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Introduction by the Organisers

The topics of this conference all in some way evolved from the classical theory
of real and complex Lie groups. Indeed, one of the important mathematical goals
during the 1950’s was to find analogs of the semisimple Lie groups of exceptional
type over arbitrary fields. Chevalley completed the first crucial step by produc-
ing his famous basis theorem for simple complex Lie algebras, and later Steinberg
succeeded in describing these analogs group-theoretically. An important develop-
ment due to Tits was the theory of groups with a BN -pair and invented buildings;
these buildings belong to arbitrary Chevalley groups as naturally as the projective
spaces belong to the special linear groups.

Since then the theories of algebraic groups and of buildings developed into var-
ious directions. However, due to their common origin both theories often lead
naturally to similar questions which were attacked by completely different means.
In the context of this conference, the PhD thesis by Bernhard Mühlherr and the
work by Aloysius Helminck and coauthors on involutions of algebraic groups illus-
trate this in a quite remarkable way. Both projects contributed strongly to the
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understanding of the geometry of involutions of algebraic groups, but surprisingly
each one has gone unnoticed by the researchers of the other until recently.

One of the main objectives of this conference was to bring these two theories
closer to each other. The first two lectures on Monday morning familiarised all
participants with the concept of buildings; Pierre-Emmanuel Caprace explained
the foundations of buildings from the simplicial point of view, while Bernhard
Mühlherr introduced the chamber system approach to buildings and explained the
power of filtrations when studying sub-geometries of (twin) buildings that arise
from the action of certain subgroups of the isometry group of the (twin) building.
As these two lectures were of an introductory nature and since their content is
already well documented (we refer to the recently published book by Abramenko
and Brown for the theory of buildings and to the contributions of Alice Devillers
and of Hendrik Van Maldeghem to the Oberwolfach report 20/2008 for an account
on filtrations and their powerful applications), we do not include acstracts of these
lectures.

On Monday afternoon and on Friday morning Aloysius Helminck presented the
theory of involutions of algebraic groups, while in Monday’s final lecture Max Horn
showed how to combine Helminck’s theory with Mühlherr’s PhD thesis in order
to obtain general and powerful results on the geometry of involutions of groups
with a root group datum, a class of groups that contains the semisimple algebraic
groups, the split Kac–Moody groups, and the split finite groups of Lie type.

Most of Tuesday and part of Wednesday were focussed on the Tits centre con-
jecture. In a series of two lectures Gerhard Röhrle and Michael Bate presented an
algebraic-group approach towards proving the conjecture, while on Tuesday after-
noon Katrin Tent presented a combinatorial approach and on Wednesday morning
Linus Kramer reported on metric considerations in the context of the Tits centre
conjecture. It is our impression that these four lectures have triggered additional
activity towards proving the centre conjecture, and that one or more of these
approaches will be successful in the near future.

The fourth talk on Tuesday afternoon was given by Yiannis Sakellaridis on
spherical varieties and automorphic forms, while the second talk on Wednesday
by Lizhen Ji presented compactifications of locally symmetric spaces. Thursday’s
talks by Sergey Shpectorov and by Paul Levy concentrated on involutions of affine
buildings, respectively automorphisms of finite order of semisimple Lie algebras.

The remaining three talks were more topologically in nature. Guy Rousseau
presented his theory of microaffine buildings, hovels, and Kac–Moody groups over
ultrametric fields on Thursday. Thursday’s fourth talk was by Bertrand Rémy on
Satake compactifications of buildings via Berkovich theory. The conference was
concluded by Pierre-Emmanuel Caprace’s report on aspects of the structure of
locally compact groups.

We are particularly pleased by the lively interaction between the participants
during the long afternoon breaks (each morning’s lectures finished at 11.30 a.m.
while the afternoon sessions only started at 4.20 p.m.) and during the evenings.
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Abstracts

Involutions of algebraic groups I and II

Aloysius G. Helminck

Symmetric k-varieties were introduced in the late 1970’s as a generalization of both
real reductive symmetric spaces and symmetric varieties to homogenous spaces
defined over general fields of characteristic not 2. The real reductive symmetric
spaces, are the homogeneous spaces GR/HR, where GR is a reductive Lie group of
Harish Chandra class and HR is an open subgroup of the fixed point group of an
involution of GR. The representations associated with these real reductive sym-
metric spaces (i.e. a decomposition of L2(GR/HR) into irreducible components)
had been studied intensively by many prominent mathematicians starting with a
study of compact groups and their representations by Cartan [7], to a study of
Riemannian symmetric spaces and real Lie groups by Harish Chandra [15] to a
more recent study of the non Riemannian symmetric spaces starting in the 1970’s
by work of Faraut [12], Flensted Jensen [13] and Oshima and Sekiguchi [26]. These
were soon studied by many mathematicians, including Brylinski, Carmona, De-
lorme, Matsuki, Oshima, Schlichtkrull, van der Ban and many others (see for
example [25, 5, 32, 6, 34, 33, 10]). In the mid 1980’s a Plancherel formula for
the general real reductive symmetric spaces was announced by Oshima, although
a full proof was not published until 1996 by Delorme [10]. See also van der Ban
and Schlichtkrull for a different approach [34, 33]. In the late 1980’s it seemed
natural to generalize the concept of these real reductive symmetric spaces to sim-
ilar spaces over the p-adic numbers and study the representations associated with
these spaces. At that same time generalizations of these real reductive symmetric
spaces to other base fields started to play a role in other areas, for example in
the study of arithmetic subgroups (see [31]), the study of character sheaves (see
for example [22, 14]), geometry (see [8, 9] and [1]), singularity theory (see [23]
and [21]), and the study of Harish Chandra modules (see [2] and [36, 35]). This
prompted Helminck and Wang to commence a study of rationality properties of
these homogenous spaces over general base fields, see [20] for some first results.
For any field k of characteristic not 2 they defined a symmetric k-variety as the
homogeneous space Xk := Gk/Hk, where G is a reductive algebraic group defined
over k and H = Gσ the fixed point group of a k-involution σ : G → G of G. Here
we have used the notation Hk for the set of k-rational points of an affine algebraic
group H defined over k. As in the real case the p-adic symmetric k-varieties are
also called reductive p-adic symmetric spaces or simply p-adic symmetric spaces.

For k the p-adic numbers it is natural to study the harmonic analysis of these
p-adic symmetric spaces, similar as in the real case. Namely, let dx be a Gk-
invariant measure on the symmetric k-variety Xk = Gk/Hk. Given a complex
vector bundle over these spaces we get a natural representation πρ of Gk on its
space of global sections, where ρ is the representation of Hk on the fibers. If
the representation ρ of Hk is unitary, then the Gk-action on the space of global
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sections that are square-integrable with respect to dx is a unitary representation
(πρ, L

2(Gk/Hk, ρ)) of Gk. In particular for the trivial line bundle over Gk/Hk,
this leads to the regular representation π1 of Gk on the Hilbert space L2(Gk/Hk)
of square integrable functions on Gk/Hk. Since the group Gk is of type I, any
unitary representation R of Gk on a separable Hilbert space HR has an abstract
direct integral decomposition

(1) R ≃

∫ ⊕

Ĝk

RπdµR(π),

where Ĝk is the unitary dual of Gk, dµR a Borel measure on Ĝk, (π,Hπ) is a

representative of a class in Ĝk and Rπ is a multiple of π, see [11]. This holds
in particular for (πρ, L

2(Gk/Hk, ρ)). The main aim of harmonic analysis is to
decompose this representation as explicitly as possible into irreducible components,
what is also called finding the “Plancherel decomposition”.

Most of the representations occurring in this decomposition are representations
induced from a parabolic k-subgroup. So in order to study these representations
it is essential to first have a thorough understanding of the orbits of parabolic
k-subgroups acting on these symmetric k-varieties. Other decompositions which
play an important role in the study of these symmetric k-varieties are orbits of
symmetric subgroups, orbits of maximal k-anisotropic (compact) subgroups and
in the p-adic case also orbits of parahoric subgroups.

While there are descriptions for some of these orbit decompositions, many prop-
erties of these symmetric k-varieties remain open. In these talks we will give a
survey of known results and open results about these orbit decompositions for
symmetric k-varieties, and illustrate this all with a number of examples.

We mainly focus on orbits of a parabolic k-subgroup P acting on the symmetric
k-variety Gk/Hk. These orbits play a fundamental role in the study of representa-
tions associated with these symmetric k-varieties. For k algebraically closed and
P = B a Borel subgroup these orbits were characterized by Springer [30] and a
characterization of these orbits for general parabolic subgroups was given by Brion
and Helminck in [4, 18]. For k = R and P a minimal parabolic k-subgroup char-
acterizations were given by Matsuki [24] and Rossmann [29] and for general fields
these orbits were characterized by Helminck and Wang [20].

These orbits can be characterized in several equivalent ways. They can be char-
acterized as the Pk-orbits acting on the symmetric k-variety Gk/Hk by σ-twisted
conjugation, or as the Hk-orbits acting on the flag variety Gk/Pk by conjugation
or also as the set Pk\Gk/Hk of (Pk, Hk)-double cosets in Gk. The last is the same
as the set of Pk × Hk-orbits on Gk. For the characterization as Pk × Hk-orbits in
Gk let A be a σ-stable maximal k-split torus of P , NGk

(A) resp ZGk
(A) the nor-

malizer resp. centralizer of A in Gk and set Vk = {x ∈ Gk | xσ(x)−1 ∈ NGk
(A)}.

The group ZGk
(A) × Hk acts on Vk by (x, z) · y = xyz−1, (x, z) ∈ ZGk

(A) × Hk,
y ∈ Vk. Let Vk be the set of (ZGk

(A) × Hk)-orbits on Vk. Then Pk\Gk/Hk
∼= Vk.

For general parabolic k-subgroups one can first consider the set of (P, H)-double
cosets in G. Then the (Pk, Hk)-double cosets in Gk can be characterized by the
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(P, H)-double cosets in G defined over k plus an additional invariant describing
the decomposition of a (P, H)-double coset into (Pk, Hk)-double cosets. For this
one considers first the natural map of the set of Pk × Hk-orbits on Gk to the set
of P × H-orbits on G. In terms of the orbit set Vk this map can be described
as follows. Let VA = {x ∈ G | xσ(x)−1 ∈ NG(A)}. Then ZG(A) × H acts
on VA by (x, z) · y = xyz−1, (x, z) ∈ ZG(A) × H , y ∈ VA. Denote the set of
(ZG(A) × H)-orbits on VA by VA. The natural inclusion map Vk → V induces a
map η : Vk → VA, where η maps the orbit ZGk

(A)gHk onto ZG(A)gH . The set
VA is finite, but in general the set Vk is infinite. In a number of cases one can
show that there are only finitely many (Pk×Hk)-orbits on Gk. If k is algebraically
closed, the finiteness of Vk was proved by Springer [30]. The finiteness of the orbit
decomposition for k = R was discussed by Wolf [37], Rossmann [29] and Matsuki
[24]. For general local fields this result can be found in [20].

The conjugacy classes of σ-stable tori play a fundamental role in the description
of the double cosets Pk\Gk/Hk and P\G/H . In fact in many cases these conjugacy
classes determine the double cosets modulo the action of the Weyl group. In the
second talk we discuss some results about these tori. First we consider the natural
action of the Weyl group W of A on the double cosets and the relation with the
conjugacy classes of these σ-stable tori. Next we look at the natural map from
VA into W , induced by the natural map VA → NG(A). This map can not only
be used to give another characterization of some of the conjugacy classes of σ-
stable tori (or equivamently W -orbits in Vk and VA), but also plays a fundamental
role in the study of the geometry and combinatorics of these double cosets. This
map also enables us to port the natural combinatorial structure on the image
(contained in the set of twisted involutions in W ) to VA and Vk. Finally, using all
this, we discuss characterizations of the various conjugacy classes of σ-stable tori
occurring in the characterization of the double cosets. We first consider the case
of algebraically closed fields where the H-conjugacy classes of σ-stable maximal
tori can be completely described by conjugacy classes of involutions in the Weyl
group. After that we consider the H-conjugacy classes of σ-stable maximal k-split
tori. We conclude with a discussion of some results about how these H-conjugacy
classes split into Hk-conjugacy classes. These results come from [16, 17]. For
k = R a characterization and a full classification of the Hk-conjugacy classes of
σ-stable maximal k-split tori will be given in a forthcoming paper [19]. For other
fields this problem is still open, except in some specific cases.

There are many other properties of these orbit decompositions that play an
important role in the study of these symmetric k-varieties and their applications.
For example, there is a natural geometry associated with these double cosets re-
lated to the Zariski closures of the double cosets in the case of algebraically closed
fields or the topological closures of the double cosets in the case of fields with a
topology. This geometry plays a fundamental role in representation theory. For
example, in the case that k = C a reductive group G with an involution σ can be
viewed as the complexification of a reductive real Lie group G0 such that σ is the
complexification of a Cartan involution of G0. Then G/H is the complexification
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of the symmetric space defined by G0 and the Cartan involution. The H-action
on G/B here appears in connection with the infinite-dimensional representation
theory of the Lie group G0. In particular, the geometry of H-orbits on G/B plays
a fundamental role in the classification of Harish-Chandra modules for G0 (see
[36]).

There is a partial order on the double cosets defined by the Zariski (or topo-
logical) closures. If Ov1

and Ov2
are orbits, then Ov1

≤ Ov2
if and only if Ov1

is contained in the closure of Ov1
. This order is called the Bruhat order on VA

(or Vk) and it generalizes the usual Bruhat order on a connected reductive al-
gebraic group defined by the Bruhat decomposition. In the case of the Bruhat
decomposition of the group, Chevalley showed that this geometric Bruhat order
corresponds with the combinatorially defined Bruhat order on the Weyl group (see
[3] for the first published proof of this). The combinatorial Bruhat order on the
Weyl group has been studied by many mathematicians and much is known about
the corresponding poset. For symmetric varieties over algebraically closed fields,
Richardson and Springer [27, 28] showed that for k algebraically closed there is
a similar combinatorial description of the Bruhat order on VA. However, in this
case the combinatorics is considerably more complicated. In this case the com-
binatorics of the orbit closures corresponds to a combinatorial order on the set
of twisted involutions in a Weyl group. Several of Richardson and Springer’s re-
sults can be generalized to describe the Bruhat order on the sets VA (or Vk) of
orbits of minimal parabolic k-subgroups acting on symmetric k-varieties, but a full
combinatorial description of the Bruhat order is still open.

We give a survey of results about the geometry and combinatorics of these or-
bit decompositions that play an important role in the study of these symmetric
k-varieties and their applications. We start with an overview of results about the
combinatorics of the related set of twisted involutions in the Weyl group, which
play an important role in all of this. The description of the combinatorics in
[30, 27] for the case of groups defined over an algebraically closed field depends on
the existence of a Borel subgroup invariant under the involution σ. For groups de-
fined over non algebraically closed fields a σ-stable minimal parabolic k-subgroup
does not need to exist. One can still obtain a similar combinatorial characteriza-
tion, but one has to pass to another involution. We conclude these talks with a
brief discussion of the combinatorics of the twisted involution poset related to the
Bruhat order.
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Involutions of algebraic and Kac–Moody groups

Max Horn

(joint work with Ralf Gramlich and Bernhard Mühlherr)

Let G be a group with a saturated twin BN -pair (B+, B−, N) of type (W, S).
(That is, (W, S) is a Coxeter system, and (B+, N) and (B−, N) are BN -pairs of
type (W, S), and B+∩B− = N∩B+ = N∩B−. In particular, W ∼= N/(B+∩B−).)
Examples include connected reductive algebraic groups, Kac–Moody groups, and
finite groups of Lie type.

Definition 1. We call an involutory automorphisms θ of G a quasi-flip if it maps
the subgroup B+ to a conjugate of B−.

Note that by [2], for the group of F-rational points of a connected reductive
algebraic F-group (and also for finite groups of Lie type), any abstract involutory
automorphism automatically satisfies this condition (as in these groups, B+ and
B− are minimal parabolic F-subgroups, hence conjugate, and their images are
again minimal parabolic F-subgroups).

Proposition 2. If θ is a quasi-flip, then there exists x ∈ G such that θ(B±) =
xB∓x−1, thus θ(T ) = xTx−1; θ induces an automorphism of (W, S) or order at
most two.

It is well know that in a group with twin BN -pair, the Bruhat and Birkhoff
decompositions hold, that is

G =
⊔

w∈W

B+wB+ and G =
⊔

w∈W

B+wB−.
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Due to this, any group with a twin BN -pair is associated to a twin building
of the same type, namely (G/B+, G/B−, δ∗), where the distance functions δ± :
G/B± × G/B± → W on the twin halves G/B+ and G/B− are given by

δ±(gB±, hB±) = w ⇔ B±g−1hB± ∈ B±wB±.

Similarly, the codistance is defined via

δ∗(gB±, hB∓) = w ⇔ B±g−1hB∓ ∈ B±wB∓.

The following is now an easy consequence of the above and Proposition 2:

Proposition 3. Let G be a group with twin BN -pair, let B be the associated twin
building. Suppose θ is a quasi-flip of G. Then θ induces a unique permutation θ′

of the chambers of the twin building with the following properties:

(1) θ′2 = Id, and θ′ swaps the two halves of the twin building.
(2) θ′ preserves distances and codistances up to the the unique automorphism

θ induces on (W, S). In particular, adjacency and opposition of chambers
is preserved.

We call the induced involution θ′ a building quasi-flip or just a quasi-flip, and
often drop the distinction between θ and θ′. Note that this generalizes the concept
of a building flip, which was introduced as part of the Phan program, see [1]

Consequently, we can now apply tools from building theory to study quasi-flips.
A first consequence is the following:

Proposition 4. Let θ be a quasi-flip of a group with saturated twin BN -pair (root
group datum). Assume we are “not in characteristic two” (= all root groups are
uniquely two-divisible). Then any Borel group B contains a θ-stable torus (=a
group conjugate of T = B+ ∩ B− and normalized by θ). Geometrically, every
chamber is contained in a θ-stable twin apartment.

This generalizes a lemma by Helminck-Wang [4]. The proof is purely building
theoretic. Using this, the following can be proven:

Theorem 5. Let G be a group with twin-BN -pair (B+, B−, N) of type (W, S) and
“not in characteristic two”. Let θ be a quasi-flip of G and denote by Gθ := {g ∈
G | θ(g) = g}. If {Ai | i ∈ I} are representatives of the Gθ-conjugacy classes of
θ-stable maximal tori in G, then:

Gθ\G/B+
∼=

⊔
i∈I

WGθ
(Ai)\WG(Ai).

Remark 6. This generalizes previous work by Matsuki [6] and Rossmann [7] for
connected reductive R-groups; Springer [8] for connected reductive groups over al-
gebraically closed fields (description given in different but equivalent form); Kac,
Wang [5] for Kac–Moody-groups over algebraically closed field in characteristic
0; and Helminck, Wang [4] for F-rational points of connected reductive algebraic
groups.
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Another result we obtained with the help of building theory is the following
(which generalizes previously known results for semi-linear flips):

Theorem 7. Let G be a locally finite split KM-group over Fq2 , q ≥ 5 and odd, with
two-spherical diagram (and no G2 residue). Let θ be a flip. Then Gθ is finitely
generated.

Remark 8. Let G be a locally finite Kac–Moody-group of type (W, S). Then G
is always finitely generated. For Gθ to be finitely generated, we have to assume
that G is two-spherical. In fact Pierre-Emmanuel Caprace, Ralf Gramlich, and
Bernhard Mühlherr have recently observed that Gθ is not finitely generated if G is
not two-spherical and q is larger than |S|.

If G is two-spherical, then it is finitely presented. For Gθ to be finitely presented,
we need G to be at least three-spherical. This “gap” between G and Gθ is believed
to extend to higher finiteness properties.
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Complete Reducibility and the Tits Centre Conjecture

Michael Bate and Gerhard Röhrle

(joint work with Benjamin Martin)

The following covers the material presented in two consecutive linked talks.

1. Introduction

Let G be a connected reductive linear algebraic group defined over an alge-
braically closed field k. Let X = X(G) be the spherical Tits building of G, cf.
[14]. Recall that the simplices in X correspond to the parabolic subgroups of G,
[12, §3.1]; for a parabolic subgroup P of G, we let xP denote the corresponding
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simplex of X . The conjugation action of G on itself naturally induces an action
of G on the building X , so we can view G as a subgroup of the automorphism
group of X . Given a subcomplex Y of X , let NG(Y ) denote the subgroup of G
consisting of elements which stabilize Y (in this induced action).

Recall the geometric realization of X as a bouquet of n-spheres. A subcomplex
Y of X is called convex if whenever two points of Y (in the geometric realization)
are not opposite in X , then Y contains the unique geodesic joining these points,
[12, §2.1]. A convex subcomplex Y of X is contractible if it has the homotopy type
of a point, [12, §2.2]. The following is a version due to J-P. Serre of the so-called
“Centre Conjecture” by J. Tits, cf. [13, Lem. 1.2], [10, §4], [12, §2.4], [15]. This
has been proved by B. Mühlherr and J. Tits for spherical buildings of classical
type [8].

Conjecture 1. Let Y be a convex contractible subcomplex of X. Then there is a
simplex in Y which is fixed by all automorphisms of X which stabilize Y .

A point whose existence is asserted in Conjecture 1 is sometimes referred to
in the literature as a “natural centre” of Y . For an overview of special cases
of Conjecture 1 that have been established, frequently relying on a case-by-case
analysis, see [7, p. 64], [8], [9], [10, §4], [12, §2.4], [15].

For a subgroup H of G let XH be the fixed point subcomplex of the action of H ,
i.e., XH consists of the simplices xP ∈ X such that H ⊆ P . Thus, if H ⊆ K ⊆ G
are subgroups of G, then we have XK ⊆ XH ; observe that XH is always convex,
[12, Prop. 3.1]. One of our results, Theorem 6, gives a short, conceptual proof of
a special case of Conjecture 1 in case the subcomplex Y in question is of the form
Y = XH for H a subgroup of G, and we consider automorphisms from NG(Y ).

The initial motivation for Tits’ Conjecture 1 was a question about the existence
of a canonical parabolic subgroup associated with a unipotent subgroup of a Borel
subgroup of G (cf. [10, §4.1], [12, §2.4]). This existence theorem was ultimately
proved by other means, [4, §3]. In [2, Ex. 3.6] we show that this result is a special
case of Theorem 6.

2. Serre’s notion of complete reducibility

Following Serre [12, Def. 2.2.1], we say that a convex subcomplex Y of X is
X-completely reducible (X-cr) if for every simplex y ∈ Y there exists a simplex
y′ ∈ Y opposite to y in X . The following is part of a theorem due to Serre, [10,
Thm. 2]; see also [12, §2] and [15].

Theorem 2. Let Y be a convex subcomplex of X. Then Y is X-completely re-
ducible if and only if Y is not contractible.

Note that many subcomplexes which arise naturally in the building are fixed-
point subcomplexes. For example, the apartments of X are the subcomplexes XT

for maximal tori T of G and, more generally, the convex hull of two simplices xP

and xP ′ is XP∩P ′

.
Following Serre [12], we say that a (closed) subgroup H of G is G-completely

reducible (G-cr) provided that whenever H is contained in a parabolic subgroup
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P of G, it is contained in a Levi subgroup of P ; for an overview of this concept
see for instance [11] and [12]. In the case G = GL(V ) (V a finite-dimensional k-
vector space) a subgroup H is G-cr exactly when V is a semisimple H-module, so
this faithfully generalizes the notion of complete reducibility from representation
theory. If H is a G-completely reducible subgroup of G, then H0 is reductive, [11,
Property 4]. Serre’s proof uses the aforementioned construction due to Borel and
Tits [4, §3].

Since XH is a convex subcomplex of X = X(G) for any subgroup H of G,
Theorem 2 applies in this case, [12, §3]:

Theorem 3. Let H be a subgroup of G. Then H is G-completely reducible if and
only if the subcomplex XH is X-completely reducible.

Remark 4. By convention, the empty subcomplex of X is not contractible.

Our next result [1, Thm. 3.10] gives an affirmative answer to a question by
Serre, [11, p. 24]. The special case when G = GL(V ) is just a particular instance
of Clifford Theory.

Theorem 5. Let N ⊆ H ⊆ G be subgroups of G with N normal in H. If H is
G-completely reducible, then so is N .

3. Tits’ Centre Conjecture for fixed point subcomplexes

Here is the main result of the first talk.

Theorem 6. Let Y be a convex, contractible subcomplex of X. Suppose that Y is
of the form Y = XH for a subgroup H of G. Then there is a simplex in Y which
is fixed by all elements in NG(Y ).

Proof. Let M be the intersection of all parabolic subgroups of G corresponding
to simplices in Y . Since H ⊆ M , we have XM ⊆ XH . But every parabolic
subgroup containing H contains M , by definition of M . Hence XM = XH . Set
K := NG(Y ). It is clear that M is normal in K. Since XK ⊆ XM , it suffices to
show that XK 6= ∅. Now Y = XM is contractible, so Theorem 3 implies that
M is not G-cr. Thus, by Theorem 5, it follows that K is not G-cr and again by
Theorem 3 that XK is contractible. In particular, XK is non-empty, by Remark
4. Thus K has a fixed point in XM , as claimed. �

Remark 7. (i). The special case of Theorem 6 when G = GL(V ) generalizes the
classical construction of upper and lower Loewy series, see [2, Rem. 3.2(ii)].

(ii). In [12, Prop. 2.11], J-P. Serre showed that Theorem 5 is a consequence of
Tits’ Centre Conjecture 1. So, Theorem 6 is just the reverse implication of Serre’s
result [12, Prop. 2.11] in the special case when Theorem 5 applies.

4. The theory of Kempf-Rousseau

Suppose the reductive group G acts on an affine variety V . Let Y (G) denote
the set of cocharacters of G, that is, the set of homomorphisms λ : k∗ → G.
For each v ∈ V , λ ∈ Y (G), we can define the morphism φ = φv,λ : k∗ → V by
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φ(a) = λ(a) · v for each a ∈ k∗. If φ extends to a morphism φ : k → V , then we
say that lima→0 λ(a) · v exists, and set this limit to be φ(0). Note that if such a
limit exists, it is uniquely defined.

Taking limits along cocharacters in this way allows one to decide whether or
not the G-orbit of a point v ∈ V is closed:

Theorem 8 (Hilbert–Mumford Theorem). The orbit G · v of a point v ∈ V is not
closed if and only if there exists λ ∈ Y (G) such that lima→0 λ(a) · v exists and lies
outside G · v.

In this section we describe a refinement of this result due to Kempf [6] and
Rousseau [9]. First, for each v ∈ V , set

Λ(v) = {λ ∈ Y (G) | lim
a→0

λ(a) · v exists}

and

Λ0(v) = {λ ∈ Y (G) | lim
a→0

λ(a) · v exists and lies outside G · v}.

Now recall that for each λ ∈ Y (G), we have the parabolic subgroup Pλ =
{g ∈ G | lima→0 λ(a)gλ(a)−1 exists}, and the Levi subgroup Lλ = {g ∈ G |
lima→0 λ(a)gλ(a)−1 = g} of Pλ. We define the so-called rational spherical building
of G (cf. [7, Ch. 2§2], [9, Sec. IV]). Let ∆ = ∆(G) be the set of nonzero cocharacters
of G modulo the following equivalence relation:

λ1 ∼ λ2

⇐⇒
∃n1, n2 ∈ N, g ∈ Pλ1

such that λ2(a
n2) = gλ1(a

n1)g−1 ∀ a ∈ k∗.

Note that λ1 ∼ λ2 implies Pλ1
= Pλ2

.
When G is semisimple, ∆ can be viewed as the dense set of rational points in

the building X = X(G); basically, for each λ ∈ Y (G), we get an equivalence class
in ∆ which corresponds to a point of the simplex xPλ

in (the geometric realization
of) X . (When G is reductive but not semisimple, then the situation is a tiny bit
more complicated, see [9] for precise details). The notion of convexity also makes
sense in ∆.

The subsets Λ(v) and Λ0(v) defined above naturally correspond to subsets C(v)
and C0(v) in ∆. If G · v is closed, then C0(v) is empty, by the Hilbert–Mumford
Theorem. On the other hand, Kempf and Rousseau showed that if G · v is not
closed, the subset C0(v) is convex and has a natural centre in the sense of Conjec-
ture 1 (note that C0(v) is not a subcomplex in general, but Tits’ conjecture makes
sense in this slightly more general setting, see [7], [9]). This centre corresponds
to an equivalence class of “worst possible” cocharacters for the point v ∈ V ; and
all these cocharacters correspond to the same parabolic subgroup P (v) of G. This
parabolic subgroup is sometimes called a canonical destabilizing parabolic for v. It
has many good properties: for example, StabG(v) ⊆ P (v).

The discussion above shows that a version of Conjecture 1 holds for convex
subsets of X which arise from G-actions on affine varieties. This leads to the
following question:
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Question 9. Given a convex contractible subcomplex Y of X, can we find a G-
action on a variety V and a point v ∈ V such that C0(v) is contained in Y and
StabAutXY stabilizes C0(v)?

If one could find such a construction for a given subcomplex Y , it would provide
a natural centre for Y . In the next section we illustrate one case where this idea
works.

5. Examples from G-complete reducibility

Consider the affine variety V = Gn, where G acts diagonally by simultaneous
conjugation:

g · (x1, . . . xn) = (gx1g
−1, . . . , gxng−1).

For a point v = (x1, . . . , xn) ∈ V let H = H(v) = 〈x1, . . . , xn〉, the algebraic
subgroup of G generated by the elements x1, . . . , xn. Then [1, Cor. 3.7] says that
G · v is closed if and only if H is G-cr.

For each λ ∈ Y (G), lima→0 λ(a) · v exists if and only if H ⊆ Pλ; moreover, this
limit is outside G · v if and only if H is not contained in any Levi subgroup of
Pλ. Thus, the subset C(v) of the previous section simply consists of the rational
points of the subcomplex XH , and the subset C0(v) is empty if and only if H is
G-cr. If H is not G-cr, then C0(v), and hence XH , has a natural centre. These
are essentially the tools used to prove Theorem 5, and we see an instance where
Question 9 has a positive answer.

In the forthcoming paper [3] (with Rudolf Tange), we strengthen the results of
Kempf–Rousseau by combining them with ideas of Hesselink [5]. One consequence
of this strengthening is the following theorem:

Theorem 10. Suppose Y ⊆ X is a convex subcomplex. Set H = ∩xP∈Y P , and
suppose Γ is a subgroup of G stabilizing Y . Suppose the following condition holds:

(1) ∃xP ∈ Y such that H is not contained in any Levi subgroup of P.

Then there exists xP0
∈ Y such that Γ ⊆ P0.

This theorem provides a natural centre xP0
for any subcomplex Y satisfying

condition (1). In particular, subcomplexes of the form Y = XH , where H is a
non-G-cr subgroup of G, are covered by this result, so it is a strengthening of
Theorem 6.

We finish by announcing another result which will appear in [3]. Suppose now
that k is any field, and that G is defined over k. Say that a subgroup H of G is
G-cr over k if whenever H is contained in a k-defined parabolic subgroup P of G,
there exists a k-defined Levi subgroup L of P with H ⊆ L. Then Serre has made
the following conjecture:

Conjecture 11 (Serre). Given a separable extension k1/k, a subgroup H of G is
G-cr over k if and only if it is G-cr over k1.

In [1, Thm. 5.8], we showed that the conjecture is true if k1 and k are perfect. In
[3], we show that H is G-cr over k1 implies H is G-cr over k. The other direction
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is still open. There are examples which show that the conjecture fails in both
directions if k1/k is not a separable extension.

References
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[8] B. Mühlherr, J. Tits, The Centre Conjecture for non-exceptional buildings, J. Algebra 300

(2006), no. 2, 687–706.
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Spherical varieties in automorphic forms

Yiannis Sakellaridis

1. Spherical varieties

Let G be a connected reductive group over a number field k, and let X be a
homogeneous spherical variety for G over k. By definition, X carries an action
of G such that, over the algebraic closure, the Borel subgroup has an open orbit.
The stabilizer subgroup of a point on a spherical variety is called a spherical
subgroup. This is a very interesting class of varieties which includes all symmetric
(stabilizers are fixed point groups of involutions) and horospherical (stabilizers
contain a maximal unipotent subgroup) ones. In the context of algebraic geometry
and invariant theory, they have been studied extensively by Brion, Knop, Luna,
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Vust and many others, and a lot of interesting structure has been discovered. For
the results mentioned in this talk, G is assumed split.

2. Harmonic analysis and automorphic forms

Given a space X with an action of group G, (C-valued) functions on X are
naturally a representation of G under translation: (g · f)(x) := f(x · g), where we
assume that G acts on the right. The purpose of harmonic analysis is to analyze
this representation. According to the desired category of representations, we re-
strict ourselves to suitable subspaces of functions. For example, the irreducible
(admissible) subrepresentations of C∞(R) under the action of the group R are all
one-dimensional spaces spanned by functions t 7→ exp(st) (where s ∈ C), but the
unitary representation L2(R) decomposes as a direct integral of one-dimensional
Hilbert spaces corresponding to imaginary values of s only.

The object of the theory of automorphic forms is harmonic analysis on the
space G(k)\G(A), where G, k are as in the first paragraph and A denotes the
ring of adeles of k. Roughly speaking, an automorphic representation is an irre-
ducible admissible representation π of G(A), together with an embedding ν : π →֒
C∞(G(k)\G(A)). Important invariants of automorphic representations are their
L-functions L(π, ρ, s), where ρ is an extra piece of data, an algebraic representation
of the “L-group”. As notation suggests, the definition of the L-function depends
only on π as an abstract representation of G(A). More precisely, π is isomorphic to
a “restricted tensor product” ⊗′

vπv, where v runs over all completions (“places”)
kv of k and πv is an irreducible admissible representation of Gv := G(kv). The
L-function is defined in some region of convergence as an Euler product of local
factors Lv(πv, ρ, s), and the factor at v depends only on πv.

3. Local Langlands correspondence

To describe the local factor Lv, we recall that according to the local Langlands
conjectures there should be a canonical way to attach to πv a conjugacy class of
“Langlands parameters”, which are homomorphisms φv : Lkv

→ LG. Here, Lkv
is

the “local Langlands group”, a version of the Galois group of k̄v/kv.
The L-group LG is the semidirect product of a complex reductive group Ǧ with

Gal(k̄v/kv), and the homomorphism φv is assumed to be over Gal(k̄v/kv). Then
the local Euler factor Lv(πv, ρ, s) is defined as the Artin L-factor of the “Galois
representation” ρ ◦ φv.

4. Period integrals

Automorphic representations and their L-functions have long been studied with
the help of period integrals: Let H be a reductive spherical subgroup of G and let
P be the distribution: φ 7→

∫
H(k)\H(A) φ(h)dh on G(k)\G(A), where dh denotes

an invariant measure on H(k)\H(A). Let (π, ν) be an automorphic representation
as above. Composing ν with P (assuming that this composition makes sense)
we get an H(A)-invariant functional on π. It has been observed that very often
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the non-vanishing of this functional reveals some qualitative information about
the automorphic representation – namely, that it is a “functorial lift” from some
other group. Also, if it is non-zero then it often is equal to a special value of
an L-function, when evaluated on suitable vectors of π. The limited space of
this abstract makes it impossible to even try to give a taste of the wealth of
statements of this form which have been discovered. I only mention that a major
source of examples and method of proof of such statements is the relative trace
formula, devised by Jacquet and his collaborators. I also mention that the theory
of Rankin-Selberg integrals was reinterpreted in [4] using non-reductive spherical
subgroups.

5. Questions and results

The goal of this talk is to present some results and conjectures which attempt to
create a general picture about the “qualitative information” that a period integral
reveals and its relationship with L-functions. We start with some questions:

Question 1. Which representations π of G(A) admit a non-zero H(A)-invariant
functional?

This is essentially a local question, at least under the following result [5]:

Proposition 2 (Under additional assumptions). If HomHv
(πv, C) 6= 0 for every

v then HomH(A)(π, C) 6= 0.

Therefore, the question asks which representations πv of Gv admit an Hv-
invariant functional which, by Frobenius reciprocity, is equivalent to asking which
representations admit an embedding: πv →֒ C∞(Hv\Gv). Such representations
are called Hv-distinguished. Not surprisingly, the correct setting is obtained by
replacing Hv\Gv by Xv := X(kv) where X = H\G. For the simplest representa-
tions, namely “unramified” ones, i.e. those which have a vector invariant under a
“good” maximal compact subgroup Kv, a partial answer was given in [3], where
a necessary condition for distinguished unramified representations was given in
terms of their Langlands parameter, and also a formula for the dimension of the
space HomGv

(πv, C∞(Xv)) for a generic πv satisfying those conditions.
While this is the analog of the question “which are the irreducible representa-

tions of R in C∞(R)?”, a nicer answer presents itself when we ask the L2 question:
Decompose L2(Xv)Kv (we are assuming here a fixed invariant measure on Xv) as
a direct integral of spaces belonging to irreducible representations.

Theorem 3 (Under additional assumptions, [5]). The Hilbert space L2(Xv)Kv

admits an explicit direct integral decomposition over irreducible unramified repre-
sentations with X-distinguished Arthur parameters, and with Plancherel density
at the representation πv related to an explicit quotient of local L-values LX(πv).

Here, Arthur parameters are a variant of Langlands parameters, of the form:
SL2(C) × Lkv

→ LG. We say that an Arthur parameter is X-distinguished, if
the image of Lkv

(is bounded and) lies in a certain subgroup ǦX × Gal(k̄v/kv) of
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LG = Ǧ×Gal(k̄v/kv) (recall that our results are for G split) and its restriction to
SL2 is the principal SL2 of a distinguished Levi subgroup Ľ(X) ⊂ Ǧ. The subgroup
ǦX first appeared in the work of Gaitsgory and Nadler [1] in the context of the
geometric Langlands program.

Question 4. If (π, ν) is an automorphic representation and P ◦v is non-zero, can
it be expressed as an Euler product, and how?

In joint work with Akshay Venkatesh [6] we generalize a conjecture of Ichino
and Ikeda [2], which was generalizing a theorem of Waldspurger. Under some
multiplicity-one assumptions, the conjecture relates the functional P ◦ v to an
Euler product of local Hv-invariant functionals which appear in the Plancherel
formula for L2(Xv). Moreover, we conjecture that the support of Plancherel mea-
sure for L2(Xv) is contained in the set of representations with X-distinguished
Arthur parameters, and using a method of Joseph Bernstein we reduce the latter
conjecture to the discrete spectra of spherical varieties:

Theorem 5 (Under additional assumptions). There is a direct sum decomposition:
L2(X) = ⊕ΘL2(X)Θ, where Θ varies over all conjugacy classes of Levi subgroups
of ǦX and L2(X)Θ is explicitly described in terms of the discrete (modulo the
center) spectrum of a “relevant” spherical variety for a corresponding Levi subgroup
LΘ of G.
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Tits’ Center Conjecture

Katrin Tent

(joint work with Chris Parker)

Recall that the canonical example of a spherical building, ∆(G, k) for a reductive
k-isotropic algebraic group G(k),can be described as the simplicial complex

∆(G, k) = {P ⊆ G : P k-parabolic,⊇}.

Thus, vertices correspond to maximal parabolics and the incidence is given by
reverse inclusion. Tits’ Center Conjecture states that a convex subcomplex Ω
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of a spherical building ∆ either contains opposites or has a center. Considering
buildings as simplicial complexes we can state the conjecture more precisely as
follows: either every simplex of Ω has an opposite simplex in Ω, in this case Ω is
called completely reducible, or there is a simplex which is fixed under Aut(Ω).

In [3], it was shown that for Ω to be completely reducible it suffices to show
that every vertex of Ω has an opposite vertex in Ω and this result was used by
Mühlherr and Tits [2] to prove the center conjecture for non-exceptional buildings.

Assuming that Ω is a subcomplex of maximal dimension, we can generalize
Serre’s result using the following lemma of Tits [4], p. 54:

Lemma 1. Suppose s and s′ are opposite simplices of a spherical building ∆ and
t1, t2 are simplices in the residue of s. Let t′1 denote the projections of t1 onto s′.
Then t1 and t2 are opposite in the residue of s if and only if t2 and t′1 are opposite
in ∆.

Lemma 2. Let ∆ be an irreducible spherical building of type (W, I). Let Ω be a
convex subcomplex of ∆ of maximal dimension. If for some type of vertices every
element of Ω has an opposite, then Ω is completely reducible.

Proof. Suppose inductively that every simplex in Ω of type J ⊂ I has an opposite
in Ω. Let i be a neighbour of J in the Dynkin diagram.

Let C0 be a chamber, x0 ⊂ C0 a simplex of type J , and let l0 ∈ C0 be of type i.
We will construct an opposite for z = x0 ∪ {l0}.

Let xo
0 be an opposite of x0 (of type Jo). Put C′

0 = projxo

0
C0 and C1 = projl0C

′
0.

Let x1 ∈ C1 be of type J . So x1 6= x0 and y0 = projx1
x0 ⊇ x1 ∪ {l0} (by Tits

2.30.1 and 2.30.5). We will first find an opposite of the simplex y0.

Let y1 = projx1
xo

0, so y1 and y0 are opposite in the residue of x1. Let xo
1 be

opposite x1, By Tits’ lemma above, the projection y2 of y1 to xo
1 is opposite y0.

In order to find an opposite for the simplex z, notice that projl0x0 = z. Let
z1 = projl0x

o
0, so z1 and z are opposite in the residue of l0. The projection of z1

to the opposite of l0 in y2 now yields the required opposite of z.
The claim now follows as (long as) the Dynkin diagram is connected. �

As an immediate corollary we can show:

Corollary 3. The center conjecture holds for convex chamber subcomplexes of
irreducible spherical buildings of classical type.

Proof. For buildings of type An, Bn (or Cn) and Dn, consider the vertex type
corresponding to 1-dimensional subspaces (for An) and 1-dimensional isotropic
subspaces in the other cases. For simplicity we only consider the type preserving
case.

An: If such a vertex in Ω does not have an opposite in Ω, then it is contained
in all the hyperplanes of Ω. Thus the intersection of all hyperplanes of Ω is the
required center.
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Bn or Dn: A 1-dimensional isotropic subspace has no opposite if and only if it
is collinear with every other vertex of this type in Ω. Hence the set of all vertices in
Ω of this type having no opposite is contained in a totally isotropic subspace. �

Theorem 4. The center conjecture holds for buildings of type F4.

The proof uses the geometry of metasymplectic spaces as described by Cohen
[1]. The first lemma allows us to concentrate on points. Since the F4-geometry is
closely related to the geometries of E6, E7 and E8, we hope to finish the remaining
cases with similar arguments.
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Completely reducible sets in spherical buildings

Linus Kramer

In my lecture I explained the structure of completely reducible sets in spherical
buildings from a ’Riemannian’ viewpoint.

Let X be a (weak) spherical building, viewed as a simplicial complex [14]. Let
X̄ be a simplicial refinement of X , eg. X̄ = sdX is the barycentric subdivision.
We require that this subdivision in the apartments is invariant under the Coxeter
group and under the opposition involution. We tacitly identify the complex X̄
with its CAT(1) metric realization. A subcomplex A ⊆ X̄ is called convex if for
all points x, y ∈ A with d(x, y) < π, the geodesic segment [x, y] is also contained in
A. (This is the usual notion of convexity in CAT(1) spaces.) A convex subcomplex
A is called completely reducible if every vertex p ∈ A(0) has an opposite q ∈ A(0),
i.e. d(p, q) = π. The terminology is due to Serre [13] and motivated as follows:
a representation Γ → GLnF is completely reducible if and only if the fixed point
set X(GLnF )Γ of Γ in the spherical building X(GLnF ) is completely reducible.

If G is a reductive Lie group and K is a finite or compact subgroup, then the
fixed point set X(G)K is again completely reducible. This can be seen by looking
at the noncompact symmetric space Z of G: the group K has a fixed point z in Z
and so each fixed point ξ in the boundary ∂Z = X has an antipodal point which
is determined by the geodesic from z to ξ, extended in the opposite direction.

It is clear that the fixed point set of any group acting on a spherical building
X is convex. This is one of the main motivations for studying such subsets. If the
group action is not type preserving, then the fixed point set will in general not be a
subcomplex of X , but rather of the barycentric subdivision X̄ = sdX . This is the
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main reason why we allow subtriangulations. One could also consider arbitrary
closed convex subsets of X as in [2, 3]. Then most of the results presented here
remain true, but one has to replace some combinatorial arguments by ultralimit
constructions. The following observations can be found in [2, 3] and [13]. By a
round sphere we mean a metric sphere of perimeter 2π.

Lemma 1. Suppose that A is completely reducible and that p ∈ A(0). Then
lk(p) ∩ A is completely reducible in lk(p).

Proposition 2. Let A be convex and of dimension m. Then the following are
equivalent.

(1) A is completely reducible.
(2) A is not contractible.
(3) A contains a round m-sphere.
(4) A contains a pair of antipodal vertices p, q and lk(p) ∩ A is completely

reducible in lk(p).

It is also easy to see that a convex subcomplex A ⊆ X̄ is always a pure chamber
complex. Following [13] we call a round dimA-sphere in A a Levi sphere. One
observes that in the completely reducible case, A contains many Levi spheres. In
fact, we have the following.

Lemma 3. Suppose that A is completely reducible. The any two simplices a, b ∈ A
are contained in some Levi sphere.

A simplex b ∈ A of codimension 1 in A is called singular if it is contained in
three maximal simplices in A. One shows that the set of singular simplices in
a fixed Levi sphere S is invariant under the opposition involution and under the
subgroup W (S) ⊆ Isom(S) generated by the reflections along singular simplices.
The group W (S) is a finite reflection group (and therefore a Coxeter group). The
Levi sphere S splits naturally as a metric join S = Sk ∗Σ(W (S)), where Σ(W (S))
is the Coxeter complex of W (S). Furthermore, the singular structure in S can be
transported from one Levi sphere to another along ’galleries’ in A. This leads to
the following structure result for completely reducible sets.

Theorem 4. Let A be completely reducible in a thick spherical building X. Then
there is a unique thick building Y such that A is isometric to a spherical join
Sk ∗ Y .

Note that this result says something even for A = X : every weak spherical
building is the join of a sphere and a unique thick spherical building [12], [5]. The
theorem above can also be easily deduced from the results in [6], but the proof we
indicated is more direct.

We noted before that a convex set A which is not completely reducible is con-
tractible.

Conjecture 5 (Center Conjecture). If A is convex and contractible, then Aut(A)
or Aut(X̄, A) has a fixed point in A.
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This conjecture, which was the topic of several lectures of this conference, is
known to hold in the following cases:

a) X̄ = X is a building of classical type [9] or of type F4 [10].
b) dimA ≤ 2 [2, 3].
c) A is contained in a ball of radius r ≤ π/2 [11], [2, 3]. (For r < π/2 this is

the Bruhat-Tits fixed point theorem [4], the case r = π/2 is proved in [2, 3] using
ultralimits.)

d) X̄ is a thin building [15].
e) A contains a round sphere of codimension 1 [2, 3].
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Cofinite universal spaces for proper actions of arithmetic groups and
mapping class groups

Lizhen Ji

This talk explains some constructions of natural cofinite universal spaces for proper
actions of arithmetic groups Γ and mapping class groups Modg,n, connections with
the spherical Tits buildings of algebraic groups and its analogue, the curve complex
of surfaces, and some applications.

1. Definitions and preliminaries

Given a discrete group Γ, a Γ-space EΓ is called a universal space for proper
actions of Γ if

(1) Γ acts properly on EΓ, in particular, for every point x ∈ EΓ, its stabilizer
Γx is finite,

(2) for every finite subgroup F ⊂ Γ, the fixed-point set (EΓ)F is nonempty
and contractible.

If the quotient Γ\EΓ is a finite CW-complex, then it is called a cofinite universal
space.

If Γ is torsion-free, then EΓ is equal to the universal space for proper and
fixed point free actions of Γ, which is denoted by EΓ, and the quotient Γ\EΓ is a
classifying space BΓ, i.e., a K(Γ, 1)-space.

One difference between the spaces EΓ and EΓ is that any group Γ containing
nontrivial torsion elements does not admit finite dimensional EΓ, but many im-
portant examples of such groups do admit finite dimensional EΓ (for example, as
the results of this talk show). It is perhaps important to point out that many
natural groups such as the basic arithmetic group SL(n, Z) and the mapping class
groups Modg,n of a surface Sg,n of genus g with n-punctures contain nontrivial
torsion elements.

An important and natural problem is to determine when a group Γ admits a
cofinite universal EΓ space and find explicit models, for example, in studying the
Baum-Connes conjecture and the Farrell-Jones conjecture (see the survey paper
[Lu] for detailed discussion and references). Other important applications concern
cohomological properties of Γ, as the following result shows (see [IJ]).

Proposition 1. (1) If EΓ is assumed to be cofinite, then Γ contains only
finitely many conjugacy classes of finite subgroups.

(2) Assume that Γ admits torsion-free subgroups of finite index. If dimEΓ <
+∞, then the virtual cohomological dimension vcd (Γ) of Γ is bounded by
vcd (Γ) ≤ dimEΓ.

(3) If EΓ is further assumed to be a manifold with corners such that its bound-
ary ∂EΓ is homotopic to a bouquet of spheres ∨Sr−1, then Γ is a virtual
duality group of dimension equal to dimEΓ−r; furthermore, Γ is a virtual
Poincaré duality group if and only if the bouquet ∨Sr−1 contains exactly
one sphere Sr−1.
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2. Arithmetic groups

Let G be a semisimple linear algebraic group defined over Q, G = G(R) be
the real locus, which is a real semisimple Lie group of finitely many connected
components, and Γ ⊂ G(Q) be an arithmetic subgroup. Let K ⊂ G be a maximal
compact subgroup. Then X = G/K with an invariant metric is a symmetric space
of noncompact type, and Γ acts isometrically and properly on X .

Since X is simply connected and nonpositively curved, the Cartan fixed point
theorem implies that X is a EΓ-space. It is known that the quotient Γ\X is
compact if and only if the Q-rank of G, denoted by rQ, is equal to 0, which is in
turn equivalent to that G does not contain any proper Q-parabolic subgroup.

If Γ\X is compact, then the existence of equivariant triangulation of X implies
that X is a cofinite EΓ space. On the other hand, if Γ\X is non-compact, then it
is not a cofinite space.

Assume from now on that rQ > 0. There are two ways to overcome the non-
compactness problem of Γ\X . The first method is to construct a suitable com-

pactification. In [BS], Borel and Serre constructed a partial compactification X
BS

satisfying the following properties and hence obtained desired cohomological prop-
erties of Γ:

(1) X
BS

is a real analytic manifold with corners whose interior is equal to X ,

(2) the boundary components of X
BS

are contractible and parametrized by
the spherical Tits building ∆Q(G), and hence the Solomon-Tits Theorem

on ∆Q(G) implies that the boundary ∂X
BS

is homotopic to a bouquet of
infinitely many spheres SrQ−1,

(3) the Γ-action on X extends to a real analytic, proper action on X
BS

,

(4) for any torsion-free arithmetic group Γ, the quotient Γ\X
BS

is a compact
manifold with corners,

(5) and consequently, Γ is a virtual duality group of dimension equal to
dimX − rQ, but is not a virtual Poincaré duality group.

It is natural to expect that for an arithmetic group contain torsion elements,

X
BS

is a cofinite universal space (see [Lu]). This is indeed true and was proved
in [Ji].

Another natural method is to construct a compact deformation retract of Γ\X
which is a finite CW-complex, for example, a submanifold with corners. Such
compact deformation retracts have been constructed by the joint efforts of many
people. See [Sa] for precise statements and references. Briefly, a truncated sub-
space XT is obtained from X by removing a Γ-equivariant family of horoballs,
where T is a suitable truncation parameter and is determined by the heights of
the horoballs of associated with some fixed representatives of the finitely many
Γ-conjugacy classes of maximal Q-parabolic subgroups of G.

In summary, we have obtained explicit models of cofinite EΓ-spaces.
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Proposition 2. For a non-uniform arithmetic subgroup Γ as above, both the

Borel-Serre partial compactification X
BS

and the truncated subspaces XT of the
symmetric space X of noncompact type are cofinite EΓ-spaces.

3. Mapping class groups

Let Sg,n be an orientable surface of genus g with n punctures. Let Mg,n be the
moduli space of complex structures on Sg,n. It is a quasi-projective variety, and
is one of the most important spaces in algebraic geometry.

Let Tg,n be the Teichmüller space of marked complex structures on Sg,n, where
a marking on a Riemann surface Σg,n is a homotopy equivalence class [ϕ] of a
diffeomorphism ϕ : Sg,n → Σg,n. It is known that Tg,n is a contractible complex
manifold of complex dimension 3g−3+n, which can also be realized as a bounded
contractible domain in C3g−3+n.

Let Modg,n = Diff+(Sg,n)/Diff0(Sg,n) be the mapping class group of Sg,n. Then
Modg,n acts holomorphically and properly on Tg,n, and the quotient Modg,n\Tg,n

is equal to Mg,n.
The pair (Tg,n, Modg,n) is similar to the pair (X, Γ) studied in the previous

section, and many striking results have been obtained which are motivated by this
similarity (see [Iv] and [Ha]).

Using either the Teichmüller metric or the Weil-Petersson metric of Tg,n, we
can show that Tg,n is a universal space EModg,n (see [JW]).

Assume that 2g − 2 + n > 0 from now on. Then each Riemann surface Σg,n

admits a unique complete hyperbolic metric of finite area, and hence Tg,n is the
moduli space of marked hyperbolic complete metrics on Sg,n of finite area.

The reason why the moduli space Mg,n is noncompact is that we can pinch
the length of a simple closed geodesic on Σg,n to 0 and hence obtain sequences of
points of Mg,n which do not admit any accumulation point.

Since the quotient Modg,n\Tg,n is noncompact, it is a natural problem to con-
struct an analogue of Borel-Serre compactification and to prove that Modg,n\Tg,n

admits compact deformation retracts. It turns out that it is more difficult to
construct compactifications (see [Iv]).

For a small and positive ε, define a truncated Teichmüller space Tg,n(ε) by
Tg,n(ε) = {(Σg,n, [ϕ]) ∈ Tg,n}, where Σg,n does admit a closed geodesic of length
less than ε.

Clearly that Tg,n(ε) is stable under the action of Modg,n. It is also known
that it is a real analytic manifold with corners and the quotient Modg,n\Tg,n(ε)
is compact. This is an analogue of the truncated subspace XT of the symmetric
space X in the previous section.

In [JW], the following result was proved.

Theorem 3. When ε > 0 is sufficiently small, there exists a Modg,n-equivariant
deformation retract of Tg,n to Tg,n(ε). In particular, Tg,n(ε) is a cofinite universal
EModg,n-space.
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This result was claimed in [Ha, §3]. For torsion-free subgroups Γg,n of Modg,n,
the existence Γg,n-equivariant retraction of Tg,n to Tg,n(ε) was proved in [Iv].

The boundary components of Tg,n(ε) are described by truncated Teichmüller
spaces of lower genus. By induction and combining results of [Ha] and [IJ], we can
prove the following.

Corollary 4. The boundary components of Tg,n(ε) are parametrized by simplices
of the curve complex C(Sg,n) and the boundary ∂Tg,n(ε) is homotopic to a bouquet
of infinitely many spheres. Consequently, Modg,n is a virtual duality group, but
not a virtual Poincaré duality group.

It is known that the curve complex C(Sg,n) is an analogue of the Tits building
∆Q(G) and has played a fundamental role in the study of Modg,n (see [Iv]).

The Novikov conjectures have played an important role in geometric topology
(see [Lu]). Another corollary of Theorem 3 is the following.

Corollary 5. The rational Novikov conjecture in algebraic K-theory holds for
Modg,n.
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From Phan’s theorems to Phan theory

Sergey Shpectorov

In 1977 Phan published the following theorem. Suppose Γ is a simply laced
Dynkin diagram, that is, Γ = An, Dn, or En. A group G is said to a be a
group of type Γ if for some prime power q the group G is generated by subgroups
Li

∼= SU(2, q2) with a distinguished torus Hi of size q + 1, so that the following
conditions hold:

(1) [Li, Lj] = 1 if the vertices i and j are non-adjacent in Γ;
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(2) 〈Li, Lj〉 ∼= SU(3, q2) and furthermore 〈Li, Hj〉 ∼= GU(2, q2), if i and j are
adjacent in Γ;

(3) 〈Hi, Hj〉 = Hi × Hj for all i 6= j.

Theorem 1. Let G be a group of type An for some q > 4. Then G is isomorphic
to a homomorphic image of SU(n + 1, q2)

The second part of condition 2 and the entire condition 3 are only needed to
ensure that Li and Lj, as subgroups of 〈Li, Lj〉 ∼= SU(3, q2), correspond to the
two-by-two blocks along the main diagonal.

The above was proven in [12]. In the second part, [13], Phan established similar
results for the diagrams Dn and En, although in these cases he had to restrict
himself to the case of odd q > 3. The above results found an immediate application
in a pivotal paper of Aschbacher on Chevalley groups in odd characteristic, [1, 2],
and thus became important for the overall classification of finite simple groups.
The proof of Phan depends on rather delicate computations with matrices, which
were largely omitted in the published text. With the revision of the classification
under way, a similar revision of Phan’s results aimed at a more conceptual proof
was needed.

It was noticed early on that Phan’s theorems are very similar to the corre-
sponding cases of Curtis-Tits theorem. For example, if in the above theorem we
substitute SU(k, q2)’s with SL(k, q)’s (and take the tori Hi of size q − 1 instead of
q+1) then the result is just the Curtis-Tits theorem for the diagram An. In his un-
published notes Aschbacher proposed the idea of a joint treatment of Curtis-Tits
and Phan’s theorems. He furthermore tied Phan’s Theorem 1 with the geome-
try of nonsingular subspaces in the n + 1-dimensional unitary space. A complete
treatment of Phan’s theorem for An was achived by Bennett and the author in
[5], where indeed it was deduced via Tits’ Lemma from the simple connectedness
of the above geometry. A large part of this paper was devoted to the amalgam
uniqueness, which was entirely missing in Phan’s paper.

With Gramlich and Hoffman joining the discussion of these results, the approach
of [5] was gradually generalized to more and more cases, going well beyond the
initial results of Phan. We will now proceed to describe the most general setup,
see [4].

Let B = (B+, B−, δ∗) be a twin building. The opposites geometry Op(B) of B
is the geometry corresponding to the chamber system on all pairs (c, c′), where
c ∈ B+, c′ ∈ B−, and δ∗(c, c

′) = 1. In the spherical case, every building becomes
in a canonical way part of a twin building. The Curtis-Tits theorem for this
diagram is then equivalent to the simple connectedness of the opposites geometry
Op(B). The same idea works for arbitrary twin buildings. Thus, the result of
Mühlherr in [11], establishing the simple connectedness of Op(B) for arbitrary 2-
spherical diagrams (avoiding some small residues), yields a broad generalization
of the Curtis-Tits theorem to arbitrary diagrams and fields.

Suppose now that B admits an involution σ such that σ interchanges B+ and
B−, while preserving distances and codistance, that is, δǫ(c, c

′) = δ−ǫ(c
σ, c′σ) for

all c, c′ ∈ Bǫ, ǫ ∈ {+,−}, and δ∗(c, c
′) = δ∗(c

σ, c′σ) for all c ∈ B+ and c′ ∈ B−. The
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involution σ acts on Op(B) via (c, c′)σ := (c′σ, cσ). We call σ a flip if δ∗(c, c
σ) = 1

for some c ∈ B+, that is, if it takes some chamber to an opposite chamber. This
condition guarantees that the Phan geometry Op(B)σ, associated with B and σ, is
nonempty. Here Op(B)σ denotes the set of elements of Op(B) fixed by σ.

When the flip σ is good, the corresponding Phan geometry is flag-transitive for
the centralizer Gσ of σ in G = Aut(B). If furthermore Op(B)σ is simply connected,
Tits’ Lemma yields a presentation for the group Gσ. For example, for the diagram
An over the finite field GF(q2) we can take σ to be the unitary involution (the
contragredient automorphism times the field automorphism of order two), in which
case the Phan geometry is exactly the geometry of the nonsingular subspaces of the
unitary space and the resulting presentation of Gσ = SU(n+1, q2) is equivalent via
a brief reduction, as in [5], to the presentation from Phan’s Theorem 1. Similarly,
his results from [13] correspond to a particular choice of flip for the twin buildings of
type Dn and En. Thus, the twin buildings and flips provide a broad generalization
of Phan’s theorems and a direct connection between Curtis-Tits Theorem and
Phan’s theorems.

Particular cases of these construction for diagrams Bn, Cn, and Dn were con-
sidered in a sequence of papers [3, 8, 9, 10]. In these papers the properties of the
Phan geometry were studied on a case-by-case basis using a particular representa-
tion of the geometry via the natural module of the corresponding classical group.
This approach would have been difficult or impossible for the exceptional spherical
diagrams, and even more so for the non-spherical diagrams. Fortunately, Devillers
and Mühlherr in [7] came up with an inductive (in terms of rank) approach which
allows to prove simple connectedness of the Phan geometry for 3-spherical dia-
grams and sufficiently large fields, based on a more detailed information on the
cases of rank two and three. These low rank cases can be dealt with using the
classical group approach.

To conclude this brief survey, the following open problem seems to be very
interesting.

Question 2. In the nonspherical case, what are the groups Gσ that act on Phan
geometries? Are they simple groups for good flips σ?

In the spherical case, the group Gσ itself acts on a building, and so it can be
easily identified with a suitable Chevalley group (for a finite field). For hyperbolic
diagrams there is no such action and so Gσ may be new and interesting groups.
Note also the recent result of Caprace and Remi [6] concerning the simplicity of
the Kac–Moody groups G = Aut(B).
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Satake-Furstenberg compactifications of Bruhat-Tits buildings, via
Berkovich techniques

Bertrand Rémy

(joint work with Amaury Thuillier, Annette Werner)

This is a short report on a joint work with A. Thuillier and A. Werner [1]. The
general subject matter is a combination of the Bruhat-Tits theory of semisim-
ple groups over valued fields and of the Berkovich theory of analytic spaces over
complete fields of the same kind.

More precisely, the talk was intended to be a down-to-earth motivated intro-
duction to a compactification procedure which provides all the analogues, in a
non-archimedean context, of the compactifications of symmetric spaces due to H.
Furstenberg and I. Satake in the case of real Lie groups [2], [3].

Let k be a locally compact non-archimedean valued field and let G be a reductive
linear algebraic group over k. We denote by B(G, k) the Bruhat-Tits building of
G over k [4], [5].

Euclidean buildings and group-theoretic compactification

One of the main arguments why B(G, k) is seen as a non-archimedean sym-
metric space is that it carries a non-positively curved complete metric, such that
the natural G(k)-action on B(G, k) is by isometries. Moreover the Bruhat-Tits
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fixed-point lemma implies the existence of a G(k)-equivariant dictionary between
vertices in B(G, k) – which is a polysimplicial complex – and maximal compact
subgroups in G(k). The map from the set of vertices VB(G,k) of B(G, k) to the
set of maximal compact subgroups in G(k) is v 7→ StabG(k)(v), the inverse being

the fixed-point set map K 7→ B(G, k)K .

In a previous work with Y. Guivarc’h [6], the first map is used together with the
well-known fact that for any locally compact group H , such as G(k), the space ΣH

of all closed subgroups in H has a natural compact topology [7, VIII.5], sometimes
referred to as the Chabauty topology.

Theorem 1. The map VB(G,k) → ΣG(k), attaching to each vertex v its stabi-
lizer StabG(k)(v) in G(k), defines a natural G(k)-equivariant compactification of
VB(G,k): this compactification is simply the closure of the image of the map.

The so-obtained compactification, denoted by V
gp

B(G,k), is called the group-

theoretic compactification of B(G, k) not only because the techniques used are
relevant to topological group theory, but also because it allows one to formu-
late some extensions of the above dictionary {vertices} ↔ {maximal compact

subgroups}. Indeed, by taking stabilizers in G(k) of points in V
gp

B(G,k), one ob-

tains, up to finite index, a G(k)-equivariant dictionary between maximal (Zariski-

connected) amenable subgroups of G(k) and V
gp

B(G,k). But one problem is that,
strictly speaking, the group-theoretic compactification doesn’t take into account
the full building B(G, k). Moreover, in the analogy with Satake compactifications,
it only corresponds to the maximal one.

Analytic geometry and fillings of the compactifications

Berkovich geometry, as presented in [8], is a version of analytic geometry over
complete non-archimedean valued fields, in which the spaces have nice local con-
nectivity properties. Roughly speaking, in algebraic geometry on uses as building
blocks (algebraic) spectra Spec(A) consisting of prime ideals of commutative rings
A endowed with the Zariski topology, while in Berkovich geometry one uses (an-
alytic) spectra M (A) of Banach k-algebras, consisting of multiplicative bounded
seminorms A → R+.

To each variety V over k is attached a Berkovich analytic space over k, which
is denoted by V an. The attachment V 7→ V an is functorial and moreover satisfies:

(i) if V is affine with coordinate ring k[V ], then V an consists of all the mul-
tiplicative seminorms k[V ] → R+ extending the absolute value of k;

(ii) if V is projective, then V an is compact.

One further feature is the possibility to work with any complete extension K of
k; at the geometric level of the buildings, this corresponds to the fact each point
in the building B(G, k) can be seen as a special point in the (usually much) bigger
building B(G, K) of G(K) (the latter group acting on B(G, K) usually ”more
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transitively”). Together with some faithfully flat descent argument (also available
in this context), one obtains the possibility to attach to each point x of B(G, k)
a Berkovich analytic subgroup Gx, and the assignment x 7→ Gx is injective (in
particular it takes distinct values for any two distinct points, even in the same
facet). More precisely:

Theorem 2. (i) For any x ∈ B(G, k), there is an analytic subgroup Gx of
Gan defined over k such that for any non-archimedean extension K/k, we
have: Gx(K) = StabG(K)(x).

(ii) For any x ∈ B(G, k), there is a unique point ϑ(x) ∈ Gan such that:
Gx = {g ∈ Gan : |f(g) | ≤ |f(ϑ(x)) | for any f ∈ k[G]}.

(iii) The so-obtained map x 7→ ϑ(x) is a G(k)-equivariant embedding of B(G, k)
into Gan with closed image.

In order to define a compactification of B(G, k), it remains to compose ϑ with
the analytification of the quotient map G → G/P , where P is a parabolic k-
subgroup of G. When P varies over all the (conjugacy classes of) parabolic k-
subgroups of G, one obtains all the expected analogues of the Furstenberg com-
pactifications. In [1], we also describe the boundary structure of these compacti-
fications and prove some extensions of decompositions from Bruhat-Tits theory.

We note that this family of compactifications had already been obtained by
A. Werner by means of a gluing procedure [9]: one compactifies first the model
of an apartment by means of suitable root-theoretic considerations, and then one
extends the equivalence (gluing) relation used in the construction of Bruhat-Tits
buildings, by replacing the apartments by their compactifications.

We finally note that the idea to combine Bruhat-Tits theory and Berkovich
geometry in order to realize buildings and to compactify them, already appears
in V. G. Berkovich’s book [8, §5], in the case when the algebraic group G is split
over k.
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Kac–Moody groups over ultrametric fields

Guy Rousseau

The Kac–Moody groups studied here are the minimal (=algebraic) and split
ones, as introduced by J. Tits in [8]. When they are defined over an ultrametric
field, it seems natural to associate to them some analogues of the Bruhat-Tits
buildings.

Actually I came to this problem when I was trying to build new buildings of non-
discrete type. If G is a Kac–Moody group over an ultrametric field K, I was able to
build a microaffine building Iµ on which G(K) acts [5]. This building is an union of
apartments in one to one correspondence with the maximal split tori and the usual
axioms of buildings are satisfied, among them the fundamental axiom: any two
points are in a same apartment. It is closely related to the Satake (or polyhedral)
compactification of the Bruhat-Tits building of a semi-simple group over K. One
knows that this compactification is the disjoint union of the Bruhat-Tits buildings
of the semi-simple quotients of all parabolic subgroups of this semi-simple group.
For a Kac–Moody group the same definition gives the microaffine building, but
now the parabolic subgroups give something in Iµ only when they are of finite
type, so G itself gives nothing. We just have to define the apartments and prove
the usual axioms of buildings, see [5].

Unfortunately Iµ seems to give only a few informations about the structure of
G(K). Moreover P. Littelmann asked me whether it could be used to generalize
his results with S. Gaussent in the semi-simple case [2]: they proved in particular
that a LS-path may be seen (in an apartment of a Bruhat-Tits building over the
field of Laurent series C((t)) ) as an image of a segment of the building under
some fixed retraction (with center a sector-germ), satisfying also some numerical
condition. It was soon clear that, in the Kac–Moody case, Iµ is not suitable. One
has to mimic more closely the Bruhat-Tits construction. The normalizer of the
standard maximal split torus in G(K) acts on the corresponding apartment A by
a group of affine transformations, generated by reflections on walls. But there is a
lot of walls (infinitely many directions), moreover in the loop group situation, H.
Garland in [1] had proved that there is no Cartan decomposition, so the expected
building would not satisfy the fundamental axiom of buildings: it seemed at first
too ugly.

Nevertheless it is possible to build this close analogue to Bruhat-Tits buildings
for some split Kac–Moody groups (joint work with Stéphane Gaussent):

Theorem 1 ([3]). Suppose that K = C((t)) (or more generally that C is in the
residue field of K) and moreover that G is symmetrizable. Then there exists a set
I, with an action of G(K), containing a subset identified with A. The stabilizer of
A is the normalizer of the standard maximal split torus and the induced action on
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A is as described above. The set I is covered by the apartments i.e. the conjugates
of A by elements of G(K).

The unfortunate restriction on K is due to heavy technical complications; more
general cases should be proved in the near future.

The space I doesn’t satisfy the fundamental axiom of buildings, so this ugly I
is called a hovel. But Iwasawa decomposition is still verified in the Kac–Moody
group acting on I, so any point and any sector-germ in I are always in a same
apartment. This enables us to define a retraction ρ of I onto an apartment with
center a sector-germ in this apartment. With this retraction it is possible to
prove, for Kac–Moody groups, the above quoted result of S. Gaussent and P.
Littelmann about LS-paths and to associate to such a path a quasi-affine toric
variety (complex and finite dimensional) which is a reasonable generalization of
the Mirkovic-Vilonen cycles, see [3].

Actually this hovel is not so ugly: we proved in [3] that there is on I a preorder
relation which induces on each apartment the preorder given by the Tits cone.
Moreover the sets of increasing (resp. decreasing) segment-germs of origin x ∈ I
are twin buildings: the residue of I in x.

There is also an abstract definition of affine hovels in the spirit of the abstract
definition of affine buildings given by J. Tits in [7]: to be short the fundamental
axiom is now that any point and any sector-germ or any two sector-germs have
to be in a same apartment. This abstract definition is satisfied by the hovels
constructed for Kac–Moody groups and there are interesting consequences. These
affine hovels look like affine buildings, but the spherical buildings associated to
affine buildings are replaced by twin buildings. More precisely we recover at infinity
some buildings: the parallel classes of sector-faces are the faces of a twin building
and the germs of these sector-faces are the points of two microaffine buildings. In
the case of the hovel associated to a Kac–Moody group G, these buildings are the,
now well known, twin building of G(K) [4] and two microaffine buildings as in [5],
one for each of the two possible choices (positive or negative) of the Tits cone in
an apartment. The preorder relation and the structure of the residues are also
consequences of this abstract definition. See [6].
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Invariant Theory of Periodic Automorphisms of Semisimple Lie
Algebras

Paul Levy

1. Classical Lie invariant theory

Let G be a reductive algebraic group over the algebraically closed field k and let
g be the Lie algebra of G. Classical results of invariant theory relate the geometry
of the adjoint representation to familiar algebraic properties of g. To put the later
sections into context, we give here an outline of some of these results.

First we recall Mumford’s categorical quotient. If H is an algebraic group
whose connected component is reductive, and V is an affine variety on which H
acts via a morphism H ×V → V , then H also acts on k[V ]. The ring of invariants
k[V ]H is finitely generated and hence is the coordinate ring of an affine variety
V //H = Speck[V ]H , the categorical quotient. The embedding k[V ]H →֒ k[V ]
induces a morphism π : V → V //H called the quotient morphism; each fibre of π
contains a unique closed orbit, and therefore π induces a bijection between closed
H-orbits in V and points of V //H .

Let T be a maximal torus of G, let t = Lie(T ) be the corresponding Cartan
subalgebra of g and let W = NG(T )/T be the Weyl group of G with respect to T .
Then:

• x ∈ g is semisimple if and only if it is conjugate to an element of t,
• the orbit AdG(x) is closed if and only if x is semisimple,
• x ∈ g is G-unstable (that is, 0 is in the closure of the G-orbit through x)

if and only if it is nilpotent,
• restriction to t induces an isomorphism k[g]G → k[t]W (and hence an

isomorphism t/W → g//G),
• k[t]W is a polynomial ring, that is, there exist r = dim t algebraically inde-

pendent homogeneous polynomials f1, . . . , fr such that k[t]W=k[f1, . . . , fr],
• let {h, e, f} ⊂ g be an sl(2)-triple such that e is a regular nilpotent element

of g and let v = e + zg(f), where zg(f) denotes the centralizer of f in g.
Then the composition of the embedding v →֒ g with the quotient morphism
gives an isomorphism v → g//G.

If H is a reductive group acting linearly on a vector space V , then a linear
subvariety v ⊂ V which maps isomorphically onto V //H is called a Weierstrass
slice or a Weierstrass section.
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2. Symmetric Spaces

A well-known generalization of the above results is the case of a symmetric
space. Thus suppose that char(k) 6= 2 and that θ : G → G is a (rational) involutive
automorphism of G. Then there is a direct sum decomposition g = k ⊕ p, where k

is the (+1) eigenspace, and p the (−1) eigenspace for dθ. In the seminal work of
Kostant and Rallis [1] it was established that the action of K on p shares many
similar invariant-theoretic features with the adjoint representation. The role of
Cartan subalgebra is here played by a Cartan subspace: a ⊂ p is a Cartan subspace
if it is a maximal commutative subspace consisting of semisimple elements.

• x ∈ p is semisimple if and only if it is contained in a Cartan subspace,
• any two Cartan subspaces of p are K-conjugate,
• AdK(x) is closed if and only if x is semisimple,
• x ∈ p is K-unstable if and only if it is nilpotent,
• Let a be a Cartan subspace of p. Then the “baby Weyl group” Wa =

NK(a)/ZK(a) is a Weyl group and restriction to a induces an isomorphism
k[p]K → k[a]Wa . Moreover, k[a]Wa is a polynomial ring.

• let {h, e, f} ⊂ g be an sl(2)-triple such that h ∈ k, e, f ∈ p and e is a ‘θ-
regular’ element of p, that is dim zg(e) ≤ dimzg(x) for every x ∈ p. Then
v = e + zp(f) is a Weierstrass slice for the action of K on p.

The above results for k = C appeared in [1]. In positive characteristic they were
established by the author in [2], although some of these results could be deduced
relatively easily from the work of Richardson [6].

3. Vinberg’s θ-groups

By work of Vinberg, the above set-up extends to the much more general case
of an arbitrary semisimple (rational) automorphism of G of finite order. Thus let
θ : G → G be a semisimple automorphism of order m (that is, such that m is not
divisible by p if char(k) = p > 0) and let ζ be a fixed primitive m-th root of unity
in k. Then there is a direct sum decompositiion

g = g(0) ⊕ . . . ⊕ g(m − 1)

where g(i) = {x ∈ g | dθ(x) = ζx}. Moreover, if G(0) is the connected component
of Gθ then G(0) is reductive, Lie(G(0)) = g(0) and G(0) normalizes each g(i). In
[7], Vinberg generalized (for k = C) that broad outline of Kostant-Rallis’s results
to the action of G(0) on g(1). Extending the m = 2 case, we define a Cartan
subspace to be a maximal commutative subspace of g(1) consisting of semisimple
elements. Then we have:

• if x ∈ g(1) then AdG(0)(x) is closed if and only if x is semisimple,
• x is G(0)-unstable if and only if x is nilpotent,
• any semisimple element of g(1) is contained in a Cartan subspace, and any

two Cartan subspaces are G(0)-conjugate,
• let c be a Cartan subspace and let Wc = NG(0)(c)/ZG(0)(c). Then the

embedding c →֒ g(1) induces an isomorphism c/Wc → g(1)//G(0),
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• The group Wc is generated by complex reflections and therefore k[g(1)]G(0)

is a polynomial ring.

The major difference with the involution case is that Wc is no longer neces-
sarily a Weyl group, but is generated by complex, or pseudo-reflections. The
Shephard-Todd theorem states (in characteristic zero) that the ring of invariants
for a complex reflection group is a polynomial ring. In general the Shephard-Todd
theorem fails when the order of the group is divisible by the characteristic of the
ground field.

The main aim of our research was to generalize Vinberg’s results to positive
characteristic. The biggest problem concerns the description of Wc and the failure
of the Shephard-Todd theorem in dividing characteristic. In [7], Vinberg described
Wc in all classical cases and used an induction argument to show that Wc is a
complex reflection group in the remaining types. In [3] we also described Wc

in the classical cases, although by a different approach which relates Wc to the
centralizer of an element in the Weyl group. This approach also showed that if
G is of exceptional type and m > 2, then Wc has order coprime to p. We then
applied a theorem of Panyushev on Chevalley-type isomorphisms to extend the
results of [7] to positive characteristic.

4. KW-sections

The existence of a Weierstrass slice for the action of G(0) on g(1) was conjec-
tured (for k = C) by Popov in 1976. Because of the similarity with Kostant’s
slice in g, a Weierstrass slice in g(1) is sometimes called a Kostant-Weierstrass
slice, or KW-section. The existence of KW-sections for θ-groups was proved by
Panyushev in two cases: that G(0) is semisimple [4]; and in the ‘N-regular’ case
(when g(1) contains a regular nilpotent element of g) [5]. A major benefit of our
approach to describing the little Weyl group is that it provides a way to construct
a ‘minimal’ θ-stable subgroup L of G such that c ⊂ Lie(L) and each element of Wc

has a representative in Lθ. When G is classical, it can then be checked that the
restriction of θ to L is N-regular. Generalizing Panyushev’s theorem to positive
characteristic, we therefore show (for char(k) 6= 2) [3]:

Theorem 1. Let G be one of GL(n, k), SL(n, k), Sp(n, k), SO(n, k). Then there is
a KW-section for the action of G(0) on g(1).

A detailed case-by-case analysis shows that this result extends to the case where
G is of type F4, G2 or D4 (including the triality automorphisms which do not exist
for SO(8)). It seems likely that it will be possible to solve the conjecture in the
remaining cases via a similar approach.
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Decomposing locally compact groups into simple pieces

Pierre-Emmanuel Caprace

(joint work with Nicolas Monod)

Any finite group may be decomposed along a subnormal series with every sub-
quotient simple. This basic observation lies at the basis of finite group theory
and provides the first obvious motivation for a comprehensive study of the finite
simple groups. A similar picture depicts the category of connected locally compact
groups. Indeed, as a consequence of the solution to Hilbert’s fifth problem, any
connected locally compact group G admits a finite subnormal series

1 = G0 ⊳ G1 ⊳ · · · ⊳ Gn−1 ⊳ Gn,

where every subquotient Gi/Gi−1 is either compact, or isomorphic to R or Z, or
isomorphic to a connected non-compact simple Lie group with trivial centre. A
spectacular feature in the finite and the connected case is that the simple groups
that appear are classified, and virtually all of them are (forms of) algebraic groups.
One may wonder whether this feature extends to a more general class of groups.
A moment’s thought shows that this is very doubtful since it is not even clear a
priori why simple groups should play any role at all. A clear illustration of this
fact is provided by residually finite groups, and even more strikingly by residually
finite groups all of whose proper quotients are compact. Two well-known examples
of such groups are SL(n, Z) with n ≥ 3 and the Grigorchuk group.

The results reported here are established in [CM] and provide some evidence
that simple groups indeed play a role in the structure theory of locally compact
groups beyond the almost connected case. The groups we shall consider will satisfy
various subsets of the following set of conditions on a locally compact group G:

(a) G has no infinite discrete quotient1.
(b) G is compactly generated.
(c) G is (topologically) Noetherian, i.e. G satisfies an ascending chain

condition on open subgroups.

1Here and in what follows, it is understood that the terminology qualifying the structure of a
group G has to be interpreted in the category of locally compact groups. In particular, quotients
are meant to be continuous; normal subgroups are meant to be closed, etc.
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Conditions (a), (b) and (c) are logically independent, except for the fact that
(c) implies (b). More generally, one has the following.

Lemma 1. Let G be a Noetherian locally compact group. Then every closed
normal subgroup of G is compactly generated.

All finite and connected locally compact groups satisfy (a), (b) and (c). The
following characterises the groups admitting a decomposition similar to the afore-
mentioned decomposition of connected groups.

Theorem 2. Let G be a locally compact group satisfying (a). Then the following
assertions are equivalent.

(1) G admits a finite subnormal series

1 = G0 ⊳ G1 ⊳ · · · ⊳ Gn−1 ⊳ Gn,

where every subquotient Gi/Gi−1 is either compact, or isomorphic to R or
Z, or non-compact compactly generated and (topologically) simple.

(2) Every closed normal subgroup of G is compactly generated.
(3) Every closed characteristic subgroup of G is compactly generated.

The conclusion of course fails without the assumption that (a) holds. Standard
arguments allow to deduce a Jordan–Hölder type theorem in the Noetherian case:

Corollary 3. Let G be a locally compact group satisfying (a) and (c). Then G
admits a subnormal series with every subquotient compact, or compactly gener-
ated Abelian, or compactly generated simple. Furthermore the set of non-compact
simple subquotients of G depends only on the group G and not on the chosen de-
composition, and is non-empty provided G is not {connected soluble}-by-compact.

The next result shows that simple subquotients arise even for groups which are
not assumed to be Noetherian.

Theorem 4. Let G be a locally compact group satisfying (a) and (b). Then G
possesses characteristic subgroups F < D < G satisfying the following.

• G/D is compact and D has no nontrivial discrete quotient; in particular
every compact quotient of D is connected.

• H/D splits as a direct product of the form S1×· · ·×Sp×Rn, where each Si

is non-compact compactly generated and (topologically) simple. Moreover
p + n > 0 provided G is not compact.

The characteristic subgroup D is defined as the discrete residual of G, i.e.
the intersection of all normal open subgroups. The subgroup F is called the
Frattini radical of D; by definition, the Frattini radical of a topological group H
is the intersection of the (possibly empty) collection of all closed normal subgroups
which are not cocompact and maximal for this property. It was observed by
R. Grigorchuk and G. Willis that every non-compact compactly generated locally
compact group admits such a normal subgroup; the Frattini radical is thus non-
trivial in this case.
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For any topological group G, the quotient G/D of G by its discrete residual is
residually discrete. In view of the fact that a compactly generated locally com-
pact residually discrete group is compact-by-discrete (see [CM, Corollary 4.1]),
Theorem 4 has the following consequence.

Corollary 5. Let G be a compactly generated characteristically simple group.
Then either G is discrete, or compact, or isomorphic to Rn, or isomorphic to
a finite direct product of pairwise isomorphic non-compact (topologically) simple
groups.

The above results call for a better understanding of compactly generated simple
locally compact groups. Numerous specimens are known, including many examples
of non-linear groups. However, although a general investigation of non-discrete
compactly generated simple groups has already been undertaken (see [Ws] and
[BEW]), there is not yet even a conjectural exhaustive description. We hope that
this fascinating topic will attract much attention in the forthcoming times.
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