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Introduction by the Organisers

Combinatorial Optimization remains a very lively discipline with strong connec-
tions to Combinatorics, Graph Theory, Geometry, and Integer Programming. For
over thirty years, Oberwolfach workshops have had a central role in shaping the
field, being the unique setting where the entire spectrum of the subject is cov-
ered, from fundamental theory to practical computation. The 2008 Combinatorial
Optimization Workshop was again a great success. We would like to take this
opportunity to thank all speakers for the great care they put into preparing their
contributions, and to thank all participants for their active discussions that led
to a truly stimulating meeting. Just like our predecessors, we are happy that we
could attract many of the strongest theoreticians as well as the most successful
practitioners to the workshop.

Even though the team of organizers has dynamically changed over the last thirty
years, a format has emerged that has been quite stable in the last decade, namely
a mix of a few pre-arranged focus talks and short presentations of the participants
that are scheduled during the conference. In the focus talks, selected experts
survey the state-of-the-art in current hot topics and point out new mathematical
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challenges. While we have largely adopted this format, we have lowered the number
of short presentations in favor of more time that can be spent for joint research
in small groups, taking up a suggestion made by the director during the previous
Combinatorial Optimization Workshop held in 2005. We have had very positive
feedback from workshop participants that this measure enhances the conditions for
new cooperation between participants that can be expected to lead to continued
joint work and publications afterwards. Each day, the program started with a pre-
arranged one hour focus presentation, followed by two thirty-minute presentations
in the morning and three thirty-minute presentations before dinner.

This year’s focus talks featured topics that bring together techniques from other
areas of mathematics to explore new approaches for attacking well-known combi-
natorial problems. Tibor Jordán led off the workshop with a talk covering methods
in network localization, making use of ideas from combinatorial rigidity. Tuesday’s
talk was by Kazuo Murota, discussing the new area of discrete convex analysis,
where combinatorial analogues of basic convex results are being developed, mainly
in the Japanese research community. Friedrich Eisenbrand presented new direc-
tions in the application of techniques from the geometry of numbers in Wednesday’s
talk, including several new open problems in the area of integer programming. On
Thursday, Monique Laurent gave an in-depth treatment of the use of semidefinite
programming techniques applied to coloring problems in graphs. András Sebő gave
the final focus talk on Friday, describing the application of polyhedral techniques
to graph optimization problems.

A new addition to this year’s workshop was an evening session devoted to com-
putational integer programming, featuring discussions led by Robert Bixby, San-
jeeb Dash, and Alexander Martin. The session highlights one of the remarkable
achievements of the field in general and the Oberwolfach meetings in particular,
namely, a very fast transition form basic theoretical breakthroughs to commercially
successful software. Within the course of the three-year cycle of the Oberwolfach
meetings, proposed new techniques work their way from academia to the leading
mixed-integer programming software, delivered throughout the industrial sector.
The broad mix of researchers at the Combinatorial Optimization Workshops di-
rectly contributes to this rapid transfer.
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Abstracts

Uniquely Localizable Sensor Networks

Tibor Jordán

(joint work with Bill Jackson)

In the network localization problem the locations of some nodes (called anchors)
of a network as well as the distances between some pairs of nodes are known, and
the goal is to determine the location of all nodes. This is one of the fundamental
algorithmic problems in the theory of wireless sensor networks, see for example
[1, 11].

A natural additional question is whether a solution to the localization problem
is unique. The network, with the given locations and distances, is said to be
uniquely localizable if there is a unique set of locations consistent with the given
data. The unique localizability of a two-dimensional network, whose nodes are ‘in
generic position’, can be characterized by using results from graph rigidity theory.
In this case unique localizability depends only on the combinatorial properties of
the network: it is determined completely by the distance graph of the network and
the set of anchors, or equivalently, by the grounded graph of the network and the
number of anchors. The vertices of the distance and grounded graph correspond
to the nodes of the network. In both graphs two vertices are connected by an edge
if the corresponding distance is explicitly known. In the grounded graph we have
additional edges: all pairs of vertices corresponding to anchor nodes are adjacent.
The grounded graph represents all known distances, since the distance between
two anchors can be obtained from their locations. It is convenient to investigate
localization problems with distance information by using frameworks, the central
objects of rigidity theory.

A 2-dimensional framework is a pair (G, p), where G = (V,E) is a graph and p
is a map from V to R2. We consider the framework to be a straight line realization
of G in R2. Two frameworks (G, p) and (G, q) are equivalent if corresponding edges
have the same lengths, that is, if ||p(u)− p(v)|| = ||q(u)− q(v)|| holds for all pairs
u, v with uv ∈ E, where ||.|| denotes the Euclidean norm in R2. Frameworks (G, p),
(G, q) are congruent if ||p(u) − p(v)|| = ||q(u) − q(v)|| holds for all pairs u, v with
u, v ∈ V . This is the same as saying that (G, q) can be obtained from (G, p) by an
isometry of R2. We shall say that (G, p) is globally rigid, or that (G, p) is a unique
realization of G, if every framework which is equivalent to (G, p) is congruent to
(G, p).

Proposition 1. [1, 11] Let N be a network in R2 consisting of m anchors located
at positions p1, ..., pm and n −m ordinary nodes located at pm+1, ..., pn. Suppose
that there are at least three anchors in general position. Let G be the grounded
graph of N and let p = (p1, ..., pn). Then the network is uniquely localizable if and
only if (G, p) is globally rigid.
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It is an NP-hard problem to decide if a given framework is globally rigid. The
problem becomes more tractable, however, if we assume that there are no algebraic
dependencies between the coordinates of the points of the framework.

A framework (G, p) is said to be generic if the set containing the coordinates
of all its points is algebraically independent over the rationals. Restricting to
generic frameworks gives us two important ‘stability properties’. The first is that,
if (G, p) is a globally rigid d-dimensional generic framework then there exists an
ǫ > 0 such that all frameworks (G, q) which satisfy ||p(v) − q(v)|| < ǫ for all
v ∈ V are also globally rigid. The second is that if some 2-dimensional generic
realization of a graph G is globally rigid, then all 2-dimensional generic realizations
of G are globally rigid. Rigidity, which is a weaker property of frameworks than
global rigidity, plays an important role in the exploration of the structural results
of global rigidity. A framework (G, p) is rigid if there exists an ǫ > 0 such that,
if (G, q) is equivalent to (G, p) and ||p(u) − q(u)|| < ǫ for all v ∈ V , then (G, q)
is congruent to (G, p). It is equivalent to saying that (G, p) has no non-trivial
continuous deformations which preserve the edge lengths.

Rigidity, like global rigidity, is a generic property of frameworks, that is, the
rigidity of a generic realization of a graph G depends only on the graph G and
not the particular realization. We say that the graph G is rigid, respectively
globally rigid or uniquely realizable, in R2 if every (or equivalently, if some) generic
realization of G in R2 is rigid, respectively globally rigid. See [3, 12] for a detailed
survey of the rigidity of frameworks.

The characterization of rigid graphs in R2 is a result of Lovász and Yemini
[9]. Globally rigid graphs in R2 are characterized by the following result, which
incorporated earlier results from [2, 4] and a new inductive construction for the
family of 3-connected redundantly rigid graphs. We say that G is redundantly rigid
in R2 if G− e is rigid in R2 for all edges e of G.

Theorem 2. [5] Let (G, p) be a 2-dimensional generic framework. Then (G, p) is
globally rigid if and only if either G is a complete graph on two or three vertices,
or G is 3-connected and redundantly rigid in R2.

We may also consider a more general problem in which either distances, direc-
tions, or both, are known for some pairs of vertices of a sensor network. In this
situation we work with mixed graphs. A mixed graph is a graph together with a
bipartitionD∪L of its edge set. We refer to edges inD as direction edges and edges
in L as length edges. A mixed framework (G, p) is a mixed graph G = (V ;D,L)
together with a map p : V → R2. Two mixed frameworks (G, p) and (G, q) are
equivalent if p(u) − p(v) is a scalar multiple of q(u) − q(v) for all uv ∈ D and
||p(u) − p(v)|| = ||q(u) − q(v)|| for all uv ∈ L. The mixed frameworks (G, p) and
(G, q) are congruent if there exists a vector t ∈ R2 and λ ∈ {−1, 1} such that
q(v) = λp(v) + t for all v ∈ V . This is equivalent to saying that (G, q) can be
obtained from (G, p) by a rotation by 0 or 180 degrees and a translation. The
mixed framework (G, p) is globally rigid if every framework which is equivalent to
(G, p) is congruent to (G, p). It is rigid if there exists an ǫ > 0 such that every
framework (G, q) which is equivalent to (G, p) and satisfies ‖p(v) − q(v)‖ < ǫ for
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all v ∈ V , is congruent to (G, p). The rigidity of mixed frameworks is a generic
property and we may define a mixed graph G to be rigid if every, or equivalently,
if some, generic realization of G is rigid. Rigid mixed graphs were characterized
by Servatius and Whiteley [10].

The problem of characterizing when a generic mixed framework (G, p) is globally
rigid is still an open problem. We have, however, been able to obtain some partial
results. In order to state these in terms of graphs we define a mixed graph G to
be globally rigid if all generic realizations of G are globally rigid. (It is not known
whether global rigidity of mixed frameworks is a generic property.) A necessary
condition for global rigidity, which is analogous to the ‘3-connectedness condition’
of Theorem 2 is ‘direction balancedness’, which is defined as follows [8]. Let G be
a 2-connected mixed graph. A 2-separation S of G is direction-balanced if each
’side’ of S contains a direction edge. We say that G is direction balanced if all
2-separations of G are direction balanced.

We say that a mixed graphG = (V ;D,L) is a mixed circuit if |D|+|L| = 2|V |−1
and G is redundantly rigid. (These graphs are the circuits of the ’mixed rigidity
matroid’ of G.) We proved the following characterization of globally rigid mixed
circuits.

Theorem 3. [7] Let G be a mixed circuit. Then G is globally rigid if and only if
G is direction balanced.

For a detailed survey on graph theoretic techniques in the localization problem
see [6].
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Separation, Dimension, and Facet Algorithms for Node Flow

Polyhedra

S. Thomas McCormick

(joint work with Maren Martens and Maurice Queyranne)

Ball et al. [3] (see also [5]) propose a graph model for material compatibility
constraints (see, e.g., Balakrishnan and Geunes [2]) for products such as PCs made
from components, where each component is a node, and the natural variables are
flows on paths (products). When the number of paths is much larger than the
number of nodes, it is more convenient to consider the set of node flows in place of
that of path flows. It is natural to want to extend this model in three directions:
(1) What if we allow the graph to contain directed cycles, which allows for more
modeling flexibility? (2) What if we have lower and upper bounds l and u on arc
flow and λ and µ on node flow? (3) Can we find efficient algorithms that solve
separation, validity, and dimension questions about this node flow polytope? This
paper extends [3, 5] in all of these directions.

Since we now allow directed cycles, it turns out to be simpler to consider flows
on cycles instead of flows on paths. We denote the set of directed cycles by C, and
denote the node-cycle incidence matrix by M . A production plan y ∈ RC naturally
induces an arc flow f via fij =

∑

C∈C:i→j∈C yC and a node flow x via x = My.
Given lower and upper bounds lij , uij on arc flow, and λi, µi on node flow with
−∞ ≤ l ≤ u ≤ ∞ and −∞ ≤ λ ≤ µ ≤ ∞, then y is a feasible production plan if
its associated f and x satisfy lij ≤ fij ≤ uij for all i→ j ∈ A, and λi ≤ xi ≤ µi for
all i ∈ N . (Non-zero arc lower bounds arise in computing face dimension, and so
we include them from the start.) Letting B = (l, u, λ, µ) be the vector of bounds,
define QB = {x ∈ Rn | ∃y ∈ RC s.t. y is a feasible production plan and x = My},
so that QB is the projection of the polyhedron of feasible production plans in the
“big” space RC to the “small” space RN . The node flow polyhedron QB is likely
to appear as a part of a more general model that is being solved by Branch and
Cut. Here is a list of possible tasks that such a code may require, along with our
algorithms for solving them:

(1) Separation: Given some x̄ ∈ Rn, either prove that x̄ ∈ QB, or find some
constraint αTx ≥ β that is satisfied by every x ∈ QB, but violated by x̄,
i.e., such that αT x̄ < β.

We solve this by splitting each node i into i and i′ with a new arc
i → i′ with bounds lii′ = uii′ = x̄i. Then it is easy to see that x̄ ∈ QB

iff there is a feasible flow in this extended network. This can be decided
using one max flow (see, e.g., [1]). When there is no feasible flow then as in
Hoffman’s Circulation Theorem [4] the associated min cut gives us disjoint
subsets (possibly empty) of the (original) nodes J and K, and subsets
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of the (original) arcs L and U , defining the Hoffman cut x(J) + l(L) ≤
x(K) + u(U).

(2) Validity: Given a proposed constraint αTx ≥ β, either prove that it is
valid for all x ∈ QB, or find some x̄ ∈ QB such that αT x̄ < β.

We solve this by using the same split-node network. This time we put
cost αi on new arc i → i′ and cost 0 on all other arcs, and we do a
min-cost circulation on the network that effectively minimizes αTx. If the
optimal value z∗ ≥ β, then the cut is valid, else the optimal flow yields an
x̄ violating the cut.

(3) Dimension of QB: Compute the dimension of QB.
For cc(H) as the number of connected components induced by arcs

H , define cotree(H) = cotree(NH , AH) := |AH | − |NH | + cc(H), i.e., the
number of arcs in the complement of a spanning forest. Also define the
fixed arcs as those whose flow is fixed to a bound by equal bounds or min
cuts, and other arcs as free; the new arcs in the node-split graph are split
arcs, and the others are real arcs. Then, since cotree(Areal∩free) represents
the number of split arcs that must occur in any spanning forest, we show
that dim(QB) = cotree(Afree) − cotree(Areal∩free).

(4) Face Dimension: Given some valid constraint αTx ≥ β, compute the
dimension of the face F of QB it induces. Solving this allows us to char-
acterize which valid constraints are facets of QB.

Here we combine the techniques of the previous two items. We again
use the node-split graph, and put cost α on arcs i→ i′, costs 0 elsewhere,
and do min-cost flow. Reduced costs determine which arcs have their flows
fixed to a bound in every optimal solution. By redefining Afree to exclude
these new fixed arcs and using the algorithm of the previous section, we
get the dimension of the face.

(5) Separation to a Facet: Given some x̄ /∈ QB, find a constraint αTx ≥ β
separating x̄ from QB that induces a facet of QB.

If Separation gives us a Hoffman cut that is not a facet, we use a
min-cost flow with 0, ±1 costs to find a feasible flow “nearest” to x̄. By
analyzing the connected components of this flow we can manipulate this
cut so that it remains separating but has a nice structure. We then show
that the only way this can avoid being a facet is if it contains a “blob” that
causes extra real arcs to have fixed flow. We then show a final manipula-
tion that preserves separation, and which increases the dimension of the
induced face by at least one. The overall time for all these manipulations
is O(mn), which is dominated by the min-cost flow.

Separation to a Facet is a key subroutine needed for Branch and Cut, and
turns out to be quite tricky. Note that we solve all problems by giving fast network
flow-based algorithms. Since such algorithms are highly developed and very quick
in practice (see, e.g., [1]), these results are quite practical.



2884 Oberwolfach Report 51/2008

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows: Theory, Algorithms and Ap-
plications, Prentice Hall (1993).

[2] A. Balakrishnan and J. Geunes, Requirements Planning with Substitutions: Exploring Bill-
of-Materials Flexibility in Production Planning, MSOM 2 (2000), 166–185.

[3] M.O. Ball, C.-Y. Chen, and Z.-Y. Zhao, Material compatibility constraints for make-to-order
production planning, OR Letters 31 (2003), 420–428.

[4] A.J. Hoffman, Some Recent Applications of the Theory of Linear Inequalities to Extremal
Combinatorial Analysis, in R. Bellman and M. Hall, Jr., (eds.), Proceedings of Symposia
in Applied Mathematics, Vol. X, Combinatorial Analysis, American Mathematical Society,
Providence, RI (1960), 113–127.

[5] S. T. McCormick and M. N. Queyranne, Le Cône des Flots aux Noeuds dans un Réseau
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Minimal Infeasible Subsystems and Benders Cuts

Matteo Fischetti

(joint work with Domenico Salvagnin and Arrigo Zanette)

1. Introduction

Suppose we are given a MIP problem min{cTx+dT y : Ax ≥ b, Tx+Qy ≥ r, x ∈
Zn

+, y ∈ Rt
+}, where matrix Q has m rows. Classical Benders decomposition states

that solving such a problem is equivalent to solving:

min cTx+ η

Ax ≥ b

η ≥ uT (r − Tx), u ∈ VERT

vT (r − Tx) ≤ 0, v ∈ RAY

x ≥ 0, x integer

(1)

where the additional variable η takes into account the objective function term dT y,
while sets VERT and RAY contain the vertices and extreme rays of the polyhedron
D = { π ∈ Rm

+ : πTQ ≤ dT }, respectively.
Formulation (1) has exponentially many inequalities, so an iterative solution

approach based on cutting planes is needed, that can be outlined as follows.

(1) Solve the master problem: min{cTx+ η : A′x ≥ b′, η ∈ R, x ∈ Zn
+} where

A′x ≥ b′ includes Ax ≥ b plus (some of) the Benders cuts generated so far
(none at the very beginning). Let (x∗, η∗) be an optimal solution of the
master problem.

(2) Solve the dual slave problem: max{πT (r − Tx∗) : πTQ ≤ dT , π ∈ Rm
+}
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(3) If the dual slave problem is unbounded, choose any unbounded extreme
ray v, add the Benders feasibility cut vT (r − Tx) ≤ 0 to the master, and
go to Step 1. Otherwise, let the optimal value and an optimal vertex be
z∗ and u, respectively. If z∗ ≤ η∗ then stop. Otherwise, add the so-called
Benders optimality cut η ≥ uT (r − Tx) to the master problem, and go to
Step 1.

According to our computational experience, optimality cuts and feasibility cuts
behave quite differently. Indeed, for many problems where term dT y gives a signif-
icant contribution to the overall optimal value, optimality cuts can be much more
effective in moving the bound than feasibility cuts. Moreover, optimality cuts are
typically worse from a numerical point view.

As a consequence, it is important to have some control on the kind (and
quality) of Benders cuts generated at each iteration. Unfortunately, Benders
decomposition—as it is typically implemented in the literature—is heavily biased
toward feasibility cuts. As a matter of fact, as long as a violated feasibility cut
exists, the dual slave is unbounded and hence no optimality cut is generated. As
noted by Benders himself [3], however, if we solve the dual slave with the primal
simplex method, then when we discover an unbounded ray we are “sitting on a
vertex” of polyhedron D, and thus we can generate also an optimality cut with no
additional computational effort. A main drawback of this approach is that opti-
mality cut produced is not guaranteed to be violated, and in any case its discovery
is quite “random” as the corresponding vertex is by no mean a one maximizing a
certain quality index such as cut violation, depth, etc.

The lack of control on the quality of the Benders cuts is even more striking
when feasibility cuts are generated, since the textbook method does not give any
rule to choose among the unbounded rays.

The considerations above prompted us to introduce an effective criterion for
choosing among violated (optimality or feasibility) Benders cuts, very much in
the spirit of disjunctive cut generation that is also based on Cut Generation LP
(CGLP); see [2].

2. Benders cuts and Minimal Infeasible Subsystems

The CGLP for Benders cuts can always be seen as a feasibility problem: given
a master solution (x∗, η∗), it is possible to generate a violated cut if and only if
the following primal slave problem is infeasible:

dT y ≤ η∗, Qy ≥ r − Tx∗, y ≥ 0(2)

or equivalently, by LP duality, if the dual slave problem max{πT (r−Tx∗)−π0η
∗ :

πTQ ≤ π0d
T , (π, π0) ∈ Rm+1

+ } is unbounded. If separation is successful, for an

unbounded ray (π, π0) the generated cut reads πT (r − Tx) − π0η ≤ 0.
In practice, one is interested in detecting a “minimal source of infeasibility”

of (2), so as to detect a small set of rows that allow to cut the master solution.
According to Gleeson and Ryan [4], the rows of any Minimal (with respect to set
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inclusion) Infeasible Subsystem (MIS) of (2) are indexed by the support of the
vertices of the following polyhedron, sometimes called the alternative polyhedron:

AP = {(π, π0) ∈ Rm+1
+ : πTQ ≤ π0d

T , πT (r − Tx∗) − π0η
∗ = 1}(3)

where the unbounded objective function—i.e., the cut violation to be maximized—
has been fixed to a normalization positive value. By choosing an appropriate
objective function it is therefore possible to optimize over AP , thus selecting a
violated cut corresponding to a MIS of (2) with certain useful properties. A
natural objective function whose purpose is to try to minimize the cardinality of
the support of the optimal vertex (and hence to find a small-cardinality MIS), is

(4) min

m
∑

i=1

πi + π0

As we are only interested in solutions with a positive cut violation, and since
{(π, π0) ∈ Rm+1

+ : πTQ ≤ π0d
T } is a cone, we can swap the role of the objec-

tive function (4) and of the normalization condition in (3), yielding the following
equivalent CGLP akin to the one used for disjunctive cuts in [2]:

max{πT (r − Tx∗) − π0η
∗ : πTQ ≤ π0d

T ,

m
∑

i=1

πi + π0 = 1, (π, π0) ∈ Rm+1
+ }(5)

It is worth noting that the feasible solution set of the above CGLP is never empty
nor unbounded, so a violated cut can be generated if and only if the CGLP
has a strictly positive optimal value. The latter formulation is preferable from
a computational point because the normalization constraint

∑m
i=1 πi + π0 = 1,

though very dense, is numerically more stable than its “cut violation” counterpart
πT (r − Tx∗) − π0η

∗ = 1. Moreover, at each iteration only the CGLP objective
function is affected by the change in the master solution (x∗, y∗), hence its re-
optimization with the primal simplex method is usually quite fast.

3. Computational results

The effectiveness of our CGLP formulation has been tested on a collection of
problems from the MIPLIB 2003 library.

We implemented the classical (textbook) Benders method, as well as two vari-
ants of our MIS-based CGLP. The textbook (tb) implementation is the original
method as proposed by Benders [3]: if the dual slave problem is bounded, we gen-
erate one optimality cut, otherwise we generate both a feasibility and an optimality
cut (the optimality cut being added to the master problem only if it is violated by
the current master solution). tb noopt is instead a typical Benders implementation
where only one cut per iteration is generated—in case of unboundedness, only the
feasibility cut associated with the unbounded dual-slave ray detected by the LP
solver is added to the master. mis is our basic MIS-based method. It uses the
CGLP (5) to solve the separation problem, hence it generates only one cut per
iteration. mis2 is a modified version of mis : after having solved the CGLP, if the
generated cut is an optimality one, the generation of an additional feasibility cut is
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Figure 1. Lower bound growth vs. time (CPU seconds) with
different separation methods on instance fixnet6. The dotted
line is the known optimal value.

enforced by imposing condition π0 = 0. The quality of the generated Benders cuts
is measured in terms of “percentage gap closed” at the root node, as customary
in cutting plane methods. A typical behavior is illustrated in Figure 1.

Overall, the tb noopt performance is always very poor, whereas tb turns out to
be the most efficient method only in 1 out of 11 instances, and only with little
advantage over the competitors. mis and mis2 are much more effective on 10
out of 11 instances, with speedups of 1 to 2 orders of magnitude. As expected,
the average density of the cuts generated by mis and mis2 is considerably smaller
than tb and tb noopt. This has a positive effect on the rate of growth of the master
solution time as a function of the number of iterations.

A comparison between mis and mis2 shows that mis qualifies as the method of
choice, as it is usually faster than mis2 due to the extra computing time spent by
the latter in generating the additional feasibility cut. Nevertheless, there are in-
stances where the extra separation effort is rewarded by a significant improvement
of the overall performance; see [1] for more details.
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Single-source 2-splittable Min-cost Flows

Martin Skutella

(joint work with Fernanda Salazar)

We study a relaxation of the following flow problem introduced by Kleinberg [5]:

Single-source unsplittable min-cost flow problem

Given: Digraph G = (V,E) with capacities u = (ue)e∈E and
costs c = (ce)e∈E ; source node s ∈ V and p sink nodes
t1, . . . , tp ∈ V with demands d = (d1, . . . , dp) ∈ R

p
≥0.

Task: Find a flow (ye)e∈E with y ≤ u of minimum cost c(y) =
∑

e∈E ceye and with a path decomposition (yPi
)i=1,...,p such

that Pi is an s-ti-path and yPi
= di for i = 1, . . . , p.

Thus the demand di of each commodity i must be routed along a single s-ti-
path. Any such flow y is called an unsplittable flow satisfying demands d. Already
the problem of deciding whether an unsplittable flow satisfying demands d and
obeying capacity constraints y ≤ u exists is NP-complete [5]. It contains several
well-known NP-complete problems as special cases, such as, for example, Partition,
Bin Packing, or even scheduling parallel machines with makespan objective. On
the other hand, if we drop the constraint on y to be unsplittable, what remains is
a classical minimum cost flow problem that can be solved efficiently.

Let dmax := maxi di denote the maximum demand value. A popular assumption
in the context of unsplittable flow problems is the no bottleneck condition which
says that no demand may exceed the capacity of any arc, that is,

dmax ≤ ue for all e ∈ E.(1)

Our work is motivated by the following conjecture.

Conjecture 1 (Goemans [4]). For any flow x satisfying demands d, there is an
unsplittable flow y satisfying demands d with

ye ≤ xe + dmax for all e ∈ E(2)

and c(y) ≤ c(x).

Dinitz, Garg, and Goemans [2] prove that the conjecture without costs (i.e.,
removing the bound c(y) ≤ c(x)) is true and provide an efficient algorithm that
computes y.

The congestion of a given flow y is the minimum value α ≥ 1 with y ≤ αu.
In particular, a flow of congestion 1 obeys the capacity constraints. The first ap-
proximation results for the min-congestion version of the single-source unsplittable
flow problem (without costs) is given by Kleinberg [6]. Since a flow x satisfying
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demands d with minimum congestion can be computed with classic network flow
techniques, the result of Dinitz et al. [2] implies the existence of a 2-approximation
algorithm for the problem without costs. For this and all further approximation
results mentioned below we assume that the no-bottleneck condition (1) holds.

Kolliopoulos and Stein [8] prove the weaker version of Conjecture 1 where con-
dition (2) is replaced by

ye ≤ 2xe + dmax for all e ∈ E(3)

and with the relaxed cost bound c(y) ≤ 2c(x). Their result implies the existence
of a bicriteria (3, 2)-approximation algorithm for congestion and cost. Improving
upon this result, Skutella [10] gives a (3, 1)-approximation algorithm. He proves
Conjecture 1 with (2) replaced by (3) but with the original cost bound c(y) ≤
c(x). Notice that an efficient algorithm that computes an unsplittable flow y as
in Conjecture 1 would yield a (2, 1)-approximation algorithm. On the negative
side, Erlebach and Hall [3] prove that, for arbitrary ε > 0, there is no (2 − ε, 1)-
approximation algorithm, unless P=NP.

Kolliopoulos and Stein [8] and Skutella [10] both build upon the result that
Conjecture 1 holds for the special case where all demand values are powers of 2.
In [8] the case of general demands is handled by rounding up demand values to
the nearest power of 2. This yields an increase in cost by a factor of at most 2. In
contrast to this, the improved result in [10] is achieved by rounding down demand
values to the nearest power of 2 and carefully adjusting the given flow x.

We mention the following reformulation of Conjecture 1 stated in [9].

Conjecture 2 ([9]). Any flow x satisfying demands d can be written as a con-
vex combination of unsplittable flows yℓ, ℓ ∈ L, with property (2) and satisfying
demands d.

It is not difficult to observe that Conjecture 2 is equivalent to Conjecture 1.
Building upon [8] and [10], Martens, Salazar, and Skutella [9] prove the following
result.

Theorem 3 ([9]). Conjecture 2 holds if all demands are powers of 2. Moreover,
the family of unsplittable flows yℓ, ℓ ∈ L, can be obtained in polynomial time.

In particular, the cardinality of L is polynomially bounded in the input size.
More precisely, it is at most |E| + 1 (by Carathéodory’s Theorem).

Baier, Köhler, and Skutella [1] introduce the following relaxation of unsplittable
flows. For a given k ≥ 1, a k-splittable flow must route each commodity along at
most k paths. In particular, 1-splittable flows are unsplittable flows. We consider
the case k = 2. The resulting relaxation of our unsplittable flow problem is the
single-source 2-splittable min-cost flow problem.

Kolliopoulos [7] presents an efficient algorithm that, given a flow x satisfying
demands d, finds a 2-splittable flow y satisfying demands d with ye ≤ 4

3xe + 2
3dmax

for all e ∈ E and c(y) ≤ c(x). This yields a (2, 1)-approximation algorithm for the
single-source 2-splittable min-cost flow problem. The main idea behind this result
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is to round down the demand values to the nearest sum of two powers of 2 and to
carefully adjust the given flow x (as in [10]).

Inspired by the work of Kolliopoulos [7], we present the following improved
result yielding a (11

6 , 1)-approximation algorithm for the single-source 2-splittable
min-cost flow problem.

Theorem 4. For any flow x satisfying demands d, there is a 2-splittable flow y
satisfying demands d with

ye ≤ 4

3
xe +

dmax

2
for all e ∈ E(4)

and c(y) ≤ c(x). Moreover, such a flow y can be found in polynomial time.

In order to achieve this result, we build upon results mentioned above and
introduce several new ideas and techniques. The history of bicriteria approxima-
tions for unsplittable flows outlined above suggests that rounding down demands
to powers of 2 (as in [10]) leads to superior results compared to rounding up (as
in [8]). Consequently, Kolliopoulos [7] also uses rounding-down in his algorithm.
Surprisingly, the algorithm behind Theorem 4 is based on rounding-up. We also
obtain a new algorithm and proof for the best known result for the unsplittable
min-cost flow problem given in [10]. This implies, in particular, that the original
idea of Kolliopoulos and Stein to round up demands to powers of 2 can still lead
to unsplittable flows y that are no more expensive than the given flow x. This
insight also sheds new light on Conjecture 1.

Moreover, in contrast to earlier approximation results, in our result we use a
more sophisticated technique based upon Theorem 3. That is, for the problem
with rounded demands we compute an entire family of 2-splittable flows which
contain an accordingly rounded version of the given flow x in their convex hull.
We emphasize that, in our approach, it is not sufficient to only compute a member
of this family that has minimum cost. Only after going back to the original
demands and rounding down all 2-splittable flows we can check which members of
the family do not violate the cost bound.
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The Alcuin Number of a Graph

Gerhard J. Woeginger

(joint work with Péter Csorba and Cor A.J. Hurkens)

Alcuin’s river crossing problem. The Anglo-Saxon monk Alcuin (735–804 A.D.)
was one of the leading scholars of his time. He served as head of Charlemagne’s
Palace School at Aachen, he developed the Carolingian minuscule (a script which
has become the basis of the way the letters of the present Roman alphabet are
written), and he wrote a number of elementary texts on arithmetic, geometry, and
astronomy. His book “Propositiones ad acuendos iuvenes” (Problems to sharpen
the young) is perhaps the oldest collection of mathematical problems written in
Latin. It contains the following well-known problem.

A man had to transport to the far side of a river a wolf, a goat,
and a bundle of cabbages. The only boat he could find was one
which would carry only two of them. He sought a plan which
would enable them all to get to the far side unhurt. Let him, who
is able, say how it could be possible to transport them safely?

In a safe transportation plan, neither wolf and goat nor goat and cabbage can
be left alone together. Alcuin’s river crossing problem differs significantly from
other mediaeval puzzles, since it is neither geometrical nor arithmetical but purely
combinatorial. In fact it might be one of the oldest combinatorial problems in the
history of mathematics.

Graph-theoretic model. We consider the following generalization of Alcuin’s prob-
lem to arbitrary graphs G = (V,E): The man has to transport a set V of
items/vertices across the river. Two items are connected by an edge in E, if they
are conflicting and thus cannot be left alone together without human supervision.
The available boat has capacity b ≥ 1, and thus can carry the man together with
any subset of at most b items. A feasible schedule is a finite sequence of triples
(L1, B1, R1), (L2, B2, R2), . . . , (Ls, Bs, Rs) of subsets of the item set V that satis-
fies the following conditions (FS1)–(FS3). The odd integer s is called the length
of the schedule.

(FS1) For every k, sets Lk, Bk, Rk form a partition of V . The sets Lk

and Rk are stable sets, and Bk contains at most b elements.
(FS2) The sequence starts with L1 ∪ B1 = V and R1 = ∅, and the

sequence ends with Ls = ∅ and Bs ∪Rs = V .
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(FS3) For even k ≥ 2: Bk ∪Rk = Bk−1 ∪Rk−1 and Lk = Lk−1.
For odd k ≥ 3: Lk ∪Bk = Lk−1 ∪Bk−1 and Rk = Rk−1.

Here the kth triple encodes the kth boat trip: Lk contains the items on the left
bank, Bk the items in the boat, and Rk the items on the right bank. Odd indices
correspond to forward boat trips from left to right, and even indices correspond
to backward trips from right to left.

We are interested in the smallest possible capacity of a boat for which a graph
G = (V,E) possesses a feasible schedule; this capacity is called the Alcuin number
Alcuin(G) of the graph. A natural problem variant puts a hard constraint on
the length of the schedule: Let t ≥ 1 be an odd integer. The smallest possible
capacity of a boat for which G possesses a feasible schedule with at most t boat
trips is called the t-trip constrained Alcuin number Alcuint(G). In our graph-
theoretic model Alcuin’s river crossing problem corresponds to the path P3 with
three vertices w(olf), g(oat), c(abbage) and two edges [w, g] and [g, c]. It can be
seen that Alcuin(P3) = 1, that Alcuin1(P3) = 3, that Alcuint(P3) = 2 for
t ∈ {3, 5}, and that Alcuint(P3) = 1 for all t ≥ 7.

Known results. The idea of generalizing Alcuin’s problem to arbitrary conflict
graphs goes back (at least) to Prisner [3] and Bahls [1]: Prisner introduced it
in 2002 in his course on Discrete Mathematics at the University of Maryland, and
Bahls discussed it in 2005 in a talk in the Mathematics Seminar at the University
of North Carolina.

Bahls [1] (and later Lampis & Mitsou [2]) observed that it is NP-hard to com-
pute the Alcuin number exactly; Lampis & Mitsou [2] also showed that the Alcuin
number is hard to approximate. These negative results follow quite easily from the
close relationship between the Alcuin number and the vertex cover number. The
papers [1, 2] provide a complete analysis of the Alcuin number of trees. Finally,
Lampis & Mitsou [2] proved that the computation of the trip constrained Alcuin
number Alcuin3(G) is NP-hard.

Our results. Our main result is the following structural characterization of the
Alcuin number, which also yields an NP-certificate: A graph G = (V,E) possesses
a feasible schedule for a boat of capacity b ≥ 1, if and only if there exist five
subsets X1, X2, X3, Y1, Y2 of V that satisfy the following four conditions.

(i) The three sets X1, X2, X3 are pairwise disjoint. Their union X := X1 ∪
X2 ∪X3 forms a stable set in G.

(ii) The (not necessarily disjoint) sets Y1, Y2 are non-empty subsets of the set
Y := V −X , which satisfies |Y | ≤ b.

(iii) X1 ∪ Y1 and X2 ∪ Y2 are stable sets in G.
(iv) |Y1| + |Y2| ≥ |X3|.

Furthermore, in case these four conditions are satisfied, then there exists a feasible
schedule of length at most 2|V | + 1. This bound 2|V | + 1 is the best possible (for
any |V | ≥ 3).

For any graph G, the Alcuin number either equals the vertex cover number (in
which case the graph is a small-boat graph) or equals the vertex cover number
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plus one (in which case the graph is a big-boat graph). We derive a number of
combinatorial lemmas around the division line between these two classes, which
all fall out quite easily from our structural characterization.

From the complexity point of view, computing the Alcuin number is an NP-hard
problem. On the positive side, this problem belongs to the class FPT of fixed-
parameter tractable problems. Furthermore, distinguishing small-boat graphs
from big-boat graphs is NP-hard, and also computing the t-trip constrained Alcuin
number Alcuint(G) is NP-hard for every fixed value t ≥ 3.

Finally, we derive a number of results for graphs from specially structured graph
classes.

• If a chordal graph is not a split graph, then it is a small-boat graph.
• A split graph is a small-boat graph if and only if one of the following holds:

The split graph can be partitioned into a maximum stable set and a clique,
such that there exist two (not necessarily distinct) vertices in the clique
that have at most two common neighbors in the stable set.

• If a tree is not a star with at least three leaves, then it is a small-boat
graph.

• The Alcuin number of a bipartite graph can be computed in polynomial
time.

• Every planar graph with vertex cover number at least five is a small-boat
graph.

• It is NP-hard to compute the Alcuin number of a planar graph.
• It can be decided in polynomial time, whether a planar graph is a small-

boat graph. (Hence: It is hard to compute the Alcuin number of a planar
graph, and it is hard to compute its vertex cover number. But it is easy
to decide whether these two numbers coincide.)

Open problems. The central open problem concerns perfect graphs: Is there a
polynomial time algorithm for computing the Alcuin number of a perfect graph?

Also the computational complexity of recognizing small-boat graphs remains
unclear. Is the problem of recognizing small-boat graphs contained in NP? We
have proved that this problem is NP-hard, but there is no reason to assume that
it lies in NP: To demonstrate that a graph is small-boat in a straightforward way,
we have to show that its Alcuin number is small (NP-certificate) and that its
vertex cover number is large (coNP-certificate). This mixture of NP- and coNP-
certificates suggests that the problem might be located in one of the complexity
classes above NP; the complexity class DP might be a reasonable guess.
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Whitney Type Theorems for Signed Graphs and Grafts

Bertrand Guenin

(joint work with Irene Pivotto and Paul Wollan)

A cycle of G is a subgraph where all vertices have even degree. An inclusion-
wise minimal cycle is a circuit. The set of all cycles (resp. all cuts) of a graph G
forms a vector space over the two element field (where addition is the symmetric
difference). We denote by cycle(G) and cut(G) these vector spaces. Note that
cycle(G) and cut(G) are orthogonal spaces. In particular, cycle(G) = cycle(G′) if
and only if cut(G) = cut(G′).

A Whitney-flip consists of decomposing a graph G along a two vertex cutset
s and t into parts G1 and G2 and then recombining the two parts by identifying
the vertex s (resp. t) of G1 with vertex t (resp. s) of G2. Whitney [1] proved the
following seminal result,

Theorem 1. Let G and G′ be graphs. Then cycle(G) = cycle(G′) (resp. cut(G) =
cut(G′)) if and only if G′ is obtained from G by a sequence of Whitney-flips.

Our main result is a generalization of the previous theorem to respectively
signed graphs and grafts. A signed graph is a pair (G,Σ) where G is a graph and
Σ ⊆ EG. We say that B ⊆ EG is even (resp. odd) if |B ∩ Σ| is even (resp.
odd). The set of all even cycles of (G,Σ) forms a vector space which we denote
ecycle(G,Σ). Note that an (inclusion-wise) minimal even cycle of (G,Σ) is either
an even circuit of (G,Σ) or the disjoint union of two odd circuits of (G,Σ) that
share at most one vertex.

Even Cycle Isomorphism Problem: Let (G,Σ) and (G′,Σ′) be signed graphs.
When is the relation ecycle(G,Σ) = ecycle(G′,Σ′) satisfied?

Note that Theorem 1 answers the question for the case where Σ = Σ′ = ∅. Ger-
ards [2] gives a survey about what was known about this problem.

A graft is a pair (G, T ) where G is a graph and T ⊆ V G where |T | is even. A
cut δG(U) of G is even if |U ∩ T | is even. The set of all even cuts of (G, T ) forms
a vector space which we denote ecut(G, T ).

Even Cut Isomorphism Problem: Let (G, T ) and (G′, T ′) be grafts. When is
the relation ecut(G, T ) = ecut(G′, T ′) satisfied?

Note that Theorem 1 answers the question for the case where T = T ′ = ∅.
We first show that the two aforementioned isomorphism problems are in fact

equivalent,

Theorem 2. Let G and G′ be graphs with same edge sets. Then there exists a pair
Σ,Σ′ ⊆ EG such that ecycle(G,Σ) = ecycle(G′,Σ′) if and only if there exists a
pair T ⊆ V G, T ′ ⊆ V G′ (where |T |, |T ′| even) such that ecut(G, T ) = ecut(G′, T ′).
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Thus to solve the Even Cut Isomorphism Problem it suffices to solve the Even
Cycle Isomorphism Theorem.

We will now briefly outline our solution for that problem. If ecycle(G,Σ) =
ecycle(G,Γ) then we call the operation that consists of replacing Σ by Γ resigning.
It is easy to verify that we must have Γ = Σ △ B where B ∈ cut(G). Consider
a signed graph (G,Σ). Suppose that there are vertices v1, v2 of G such that
Σ ⊆ δG(v1) ∪ δG(v2). We can construct a new signed graph (G′,Σ) as follows:

(i) turn odd edges with ends v1, v2 into loops;
(ii) turn odd loops into edges with ends v1, v2;
(iii) replace end v1 of odd edges by end v2;
(iv) replace end v2 of odd edges by end v1.

Note we apply (iii) and (iv) to edges which are not in (i) or (ii). We say that
(G′,Σ) is obtained from (G,Σ) by a Lovász-flip. It can be readily checked that
ecycle(G,Σ) = ecycle(G′,Σ′).

Given a pair of signed graphs (G,Σ) and (G′,Σ′), we show that after applying
a sequence of Whitney-flips, Lovász-flips, and resigning to (G,Σ) and (G′,Σ′) one
of the following cases must occur:

Case 1: We can decompose (G,Σ) and (G′,Σ′) along small separations to create
(G1,Σ1), (G2,Σ2) and (G′

1,Σ
′
1), (G′

2,Σ
′
2) such that

ecycle(G,Σ) = ecycle(G′,Σ′)

if and only if

ecycle(G1,Σ1) = ecycle(G′
1,Σ

′
1) and

ecycle(G2,Σ2) = ecycle(G′
2,Σ

′
2)

Moreover, |V G1|, |V G2| < |V G| and |V G′
1|, |V G′

2| < |V G′|.
Case 2: The pairs (G,Σ) and (G′,Σ′) are either graphic or co-graphic.
Case 3: (G′,Σ′) obtained from (G,Σ) by applying once, one of three possible op-

erations: a Shuffle, a Tilt, or a Twist.

Let us now discuss Case 1-Case 3 in more details.

Case 1: We say that a signed graph (G,Σ) is graphic if ecycle(G,Σ) = cycle(G̃)

for some graph G̃. The following theorem of Gerards, Lovász, Schrijver, Seymour,
Shih, and Truemper solves the Even Cycle isomorphism problem for the graphic
case [2]:

Theorem 3. Suppose (G,Σ), (G′,Σ′) are graphic and ecycle(G,Σ) = ecycle(G′,Σ′).
Then (G′,Σ′) can be obtained from (G,Σ) by a sequence of resigning, Lovász-flips,
and Whitney-flips.

We say that a graft (G, T ) is co-graphic if ecut(G, T ) = cut(G̃) for some graph

G̃. For instance (G, T ) is co-graphic when |T | ≤ 2. Suppose we have a pair
of co-graphic grafts (G, T ), (G′, T ′) such that ecut(G, T ) = ecut(G′, T ′). Then
theorem 2 implies that there exists Σ,Σ′ such that ecycle(G,Σ) = ecycle(G′,Σ′)
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moreover Σ,Σ′ are essentially unique. We then say that (G,Σ), (G′,Σ′) are co-
graphic as well. The co-graphic case can be related to the graphic case and then
solved using Theorem 3.

Case 2: We decompose G and G′ along special two and three separations. Note
that since each of the parts of the decomposition is smaller than the original
graphs, this occurs only a finite number of time.

Case 3: We describe the shuffle operation here and omit discussing the Twist and
Tilt operations. Consider (G,Σ, T ) with four special vertices a, b, c, d. Suppose
that EG can be partitioned into X1, . . . , X4 (not necessarily all non-empty) such
that for all i, j ∈ [4], i 6= j, V G[Xi] ∩ V G[Xj ] ⊆ {a, b, c, d} (where V G[Xi] is the
set of vertices of the subgraph of G induced by Xi). For all i ∈ [4] denote by ai

(resp. bi, ci, di) the copy of vertex a (resp. b, c, d) of G[Xi]. Construct G′ by:

(i) identifying vertices a1, b2, c3, d4 to vertex say a′;
(ii) identifying vertices b1, a2, d3, c4 to vertex say b′;
(iii) identifying vertices d1, c2, b3, a4 to vertex say c′;
(iv) identifying vertices c1, d2, a3, b4 to vertex say d′.

Suppose Σ = δG′(a′) and let Σ′ := δG(a). Then we say that (G,Σ) and (G′,Σ′)
are related by a shuffle. In the figure, the top four squares represent the parts

a b b a c d d c

bcd dc b a a

a b a b a b a b

ccd d c d c d

G[X1] G[X2] G[X3] G[X4]

G'[X1] G'[X2] G'[X3] G'[X4]

G[X1], G[X2], G[X3], G[X4] of G. The graph G is obtained from by superimposing
each of these parts and identifying the vertices at each of the corners. The bottom
four squares represent the parts G[X1], G[X2], G[X3], G[X4] of G but some of the
squares have been flipped from the top squares so that their corners do not cor-
respond the original corners. The graph G′ is obtained by superimposing each of
these parts and identifying the vertices at each of the corners. The shaded areas
near some of the corner on the top (resp. bottom) row of squares represent the
edges in Σ (resp. Σ′).

References

[1] H. Whitney, 2-Isomorphic graphs, Am. J. Math. 55 (1933), 245–254.
[2] B. Gerards, A few comments on isomorphism of even cycle spaces,

http://homepages.cwi.nl/∼bgerards/



Combinatorial Optimization 2897

Discrete Convex Analysis—Basics and Topics

Kazuo Murota

Discrete convex analysis is a theory of L-convex and M-convex functions, aiming at
a discrete analogue of convex analysis for nonlinear discrete optimization (Murota
[6, 7, 9], Fujishige [1, Chap. VII]).

L♮-convex functions, an equivalent variant of L-convex functions, are defined in
terms of a discrete version of the mid-point convexity, as follows. We first observe
that a convex function g on Rn satisfies

(1) g(p) + g(q) ≥ g

(

p+ q

2

)

+ g

(

p+ q

2

)

(p, q ∈ Rn).

This property, called midpoint convexity, is known to be equivalent to convexity
if g is a continuous function. For a function g : Zn → R in discrete variables,
where R = R ∪ {+∞}, the above inequality does not always make sense, since
the midpoint p+q

2 of two integer vectors p and q may not be integral. Instead we
simulate (1) by

(2) g(p) + g(q) ≥ g

(⌈

p+ q

2

⌉)

+ g

(⌊

p+ q

2

⌋)

(p, q ∈ Zn),

where, for z ∈ R in general, ⌈z⌉ denotes the smallest integer not smaller than z
(rounding-up to the nearest integer) and ⌊z⌋ the largest integer not larger than z
(rounding-down to the nearest integer), and this operation is extended to a vector
by componentwise applications. We refer to (2) as discrete midpoint convexity,
and say that a function g : Zn → R is L♮-convex if it satisfies this.

M♮-convex functions, an equivalent variant of M-convex functions, are defined
in terms of a discrete version of the equi-distance convexity, as follows. We first
observe that a convex function f on Rn satisfies the inequality

(3) f(x) + f(y) ≥ f(x− α(x − y)) + f(y + α(x− y))

for every α ∈ R with 0 ≤ α ≤ 1. The inequality (3) says that the sum of the
function values evaluated at two points, x and y, does not increase if the two points
approach each other by the same distance on the line segment connecting them.
We refer to this property as equidistance convexity. For a function f : Zn → R

in discrete variables we simulate equidistance convexity (3) by moving a pair of
points (x, y) to another pair (x′, y′) along the coordinate axes rather than on the
connecting line segment. To be more specific, we consider two kinds of possibilities

(4) (x′, y′) = (x− χi, y + χi) or (x′, y′) = (x− χi + χj , y + χi − χj)

with indices i and j such that xi > yi and xj < yj . For a vector z ∈ Rn in general,
define the positive and negative supports of z as

supp+(z) = {i | zi > 0}, supp−(z) = {j | zj < 0}.
Then the expression (4) can be rewritten compactly as (x′, y′) = (x−χi +χj , y+
χi − χj) with i ∈ supp+(x − y) and j ∈ supp−(x − y) ∪ {0}, where χ0 is defined
to be the zero vector. As a discrete analogue of equidistance convexity (3) we
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consider the following condition: For any x, y ∈ domf and any i ∈ supp+(x − y),
there exists j ∈ supp−(x− y) ∪ {0} such that

(5) f(x) + f(y) ≥ f(x− χi + χj) + f(y + χi − χj),

which is referred to as the exchange property. A function f : Zn → R having this
exchange property is called M♮-convex.

For a function f : Zn → Z with domf 6= ∅, a discrete version of the Legendre
transformation is defined by

(6) f•(p) = sup{〈p, x〉 − f(x) | x ∈ Zn} (p ∈ Zn),

where 〈·, ·〉 denotes the standard inner product. Under the discrete Legendre
transformation (6), the class of integer-valued L♮-convex functions and the one of
M♮-convex functions are in one-to-one correspondence. For an M♮-convex function
f , f• is an L♮-convex function and (f•)• = f ; and similarly for an L♮-convex
function f (Conjugacy Theorem).

A discrete separation theorem means a statement like:

For any f : Zn → R and h : Zn → R belonging to certain classes
of functions, if f(x) ≥ h(x) for all x ∈ Zn, then there exist α∗ ∈ R

and p∗ ∈ Rn such that

f(x) ≥ α∗ + 〈p∗, x〉 ≥ h(x) (∀x ∈ Zn).

Moreover, if f and h are integer-valued, there exist integer-valued
α∗ ∈ Z and p∗ ∈ Zn.

Discrete separation theorems often capture deep combinatorial properties in spite
of the apparent similarity to the separation theorem in convex analysis. A dis-
crete separation theorem holds for L♮-convex functions, which generalizes Frank’s
discrete separation theorem for submodular set functions. Another discrete sep-
aration theorem holds for M♮-convex functions, which generalizes Frank’s weight
splitting theorem for weighted matroid intersection.

Finite metric space is closely related to discrete convexity in several aspects.
Distance functions satisfying triangle inequality are in one-to-one correspondence
with positively homogeneous M-convex functions, and tree metrics are the same as
valuated matroids of rank two. Furthermore, the Bandelt–Dress split decomposi-
tion and the Buneman construction can be derived as decompositions of polyhedral
convex functions (Hirai [2], Koichi [5]).

The concept of M-convex functions can be extended to functions on constant-
parity jump systems (Murota [8]). For x, y ∈ Zn we call s ∈ Zn an (x, y)-increment
if s = χi for some i ∈ supp+(y−x) or s = −χi for some i ∈ supp−(y−x). We call
f : Zn → R an M-convex function (on a constant-parity jump system) if it satisfies
the following exchange property: For any x, y ∈ domf and any (x, y)-increment s,
there exists an (x+ s, y)-increment t such that

f(x) + f(y) ≥ f(x+ s+ t) + f(y − s− t).

It then follows that domf is a constant-parity jump system. Operations such
as infimal convolution can be generalized (Kobayashi, Murota and Tanaka [3]).
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Odd-cycle symmetry condition in the even factor problem can be formulated as
M-convexity on jump systems (Kobayashi and Takazawa [4]).

References

[1] S. Fujishige, Submodular Functions and Optimization, 2nd ed., Annals of Discrete Mathe-
matics 58, Elsevier (2005).

[2] H. Hirai, A geometric study of the split decomposition, Discrete and Computational Geom-
etry 36 (2006), 331–361.

[3] Y. Kobayashi, K. Murota, and K. Tanaka, Operations on M-convex functions on jump
systems, SIAM Journal on Discrete Mathematics 21 (2007), 107–129.

[4] Y. Kobayashi and K. Takazawa, Even factors, jump systems, and discrete convexity, Journal
of Combinatorial Theory, Series B, to appear.

[5] S. Koichi, The Buneman index via polyhedral split decomposition, METR 2006-57, Depart-
ment of Mathematical Informatics, University of Tokyo (2006).

[6] K. Murota, Discrete convex analysis, Mathematical Programming 83 (1998), 313–371.
[7] K. Murota, Discrete Convex Analysis, SIAM Monographs on Discrete Mathematics and

Applications 10, Society for Industrial and Applied Mathematics, Philadelphia (2003).
[8] K. Murota, M-convex functions on jump systems: A general framework for minsquare graph

factor problem, SIAM Journal on Discrete Mathematics 20 (2006), 213–226.
[9] K. Murota, Recent developments in discrete convex analysis, in: W. Cook, L. Lovasz and J.

Vygen, eds., Research Trends in Combinatorial Optimization, Chapter 11, Springer (2008),
219–260.

Weighted Fractional Matroid Matching

Gyula Pap

(joint work with Dion Gijswijt)

In the matroid matching problem, we are given a matroid M = (S, r) with rank
function r over a groundset S, which is partitioned into subsets of size 2, called
lines, denoted by E. Our goal is to find a maximum number of lines so that
their union is an independent set. We assume matroids come with an indepen-
dence testing oracle. An equivalent version of matroid matching was originally
introduced by Lawler, motivated by the applications such as graph matching and
matroid intersection. The bad news is that matroid matching is exponential under
the oracle framework, and also shown to be NP-hard, see Jensen, Korte [6] and
Lovász [7]. On the other hand, Lovász [7] proved that it is tractable for a linearly
represented matroid, later generalized to some broader classes of matroids. Thus
it became a powerful tool with a growing number of applications, such as disjoint
A-paths [8], maximum genus graph embedding [4], parity constrained orientations
[3], and rigid planar pinning down.

There are possibilities to further generalize the concept of matroid matching,
and one of them is polymatroid matching, where a partition-type condition is
proved necessary and sufficient for the class polymatroids without so-called double
cycles [9]. Another possibility is the weighted version, when we are given non-
negative weights for the lines, and our goal is to find a maximum weight matroid
matching. This problem is open even for linearly represented matroids. Note that
the fractional relaxation of matching problems usually are easier to solve, thus,
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before trying to solve the weighted matroid matching problem, we should try its
fractional relaxation, called weighted fractional matroid matching. But what is
the proper definition of a fractional matroid matching?

It was Vande Vate [12] who originally came up with the non-trivial definition
of fractional matroid matchings. We are looking for an LP that is a fractional
relaxation defined by ”nice” inequalities, i.e. its integral solutions are exactly the
0-1 incidence vectors of matchings, and we also liked to have nice applications.
Before Vande Vate’s good definition, here’s one that is not so good for our purposes.
Consider a vector x : E → R, and impose the constraints x ≥ 0, and x(X) ≤
r(∪X)/2 for all X ⊆ E. This certainly is a fractional relaxation of matroid
matching, but unluckily, it is not interesting, since all one can say follows from
properties of a 2-polymatroid. There is, however, another clever definition, one
that is similar to the definition of Vande Vate, that fits better in the picture with
matroid matching.

Consider a finite or infinite matroid M = (S, r), and let E be a set of subsets
of S of rank 1 or 2 called ”lines”. Note that this definition of a line is equivalent
to, but technically more general than the one above. For K ⊆ S we define dK :
E → {0, 1, 2} for e ∈ E by

dK(e) :=











0 if e ∩K = ∅
2 if e ⊆ K

1 otherwise

Then the solutions x : E → R to the following system are called fractional matroid
matchings:

x ≥ 0(1)
∑

e∈E

dK(e) · x(e) ≤ r(K) for all K ⊆ S(2)

One should think of the constraint (2) as the analogue of the degree bound
defining the fractional matching polytope of a graph. Actually, if M is the free
matroid, then (2) is equivalent with the degree bound, thus we end up with the
fractional matching polytope of the graph (S,E). A crucial difference is that
here, in general, we may have an exponential number of these degree constraints
(2). Note that (1)-(2) is defined by linear inequalities with coefficients 0,1,2, thus
the set of feasible solutions – i.e. the set of fractional matroid matchings – is a
polytope. Remark that, even if M is an infinite matroid, we obtain a polytope.
However simple the system may look like, it is not straightforeward to separate or
optimize over the polytope, actually, it is not even simple for some given vector x
to test feasibility.

The maximum weight fractional matroid matching problem is that, given weights
w ∈ RE

+, maximize w · x subject to (1)-(2). The maximum fractional matriod
matching problem is to maximize 1 · x subject to (1)-(2), thus it is the special
case with weights all one. Vande Vate proved the following min-max result for
maximum fractional matroid matching.
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Theorem 1 (Vande Vate, 1992, [12]). max{1 · x : x : E → R satisfying (1)-
(2)} = min{ 1

2r(K) + 1
2r(L) : K,L ⊆ S such that 1

2dK + 1
2dL ≥ 1}. Moreover, the

maximum attains with a fractional matroid matching that is half-integral.

This result is essentially equivalent to the existence of a half-integral primal and
dual optima, for all-one weights. Recently, Dion Gijswijt observed that (1)-(2) is
actually a half-TDI system, meaning that for any weights, the dual system has
a half-integral optimum. His simple proof is based on uncrossing, and fractional
matching in an auxiliary graph.

Theorem 2 (Gijswijt, 2006). (1)-(2) is half-TDI.

The half-TDI-ness of (1)-(2) also implies that the polytope is half-integral, that
is, all its vertices are half-integral, and thus, the maximum attains with a half-
integral x for any weights w. This, for w = 1, implies Vande Vate’s result. Let
us mention that the independent set polytope, the matroid intersection polytope,
and the graph fractional matching polytope arise as special cases of this one. As a
further appliaction one can prove that the problem of fractionally packing A-paths
is also equivalent with an instance of maximum fractional matroid matching, see
[10].

Knowing the min-max result, Chang et al. [1, 2] worked on the complexity
of finding a maximum fractional matroid matching matching, and constructed a
polynomial time algorithm. That algorithm is a bit technical, and heavily relies
on the all-one weights.

Theorem 3 (Chang, Llewellyn, Vande Vate, 2001, [1, 2]). There is a polynomial
time algorithm for maximum fractional matroid matching.

Although linear programming duality and half-integrality works out just the
same for arbitrary weights, the complexity of solving weighted fractional matroid
matching remained an open question. Our goal with Dion Gijswijt was to settle
this by constructing a strongly polynomial time algorithm, which we recently com-
pleted in [11]. Our algorithm is based on the concept of the Hungarian Method,
and uses Chang et al.’s unweighted algorithm as a subroutine. We actually solve
the problem of finding a maximum weight prefect fractional matching, which is
equivalent to the original one. In the algorithm we maintain a dual feasible solu-
tion the support of which is a chain of flats, and check if there is a perfect fractional
matching satisfying certain slackness conditions. This is done by running Vande
Vate et al.’s algorithm for a different matroid and a subset of lines. If there is one,
then that turns out to be a maximum weight perfect fractional matching, and the
algorithm terminates. Otherwise, using the dual optimum provided by Vande Vate
et al.’s algorithm, we perform a dual update, that improves on the dual objective
value. This already implies a finite running time, since the dual objective improves
by at least one half in every iteration. To prove a strongly polynomial running
time, we need that Vande Vate et al.’s algorithm returns a special dual optimum
what they call a ”dominant cover”, which can be used to prove that not only that
the dual value improves in every iteration, but there is another, quite technical,
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combinatorial measure of improvement, that guarantees a polynomial bound on
the running time.

Theorem 4 (Gijswijt, Pap, 2008, [11]). There is a polynomial time algorithm for
maximum weight fractional matroid matching.

Conclusions and remarks. The most surprising fact here is that, while matroid
matching is tractable only for certain restricted classes of matroids, fractional
matroid matching, even its weighted version, is tractable for arbitrary matroids.
It is unclear why there is this distinction. Also note that one could pick any
instance of matroid matching, and plug it in the fractional relaxation. There is
a lot of room for further inverstigation of these plugging-ins, and thus learning
about more applications.
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A Simple Combinatorial Algorithm for Submodular Function

Minimization

Satoru Iwata

(joint work with James B. Orlin)

This paper presents a new simple algorithm for minimizing submodular functions.
Let V be a finite nonempty set of cardinality n. A function f defined on the
subsets of V is submodular if it satisfies

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ), ∀X,Y ⊆ V.

Submodular functions are discrete analogues of convex functions. Examples in-
clude cut capacity functions, matroid rank functions, and entropy functions. The
first polynomial algorithm for submodular function minimization due to Grötschel,
Lovász, and Schrijver [1] is based on the ellipsoid method. Recently, combinatorial
polynomial algorithms have been developed [3, 5], and the current best weakly and
strongly polynomial bounds [2, 4] are O((n4EO + n5) logM) and O(n5EO + n6),
where EO is the time for function evaluation and M is the maximum absolute
value of the function values.

The initial variant of our algorithm minimizes integer valued submodular func-
tions in O(n6EO lognM) time. The algorithm achieves this complexity without
relying on the scaling technique nor on Gaussian elimination. With the aid of
the Gaussian elimination procedure, the algorithm can be improved to run in
O((n4EO + n5) lognM) time. The strongly polynomial version of this faster al-
gorithm runs in O((n5EO + n6) logn) time for real valued general submodular
functions. These are comparable to the best known running time bounds for sub-
modular function minimization.

The new algorithm as well as its strongly polynomial version can be turned
into fully combinatorial algorithms, which use only additions, subtractions, com-
parisons, and the oracle calls for function evaluation. The running time bounds of
the resulting algorithms areO(n6(EO+lognM) lognM) and O((n7EO+n8) log n).
These are the first fully combinatorial algorithms that do not rely on the scaling
method. Moreover, the latter algorithm improves the best previous bound by a
factor of n.
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Combinatorial Mixed-Integer Programming

Michele Conforti

We study the convex hull of a mixed-integer set S by expressing each continuous
variable as the average of k integral variables. This allows us to model S as a pure
integer set. We use the additional integral variables to strengthen the inequalities
that describe S.

We concentrate on a mixed-integer set defined as follows: Given a bipartite
graph G = (U ∪ V,E), a set I ⊆ U ∪ V and rational numbers bij , ij ∈ E, let

S(G,I) = {x ∈ RU∪V | xi + xj ≥ bij ij ∈ E; xi ∈ Z i ∈ I}.
We show that the set S(G,I) is equivalent to the “network dual” set introduced

and studied recently by Conforti, Di Summa, Eisenbrand and Wolsey [1]. Conforti
et al. give an extended formulation for the polyhedron conv(S(G,I)) and discuss
cases in which the formulation is compact.

An extended formulation of a polyhedron P in the x-space is an inequality
description Ax + Bµ ≥ d of a polyhedron Q in the (x, µ)-space such that P is
the projection of Q in the x-space. We are interested in polyhedra P that are
convex hulls of mixed integer sets such as conv(S(G,I)). We say that an extended
formulation is compact if the size of the system that describes Q is polynomially
bounded in the size of the system of inequalities that describes the mixed integer
set.

The smallest integer k such that kbij ∈ Z for all ij ∈ E is important in the

study of the polyhedron conv(S(G,I)). Indeed the size of the extended formulation
of conv(S(G,I)) grows with k. For the case k = 2, Conforti, Gerards and Zambelli
[3] have given an explicit description of conv(S(G,I)) in the space of the x variables
by computing the projection of the extended formulation. However the essential
inequalities that describe conv(S(G,I)) become more and more complicated as k
grows.

Our goal is to describe the polyhedron conv(S(G,I)) in the space of the x vari-
ables. To this end we derive an extended formulation for conv(S(G,I)) that differs
slightly from that proposed in [1] but whose projection cone is easier to analyze.
Our principal result is a characterization of the structure of facet-defining inequal-
ities when the graph G is a tree. In several cases in which such a characterization
is known, including the mixing set studied by Günlük and Pochet [4] and the
continuous mixing set studied by Van Vyve [5], this gives further insight into the
inequalities, and it leads to the first explicit description for the continuous mixing
set with flows treated by Conforti, Di Summa and Wolsey [2]. It also suggests the
following conjecture, that we describe next.

The main open problem is the complexity of optimizing a linear function over
S(G,I), which is equivalent to the membership problem for conv(S(G,I)). More
formally.

Problem 1. Given x̄ ∈ RV (G), decide whether x̄ is in conv(S(G,I)) or not.
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The problem is clearly in NP , since the fact that x̄ ∈ conv(S(G,I)) admits a
short certificate, namely at most |V (G)|+1 vectors in S(G,I) such that x̄ is in their
convex hull. In [1] it has been shown that, when G is a tree, optimizing a linear
function over S(G,I) and the membership problem can be solved in polynomial
time.

Denote by T the family of subtrees T of G such that IT = V (T ) ∩ I coincides
with the set of leaves of T . We propose the following conjecture.

Conjecture 2.

conv(S(G,I)) =
⋂

T∈T

conv(S(T,IT )).

Conjecture 2, if true, would imply that Problem 1 is in coNP. Indeed, a certifi-
cate that x̄ 6∈ conv(S(G,I)) would be given by a tree T such that x̄ 6∈ conv(S(T,IT )).
By the above discussion, the latter fact can be decided in polynomial time.

For the case of k = 2, the validity of Conjecture 2 follows from the characteriza-
tion of the facet defining inequalities of conv(S(G,I)) [3]. However the conjecture
is open for any k ≥ 3.
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An Analysis of Mixed Integer Sets Based on Lattice Point Free

Convex Sets

Robert Weismantel

(joint work with Kent Andersen and Quentin Louveaux)

We consider a polyhedron in Rn of the form

(1) P := conv({vi}i∈V ) + cone({rj}j∈E),

where V and E are finite index sets, {vi}i∈V denotes the vertices of P and {rj}j∈E

denotes the extreme rays of P . We assume P is rational, i.e., we assume {rj}j∈E ⊂
Zn and {vi}i∈V ⊂ Qn.

We are interested in points in P that have integer values on certain coordinates.
For simplicity assume the first p > 0 coordinates must have integer values, and let
q := n − p. The set NI := {1, 2, . . . , p} is used to index the integer constrained
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variables and the set PI := {x ∈ P : xj ∈ Z for all j ∈ NI} denotes the mixed
integer points in P .

The following concepts from convex analysis are needed (see [5] for a presen-
tation of the theory of convex analysis). For a convex set C ⊆ Rn, the interior
of C is denoted int(C), and the relative interior of C is denoted ri(C) (where
ri(C) = int(C) when C is full dimensional).

We consider the generalization of split sets (see [3]) to lattice point free convex
sets (see [4]). A split set is of the form S(π,π0) := {x ∈ Rp : π0 ≤ πTx ≤ π0 + 1},
where (π, π0) ∈ Zp+1 and π 6= 0. Clearly a split set does not have integer points in
its interior. In general, a lattice point free convex set is a convex set that does not
contain integer points in its relative interior. Lattice point free convex sets that are
maximal wrt. inclusion are known to be full dimensional rational polyhedra that
can be written as the sum of a polytope P and a linear space L. For simplicity,
and to emphasize that lattice point free convex sets generalize split sets, we call
lattice point free convex sets that are maximal wrt. inclusion for split bodies.

A lattice point free convex set is an object that assumes integrality of all co-
ordinates. For mixed integrality in Rp+q, we use a lattice point free convex set
Cx ⊂ Rp to form a mixed integer lattice point free convex set C ⊂ Rn of the form
C := {(x, y) ∈ Rp × Rq : x ∈ Cx}. A mixed integer split body is then a mixed
integer lattice point free convex set of the form L := {(x, y) ∈ Rp × Rq : x ∈ Lx},
where Lx is a split body in Rp.

An important measure in our analysis of the size of a mixed integer split body
L is the facet width of L. The facet width measures how wide a mixed integer
split body is parallel to a given facet. Specifically, given any facet πTx ≥ π0 of a
mixed integer split body L, the width of L along π is defined to be the number
w(L, π) := maxx∈L π

Tx − minx∈L π
Tx. The max-facet-width of a mixed integer

split body L measures how wide L is along any facet of L, i.e., the max-facet-
width wf (L) of L is defined to be the largest of the numbers w(L, π) over all facet
defining inequalities πTx ≥ π0 for L.

Any mixed integer lattice point free convex set C ⊆ Rn gives a relaxation of
conv(PI)

R(C,P ) := conv({x ∈ P : x /∈ ri(C)})

that satisfies conv(PI) ⊆ R(C,P ) ⊆ P . The set R(C,P ) might exclude fractional
points in ri(C) ∩ P and give a tighter approximation of conv(PI) than P .

Mixed integer split bodies L are the mixed integer lattice point free convex
sets that give the tightest relaxations of PI of the form above. Specifically, if
C,C′ ⊆ Rn are mixed integer lattice point free convex sets that satisfy C ⊆ C′,
then R(C′, P ) ⊆ R(C,P ). For a general mixed integer lattice point free convex set
C, the set R(C,P ) may not be a polyhedron. However, it is sufficient to consider
mixed integer split bodies, and we show R(L,P ) is a polyhedron when L is a mixed
integer split body.

Observe that the set of mixed integer split bodies with max-facet-width equal
to one are exactly the split sets S(π,π0) = {x ∈ Rn : π0 ≤ πTx ≤ π0 + 1}, where
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(π, π0) ∈ Zn+1, πj = 0 for j > p and π 6= 0. In [3], Cook et. al. considered the set
of split sets

L1 := {L ⊆ Rn : L is a mixed integer split body satisfying wf (L) ≤ 1}
and showed that the split closure

SC1 := ∩L∈L1R(L,P )

is a polyhedron. A natural generalization of the split closure is to allow for mixed
integer split bodies that have max-facet-width larger than one. For any w > 0,
define the set

Lw := {L ⊆ Rn : L is a mixed integer split body satisfying wf (L) ≤ w}
of mixed integer split bodies with max-facet-width at most w. We define the wth

split closure to be the set

SCw := ∩L∈LwR(L,P ).

We prove that the wth split closure is a polyhedron. The proof is based on
an analysis of cutting planes from an inner representation of the linear relaxation
P . In fact, our proof does not use an outer description of P at all. Many of our
arguments are obtained by generalizing results of Andersen et. al. [1] from the
first split closure to the wth split closure.

Given a family {(δl)Tx ≥ δl
0}i∈I of cutting planes, we provide a sufficient

condition for the set {x ∈ P : (δl)Tx ≥ δl
0 for all l ∈ I} to be a polyhedron.

This condition concerns the number of intersection points between hyperplanes
defined from the inequalities {(δl)Tx ≥ δl

0}i∈I and line segments either of the

form {vi + αrj : α ≥ 0}, or of the form {βvi + (1 − β)vk : β ∈ [0, 1]}, where
i, k ∈ V denote two vertices of P and j ∈ E denotes an extreme ray of P . We
then show that this sufficient condition is satisfied by any family of split cuts that
have bounded max-facet-width from which it follows that the wth split closure is
a polyhedron.

Finite cutting plane proofs for the validity of an inequality for PI can be de-
signed by using mixed integer split bodies. A measure of the complexity of a finite
cutting plane proof is then the max-facet-width of the mixed integer split body
with the largest max-facet-width in the proof. A measure of the complexity of a
valid inequality δTx ≥ δ0 for PI is the smallest integer w(δ, δ0) for which there
exists a finite cutting plane proof of validity of δTx ≥ δ0 for PI that only uses split
bodies with max-facet-width at most w(δ, δ0). We give a formula for w(δ, δ0) that
explains geometrically why mixed integer split bodies of large width size can be
necessary.
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Inverse 1-median Problems

Rainer E. Burkard

(joint work with Mohammadreza Galavii and Elisabeth Gassner)

Given n points P1, P2, ..., Pn in a metric space (X, d) and positive weights
w1, w2, ..., wn the 1-median problem asks for a point P ∈ X which minmizes

n
∑

i=1

wid(Pi, P ).

The 1-median problem plays an important role in location theory, e.g. for locating
a supply center such that the distribution cost to the customers P1, P2, ..., Pn

becomes minimum.
In the inverse 1-median problem a point P0 is given in addition to the points

P1, P2, ..., Pn. The weight of these points have to be modified within given bounds
[wi, wi] such that P0 becomes a 1-median and the sum of weight changes [or: the
cost for the weight changes] is as small as possible. The inverse 1-median problem
in trees with positive weights can be solved by a continuous knapsack algorithm in
O(n) time. The inverse 1-median problem on a cycle can be solved in O(n2) time
by applying mehtods from computational geometry, see Burkard, Pleschiutschnig
and Zhang [2]. The same authors developed also a greedy-like O(n logn) time
algorithm for the inverse 1-median problem in the plane provided the distances
between the points are measured in the Manhattan or maximum metric, see [1].
In the following we outline a fast method for solving the inverse 1-median problem
in the Euclidean plane.

Concerning the Euclidean 1-median problem the resultant R(P ) of point P in
the plane is defined by

R(P ) :=
n

∑

i=1

wi

d(Pi, P )
(Pi − P ) if P 6= Pj , j = 1, 2, ..., n

and for P = Pj for some j = 1, 2, ..., n,

R(P ) := max(||Rj || − wj , 0)
Rj

||Rj ||
where

Rj :=
n

∑

i=1
i6=j

wi

d(Pi, Pj)
(Pi − Pj).

Differential calculus tells that P0 is a 1-median iff the resultant R(P0) = 0.
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In case that P 6= Pj we can assume that P0 lies in the interior of the convex
hull of the points Pi, i = 1, 2, ..., n and that P0 is the origin. Next we project the
given points on the unit circle. Note that possibly two or more different points
may coincide on the unit cycle. The point P0 = (0, 0) is a Euclidean 1-median if
and only if

Rx(w) :=

n
∑

i=1

wixi = 0,(1)

Ry(w) :=

n
∑

i=1

wiyi = 0.(2)

Since the Euclidean distance is invariant with respect to rotation and reflection,
we can always assume that

(3) Rx(w) = 0 and Ry(w) ≤ 0.

If Ry(w) = 0, then the weights wi, i = 1, 2, ..., n, provide an optimal solution.
Therefore we assume in the following Ry(w) < 0. We call |Ry(w)| the optimality
gap G(w). The solution method is based on a sequence of weight changes. If
by chance one of the given points coincides with A := (0, 1) or B := (0,−1),
then we can decrease G(w) by changing the weight of this point without violating
Rx(w) = 0. Otherwise we reduce the optimality gap by simultaneously changing
the weights of two points, say point Ps and point Pt. If we want to decrease the
optimality gap by δ, the weight change δs of point Ps and δt of point Pt have to
fulfill according to (1) and (2):

xsδs + xtδt = 0,(4)

ysδs + ytδt = δ.(5)

Then Cramer’s rule yields

δs = − xt

xsyt − xtys

δ,(6)

δt =
xs

xsyt − xtys

δ,(7)

δ is to be chosen as large as possible such that δ ≤ G(w) and the weight bounds
for ws and wt are fulfilled. The maximal possible value of δ is called the augmen-
tation value δst. If δst > 0, we call (Ps, Pt) an augmenting pair. The cost of an
augmentation δ by the pair (Ps, Pt) is given by |δs|+ |δt|. We can evaluate the ef-
ficiency of the weight change incurred by the augmenting pair (Ps, Pt) by defining
the efficiency est as fraction of the gain in closing the optimality gap divided by
costs:

est :=
δ

|δs| + |δt|
.

An augmenting pair with maximum efficiency is called maximal augmenting pair.
For each point Pi = (xi, yi) let yi

xi

denote the slope of Pi. Then (Ps, Pt) is a maximal
augmenting pair, if Ps has maximum slope and Pt has a minimum slope. If an
augmenting pair with maximal efficiency is used for a pair exchange then there
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exists an optimal solution which can be obtained without revoking the weight
increase or decrease of this weight transformation. This leads to a greedy-like
algorithm. The algorithm terminates after at most n weight exchanges. It yields a
solution where at most two of the changed weights lie strictly between their lower
and upper bound.

This method solves the unit cost model. Successively choosing maximal aug-
menting pairs in case of arbitrary linear cost for the weight changes, however, does
not yield an optimal solution.

Now we consider the case that the prespecified point coincides with one of the
given points. According to the optimality condition point P0 is 1-median if and
only if

R2
x(w) +R2

y(w) ≤ w2
0

holds. This condition does not lead to a convex problem. However, it is possible
to fix the optimal weight w∗

0 in advance to

w∗
0 = min

{

w0,
√

R2
x(w) +R2

y(w)
}

.

The remaining problem is convex and can be solved by any algorithm for convex
programming.
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Computational Progress in Linear and Mixed Integer Programming:

1988–2008

Robert E. Bixby

We begin by reviewing the improvements in linear programming (LP) software
from 1988 to 2004, concluding that the combined algorithmic (3300x) and hard-
ware (1600x) improvements have yielded approximately a 5 million fold speedup.
This is the good news. The bad news is that relatively little has happened in
the four years since 2004. Indeed there is both a real opportunity and a need for
further research in this important area.

Finally we review computational progress in mixed integer programming (MIP)
from 1990 to 2008. We do this by reporting on extensive testing with the well-
known CPLEX mixed integer solver, using a test set of 1852 real-world models and
employing 12 successive CPLEX releases. We conclude, among other things, that
algorithmic improvements alone have accounted for a remarkable 30000x speedup
over this period, with most of that effect coming from the use of the extensive
cutting-plane and other mathematical techniques that have been developed by
the combinatorial optimization community in the last half century. Moreover, in
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contrast to LP, research in MIP and the resulting computational improvements
seem to be continuing unabated.

On the Separation of Rank-1 Gomory Mixed-Integer Cuts

Sanjeeb Dash

(joint work with Marcos Goycoolea)

In this talk, we describe a method to generate useful rank-1 Gomory mixed-integer
cuts from different tableaus of the initial linear progamming (LP) relaxation of a
mixed-integer program (MIP). Gomory mixed-integer (GMI) cutting planes (or
cuts), introduced by Gomory [14], were not widely used to solve general MIPs till
Balas, Ceria, Cornuéjols, and Natraj [2] showed how to use them in an effective
manner. Subsequent computational studies [5, 6] confirmed the usefulness of GMI
cuts in solving practical MIPs, and they are now considered to form the most im-
portant class of general cutting planes for solving MIPs. Following these papers,
GMI cuts are typically generated from rows of an optimal simplex tableau associ-
ated with the LP relaxation of an MIP, usually in rounds. A round of cuts consists
of generating GMI cuts from the rows of the optimal tableau of the current LP
relaxation, and augmenting the current LP relaxation with the cuts violated by
the basic solution defined by the optimal tableau. Some factors which limit very
extensive generation of GMI cuts in solving practical MIPs are that after many
rounds of cuts from optimal tableau rows, one often obtains high-rank GMI cuts
which are invalid [16] (because of floating point-computations with limited accu-
racy), or which are very dense or have large variation in coefficient magnitudes,
thus leading to hard-to-solve LP relaxations when these cuts are added.

Marchand and Wolsey [15] showed that GMI cuts based on linear combinations
of constraints which are different from optimal tableau rows can be useful. Fis-
chetti and Lodi [11] recently showed that strong lower bounds for practical pure
integer programs (with an objective function to be minimized) in the MIPLIB
3.0 library [4] can be obtained by optimizing over the Chvátal closure, i.e., by it-
eratively generating violated rank-1 Gomory-Chvátal cuts derived from arbitrary
combinations of the linear constraints defining the integer programs. Balas and
Saxena [3], and Dash, Günlük, and Lodi [10] subsequently showed that one can
obtain strong lower bounds for the MIP instances in the MIPLIB 3.0 library by
approximately optimizing over the GMI closure. Approximate optimization over
the GMI closure associated with an MIP is performed by iteratively generating
violated rank-1 GMI cuts based on general linear combinations of the inequali-
ties defining the MIP. However, given an arbitrary point, finding a violated GMI
cut is NP-hard [7]. In the papers of Balas and Saxena, and Dash, Günlük, and
Lodi, an auxiliary MIP is solved to find a violated GMI cut; this process can be
very time-consuming, and therefore the overall approach to obtaining strong lower
bounds for MIP instances in these papers is unlikely to lead to a practical method
for solving MIPs.
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The papers discussed above show that rank-1 GMI cuts can be used to obtain
strong lower bounds for practical MIPs. We show that the family of rank-1 GMI
cuts derived from rows of non-optimal tableaus of the initial LP relaxation of
an MIP form a very useful subclass of all rank-1 GMI cuts. Further, we give a
heuristic to find a violated GMI cut from this subclass, given an arbitrary point to
be separated from the GMI closure. In particular, given an input vector x which
lies on some face f of the initial LP relaxation of an MIP, our method explores
both feasible and infeasible tableaus of the LP relaxation associated with f , and
adds all GMI cuts based on rows of these tableaus which are violated by x. We
iterate this process, and generate multiple rounds of rank-1 GMI cuts for an MIP.
The effect of multiple rounds of GMI cuts has been studied in the literature (for
example by Balas et. al. [2], and in [8]); however GMI cuts generated in these
papers are not restricted to be rank-1 cuts beyond the GMI cuts generated in
the first round. As discussed earlier, high-rank GMI cuts generated via multiple
rounds of cuts often lead to numerical difficulties, some of which are avoided by our
method. Our method is also much faster than the MIP-based separation methods
in the papers of Balas and Saxena, and Dash, Günlük and Lodi, but is not much
weaker for MIPLIB 3.0 problems in terms of the quality of lower bounds obtained
by iterated generation of violated GMI cuts. More specifically, our heuristic closes
59.80% of the integrality gap, on the average; the corresponding numbers in the
papers of Dash, Günlük, and Lodi [10] and Balas and Saxena [3] are 62.53% and
76.52%, respectively. A single round of GMI cuts closes 25.29% of the integrality
gap. Further, we are able to apply our heuristic to the larger MIPs in the MIPLIB
2003 library [1] and close 40.21% of the integrality gap, on the average, as opposed
to 23.32% if one round of GMI cuts is used.
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MIP Computations on Networks with PDEs

Alexander Martin

(joint work with Björn Geißler and Antonio Morsi)

We consider the optimization of dynamical transport networks. For a network
to be a transport network, we assume some flow through the components of the
network, which should be optimized under the consideration of several side con-
straints. In one of the simplest cases, this may lead to a minimum cost flow
problem, where a cost is assigned for the use of each connection and the goal is
to achieve a certain flow between distinct nodes of the network at lowest cost.
Since this problem can be described in terms of a mathematical model involving
only linear constraints and a linear objective function, it can be solved by using
algorithms from linear optimization, which are proven to be fast and to guarantee
to find the global optimum. The situation gets more complex in cases where the
network contains some kinds of switching components, i.e., components which can
be in different discrete states, such as valves, pumps or compressors in water or gas
networks. In order to reflect discrete processes in a mathematical model, one typ-
ically introduces binary variables and additional linear constraints involving these
variables. This leads to a mixed integer linear optimization problem, which in gen-
eral is harder to solve than a linear program. Fortunately, there are still algorithms
available which guarantee to solve these kinds of problems to global optimality.
If we consider a situation where the transported entities underly nonlinear dy-
namics, typically according to physical laws, it seems like the guarantee of global
optimality, provided by continuous and mixed integer programming solvers, is no
longer at hand. Moreover, classical algorithms for nonlinear optimization prob-
lems are not able to handle discrete variables and constraints in an efficient way.
Our approach is based on piecewise linearizing of nonlinearities and the modeling
of piecewise linear functions in terms of linear constraints. This brings us into a
situation where we can apply global optimization algorithms from mixed integer
linear programming to the optimization of dynamical transport networks. Many
engineering problems such as production planning problems, traffic problems, the
problem of gas network optimization and the problem of water supply network
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optimization can be stated as an optimization problem on a dynamic transport
network.

In this talk we exactly study problems arising from these four application areas.
We introduce a network model suitable for the general dynamics occurring in these
transport networks. The dynamics in these networks are mainly described by a
coupled set of (hyperbolic) partial differential equations leading to a PDE opti-
mization problem. For the PDE equations, we also give a discretization scheme in
order to come up with an appropriate mixed integer linear model. We computa-
tionally compare both models for each of the four application areas (production
planning, traffic, water and gas network optimization problem). It turns out that
the characteristics of the PDE constraints lead to different approximation qual-
ities of the MIP models. For the production planning problem, where the flow
basically depends linear on the pressure, the MIP model achieves exactly the same
solution as the PDE model [2]. From the traffic, via the water to the gas model
the dynamics increase. It comes at no surprise that the discretization and thus
the piecewise linearization must be finer the more the dynamics increase in order
to achieve a reasonable good approximation quality [1, 3]. The computational
results show that this is possible, although the running times increase partially
significantly, even when applying the newest techniques for piecewise linearizing
nonlinear functions [4]. On the other hand applying MIP techniques allows to
compute globally optimal solutions. And indeed even for very small symmetric
gas network instances we show that nonlinear optimization methods fail to find
the global optimum, whereas the MIP approach does. This shows that there is a
lot of potential for MIP techniques to help PDE optimization to achieve better or
even optimal solutions. The future lies in the combination of both techniques to
solve larger real sized problems. To achieve this goal a long way needs to be gone
and many problems on the border between the PDE and MIP optimization worlds
need to be solved.
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Integer Programming and Geometry of Numbers

Friedrich Eisenbrand

Integer programming is not only related to Combinatorics but also to Number
Theory, especially the Algorithmic Geometry of Numbers, as we shortly explain.

The greatest common divisor of two integers a0, a1 ∈ N+ is the largest integer,
which divides both a0 and a1. The greatest common divisor can be efficiently
computed with the Euclidean algorithm, see, e.g. [6, 1]. It computes the remainder
sequence a0, a1, . . . , ak−1, ak ∈ N+, where ai, i ≥ 2 is given by ai−2 = ai−1qi−1+ai,
qi ∈ N, 0 < ai < ai−1, and ak divides ak−1 exactly. Then ak = gcd(a0, a1).
The Euclidean algorithm can be interpreted as a reduction algorithm. The 2-
dimensional basis reduction algorithm of Lagrange works along the same lines.

Now, the connection of integer linear programming with algorithmic number
theory reveals itself already in the following theorem, which is proved at the be-
ginning of every course on elementary number theory, see, e.g. [9].

Let a, b ∈ Z be integers which are not both equal to zero. The
greatest common divisor gcd(a, b) is the smallest integer in the set

(1) min{a x+ b y : x, y ∈ Z, a x+ b y ≥ 1}.
The problem to find the minimum in (1) can be modeled as an integer program
in two variables and one constraint.

min a x+ b y
a x+ b y ≥ 1
x, y ∈ Z.

This already shows that efficient methods for integer programming with a fixed
number of variables, must incorporate reduction techniques, which prototypical
appear already in the Euclidean algorithm. This is also the case for Lenstra’s
algorithm [8], which solves integer programming problems in fixed dimension in
polynomial time.

In this talk we review some classical results and outline recent results on this in-
terplay between Combinatorics, Complexity and Geometry of Numbers. We begin
with Minkowski’s theorem and Dirichlets theorem on simultaneous Diophantine
approximation. Then we consider the complexity of simultaneous Diophantine ap-
proximation. Lagarias [7] showed that simultaneous Diophantine approximation is
intractable. This was strengthened to an inapproximability result by Rössner and
Seifert [10]. We then mention a recent result of Rothvoß [11] who extends these
results to to directed Diophantine approximation, which was for example consid-
ered in [4]. With this result one can prove that optimizing over the Mixing set is
NP-hard. Polynomial time special cases of Mixing set were previously presented
in [12, 2].

Finally we mention recent results on parametric integer programming [3]. This
is concerned with the following problem: Given a rational matrix A ∈ Qm×n and
a rational polyhedron Q ⊆ Rm+p, decide if for all vectors b ∈ Rm, for which there
exists an integral z ∈ Zp such that (b, z) ∈ Q, the system of linear inequalities
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Ax ≤ b has an integral solution. We show that there exists an algorithm that
solves this problem in polynomial time if p and n are fixed. This extends a result
of Kannan [5], who established such an algorithm for the case when, in addition
to p and n, the affine dimension of Q is fixed.

We pose several open problems, one of which is the following. Given a matrix
A ∈ Zm×n, where n is fixed and a polyhedron Q ⊆ Rm, find a b such that the
number integer points in the polyhedron {x ∈ Rn : Ax ≤ b} is minimal. Is this
problem in P?
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Exact and Approximation Results for Crossing Minimization

Petra Mutzel

(joint work with Christoph Buchheim, Markus Chimani, Carsten Gutwenger,
Peter Hliněný, Michael Jünger, Immanuel Bomze)

The crossing number problem asks for the minimum number of edge crossings
cr(G) which can be achieved by drawing a given graph in the 2-dimensional plane.
It has originally been stated by Turan during the second world war. Since then,
a number of interesting theoretical results has been obtained. Despite the many
published papers on this problem and its variants, the crossing number is only
known for very few graph classes, e.g., even for complete graphs it is only known
for graphs with up to 12 vertices. Garey and Johnson [6] have shown that the
decision version of the crossing number problem is NP-complete. No polynomial
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time algorithm is known for approximating cr(G) for general graphs within some
non-trivial factor. For a bibliography of the crossing number, see [9]. In this talk,
we will present (1) some recent approximation results for certain graph classes as
well as (2) exact results on the computation of cr(G) for general (sparse) graphs.

(1) The approximation results concern the graph classes of almost planar graphs
and apex graphs. A graph G = (V,E) is called almost planar if G is non-planar,
but there does exist an edge e ∈ E so that G − {e} is planar. Given a planar
embedding Π of the remaining graph G− {e}, the edge e can be re-inserted with
the minimal number of crossings via a shortest path in the extended geometric
dual graph of Π. Gutwenger, Mutzel, and Weiskircher[7] have presented a linear
time algorithm (based on the data structure of SPQR-trees) which is able to find
the optimal embedding Π0 of G − {e}, so that inserting e into Π0 leads to a
crossing minimum drawing over the set of all possible planar embeddings Π. The
natural question arises, if this approach does approximate the crossing number
cr(G) by some small factor. And indeed, Hliněný and Salazar [8] have shown
that the above algorithm provides crossing numbers of at most ∆(G− {e})cr(G),
where ∆(G) denotes the maximum degree of G. This number has later been
improved to (∆(G − {e})/2)cr(G) by Cabello and Mohar [2]. This provides the
first constant approximation algorithm for nearly planar graphs with bounded
degree graphs. Very recently, these results could be generalized to apex-graphs.
A graph G = (V,E) is called an apex graph if G is non-planar, but there does
exist a vertex v ∈ V so that G − {v} is planar. Chimani, Gutwenger, Mutzel,
and Wolf [3] have shown that v and all its incident edges can be re-inserted into
an optimal embedding Π0 of G− {v} (which the algorithm will identify) with the
minimum number of crossings in polynomial time. Chimani, Hliněný, and Mutzel
[4] have shown that this algorithm will find solutions which are at most a factor of
deg(v)∆(G−{v})/2 away from the optimum solution cr(G). Both approximation
results are (almost) tight: for almost planar graphs, there is an example showing
that the approximation factor can be reached, while for apex graphs the example
is still a factor of 2 away. Some open questions arise:

• Is there a polynomial time algorithm for computing the crossing number
cr(G) for almost planar graphs? Cabello and Mohar [2] have shown that
the weighted version is NP-hard.

• Can the above results be generalized, e.g., for graphs that are planar after
deleting a fixed number of edges?

(2) The exact results concern two approaches for computing the exact crossing
number for general graphs. The approaches are based on two integer linear pro-
gramming (ILP) formulations of the crossing number problem that can be solved
by branch-and-cut algorithms. The first ILP formulation, called the subdivision
crossing minimization approach (SCM), optimizes over the set of all simple draw-
ings [1]. A drawing is called simple if every edge is only crossed at most once. In
order to provide an optimal solution for cr(G), we need to subdivide all edges in G
into a path of length |E|. The variables xe,f are associated with all non-adjacent

edge pairs (e, f) ∈ E2. The constraints come essentially from KuratowskiÂ´s
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theorem stating that a graph G is planar if and only if it does not contain a sub-
division of K3,3 or K5. The ILP contains 0/1-constraints, Kuratowski-constraints,
and simple constraints. Our second approach [5], the ordering-based ILP model
(OCM) is not restricted to simple drawings, so we do not need to subdivide the
edges. However, we introduce additional linear ordering variables yefg for each
edge e ∈ E that may be crossed more than once in the crossing minimum solution
of G = (V,E). As constraints we have 0/1-constraints, linear ordering constraints,
Kuratowski constraints, and linking constraints between the x and y variables.

We solve both ILP models with branch-and-cut algorithms. In order to get
these algorithms to work in practice, we needed to come up with new prepro-
cessing techniques as well as new combinatorial column generation methods. Our
computational experiments on a benchmark set of about 11,000 graphs show that
we can compute the exact crossing numbers for general sparse graphs with up to
100 vertices and crossing number up to 37 within 30 minutes. It seems that the
second formulation based on linear ordering dominates our first ILP model. For
most instances, we need far more variables in our SCM model than in the OCM
model. We find it surprising that in the OCM model only very few y-variables are
needed in order to find the optimum solution.

We also did experiments for special graph classes. While we could verify the
crossing number of the complete graph on 11 (and 12) vertices (with an alternative
optimum solution), one more vertex is still a challenge. On the other hand, we
are able to compute the crossing number of generalized Petersen graphs Pn,4 up
to n = 44 which was unknown before. Based on our computed results, we came
up with a conjecture of the crossing number of this graph class. Moreover, we
are confident that we are about to be able to compute the crossing number of
the smallest toroidal grid graph T8,8 whose crossing number is still unknown (and
conjectured to be 48).
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Disjoint Arborescences Spanning Convex Sets in a Graph

Satoru Fujishige

Recently Kamiyama, Katoh, and Takizawa [3] have shown a theorem (KKT theo-
rem for short in the sequel) on packing arc-disjoint arborescences that is a proper
extension of Edmonds’ theorem [2] on disjoint spanning branchings, which is de-
scribed as follows. (The precise definitions of terms used here will be given later.)

LetG = (V,A) be a directed graph with a vertex set V and an arc setA. For any
vertex v ∈ V we denote by R+

G(v) the set of vertices reachable from v by directed
paths in G. Given roots ri ∈ V (i ∈ I), KKT theorem gives a characterization of
the existence of a set of arc-disjoint arborescences Hi (i ∈ I) such that for each
i ∈ I arborescence Hi has a root ri and exactly spans R+

G(ri).
In this talk we show a further extension of KKT theorem, which makes clear an

essential rôle played by a reachability condition in the theorem. The right concept
required for the further extension is “convexity” instead of “reachability.”

For more information about disjoint arborescences, their extensions, and related
topics see [4, Part V] and [1].

A branching in G is a subgraph H = (U,B) of G without any cycle such that
every vertex u in U has in-degrees at most one in H . Each connected component
of branching H has a unique vertex, called a root, that has the in-degree equal to
zero in H . A connected branching is called an arborescence, which has a single
root.

For any vertex v ∈ V we denote by R+
G(v) the set of vertices reachable from v

by directed paths in G and by R−
G(v) the set of vertices from which v is reachable

by a directed path in G. Also define for any W ⊆ V

R+
G(W ) =

⋃

{R+
G(v) | v ∈ W}, R−

G(W ) =
⋃

{R−
G(v) | v ∈W}.

A vertex subset W is called a convex set in G if we have W = R+
G(W ) ∩R−

G(W ),
i.e., for every directed (posiibly closed) path P from a vertex in W to a vertex in
W all the intermediate vertices of P also lie in W . The concept of convexity plays
an essential rôle in our result, which replaces the rôle of reachability from roots
in KKT theorem [3]. It should be noted that for any convex set U in G and the
vertex set W of any strongly connected component of G that satisfy U ∩W 6= ∅,
we must have U ⊇W .

Suppose that we are given a finite index set I and, for each i ∈ I, a specified
vertex ri ∈ V . Here we may allow ri = rj for some distinct i, j ∈ I. For each i ∈ I
we are also given a convex set Ui ⊆ V such that ri ∈ Ui. For any v ∈ V define

I(v) = {i ∈ I | v ∈ Ui}.
We assume that I(v) 6= ∅ for all v ∈ V .
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Now we are ready to state our main theorem, which is an extension of KKT
theorem. It should be noted that replacing Ui by R+

G(ri) for all i ∈ I in our
theorem yields KKT theorem. Our proof employs KKT theorem recursively.

Theorem: The following four statements are equivalent.

(a) There exist arc-disjoint arborescences Hi = (Ui, Bi) (i ∈ I) such that for

each i ∈ I arborescence Hi has a root ri.
(b) for each v ∈ V there exist arc-disjoint directed paths Pi (i ∈ I(v)) such

that for each i ∈ I(v) path Pi is from ri to v.
(c) For any vertex subset Z ⊂ V

|∆−Z| ≥ |{i ∈ I(Z) | ri /∈ Z}|,
where ∆−Z denotes the set of arcs a = (u, v) such that u /∈ Z and v ∈ Z.

(d) There exist spanning trees Ti = (Ui, Ei) of G[Ui] (i ∈ I) such that Ei

(i ∈ I) are pairwise disjoint and every vertex v ∈ V has in-degree equal to

|I ′(v)| in the union of Ti (i ∈ I) (as a subgraph H = (V,∪i∈IEi) of G ),
where we define I ′(v) = {i ∈ I(v) | ri 6= v} for all v ∈ V .

Because of (d) a weighted version of the problem can also be solved in polyno-
mial time.
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Semidefinite Programming Bounds for Stable Sets and Coloring

Monique Laurent

Given a graphG = (V,E), a set S ⊆ V is stable if it contains no edge and a coloring
is an assignment of colors to the nodes so that adjacent nodes receive distinct
colors, in other words a partition of V into stable sets. The maximum cardinality
of a stable set is denoted α(G), the stability number of G, and the minimum
number of colors in a proper coloring as χ(G), its coloring (chromatic) number.
As is well known, α(G) and χ(G) are hard to compute and to approximate. Thus
it is of interest to find good bounds for α(G) and χ(G) that can be computed in
polynomial time. The celebrated theta number:

(1) ϑ(G) = max 〈J,X〉 s.t. Tr(X) = 1, Xij = 0 (ij ∈ E), X � 0,

was introduced by Lovász [14], as upper bound on the Shannon capacity of G.
Here X � 0 means that X is a symmetric positive semidefinite matrix. As it
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is defined via a semidefinite program it can be computed in polynomial time (to
any precision). The following ‘sandwich inequalities’ show that the theta number
approximates both α(G) and χ(G), as well as the fractional chromatic number
χf (G):

(2) α(G) ≤ ϑ(G) ≤ χf (Ḡ) ≤ χ(Ḡ),

where Ḡ is the complementary graph of G; the fractional chromatic number of G
being defined as

χf (G) := min
∑

S

λS s.t.
∑

S

λS1S = 1V , λS ≥ 0

where the summation is over all stable sets and 1S is the incidence vector of S ⊆ V .
When α(G) = χ(Ḡ), there is equality throughout in (2), both parameters are

equal to ϑ(G) and thus can be computed in polynomial time. Therefore, the sta-
bility number and the chromatic number can be computed in polynomial time for
the class of perfect graphs (see e.g. [1]). This is the first application of semidefinite
programming to combinatorial optimization and, as of today, this is still the only
known efficient algorithm for this problem.

A natural question is how to strengthen the theta number toward α(G) or χ(G).
Several methods have been proposed for designing tractable LP or SDP relaxations
of 0/1 LP problems, thus in particular for the stable set problem; in particular the
matrix-cut method of Lovász-Schrijver [15] and the method of Lasserre [10] based
on moment matrices (see e.g. [11, 13] for a detailed survey). Both give a hierarchy
of SDP relaxations finding α(G) in α(G) steps. The Lasserre construction gives a
finer hierarchy, however at a high computational cost, since it involves matrices of
order O(n2t) at the relaxation order t. As shown in [3] this hierarchy can easily be
adapted to give a hierarchy of lower bounds for χf (G), converging to it in α(G)
steps. This raises the following questions:

• How to get bounds for the chromatic number that go beyond the fractional
chromatic number?

• How to define bounds via compact SDP’s, thus more amenable to practical
computation for interesting graphs?

To answer the first question we propose to use the well known reduction of the
chromatic number to the stability number:

χ(G) = min t s.t. α(Gt) = |V (G)|,
where Gt is the Cartesian product of G with the complete graph Kt. Now if β
is a graph parameter nested between |V |/χ and χ̄, then the graph parameter Ψβ

defined by

Ψβ(G) := min t s.t. β(Gt) = |V (G)|
is nested between the clique number ω and the chromatic number χ. Obviously,
if β is polynomial-time computable then the same holds for Ψβ. Here are some
properties of the operator Ψ: Ψ is monotone non-increasing; Ψα = χ, Ψϑ = ⌈ϑ̄⌉;
Ψ maps a hierarchy converging to α to a hierarchy converging to χ; Ψ maps the
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whole interval [|V |/ω, χ̄] to ω. As a direct application, a graph parameter in this
interval cannot be computed in polynomial time if P 6=NP.

To address the second question above, we propose to exploit symmetry. The
basic idea being that if we have a SDP with symmetry structure, we can restrict its
solutions to the invariant ones (which permits to decrease the number of variables),
and we can replace the SDP by an equivalent one with a block-diagonal structure
(thus easier to solve). (See e.g. [6, 17] for a survey.) Symmetry can be present in
the graph G, which is the case e.g. for Hamming or Kneser graphs, which have
a large automorphism group. Another possible source of symmetry is to design
the hierarchy in such a way that it involves matrices with a specific symmetry
structure. This is precisely what is done in [5] where we design a new, block-
diagonal hierarchy which, while being weaker than the Lasserre hierarchy, still
refines the hierarchy of Lovász-Schrijver, however at a lower computational cost.
While the order 1 relaxation gives back the theta number, the order 2 relaxation
gives an improved bound for α(G), which has been succesfully tested in particular
in [16, 8, 12] for Hamming graphs. We also test the order 3 bound for Paley graphs
in [5]. We have also tested these bounds for the chromatic number in [2, 4] for
Hamming and Kneser graphs.

We also propose new compact SDP bounds for the chromatic number of a graph
with no apparent symmetry, that improve on several instances of the DIMACS
instances (the random DSJC graphs) the best known lower bounds and sometimes
permit to determine the exact value of the chromatic number.

We also discuss the link to the hierarchies of SDP bounds based on copositive
coprogramming for the stability number (in [7]) and for the fractional chromatic
number (in [9]).

This lecture is based on joint work with Neboǰsa Gvozdenović.
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Faster Min-Max Resource Sharing and Application

Jens Vygen

(joint work with Dirk Müller)

The problem of sharing a set of limited resources between users (customers) in an
optimal way is fundamental. The common mathematical model has been called the
min-max resource sharing problem. Well-studied special cases are the fractional
packing problem and the maximum concurrent flow problem. The only known
exact algorithms for these problems use general linear (or convex) programming.
Sharokhi and Matula [10] were the first to design a combinatorial approximation
scheme for the maximum concurrent flow problem. Subsequently, this result was
improved, simplified, and generalized many times.

This work is a further step on this line. In particular we provide a simple algo-
rithm and a simple proof of the best performance guarantee in significantly smaller
running time. Moreover, we implemented the algorithm and show experimental
results for an application to global routing of VLSI chips.

The problem. The Min-Max Resource Sharing Problem is defined as
follows. Given finite sets R of resources and C of customers, a convex set Bc, called
block, of feasible solutions for customer c (for c ∈ C), and a nonnegative continuous
convex function gc : Bc → RR

+ for c ∈ C specifying the resource consumption, the
task is to find bc ∈ Bc (c ∈ C) approximately attaining

(1) λ∗ := inf

{

max
r∈R

∑

c∈C

(gc(bc))r

∣

∣

∣

∣

∣

bc ∈ Bc (c ∈ C)

}

,

i.e., approximately minimizing the largest resource consumption.
We assume that gc can be computed efficiently and we have a constant ǫ0 ≥ 0

and oracle functions fc : RR
+ → Bc, called block solvers, which for c ∈ C and ω ∈ RR

+

return an element bc ∈ Bc with ω⊤gc(bc) ≤ (1 + ǫ0)optc(ω), where optc(ω) :=
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infb∈Bc
ω⊤gc(b). Block solvers are called strong if ǫ0 = 0 or ǫ0 > 0 can be chosen

arbitrarily small, otherwise they are called weak.
Note that previous authors often required that Bc is compact, but we do not

need this assumption. Some algorithms require bounded block solvers: for c ∈ C,
ω ∈ RR

+ , and µ > 0, they return an element bc ∈ Bc with gc(bc) ≤ µ1 and
ω⊤gc(bc) ≤ (1 + ǫ0) inf{ω⊤gc(b) | b ∈ Bc, gc(b) ≤ µ1} (by 1 we denote the all-one
vector). They can also be strong or weak.

All algorithms that we consider are fully polynomial approximation schemes
relative to ǫ0, i.e., for any given ǫ > 0 they compute a solution bc ∈ Bc (c ∈ C) with
maxr∈R

∑

c∈C(gc(bc))r ≤ (1+ǫ0+ǫ)λ
∗, and the running time depends polynomially

on ǫ−1. By θ we denote the time for an oracle call (to the block solver). Moreover,

we write ρ := sup{ (gc(b))r

λ∗ | r ∈ R, c ∈ C, b ∈ Bc}.
Previous work. Grigoriadis and Khachiyan [4] were the first to present such

an algorithm for the general Min-Max Resource Sharing Problem. Their
algorithm uses O(|C|2 log |R|(ǫ−2 +log |C|)) calls to a strong bounded block solver.
They also have a faster randomized version.

In [5] they proposed an algorithm which needs O(|C||R|(ǫ−2 log ǫ−1 + log |R|))
calls to a strong, but not bounded, block solver. They also showed that
O(|C|2 log |R|(ǫ−2 + log |R|)) calls to a strong bounded block solver suffice.

Jansen and Zhang [6] generalized this and allowed weak block solvers. Their
algorithm needs O(|C||R|(log |R| + ǫ−2 log ǫ−1)) calls to a block solver.

block solver running time

Grigoriadis, Khachiyan [4] strong, bounded Õ(ǫ−2|C|2θ)
Grigoriadis, Khachiyan [5] strong, unbounded Õ(ǫ−2|C||R|θ)
Jansen, Zhang [6] weak, unbounded Õ(ǫ−2|C||R|θ)
our algorithm weak, unbounded Õ(ǫ−2ρ|C|θ)
our algorithm weak, bounded Õ(ǫ−2|C|θ)
Table 1. Approximation algorithms for the Min-Max Re-

source Sharing Problem. Running times are shown for fixed
ǫ0 ≥ 0, and logarithmic terms are omitted.

Fractional packing. The special case where the functions gc (c ∈ C) are linear
is often called the Fractional Packing Problem (although sometimes this
name is used for different problems). For this special case faster algorithms using
unbounded block solvers are known. Plotkin, Shmoys and Tardos [9] require a
strong block solver andO(ǫ−2ρ|C|θ(log |R|+ǫ−1)) oracle calls to solve the feasibility
version (λ∗ = 1 is known). Young’s algorithm [12] needs O(ǫ−2ρ|C|(1+ǫ0)

2θ ln |R|)
calls to a weak block solver. Charikar et al. extended the result of [9] to weak block
solvers resulting in O(ǫ−2ρ|C|(1 + ǫ0)

2θ log(ρ(1 + ǫ0)ǫ
−1)) oracle calls.

Bienstock and Iyengar [2] managed to reduce the dependence on ǫ from O(ǫ−2)
to O(ǫ−1). Their algorithm does not call a block solver, but requires the resource
consumption functions to be explicitly specified by a |R| × dim(Bc)-matrix Gc for
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each c ∈ C. So their algorithm does not apply to the general Min-Max Resource

Sharing Problem, but to an interesting special case which includes the Maxi-

mum Concurrent Flow Problem. The algorithm solves O(ǫ−1
√

Kn log |R|)
separable convex quadratic programs, where n :=

∑

c∈C dim(Bc), and K :=
max1≤i≤|R|

∑

c∈C k
c
i , with kc

i being the number of nonzero entries in the i-th row
of Gc.

block solver running time

Plotkin, Shmoys, Tardos [9] ∗ strong, unbounded Õ(ǫ−2ρ|C|θ)
Young [12] weak, unbounded Õ(ǫ−2ρ|C|θ)
Charikar et al. [3] ∗ weak, unbounded Õ(ǫ−2ρ|C|θ)
Bienstock, Iyengar [2] — Õ(ǫ−1

√
KnTQP )

Table 2. Approximation algorithms for the fractional packing
problem. Entries with ∗ refer to the feasibility version (λ∗ = 1).
Running times are shown for fixed ǫ0 ≥ 0, and logarithmic terms
are omitted. TQP is the time for solving a convex separable qua-
dratic program over Bc1

× . . .× Bc|C|
.

Our results. We have a new algorithm for the general Min-Max Resource

Sharing Problem. It uses ideas of Grigoriadis and Khachiyan [5], Young [12],
Albrecht [1], and Vygen [11]. The same algorithm and a quite simple analysis
yields two results: With a weak unbounded block solver we obtain a running
time of O(|C|θρ(1 + ǫ0)

2 log |R|(log |R| + ǫ−2(1 + ǫ0))). This generalizes several
results for the linear case and improves on results for the general case for moderate
values of ρ. With a weak bounded block solver the running time is O(|C|θ(1 +
ǫ0)

2 log |R|(log |R| + ǫ−2(1 + ǫ0))). This improves on previous results by roughly
a factor of |C| or |R|. The running times are summarized in Tables 1 and 2.

Application. Our main motivation to study this problem was an application to
VLSI design. In global routing, instances of the (nonlinear) Min-Max Resource

Sharing Problem occur naturally when dealing with today’s constraints and
objectives. We show how to model timing constraints, yield, and power consump-
tion. We incorporate a speed-up technique that drastically decreases the number
of oracle calls in practice. We generalize the randomized rounding paradigm to
our problem and obtain an improved bound.

Our experimental results for instances from current chips show that the algo-
rithm is applicable in practice, with millions of customers and resources. We show
that such problems can be solved efficiently, in less than an hour of computing
time with eight processors. This generalizes and improves previous work by [1],
[11], and [7].

The paper is avaliable as technical report [8] but not published yet.
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The Virtual Private Network Design Problem with Concave Costs

Dirk Oliver Theis

(joint work with Samuel Fiorini, Gianpaolo Oriolo, and Laura Sanità)

The symmetric Virtual Private Network Design (VPND) problem is concerned
with buying capacity on links (edges) in a communication network such that cer-
tain traffic demands can be met. The precise definition is below. It was shown
by Fingerhut, Suri and Turner [3] and later, independently, by Gupta, Kleinberg,
Kumar, Rastogi and Yener [8] that VPND can be solved in polynomial time if it
has the so-called tree routing property, that is, each instance has an optimal solu-
tion whose support is a tree. It was conjectured that VPND has the tree routing
property, see, e.g., Erlebach and Rüegg [2], Italiano, Leonardi and Oriolo [12] and
Hurkens, Keijsper and Stougie [11]. The conjecture was recently solved affirma-
tively by Goyal, Olver and Shepherd [5] by settling an equivalent conjecture, due
to Grandoni, Kaibel, Oriolo and Skutella [7], claiming that another problem called
the Pyramidal Routing (PR) problem has the tree routing property. This fact had
previously been established only for cycles [7, 11] and outerplanar graphs [4].
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In recent work we have investigated a natural generalization of VPND where
the cost per unit of capacity may decrease if a larger amount of capacity is reserved
(economies of scale principle). The growth of the cost of capacity is modelled by
a non-decreasing concave function f . We call the problem the concave symmetric
Virtual Private Network Design (cVPND) problem. This problem is APX-hard
for general f due to the fact that it contains the minimum Steiner tree problem
as a special case.

Our main contributions are as follows. First, as a corollary to Goyal et al. [5],
we show that a generalization of the PR problem which we call Concave Routing
(CR) problem, and hence also cVPND, has the tree routing property. Second, we
study approximation algorithms for cVPND. For general f , using known results
on the so-called Single Source Buy at Bulk problem by Grandoni and Italiano [6],
we give a randomized 24.92-approximation algorithm.

Detailed description of the problems. We now describe the symmetric Virtual
Private Network design (VPND) problem and its generalization with concave costs,
the concave symmetric Virtual Private Network Design (cVPND) problem.

The problems have as input a simple, undirected, connected graph G = (V,E)
which represents a communication network; a vector c ∈ RE

+ describing the edge

costs; and a vector b ∈ ZV
+ of maximum cumulative demands. A vertex v with

bv > 0 is referred to as a terminal. We denote the set of terminals by W .
The vertices of G want to communicate with each other. The exact amount

of traffic between pairs of vertices is not known. However, for each vertex v the
cumulative amount of traffic that v can send or receive is at most its maximum
cumulative demand bv. The aim is to install, at minimum cost, a so-called virtual
private network, as a “sub-network” of G. A virtual private network consists of a
set of paths P containing exactly one u–v path Puv in G for each unordered pair
{u, v} of terminals, and a vector γ ∈ RE

+ describing the capacity to be installed on
each edge. The virtual private network should allow to route any feasible matrix
of traffic demands, i.e., whenever duv is given for each unordered pair {u, v} of
terminals, such that the upper bounds

∑

u∈W duv ≤ bv for the cumulative demands
are satisfied, then for each edge e, the amount of traffic which is routed over edge
e is at most the installed capacity:

γe ≥
∑

{u,v}⊆W :e∈Puv

duv for all edges e ∈ E.

In the VPND problem, the cost of installing capacity γe on edge e is ceγe, while
in the cVPND problem, it is cef(γe). In both cases, the cost of a virtual private
network is the sum of the installation of capacity on the edges.

We also use what we call the Concave Routing (CR) problem, which is a
straightforward generalization of the so-called Pyramidal Routing (PR) problem
defined in [7]. It, too, is concerned with finding a set of paths satisfying an opti-
mality condition. We do not define it here.
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Tree routings. A feasible solution to one of the problems described above is a
tree solution if the support of the capacity vector γ or, equivalently, the union of
the paths in P induces a tree in G. We say that a problem has the tree routing
property if, for any instance, there is always a tree solution among the optimal
solutions.

In the case of the VPND, the tree routing property, the fact that one can restrict
the search for a minimum cost virtual private network to those networks with tree
support (tree solutions), established in [5] relying on work in [7], is the key to
the polynomial time algorithm. In the non-linear case, the tree routing property
is important in our design of approximation algorithms. While acknowledging
that the tree routing property for cVPND can be proven directly from the tree
routing property for VPND, we offer an elegant geometric proof for the tree routing
property of the Concave Routing problem, which then implies the tree routing
property of cVPND in much the same way as the tree routing property for PR
implies that for VPND.

Approximation. Our approximation algorithms for cVPND rely on the tree
routing property. We reduce the cVPND to an intermediate problem which might
be thought of as an undirected uncapacitated minimum concave-cost single-source
flow problem.

In the special case, when the function f has the form f(x) = min(µx,M), this
flow problem is known as the Single Source Rent or Buy problem, for which a
randomized 2.92-approximation algorithm exists, as was shown by Eisenbrand,
Grandoni, Rothvoß, and Schäfer [1], improving on results by Gupta, Kumar, Pàl,
and Roughgarden [10], which can be derandomized with the factor deteriorating
to 3.28.

For general functions f , the situation is a bit more subtle. Here we use a theorem
of Grandoni & Italiano [6] an the analysis of their (randomized) approximation
algorithm for the so-called Single Source Buy at Bulk problem. This problem is
concerned with minimum-cost installations of cables on edges. The cables can
be selected from a list of cable types, which have characteristic capacities and
installation costs. After breaking the function f up into a polynomial sized list of
cable types satisfying certain scaling properties, we are able to use said theorem in
[6], to show that a polynomial time, randomized 24.92-approximation algorithm
exists for the afore-mentioned flow problem, and hence also for the cVPND.
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Decorous Lower Bounds for Minimum Linear Arrangement

Alberto Caprara

Given a graph G = (V,E), with V = {1, . . . , n}, an arrangement (also called a
permutation, labelling, ordering or layout) is a one-to-one function ψ : V → V . If
we view ψ as a placing of the vertices on points 1, . . . , n along the real line, the
quantity |ψ(i)−ψ(j)| corresponds to the Euclidean distance between vertices i and
j. Several important combinatorial optimization problems, collectively known as
graph layout problems, call for an arrangement minimizing a function of these dis-
tances (see the survey [4]). Here, we are concerned with the Minimum Linear
Arrangement Problem (MinLA for short, using a common acronym in the liter-
ature), in which the objective is to minimize the sum of the pairwise distances
between all vertices joined by an edge, namely

∑

{i,j}∈E |ψ(i) − ψ(j)|.
MinLA was originally proposed in [11] back in 1964. It was proven to be strongly

NP-hard in [10], and this was later shown to hold even when G is bipartite [9].
For general graphs, the exact algorithm with the best worst-case running time is
based on dynamic programming and runs in O(2n|E|) time [12]. However, MinLA
is known to be solvable in polynomial time on trees [19], outerplanar graphs [8]
and certain Halin graphs [5].

On the theoretical side, some recent progress has been made on the approxima-
bility of MinLA. Approximation algorithms with performance guarantee O(log n)
were introduced in [1, 16]. Very recently, an O(

√
logn log logn) approximation
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algorithm was found [2, 7]. It has been conjectured, however, that MinLA cannot
be approximated to within a constant factor in polynomial time [3].

On the practical side, the problem appears to be extremely challenging. On
the one hand, several heuristics have been proposed for the problem [12, 14, 15,
17, 18] and tested on a well-established collection of benchmark instances [13].
On the other, it was so far impossible to certify that their solutions are close to
optimal since, with the exception of three instances whose optimum is known by
construction, the best lower bounds on the optimum are generally some orders of
magnitude smaller than the heuristic values. This situation is illustrated in [15],
which, among other things, provides a clear picture of the situation concerning the
practical solvability of MinLA.

Considering that, at present, the best practical method to solve MinLA to
proven optimality appears to be (by far) the one based on dynamic programming
mentioned above (which rules out the possibility to solve instances with more
than, say, 30 nodes), in this paper we focus our attention on the computation of
lower bounds for the problem. Our main final contribution is to show that the
best-known heuristic solutions are indeed not far from optimal for the benchmark
instances with up to 5,000 edges.

Our approach is based on the solution of a suitable Linear Program (LP), which
involves variables that represent distances between vertices in the layout and con-
tains exponentially many constraints, handled through separation. In itself, this is
a very natural idea that has already been exploited in the literature. However, the
key to our approach is, on the one hand, to limit to |E| the number of variables,
and, on the other, to work with “strong” constraints that arise from the projec-
tion into our variable space of natural inequalities in the space of dimension

(

n
2

)

associated with the distances for all vertex pairs. This idea is implicit in [6], in
which such an LP was introduced uniquely for theoretical purposes. In this paper,
we significantly extend and explore computationally this idea. In doing so, we an-
alyze the structure of the underlying polyhedron, deriving several classes of valid
inequalities, proving that they are facet defining, and discussing the associated
separation problems.
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Crossing Families and Pairings

Tamás Király

Let V be a ground set of even cardinality. Two sets X ⊆ V and Y ⊆ V are said
to be crossing if the sets X − Y, Y −X,X ∩ Y, V − (X ∪ Y ) are all non-empty. A
family F of subsets of V is called crossing if the intersection and union of any two
crossing members of F are also in F .

A pairing M of V is a set of unordered pairs of elements of V so that every
element appears in exactly one pair. For a pairing M of V and X ⊆ V let dM (X)
denote the number of pairs in M with exactly 1 element in X . The problem
addressed in this talk is to characterize families F of subsets of V for which there
exists a pairing M such that dM (X) = 1 for every X ∈ F (such a pairing is called
a feasible pairing).

A set is called even (odd) if its cardinality is even (odd). If there is a feasible
pairing for F then obviously every set in F is odd. We say that a family F of
odd sets contains a bad configuration if it contains four sets with the following
properties:

• The intersection of any 3 sets is empty,
• The union of any 3 sets is V ,
• The intersection of any 2 sets is odd.
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It is easy to see that if F contains a bad configuration, then there is no feasible
pairing. Our main result is that if F is a crossing family then this is the only
possible obstacle for the existence of a feasible pairing.

Theorem 1. Let F be a crossing family of odd subsets of V that contains no bad
configuration. Then V has a pairing M such that dM (X) = 1 for every X ∈ F .

We use this theorem to derive a result that is related to Woodall’s conjecture
on directed cut covers. Let D = (V,E) be a directed graph. An edge set F ⊆ E is
a directed cut cover if it contains at least one edge from every directed cut of D;
it is a directed cut k-cover if it contains at least k edges from every directed cut.

Woodall [2, 3] conjectured that the maximum number of edge-disjoint directed
cut covers in a digraph equals the minimum size of a directed cut. This conjecture
is wide open, there are only a few classes of graphs for which it is known to hold
(source-sink connected graphs, series-parallel graphs, transitive closure of directed
trees).

A possible generalization would be that a directed cut k-cover always contains
k edge-disjoint directed cut covers. However, Schrijver [1] showed that this is not
true in general. His counterexample also shows that there is a directed graph
D = (V,E) and a directed cut 2-cover F ⊆ E such that for any F ′ ⊆ F , there is
a directed cut that contains at most 3 edges from F and is disjoint from either F ′

or F − F ′.
We show using the pairing theorem that a counterexample with the latter prop-

erty cannot exist for higher values of k.

Theorem 2. Let D = (V,E) a directed graph and let F ⊆ E be a directed cut
2k-cover for some k ≥ 2. Then there is an edge set F ′ ⊆ F such that both F ′ and
F − F ′ contain at least k edges from any directed cut of size at most 2k + 1.
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On Lattice Reformulations of Mixed-Integer Programs

Karen Aardal

(joint work with Laurence A. Wolsey)

We revisit the lattice reformulation suggested by Aardal, Hurkens and Lenstra [1].
In particular we explain the distinction between the resulting reformulation when
applied to equality and inequality constrained integer programs. We also show that
this approach extends naturally to MIPs. We illustrate the two steps involved in
the reformulation on some small examples.
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Path Partitions, Cycle Covers, and Integer Decomposition of Coflows

András Sebő

A polyhedron P has the integer decomposition property, if every integer vector
in kP is the sum of k integer vectors in P . We explain that the projections
of polyhedra defined by totally unimodular constraint matrices have the integer
decomposition property, in order to deduce the same property for coflow polyhedra
defined by Cameron and Edmonds. We then apply this result to the convex hull
of particular stable sets in graphs. Therebye we prove a generalization of Greene
and Kleitman’s well-known theorem on posets to arbitrary digraphs which implies
recent and classical purely graph theoretical results on cycle covers, is closely
related to conjectures of Berge and Linial on path partitions, and implies these for
some extremal values of the parameters.

Partitioning the vertex-set of a graph by a minimum number of paths is one of
the most natural problems concerning graphs. Minimizing the number of paths in
such a partition contains the Hamiltonian Path problems both in the directed and
undirected case.

For digraphs, a classical theorem of Gallai and Milgram relates the problem to
the stability number of a graph. Path partitions in digraphs have been treated
both with elegant graph theory, network flows, and polyhedral combinatorics, but
have not yet revealed all of their secrets:

Conjectures of Berge [1] and Linial [16] about the relation of maximum sets
of vertices inducing a k-chromatic subgraph and particular path partitions resist
through the decades. Hartman’s excellent survey [12] witnesses of the variety of the
methods that have been tried out with a lot of partial results but no breakthrough
as far as the general conjectures are concerned. Some other conjectures are less
well-known or have not yet been stated.

Led by analogies, we ask and answer in this talk more questions, and point at
some connections.



2934 Oberwolfach Report 51/2008

We first state analogous pairs of theorems on path partitions and cycle covers.
Then we present the results concerning cycle covers deducing all from a general

theorem proved with the help of the property of a corresponding polyhedron: the
integer decomposition property.

Finally we present some results on path partitions, and some connections of
these to cycle covers.
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Relaxations for Nonlinear 0–1 Optimization

Christoph Buchheim

(joint work with Giovanni Rinaldi, Angelika Wiegele, and Lanbo Zheng)

Nonlinear binary optimization problems are considerably harder to solve than the
corresponding linear problems, both theoretically and in practice. In particular,
the problem of maximizing a quadratic objective function over binary variables is
NP-hard even in the unconstrained case. In fact, it is equivalent to the maximum
cut problem, as shown by De Simone [5]. On the other hand, the latter problem
has been well-studied and many results have been obtained for the corresponding
cut polytopes, see e.g. [4]. These polyhedral results have led to practically fast
algorithms for max-cut and quadratic 0–1 optimization based on ILP or SDP
techniques [6, 7].

Our aim is to extend the connection between max-cut and binary quadratic
optimization to more general non-linear problems: firstly, we are interested in
unconstrained problems where the quadratic function is replaced by an arbitrary
pseudo-boolean objective function [1, 2]. Secondly, we are interested in quadratic
problems subject to linear constraints. In particular, we derive polyhedral results
for a typical example of such a problem, the quadratic linear ordering problem [3].

Pseudo-boolean Optimization. We first address the problem of maximizing a
non-linear objective function over binary variables. Here we assume that all non-
linear expressions in the objective function are given by a recursive construction
using arbitrary boolean operators {0, 1}2 → {0, 1}, i.e., we allow expressions such
as, e.g., ((a ⇒ ((b∧ c)⊕d)) ⇔ (b∨ e)). Our aim is to maximize an arbitrary linear
combination of such expressions over binary variables (without constraints).

We obtain an IP formulation of this problem by a straightforward linearization:
we introduce new variables for all non-linear terms in the objective function and
recursively for all partial non-linear terms. In our example, the latter variables
correspond to the terms (a⇒ ((b∧ c)⊕ d)), (b∨ e), ((b∧ c)⊕ d), and (b∧ c). Now
let P be the polytope spanned by all feasible solutions in this model.

By the result of De Simone mentioned above, the problem of maximizing a
quadratic polynomial over binary variables can be reduced to solving an instance
of the max-cut problem; moreover, each boolean quadric polytope is isomorphic
to a cut polytope. We generalize this result as follows:

Lemma 1. If all non-linear terms in the objective function contain at most one
operator, then the polytope P is isomorphic to a cut polytope defined on the same
number of variables.

In general, if the nesting depth of the objective function is not bounded by one,
Lemma 1 does not hold. However, we can show the following:

Theorem 2. Assume that no operator in the objective function is an exclusive
disjunction or an equivalence. Then the polytope P is isomorphic to a face of a
cut polytope, where the latter is defined on at most four times as many variables.
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In particular, this result holds in the case of a polynomial objective function,
where all operators are multiplications [1]. Theorem 2 allows to reduce the general
separation problem for P to the separation problem for a cut polytope in a very
efficient way. Experimental results for polynomial 0–1 optimization and for the
maximum satisfiability problem show that a branch-and-cut algorithm based on
this approach is very powerful in practice. In many cases, it even outperforms
problem-specific methods. This is due to a combination of a sparse construction
and strong polyhedral results.

Quadratic Linear Ordering. A different type of generalization arises when
sticking to a quadratic objective function but adding linear constraints. As a
typical example, we consider the quadratic linear ordering problem, which has
applications in, e.g., computational biology and bipartite crossing minimization.
As in most such cases, the standard linearization of the objective function leads
to a very weak relaxation. We show that a quadratic reformulation of the linear
constraints leads to a strong improvement of the relaxation.

Let QLO(n) be the polytope spanned by all feasible solutions of the linearized
problem, these solutions correspond to vectors of the form (x, y), where x is a
feasible solution for the classical linear ordering model and yijkl linearizes the
product xijxkl. In the following, let Pn denote the polytope for the corresponding
linearized unconstrained quadratic optimization problem over the linear ordering
variables x, which is isomorphic to a cut polytope [5].

Lemma 3. Let (x, y) ∈ Pn be integer. Then (x, y) ∈ QLO(n) if and only if

xik − yijik − yikjk + yijjk = 0

for all i < j < k. These equations form a minimal equation system for QLO(n).

The constraints in Lemma 3 are quadratic reformulations of 3-dicycle inequalities;
their strength follows from the following statement.

Theorem 4. For all i < j < k, the constraint xik − yijik − yikjk + yijjk = 0
induces a face of the polytope Pn. In particular, QLO(n) is a face of Pn.

Again, this result can be exploited practically in a cutting plane approach, as it
allows to reduce the separation problem for QLO(n) to the separation problem for
the cut polytope Pn. Moreover, Theorem 4 shows that QLO(n) is closely related to
the unconstrained problem, while any polyhedral knowledge of the linear version
of the linear ordering problem is useless for understanding QLO(n).
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Extended Formulations for Packing- and Partitioning Orbitopes

Volker Kaibel

(joint work with Yuri Faenza)

The packing orbitope O≤(p, q) and the partitioning orbitope O=(p, q) are the
convex hulls of all 0/1-matrices of size p×q whose columns are in lexicographically
decreasing order having at most or exactly, respectively, one 1-entry per row.
In [1], complete descriptions with linear inequalities have been derived for these
polytopes. Knowledge on orbitopes turns out to be useful in practical symmetry
reduction for certain integer programming models. For instance, in a well-known
formulation of the graph partitioning problem (for graphs having p nodes to be
partitioned into q parts) the symmetry on the 0/1-variables xij indicating whether
node i is put into part j of the partitioning the symmetry arising from permuting
the parts can be removed by requiring x ∈ O=(p, q).

The topic of the talk are extended formulations for these orbitopes, i.e., (sim-
ple) linear descriptions of higher dimensional polytopes which can be projected

to O≤(p, q) and O=(p, q). In fact, such extended formulations play important
roles in polyhedral combinatorics and integer programming in general, because
rather than solving a linear optimization problem over a polyhedron in the orig-
inal space, one may solve it over a (hopefully simpler described) polyhedron of
which the first one is a linear projection.

The main result of [1] is a complete description of O≤(p, q) and O=(p, q) by
means of linear equations and inequalities. This system of constraints consists,
next to nonnegativity constraints and row-sum inequalities (or row-sum equations
for O=(p, q)), of the exponentially large class of shifted column inequalities (SCI ).
In [1] it is also proved that, up to a few exceptions, these exponentially many SCIs
define facets of the orbitopes.

In this talk, we describe a quite simple extended formulation for O≤(p, q) (along
with a rather short proof establishing this) and, moreover, we show by some simple
and natural (not technical) arguments that the SCI-system describes the projec-
tion of the feasible region of that extended formulation to the original space, thus
providing a new proof showing that the SCI-system describes O≤(p, q). The basic

idea of our extended formulation is to assign to each vertex of O≤(p, q) a di-
rected path in a certain acyclic digraph. The additional variables in our extended
formulations are used to suitably express these paths. The proof showing that
SCI-inequalities basically suffice in order to describe O≤(p, q) proceeds as follows.
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We first construct, for each nonnegative x in the original space (with entries in ev-
ery row summing up to at most one), a canonical lifting by assigning to x a certain
flow in the digraph. Then we identify linear inequalities that need to be satisfied
by x in order to guarantee that the canonical lifting satisfies the extended formu-
lation. Finally showing that these inequalities (the SCI-inequalities) are valid for

O≤(p, q), we complete the analysis of the projection. This latter proof is much
shorter than the original one, and it seems to provide much better insight into the
reasons for the SCI-system to describe the orbitopes. Clearly, as O=(p, q) is a face

of O≤(p, q), the results for the latter polytope immediately yield corresponding
results for the first one.

Besides leading to that simpler proof our extended formulation for O≤(p, q)
provides a description of the orbitope by a system of constraints in a space whose
dimension is roughly twice the original dimension with only linearly (in that di-
mension) many nonzero coefficients, while every linear description of the orbitope
in the original space requires exponentially many inequalities.
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