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Introduction by the Organisers

Discrete Geometry deals with the structure and complexity of discrete geometric
objects ranging from finite point sets in the plane to more complex structures like
arrangements of n-dimensional convex bodies. Classical problems such as Kepler’s
conjecture and Hilbert’s third problem on decomposing polyhedra, as well as clas-
sical works by mathematicians such as Minkowski, Steinitz, Hadwiger and Erdős
are part of the heritage of this area. By its nature, this area is interdisciplinary and
has relations to many other vital mathematical fields, such as algebraic geometry,
topology, combinatorics, computational geometry, convexity, and probability the-
ory. At the same time it is on the cutting edge of applications such as geographic
information systems, mathematical programming, coding theory, solid modelling,
computational structural biology and crystallography.

The workshop was attended by 40 participants. There was a series of 12 survey
talks giving an overview of developments in Discrete Geometry and related fields:

• Keith Ball: A sharp discrete geometric version of Vaaler’s Theorem
• Marcus Schaefer: Hanani–Tutte and related results
• Frank Vallentin: Fourier analysis, linear programming and distance avoid-

ing sets in Rn
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• Nathan Linial: What is high-dimensional combinatorics?
• Gábor Tardos: Conflict free coloring of rectangles
• Matthias Beck: Recent results on Ehrhart series of lattice polytopes
• Assaf Naor: Embeddings of discrete groups and the speed of random walks
• János Pach: Beyond planarity—Geometric intersection patterns
• Günter M. Ziegler: On the number of simplicial 4-polytopes and 3-spheres

with N facets
• Alex Iosevich: Discrete geometry and Fourier analysis in discrete, contin-

uous and finite field settings
• Alexander Barvinok: Random matrices with prescribed row and column

sums
• Jesús De Loera: How to integrate a polynomial over a polytope

In addition, there were 18 shorter talks and an open problem session chaired by
János Pach on Wednesday evening—a collection of open problems resulting from
this session can be found in this report. The program left ample time for research
and discussions in the stimulating atmosphere of the Oberwolfach Institute.
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Abstracts

A sharp discrete-geometric version of Vaaler’s Theorem

Keith Ball

(joint work with Maria Prodromou)

In [2] Vaaler proved that for every d and n, every d-dimensional central section of
the cube [−1, 1]n has volume at least 2d. His result provided a sharp version of
Siegel’s Lemma in the geometry of numbers and was used by Bombieri and Vaaler
himself [1] for applications in Diophantine approximation. Vaaler’s theorem is
obviously sharp since the sections by d-dimensional coordinate subspaces are cubes
of volume 2d.

If (ǫi)
d
1 are IID choices of sign and x = (xi) is a vector in Rd then

E
(∑

xiǫi

)2

=
∑

x2
i .

Thus, if P is the uniform probability measure on the corners of the cube [−1, 1]d

then the quadratic form ∫

[−1,1]d
v ⊗ v dP (v)

is the identity on Rd. In this talk we prove the following sharp discrete-geometric
version of Vaaler’s Theorem.

Theorem 1. Let K be a d-dimensional subspace of Rn. Then, there is a probability
measure P on [−1, 1]n ∩ K, with

(1)

∫

[−1,1]n∩K

v ⊗ v dP ≥ IK

where the dominance is in the sense of positive definite operators.

Thus, each section of the cube not only has large volume but it is also “fat in
all directions” in the same way as a cube.

Observe that if we start with the uniform probability on the corners of the n-
dimensional cube and project it orthogonally onto the subspace K, we will obtain
a probability measure that yields the identity (in the above sense). However, for
most subspaces, the support of this projected measure will extend far outside the
section [−1, 1]n ∩ K so it will not be a suitable choice in the theorem.

Coordinate subspaces show that Theorem 1 is sharp in the sense that we cannot
guarantee to beat a larger multiple of the identity. What is more surprising is that
lower-dimensional cubes do not provide the only extreme cases. For example, the
section of the 3-dimensional cube perpendicular to its main diagonal is a regular
hexagon whose corners are points like (1,−1, 0) which are at distance

√
2 from the

origin. If we take the traces of the operators appearing in equation (1) we obtain
∫

[−1,1]n∩K

|v|2 ≥ dim(K).
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So the probability measure guaranteed by Theorem 1 must be supported on the
corners of the hexagon and we cannot beat any multiple of the identity larger
than 1. A similar argument works for the diagonal section of the cube in any odd
dimension. The existence of a large family of subspaces for which the inequality is
sharp makes it highly unlikely that we could write down the measure we wish to
find in any reasonably explicit way. Our argument builds the probability as the
end result of a sequence of linked optimisation problems.

It is a simple (and pretty well-known) fact that if (xi)
d
1 is a sequence of unit

vectors in Rd then there is a unit vector v in Rd for which

|〈v, xi〉| ≤
1√
d
, for all i = 1, . . . , n.

It follows from Theorem 1 that this fact can be generalised:

Theorem 2. Let (xi)
n
1 ⊂ Rd be a sequence of vectors that satisfy

∑n
i=1 |xi|2 = d.

Then there exists a unit vector v ∈ Rd, such that

|〈v, xi〉| ≤ 1√
d
, for all i = 1, . . . , n.(2)

In this talk Theorem 1 and Theorem 2 are both obtained from the following.

Theorem 3. Let (ui)
n
i=1 be a sequence of vectors in Rd that satisfies

∑n
i=1 ui⊗ui =

Id and Q a positive semi-definite quadratic form on Rd. Then there is a vector
w ∈ Rd, such that |〈w, ui〉| ≤ 1, for all i = 1, . . . , n and

wT Qw ≥ tr(Q).

The most intriguing feature of the proof is that it is to some extent constructive.
In view of the importance in Diophantine approximation of finding vectors with
small inner product with a given sequence, it is natural to ask whether there is a
lattice version of Theorem 2 that can be proved without the averaging technique
implicit in the proof of the Dirichlet-Minkowski box principle.

References

[1] E. Bombieri, J.D. Vaaler, On Siegel’s Lemma, Inventiones Mathematicae 73 (1983), 11–32.
[2] J. D. Vaaler, A geometric inequality with applications to linear forms, Pacif. J. Math 83

(1979), 543–553.

Hanani–Tutte and related results

Marcus Schaefer

(joint work with Michael Pelsmajer, Daniel Štefankovič, Despina Stasi)

Theorem 1 (Hanani–Tutte [3, 10]). If a non-planar graph is drawn in the plane,
then the drawing contains two non-adjacent edges that cross an odd number of
times.
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We give a direct geometric proof of this classical result which, in turn, is based
on a strengthening of a result by Pach and Tóth [6]. Call an edge in a drawing of
a graph even if it intersects every other edge an even number of times.

Theorem 2 (Pelsmajer, Schaefer, Štefankovič [9]). If D is a drawing of G in the
plane, and E0 is the set of even edges in D, then G can be drawn in the plane so
that no edge in E0 is involved in a crossing and there are no new pairs of edges
that cross an odd number of times.

The proof of this result relies on a geometric redrawing idea, using rotations in
an essential way. An extension of this result can be used to show that cr(G) ≤(
2 iocr(G)

2

)
, where iocr(G) is the independent odd crossing number of G, the smallest

number of pairs of non-adjacent edges that cross in a drawing of G. In particular,
this means that all the standard crossing numbers (excluding the rectilinear cross-
ing number, which behaves differently): crossing number, odd crossing number,
pair-crossing number, independent odd crossing number are within a square of
each other (answering an open question of Pach).

We were recently able to establish a Hanani–Tutte theorem for the projective
plane:

Theorem 3 (Pelsmajer, Schaefer, Stasi). If a non-projective planar graph is drawn
in the projective plane, then the drawing contains two non-adjacent edges that cross
an odd number of times.

The proof does not use the same approach as the planar case (indeed, Theo-
rem 2 fails on the projective plane). It remains open whether the result is true
for any other surfaces. However, if we drop the requirement that the two edges
that cross be non-adjacent, we get a “weak Hanani–Tutte” theorem which is true
for all surfaces (a result first shown for orientable surfaces by Cairns and Niko-
layevsky [1]).

A graph is a thrackle if it can be drawn such that any pair of edges intersects
exactly once, where a common endpoint of two edges counts as an intersection of
these two edges. A generalized thrackle is a graph that can be drawn such that
any pair of edges intersects an odd number of times (again counting endpoints).
Our proof techniques allow us another simple proof of the following result.

Theorem 4 (Cairns, Nikolayevsky [2]; Pelsmajer, Schaefer, Štefankovič [8]). If
G is a bipartite, generalized thrackle on a (orientable or non-orientable) surface,
then G can be embedded on that surface.

The planar case of the theorem was first proved by Lovász, Pach, and Szegedy [5]:
if a bipartite graph is a generalized thrackle, then it is planar. Cairns and Niko-
layevsky established the result for orientable surfaces [2].

Since in the proofs of all of these results the rotation system of a graph plays
a role, it seems natural to ask about the complexity of standard graph drawing
problems, such as the crossing number, in the presence of a rotation system. We
can show that computing the crossing number (or odd-crossing number or pair-
crossing number) of a graph with rotation system is NP-hard [7]. As a corollary we
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obtain Hliněný’s result [4] that computing the crossing number of a 3-connected,
cubic graph (without rotation system) and computing the minor-monotone cross-
ing number is NP-complete, and we can show that the independent odd crossing
number, Tutte’s algebraic alternative to crossing number, is NP-complete. This is
unfortunate (if not unexpected), since as mentioned above, the independent odd
crossing number is within a square of the crossing number.
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Fourier analysis, linear programming, and densities of distance

avoiding sets in Rn

Frank Vallentin

(joint work with Fernando M. de Oliveira Filho)

This is an extended abstract of [12] which steps on previous work [2].

Let d1, . . . , dN be positive real numbers. We say that a subset A of the n-
dimensional Euclidean space Rn avoids the distances d1, . . . , dN if the distance
between any two points in A is never d1, . . . , dN . We define the upper density of
a Lebesgue measurable set A ⊆ Rn as

δ(A) = lim sup
T→∞

vol(A ∩ [−T, T ]n)

vol[−T, T ]n
.

In this expression [−T, T ]n denotes the regular cube in Rn with side 2T centered
at the origin. We denote the extreme density a measurable set in Rn that avoids
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the distances d1, . . . , dN can have by

md1,...,dN
(Rn) = sup{ δ(A) : A ⊆ Rn measurable

and avoids distances d1, . . . , dm }.
Our main objective is to derive upper bounds for the extreme density from the

solution of a linear programming problem.
To formulate the main theorem we consider the function Ωn, which is the spher-

ical average of an exponential function, given by

Ωn(t) = Γ
(n

2

)(2

t

) 1
2
(n−2)

J 1
2
(n−2)(t),

where J 1
2
(n−2) is the Bessel function of the first kind with parameter (n − 2)/2.

Theorem. Let d1, . . . , dN be positive real numbers. Let A ⊆ Rn be a measurable
set which avoids the distances d1, . . . , dN . Suppose there are real numbers z0, z1,
. . . , zN which sum up to at least one and which satisfy

z0 + z1Ωn(td1) + z2Ωn(td2) + · · · + zNΩn(tdN ) ≥ 0

for all t ≥ 0. Then, the upper density of A is at most z0.

For the proof in we make essential use of Fourier analysis.
We apply the main theorem in a variety of situations: sets avoiding one distance,

and sets avoiding many distances. For the history behind these kinds of problems
we refer to the surveys by Székely [14] and Székely and Wormald [6] and the
references therein.

Sets avoiding one distance have been extensively studied by combinatorialists
because of their relation to the measurable chromatic number of the Euclidean
space. This is the minimum number of colors one needs to color all points in Rn

so that two points at distance 1 receive different colors and so that points receiving
the same color form Lebesgue measurable sets. Since every color class of a coloring
provides a measurable set which avoids the distance 1, we have the inequality

(1) m1(R
n) · χm(Rn) ≥ 1.

For the plane it is only known that 5 ≤ χm(R2) ≤ 7, where the lower bound is
due to Falconer [8] and the upper bound comes e.g. from a coloring one constructs
using a tiling of regular hexagons with circumradius slightly less than 1. Erdős
conjectured that m1(R

2) < 1/4 so that (1) would yield an alternative proof of
Falconer’s result. So far the best known results on m1(R

2) are the lower bound
m1(R

2) ≥ 0.2293 by Croft [5] and the upper bound m1(R
2) ≤ 12/43 ≈ 0.2790 by

Székely [13]. We compute new upper bounds for m1(R
n) for dimensions n = 2,

. . . , 24 based on a strengthening of our main theorem by so-called clique inequal-
ities, e.g. we show m1(R

n) ≤ 0.2683. These new upper bounds for m1(R
n) imply

by (1) new lower bounds for χm(Rn) in dimensions 3, . . . , 24.
If one considers sets which avoid more than one distance one can ask how N

distances can be chosen so that the extreme density becomes as small as possible:
What is the value of inf{md1,...,dN

(Rn) : d1, . . . , dN > 0 } for fixed N?
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Recently, Bukh [3], using harmonic analysis and ideas resembling Szémeredi’s
regularity lemma, showed that inf{md1,...,dN

(Rn) : d1, . . . , dN > 0 } drops expo-
nentially to zero in N . This implies a theorem of Furstenberg, Katznelson, and
Weiss [11] that for every subset A in the plane which has positive upper density
there is a constant d so that A does not avoid distances larger than d. Their orig-
inal proof used tools from ergodic theory and measure theory. Alternative proofs
have been proposed by Bourgain [1] using elementary harmonic analysis and by
Falconer and Mastrand [10] using geometric measure theory. Bukh’s result also
implies that md1,...,dN

(Rn) becomes arbitrarily small if the distances d1, d2, . . . , dN

become arbitrarily small. This is originally due to Bourgain [1] and Falconer [9].
We give a short proof of the exponential decay using our main theorem.

The idea of linear programming bounds for packing problems of discrete point
sets in metric spaces goes back to Delsarte [7] and it has been successfully applied
to a variety of situations. Cohn and Elkies [4] were the first who were able to set up
a linear programming bound for packing problems in non-compact spaces; by then
30 years since Delsarte’s fundamental contribution had gone by. Our main theorem
can be viewed as a continuous analogue to their linear programming bounds.
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Forbidden order types

Gyula Károlyi

(joint work with József Solymosi and Géza Tóth)

Throughout this report we will always assume that every point set is in general
position in the plane, that is, no three points of the configuration are collinear.
Two such configurations are said to be of the same order type, if there is a one-to-
one correspondence between them which preserves the orientation of each triple.
Thus, order types are equivalence classes of configurations. We will say that the
order type T contains the order type S if some (hence any) configuration in T
contains a subset which belongs to S. Ramsey theoretic aspects of order types
have been studied by Nešetřil and Valtr in [11]. Order types play an important
role in canonical versions of the Erdős–Szekeres theorem [3]. A connection was
first established via the so called ‘same type lemma’ by Bárány and Valtr [1].

For any integer n ≥ 3 the vertex set of any convex n-gon belongs to the same
order type we denote by Cn. According to the Erdős–Szekeres theorem, there is
an integer N0 such that every order type T with |T | ≥ N0 contains Cn. Denoting
the smallest such number by F (n), it is known [4, 12] that

2n−2 + 1 ≤ F (n) ≤
(

2n − 5

n − 2

)
+ 1,

the lower bound conjectured to be tight. This is a truly Ramsey-type result
whose relation to Ramsey’s theorem is widely explored in e.g. [10]. Motivated
by a conjecture of Erdős and Hajnal [2] in graph Ramsey theory, Gil Kalai [6]
suggested the following problem. For a fixed order type T , define FT (n) as the
smallest integer N0 such that any order type of size at least N0 that does not
contain T necessarily contains Cn. Is it always true that FT (n) is bounded above
by a polynomial function of n? Somewhat surprisingly, the analogue with graph
Ramsey theory breaks here. In [7] we have shown the existence of an order type
T with FT (n) > 2n−2, in contrast with the original Erdős–Hajnal problem where
a sub-exponential upper bound is known [2].

Our proof however was based on a general result of Nešetřil and Valtr from which
it is not easy to extract a concrete order type T with the above property. One
novelty in this report is the exhibition of explicit order types T for which FT (n)
is exponentially large. Such an order type of size 6 can be obtained, for example,
by putting an extra point at the centre of a regular pentagon. Large order types
containing neither this, nor Cn can be constructed by a doubling process similar
to the one found in [9].

An other result concerns a complete characterization of order types whose con-
vex hull is a triangle, according to the behavior of the function FT (n). They each
fall in one of the following three categories:
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(i) FT (n) is bounded by a linear function in n;
(ii) FT (n) is at least quadratic in n but bounded by a polynomial in n;
(iii) FT (n) is exponentially large in n.

Part of this result originates in [7]. Besides that and the methods involved therein
the most crucial element is a new construction that we obtain via modification of
Horton’s well-known example [5]. The details will be explained in the forthcoming
paper [8].
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Sets of unit vectors with small subset sums

Konrad J. Swanepoel

Let d ≥ 2, m ≥ 2 and 2 ≤ k ≤ m − 2. Define m(k, d) to be the largest m such
that there exists a d-dimensional normed space with a family {x1, . . . , xm} of m
unit vectors satisfying the k-collapsing condition:

∀I ∈
({1, . . . , m}

k

)
, ‖

∑

i∈I

xi‖ ≤ 1.

Also define m0(k, d) to be the largest m such that there exists a d-dimensional
normed space with a family {x1, . . . , xm} of m unit vectors satisfying the k-
collapsing condition as well as the balancing condition:

x1 + · · · + xm = o.

Balancing and collapsing conditions on sets of unit vectors arise in the study of
the local structure of Steiner minimal trees in normed spaces [3, 4, 5, 6, 8]. For a
related condition see [7].
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The space ℓd
∞ together with the set of 2d unit vectors {±e1, . . . ,±ed} shows

that m0(k, d) ≤ m(k, d) ≤ 2d for all k ∈ {2, . . . , m − 2}.
In [3] it is shown that 1.02d < m(2, d) < 3d and the upper bound was improved

in [5] to m(2, d) ≤ 2d+1+1. The latter result uses the Brunn–Minkowski inequality.
We generalise this result to k ≥ 3 by combining the Brunn–Minkowski inequality
with the Hajnal–Szemerédi theorem from graph theory.

Theorem 1. m(k, d) ≤ k(1 + 2
k )d + k.

The following result is an asymptotic improvement of Theorem 1, but can be
seen to be worse for k ≤ 7 when considering the value of the constant c.

Theorem 2. If 2 ≤ k ≤ √
m, then m(k, d) ≤ (1 + c log k

k2 )d for some universal
c > 0.

For larger k, up to m −√
m, we obtain almost optimal results.

Theorem 3.

(1) If
√

m ≤ k ≤ m/4 then m(k, d) ≤ 3d.
(2) If m/4 < k ≤ m −√

m then m(k, d) = 2d.

For values of k larger than m −√
m we obtain the following.

Theorem 4. If k = m− f(m) where f(m) is a function going to ∞ with m, then

f(m(k, d)) ≤
√

d/2.

The proofs of the above three theorems use a reduction to m×m matrices which
are in a weak sense perturbations of the identity, together with results on lower
bounds of the ranks of such matrices [1, 2]. In order to apply these lower bounds
we also have to solve a certain convex optimization problem.

The last theorem above gives no information when m− k = O(1). When m− k
is small, we also show the following:

Theorem 5. If k = m − f(m), then m(k, d) ≤ cdd+2 + f(m).

This gives a better bound than Theorem 4 when f(m) ≤ c
√

log m
log log m . However,

this is still very far from the lower bound of 2d. Its proof is similar to that of
Theorem 1, and uses some further tools from convexity, in particular the separation
theorem and the theorem of Carathéodory.

The following lower bound almost matches the first bound in Theorem 2. Its
proof uses a simple random construction of sets of Euclidean unit vectors that are
almost orthogonal.

Theorem 6. m(k, d) ≥ (1 + 8
k2 )d.

The following theorem matches the upper bound in Theorem 2 when k =
Θ(m1/s), s = 2, 3, 4, . . . . Its proof uses the existence of certain codes, such as
the Kerdock code.

Theorem 7. Let s ∈ {2, 3, 4, . . .} and k = Θ(m1/s). Then m(k, d) ≥ cds/2.
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For the quantity m0(k, d), we have the following complete answer, which follows
from rank arguments and convex optimization.

Theorem 8. For any k = 2, . . . , m − 2, m0(k, d) = 2d.
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Allowable double permutation sequences, arrangements of double

pseudolines of Michel Pocchiola and their applications to planar

families of convex sets

Richard Pollack

(joint work with J. E. Goodman)

1. Introduction

Approximately thirty years ago in [7], Goodman and Pollack introduced a com-
binatorial encoding of planar point configurations designed to open problems on
configurations to purely combinatorial investigation. This encoding, which as-
signed to each planar configuration of n points, {p1, ..., pn}, a circular sequence
of permutations of 1, . . . , n, [defined by projecting the set of points on a directed
line L and recording the permutation of the indices and then rotating the line
L (counterclockwise) and recording each new permutation (occurring when the
rotating line L passed through a direction orthogonal to a connecting line of the
set] has been used in a number of papers since then, in dual form (as an encoding
of line arrangements) as well as in primal form; because the same object encodes
pseudoline arrangements as well, it has also been used to derive results on pseu-
doline arrangements. For a survey of results obtained by this technique, see, e.g.,
[6]. Recent applications include [18] and [20].

In the present talk, we review the extension of the encoding of point configu-
rations by circular sequences of permutations to an encoding of planar families of
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disjoint compact convex sets by circular sequences of what we call “double per-
mutations.” It turns out that this encoding applies as well to a more general
class of objects: families of compact connected sets in the plane with a specified
arrangement of pairwise tangent and pairwise separating pseudolines, and thereby
permits us to extend combinatorial results from convex sets to these more general
objects. we also present a brief overview of the ideas and some of the results in
[12] and in [13].

To fix our ideas, we adopt Grünbaum’s model from [15]: the affine plane is
represented by the interior of a closed disk ∆, and a pseudoline by an arc joining
a pair of antipodal points on ∂∆.

If C is a point set in the plane, we say that a pseudoline T is tangent to C
if T meets C, and if C is contained in one of the two closed (pseudo)halfplanes
determined by T . If C1 and C2 are two disjoint sets, we call T a double tangent
to the pair C1, C2 if T is tangent to both; it is externally tangent if C1 and C2 lie
in the same closed halfplane determined by T ; internally tangent otherwise.

We will often work with directed pseudolines, i.e, we will specify one of the
endpoints of a pseudoline as its terminal point. The new encoding works as follows.
Given a planar family C = {C1, . . . , Cn} of mutually disjoint compact convex
(connected) sets together with a family A of pseudolines which contain, for each
1 ≤ i < j ≤ n, a pseudoline Si,j which separates Ci from Cj in the sense that
Ci, Cj lie in each of the two open (pseudo)halfplanes determined by Si,j and four
common pseudoline common tangents to Ci, Cj (2 internal and 2 external. We
further assume that C,A are in ”general position” by which we mean; for any
{i, j} 6= {i′, j′}, no common tangent to Ci, Cj is equal or parallel (we say that 2
pseudolines are parallel if they share common endpoints) to a tangent common
to Ci′ , Cj′ , we project the sets onto a directed line L and denote the endpoints
of each projected set Ci by i, i′, according to their order on L. This gives, in
general, a permutation of the 2n indices 1, . . . , n, 1′, . . . , n′. We then rotate L
counterclockwise, and record the circular sequence consisting of all the “double
permutations” of 1, 1′, . . . , n, n′ that arise in this way. (Notice that if the convex
sets are points and we identify i and i′, this encoding reduces to the encoding by
circular sequences of permutations in the sense of [7].)

It turns out that this simple-minded encoding is strong enough to capture all
of the features of the family C that are essential in determining the (partial and
complete) transversals that C possesses, and that it extends in a natural way to
the case where the sets Ci are merely connected.

For recent surveys in geometric transversal theory, see [3, 9, 21]; for recent work
on pseudoline arrangements, see [2, Chap. 6] and [6].

2. The sequence of double permutations

Definition 1. If C = {C1, . . . , Cn} is a family of mutually disjoint compact con-
vex sets, we associate to the family C a circular sequence of permutations of the
symbols 1, 1′, 2, 2′, . . . , n, n′, as follows. Project the sets in C orthogonally onto a
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directed line L, and record the order in which the endpoints of the intervals consti-
tuting the projections of the sets Ci occur. This gives a permutation of the indices
1, 1′, . . . , n, n′ (where the primed indices correspond to the right-hand endpoints of
the intervals). If L rotates counterclockwise, the permutation changes every time
L becomes orthogonal to an (undirected) double tangent, and we obtain a periodic
sequence of permutations of 1, 1′ . . . , n, n′ which we call the circular sequence of
double permutations of C1, . . . , Cn. The move from each term to the next is simply
the switch of two adjacent indices such as i, j or i′, j or i, j′ (but not i, i′).

(Notice that instead of thinking of each term of the sequence as defined by pro-
jection onto L, we can think of it as arising by sweeping a line orthogonal to L
from left to right, and recording the order in which the sweepline enters and then
leaves the various sets.) If we adopt the convention that each switch is written in
the order in which the indices appear after they have switched, then it is easy to
see that

(i) the switch ij corresponds to a left-left ij tangent,
(ii) the switch i′j′ corresponds to a right-right ij tangent,
(iii) the switch i′j corresponds to a left-right ij tangent,
(iv) the switch ij′ corresponds to a right-left ij tangent,

It is also easy to see that, knowing the sequence of ordered switches, we can
reconstruct the double-permutation sequence itself: Any term can be reconstructed
from the half-period of switches following it (since these are compatible with only
one possible order among the indices 1, 1′, . . . , n, n′), and the remaining terms can
be then be written down by successively applying the switches that follow.

This allows us to define the double-permutation sequence in greater generality:

Definition 2. For a family C of connected sets, together with a given arrange-
ment A = AT ∪AS of double tangent pseudolines and separators, we generate the
circular sequence S(C,A) of double permutations as follows. We first record the
periodic sequence of ordered switches (which is read off from the directions of the
8
(
n
2

)
ordered double tangents), and we then (re)construct the double permutations

themselves by the method described just above.

A very natural question arises;

Question 1. Is every allowable double permutation sequence the double permuta-
tion sequence arising from a family of connected sets C together witha family A of
pseudoline separotors and common tangents?

This question has been answered affirmatively by Habert and Pocchiola in [12]
and in [13] along the following lines. They first extend Ringels theorem [19] that
arrangements of pseudolines are connected by triangle switches (also called muta-
tions) by having a pseudoline pass over an adjacent vertex, to double pseudoline
arrangements. They then show that given families C,A of connected sets and
pseudoline separators and common tangents and an A′ which differs from Af by
a single triangle switch how to change C to C′ so that C′,A′ is also a family of
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connected sets and pseudoline separators and common tangents. Hence if we sim-
ply connect a C,A consisting of disjoint convex sets C in general position together
with their family of straight line common tangents and separating lines to each pair
from C to the A which produces the given allowable double permutation sequence.
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What is high-dimensional combinatorics?

Nati Linial

Several key advances have brought a change in the standing of combinatorics
within the mathematical sciences: (i) The adoption of the asymptotic perspective.
(ii) The development of extremal combinatorics. (iii) The emergence of the proba-
bilistic method. (iv) The computational perspective of the field. What is the next
frontier we should pursue in this historical progress of the field? The main thesis
of my talk is that we should “go up in dimension”. We first recall the notion of a
simplicial complex.

Definition 1. Let V be a finite set of vertices. A collection of subsets X ⊆ 2V is
called a simplicial complex if it satisfies the following condition: A ∈ X and B ⊆
A ⇒ B ∈ X. A member A ∈ X is called a simplex or a face of dimension |A| − 1.
The dimension of X is the largest dimension of a face in X.

In theoretical computer science simplicial complexes were used in (i) The study
of the evasiveness conjecture, starting with [Kahn, Saks and Sturtevant ’83]. (ii)
Impossibility theorems in distributed asynchronous computation (starting with
[Herlihy, Shavit ’93] and [Saks, Zaharoglou ’93]).

In combinatorics: (i) Lovász’s proof of A. Frank’s conjecture on graph con-
nectivity 1977. (ii) Lower bounds on chromatic numbers of Kneser’s graphs and
hypergraphs (starting with [Lovász ’78]). (iii) The study of matching in hyper-
graphs (starting with [Aharoni, Haxell ’00]).

The major challenges that we raise are: (i) To start a systematic attack on
topology from a combinatorial perspective, using the extremal/asymptotic para-
digm. In particular we hope to introduce the probabilistic method into topology.
In the other direction we suggest to use ideas from topology to develop new prob-
abilistic models (random lifts of graphs offer a small step in this direction). We
also hope to introduce ideas from topology into computational complexity.

Can we develop a theory of random complexes, similar to random graph theory?
Specifically we seek a higher-dimensional analogue to G(n, p). To fix ideas we
consider the simplest possible case: Two-dimensional complexes with a full one-
dimensional skeleton. Namely, we start with a complete graph Kn and add each
triple (=simplex) independently with probability p. This probability space of two-
dimensional complexes is denoted by X(n, p).

We recall from Erdős and Rényi’s work:

Theorem 2 (ER ’60). The threshold for graph connectivity in G(n, p) is

p =
lnn

n
.
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We next ask when a simplicial complex should be considered connected. Unlike
the situation in graphs, this question has many (in fact infinitely many) meaningful
answers, i.e.: (i) The vanishing of the first homology (with any ring of coefficients).
(ii) Being simply connected (vanishing of the fundamental group).

Theorem 3 (Linial and Meshulam ’06). The threshold for the vanishing of the
first homology in X(n, p) over GF (2) is

p =
2 lnn

n
.

This extends to d-dimensional simplicial complexes with a full (d−1)-st dimen-
sional skeleton and also, for other coefficient groups. (Most of this was done by
Meshulam and Wallach). We still do not know, however:

Question 2. What is the threshold for the vanishing of the homology with integer
coefficients?

On the vanishing of the fundamental group we have:

Theorem 4 (Babson, Hoffman, Kahle ’09). The threshold for the vanishing of the
fundamental group in X(n, p) is near p = n−1/2.

We next move on to some extremal problems and recall:

Theorem 5 (Brown, Erdős, Sós ’73). Every n-vertex two-dimensional simplicial
complex with Ω(n5/2) simplices contains a (triangulation of the) two-sphere. The
bound is tight.

and state:

Conjecture 6. Every n-vertex two-dimensional simplicial complex with Ω(n5/2)
simplices contains a (triangulation of the) torus.

We can show that if true this bound is tight. This may be substantially harder
than the BES theorem, where one actually finds a bi-pyramid. We suspect that
such a “local” triangulation of the torus need not exist. With Ehud Friedgut we
showed that Ω(n8/3) simplices suffice.

Here is another classical theorem of Erdős in extremal graph theory:

Theorem 7. For every two integers g and k there exist graphs with girth ≥ g and
chromatic number ≥ k.

With L. Aronshtam (work in progress) we can show:

Theorem 8. For every two integers g and k there exist two-dimensional complexes
with a full one-dimensional skeleton, such that for every vertex x, the link of x is
a graph with girth ≥ g and chromatic number ≥ k.

Much more remains to be done here.
Even very elementary subjects in combinatorics take on a new life when you

think high-dimensionally. E.g.: A permutation can be viewed as an n × n array
of zeros and ones where every line (i.e., a row or a column) contains exactly a
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single 1. What about higher dimensional analogues? Let’s start with dimension
three. Namely, we consider an n×n×n array of zeros and ones A where every line
(now with three types of lines) contains exactly a single 1. This is easily seen to be
equivalent to the notion of a Latin square. It is an ancient problem to determine
or estimate Ln, the number of n × n Latin squares.

Currently the best known bound is:

Theorem 9 (Van Lint and Wilson). (Ln)1/n2

= (1 + o(1)) n
e2 .

The (fairly easy) proof uses two substantial facts about permanents: The proof
of the van der Waerden conjecture and Brégman’s Theorem. This raises sev-

eral challenges: (i) Improve this bound (which only determines Ln up to eo(n2)).
(ii) Solve the even higher dimensional cases. (iii) Factorials are, of course, closely
related to the Gamma function. Are there higher dimensional analogues of Γ?

Finally, a few words on tensors. Recall

Proposition 1. The rank of a matrix M is the least number of rank-one matrices
whose sum is M .

Likewise, a three-dimensional tensor A has rank one iff there exist vectors x, y
and z such that aijk = xiyjzk. We define the rank of a three-dimensional tensor
Z as the least number of rank-one tensors whose sum is Z.

We mention that the following question is still open:

Question 3. What is the largest rank of an n × n × n real tensor.

It is only known (and easy) that the answer is between n2

3 and n2

2 . With
A. Shraibman we have constructed a family of examples which suggests

Conjecture 10. The answer is (1 + o(1))n2

2

Our ignorance may be somewhat justified since tensor rank is NP-hard to de-
termine (H̊astad ’90).

Conflict-free coloring of points and rectangles

Gábor Tardos

Consider a finite family S of geometric regions. The geometric hypergraph deter-
mined by S has S as it vertex set and has the sets Sp = {R ∈ S | p ∈ R} for the
points p in the plane with |Sp| ≥ 2 as its hyperedges. In this survey talk the best
known results were presented about the maximal chromatic number, conflict-free
chromatic number and minimal independence number of a a geometric hypergraph
determined by n axis-parallel rectangles.

Recall that a subset of the vertices of a hypergraph is called independent if it
does not contain a hyperedge and the size of the largest independent set is the
independence number. A proper coloring of a hypergraph is partitioning its vertex
set into independent sets and minimal number of parts (color classes) for which
this is possible is called the chromatic number of the hypergraph. The conflict-free
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chromatic number is similarly the minimum number of colors used in a conflict-free
coloring, where a vertex coloring is conflict-free if each hyperedge H contains a
vertex v ∈ H whose color is different from the color of any other vertex w ∈ H ,
w 6= v. These parameters are connected by obvious relations and therefore the
two maximization and the one minimization problem mentioned above are very
closely related.

Smorodinsky [4] proved that the chromatic number of the geometric hypergraph
determined by n axis-parallel rectangles is O(log n). As a corollary he obtains an
Ω(n/ logn) lower bound on the independence number of this hypergraph and an
O(log2 n) upper bound on the conflict-free chromatic number.

With J. Pach we proved [3] that the first two bounds of Smorodinsky are tight
op to the constant factor. In particular, we gave an explicit construction of n
axis-parallel rectangles that determine a geometric hypergraph with independence
number O(n/ log n) and thus its chromatic number is Ω(log n). Unfortunately, the
construction gives a geometric hypergraph whose conflict-free chromatic number is
also Θ(log n) (which had been previously achieved by simpler constructions), mak-
ing the best bound possible for this parameter an open problem. Given an integer
parameter r ≥ 2 we also construct a families S of n axis-parallel rectangles with
the following stronger property: if a subset S′ ⊆ S of at least Cr log r(n/ log n)
rectangles are selected then there is a point contained in exactly r rectangles in S,
all of them in S′. Here C is an absolute constant.

The problem of estimating the same parameters for the following dual hyper-
graph was also studied. Here a finite set P of points in the plane determine the
hypergraph with vertex set P and with hyperedges of the form P ∩R, where R is
an axis-parallel rectangle with |P ∩ R| ≥ 2.

Although the combinatorial structure of this dual problem seems to be simpler
(among other thing one can ignore hyperedges of size at least three and concentrate
on a graph coloring problem) the known bounds are very far apart.

Ajwani, Elbassioni, Govindarajan and Ray [1] proved that the (conflict-free)
chromatic number of the hypergraph determined n points in the plane is O(n.382.
In other words this many colors are enough to color the points in such a way that
the minimal axis-parallel rectangle determined by any two points of the same color
contains a third point of different color. This improves the trivial upper bound of
O(

√
n).

From the other side, instead of a construction, the best result is based on
properties of a random point set. With Chen, Pach and Szegedy [2] we proved
that if n points are selected uniformly at random from the unit square, then with
high probability the independence number of the hypergraph they determine is
O(n log2 log n/ logn), and therefore the chromatic number is Ω(log n/ log2 log n).
This bound is in enormous distance from the bounds in the other direction. It
seems to be hard to figure out whether the maximal chromatic number of such a
(hyper)graph is O(nε) for every ε > 0. Unfortunately, random point sets will not
help in deciding this, as the upper bound above on their independence number is

almost tight: with high probability it is Ω
(

n log log n
log n log log log n

)
.
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Asymptotics of Ehrhart series of lattice polytopes

Matthias Beck

(joint work with Alan Stapledon)

Fix a positive integer d. If h(t) = h0 + h1 t + · · · + hd td is a nonzero polynomial
of degree at most d with nonnegative integer coefficients and h0 ≥ 1, then

h(t)

(1 − t)d+1
=
∑

m≥0

g(m)tm,

where g(m) =
∑d

i=0 hi

(
m+d−i

d

)
is a polynomial of degree d with rational coeffi-

cients. For every positive integer n, define Unh(t) to be the polynomial of degree
at most d with integer coefficients satisfying

Unh(t)

(1 − t)d+1
=
∑

m≥0

g(nm) tm,

and write Unh(t) = h0(n) + h1(n) t + · · · + hd(n) td. The (Hecke) operator Un

was studied by Gil and Robins in a more general setting [6] and more recently by
Brenti and Welker, who proved the following theorem [2, Theorem 1.4].

Theorem 1 (Brenti–Welker). For any positive integer d, there exists real numbers
α1 < α2 < · · · < αd−1 < αd = 0 such th at, if h(t) = h0 + h1 t + · · · + hd td is a
polynomial of degree at most d with nonnegative integer coefficient s and h0 ≥ 1,
then for n sufficiently large, Unh(t) has negative real roots β1(n) < β2(n) < · · · <
βd−1(n) < βd(n) < 0 and βi(n) → αi as n → ∞.

A sequence of positive integers (a0, . . . , ad) is strictly log concave if a2
i > ai−1ai+1

for 1 ≤ i ≤ d− 1 and is strictly unimodal if a0 < a1 < · · · < aj and aj+1 > aj+2 >
· · · > ad for some 0 ≤ j ≤ d. One easily verifies that if (a0, . . . , ad) is strictly
log concave then it is strictly unimodal. An induction argument implies that if
the polynomial a0 + a1t + · · · + adt

d has negative real roots then the sequence
(a0, . . . , ad) is strictly log concave and hence strictly unimodal.

Let w = (w1, . . . , wd) be a permutation of d elements. A descent of w is an index
1 ≤ j ≤ d−1 such that wj+1 < wj . If A(d, i) denotes the number of permutations

of d elements with i − 1 descents, then the polynomial Ad(t) =
∑d

i=1 A(d, i) ti is
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called an Eulerian polynomial and the roots of Ad(t)
t are simple, real and negative

[3, p. 292, Exercise 3]. The real content of our main result below is the statement
that the lower bounds only depend on d.

Theorem 2. Fix a positive integer d and let ρ1 < ρ2 < · · · < ρd = 0 denote
the roots of the Eulerian polynomial Ad(t). There exists positive integers md and
nd such that, if h(t) is a polynomial of degree at most d with nonnegative integer
coefficients and h0 ≥ 1, then for n ≥ nd, Unh(t) has negative real roots β1(n) <
β2(n) < · · · < βd−1(n) < βd(n) < 0 with βi(n) → ρi as n → ∞, and the coefficients
of Unh(t) are positive, strictly log concave, and satisfy hi(n) < mdhd(n) for 0 ≤
i ≤ d. Furthermore, if h0 + · · ·+ hi+1 ≥ hd + · · ·+ hd−i for 0 ≤ i ≤

⌊
d
2

⌋
− 1, with

at least one of the above inequalities strict, then we may choose nd such that, for
n ≥ nd,

h0 = h0(n) < hd(n) < h1(n) < · · · < hi(n) < hd−i(n) < hi+1(n) < · · ·
< h⌊ d+1

2
⌋(n) < md hd(n) .

Our main motivating example comes from the theory of lattice point enu-
meration of polytopes. More specifically, let N be a lattice of rank n and set
NR := N ⊗Z R. A lattice polytope P ⊂ NR is the convex hull of finitely many
points in N . Fix a d-dimensional lattice polytope P ⊂ NR and, for each positive
integer m, let fP (m) := # (mP ∩ N) denote the number of lattice points in the
m’th dilate of P . A famous theorem of Ehrhart [5] asserts that fP (m) is a poly-
nomial in m of degree d, called the Ehrhart polynomial of P . Equivalently, the
generating series of fP (m) can be written in the form

δP (t)

(1 − t)d+1
=
∑

m≥0

fP (m) tm ,

where δP (t) = δ0 + δ1t+ · · ·+ δdt
d is a polynomial of degree at most d with integer

coefficients, called the δ-polynomial of P . We call (δ0, δ1, . . . , δd) the (Ehrhart)
δ-vector of P ; alternative names in the literature include Ehrhart h-vector and
h∗-vector of P . If h(t) = δP (t) then the assumptions of the Theorem 2 hold by a
result of Hibi [7], and we deduce the following corollary.

Corollary 3. Fix a positive integer d and let ρ1 < ρ2 < · · · < ρd = 0 denote the
roots of the Eulerian polynomial Ad(t). There exists positive integers md and nd

such that, if P is a d-dimensional lattice polytope and n ≥ nd, then δnP (t) has
negative real roots β1(n) < β2(n) < · · · < βd−1(n) < βd(n) < 0 with βi(n) → ρi as
n → ∞, and the coefficients of δnP (t) are positive, strictly log concave, and satisfy

1 = δ0(n) < δd(n) < δ1(n) < · · · < δi(n) < δd−i(n) < δi+1(n) < · · · < δ⌊ d+1

2
⌋(n)

< md δd(n) .

We can apply Theorem 2 also to Veronese subrings of graded rings.
It is an open problem to determine the optimal choices for the integers md and

nd in Theorem 2 and Corollary 3. In this direction, we can show that for any
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positive integer d and n ≥ d, if h(t) satisfies certain inequalities, then hi+1(n) >
hd−i(n) for i = 0, . . . ,

⌊
d
2

⌋
− 1. In particular, this holds when h(t) = δP (t).

We now explain our original motivation for this paper. A triangulation τ of the
polytope P with vertices in N is unimodular if for any simplex of τ with vertices
v0, v1, . . . , vd, the vectors v1 − v0, . . . , vd − v0 form a basis of N . While every
lattice polytope can be triangulated into lattice simplices, it is far from true that
every lattice polytope admits a unimodular triangulation (for an easy example,
consider the convex hull of (1, 0, 0), (0, 1, 0), (0, 0, 1), and (1, 1, 1)). The following
theorem, however, says that we can obtain a unimodular triangulation if we allow
our polytope to be dilated.

Theorem 4 (Knudsen–Mumford–Waterman [8]). For every lattice polytope P ,
there exists an integer n such that nP admits a unimodular triangulation.

There are several conjectures that would strengthen this theorem, most notably,
that n only depends on the dimension of P [4]. A recent theorem of Athanasiadis–
Hibi–Stanley [1, Theorem 1.3] gives certain inequalities for the δ-vector of P that
hold if P admits a regular triangulation. One may hope to use the Athanasiadis–
Hibi–Stanley theorem to construct a counter-example to some of the Knudsen–
Mumford–Waterman conjectures. However, a consequence of Corollary 3 and its
proof is that this approach can not possibly work.

References

[1] C.A. Athanasiadis, h∗-vectors, Eulerian polynomials and stable polytopes of graphs, Elec-
tron. J. Combin. 11 (2004/06), no. 2, Research Paper 6, 13 pp. (electronic).

[2] F. Brenti, V. Welker, f-vectors of barycentric subdivisions, arXiv:math.AG/0612862, to ap-
pear in Math. Z.

[3] Louis Comtet, Advanced combinatorics, enlarged ed., D. Reidel Publishing Co., Dordrecht,
1974.

[4] W. Bruns, J. Gubeladze, Polytopes, rings and K-theory, Springer, to appear.
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Distances and eigenvalues

Van Vu

I discussed an identity, found with T. Tao in [1], which gives a connection between
the distances from vertices of a simplex (in Rn) to the opposite hyperplanes and
the singular values of the matrix formed by this simplex.

Technically speaking, let A be an n by n matrix and di the distance from the
ith row vector to the subspace formed by the remaining n − 1 row vectors and
σ1 ≥ · · · ≥ σn the singular values of A. Then
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n∑

i=1

d−2
i =

n∑

i=1

σ−2
i .

The same result holds for a rectangular matrix. This identity appears useful in
situations when one side of the identity is easier to compute than the other. For
example, if the matrix has random independent entries, then di are easier to control
and by this we gain a good estimate for the singular values. For example, if the
entries of A are iid Bernoulli random variables (taking value ±1 with probability
half), then one can show that a.s.

σn−k = Ω(k/
√

n)

for k ≥ log n. This type of result was an important tool in the proof of the Circular
Law Conjecture in [1].

Another application concerning concentration of the determinant of a ran-
dom matrix was discussed, motivated by recent joint work with K. Costello [2].
We proved that if the entries of A are cijξij , where 1 ≤ cij ≤ C = O(1)
are constants, and ξij are iid Bernoulli random variables, then a.s, | detA| =

E(| detA|) exp(O(n2/3). I conjecture that exp(O(n2/3)) can be replaced by nO(1).
A connection to the problem of computing determinant was also mentioned.
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On the relation between the shape of an oval K and the geometric

permutations of a family FK of disjoint translates of K

Helge Tverberg

In 2003 A. Asinowski et al. published a paper [1] on that relation. Here an oval
is a compact convex set in R2. A geometric permutation (GP) of a finite family
FK = {c1 + K, . . . , cn + K} is given by a permutation i1, . . . , in for which there is
a straight line meeting the translates in the order ci1 + K, . . . , cin

+ K. Note that
i1, . . . , in is identified with in, . . . , i1.

In [1] it was described how an FK , if it admits a GP, belongs to one out of
6 Types, depending on the nature of the at most three GP’s it admits. Some
relations between the shape of K and the Types which an FK can belong to were
given. If an FK can be of Type x, K was said to admit Type x, x = 1, . . . , 6.
A parallellogram, for instance, does not admit Type 4, which means that no three
translates of it has three GP’s. This property characterizes the parallellograms
among the ovals, in fact. I raised the problem of finding a similar characterization
of the parallellepipeds in higher dimensions.

Another example is that of an ellipse K, which does not admit Type 4. This
means that an FK can not have both GP’s 1234 and 2413. But this does not
characterize the ellipse, for any affine image of a K of constant width, or of a
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regular k-gon, with k 6≡ 0(mod 4), has the same property. I raised the question
whether a centrally symmetric K with a smooth boundary and having the property
discussed would have to be an ellipse, but on second thoughts I find this to be
unlikely even if one adds the condition of strict convexity.

It was also pointed out how useful Minkowski symmetrization is in this area,
since FK and F ′

K (with K ′ = 1/2(K − K)) have the same GP’s. When K is of
constant width, K ′ is a circle, which explains one of the results just mentioned.

In the last part of the talk the problem of x-goodness was discussed. K is said
to be x-good iff arbitrarily large FK ’s of Type x exist. In [1] a nasc. for x-goodness
was given, in each of the cases x = 1, . . . , 5, while for x = 6 one necessary and
one sufficient condition were given. In the talk a weakening of the sufficient one
was described: In [1] bd K was assumed to be smooth at both endpoints of a
certain segment, but one can also assume smoothness only at one end, but now to
a specified higher order.
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On the union of cylinders in three dimensions

Esther Ezra

Let K be a collection of n infinite cylinders in R3, and let A(K) denote the three-
dimensional arrangement induced by the cylinder boundaries in K, i.e., the de-
composition of 3-space into vertices, edges, faces, and three-dimensional cells, each
being a maximal connected set contained in the intersection of a fixed subcollec-
tion of the cylinder boundaries of K and not meeting any other cylinder boundary.
Let U =

⋃
K∈K K denote the union of K. The combinatorial complexity of U is

the number of vertices, edges and faces of the arrangement A(K) appearing on the
union boundary. The goal of this talk is to present a nearly-optimal bound on the
combinatorial complexity of the union U .

The problem of determining the combinatorial complexity of the union of simply-
shaped bodies in d-space has received considerable attention in the past twenty
years, although most of the earlier work has concentrated on the planar case.

The case involving pseudodiscs (that is, a collection of simply connected planar
regions, where the boundaries of any two distinct objects intersect at most twice),
arises for Minkowski sums of a fixed convex object with a set of pairwise disjoint
convex objects (which is the problem one faces in translational motion planning
of a convex robot), and has been studied by Kedem et al. [11]. In this case, the
union has only linear complexity. Matoušek et al. [13, 14] proved that the union
of n α-fat triangles (where each of their angles is at least α) in the plane has only
O(n) holes, and its combinatorial complexity is O(n log log n). The constant of
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proportionality, which depends on the fatness factor α, has later been improved
by Pach and Tardos [16]. Extending the study to the realm of curved objects,
Efrat and Sharir [8] studied the union of planar convex fat objects. Here we say
that a planar convex object c is α-fat, for some fixed α > 1, if there exist two
concentric disks, D ⊆ c ⊆ D′, such that the ratio between the radii of D′ and D
is at most α. In this case, the combinatorial complexity of the union of n such
objects, such that the boundaries of each pair of objects intersect in a constant
number of points, is O(n1+ε), for any ε > 0. See also Efrat and Katz [7] and
Efrat [6] for related (and slightly sharper) nearly-linear bounds.

In three and higher dimensions, Boissonnat et al. [4] proved that the maxi-
mum complexity of the union of n axis-parallel hypercubes in Rd is Θ

(
n⌈d/2⌉),

and that the bound improves to Θ
(
n⌊d/2⌋) if all hypercubes have the same size.

Pach et al. [15] showed that the combinatorial complexity of the union of n nearly
congruent arbitrarily oriented cubes in three dimensions is O(n2+ε), for any ε > 0.
Agarwal and Sharir [2] have shown that the complexity of the union of n congru-
ent infinite cylinders is O(n2+ε), for any ε > 0. In fact, the more general problem
studied in [2] involves the union of the Minkowski sums of n pairwise disjoint trian-
gles with a ball (where congruent infinite cylinders are obtained when the triangles
become lines), and the nearly quadratic bound is extended in [2] to this case as
well. Aronov et al. [3] showed that the union complexity of n κ-round objects in
R3 is O(n2+ε), for any ε > 0, where an object c is κ-round if for each p ∈ ∂c there
exists a ball B ⊂ c that touches p and its radius is at least κ ·diam(c). The bound
is O(n3+ε), for any ε > 0, for κ-round objects in R4. Finally, Ezra and Sharir [9]
have recently shown that the complexity of the union of n α-fat tetrahedra (that
is, tetrahedra, each of whose four solid angles at its four respective apices is at
least α) of arbitrary sizes in R3 is O(n2+ε), for any ε > 0. This result immediately
yields a nearly-quadratic bound on the complexity of the union of arbitrary cubes,
and thus generalizes the result of Pach et al. [15], who showed this bound only
for the case where the cubes have nearly equal size lengths. Each of the above
known nearly-quadratic bounds (for the three-dimensional case) is almost tight in
the worst case.

To recap, all of the above results indicate that the combinatorial complexity
of the union in these cases is roughly “one order of magnitude” smaller than the
complexity of the arrangement that they induce. While considerable progress has
been made on the analysis of unions in three dimensions, the case of the union of
infinite cylinders of arbitrary radii has so far been remained elusive.

In this study we make a significant progress on the problem of bounding the
complexity of the union of infinite cylinders of arbitrary radii in 3-space, and show
a nearly-quadratic bound on this complexity, thus settling a conjecture of Agarwal
and Sharir [2], who showed this bound only for the case where the cylinders are
(nearly) congruent. Our bound, which is the first known non-trivial bound for this
general problem, is almost tight in the worst case.

Specifically, we show:
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Theorem 1. The complexity of the union of n infinite cylinders is O(n2+ε), for
any ε > 0, where the constant of proportionality depends on ε. The bound is almost
tight in the worst case.

The analysis is based on some of the ideas presented in [2, 9], and on (1/r)-
cuttings [5], in order to partition space into triangular-prism subcells, so that, on
average, the overwhelming majority of the cylinders intersecting a subcell ∆ are
“good”, in the sense that they behave as functions within ∆ with respect to some
direction ρ. Thus vertices of the union that are incident (only) to good cylinders
appear on the boundary of the “sandwich region” enclosed between the “ρ-lower”
envelope of a subset of these functions and the “ρ-upper” envelope of another
subset of such functions, and, as shown in [1, 12], the complexity of this region
is nearly-quadratic. It then only remains to analyze the number of other types of
vertices (incident to some of the few “bad” cylinders that cross ∆), a task which
is handled by the divide-and-conquer mechanism based on our cutting (see below
for details).

The problem that we study is a generalization of the case where all the cylinders
are equal radii - a problem that has been studied by Agarwal and Sharir [2]. In
fact, a simple specialization of our analysis to that case yields the same asymptotic
bound on the complexity of the union as above. The analysis, based on our
approach, is significantly simpler than the analysis in [2], and can thus replace
that of [2]. (Note that we use a variant of some of the ideas given in [2], however,
most of the analysis steps taken in [2] are no longer needed.)

We extend our analysis to the case of “cigars” of arbitrary radii, that is,
Minkowski sums of line-segments and balls, and show that the bound on the
combinatorial complexity of the union is nearly-quadratic in this case as well.
This problem has been studied in [2] for the restricted case where the cigars are
equal-radii. Here too, our analysis is significantly simpler than that of [2], and,
in particular, the original problem is much easier to extend to this case using our
new approach than the approach of [2].
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Hardness of embedding simplicial complexes in Rd

Uli Wagner

(joint work with Jǐŕı Matoušek, Martin Tancer)

Does a given (finite) simplicial complex1 K of dimension at most k admit an
embedding into Rd? We consider the computational complexity of this question,
regarding k and d as fixed integers. To our surprise, this question has apparently
not been explicitly addressed before (with the exception of k = 1, d = 2 which is
graph planarity), as far we could find.

For algorithmic embeddability problems, we focus on piecewise linear (PL)
embeddings, which can easily be represented on a computer. Let us remark that
there are at least two other natural notions of embeddings of simplicial complexes
in Rd: linear embeddings (also called geometric realizations), which are more
restricted than PL embeddings, and arbitrary topological embeddings, which give
us more freedom than PL embeddings.2

1We will formally regard a simplicial complex as a geometric object. That is, a simplicial
complex is a (finite) collection K that is closed under taking faces and such that any two of
the simplices intersect in a common face. The dimension of a simplicial complex K is the
maximum of the dimensions of its simplices. The polyhedron of K, denoted by |K|, is the union
of all simplices in K. Often we do not strictly distinguish between a simplicial complex and its
polyhedron; for example, by an embedding of K in Rd we really mean an embedding of |K|.

A simplicial complex K ′ is a subdivision of K if |K ′| = |K| and each simplex of K ′ is contained
in some simplex of K.

2Since |K| is compact, we may define an embedding as a continuous map f : |K| → Rd that
is injective. For a linear embedding, we insist that f be linear on each simplex, so that it is
completely specified by the images of the vertices. A PL embedding is one that is linear on some
arbitrary subdivision of the original complex.
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To illustrate the differences with a familiar example, consider embeddings of
1-dimensional simplicial complexes, i.e., simple graphs, into R2. For a topological
embedding, the image of each edge can be an arbitrary Jordan arc, for a PL
embedding it has to be a polygonal arc (made of finitely many straight segments),
and for a linear embedding, it must be a single straight segment. For this particular
case (k = 1, d = 2), all three notions happen to give the same class of embeddable
complexes, namely, planar graphs (by Fáry’s theorem). For higher dimensions,
however, there are significant differences.3

We thus introduce the decision problem EMBEDk→d, whose input is a simplicial
complex K of dimension at most k, and where the output should be YES or NO
depending on whether K admits a PL embedding into Rd.

We assume k ≤ d, since a k-simplex cannot be embedded in Rk−1. For d ≥
2k + 1 the problem becomes trivial, since it is well known that every finite k-
dimensional simplicial complex embeds in R2k+1, even linearly (this result goes
back to Menger). In all other cases, i.e., k ≤ d ≤ 2k, there are both YES and
NO instances; for the NO instances one can use, e.g., examples of k-dimensional
complexes not embeddable in R2k due to Van Kampen [17] and Flores [6].

Let us also note that the complexity of this problem is monotone in k by defi-
nition, since an algorithm for EMBEDk→d also solves EMBEDk′→d for all k′ ≤ k.

It is well known that EMBED1→2 (graph planarity) is solvable in linear time.
Based on planarity algorithms and on a characterization of complexes embeddable
in R2 due to Halin and Jung [9], it is not hard to come up with a polynomial-time
decision algorithm for EMBED2→2.

Moreover, EMBEDk→2k is solvable in polynomial time for every k ≥ 3. This
is due to the fact that the cohomological van Kampen obstruction provides a
complete characterization of embeddability.4

According to a celebrated result of Novikov ([18]; also see, e.g., [10] for an expo-
sition), the following problem is algorithmically unsolvable: Given a d-dimensional
simplicial complex, d ≥ 5, decide whether it is homeomorphic to Sd, the d-
dimensional sphere. By a simple reduction we obtain the following result:

Theorem 1. EMBED(d−1)→d (and hence also EMBEDd→d) is algorithmically
undecidable for every d ≥ 5.

3For examples of complexes that are PL, but not linearly, embeddable, see [2, 4]. As for
topological versus PL embeddability, it is known that they coincide for (k, d) whenever d−k ≥ 3
[3], and also for (k, d) = (2, 3). The latter follows from from Theorem 5 of Bing [1] together
with the result by Papakyriakopoulos [11] (“Hauptvermutung” for 2-dimensional polyhedra) that
any two 2-dimensional polyhedra that are homeomorphic are also PL homeomorphic. However,
topological and PL embeddability do not always coincide: There is an example of a 4-dimensional
complex (namely, the suspension of the Poincaré homology 3-sphere) that embeds topologically,
but not PL, into R5. For this example we are indebted to Colin Rourke (private communication).

4This is based on ideas by Van Kampen [17], which were made precise by Shapiro [13] and
by Wu [20]. Deciding whether the Van Kampen obstruction vanishes amounts to solving a linear
system of equations over the integers, for which several polynomial-time algorithms are available
in the literature, see for instance [16].
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d =
k = 2 3 4 5 6 7 8 9 10 11 12 13
1 P + + + + + + + + + + +
2 P ? NPh + + + + + + + + +
3 ? NPh NPh P + + + + + + +
4 NPh UND NPh NPh P + + + + +
5 UND UND NPh NPh ? P + + +
6 UND UND NPh NPh NPh ? P +
7 UND UND NPh NPh NPh ? ?

Table 1. The complexity of EMBEDk→d (P = polynomial-time
solvable, UND = algorithmically undecidable, NPh = NP-hard,
+ = always embeddable, ? = no result known).

We remark that, by contrast, linear embeddability is always algorithmically
decidable5. Our main result is hardness for cases where d ≥ 4 and k is larger than
roughly 2

3d.

Theorem 2. EMBEDk→d is NP-hard for every pair (k, d) with d ≥ 4 and d ≥
k ≥ 2d−2

3 .

Let us briefly mention where the dimension restriction k ≥ (2d − 2)/3 comes
from. There is a certain necessary condition for embeddability of a simplicial
complex into Rd, called the deleted product obstruction. A celebrated theorem of
Haefliger and Weber, which is a far-reaching generalization of the ideas of Van
Kampen mentioned above, asserts that this condition is also sufficient provided
that k ≤ 2

3d − 1 (these k are said to lie in the metastable range). The condition
on k in Theorem 2 is exactly that k must be outside of the metastable range.

There are examples showing that the restriction to the metastable range in the
Haefliger–Weber theorem is indeed necessary, in the sense that whenever d ≥ 3
and d ≥ k > (2d − 3)/3, there are k-dimensional complexes that cannot be em-
bedded into Rd but the deleted product obstruction fails to detect this. We use
constructions of this kind, namely, examples due to Segal and Spież [14], Freed-
man, Krushkal, and Teichner [5], and Segal, Skopenkov, and Spież [15], as the
main ingredient in our proof of Theorem 2.

The current complexity status of EMBEDk→d is summarized in Table 1. In our
opinion, the most interesting currently open cases are (k, d) = (2, 3) and (3, 3).
These fall outside the metastable range, and it took the longest to find an example
showing that they are not characterized by the deleted product obstruction; see
[7]. That example does not seem to lend itself easily to a hardness reduction,
though.

5For k and d fixed, it even belongs to PSPACE, since since the problem can easily be for-
mulated as the solvability over the reals of a system of polynomial inequalities with integer
coefficients, which lies in PSPACE [12].
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For all we know, EMBEDk→d might turn out to be undecidable in all cases
except for those listed above as tractable, i.e., d ≤ 2 or d = 2k ≥ 6.
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Integer knapsacks: Average behavior of the Frobenius numbers

Iskander Aliev

(joint work with Martin Henk)

For a positive integral vector a = (a1, a2, . . . , aN ) ∈ ZN
>0 with gcd(a1, a2, . . . , aN ) =

1 and a positive integer b the knapsack polytope P = P (a, b) is defined as

P = {x ∈ RN
≥0 : 〈a, x〉 = b} ,

where 〈·, ·〉 denotes the inner product. The integer programming feasibility problem

Does the polytope P contain an integer vector?(1)

is called the integer knapsack problem and is well-known to be NP-complete.
Given the input vector a ∈ ZN , the largest integral value b such that the

instance of (1) is infeasible is called the Frobenius number of a , denoted by
gN = gN (a). The Frobenius number plays an important role in the analysis of
integer programming algorithms and, vice versa, integer programming algorithms
are known to be an effective tool for computing the Frobenius number. The general
problem of finding gN has been traditionally refereed to as the Frobenius problem.
There is a rich literature on the various aspects of this question. For an impressive
list of references see Ramirez Alfonsin [5].

Computing gN when N is not fixed is an NP-hard problem. For any fixed N
the Frobenius number gN can be found in polynomial time by a sophisticated
algorithm due to Kannan. One should mention here that, due to its complexity,
Kannan’s algorithm has apparently never been implemented.

In the most interesting case ai ∼ aj, i, j = 1, . . . , N , all known upper bounds
for gN (a) are of order ‖a‖2

∞, where ‖·‖∞ denotes the maximum norm. In general,
one can show that the quantity ‖a‖2

∞ plays a role of a limit for estimating the
Frobenius number gN from above.

The next natural and important question is to derive a good upper estimate
for the Frobenius number in average. This problem appears to be hard, and to
the best of our knowledge it has firstly been systematically investigated by Arnold
[1, 2, 3] and Bourgain and Sinai [4].

In this talk we show that the asymptotic growth of the Frobenius number in
average is significantly slower than the growth of the maximum Frobenius number.

More precisely, we prove that it does not essentially exceed ‖a‖1+1/(N−1)
∞ .
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Embeddings of discrete groups and the speed of random walks

Assaf Naor

Let G be a group generated by a finite set S and equipped with the associated
left-invariant word metric dG. For a Banach space X let α∗

X(G) (respectively

α#
X(G)) be the supremum over all α ≥ 0 such that there exists a Lipschitz map-

ping (respectively an equivariant mapping) f : G → X and c > 0 such that for
all x, y ∈ G we have ‖f(x) − f(y)‖ ≥ c · dG(x, y)α. In particular, the Hilbert
compression exponent (respectively the equivariant Hilbert compression exponent)

of G is α∗(G) := α∗
L2

(G) (respectively α#(G) := α#
L2

(G)). We show that if X has

modulus of smoothness of power type p, then α#
X(G) ≤ 1

pβ∗(G) . Here β∗(G) is the

largest β ≥ 0 for which there exists a set of generators S of G and c > 0 such that
for all t ∈ N we have E

[
dG(Wt, e)

]
≥ ctβ , where {Wt}∞t=0 is the canonical simple

random walk on the Cayley graph of G determined by S, starting at the identity
element. This result is sharp when X = Lp, generalizes a theorem of Guentner
and Kaminker, and answers a question posed by Tessera. We also show that if

α∗(G) ≥ 1
2 then α∗(G ≀ Z) ≥ 2α∗(G)

2α∗(G)+1 . This improves the previous bound due to

Stalder and Valette. We deduce that if we write Z(1) := Z and Z(k+1) := Z(k) ≀ Z

then α∗(Z(k)) = 1
2−21−k , and use this result to answer a question posed by Tessera

on the relation between the Hilbert compression exponent and the isoperimetric
profile of the balls in G. We also show that the cyclic lamplighter groups C2 ≀ Cn

embed into L1 with uniformly bounded distortion, answering a question posed by
Lee, Naor and Peres. Finally, we use these results to show that edge Markov type
need not imply Enflo type.

Beyond planarity: intersection patterns of curves

János Pach

(joint work with Jacob Fox)

According to Euler’s formula, every planar graph with n vertices has at most O(n)
edges. How much can we relax the condition of planarity without violating the
conclusion?

A graph drawn in the plane by possibly crossing curvilinear edges is called a
topological graph. It is assumed for simplicity that no edge of a topological graph
passes through a vertex, no two edges have infinitely many points in common, and
no three edges pass through the same point. A topological graph is k-quasiplanar
if it has no k pairwise crossing edges. It was shown in [3], [2], and [1] that, for
k = 3 and 4, all k-quasiplanar graphs with n vertices have O(n) edges. It is
conjectured that the same is true for every fixed positive integer k > 4. The best
known general upper bound was established in [6].
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Theorem 1. Every k-quasiplanar topological graph with n vertices has at most
n(log n)c log k edges, where c is an absolute constant.

Better bounds are known if we assume that any two edges cross at most once
[14], [16] or that the edges are chords of a convex polygon [5].

Another relaxation of planarity was studied in [13]. Two ℓ-element collections
of edges in a topological graph are said to form an ℓ-grid if every edge in the first
collection crosses all edges in the second.

Theorem 2 ([13]). For any ℓ, there exists a constant cℓ ≈ 55ℓ

such that every
topological graph with n vertices and more than cℓn edges contains and ℓ-grid.

In [8], the dependence of the constant cℓ on ℓ was improved to roughly
√

ℓ,
which is essentially optimal. One can also prove that the existence of at least
cℓn log∗ n edges in a topological graph with n vertices always guarantees an ℓ-grid
in which no pair of edges share an endpoint. Here log∗ n stands for the iterated
logarithm of n, and it can be conjectured that the statement remains true without
this factor.

Most of the proofs of the above results heavily use the Crossing Lemma [4], [11]
and various forms of an inequality of Leighton linking the crossing number and
the bisection width of a graph [14], [15], [9]. We use these tools to establish the
following statement, from which Theorem 2 can be easily deduced.

Theorem 3. For any ℓ, there exists a constant c′ℓ such every Kℓ,ℓ-free intersection
graph of n continuous curves in the plane has at most c′ℓn edges.

Another important ingredient of the proof is the following variant of the Lipton–
Tarjan Separator Theorem for planar graphs [12], [7].

Theorem 4. Every intersection graph G of n continuous curves in the plane,
which has e edges, permits a separator of size at most ce3/4

√
log e, where c is an

absolute constant. In other words, one can remove at most this many curves so
that the remaining curves can be divided into two groups of size at most 2n/3 with
no intersection between them.

An alternative proof of Theorem 3, providing much worse constants c′ℓ, can be
given based on [10].
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[8] J. Fox, J. Pach, Cs.D. Tóth, A bipartite strengthening of the Crossing Lemma, in: Graph
Drawing (S.-H. Hong, T. Nishizeki, eds.), Lecture Notes in Computer Science 4875,
Springer-Verlag, Berlin, 2008, 13–24.
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On the number of simplicial 3-spheres and 4-polytopes with N facets

Günter M. Ziegler

(joint work with Bruno Benedetti)

1. Question

Is the number of combinatorial types of simplicial 3-spheres on N facets bounded
by an exponential function CN?

This question is fundamental for the construction of a partition functions for
quantum gravity [1], where space is modelled by a 3-sphere glued from regular
tetrahedra of edge lengths ε, and one is interested in the limit if N → ∞, which
corresponds to modelling space by triangulations by regular tetrahedra of edge
lengths ε → 0.

2. Related

A related question asks for the number of simplicial 3-spheres and 4-polytopes
on n vertices. Here it is long known that there are only exponentially many
polytopes [5], while there are more than exponentially many spheres [11].
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3. Local constructibility

In the lower-dimensional case of simplicial 2-spheres, we have the same count for
2-spheres and for 3-polytopes with N facets, due to Steinitz’ theorem. The answer
is asymptotically of the order of (256

27 )N/2, according to Tutte [12].
An elementary approach to this case, which also gives an exponential upper

bound and invites for generalization to higher dimensions, first counts plane “trees
of N triangles” (which correspond to triangulations of an (2N + 1)-gon, so there
are less than 22N of these), and then gluings on the boundary, which amounts to
planar matchings in the exterior (which again yields a factor of 22N ).

In 1995 Durhuus and Jonsson [3] introduced a concept that generalizes this
approach: A simplicial 3-sphere is locally constructible (LC) if it can be obtained
from a tree of tetrahedra by successive gluings of adjacent (!) boundary triangles.
They showed that there are only exponentially-many LC 3-spheres.

4. Hierarchy

We link the LC concept with the notions of shellability and constructibility that
were established in combinatorial topology [2], and thus obtain the following hier-
archy for simplicial 3-spheres:

polytopal ⇒ shellable ⇒ constructible ⇒ LC.

5. Main Results

Theorem 1. Every constructible simplicial sphere is LC.

This result establishes the hierarchy above. We also have an extension to simpli-
cial d-spheres, d ≥ 2. It depends on a simple lemma, according to which gluing two
LC d-pseudomanifolds along a common strongly-connected pure (d − 1)-complex
in the boundary yields an LC d-complex.

Theorem 2. There are less than 28N LC simplicial 3-spheres on N facets.

This result slightly sharpens an estimate by Durhuus and Jonsson. We also
extend it to LC d-spheres.

Combination of Theorem 2 with the hierarchy (Theorem 1) yields that there
are only exponentially-many simplicial 4-polytopes with a given number of facets.
(This answers a question by Kalai; as pointed out by Fukuda at the workshop,
this may as well be derived from the fact that there are only exponentially many
simplicial 4-polytopes on n vertices by [5].)

More generally, for fixed d we get that there are only exponentially-many
shellable d-spheres on N facets. This is interesting when compared with the stud-
ies of Kalai [7] and Lee [8], which showed that for d ≥ 4, there are more than
exponentially many shellable d-spheres on n vertices.

Theorem 3. If a simplicial 3-sphere S contains a triangle L that is knotted such
that the fundamental group of its complement in S has no presentation with 3
generators, then S is not LC.
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This result is derived from the fact that if S is an LC 3-sphere and ∆ is a facet
of S, then S \ ∆ is collapsible. By a result by Lickorish [9] this implies that the
fundamental group of S \ L has a presentation with at most 3 generators.

Combined with the known constructions of simplicial 3-spheres with badly-
knotted triangles (which go back to Furch [4]), this yields that not all simplicial
3-spheres are locally constructible. This solves a problem by Durhuus and Jonsson.
More precisely, spheres with a knotted triangle are not constructible by [6], but if
the knot is not complicated, they can be LC (this we derive from [10]).

The basic question about the number of simplicial 3-spheres with N facets
remains, as far as we know, open.
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Geometric configurations and Fourier analysis

Alex Iosevich

The class of problems we study has seen much recent and not so recent activity
in harmonic analysis, ergodic theory, geometric combinatorics and number the-
ory. The basic idea is to show that a sufficiently large subset of a vector space
contains a suitable copy of a given geometric configuration. The following results
due to Furstenberg, Katznelson and Weiss ([7]), proved by ergodic methods, are
interesting and influential examples of this phenomenon.
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Theorem 1. Let E ⊂ Rd, of positive upper Lebesgue density in the sense that

(1) lim sup
R→∞

Ld{E ∩ [−R, R]
d}

(2R)
d

> 0,

where Ld denotes the d-dimensional Lebesgue measure. Then there exists l0 such
that for l > l0 one can find a pair of points x, y ∈ E such that |x − y| = l.

Theorem 2. Let E ⊂ R2, of positive upper Lebesgue density in the sense of (1).
Let Eδ denote the δ-neighborhood of E. Then, given vectors u, v in R2, there exists
l0 such that for l > l0 and any δ > 0, there exists {x, y, z} ⊂ Eδ forming a triangle
congruent to {0, lu, lv}, where 0 denotes the origin in R2.

Bourgain ([2]) proved that in Theorem 2, Eδ cannot in general be replaced by
E. He showed that if E = {(x1, x2) ∈ R2 : ∃n ∈ Z with |x2

1 + x2
2 − n| < 1

10}, then
E has positive upper Lebesgue density, yet it is not in general possible to find a
congruent copy of the configuration {0, u, 2u} inside E. Observe that Bourgain’s
example involves a degenerate triangle where all three vertices are on the same
line and are arranged in an arithmetic progression of length three. On the other
hand, Bourgain ([2]) used a Fourier analytic approach to prove the following result
for non-degenerate simplexes.

Theorem 3. Let E ⊂ Rd, of positive upper Lebesgue density in the sense of (1)
and suppose that 1 < k ≤ d. Then E contains a sufficiently large dilate of every
non-degenerate k-simplex.

Tamar Ziegler ([22]) has recently generalized Theorem 2 as follows.

Theorem 4. Let E ⊂ Rd, of positive upper Lebesgue density in the sense of (1).
Let Eδ denote the δ-neighborhood of E. Let V = {0, v1, v2, . . . , vk−1} ⊂ Rd, where
k ≥ 2 is a positive integer. Then there exists l0 > 0 such that for any l > l0 and
any δ > 0 there exists {x1, . . . , xk} ⊂ Eδ congruent to lV = {0, lv1, . . . , lvk−1}.

The following results can be viewed as discrete analogs of the configuration
results of Bourgain, Furstenberg, Katznelson, Weiss, Ziegler and others we just
described. Let E ⊂ Fd

q , d ≥ 2, where Fq is a finite field with q elements and

Fd
q is the d-dimensional vector space over Fq. The finite version of the k-point

configuration problem that we consider here is the following.

Problem 5. Let E ⊂ Fd
q, d ≥ 2. Let V = {0, v1, . . . , vk−1}, vj ∈ Fd

q , be non-

degenerate in the sense that {v1, . . . , vk−1} spans a (k − 1)-dimensional sub-space
of Fd

q . Here 0 denotes the origin in Fd
q. How large does E need to be to ensure

that E contains a congruent copy of V in the sense that there exists τ ∈ Fd
q and

O ∈ SOd(Fq) such that τ + O(V ) ⊂ E?

Here and throughout, SOd(Fq) is the group of orthogonal d by d matrices with
entries in Fq. Observe that dilations are not used in Problem 5 because the lack
of order in Fq makes the notion of a sufficiently large dilation meaningless. The
following result is joint work with my Ph.D. student Derrick Hart.



2516 Oberwolfach Report 44/2008

Theorem 6 (Hart and Iosevich ([9]). Let E ⊂ Fd
q , d ≥ 2, such that |E| ≥

Cqd k−1

k
+ k−1

2 with a sufficiently large constant C > 0, where |E| denotes the number
of elements in E. Then, given V = {0, v1, . . . , vk−1}, vj ∈ Fd

q, non-degenerate in
the sense of Problem 5, there exists a congruent copy of V in E in the sense of
Problem 5.

Moreover, the number of distinct congruent copies of V contained in E is equal
to

(2) |E|kq−(k

2)(1 + o(1)).

We also have the following analog of Theorem 2 where we are able to consider
triangles in the plane, not covered in Theorem 6, at the cost of only being able
to realize a positive proportion of the triangles. The following result is joint work
with Ignacio Uriarte-Tuero and my Ph.D. students, David Covert and Derrick
Hart.

Theorem 7 (Covert, Hart, Iosevich and Uriarte-Tuero ([4])). Let E ⊂ F2
q and let

T3(E) denote the set of non-congruent three point configurations where congruence

is defined in Problem 5 above. Suppose that |E| = ρq2, where Cq−
1
2 ≤ ρ ≤ 1. Then

|T3(E)| ≥ cρq3.

It is also interesting to mention the following distance set finite field model,
previously obtained by Rudnev and me ([15]). It should be viewed as the k = 2
special case of Theorem 6 since fixing the distance, in the sense described below,
determines a two-point configuration up to congruence. The sharpness aspects of
this result were established in ([10]).

Theorem 8 (Rudnev and Iosevich ([15])). Let E ⊂ Fd
q, d ≥ 2. Then if |E| >

2q
d+1

2 , then ∆(E) = {‖x − y‖, x, y ∈ E} = Fq, where ‖x‖ = x2
1 + x2

2 + · · · + x2
d.

Moreover, if the dimension d is odd, the exponent d+1
2 cannot be improved even if

instead of asking for ∆(E) = Fq we simply ask for |∆(E)| ≥ cq.

In two dimensions, my Ph.D. student Doowon Koh and I ([13]) recently proved

that if |E| ≥ Cq
4
3 , then |∆(E)| ≥ cq, thus matching the Euclidean exponent

obtained by Wolff in ([21]) in the context of the Falconer problem in R2. This was
accomplished using restriction theory for the sphere, developed in the finite field
context by Koh and me (see [12] and the references contained therein) and using
the discrete analog of the Mattila integral introduced in ([15]).

A local version of the question underlying Theorem 1 can be stated as follows.

Let E ⊂ [0, 1]
d
. How large does the Hausdorff dimension of E need to be to ensure

that the distance set ∆(E) = {|x − y| : x, y ∈ E} has positive one-dimensional

Lebesgue measure, where |x| =
√

x2
1 + · · · + x2

d. This is known as the Falconer
distance problem, introduced in [6]. This problem can be viewed as a continuous
analog of the Erdős distance problem. See, for example, [16] and the references
contained therein. It is shown in [6], using the set obtained by a suitable scaling of
the thickened integer lattice that the best result we can hope for is the following.
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Conjecture 9. (Falconer distance conjecture) Let E ⊂ Rd with dimH(E) > d
2 .

Then L1(∆(E)) > 0, where L1 denotes the one-dimensional Lebesgue measure.

The best known result in this direction, due to Wolff ([21]) in the plane and to
Erdogan ([5]) in higher dimensions, says that L1(∆(E)) is indeed positive if the
Hausdorff dimension of E, dimH(E), is greater than d

2 + 1
3 . The proofs are Fourier

analytic in nature and rely, at least in higher dimensions, on bi-linear extension
theory.

The theme of analytic bounds implying geometric and arithmetic results has
a long and distinguished history in harmonic analysis. A particularly well-known
example of this phenomenon is the fact that the restriction conjecture for the
Fourier transform implies the Besicovitch-Kakeya conjecture which says that the
Hausdorff dimension of a set in Rd containing a unit line segment in every direction
is d. This stems from C. Fefferman’s use of the Besicovitch construction to prove
that the ball multiplier is not bounded for any p 6= 2. This implication is much
more than a black box curiosity. While the implication cannot be completely
reversed, the associated ideas have led to significant improvements in our state of
knowledge of the restriction problem. See [19], [20] and the references contained
therein.

As we mention above, the improvements on the d+1
2 exponent in the Falconer

distance problem by Bourgain ([3]), Wolff ([21]) and Erdogan ([5]) were accom-
plished via the estimation of the Mattila integral. Moreover, in all of these papers,
the estimation of the Mattila integral is accomplished via the point-wise estimation
of the spherical average

(3)

∫

Sd−1

|µ̂(tω)|2dω.

Furthermore, the structure of the sphere as such did not play a role in these argu-
ments, only the fact that Sd−1 is smooth, convex and has non-vanishing Gaussian
curvature. In view of this, consider the following generalization of the Mattila inte-

gral, studied, for example, in ([1]) and ([11]): MK =
∫∞
1

(∫
∂K

|µ̂(tω)|2dωK

)2

td−1dt,

where K is a bounded convex set with a smooth boundary ∂K with everywhere
non-vanishing Gaussian curvature. One can check that the boundedness of the
Mattila integral implies the positivity of the Lebesgue measure of the generalized
distance set ∆K(E) = {‖x− y‖K : x, y ∈ E}, where ‖ · ‖K denotes the norm in-

duced by K. The analog of the spherical average here is
∫

∂K
|µ̂(tω)|2dωK , where

dωK is the Lebesgue measure on ∂K. If µ is supported on a set of Hausdorff
dimension s, it is not difficult to see that the best estimate we can expect is

(4)

∫

∂K

|µ̂(tω)|2dωK / t−s,

where here and throughout, X / Y means that for every ǫ > 0 there exists Cǫ > 0
such that X ≤ Cǫt

ǫY .
The examples that show that this is not in general possible in [18] and [14], both

constructed for the case when ∂K = Sd−1, may not be very relevant to the Falconer
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distance problem itself. The example in [18] uses a rather specific measure which
is not a Frostman measure and replacing it with a different one allows for a much
stronger estimate to go through. The examples in [14] use Frostman measures,
but they do not contradict (4) when the Hausdorff dimension of the underlying
set is close to d

2 , the conjectured range of the Falconer conjecture.
Let us now focus on the point that all the efforts to date to bound the Mattila

integral do not really distinguish between Sd−1 and a smooth convex ∂K with
non-vanishing curvature. The following result follows from the proof of Theorem
1.4 in [14] using the construction from sub-section 3.2 above.

Theorem 10 (Rudnev and Iosevich ([14])). Suppose that the bound (4) holds for
every Frostman measure µ supported on a compact set E of Hausdorff dimension
s, with s contained in an interval including d

2 . Then for every compact smooth
convex surface ∂K with everywhere non-vanishing Gaussian curvature,

(5) #{Zd ∩ R∂K} / Rd−2.

The estimate (5), for d ≥ 3, is sometimes called the Schmidt conjecture ([17]).
While it is known to hold in the case ∂K = Sd−1 via a classical and highly non-
trivial result in analytic number theory ([8]), it is nowhere near resolution for
general smooth convex surfaces with everywhere non-vanishing Gaussian curva-
ture. Thus one cannot realistically expect to obtain anything resembling a sharp
estimate for (3) without either coming to grips with the underlying difficulties in
the Schmidt conjecture or by explicitly using the fact that one is working with
Sd−1 and not a general smooth convex surface with everywhere non-vanishing
Gaussian curvature. When d = 2, the estimate (5) is not true. An example due
to Konyagin shows that there exists a smooth convex curve Γ, with everywhere
non-vanishing curvature, such that there exists a sequence Ri → ∞ for which
#{RiΓ ∩ Z2} ≈ √

Ri. One can use this example and a modification of the proof
of Theorem 10 to see that the estimate (4) does not in general hold and thus the
Falconer conjecture cannot be proved in this way without distinguishing between
the circle and a general smooth convex curve with non-vanishing curvature in a
very non-trivial way.
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Random matrices with prescribed row and column sums

Alexander Barvinok

Let us fix a positive integer m-vector R = (r1, . . . , rm) and a positive integer
n-vector C = (c1, . . . , cn) such that

m∑

i=1

ri =
n∑

j=1

cj = N.

Let us consider the set Σ(R, C) of all m×n non-negative integer matrices D = (dij)
with row sums R and column sums C (also known as contingency tables) as a finite
probability space with the uniform measure. We are interested in what a random
matrix D ∈ Σ(R, C) is likely to look like. It turns out that asymptotically, for large
m and n, a random matrix D ∈ Σ(R, C) is very likely to be close to a particular
non-negative matrix Z with row sums R and column sums C computed as follows.
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Let us define a function

g(x) = (x + 1) ln(x + 1) − x ln x for x ≥ 0.

Thus g is a strictly concave increasing function. Then Z is the unique matrix
maximizing the value of

∑

ij

g(xij)

on the set (transportation polytope) of all non-negative m×n matrices X = (xij)
with row sums R and column sums C. Let us fix a set

S ⊂
{
(i, j) : i = 1, . . . , m; j = 1, . . . , n

}

of indices. Then, if S is sufficiently large, that is, if |S| ≥ δmn for some fixed δ > 0,
then, as m and n grow, with overwhelming probability the sum of entries in S of a
random table D ∈ Σ(R, C) is very close to the sum of entries in S of matrix Z, see
[3] for the precise statement. Interestingly, unless all the row sums ri are equal or
all the column sums cj are equal, matrix Z differs from the “independence table”
Y = (yij) defined by yij = ricj/N .

Similarly, let us consider the set Σ0(R, C) of all m× n matrices D = (dij) with
row sums R, column sums C, and entries dij ∈ {0, 1} for all i, j. We consider the
set Σ0(R, C), if non-empty, as a finite probability space with the uniform measure.
It turns out that a random D ∈ Σ0(R, C) is very likely to be close to the matrix
Z maximizing the sum of entropies

H(X) =
∑

ij

H(xij) where H(x) = x ln
1

x
+ (1 − x) ln

1

1 − x
for 0 ≤ x ≤ 1

among all m×n matrices X = (xij) with row sums R, column sums C and entries
0 ≤ xij ≤ 1 for all i, j, see [2] for the precise statement.

These results for random tables are based on the estimates of the cardinalities
|Σ(R, C)| and |Σ0(R, C)|. The following result was proved in [1].

Let

ρ(R, C) = min
0<xi,yj<1

(
m∏

i=1

x−ri

i

)


n∏

j=1

y
−cj

j








∏

ij

1

1 − xiyj



 .

Then

ρ(R, C) ≥ |Σ(R, C)| ≥ N−γ(m+n)ρ(R, C)

for some absolute constant γ > 0.
A similar result holds for 0-1 tables [2]. Let

α(R, C) = inf
xi,yj>0

(
m∏

i=1

x−ri

i

)


n∏

j=1

y
−cj

j








∏

ij

(1 + xiyj)



 .
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Then

α(R, C) ≥ |Σ0(R, C)| ≥ (mn)!

(mn)mn

(
m∏

i=1

(n − ri)
n−ri

(n − ri)!

)


n∏

j=1

c
cj

j

cj !



α(R, C).

Stirling’s formula implies that the ratio between the lower and the upper bounds is
of the order of (mn)−γ(m+n) for an absolute constant γ > 0. Substitutions xi = esi ,
yj = etj convert the problems of computing ρ(R, C) and α(R, C) into convex
optimization problems. The typical matrix Z is the solution to the corresponding
convex dual problem.

Similar results hold for matrices with prescribed row and column sums and
zeros in prescribed positions.
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How to integrate a polynomial over a polytope

Jesús A. De Loera

(joint work with V. Baldoni, N. Berline, M. Köppe, M. Vergne)

Let ∆ be a d-dimensional rational simplex inside Rn and let f ∈ Q[x1, . . . , xn]
be a polynomial with rational coefficients. We consider the problem of how to
efficiently compute the exact value of the integral of the polynomial f over ∆,
which we denote by

∫
∆ fdm. We use here the integral Lebesgue measure dm on

the affine hull of the simplex ∆.This normalization of the measure occurs naturally
in Euler–Maclaurin formulas for a polytope P , which relate sums over the lattice
points of P with certain integrals over the various faces of P . For this measure, the
volume of the simplex and every integral of a polynomial function with rational
coefficients are rational numbers.

The main goals of our work have been to discuss the computational complexity
of the problem and to provide practical methods to do the computation that are
both theoretically efficient and have reasonable performance in concrete examples.

Computation of integrals of polynomials over polytopes is fundamental through-
out applications. We already mentioned summation over lattice points of a poly-
tope. Simplices are the fundamental case to consider for integration since any
convex polytope can be triangulated into finitely many simplices.

Before we can state our results let us understand better the input and output
of our computations. Our output will always be the rational number

∫
∆

fdm in
the usual binary encoding. The d-dimensional input simplex will be represented
by its vertices s1, . . . , sd+1 (a V -representation) but note that, in the case of a
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simplex, one can go from its representation as a system o f linear inequalities (an
H-representation) to a V -representation in polynomial time, simply by computing
the inverse of a matrix.

The encoding size of ∆ is given by the number of vertices, the dimension, and
the largest binary encoding size of the coordinates among vertices. Computa-
tions with polynomials also require that one specifies concrete data structures for
reading the input polynomial and to carry on the calculations. There are several
possible choices. One common representation of a polynomial is as a sum of mono-
mial terms with rational coefficients. Some authors assume the representation is
dense (polynomials are given by a list of the coefficients of all monomials up to
a given total degree r), while other authors assume it is sparse (polynomials are
specified by a list of exponent vectors of monomials with non-zero coefficients, to-
gether with their coefficients). Another popular representation is by straight-line
programs. A straight-line program which encodes a polynomial is, roughly speak-
ing, a program without branches which enables us to evaluate it at any given
point. General straight-line programs are too compact for our purposes, so instead
we restrict to a subclass we call single-intermediate-use (division-free) straight-line
programs or SIU straight-line programs for short. The reader should think that
polynomials are represented as fully parenthesized arithmetic expressions involving
binary operators + and ×.

Now we are ready to state our first result.

Theorem 1 (Integrating general polynomials over a simplex is hard). The fol-
lowing problem is NP-hard.
Input:

• numbers d, n ∈ N in unary encoding,
• affinely independent rational vectors s1, . . . , sd+1 ∈ Qn in binary encoding,
• an SIU straight-line program Φ encoding a polynomial f ∈ Q[x1, . . . , xn]

with rational coefficients.

Output, in binary encoding:

• the rational number
∫
∆ fdm, where ∆ ⊆ Rn is the simplex with ver-

tices s1, . . . , sd+1 and dm is the integral Lebesgue measure of the rational
affine subspace langle∆〉.

But we can also prove the following positive results.

Theorem 2 (Efficient integration of polynomials of fixed effective number of
variables). For every fixed number D ∈ N, there exists a polynomial-time algorithm
for the following problem.
Input:

• integer numbers d, n, M in unary encoding,
• affinely independent rational vectors s1, . . . , sd+1 ∈ Qn in binary encoding,
• a polynomial f ∈ Q[X1, . . . , XD] represented by either an SIU straight-line

program Φ of formal degree at most M , or a sparse or dense monomial
representation of total degree at most M ,
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• a rational matrix L with D rows and n columns in binary encoding, the
rows of which define D linear forms x 7→ 〈ℓj ,x〉 on Rn.

Output, in binary encoding:

• the rational number
∫
∆

f(〈ℓ1,x〉, . . . , 〈ℓD,x〉)dm, where ∆ ⊆ Rn is the
simplex with vertices s1, . . . , sd+1 and dm is the integral Lebesgue measure
of the rational affine subspace 〈∆〉.

In particular, the computation of the integral of a power of one linear form
can be done by a polynomial time algorithm. This becomes false already if one
considers powers of a quadratic form instead of powers of a linear form. Actually,
we prove Theorem 1 by looking at powers QM of the Motzkin–Straus quadratic
form of a graph.

Corollary 3 (Efficient integration of polynomials of fixed degree). For every fixed
number M ∈ N, there exists a polynomial-time algorithm for the following problem.
Input:

• numbers d, n ∈ N in unary encoding,
• affinely independent rational vectors s1, . . . , sd+1 ∈ Qn in binary encoding,
• a polynomial f ∈ Q[x1, . . . , xn] represented by either an SIU straight-line

program Φ of formal degree at most M , or a sparse or dense monomial
representation of total degree at most M .

Output, in binary encoding:

• the rational number
∫
∆ f(x)dm, where ∆ ⊆ Rn is the simplex with ver-

tices s1, . . . , sd+1 and dm is the integral Lebesgue measure of the rational
affine subspace langle∆〉.

A full-length version of this work will be soon posted in the mathematics ArXiv.

Lower bounds on weak ǫ-nets

Boris Bukh

(joint work with Gabriel Nivasch, Jǐŕı Matoušek)

A common theme in mathematics is approximation of large, complicated objects
by simpler, smaller objects of lower complexity. An instance of that in discrete
geometry are ǫ-nets. For a family of sets F in Rd and a finite set of points P ⊂ Rd

a point set N ⊂ P is said to be an ǫ-net if every set F ∈ F containing at least
ǫ|P | of points from P contains at least one point from N . Though set P itself is
a an ǫ-net, often P rather tiny ǫ-net. A notable example is when the set family F
is of finite Vapnik-Chervonenkis dimension, or VC-dimension for short. If F has
finite VC-dimension, then for every P , however large, there is always an ǫ-net of
size O(1

ǫ log 1
ǫ ). As an example, VC-dimension is finite for the family of all convex

polyhedra in Rd with at most n faces, for any fixed n.
The VC-dimension of the family of all convex sets in Rd is infinity, and in

fact there is no function f such that every set has an ǫ-net of size at most f(ǫ).
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However, as shown by Alon, Bárány, Füredi and Kleitman [1] in this case there are
still nets of size bounded by a function of ǫ if one does away with the requirement
that the net is a subset of the set it approximates. Precisely, call N ⊂ Rd a weak
ǫ-net for P if every set F ∈ F containing ǫ|P | points of P contains at least one
point of N . In [1] showed that there is always a weak ǫ-net for the family of convex
sets in Rd of size bounded by function of only d and ǫ. We will denote by fd(ǫ)
the least integer such that for every P ⊂ Rd there is a weak ǫ-net for convex sets
of size at most fd(ǫ). In the sequel when we speak of weak ǫ-nets we will always
mean weak ǫ-nets for convex sets.

The bounds that Alon, Bárány, Füredi and Kleitman established are still best
known for two dimensions: f(ǫ) ≤ ǫ−2, but the best bound in higher dimensions
f(ǫ) ≤ ǫ−d logcd 1

ǫ is due to Chazelle, Edelsbrunner, Grigni, Guibas, Sharir and
Welzl[3]. The only lower bound for the size of weak ǫ-nets in any dimension is 1/ǫ.
This bound follows from the observation that every set P can be partitioned into
1/ǫ parts by parallel hyperplanes, and there has to be at least one point of a weak
ǫ-net between each pair of adjacent hyperplanes. Alon, Kaplan, Nivasch, Sharir,
Smorodinsky [2] came close to this lower bound when they showed that if P ⊂ R2

is in convex position, then there is always a weak ǫ-net for P of size 1
ǫ α(1

ǫ ) where α
is the inverse of the Ackerman function. As α grows extremely slowly, and finding
ǫ-nets for sets in convex positions hardly seems easier than for arbitrary sets, it
was a good evidence that 1/ǫ might be the true order of magnitude for f2(ǫ).

We establish the first superlinear lower bounds on weak ǫ-nets.

Theorem 1. For every d ≥ 1 and every 0 < ǫ < 1/2 the bound

fd(ǫ) ≥ cd
1

ǫ
logd−1 1

ǫ
holds. Here cd is constant that depends only on the dimension d.

For d = 2 this bound is larger than the upper bound 1
ǫ α(1/ǫ) for sets in convex

position mentioned above. In particular, the worst set for constructing weak ǫ-nets
is necessarily not in convex position.

The construction that establishes the theorem is very simple. For positive real
numbers A and B let A ≪ B mean f(A) < B for large and sufficiently quickly
growing function f (for concreteness, one can take f(x) = (d + 1)!(x + 1)d). Let
xi,j for i = 1, . . . , d and j = 1, . . . , n be any numbers satisfying xi1,j1 ≪ xi2,j2

whenever (i1, j1) precedes (i2, j2) lexicographically (i.e. if either i1 < i2 or (i1 =
i1) ∧ (j1 < j2)). Let Xi = {xi,j : j = 1, . . . , n}. The sets that yields the lower
bound in the theorem above is X = X1 × · · · × Xd ⊂ Rd.

The main fact that makes this construction work is that every convex set C can
be approximated by a combinatorially simple set that behaves almost like C with
respect to the points of X . These combinatorially simple sets are called stairconvex
sets. Here are a couple of equivalent ways to define them:

Definition 2. Stairconvex hull of two points p = (p1, . . . , pd) ∈ Rd and q =
(q1, . . . , qd) ∈ Rd is defined recursively as:

(1) If d = 1, then sconv(p, q) is the interval [p1, q1].
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(2) If d > 1, and pd ≤ qd, then

sconv(p, q) = sconv((p1, . . . , pd−1), (q1, . . . , qd−1))×{qd}∪ (p1, . . . , pd−1)× [pd, qd].

(3) If d > 1, and qd ≤ pd, then

sconv(p, q) = sconv((q1, . . . , qd−1), (p1, . . . , pd−1))×{pd}∪ (q1, . . . , qd−1)× [qd, pd].

A set C is said to be stairconvex if C contains sconv(p, q) for every p, q ∈ C.

Definition 3. In R1 the stairconvex sets are intervals. In Rd a set C is stairconvex
if

(1) Cx := {(x1, . . . , xd−1) ∈ Rd−1 : (x1, . . . , xd−1, x) ∈ C} is stairconvex for
every x, and

(2) Cx ⊂ Cy whenever x ≤ y and Cy is non-empty.

Though first definition of stairconvex sets is the one which resembles the defini-
tion of convex sets more, it is the second definition, which is of most use. For ex-
ample, it implies that an arbitrary union of boxes of the form [x1, a1]×· · ·× [xd, ad]
for a fixed a ∈ Rd and varying x’s, is stairconvex. It is in sharp contrast with the
situation for convex sets: a union of two convex sets is rarely convex. While en-
joying nice combinatorial properties denied to convex sets, stairconvex sets retain
many useful properties of convex set such as Helly’s and Tverberg’s theorems.
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Gale duality bounds for roots of polynomials with nonnegative

coefficients

Julian Pfeifle

We bound the location of roots of polynomials that have nonnegative coefficients
with respect to a fixed but arbitrary basis of the vector space of polynomials of
degree at most d. For this, we interpret the basis polynomials as vector fields in
the real plane, and at each point in the plane analyze the combinatorics of the
Gale dual vector configuration. We apply our technique to bound the location of
roots of Ehrhart and chromatic polynomials. Finally, we give an explanation for
the clustering seen in plots of roots of random polynomials.

The Ehrhart polynomial of a d-dimensional lattice polytope Q is a real polyno-
mial of degree d, which has the following two representations:

iQ = iQ(z) =
d∑

j=0

cjz
j =

d∑

i=0

ai

(
z + d − i

d

)
.
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Here we chose the letter z for the independent variable in order to emphasize that
we think of iQ as a polynomial defined over the complex numbers. The coefficients
c0, cd−1 and cd in the first representation are positive, while the others generally
can vanish or take on either sign. In contrast, a famous theorem of Stanley [5]
asserts that all coefficients ai of iQ in the latter representation are nonnegative,
ai ≥ 0 for 0 ≤ i ≤ d.

First bounds obtained in [1] on the location of the roots of iQ were substantially
improved by Braun [2] and Braun & Develin [3]. All of these papers use the
nonnegativity of the ai’s, but Braun’s crucial new insight is to think of the value
iQ(z) at each z ∈ C as a linear combination with nonnegative coefficients of the

d + 1 complex numbers bi = bi(z) =
(
z+d−i

d

)
. In particular, for z0 to be a zero

of iQ, there must be a nonnegative linear combination of the bi(z0) that sums to 0.
We build on and generalize this approach in several directions. To see how, let

B = {b0, . . . , bd} be any basis of Pd, the (d + 1)-dimensional vector space of real
polynomials of degree at most d in one variable.

• We regard the given basis of Pd as a collection of vector fields : for each complex
number z ∈ C, the basis elements b0(z), . . . , bd(z) define a configuration B(z) =(
w0(z), . . . , wd(z)

)
of real vectors wj(z) = (Re bj(z), Im bj(z))T in the plane R2.

This point of view converts the algebraic problem of bounding the location
of roots of a polynomial into a combinatorial problem concerning the discrete
geometry of vector configurations.

• We analyze the combinatorics of the vector configuration B(z) in terms of
the Gale dual configuration B∗(z). In particular, there exists a polynomial

f =
∑d

i=0 aibi(z) with nonnegative coefficients ai ≥ 0 and a root at z = z0

whenever the vector configuration B(z0) has a nonnegative circuit, and this
occurs whenever B∗(z0) has a nonnegative cocircuit.

The important point here is that we obtain a semi-explicit expression for B∗

for any basis of Pd, not just the binomial coefficient basis. For four common
bases of Pd, namely the power basis bi = zi, the rising and falling factorial bases

bi = zi, zi, and the binomial coefficient basis bi =
(
z+d−i

d

)
we can make the Gale

dual completely explicit.
• In concrete situations one often has more information about the coefficients of f

than just nonnegativity. Gale duality naturally allows to incorporate any linear
equations and inequalities on the coefficients, and in some cases this leads to
additional restrictions on the location of roots.

As an illustration, we show how the inequality ad ≤ a0 + a1 that is valid for
Ehrhart polynomials further constrains the location of the roots of iQ. We also
study the case of chromatic polynomials, for which Brenti [4] has shown the
nonnegativity of the coefficients with respect to the binomial coefficient basis.

• In the case of the binomial coefficient basis, Braun & Develin [3] derive an
implicit equation for a curve C bounding the possible locations of roots of f =∑d

i=0 ai

(
z+d−i

d

)
, and our method gives an explicit equation for a real algebraic

curve whose outermost oval is precisely C.
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The fundamental ingredient of this program is the matrix

W = W (x, y) =

(
R0 R1 . . . Rd

I0 I1 . . . Id

)
,

where Rj = Rj(x, y) and Ij = Ij(x, y) denote the real and imaginary part of the

complex polynomial bj = bj(x + iy). The rank of W is 2, so any matrix W that
is Gale dual to W has size (d + 1) × (d − 1). The following proposition gives
an explicit representative for W involving polynomials pk, qk, rk that depend on
the basis B. For four especially relevant bases, we will make the Gale dual W
completely explicit. These bases are:

• The power basis, where bi = zi;
• the falling power basis, where bi = zi = z(z − 1) · · · (z − i + 1);

• the rising power basis, where bi = zi = z(z + 1) · · · (z + i − 1); and

• the binomial coefficient basis, where bi =
(
z+d−i

d

)
.

Here z0 = z0 = z0 = 1.

Proposition. A Gale dual matrix to W may be chosen to have exactly three
non-zero diagonals

W = W (x, y) =





p0 0 0 . . . 0
−q0 p1 0 . . . 0

r0 −q1
. . .

...

0 r1
. . .

. . .
...

. . .
. . . pd−2

rd−3 −qd−2

0 . . . 0 rd−2





.

Moreover, its entries may be chosen to lie in R[x, y]. For the four bases considered,
we may choose the following explicit values:

bi pk qk rk

zi x2 + y2 2x 1

zi (x − k)2 + y2 2(x − k) − 1 1

zi (x + k)2 + y2 2(x + k) + 1 1(
z+d−i

d

)
(x − k)2 + y2 pk + rk − d(d − 1) pk+1−d .

Note that in the last row, qk = 2
(
x − (k − d−1

2 )
)2

+ 2y2 − d2−1
2 .

Proof. We first prove that the matrix W can be chosen to have the displayed
triple band structure regardless of the basis B chosen for Pd. For this, define the

rational functions gk =
bk+1

bk
∈ R(z) for 0 ≤ k ≤ d−1; specific values for gk become

apparent from the relations zk+1 = z · zk, zk+1 = (z − k)zk, zk+1 = (z + k)zk and(
z+d−k−1

d

)
= z−k

z+d−k

(
z+d−k

d

)
.
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The triple (pk, qk, rk) lists nontrivial coefficients of a real syzygy

pkbk + qkbk+1 + rkbk+2 = bk

(
pk + gkqk + gkgk+1rk

)
= 0

whenever
(

1 Re gk Re gkgk+1

0 Im gk Im gkgk+1

)


pk

qk

rk



 =

(
0
0

)
.

But the displayed matrix with entries in R(x, y), call it M , obviously has rank
at least 1, and rank 2 whenever Im gk(x + iy) 6= 0, so that such triples certainly
exist. Moreover, by multiplying with a common denominator we may assume
pk, qk, rk ∈ R[x, y], and so the relations pkbk + qkbk+1 + rkbk+2 = 0 imply that W
is in fact a Gale dual of W . The concrete syzygies listed above arise by choosing
explicit bases for kerM . �
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What are higher-dimensional trees, and how do they look like?

Michael Joswig

(joint work with Sven Herrmann, Anders Jensen, Bernd Sturmfels)

A tree with non-negative edge lengths gives rise to a finite metric space on its set
of leaves (or taxa) by adding up the edge lengths along the unique paths. A metric

arising in this way is tree-like. We abbreviate [n] := {1, 2, . . . , n}, and
(
[n]
d

)
is the

set of all d-element subsets of [n]. Our point of departure is a collection of results
which we mash up into the following theorem.

Theorem 1. (Bandelt & Dress [1]; Kapranov [8]; Sturmfels & Yu [12]) For a map

δ :
(
[n]
2

)
→ R the following are equivalent:

(1) δ is a tree-like metric (up to translation and scaling),
(2) the tight span of δ is one-dimensional,
(3) the dual graph of Σ−δ is a tree,
(4) Σ−δ is a matroid decomposition.



Discrete Geometry 2529

Some explanations are in order. Bandelt & Dress [1] associate an unbounded
polyhedron in Rn with each finite metric δ, and the polytopal complex formed by
the bounded faces is the tight span of δ. The tight span is always contractible but,
in general, it is higher-dimensional. Sturmfels & Yu suggested to read a metric δ
(or rather its negative −δ) as a lifting function on the vertices of ∆(2, n). The
hypersimplex ∆(d, n) is the convex hull of all 0/1-vectors of length n with exactly
d ones. The regular polytopal subdivision of ∆(2, n) induced by −δ is denoted
as Σ−δ. The tight span of δ is dual to Σ−δ. Gel′fand, Goresky, MacPherson &
Serganova [4] showed that a (d, n)-matroid polytope is a subpolytope of ∆(d, n)
whose edges are parallel to differences of standard basis vectors. A polytopal de-
composition of a hypersimplex into matroid polytopes is a matroid decomposition.
We suggest to view matroid decomposition of hypersimplices as higher-dimensional
analogs of (duals of) abstract trees. This answers the first question in the title.

The Dressian Dr(d, n) is the subfan of the secondary fan of ∆(d, n) which
is induced by the matroid decompositions. It can be seen as spherical poly-

topal complex in S

(
n
d

)
−n. The Dressian Dr(d, n) can be seen as a combinatorial

(outer) approximation to the tropical Grassmannians Gr(d, n) of Speyer & Sturm-
fels [11]. These are related, for instance, to questions concerning compactifications

of Bruhat-Tits buildings of type Ãn−1 [8, 9]. The Dressian Dr(2, n) is the space of
phylogenetic trees with n labeled leaves studied in [10, §3.5]. Our main new result
is the following characterization.

Theorem 2. ([5]) The matroid decompositions of ∆(3, n) bijectively correspond to
the equivalence classes of arrangements of n metric trees (on n − 1 labeled taxa).

An arrangement of n metric trees is a collection of tree-like metrics δ1, δ2, . . . , δn

satisfying
δi(j, k) = δj(k, i) = δk(i, j)

A matroid decomposition of ∆(3, n) induces a matroid decomposition on each
face. In particular, this holds for the contraction facets, which are isomorphic to
∆(2, n− 1), and hence they yield (dual) trees. One application of our main result
is an algorithm to actually compute Dressians which were beyond reach before. In
particular, using Gfan [6] and polymake [3] we could show the following.

Theorem 3. ([5]) The Dressian Dr(3, 7) is a six-dimensional spherical polytopal
complex with f -vector

(616, 13860, 101185, 315070, 431025, 211365, 30)

and integral (reduced) homology

H̃∗
(
Dr(3, 7); Z

)
= H5

(
Dr(3, 7); Z

)
= Z7440 .

It remains to explain how matroid decompositions look like. To this end one can
make use of the fact that each regular matroid decomposition of ∆(d, n) is induced
by a regular subdivision of (any of) its vertex figures, which are isomorphic to the
product of simplices ∆d−1 × ∆n−d−1. These are dual to configurations of n − d

points in the tropical torus TA
d−1 [2, 7].
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1

2

3

4

5

6

7

Figure 1. Arrangement of seven metric trees describing a ma-
troid subdivision of ∆(3, 7). This is equivalent to the tropical

convex hull of four points in TA
2.
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2000, 43–73.

[4] I. M. Gel′fand, R.M. Goresky, R.D. MacPherson, V.V. Serganova, Combinatorial geome-
tries, convex polyhedra, and Schubert cells, Adv. in Math. 63 (1987), no. 3, 301–316.
MR MR877789 (88f:14045)

[5] S. Herrmann, A. Jensen, M. Joswig, B. Sturmfels, How to draw tropical planes, preprint
arXiv:0808.2363.

[6] A. Jensen, Gfan—a software package for Gröbner fans and tropical varieties, www.math.

tu-berlin.de/~jensen/software/gfan/gfan.html.
[7] M. Joswig, Tropical convex hull computations, preprint arXiv:0809.4694.
[8] M.M. Kapranov, Chow quotients of Grassmannians. I, I. M. Gel′fand Seminar, Adv. So-

viet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, 29–110. MR MR1237834
(95g:14053)

[9] S. Keel, J. Tevelev, Geometry of Chow quotients of Grassmannians, Duke Math. J. 134
(2006), no. 2, 259–311.

[10] L. Pachter, B. Sturmfels, Algebraic Statistics for Computational Biology, Cambridge Uni-
versity Press, 2005.

[11] D.E. Speyer, B. Sturmfels, The tropical Grassmannian, Adv. Geom. 4 (2004), no. 3, 389–
411. MR MR2071813 (2005d:14089)

[12] B. Sturmfels, J. Yu, Classification of six-point metrics, Electron. J. Combin. 11 (2004),
no. 1, Research Paper 44, 16 pp. (electronic). MR MR2097310 (2005m:51016)



Discrete Geometry 2531

The sum product problem

József Solymosi

The sumset of a finite set of an additive group, A, is defined by

A + A = {a + b : a, b ∈ A}.
The productset and ratioset are defined in a similar way.

AA = {ab : a, b ∈ A},
and

A/A = {a/b : a, b ∈ A}.
A famous conjecture of Erdős and Szemerédi [4] asserts that for any finite set

of integers, M,
max{|M + M |, |MM |} ≥ |M |2−ε,

where ε → 0 when |M | → ∞. They proved that

max{|M + M |, |MM |} ≥ |M |1+δ,

for some δ > 0. In a series of papers, lower bounds on δ were find. δ ≥ 1/31 [9],
δ ≥ 1/15 [5], δ ≥ 1/4 [2], and δ ≥ 3/14 [12]. The last two bonds were proved for
finite sets of real numbers.

1. Results

Our main result is the following.

Theorem 1. Let A be a finite set of positive real numbers. Then

|AA||A + A|2 ≥ |A|4
4⌈log |A|⌉

holds.

The inequality is sharp—up to the power of the log term in the denominator—
when A is the set of the first n natural numbers. Theorem 1 implies an improved
bound on the sum-product problem.

Corollary 2. Let A be a finite set of positive real numbers. Then

max{|A + A|, |AA|} ≥ |A|4/3

2⌈log |A|⌉1/3

holds.

To illustrate how the proof goes, we are making two unjustified and usually
false assumptions, which are simplifying the proof.

Suppose that AA and A/A have the same size, |AA| ≈ |A/A|, and many ele-
ments of A/A have about the same number of representations as any other. This
means that for many reals s, t ∈ A/A the two numbers s and t have the same
multiplicity, |{(a, b)|a, b ∈ A, a/b = s}| ≈ |{(b, c)|b, c ∈ A, b/c = t}|. A geometric
interpretation of the cardinality of A/A is that the Cartesian product A×A is cov-
ered by |A/A| concurrent lines going through the origin. Label the rays from the
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origin covering the points of the Cartesian product anticlockwise by r1, r2, . . . , rm,
where m = |A/A|.

Our assumptions imply that each ray is incident to |A|2/|AA| points of A×A.
Consider the elements of A×A as two dimensional vectors. The sumset (A×A)+
(A×A) is the same set as (A +A)× (A + A). We take a subset, S, of this sumset,

S =

m−1⋃

i=1

(ri ∩ A × A) + (ri+1 ∩ A × A) ⊂ (A + A) × (A + A).

Simple elementary geometry shows that the sumsets in the terms are disjoint and
each term has |ri ∩ A × A||ri+1 ∩ A × A| elements. Therefore

|S| = |AA|(|A|2/|AA|)2 ≤ |A + A|2.

After rearranging the inequality we get |A|4 ≤ |AA||A + A|2, as we wanted.
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Convex polygons are cover-decomposable

Géza Tóth

(joint work with Dömötör Pálvölgyi)

Let P = { Pi | i ∈ I } be a collection of planar sets. It is a k-fold covering if every
point in the plane is contained in at least k members of P . A 1-fold covering is
simply called a covering.

Definition. A planar set P is said to be cover-decomposable if the following holds.
There exists a constant k = k(P ) such that every k-fold covering of the plane
with translates of P can be decomposed into two coverings. J. Pach proposed the
problem of determining all cover-decomposable sets in 1980. For related problems,
conjectures, see [2], Chapter 2.1.

Conjecture (J. Pach). All planar convex sets are cover-decomposable.

This conjecture has been verified in three special cases.

Theorem A. (i) [6] Every centrally symmetric open convex polygon is cover-
decomposable.

(ii) [4] The open unit disc is cover-decomposable.
(iii) [10] Every open triangle is cover-decomposable.

In this note we verify the conjecture for open convex polygons.

Theorem. Every open convex polygon is cover-decomposable.

Just like in [6] and in [10], we formulate and solve the problem in its dual
form. That is, suppose P is a polygon of n vertices and we have a collection
P = { Pi | i ∈ I } of translates of P . Let Oi be the center of gravity of Pi. The
collection P is a k-fold covering of the plane if and only if every translate of P̄ ,
the reflection of P through the origin, contains at least k points of the collection
O = { Oi | i ∈ I }.

The collection P = { Pi | i ∈ I } can be decomposed into two coverings if and
only if the set O = { Oi | i ∈ I } can be colored with two colors, such that every
translate of P̄ contains a point of both colors.

Divide the plane into small regions, say, squares, such that each square contains
at most one vertex of any translate of P̄ . If a translate of P̄ contains sufficiently
many points of O, then it contains many points of O in one of the little squares.
We color the points of O separately in each of the squares. If we concentrate
on points in just one of the little squares, then instead of translates of P̄ we can
consider translates of n different wedges, corresponding to the n vertices of P .

First we prove some results about coloring point sets with respect to translates
of wedges. Then we formulate the problem precisely in the dual version, and apply
the results to prove the Theorem.
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[8] J. Pach, G. Tóth, Decomposition of multiple coverings into many parts, in Proc. 23rd ACM
Symposium on Computational Geometry (SoCG07) 2007, 133–137. Also in Comput. Geom.
Theory and Applications, accepted.

[9] D. Pálvölgyi, Indecomposable coverings with concave polygons, in preparation.
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On triconnected and cubic plane graphs on given point sets

Pavel Valtr

(joint work with Alfredo Garćıa, Ferran Hurtado, Clemens Huemer, Javier Tejel)

A geometric graph G is a a simple finite graph whose vertex set V (G) is a finite
set of points in general position in the plane (i.e., no three of them are collinear),
and each edge in E(G) is a closed segment whose endpoints belong to V (G). If
V (G) = S we also say that the geometric graph G is on top of S, or simply that
G is on S. A geometric graph is a plane graph if no two edges cross. That is, two
edges in a plane graph may intersect only at a common endpoint. It is also usual to
use the expressions non-crossing geometric graph or crossing-free geometric graph
as synonymous for plane graph. A (geometric) graph is cubic, if the degree of every
vertex is three. A (geometric) graph on at least k + 1 vertices is k-connected if it
is connected and it remains connected whenever k − 1 vertices are removed.

For any set S of n points in general position in the plane it is easy to construct
a connected plane graph on top of S, even with the additional requirement that
it has minimum possible number of edges, n − 1. For example, we may take the
minimum spanning tree of S or we may connect the points by a path visiting
the points of S in lexicographically increasing order, say, of their coordinates.
Similarly, it is also not difficult to construct a 2-connected plane graph on top of S
with the minimum number, n, of edges: We can construct a polygonization of S,
i.e., a simple polygon whose vertex set is S.

On the opposite direction, there are point sets that do not admit any 4-connected
plane graph on top of them. Some examples are given by Dey et al. in the pa-
per [1], where they also provide a necessary and sufficient condition for point sets
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whose convex hull consists of exactly three vertices. However, a general charac-
terization of the sets of points admitting a 4- or 5-connected plane graph is not
known [1].

For the case of 3-connectivity this characterization is quite obvious and was
described in [1] as well. Let us recall that we say that a point set S is in convex
position if each point of S is extreme (a vertex of the convex hull of S). If S is
in convex position, then every plane triangulation of S contains vertices of degree
two, therefore it is impossible to get any 3-connected plane graph on top of S.
On the contrary, when S is not in convex position, it is easy to check that the
following method produces a 3-connected plane graph on S: Let C be the cycle
formed by the edges connecting consecutive vertices of the convex hull of S and let
v ∈ S be any point interior to the convex hull; join v to all the vertices in C and
then insert iteratively the remaining points. At each step the point being inserted
is connected to the three vertices of the triangular face it falls into.

Notice that in general this algorithm does not produce a 3-connected plane
graph using as few edges as possible. In fact, it always produces a triangulation
of S, i.e., a plane graph on S with the maximum number of edges, in which all
faces are triangles with the only possible exception of the outer face.

In this paper we aim to the minimality of the construction, as was already
known for 1- and 2-connectivity, and we describe a polynomial algorithm which,
given a point set S not in convex position, finds a 3-connected plane graph on S
with the minimum number of edges. Achieving good connectivity by adding as
few edges as possible is a classic family of problems in graph theory.

Another natural and related problem that we consider here is that of charac-
terizing the point sets that admit a cubic plane graph. Observe that a connected
cubic graph on top of S is not necessarily 3-connected; therefore, a specific ap-
proach is required. The analogous problem of constructing 1- or 2-regular plane
graphs is easily solved using a polygonization on S mentioned above—the edges
of a simple polygon P on S form a 2-regular plane graph and, if n is even, tak-
ing every second segment in P (or in any plane Hamiltonian path on S) gives a
1-regular plane graph on S.

Throughout this abstract, S denotes a set of n ≥ 4 points in general position in
the plane, H = H(S) denotes the set of vertices of the convex hull of S, h = h(S)
denotes the size of H , and I = I(S) = S \ H denotes the set of interior points
of S.

Here is our main result:

Theorem 1. Let S be a set of n points in general position in the plane. Suppose
that S is not in convex position. Then there is a 3-connected plane graph on S
with max{⌈3n/2⌉, n + h(S) − 1} edges, and it can be found in polynomial time.
Moreover, there is no 3-connected plane graph on S with a smaller number of
edges.

Theorem 1 immediately gives the following characterization of sets admitting
3-connected cubic plane graphs:
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Corollary 2. Let S be a set of n ≥ 4 points in general position in the plane.
Then there is a 3-connected cubic plane graph on S if and only if n is even and
h(S) ≤ n/2 + 1.

A (geometric) graph on at least k + 1 vertices is k-edge-connected if it is con-
nected and it remains connected whenever k − 1 edges are removed. The above
results hold also for 3-edge-connectivity:

Theorem 3. The statements of Theorem 1 and Corollary 2 also hold when 3-
edge-connectivity is considered instead of 3-connectivity.

If we focus on connecting the points of the set S by a cubic plane graph, without
the additional requirement of 3-connectivity, the situation changes substantially.
Of course, we need that n, the number of points of S, is even. Our main result in
this topic is as follows:

Theorem 4. Let n ≥ 4 be an even integer. Then, we have:
(i) Any set S of n points in general position in the plane satisfying h(S) ≤ 3n/4

admits a cubic 2-connected plane graph on S.
(ii) If h is an integer such that 3n/4 < h < n−1, then among sets S of n points

in general position with h(S) = h, at least one set admits a cubic 2-connected plane
graph on S and at least one set admits no cubic plane graph on S.

(iii) Sets S of n points with h(S) ≥ n − 1 admit no cubic plane graph on S,
with the only exception the case |S| = n = 4 with h(S) = n − 1 = 3.
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The simultaneous packing and covering constants in the plane

Chuanming Zong

In 1950, C. A. Rogers introduced and studied two constants γ(K) and γ∗(K) for
an n-dimensional convex body K. Explicitly, γ(K) is the smallest positive number
r such that there is a translative packing K + X satisfying En = rK + X , and
γ∗(K) is the smallest positive number r∗ such that there is a lattice packing K +Λ
satisfying En = r∗K + Λ, where En denotes the n-dimensional Euclidean space
and Λ denotes an n-dimensional lattice in En. In some references, the two numbers
are called the simultaneous packing and covering constants for the convex body.
Clearly, these constants are closely related to the packing densities and the covering
densities of the convex body, especially to the Minkowski–Hlawka theorem.

In 1970 and 1978, S. S. Ryškov and L. Fejes Tóth independently introduced
and investigated two related numbers ρ(K) and ρ∗(K), where ρ(K) is the largest
positive number r such that one can put a translate of rK into every translative
packing K + X , and ρ∗(K) is the largest positive number r∗ such that one can
put a translate of r∗K into every lattice packing K + Λ.
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Clearly, for every convex body K we have

γ(K) ≤ γ∗(K)

and
ρ(K) ≤ ρ∗(K).

As usual, let C denote an n-dimensional centrally symmetric convex body. Then,
we also have

γ(C) = ρ(C) + 1

and
γ∗(C) = ρ∗(C) + 1.

Let Bn denote the n-dimensional unit ball. Just like the packing density problem
and the covering density problem, to determine the values of γ(Bn) and γ∗(Bn)
is important and interesting. However, so far our knowledge about γ(Bn) and
γ∗(Bn) is very limited. We list the main known results in the following table.

n 2 3 4 5

γ∗(Bn)
√

4
3

√
5
3

√
2
√

3(
√

3 − 1)

√
3
2 +

√
13
6

Author Trivial Böröczky Horváth Horváth

Let δ(K) and δ∗(K) denote the maximal translative packing density and the
maximal lattice packing density of K, respectively. A fundamental problem in
Packing and Covering is to decide if

δ(K) = δ∗(K)

holds for every convex body. It is easy to see that γ∗(C) ≥ 2 will imply

δ(C) ≥ 2δ∗(C), (1)

which will give a negative answer to the previous problem. On the other hand, if
γ∗(C) ≤ 2 − µ holds for a positive constant µ and for every centrally symmetric
convex body C, then the Minkowski–Hlawka theorem can be improved to

δ∗(C) ≥ 1

(2 − µ)n
. (2)

In 1950, C. A. Rogers discovered a constructive method by which he deduced

γ∗(C) ≤ 3

for all n-dimensional centrally symmetric convex bodies (W. Banaszczyk, J. Bour-
gain and M. Henk did some related works). In 1972, via mean value techniques
developed by C.A. Rogers and C. L. Siegel, the above upper bound was improved
by G. L. Butler to

γ∗(C) ≤ 2 + o(1).

This result is fascinating, because it gives hopes to both (1) and (2).
In two and three dimensions, as one can imagine, the situation is much better.

In 1978, based on an ingenious idea of I. Fáry, J. Linhart proved that

γ(K) = γ∗(K) ≤ 3
2
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holds for every two-dimensional convex domain, and the upper bound is attained
by triangles only. However, just like the packing density problem, to determine
the best upper bound for γ∗(C) turns out to be much more challenging. Recently
C. Zong and obtained

γ∗(C) ≤ 1.2

for all two-dimensional centrally symmetric convex domains and

γ∗(C) ≤ 1.75

for all three-dimensional centrally symmetric convex bodies. Needless to say, nei-
ther of them is optimal. In this paper we will prove the following theorem.

Theorem. For every two-dimensional centrally symmetric convex domain C we
have

γ(C) = γ∗(C) ≤ 2(2 −
√

2) ≈ 1.17157 . . . ,

where the second equality holds if and only if C is an affinely regular octagon.

Universally optimal and balanced spherical codes

Achill Schürmann

(joint work with Henry Cohn, Noam Elkies, Abhinav Kumar and Grigoriy
Blekherman, Brandon Ballinger, Noah Giansiracusa, Elizabeth Kelly)

Originally motivated in physics, many people have studied distributions of finitely
many points on the unit sphere Sn−1 (in Rn) minimizing some potential energy.
In particular, given a (continuous, decreasing) potential function f : (0, 4] → R,
one may ask for the minimum f -potential energy

Ef (C) =
1

2

∑

x,y∈C
x 6=y

f
(
|x − y|2

)
.

of a spherical code C ⊂ Sn−1 of cardinality |C| = N .
As f varies, optimal configuration usually vary as well. Sometimes they vary

only in surprisingly simple families. The most striking case is when such a family
is a single configuration and independent of f . Cohn and Kumar [5] introduced the
notion of universally optimal spherical codes, for codes minimizing Ef for all com-

pletely monotonic f , i.e., for all infinitely differentiable f with (−1)kf (k)(r) ≥ 0 for
all k ≥ 0 and r ∈ (0, 4). Important examples of completely monotonic functions
are all inverse power laws f(x) = 1/rs with s > 0. Setting s = n/2 − 1 we ob-
tain in particular the harmonic potential function, which generalizes the Coulomb
potential studied in physics. As universally optimal spherical codes minimize f -
potential energy for arbitrarily large s, they are also optimal spherical codes in the
sense that they maximize the minimal distance among elements.

Generalizing linear programming bounds by Yudin [13], Kolushov and Andreev,
Cohn and Kumar prove in [5] universal optimality for several spherical codes. They
show that the regular 600-cell and all sharp configurations are universally optimal.
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A sharp configuration is a spherical (2m− 1)-design, in which at most m distinct
distances occur. Recall that a code C ⊂ Sn−1 is a spherical t-design if

(1/|Sn−1|)
∫

Sn−1

f(x)dx = (1/|C|)
∑

x∈C
f(x)

for every polynomial f : Rn → R of degree ≤ t. A spherical code with at most m
distinct distances, can be a spherical 2m-design, but not a 2m + 1-design. So
sharp configurations give almost highest possible designs among codes with their
distance distribution. The full list of all known sharp configurations, respectively
universal optima is given in [3].

As the 600-cell is an example of a non-sharp, but universally optimal configu-
ration, it is naturally to ask whether or not there exist other non-sharp universal
optima. It is easily seen that universal optima C have to be balanced in the sense
of Leech (see [9]), that is they have to be in equilibrium under all possible force
laws. So one way to prove completeness of the list of known universal optima is to
classify balanced spherical codes. Leech classified them on S2, by which the list of
known universal optima is complete up to dimension 3.

What can be said about dimensions n ≥ 4? Do there exist more than the known
universal optima? In [3] we report on results from massive computer experiments
aimed at finding potentially new universal optima. The starting point is a gra-
dient descent search for configurations with minimum harmonic energy, that is,
with respect to f(r) = 1/rn/2−1. The search in dimensions n ≤ 32, led to 56
balanced, conjectured harmonic optima with at most 64 and at least 2n+1 points
(see http://aimath.org/data/paper/BBCGKS2006/ for coordinates). Note that
for up to 2n points it is known that only the regular simplex and the regular
crosspolytope are universally optimal. Among the obtained configurations we find
only two possible universal optima: one with 40 points in R10 and one with 64
points in R14. Both codes were discovered before (see [11],[8], [10], [6]). Recently,
Bannai, Bannai and Bannai [2] proved that these codes define unique 3-class and
4-class association schemes (see also Abdukhalikov, Bannai, Suda [1]). It remains
an open problem to prove that these codes actually are examples of yet unknown
universal optima.

However, all of the found configurations are interesting and beautiful objects
and worth to be studied. We refer to [3] for many fascinating examples. There
is hope that analyzing these spherical codes may lead to new insights. One ques-
tion that naturally arose while studying the obtained balanced spherical codes, is
whether or not they all have some special symmetry. A closer look at the known
universal optima and at the conjectured harmonic optima C reveals that they are
all group balanced, that is, for every x ∈ C the stabilizer of x in the automorphism
group of C does fix no linear subspace except the line through {±x}.

Every group balanced code is easily seen to be balanced. So one is easily
tempted to conjecture that spherical codes are balanced if and only if they are
group balanced. By Leech’s classification of balanced spherical codes, this conjec-
ture is true for n ≤ 3. However, as we show in [4], the conjecture is false for all
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n ≥ 7. For n = 12 we even find a balanced spherical code having a trivial symme-
try group. One main difficulty when studying the above problem is to construct
balanced configurations without symmetries. The following Lemma provides a
possibility to obtain balanced configurations and the mentioned counterexamples
(see [4] for a proof and further details).

Lemma. Let C be a spherical t-designs in which each element has at most t distinct
inner products other than ±1. Then C is balanced.

A class of configurations to which the lemma applies, comes from spectral em-
beddings of strongly regular graphs. Recall that a strongly regular graph with pa-
rameters (n, k, a, c) is a non-trivial k-regular graph with n vertices and precisely a
(respectively c) common neighbors, for each pair of neighboring (respectively non-
neighboring) vertices. It is well known that spectral embeddings of strongly regular
graphs are 2-distance sets and 2-designs (see [7]). So by our lemma above these
embeddings all give balanced spherical codes.

However, there exist strongly regular graphs without symmetries. One having
the lowest dimensional embedding (see [12]) has parameters (25, 12, 5, 6), and is
one of the fifteen Paulus graphs. The lowest dimensional example of a balanced
but not group balanced spherical code we know so far is given by the spectral 7-
dimensional embedding of one of the four strongly regular graphs with parameters
(28, 12, 6, 4). We refer to [4] for further details and examples.

The initiated study of universally optimal and balanced spherical codes raises
many interesting and challenging problems. We think in particular that balanced
point configurations deserve further studies. Problems one might consider are for
example:

• Find balanced, non group balanced spherical codes in dimension 4, 5 or 6
or prove that such do not exist.

• Classify balanced spherical codes on S3.
• Study balanced configurations in Euclidean and hyperbolic space.
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Helly numbers and geometric permutations

Xavier Goaoc

Let C be a collection of subsets of Rd and denote by Tk(C) the set of k-transversals
to C, that is, of k-dimensional affine subspaces that intersect every member of C.
Helly’s theorem asserts that if C consists of convex sets then T0(C) is nonempty if
and only if T0(F ) is nonempty for any subset F ⊂ C of size at most d+1. Whether
Helly’s theorem generalizes to other values of k is a natural question which has
been investigated since the 1930’s. The answer turns out to be negative in general
but positive when the geometry of the objects is adequately constrained. The
study of how the geometry of the objects in C determines the structure of Tk(C),
and subsequent developments of similar flavor, is now designated as geometric
transversal theory [5].

For the case of line transversals, i.e. k = 1, Helly-type theorems are known
for a variety of objects’ shapes: axis-parallel boxes in Rd [10], families of “thinly
distributed” balls in Rd [6], disjoint translates of a compact convex set in R2 [11],
or disjoint unit balls in Rd [3]. Most, if not all, proofs use the notion of geometric
permutation; a geometric permutation of C is a pair of orderings, one reverse of
the other, of the collection C induced by one of its line transversals. In certain
situations, one can replace geometric assumptions by conditions on geometric per-
mutations and still retain bounded Helly numbers. The main idea is to apply the
following generalization of Helly’s topological Theorem to sets of lines.

Theorem 1 (Matoušek [9]). For any d ≥ 2, m ≥ 1 there exists a number h(d, m)
such that the following holds. Let H be a collection of sets in Rd such that the
intersection of any nonempty finite sub-family of H has at most m path-connected
components, each of them contractible. Then H has a point in common if and only
if every h(m, d) members have a point in common.

Let C be a collection of disjoint convex sets in Rd. We parameterize a non-
horizontal line in Rd by its intersection points with the hyperplanes xd = 0 and
xd = 1; this identifies the space of non-horizontal lines with R2d−2. For any set
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X ⊂ C we denote by T +
1 (X) the set of non-horizontal lines that intersect X ,

oriented along increasing xd. In order to apply Theorem 1 to

H =
{
T +

1 (A) | A ∈ C
}

,

one has to control both the number and the topology of the connected components
of T +

1 (X) for all subsets X of C.

1. In the plane

Given an ordering ≺ on C, denote by K≺(C) the set of directions, in Sd−1, of
oriented lines that intersect all the members of C in the order ≺. It follows from
Helly’s theorem that

K≺(C) =
⋂

X∈(Cd)

K≺(X),

where
(C

d

)
denotes the set of subsets of C of size d. Thus, for d = 2 we have

that K≺(C) consists of a single interval, contained in an open half-circle. The
set of lines that intersect all the members of C in the order ≺ is homotopic to
K≺(C) [3, Lemma 14]. It follows that for d = 2, the set of lines intersecting C
in any fixed order ≺ is contractible. This implies that for any X ⊂ C, T +

1 (X)
consists of contractible components, at most two per geometric permutation of X
(see e.g. [4, Theorem 5.6]). Thus, the Helly number of sets of line transversals to
members of a collection C of disjoint convex sets in R2 can be bounded in terms
of the maximum number of geometric permutations of the subsets of C. Let m
denote a positive integer and call a family C of disjoint convex sets m-regular if
every subset F ⊂ C has at most m geometric permutations. Altogether, we have:

Theorem 2. For any m ≥ 1 there exists a number g(m) such that the following
holds. A m-regular collection of disjoint convex sets in R2 has a line transversal
if every g(m) of its members have a line transversal.

2. In higher dimension

Theorem 2 does not extend to dimension d ≥ 3, as there exists arbitrary large
1-regular families of disjoints translate of a convex set with no line transversal but
all of whose proper subsets have a line transversal [8]. It does, however, generalize
to collections of disjoint balls:

Theorem 3. For any m ≥ 1 and d ≥ 2 there exists a number f(m, d) such that the
following holds. A m-regular collection of disjoint balls in Rd has a line transversal
if every f(m, d) of its members have a line transversal.

In particular, f(1, d) ≤ 2d − 1, as Matoušek’s Theorem can be replaced by
Helly’s topological Theorem; this immediately generalizes Grünbaum’s bound on
the Helly number for line transversals to families of thinly distributed balls, as
such families are 1-regular. The main ingredient in this extension is the following
observation on K≺(C).
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Theorem 4 (Borcea et al. [1]). The directions of all oriented lines intersecting a
given finite family of disjoint balls in Rd in a specific order form a strictly convex
subset of the sphere Sd−1.

3. A local version

Another immediate consequence of Theorem 4 is the following Helly-type theo-
rem for isolated line transversals to disjoint balls [1, 3], in the flavor of dimensional
versions of Helly’s theorem [7].

Theorem 5. If a line ℓ is an isolated line transversal to a collection C of disjoint
balls in Rd, then it is an isolated line transversal to a subset P ⊂ C of size at most
2d − 1.

The constant 2d − 1 is tight for all dimensions [2]. Similar statements can be
proven for collections of convex polyhedra in R3, under the condition that the
line ℓ is not coplanar with any polyhedron face, and extends to smooth convex
semi-algebraic sets of finite complexity, under the condition that no two objects
meet the line in the same point. Whether further generalization is possible, in
particular to arbitrary collections of disjoint convex sets in Rd, remains an open
question.
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Kirchberger’s theorem, coloured and multiplied

Imre Bárány

(joint work with J. Arocha, X. Bracho, R. Fabila, L. Montejano)

Finite sets A, B ⊂ Rd are separated if convA ∩ convB = ∅. By the separation
theorem this is equivalent to the following. Finite sets A, B ⊂ Rd are separated if
and only if there is a hyperplane H with A ⊂ H+ and B ⊂ H−. Here H+, H−

are the two open halfspaces bounded by H .
Kirchberger’s theorem from 1903 [1] states that finite sets A, B ⊂ Rd are sep-

arated if and only if for every X ⊂ A ∪ B of size at most d + 2, the sets A ∩ X
and B ∩ X are separated. This means that being separated is a very finite prop-
erty: it suffices to check small size subsets in order to decide whether two sets are
separated or not. This phenomenon is similar to the one encountered in Helly’s
theorem or in Carathéodory’s theorem.

A generalization of this result was proved by A. Pór in 1998 in his diploma thesis
(unpublished). First we need a definition. Finite sets A1, . . . , Ar ⊂ Rd (where
r ≥ 2) are separated if

⋂r
1 convAi = ∅. By the multiple separation theorem this is

same as saying that there are open halfspaces H1, . . . , Hr with Ai ⊂ Hi for each i
such that

⋂r
1 Hi = ∅. Now Pór’s theorem says that the finite sets A1, . . . , Ar ⊂ Rd

are separated if and only if for every X ⊂ ⋃r
1 Ai of size at most (r − 1)(d + 1) + 1

the sets X ∩ A1, . . . , X ∩ Ar are separated.
In this talk a further generalization of this result was presented. Let d ≥ 1, r ≥ 2

be integers and set n = (r − 1)(d + 1) + 1. For every i ∈ {1, . . . , r} and every
j ∈ {1, . . . , n}, there is a finite set Ai,j ⊂ Rd. Let Ci =

⋃n
j=1 Ai,j be the “colours”

and Gj =
⋃r

i=1 Ai,j be the “groups”. (These sets may be multisets, actually.)
We say that a set X ⊂ ⋃n

i=1

⋃n
j=1 Ai,j is separated along the colours if the sets

X ∩ C1, . . . , X ∩ Cr are separated. Finally, T ⊂ ⋃n
i=1

⋃n
j=1 Ai,j is a transversal of

the sets system Ai,j if |T ∩ Gj | ≤ 1 for every j ∈ {1, . . . n}.

Theorem 1. If every transversal of the sets system Ai,j is separated along the
colours, then one of the groups is also separated along the colours.

This result contains, as a special case, Pór’s theorem. To see this one should
simply take Ai,j = Ai for every i and j. The condition implies that every transver-
sal of this set system is separated along the colours, so one of the groups is also
separated along the colours. But each group consists of the same sets A1, . . . , Ar

which is then separated in the usual sense.
Another interesting special case is Tverberg’s theorem [3] stating that every

set X = {x1, . . . , xn} ⊂ Rd where n = (r − 1)(d + 1) + 1 can be partitioned
into r sets X1, . . . , Xr with

⋂r
1 convXi 6= ∅. This follows from our theorem by

taking Ai,j = {xj} for every i and j. In this case, clearly, none of the groups is
separated along the colours. So there is a transversal T which is not separated
along the colours. This transversal is then one element from each Gj , which is just
xj together with a specification that it comes form the i-th colour. Then the sets
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Xi = T ∩ Ci (i = 1, . . . , r) form a partition of X into r classes and
⋂r

1 convXi is
nonempty.

The proof is based on the following fact which is a modification of a neat result
of Sarkaria [2]. We need an artificial tool: let v1, . . . , vr ∈ Rr−1 be vectors with
a unique (up to a multiplier) linear dependence v1 + · · · + vr = 0. Assume that
A1, . . . , Ar ⊂ Rd are finite sets, let A =

⋃r
1 Ai. If a ∈ A, then a ∈ Ai for a unique

i and we define a∗ as the tensor product of the vector (a, 1) ∈ Rd+1 with vi. Thus
a∗ is a d + 1 by r − 1 matrix.

Lemma 2. Finite sets A1, . . . , Ar ⊂ Rd are separated if and only if 0 /∈ conv{a∗ :
a ∈ A}.
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Open problems

collected by János Pach

1. Connectivity of weighted rank 3 matroids

(by Günter M. Ziegler with Grigory Mikhalkin)

Let M be a finite simple rank 3 matroid on n points, which have real weights
ai, where the sum of the weights

∑n
i=1 ai is non-negative. Is it true that the points

of non-negative weight are connected by the lines of non-negative weight?

Notes.

(1) This arises on the way to a “Lefschetz hyperplane theorem for tropical
varieties”.

(2) This is just the rank 3 case of a more general question: For a rank r
matroid, is the order complex given by the non-negative proper flats (r−3)-
connected? Is it shellable?

(3) The special case where there is only one negative point follows from the
shellability of geometric semi-lattices, established by Wachs and Walker.

2. Least-squares matching of point sets under rotation

(by Günter Rote)

This question goes back to Karel Zikan (1991).
For 2n points A1, . . . , An, B1, . . . , Bn in the plane, the least-squares matching

is the permutation π that minimizes

(1)

n∑

i=1

‖Ai − Bπ(i)‖2

It can be computed in O(n3) time by solving a weighted bipartite matching prob-
lem (an assignment problem).

If we allow the set B to be rotated to improve the matching, we can look at the
function

f(θ) := min
π

n∑

i=1

‖Ai − R(θ) · Bπ(i)‖2,

where R(θ) denotes rotation around the origin by θ. We want to determine the
minimum of f . The parameter range of θ is split into intervals, on which the
optimum permutation is constant. The function f(θ) is a sine curve on each
interval; between the intervals there are breakpoints where the slope changes. The
function f(θ) can be computed by solving a parametric assignment problem, but
the running time depends on the number of intervals.

(1) At most many intervals with different optimal permutations can the prob-
lem have? Is this number polynomially bounded?

(2) At most how many local minima can the function f have?
(3) Is there a polynomial-time algorithm for finding the best rotation?
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(4) Is there a faster algorithm for optimizing (1)?

Notes.

(1) Empirically, the number of intervals is Θ(n2) [Zikan 1991].
(2) The objective function can be expanded as follows

n∑

i=1

‖Ai − Bπ(i)‖2 = const −
n∑

i=1

〈Ai, Bπ(i)〉.

The weights cij = 〈Ai, Bj〉 of this assignment problem form a rank-2
matrix. In the parametric problem, the weights have the form

(2) cij = cos θ · uij + sin θ · vij .

For the parametric assignment problem of the form (2) with arbitrary co-
efficients uij , vij , there are examples which have a subexponential (but su-
perpolynomial) number of optimal permutations [Carstensen 1983]. How-
ever, in these examples, the costs do not form a rank-2 matrix.

3. Blocking number

(by Chuanming Zong)

Conjecture 1 (C. Zong). Let K be an n-dimensional convex body and let b(K) de-
note its blocking number. In other words, b(K) is the smallest number of nonover-
lapping translates K + xi such that all of them touch K at its boundary and can
block any other translate from touching it. Then we have

2n ≤ b(K) ≤ 2n.

Notes. Let D(K) be the difference body of K. Like the kissing numbers, we have

b(K) = b(D(K)).

Let In be an n-dimensional parallelopiped. It can be shown that b(In) = 2n.
However, the conjecture is open even in E3.

4. Tight polytope around the unit ball

(by Chuanming Zong)

Conjecture 2. Let Bn be the n-dimensional unit ball centered at the origin and
let P2n be an n-dimensional polytope with 2n facets and containing Bn. Then

max
x∈P2n

d(o,x) ≥ √
n,

where equality holds if and only if P2n is a cube circumscribed to Bn.

Notes. This conjecture is open for n ≥ 5.
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5. Essential covers of the cube by hyperplanes

(by Nati Linial)

This problem is from [1]: We wish to cover the vertices of the discrete cube
{0, 1}n with as few affine hyperplanes H1, . . . , Hk as possible, subject to the fol-
lowing requirements:

(1) Every Hi is essential. Namely, for every i there is a point in the cube that
only Hi covers.

(2) Every variable appears somewhere. Namely, for every n ≥ j ≥ 1 there is
an index i such that the variable xj appears with a nonzero coefficient in
the equation defining the hyperplane Hi.

We ask for the smallest k = f(n) for which this is possible. We can show that

n/2 + 1 ≥ f(n) ≥ Ω(
√

n).

Can you close this gap?
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6. Additive bases of vector spaces over prime fields

(by Nati Linial)

This problem is from [1]: Let p be a prime. Is there a constant r = r(p) such
that the following holds? Let V be a finite-dimensional space over the field of
order p and let B1, . . . Br be any r bases for V . Then every vector in V can be
expressed as a 0, 1 combination of vectors from B1, . . . Br.
This is already open for p = 3.
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7. Very high-dimensional Erdős–Szekeres

(by Jiŕı Matoušek)

Let f(d) be the smallest integer such that every set of f(d) points in general
position in Rd contains a subset of d2 points in convex position. Estimate the
growth of f(d). (Here d2 is just for concreteness—2d or d10 seem to be equally
open.)

8. Representing projective planes by convex sets

(by Jiŕı Matoušek)

Let us call a set system (X,F) d-representable if there are convex sets Cx,
x ∈ X , in Rd such that for every I ⊆ X , we have

⋂
x∈I Cx 6= ∅ if and only if

I is contained in some set F ∈ F . The problem is to decide whether there is
a universal constant d0 such that every finite projective plane, considered as a
set system, is d0-representable. This problem appears in [1]. More generally, we
can ask whether all finite almost disjoint set systems are d0-representable, where
almost disjoint means that no two sets share two or more points.
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9. Permanent of doubly stochastic matrices with bounded

Frobenius norm

(by Alexander Barvinok and Alex Samorodnitsky)

Recall that the permanent of an n × n matrix A = (aij) is defined by

perA =
∑

σ∈Sn

n∏

i=1

aiσ(i),

where Sn is the symmetric group of all n! permutations of the set {1, . . . , n}. A
matrix A is called doubly stochastic if it is non-negative and have all row and
column sums equal to 1:

n∑

j=1

aij = 1 for i = 1, . . . , n,

n∑

i=1

aij = 1 for j = 1, . . . , n,

aij ≥ 0 for all i, j.

The famous van der Waerden conjecture proved by Falikman and Egorychev
states that

per A ≥ n!

nn
≈ e−n

√
2πn

if A is an n × n doubly stochastic matrix.
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Problem. Let us fix a constant γ ≥ 1. Is it true that

per A = nO(1)e−n

provided A is an n × n doubly stochastic matrix such that
∑

ij

a2
ij ≤ γ?

Notes. If we impose a stronger condition that

aij ≤ γ

n
for all i, j

the estimate follows by an inequality conjectured by Minc and proved by Bregman.
In fact, it would be nice to be able to replace the ℓ∞ norm by some smooth norm
with better concentration properties, such as ℓp for some fixed p.

10. Are there always many more crossing-free spanning trees than

Triangulations?

(by Emo Welzl)

Given a finite planar point set P , we denote by tr(P ) and st(P ) the number
of triangulations of P and crossing-free spanning trees of P , respectively. The
question is whether there is a real constant c > 1 such that for every P large
enough,

st(P ) ≥ c|P | · tr(P ) .

I do not even know how to prove the statement st(P ) ≥ tr(P ). If P is a set of
n points in convex position, then tr(P ) is roughly 4n and st(P ) is roughly 6.75n

(“roughly” means up to polynomial factors).

11. Number of vertices of edge-antipodal polytopes

(by Konrad Swanepoel)

Two vertices x and y of a d-polytope P are antipodal if there exist two parallel
hyperplanes, one through x and one through y, such that P is contained in the
closed slab bounded by the two hyperplanes. The polytope P is called antipodal if
any pair of vertices of P are antipodal. Danzer and Grünbaum [5] proved that an
antipodal d-polytope has at most 2d vertices. Talata [8] introduced the following
weaker notion. A d-polytope P is called edge-antipodal if the endpoints of any
edge of P are antipodal.

Problem. Show that an edge-antipodal d-polytope has at most cd vertices, for
some absolute c > 0.

Talata has an example of an edge-antipodal d-polytope that is not antipodal
for each d ≥ 4 (see [4]). It is not immediately clear that there is an upper bound
for the number of vertices that depends only on d. This was proved by Pór [6]. In
[7] the explicit upper bound of (d

2 + 1)d is derived. The d-cube shows that c ≥ 2
if it exists. A lot is known for the cases d ∈ {3, 4} (see [1], [2], [3], [4]).
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12. Allowable double-permutation sequences

(by Richard Pollack)

An allowable double-permutation sequence on the indices 1, 1′, . . . , n, n′ is simply
an infinite sequence in which;

(i) Each term is a permutation of the symbols 1, 1′, . . . , n, n′, with each pair
i, i′ appearing in that order in every term.

(ii) The move from each term to the next consists of a switch between two
successive indices other than i, i′.

(iii) Each period is composed of two half-periods. Each term in the sec-
ond half is the reversal of the corresponding term in the first half, with
the primed and unprimed indices interchanged; for example, if the term
13543′5′1′22′4′ occurs somewhere, then the term 422′1534′5′3′1′ will occur
exactly a half-period later.

(iv) The full period consists of precisely 8
(
n
2

)
double permutations.

Given an allowable double-permutation sequence on 1, 2, . . . , n, 1′, 2′, . . . , n′,
produce n not necessarily convex polygons, P1, P2, . . . , Pn, and 4

(
n
2

)
polygonal

common tangents (piecewise linear curves, crossing once per pair, for which the
initial and final half-lines have the same slope), 2 internal (Ti,j′ and Ti′,j) and 2
external (Ti,j and Ti′,j′ ) tangents to each pair of polygons Pi and Pj , so that the
sequence of slopes determine the corresponding switches {i, j′}, {i′, j}, {i, j}, and
{i′, j′} producing the terms following the term {1, 1′, 2, 2′, . . . , n, n′}.
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13. Union of lines tangent to three convex sets in R3

(by Xavier Goaoc)

A line is tangent (or support) to a convex set if it intersects the set and is
contained in a plane that bounds a closed halfspace that contains the set. Given
three convex sets A, B and C in R3, we denote by S(A, B, C) the union of the
lines that are tangent to A, B and C. In other words, S(A, B, C) is the set of
points in R3 through which passes a line tangent to all three sets.

The set S(A, B, C) is related to “visual events”: as a moving observer crosses
S(A, B, C) the topology of the apparent contour (or silhouette) of the set A ∪
B ∪ C changes. These sets play a role in visibility questions, e.g aspect graphs in
Computer Vision and shadow boundaries computation in Computer Graphics [1],
and are usually referred to as “visual event surfaces”. Yet, there doesn’t seem to
be a proof that S(A, B, C) is two-dimensional in general.

Conjecture 3. For any pairwise disjoint convex sets A, B and C the set S(A, B, C)
is contained in a countable union of 2-manifolds.

A weaker version of this conjecture is the following:

Conjecture 4. For any pairwise disjoint convex sets A, B and C the set S(A, B, C)
is contained in a set of measure 0.

For any pairwise disjoint convex sets A, B and C, S(A, B, C) is closed and
has empty interior [1]. This implies conjectures 1 and 2 in certain particular
cases, for instance if the convex sets are semi-algebraic sets of constant description
complexity, but not in general: a closed set with empty interior may have nonzero
measure, as the following example shows.

Let ϕ be a bijection from N to Q and U the following subset of R:

U =
⋃

n∈N

(
ϕ(n) − 1

n2
, ϕ(n) +

1

n2

)
.

The set U is open, dense and has measure at most π2

3 . Thus, R \ U is closed, has
empty interior, and infinite measure.
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Discrete Geometry 2553

Participants

Dr. Iskander Aliev

School of Mathematics
Cardiff University
23, Senghennydd Road
GB-Cardiff CF24 4AG

Prof. Dr. Boris Aronov

Department of Computer Science
Polytechnic Institute of NYU
333 Jay Street
Brooklyn , NY 11201
USA

Prof. Dr. Keith M. Ball

Department of Mathematics
University College London
Gower Street
GB-London WC1E 6BT

Prof. Dr. Imre Barany

Alfred Renyi Institute of
Mathematics
Hungarian Academy of Sciences
P.O.Box 127
H-1364 Budapest

Prof. Dr. Alexandre I. Barvinok

Department of Mathematics
University of Michigan
Ann Arbor , MI 48109-1109
USA

Prof. Dr. Matthias Beck

Department of Mathematics
San Francisco State University
1600 Holloway Avenue
San Francisco , CA 94132
USA

Boris Bukh

Department of Mathematics
Princeton University
609 Fine Hall
Washington Road
Princeton , NJ 08544
USA

Prof. Dr. Jesus A. De Loera

Department of Mathematics
University of California, Davis
1, Shields Avenue
Davis , CA 95616-8633
USA

Dr. Ester Ezra

Department of Computer Science
Duke University
Box 90129
Durham , NC 27708-0129
USA

Prof. Dr. Komei Fukuda

Institute for Operations Research
ETH Zürich
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Prof. Dr. Xavier Goaoc

INRIA Lorraine
Technopole de Nancy-Brabois
615 rue de Jardin Botanique
F-54600 Villers-les-Nancy

Prof. Jacob E. Goodman

Department of Mathematics
The City College of New York
Convent Avenue at 138th Street
New York , NY 10031
USA



2554 Oberwolfach Report 44/2008

Prof. Dr. Martin Henk

Institut für Algebra und Geometrie
Otto-von-Guericke-Universität
Magdeburg
Postfach 4120
39016 Magdeburg

Prof. Dr. Alexander Iosevich

Department of Mathematics
University of Missouri-Columbia
202 Mathematical Science Bldg.
Columbia , MO 65211
USA

Prof. Dr. Michael Joswig

Fachbereich Mathematik
TU Darmstadt
Schloßgartenstr. 7
64289 Darmstadt

Prof. Dr. Gyula Karolyi

Dept. of Algebra and Number Theory
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ETH Zürich
CH-8092 Zürich
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