is a kernel (weight) function. By this operation we “smooth out” the
possibly purely atomic Lévy basis to get the driving field Λ and also introduce
spatial dependencies in Λ which were not present in the Lévy basis L. By this we
arrive at the definition of the Lévy driven Cox processes – i.e. Cox processes with
the random driving intensity function defined by an integral of a weight function
with respect to a Lévy basis, which were introduced in [4].

Using the Lévy-Khintchine representation of the characteristic function of the
Lévy basis it is possible to derive close formulas for product densities of the Lévy
driven Cox process which depend only on this characterization and the kernel func-
tion k. This kind of representation also allows effective introduction of different
forms of inhomogeneities into the model producing point patterns with different
geometrical properties.

The second “Lévy based” Cox process model is obtained by defining the driving
intensity as the exponential of a kernel smoothing of a Lévy basis (now allowing
for non-positive weight functions and non-positive Lévy bases). Such processes
were called log Lévy driven Cox processes in [4] and (under regularity conditions)
their driving field is of the form Λ = Λ1Λ2, where Λ1 and Λ2 are independent, Λ1

is a log Gaussian field and Λ2 is a log shot noise field. When Λ2 = 1 we get the
well known log Gaussian Cox processes [6], when Λ1 = 1 we get the log shot noise
Cox processes. Here too, we are able to derive close formulas for the n-th order
product densities of the point processes.

What is still an open question is the development of the statistical inference for
the (log) Lévy driven Cox processes. Of course when having the closed formulas
for product densities we can use moment methods for parameter estimation, but
it remains to investigate to what degree the known procedures for other classes of
Cox processes, based on summary statistics, likelihood or Bayesian reasoning, can
be adjusted to deal with the Lévy driven Cox processes.

Further interesting question would be the extension of the Lévy driven Cox
process models to spatio-temporal setting.
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[2] O.E. Barndorff-Nielsen, J. Schmiegel, Lévy based tempo-spatial modelling; with applications

to turbulence, Uspekhi mat. Nauk 59 (2004), 63–90.
[3] A. Brix, Generalized gamma measures and shot-noise Cox processes, Adv. Appl. Prob. 31

(1999), 929–953.
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Random Polytopes and Random Polyhedra

Matthias Reitzner

Assume X1, . . . , Xn is a random sample of n iid points chosen according to some
distribution in Rd. The random polytope Pn is the convex hull of these points:
Pn = [X1, . . . , Xn]. In the first two lectures we are interested in the f -vector of Pn,
where f(Pn) = (f0(Pn), . . . fd−1(Pn)), and fℓ(Pn) is the number of ℓ–dimensional
faces of Pn, and further in the volume Vd(Pn). Most results concern random points
chosen either uniformly in a convex body or according to the Gaussian distribu-
tion. In the third lecture we are interested in Poisson hyperplane tessellations and
Poisson Voronoi mosaics. Particular interest is in distributional results concerning
the number of faces and the intrinsic volumes of the zero cell and the typical cell
of the mosaic. For recent surveys see [2], and [15].

1. Geometric probabilities: an introduction to random polytopes

Choose the random points X1, . . . , Xn according to the uniform distribution in
a given convex set K. The expectation of the f -vector was investigated in a series
of papers (see e.g. [1], [3], [13]). If K is a smooth convex body (with bound-
ary of differentiability class C2 and positive Gaussian curvature), then Ef(Pn) =
cd Ω(K)n(d−1)/(d+1)(1+o(1)) as n→ ∞ where cd is a constant vector. Here Ω(K)
denotes the affine surface area of the convex body K. If K is a polytope, then
Ef (Pn) = cd T (K) lnd−1 n(1 + o(1)). Here T (K) denotes the number of chains
F0 ⊂ F1 ⊂ · · · ⊂ Fd−1 of i–dimensional faces Fi of K.

Of high interest is the question to determine the extremal convex sets minimiz-
ing or maximizing the mean values mentioned above. In particular it would be of
interest to prove that among all convex sets the simplex is an extremal body for
Ef0(Pn) which is known only for d = 2. Interest in this question stems from its
connection to the hyperplane conjecture and the isotropic constant of a convex set
K (see [10]). Related recent research [9] asks for uniform bounds for the isotropic
constants of random polytopes.

2. Distributional aspects of random polytopes

The last years have seen several new results on the asymptotic distribution of
the random variables Vd(Pn) and fs(Pn), see [12], [17], and [4]. If K is either
smooth or a polytope, then the random variables Vd(Pn) and fℓ(Pn) satisfy a
central limit theorem.

Recently, large deviation inequalities have been proved in important cases, see
[16] and [5]. If K is smooth, then for Zn = f0(Pn) and Zn = Vd(Pn)

P

(∣∣∣Zn−EZn√
VarZn

∣∣∣ ≥ t
)
≤ 2e−ct

2

+ e−cn
d−1
3d+5

,



2686 Oberwolfach Report 47/2008

for t2 ≤ n
(d−1)(d+3)
(d+1)(3d+5) . If K is a polytope, similar slightly weaker results have been

proved in [16] and [11]. All these results follow from large deviation inequalities
for general convex sets.

An interesting new direction of research, with important applications coming
from linear error correcting codes, concerns Gaussian polytopes where the points
X1, . . . , Xn are chosen according to the Gaussian distribution. In particular the
connection between Gaussian polytopes and projections of high dimendional sim-
plices and cross-polytopes turns out to be of importance, see [6] and [7].

3. Random polyhedra and random mosaics

A Poisson hyperplane process in Rd tessellates space into bounded convex
polytopes, the cells of the Poisson hyperplane tessellations. Of interest are the
number of faces and the volume of the zero cell Z0 and the typical cell Z. As
for the zero cell it was proved in [14] that EVd(Z0) = 2−dd!λ−dVd(ΠoB) and
Ef0(Z0) = 2−dd!Vd(ΠB)Vd(Π

oB). The question to determine Efℓ(Z0) for ℓ ≥ 1
seems to be open. Large deviation inequalities for Vd(Z0) follow from the solution
of Kendall’s conjecture: ‘Given V2(Z0) is large, show that the shape of Z0 is close
to a circle’. This problem was settled in large generality in [8].

As for Poisson Voronoi mosaics the mean values EVd(Z) and Ef0(Z) for the
typical cell are known, but results for the zero cell seem to be missing at all.
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Polygonal Markov fields in the plane: graphical constructions and

geometry of higher order correlations

Tomasz Schreiber

Polygonal Markov fields, originally introduced and studied by Arak, Clifford &
Surgailis [1, 2, 3, 4], are random ensembles of non-intersecting polygonal contours
in the plane, interacting by hard-core exclusions, with a variety of additional pos-
sible terms entering the Hamiltonian, including length and area elements. In our
talk we discuss recent developments in this area. We argue that the polygonal
fields share a number of essential features with the two-dimensional Ising model,
prominent examples including the presence of an Ising-like phase transition [8, 9]
as well as low temperature phase separation and Wulff droplet creation [10]. For
these reasons, the polygonal Markov fields are sometimes regarded as continuum
counterparts of the Ising (and Potts) model. We mention that in many aspects the
polygonal fields are exactly tractable, especially in the so-called consistent regime
falling into the supercritical temperature region. In particular, at the consistency
point we know the exact value of the partition function as well as the first and sec-
ond order characteristics of the field (T.Arak & D.Surgailis, P.Clifford). Further,
we discuss a number of new results about the higher order correlations, including
certain exact formulae [11] and martingale (random walk) representations (TS’08,
not yet published). Another striking feature of polygonal Markov fields is that they
admit a number of particularly convenient algorithmic constructions – graphical
representations [2, 3, 9, 10, 11] which are in fact the main tool for establishing of
the afore-mentioned results. The geometric ingredient in these considerations is
so predominant that in many cases no supplementary calculations are needed.

The class of graphical constructions we developed for polygonal fields have also
found their applications in Bayesian image processing (joint work with M.N.M.
van Lieshout and R. Kluszczynski) where we used them to generate image seg-
mentations [5, 6, 7, 12]. Experimenting with various black-white and grayscale
images we already obtained promising results, further algorithms are a subject of
our ongoing research in progress.
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Asymptotics of scan statistics and complete spatial randomness

Evgeny Spodarev

(joint work with Pavel Grabarnik, Zakhar Kabluchko)

Let {ξ(t), t ≥ 0} be a Lévy process. A Lévy noise Z is an independently
scattered homogeneous random Lévy measure on Rd, i.e., a stochastic process
{Z(R), R ∈ B(Rd)}, indexed by the collection B(Rd) of Borel sets in Rd, such that

(a) Z(R) has the same distribution as ξ(|R|), where |R| is the Lebesgue mea-
sure of a Borel set R.

(b) If R1, . . . , Rn are disjoint Borel subsets of Rd then Z(R1), . . . ,Z(Rn) are
independent and Z(∪ni=1Ri) =

∑n
i=1 Z(Ri).

Assume that

EZ(R) = µ|R|, VarZ(R) = σ2|R|, R ∈ B(Rd)

for some µ ∈ R and σ2 > 0. A natural problem is how to detect inhomogeneities,
e.g. locations of unusually large mass of the observed random measure. To this
end, consider the scan statistic Tn of Z defined as

Tn = sup
R∈R(n)

Z(R),

where R(n) is the collection of all cubes contained in [0, n]d (confer [2] for more
details on scan statistics).
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In this talk, we partially report about the recent results of [3] that the limiting
behaviour of Tn depends on the sign of µ in the following way:

Theorem 1. Let {Z(R), R ∈ B(Rd)} be a Lévy noise defined above.

(i) If µ > 0 then the distribution of σ−1n−d/2
(
supR∈R(n) Z(R) − ndµ

)
con-

verges as n→ ∞ to the standard normal distribution.
(ii) If µ = 0 then the distribution of σ−1n−d/2 supR∈R(n) Z(R) converges as

n → ∞ to the distribution of supR∈R(1) W(R), where W is the Brownian

sheet on [0, 1]d.
(iii) If µ < 0 and under additional assumptions on the distribution of ξ(1) it

holds
lim
n→∞

P[ sup
R∈R(n)

Z(R) ≤ un(τ)] = exp{−e−τ}

for the proper choice of the constant un(τ); see [3] for more details.

To prove the non-trivial part (iii) of the above Theorem, we use the method of
double sums introduced by Pickands e.g. in [4].

Since the scan statistic is designed to detect unusual clusters, it can not be
successfully used e.g. to test the complete spatial randomness hypothesis (CSR).
This hypothesis states that Z is a spatially homogeneous Poisson counting mea-
sure. More generally, we would like to test a hypothesis

H0 : observed random measure Z = Z0 vs. H1 : Z 6= Z0,

where Z0 is a particular Lévy noise.
Assume that Z and Z0 are non–negative measures. Let Z be observed within

cubic scanning windows Rx = x + [0, r]d ⊂ [0, n]d of a fixed size r > 0 that are
located at lattice points x ∈ λZd ∩ [0, n]d. Here λ > 0 is the resolution of the
lattice. Let Xi = Z(Rxi

), i = 1, . . . ,m be the available observations of Z. In
order to construct a test statistic for H0 which uses the information of all scans
(and not only of the maximal ones), form order statistics X(i) out of the above
scans and consider their Lorenz curve

 i

m
,

i∑

j=1

X(j)/

m∑

j=1

Xj


 , i = 0, . . . ,m.

Its continuous counterpart is the curve

u, 1

µrd

u∫

o

F−1
ξ (v) dv


 , u ∈ [0, 1],

where F−1
ξ is the quantile function of the distribution of Z([0, r]d) = ξ(rd) and

µ > 0. Take the area under the theoretical Lorenz curve and its empirical coun-
terpart:

Sr =
1

µrd

1∫

o

u∫

o

F−1
ξ (v) dv du, Ŝr =

m∑

i=0

i∑

j=1

X(j)/

m∑

j=1

Xj
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and consider the statistic Tr = 2Sr and T̂r = 2Ŝr for all 0 < r ≤ n, 0 ≤ Tr, T̂r ≤ 1.
It is known from simulation experiments that the test statistic

T =

r1∫

ro

(Tr − T̂r)
2 dr

performs very well testing the CSR hypothesis for the proper choice of constants
ro and r1. A matter of ongoing research is to study the asymptotical properties of

Ŝr and T as n→ ∞ and λ→ 0 which would allow the construction of asymptotical
tests of hypotheses H0 vs. H1.
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New Trends in Optimal Transportation on Riemannian and Singular

Spaces

Karl-Theodor Sturm

Lecture I: The Wasserstein Space of Probability Measures and its Rie-

mannian Structure. In this lecture, we discuss the geometric and Riemannian
structure of the space of probability measures on a metric (or Riemannian, resp.)
space. We begin with an introduction to the optimal transportation problems of
Monge and Kantorovich and then present basic results concerning topology and
geometry of the space of probability measures equipped with the L2-Wasserstein
distance.

The main results will be the representation results of Brenier and McCann
for the optimal transport maps in the Euclidean and Riemannian setting. As
a corollary, we deduce the Riemannian structure (tangent space, scalar product,
exponential map, equation for geodesics) on the Wasserstein space.

Calculating the Wasserstein gradient of the relative entropy (and related func-
tionals) will be an explicit application of these results.

Lecture II: Optimal Transportation, Gradient Flows and Functional In-

equalities. The main topics of the second lecture are Otto’s gradient flow aspect
for various PDEs and – as a consequence of it – the re-interpretation due to Otto
& Villani of functional inequalities like logarithmic Sobolev inequalities in terms
of differential inequalities on the Wasserstein space.



New Perspectives in Stochastic Geometry 2691

We sketch the proof for the fact that the heat equation is the gradient flow for
the entropy. Moreover, we discuss in detail convexity properties of the entropy and
related functionals under optimal transports. Applications to interacting particle
systems and their scaling limits will be presented.

In the Riemannian case, we point out the role of lower bounds for the Ricci
curvature in optimal transportation problems and indicate recent links between
optimal transportation and Ricci flow.

Lecture III: Ricci Bounds for Metric Measure Spaces. In the third lecture,
we present the concept of generalized lower Ricci curvature bounds for metric
measure spaces (M,d,m), introduced by Lott, Villani and the author. These
curvature bounds are defined in terms of optimal transportation, more precisely, in
terms of convexity properties of the relative entropy Ent(.|m) regarded as function
on the Wasserstein space of probability measures on the given space M . For
Riemannian manifolds, Curv(M,d,m) ≥ K if and only if RicM ≥ K on M .
Other important examples covered by this concept are Finsler manifolds.
One of the main results is that these lower curvature bounds are stable under (e.g.
measured Gromov-Hausdorff) convergence.

Moreover, we introduce a curvature-dimension condition CD(K,N) being more
restrictive than the curvature bound Curv(M,d,m) ≥ K. For Riemannian mani-
folds, CD(K,N) is equivalent to RicM (ξ, ξ) ≥ K · |ξ|2 and dim(M) ≤ N .
Condition CD(K,N) implies sharp version of the Brunn-Minkowski inequality, of
the Bishop-Gromov volume comparison theorem and of the Bonnet-Myers theo-
rem.
Extension of this curvature concept to discrete spaces and infinite dimensional
spaces will be indicated, e.g. for the Wiener space Curv(M,d,m) = 1.
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Balancing Transports for Random Measures: Stationarity and

Mass-Stationarity

Hermann Thorisson

(joint work with Günter Last)

Consider a locally compact Abelian group G, eg. G = Rd, acting on a sample space
Ω. Let λ denote the Haar measure on G and θs the shift of ω ∈ Ω by s ∈ G. A
random measure ξ on G is invariant if ξ(θs, s + ·) = ξ(θ0, ·), s ∈ G. A transport-
kernel is a Markovian kernel T that redistributes mass over G and depends on
both ω ∈ Ω and a location s ∈ G. The number T (ω, s,B) is the proportion of
mass transported from location s to the set B. The kernel T is invariant if it is
invariant under joint shifts of all three arguments. If ξ and η are random measures
such that ξT = η then T is (ξ, η)-balancing. In particular, if ξT = ξ then T is ξ-
preserving. Sometimes T can be reduced to an allocation τ (depending on ω ∈ Ω)
that maps each location s to a new location τ(s), T = δτ . In fact, we might think
of a transport-kernel T as the conditional distribution of a randomized allocation.

Liggett [4] presented the following surprising result. Consider a doubly-infinite
sequence of i.i.d. coin tosses. Move the origin to a head as follows. If there is a
head at the origin, stay there. If there is a tail at the origin, move to the right
counting heads and tails until you have more heads than tails. Then you are at a
head. If you ignore that head, the rest of the coin tosses turn out to be i.i.d. (so
you have found an extra head!). This procedure thus gives a shift-coupling of the
i.i.d. coin tosses and its Palm version: they are the same up to a shift of the origin.
Note that if Liggett’s rule is applied to all locations (not only the origin) then it
generates an invariant allocation τ , transporting counting measure on the integers
to the Bernoulli (1/2) random measure with intensity 1. Liggett also treated a
general Bernoulli parameter p and the Poisson process on the line.

Triggered by Liggett’s paper the case when G = Rd (or G = Zd), ξ is Lebesgue
measure, and η is a stationary ergodic point process of intensity 1, has received
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considerable attention in recent years; see [3] for references. In particular, Holroyd
and Peres [2] presented the following beautiful allocation of Lebesgue measure to
the Poisson process with intensity 1. Partition space by associating to each point
a region of exact size 1. For this purpose place a small ball around each point of
the Poisson process and expand the balls simultaneously until they reach size 1.
If a ball hits a region that has already been taken by another point, let it continue
to grow passively until it again finds space that has not yet been taken by another
point. In this way Rd is partitioned into (not necessarily connected, but bounded)
regions of size 1, each containing one point of the Poisson process. Now transport
each location to the point of its region. This reshapes Lebesgue measure into the
Poisson process in an invariant way. And if we shift the origin to the point of its
region, we obtain a shift-coupling of the stationary Poisson process and its Palm
version. Holroyd and Peres also treated the case when η is a stationary ergodic
point process.

Actually, an abstract shift-coupling result for groups due to Thorisson [5] al-
ready implied that shift-coupings exist in the above cases, see [6]. Last and Tho-
risson [3] use that result to prove the following theorem which gives a necessary
and sufficient condition for the existence of balancing invariant transport-kernels
in the positive finite intensity case:

Theorem 1. Let P be a stationary σ-finite measure on Ω, i.e. θs
d
= θ0, s ∈

G, under P. Let ξ and η be invariant random measures with positive and finite
intensities. Then there exists a P-a.e. (ξ, η)-balancing invariant transport-kernel
if and only if

∃B ∈ G, 0 < λ(B) <∞ : E P[ξ(B)|I] = E P[η(B)|I] P-a.e.

where I is the invariant σ-field.

Mass-stationarity w.r.t. a random measure ξ means, informally, that the origin
is a typical location in the mass of ξ, just like stationarity means that the origin is a
typical location in the space G. Mass-stationarity is an extension of the concept of
point-stationarity introduced in Thorisson [6] in the case of simple point processes
on Rd. (Think of the stationary Poisson process on the line with an extra point
at the origin: that point is a typical point because the intervals remain i.i.d.
exponential if we shift the origin to the nth point on the right, or to the nth on
the left.) The formal definition in that paper can be loosely phrased as follows:
a probability measure Q on Ω is point-stationary w.r.t. an invariant simple point-
process ξ if it is invariant under shifts induced by invariant ξ-preserving allocations
against any independent stationary background (the shifts were allowed to depend
not only on ξ but also on any independent stationary random field obtained by
extending the underlying probability space). The main result of [6] was that
point-stationarity is a characterizing property of Palm versions of stationary P.
The question whether the ‘independent stationary background’ could be removed
from the definition of point-stationarity inspired considerable research activity; see
[3] for references. Finally, Heveling and Last [1] showed that this can be done, that
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is, no external randomization is needed. In a subsequent paper they extended this
result to Abelian G.

It is natural to attempt to extend the above definition to random measures ξ by
demanding that the probability measure Q be invariant under shifts induced by
invariant preserving allocations. However, Last and Thorisson [3] show that here
external randomization would be needed if the property is to characterize Palm
versions of stationary P. One could allow external randomization in the definition
(i.e. add an independent stationary background, or apply transport-kernels rather
than only allocations), but it is still an open problem whether this would suffice.

Instead of using the above condition as a definition, Last and Thorisson [3]
use the following condition, which in the point process case was proved in [6]
to be equivalent to point-stationarity: say that a σ-finite measure Q on Ω is
mass-stationary w.r.t. an invariant random measure ξ if for all relatively compact
λ-continuity sets C ∈ G such that λ(C) > 0, it holds that

(θV , U + V )
d
= (θ0, U) under Q

where U and V are defined on an extension of Ω in such a way that U is uniformly
distributed (according to λ) on C and independent of θ0, and the conditional
distribution of V given (θ0, U) is ξ(·|C−U). In [3] it is shown that mass-stationarity
defined in this way is indeed an intrinsic characterization of Palm versions of
stationary P:

Theorem 2. There exists a σ-finite stationary measure P on Ω such that Q is the
Palm measure of P w.r.t. a random measure ξ iff Q is mass-stationary w.r.t. ξ.

Further, [3] shows that mass-stationarity is equivalent to distributional invari-
ance under shifts induced by certain kernels T that can be non-Markovian. As
mentioned above, the question whether this can be narrowed down to transport-
kernels is still an open problem. See Last’s contribution in this volume for further
characterizations of mass-stationarity.
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[5] Thorisson, H. (1996). Transforming random elements and shifting random fields. Annals
of Probability 24, 2057–2064.

[6] Thorisson, H. (1999). Point-stationarity in d dimensions and Palm theory. Bernoulli 5,
797–831.



New Perspectives in Stochastic Geometry 2695

Limit theory for convex hulls

Joseph E. Yukich

(joint work with Tomasz Schreiber)

We show in [5] that the random point measures induced by the vertices in the con-
vex hull of a Poisson sample on the unit ball, when properly scaled and centered,
converge to a mean zero Gaussian field. We establish limiting variance and covari-
ance asymptotics in terms of the density of the Poisson sample. Similar results
hold for the point measures induced by the maximal points in a Poisson sample.
The approach involves introducing a generalized spatial birth growth process al-
lowing for cell overlap, showing that the spatial birth growth process stabilizes,
and then appealing to general results on limit theorems for stabilizing functionals.

Let us now state our results more precisely. Recall that Bd denotes the unit
radius ball centered at the origin of Rd and let ∂Bd denote its boundary. Let
ρ : Bd → R+ be a continuous density on Bd. We shall assume that

ρ(x) = ρ0(x/|x|)(1 − |x|)δ(1 + o(1))

for some δ ≥ 0 and that ρ0 : ∂Bd → R+ is continuous and bounded away from 0.
Let Pλρ be a Poisson point process on Bd with intensity measure λρ(x)dx and let
µλρ be the random measure obtained by putting a unit point mass at each vertex
of the convex hull of Pλρ. Let µ̄λρ := µλρ − Eµλρ.

The results of Schreiber and Yukich [5] yield the following limit theory for the
random measures µλρ. Let N(0, 1) denote the standard normal random variable.
Let C(Bd) be the continuous functions on Bd and for each f ∈ C(Bd) let 〈f, µλρ〉
denote the integral of f with respect to µλρ.

Theorem 1. There are constants M := M(d, δ) and V := V (d, δ) such that for
all f ∈ C(Bd)

lim
λ→∞

λ−(d−1)/(d−1+2(1+δ))E [〈f, µλρ〉] = M

∫

∂Bd

f(s)ρ
(d−1)/(d−1+2(1+δ))
0 (s)ds

and

lim
λ→∞

λ−(d−1)/(d−1+2(1+δ))Var[〈f, µλρ〉] = V

∫

∂Bd

f2(s)ρ
(d−1)/(d−1+2(1+δ))
0 (s)ds.

Moreover, the finite-dimensional distributions

λ−(d−1)/2(d−1+2(1+δ))(〈f1, µ̄λρ〉, . . . , 〈fk, µ̄λρ〉),
fi ∈ C(Bd), of (λ−(d−1)/2(d−1+2(1+δ))µ̄λρ) converge as λ→ ∞ to those of a mean
zero Gaussian field with covariance kernel

(f, g) 7→ V

∫

∂Bd

f(s)g(s)ρ
(d−1)/(d−1+2(1+δ))
0 (s)ds, f, g ∈ C(Bd).

Additionally, if δ = 0, then for all f ∈ C(Bd)

sup
t

∣∣∣∣∣P
[

〈f, µ̄λρ〉√
Var〈f, µ̄λρ〉

≤ t

]
− P [N(0, 1) ≤ t]

∣∣∣∣∣ = O
(
λ−(d−1)/2(d+1)(logλ)3+2(d−1)

)
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Remarks. (i) Taking f1 ≡ 1 (and all other fi ≡ 0, i = 2, ..., k) provides a central
limit theorem for the cardinality of the number of vertices in the convex hull of
Pλρ.

(ii) Theorem 1 adds to the work of the following authors: (a) Groeneboom [2]
and Cabo and Groeneboom [1], who prove a central limit theorem for the cardinal-
ity of the number of vertices in the convex hull of Pλρ, when ρ is uniform and when
d = 2, (b) Reitzner [3] who considers the one dimensional central limit theorem
and who establishes a rate of convergence O(λ−(d−1)/2(d+1)(log λ)2+2/(d+1)) to the
normal for ρ uniform (whence δ = 0 in our setting), without giving asymptotics
for the limiting variance and covariance, and (c) Van Vu [4], who proves a central
limit theorem for the cardinality of the number of vertices of the convex hull of
{Xi}ni=1, Xi i.i.d. uniform, but who also does not consider limiting covariances.
Concerning rates, we believe that the power on the logarithm, namely 3 + 2(d− 1)
can be reduced to 2(d− 1) but we have not tried for this sharper rate.

References

[1] A. J. Cabo and P. Groeneboom, Limit theorems for functionals of convex hulls, Probab.
Theory Related Fields, 100, (1994), 31-55.

[2] P. Groeneboom, Limit theorems for convex hulls, Probab. Theory Related Fields, 79, (1988),
327-368.

[3] M. Reitzner, Central limit theorems for random polytopes, Probab. Th. Related Fields, 133,
(2005), 483-507.

[4] Van Vu, Central limit theorems for random polytopes in a smooth convex set, (2005).
Preprint.

[5] Tomasz Schreiber and J. E. Yukich Variance asymptotics and central limit theorems for
generalized growth processes with applications to convex hulls and maximal points, Annals
of Probability, (2008), 36, 363-396.

Global and local notions of curvatures for self-similar random sets

Martina Zähle

Self-similar random fractals were first considered independently by Falconer, Graf
and Mauldin /Williams in 1986/87. In the following period their multifractal mea-
sure and dimension properties have been studied extensively. In 2000 Gatzouras
[1] proved that they are Minkowski measurable, i.e., the rescaled volumes of small
tubular neighborhoods a.s. converge (in the average) to a limit, the so-called
Minkowski content.
In order to distinguish fractal sets with equal Hausdorff or Minkowski dimension,
but different geometric and topological features, curvature parameters appear to
be useful. Such properties have first been investigated by my student Winter [2]
for the case of deterministic self-similar sets with polyconvex neighborhoods. He
obtained limit results for rescaled curvature measures of parallel sets and extended
Gatzouras’ deterministic version for the Minkowski content. Moreover, he estab-
lished a formula for calculating the total values, which leads to numerical results
in concrete examples.
Under some additional geometric conditions, which are not restrictive in Rd with
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d ≤ 3, we generalize these results to Lipschitz-Killing curvatures Ck(F ) of stochas-
tically self-similar random sets F with Hausdorff dimension D and non-polyconvex
ε-neighborhoods F (ε). The following limits exist:

Ck(F ) := lim
δ→0

1

| ln δ|

∫ 1

δ

εD−k ECk(F (ε))
1

ε
dε

and

Ck(F ) := lim
δ→0

1

| ln δ|

∫ 1

δ

εD−kCk(F (ε))
1

ε
dε = X Ck(F ) a.s.

for a determined random variable X independent of k = 0, . . . , d. If the distribu-
tion of the logarithmic contraction ratios of the random similarities generating F
is non lattice, then averaging over ε→ 0 in the limits is not necessary ([3]).
Like in the case of the Minkowski content the classical renewal theorem for the
expectations and a renewal theorem for general random walks for a.s. convergence
play an essential role.
Using an associated dynamical system and Birkhoff’s ergodic theorem local ver-
sions of these results in terms of curvature densities can be proved. This suggests
the possibility of determining curvatures also for other classes of (random) fractals.
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Locally interacting sequential processes

Sergei Zuyev

(joint work with Ilya Molchanov)

Many observed in real life phenomena evolve sequentially when existing objects
(particles, organisms, etc.) create new objects (offspring) in a way depending on
their surroundings. Although suggested dynamics is locally defined, the overall
behaviour of the system depends on whether this local dependence propagate
through the whole system or stays localised. We consider the following theoretical
framework.

Given an initial configuration of particles in some space, such as the d-dimen-
sional Euclidean space, new particles are added sequentially according to the fol-
lowing construction rule. One particle is randomly chosen from the existing ones
and then a new particle is generated from a distribution which depends on the ge-
ometry of the chosen particle and its neighbours. More precisely, the distribution
of a new point depends on the stopping set related to the chosen particle and the
configuration. A stopping set is a random set generalising the classical notion of
a stopping time to spatial processes, see, e.g., [4] and [5]. Therefore, particles in
such a sequential process exhibit a certain local interaction, suggesting the name
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locally interacting sequential process. This model was motivated by an attempt to
model population density turned out to be a very rich model that can be used to
describe e.g. (1) fragmentation such as stellar fragments and meteoroids in Astro-
physics, fractures and earthquakes in Geophysics, crushing in the mining industry,
breaking of crystals in Crystallography, degradation of large polymer chains in
Chemistry, fission of atoms in Nuclear Physics, as well as fragmentation of a hard
drive or files in Computer Science, and (2) classical stochastic models such as the
Chinese restaurant process, Dirichlet process, and generalised Polya urn scheme.

Although application driven models are usually multidimensional, already one
dimensional case exhibit very rich and nontrivial behaviour. To illustrate this
statement, we consider a few particular models. In all models we start from
initial configuration of a finite number of points in [0, 1]. Assume that Xn is
configuration of particles at step n. In Model 1, having chosen uniformly a ‘parent’
particle ξn on n-th step, we add a new particle xn+1 uniformly distributed in the
segment S(ξn, Xn) = [ξn, d

+(ξn, Xn)], where d+(ξ,Xn) is the distance from x to
the closest particle of Xn to the right from ξn (or to 1, if the chosen particle ξn
is the rightmost). The segment S(ξn, Xn) is a stopping set and the distribution
of xn+1 depends on it. In Model 2, we take the stopping set to be S(ξn, Xn) =
[ξn−d(ξn, Xn), ξn+d(ξn, Xn)], where d(ξ,Xn) is the distance from x to the closest
particle of Xn (both to the right or to the left from ξn) and the distribution of
xn+1 is still uniform on S(ξn, Xn). In Model 3, the stopping set is the same as in
Model 2, but the distribution of xn+1 has a form ξn + d(ξ,Xn)ηn, where {ηn} is
a sequence of i.i.d. random variables. A common feature of all these models is a
kind of density reinforcement: the more density of particles in a certain area, the
more often a particle from this area is chosen as a parent. But since the density
is high, the corresponding stopping set is small so the new generated particle will
be close to the parent thus increasing the density even more. This behaviour is
analogous to Blackwell-MacQueen construction [1] which leads to construction of
a Dirichlet process (a random measure), see, e.g., [3], and shows that the limit
µ of a normalised sequence of sample measures µn(·) = n−1

∑n
i=1 1{xi ∈ ·} is,

generally, a random measure.
We show that the limiting measure in Model 1 is, however, not a Dirichlet

process, which is atomic, but equivalent to the so-called Dubbins-Freedman class
of random distributions [2]. Each realisation of its p.d.f. is a strictly growing
function though a fractal curve in [0, 1]2. In contrast, seemingly small change in
the definition of the stopping set in Model 2 leads to significant change of the
limiting measure: its p.d.f. now becomes piecewise constant and the support of
the measure is a fractal. Moreover, employing methods of Lyapunov functions and
stochastic stability, we demonstrate that the support now can be larger than [0, 1]
but with probability one stays compact.

Finally, in Model 3 the support of µ may become infinite for heavy-tailed dis-
tributions of η or may even not exist. The situation is yet not clear here and
represents a challenge the author is currently working at.



New Perspectives in Stochastic Geometry 2699

References

[1] Blackwell, D. and J. MacQueen (1973). Ferguson distributions via Polya urn schemes. Ann.
Stat. 1, 353–355.

[2] Dubbins, L. and A. Freedman (1966). Random distribution functions. In Proc. of the fifth
Berkeley Symposion on Mathematical Statistics and Probability, held at the Statistical
Labratory University of California. University of California Press.

[3] Kingman, J. (1975). Random discrete distrinutions (with discussion). J. Roy. Soc., Ser.

B 37, 1–22.
[4] Rozanov, Y. A. (1982). Markov random fields. NY: Springer.
[5] Zuyev, S. (1999). Stopping sets: Gamma-type results and hitting properties. Adv. Appl.

Prob. 31 (2), 355–366.

Reporter: Günter Last



2700 Oberwolfach Report 47/2008

Participants

Prof. Dr. Francois Baccelli

Laboratoire de Mathematiques
de l’Ecole Normale Superieure
U.R.A. 762
45, rue d’Ulm
F-75005 Paris

Dr. Pierre Calka

Universite Paris Descartes
UFR Mathematiques et Informatique
45, rue des Saints-Peres
F-75270 Paris Cedex 6

Daniel Gentner

Institut für Stochastik
Universität Karlsruhe
76128 Karlsruhe

Dr. Daniel Hug

Institut für Algebra und Geometrie
Universität Karlsruhe
Kaiserstr. 89-93
76133 Karlsruhe

Wolfgang Karcher

Institut für Stochastik
Universität Ulm
Helmholtzstr. 18
89081 Ulm

Prof. Dr. Wilfrid S. Kendall

Department of Statistics
University of Warwick
GB-Coventry CV4 7AL

Prof. Dr. Günter Last

Institut für Stochastik
Universität Karlsruhe
76128 Karlsruhe

Prof. Dr. Ilya S. Molchanov

Institut für
Mathematische Statistik
Universität Bern
Sidlerstr. 5
CH-3012 Bern

Prof. Dr. Jesper Moller

Dept. of Mathematical Sciences
University of Aalborg
Fredrik Bajers Vej 7G
DK-9220 Aalborg East

Prof. Dr. Peter Mörters

Department of Mathematical Sciences
University of Bath
Claverton Down
GB-Bath BA2 7AY

Prof. Dr. Victor Panaretos

Departement de Mathematiques
Ecole Polytechnique Federale
de Lausanne
CH-1015 Lausanne

Prof. Dr. Mathew Penrose

Department of Mathematical Sciences
University of Bath
Claverton Down
GB-Bath BA2 7AY

Prof. Dr. Yuval Peres

Department of Statistics
University of California
367 Evans Hall
Berkeley CA 94720-3860
USA



New Perspectives in Stochastic Geometry 2701

Dr. Michaela Prokesova

KPMS MFF UK
Karls-Universität Prag
Sokolovska 83
186 00 Praha 8
CZECH REPUBLIC

Prof. Dr. Matthias Reitzner

Institut für Diskrete Mathematik
und Geometrie
TU Wien
Wiedner Hauptstr. 8 - 10
A-1040 Wien

Dr. Tomasz Schreiber

Fac. of Mathematics and Computer Sci-
ence
Nicholas Copernicus University
ul. Chopina 12/18
87 100 Torun
POLAND

Prof. Dr. Evgeny Spodarev

Institut für Stochastik
Universität Ulm
89069 Ulm

Prof. Dr. Karl-Theodor Sturm

Universität Bonn
Institut für Angewandte Mathematik
Poppelsdorfer Allee 82/1
53115 Bonn

Prof. Dr. Hermann Thorisson

Science Institute
University of Iceland
3 Dunhaga
IS-107 Reykjavik

Prof. Dr. Wolfgang Weil

Institut für Algebra und Geometrie
Universität Karlsruhe
Kaiserstr. 89-93
76133 Karlsruhe

Prof. Dr. Joseph E. Yukich

Department of Mathematics
Lehigh University
Christmas-Saucon Hall
14 E. Packer Avenue
Bethlehem , PA 18015-3174
USA

Prof. Dr. Martina Zähle

Mathematisches Institut
Universität Jena
Ernst-Abbe-Platz 2-4
07743 Jena

Prof. Dr. Sergei Zuyev

Dept. of Statistics & Modelling Sc.
University of Strathclyde
Livingstone Tower
26, Richmond Street
GB-Glasgow G1 1XH




