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Introduction by the Organisers

The workshop Hyperbolic Conservation Laws, organized by Constantine M. Dafer-
mos (Providence), Dietmar Kröner (Freiburg) and Randall J. LeVeque (Seattle)
was held December 7th – 13th, 2008. We had 44 participants from eight different
countries. The atmosphere in the Oberwolfach Research Institute was very stimu-
lating and has initiated many fruitful discussions and exchange of ideas. The time
schedule was organized as follows: We had three 30-min-lectures in the morning
and in the afternoon and for each lecture at least 15 min for discussion. This time
was actively used for many questions and remarks from people in the audience. As
usual, on Wednesday afternoon we walked to a restaurant in Oberwolfach Kirche.
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In the evening on Wednesday D. Serre (Lyon) chaired a problem session for all
participants. Many of them spontaneously described some open problems and
initiated discussions about some ideas for solving them. The time between the
lectures, in the lunch breaks and in the evenings were intensively used for starting
new and to continue old cooperations. The participants of the workshop thank
the administration of the institute for the possibility for organizing this meeting
and the staff for the perfect service.

For this workshop we invited worldwide leading specialist and younger researcher
who work on theoretical or numerical questions for hyperbolic conservation laws.

In the field of theoretical contributions the speakers reported on the following
results. Existence of solutions for the linear transport equation, if the trans-
port velocity is in L∞, was the main subject of Bianchini’s contribution. Brenier
considered a coupled system consisting of the Monge-Ampère equation and a con-
servation law that occurs as a “high field limit” of the Vlasov-Poisson system or,
alternately, as a simplified model for chemotaxis. The objective of the work of
Christoforou was to construct an entropy weak solution of bounded variation for
the Riemann problem for systems of conservation laws in one-space dimension via
a vanishing viscosity method, for which the viscosity coefficient varies with time.
Feldman described in his talk recent results on regular shock reflection for poten-
tial flow equation in dimension two. Klingenberg presented a relaxation system
for ideal MHD system and derived approximate Riemann solvers with three, five
or seven waves, that generalize the HLLC solver for gas dynamics. They satisfy
discrete entropy inequalities, and preserve positivity of density and internal en-
ergy. T.P. Liu discussed different approaches to study the Boltzmann equations:
the probability approach and the CFD approach from continuums mechanics. The
purpose of Pan’s contribution was to prove the existence of unique global smooth
solutions for smooth initial and boundary values for the Boussinesq system. Rug-
geri considered different models of a mixture of compressible fluids, and in the
case of Euler fluids, the local and global well-posedness of the relative Cauchy
problem for smooth solutions. In particular he presented a classical approach of
mixture of compressible fluids when each constituent has its own temperature.
Serre proved that entropy dissipative viscous extensions of nonlinear systems of
conservation laws satisfy under some structure condition for the dissipation tensor
the main assumption of Kawashima in his fundamental study of the hyperbolic-
parabolic Cauchy problem. The objective of the work of Trivisa was to develop
a rigorous mathematical framework based on the principles of continuum physics
and to analyze the global in time existence, stability and asymptotic behavior of
multicomponent reactive flows. Tzavaras studied the mechanism of shear band
formation, in particular the development of a quantitative criterion explaining the
onset of instabilities. Westdickenberg proposed a time discretization for the isen-
tropic Euler equations that consists of a sequence of minimization problems and
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analyzed the convergence of the approximations towards a measure-valued solu-
tion. Riemann problems for the two dimensional compressible Euler system were
considered in the talk of Zheng.

The contributions concerning numerical results are the following: Ancona inves-
tigated the rate of convergence of an approximate solution of general nonlinear
hyperbolic systems constructed by the Glimm scheme for a suitable choice of an
equidistributed sampling sequence. A fast scheme for multi-layer shallow water
equations, including elliptic regions and drying was considered by Bochut. Feis-
tauer developed a Discontinuous Galerkin scheme for the solution of the initial
boundary value problem for the compressible Euler equations which is uncondi-
tionally stable and allows the solution of compressible flows for practically all Mach
numbers. Kurganov studied convection dominated diffusion problems by an hyper-
bolic parabolic operator splitting technique. The parabolic solver is partially based
on a dicretization of the convolution with the Green function formula for the exact
solution of the heat equation. Lukáčová-Medvid’ová proved entropy-stability for
a scheme, based on a Roe-type linearization coupled with the multidimensional
Finite Volume evolution Galerkin method. Actually this problem was mentioned
by Tadmor during the Oberwolfach conference on hyperbolic conservation laws in
2004. A framework within which existing well-balanced schemes may be rederived
and reinterpreted, and new ones may be developed more easily was presented in
the talk of Noelle. In particular this framework refers to Finite Volume and Dis-
continuous Galerkin schemes. Makridakis highlighted the main structure of an
algorithm for solving the incompressible Navier Stokes equations which permits
mesh redistribution with time and the nontrivial characteristics associated with it.
Munz introduced a framework based on Riemann problems for diffusion equations
to define suitable numerical diffusion fluxes at grid cell interfaces and developed on
this basis Discontinuous Galerkin methods. A completely new problem is treated
by Ohlberger. He has developed a reduced basis method for parameterized non-
linear conservation laws, discretized by finite volume schemes. Numerical schemes
for the BGK model, as a simplified model for the Boltzmann equation, were studied
by Puppo.

The contribution by Klein was concerned with the mathematical modeling of atmo-
spheric flows. Most models are characterized by low Mach numbers and Strouhal
numbers of order one and lead to zero Mach number incompressible flow models.
However, due to the strong pressure and density variations in the vertical direction
the incompressible flow models are not sufficient to describe all important features
of the flow. The details of this problem were discussed in his contribution.
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Abstracts

On the convergence rate of the Glimm scheme
for general nonlinear hyperbolic systems

Fabio Ancona

(joint work with Andrea Marson)

Consider a general strictly hyperbolic, quasilinear system, in one space dimension

(1) ut + A(u)ux = 0 ,

where u 7→ A(u), u ∈ Ω ⊂ R
N , is a smooth matrix-valued map. Given an

initial datum u(0, ·) with small total variation, let u(t, ·) be the corresponding
(unique) vanishing viscosity solution of (1) obtained as limit of solutions to the
viscous parabolic approximation ut + A(u)ux = µuxx, as µ → 0 (cf. [6]). We
wish to investigate the rate of convergence of an approximate solution uε of (1)
constructed by the Glimm scheme (cfr. [2]), with mesh size ∆x = ∆t = ε, and
with a suitable choice of an equidistributed sampling sequence {θℓ}ℓ∈N ⊂ [0, 1].
For conservative systems (1) (where A(u) is the Jacobian matrix of a flux function
F (u)) with genuinely nonlinear (GNL) or linearly degenerate (LD) characteristic
fields, it was shown in [7] that the L

1 convergence rate of Glimm approximate
solutions is o(1) · √ε | ln ε| if one employs a sampling sequence whose discrepancy

(2) Dm,n
.
= sup

λ∈[0,1]

∣

∣

∣

∣

λ − 1

n − m

∑

m≤ℓ<n

χ[0,λ](θℓ)

∣

∣

∣

∣

satisfies the estimate

(3) Dm,n ≤ O(1) · 1 + log(n − m)

n − m
∀ n > m ≥ 1 .

This error estimate was recently extended in [3, 8] to non genuinely nonlinear
(NGNL) quasilinear systems (1) satisfying the assumption:

(H) For each k ∈ {1, . . . , N}-th characteristic family, letting λk(u),
rk(u) denote the k-th eigenvalue and a corresponding eigenvector
of A(u), respectively, the linearly degenerate manifold

(4) Mk
.
=

{

u ∈ Ω : ∇λk(u) · rk(u) = 0
}

is either empty (GNL characteristic field), or it is the whole
space (LD characteristic field), or it consists of a finite number of
smooth, connected, hypersurfaces, and there holds

(5) ∇(∇λk · rk)(u) · rk(u) 6= 0 ∀u ∈ Mk .

Notice that the Liu admissible solution of a Riemann problem for a system of
conservation laws ut+F (u)x = 0 satisfying the assumption (H) consists of centered
rarefaction waves, compressive shocks or composed waves made of a finite number
of Liu admissible contact-discontinuities adjacent to rarefaction waves. On the
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contrary, the solution of a Riemann problem for a general hyperbolic system may
well be a composed wave containing a countable number of rarefaction waves and
(one or several) Liu admissible contact-discontinuities with increasing speeds.

The key step of the proof of the convergence rate for a Glimm approximate so-
lution consists in producing a Glimm functional whose variation provides a bound
on the change in strength and on the product of strength times the variation in
speeds of the primary waves selected by a wave tracing algorithm. For example,
if we consider an interaction between two (primary) shock waves of a k-th NGNL
family, say s′, s′′, with speeds λ′, λ′′, respectively, then letting λ denote the shock
speed of the outgoing wave of the k-th family, it will be crucial to show that the
decrease of the Glimm functional is of the same order as the term

(6) [s∆λ]
.
= |s′|

∣

∣λ − λ′
∣

∣ + |s′′|
∣

∣λ − λ′′
∣

∣ .

There are several Glimm type functionals for NGNL systems available in the lit-
erature which work perfectly well to establish uniform a-priori bounds on the
total variation of the solution, but are not truly effective to control the type of
errors [s∆λ] arising in a wave tracing analysis of the Glimm scheme. On the
other hand, in the case of systems satisfying the assumption (H), were recently
introduced in [3, 8] two type of potential interaction functionals whose decrease
actually bounds the products of strength times the variation in speeds [s∆λ]. The
Glimm functional defined in [3] is the sum of a quadratic term Qq and of the
cubic interaction potential defined in [5] concerning waves of the same family, that

takes the form Q =
∑

kα=kβ

∫ |sα|

0

∫ |sβ |

0

∣

∣σα(τ) − σβ(τ ′)
∣

∣ dτdτ ′. Here, in presence

of interactions between waves of the same families and strength smaller than some
threshold parameter δ0, Qq behaves as the interaction functional introduced in [1]
for systems with a single connected hypersurface (4), while the decrease of Q con-
trols the possible increase of Qq at interactions involving waves of the same family
and strength larger than δ0. The cubic part of the functional proposed in [8]
corresponding to waves of the same family instead depends globally on the wave
patterns of the solution. It is defined as

∑

kα=kβ

(

|sα, sβ |[Θ(sα, sβ)]−
)

/Vkα
(sα, sβ),

where Θ(sα, sβ) represents the effective angle between sα and sβ, computed taking
into account all the kα-waves lying between sα and sβ, [ · ]− denotes the negative
part, while Vkα

(sα, sβ) is the total strength of all kα-waves between sα and sβ

(including sα and sβ). Employing these interaction potentials it is shown in [3, 8]
that, for systems (1) satisfying the assumption (H), one can produce a simplified
wave partition pattern whose errors are controlled by the total decrease of the
corresponding Glimm functional in the time interval taken in consideration, and
thus yield the error estimate

(7)
∥

∥uε(T, ·) − u(T, ·)
∥

∥

L1 = o(1) ·
√

ε | log ε| .
Unfortunately, the decreasing properties of both functionals strongly rely on the
assumption that the linearly degenerate manifold (4) is a finite union of hyper-
surfaces transversal to the characteristic vector fields, and thus are of no use to
establish an accurate convergence rate for general systems (1).
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In order to construct a more effective potential interaction functional for general
NGNL systems let’s consider again an interaction occurring between two waves
s′, s′′ of the same family k-th NGNL family, and with the same sign. Observe that,
by the interaction estimates in [5, Theorem 3.7] there holds

(8) [s∆λ] = O(1) ·
∣

∣s′s′′
∣

∣

∣

∣λ′ − λ′′
∣

∣

∣

∣s′ + s′′
∣

∣

.

Moreover, using the wave-speed maps σ′(·), σ′′(·) associated to the waves s′, s′′

(cfr. [2, 6]), one can rewrite the term on the right-hand side of (8) as

(9) I(s′, s′′)
.
=

1
∣

∣s′
∣

∣ +
∣

∣s′′
∣

∣

·
∫ |s′|

0

∫ |s′′|

0

∣

∣σ′(τ) − σ′′(τ ′)
∣

∣ dτdτ ′ .

Thus, a natural suggestion of the above estimate would be to define the cubic part
of a Glimm functional related to the potential interaction of waves of the same
family as the sum of terms as (9) corresponding to all pair of waves s′, s′′ of each
characteristic family. In fact, in [4] we have introduced a Glimm functional defined
by

(10) Q(t)
.
=

∑

kα<kβ

xα(t)>xβ(t)

∣

∣sαsβ

∣

∣ +
∑

kα=kβ

I(sα, sβ)

where, as usual, xα(t) denotes the position of the wave sα in the approximate
solution uε(t), and kα its characteristic family, while the second summation extends
to all pair of waves sα, sβ of the kα ∈ {1, . . . , N} family (including sα = sβ). The
main result in [4] shows that the potential interaction Q defined in (10) is actually
decreasing in time at any interaction, and that the products [s∆λ] of strength
times the variation in speeds of the primary waves are bounded by O(1) · |∆Q|.
Relying on such functional, and exploiting the same strategy followed in [3, 7, 8],
one then finds that the estimate (7) holds for general non conservative, strictly
hyperbolic systems (1), with no assumptions on the matrix-valued function A,
beyond the C2 regularity.
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Transport equation for divergence free vector fields in the plane

Stefano Bianchini

(joint work with Giovanni Alberti, Gianluca Crippa)

Let us consider an autonomous vector field b ∈ L∞(R2; R2) in the plane such
that divb = 0. It is well-known that in this situation it is possible to find a
Hamiltonian function H ∈ Lip(R2) such that

(1) b(x) = ∇⊥H(x) =

(

−∂H(x)

∂x2
,
∂H(x)

∂x1

)

for L
2-a.e. x ∈ R

2.

The starting point for all the two-dimensional well-posedness results is the heuristic
remark that the value of the Hamiltonian is constant on the trajectories. Indeed,
if γ̇(t) = b(γ(t)), then we can compute

d

dt
H(γ(t)) = ∇H(γ(t)) · γ̇(t) = ∇H(γ(t)) · b(γ(t)) = ∇H(γ(t)) · ∇⊥H(γ(t)) = 0 .

This means that the trajectories “follow” the level sets of the Hamiltonian. Heuris-
tically, one can try to implement the following strategy:

(a) Localize the equation to each level set, thanks to the fact that the level
sets are invariant under the action of the flow;

(b) Understand the structure of the level sets, trying to prove that generically
they are “one-dimensional sets”;

(c) See the equation on each level set as a one-dimensional problem and show
uniqueness for it;

(d) Deduce uniqueness for the problem in R
2 from the uniqueness of all the

problems on the level sets.

Since we can hope for uniqueness on the level sets under quite general hypothe-
ses, the reduced equation being one-dimensional, we expect stronger well-posedness
results in this case: it is natural to imagine that no regularity of b (in terms of
weak derivatives) would be needed.

We first indicate the essential literature on this subject. Previous results by
Bouchut and Desvillettes [8], Hauray [21] and Colombini and Lerner ([10] and [11])
show that uniqueness holds for the transport equation relative to an autonomous
bounded divergence-free vector field, under an additional condition on the local
direction of the vector field. A first extension to the non-divergence-free case is due
to Colombini and Rauch [12]: they are able to show that the uniqueness holds in
the case of autonomous bounded vector fields with bounded divergence for which
there exists a positive Lipschitz function θ, bounded and bounded away from zero,
such that

(2) div(θb) = 0 .
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In our talk we present a more recent result, still in progress, in collaboration
with Alberti and Crippa [2].

The strategy is a bit different: we do not perform a local change of variable
according to the Hamiltonian, but we rather split the equation on the level sets
of the Hamiltonian, using the coarea formula. Then we would like to look at the
equation level set by level set. It turns out that, where ∇H 6= 0, the level sets
are in fact nice rectifiable curves, and this will allow to consider the PDE in the
parametrization. The interesting point is that, in order to separate the evolution in
{∇H = 0} from the evolution in {∇H 6= 0}, we need again a regularity condition,
regarding again the “amount of the critical points of H”. This is precisely the
weak Sard property:

(3) H#

(

L 2 {∇H = 0}
)

⊥ L 1 .

However we notice that condition (3) is much weaker than the previous one; more-
over, two examples (for which we refer to [2]) indicate that the weak Sard property
is necessary in order to obtain uniqueness.

The main theorem presented is the following:

Theorem 0.1. Let b ∈ L∞(R2; R2) with compact support and assume that divb =
0. Let H ∈ Lipc(R2) be as in (1) and assume that H satisfies the weak Sard
property (3). Then, for every initial data ū ∈ L∞(R2), the Cauchy problem

(4)

{

∂tu + b · ∇u = 0

u(0, ·) = ū
in D′([0, T ] × R2),

has a unique solution u ∈ L∞([0, T ]× R2).
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A fast scheme for multi-layer shallow water equations, including
elliptic regions and drying

François Bouchut

(joint work with Vladimir Zeitlin)

The multi-layer shallow water system reads, in one space dimension,

(1)

∂thj + ∂x(hjuj) = 0,

∂t(hjuj) + ∂x(hju
2
j + gh2

j/2) + ghj∂x



z +
∑

k>j

hk +
∑

k<j

ρk

ρj
hk



 = 0,

where hj , j = 1, . . . , n are the fluid depths, uj are the velocities, and z(x) is the
topography. The constants g, ρ1 ≤ · · · ≤ ρn are respectively the gravity and the
densities of the fluids. The fluids 1, . . . , n are labeled from top to bottom.
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This system admits a convex entropy, and thus we are looking for entropy
solutions, satisfying

(2)

∂t





∑

j

ρj

(

hju
2
j/2 + gh2

j/2 + hjgz
)

+ g
∑

j,k,k<j

ρkhkhj





+∂x





∑

j

ρjuj



hju
2
j/2 + gh2

j + hjg



z +
∑

k>j

hk +
∑

k<j

ρk

ρj
hk











 ≤ 0.

This system has the steady states at rest

(3) uj = 0, ∂x



hj + z +
∑

k>j

hk +
∑

k<j

ρk

ρj
hk



 = 0, for j = 1, . . . , n.

Notice that if ρ1 < · · · < ρn, this reduces to

(4) uj = 0, ∂x(z + hn) = 0, ∂xhj = 0 for j < n,

while if ρ1 = · · · = ρn, (3) reduces to

(5) uj = 0, ∂x(z + h1 + · · · + hn) = 0.

As for the one-layer shallow water system (n = 1), the numerical difficulties
related to this system are positivity of the depths hj , with the possibility of treating
drying, the exact preservation of the steady states at rest (well-balanced property),
and the property to have a discrete entropy inequality. Overall, the multi-layer
system has extra difficulties which are the nonconservativity of the system (even
for smooth topography z), and the possibility of having complex eigenvalues (the
system is not everywhere hyperbolic).

Several attempts have been made in order to solve this system. In [4] and
subsequent papers of the Malaga-Sevilla school, the bilayer case is treated by a
Roe type method. A special treatment is done in order to recover positivity,
and a special treatment is performed for complex eigenvalues, making the scheme
unconsistant in this case. A relaxation method is proposed in [5], with similar
properties, but which is not able to treat drying, nor complex eigenvalues. In [3],
the n-layer system is treated in the case ρ1 = . . . ρn, without restrictions on the
eigenvalues and including drying. However, topography is not included, and it
does not extend to general densities.

Here, we adopt the splitting approach of [1], that enables to treat separately
each of the layers without computing the eigenvalues of the whole system. In [1],
some difficulties of getting wrong solutions were found. In this talk, I shall explain
that they were due to the failure of the conservation of total momentum. I shall
give a method to correct this, based on a source-centered hydrostatic scheme for
the one-layer shallow water, a variant of the hydrostatic scheme proposed in [2].
The final method enables to treat an arbitrary number n of layers, with arbitrary
densities ρ1, . . . , ρn, and arbitrary topography. It has no restriction concerning
complex eigenvalues, it is well-balanced and it is able to treat vacuum, it satisfies
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a semi-discrete entropy inequality. The scheme is fast to execute, as is the one-layer
hydrostatic method.
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A coupled Monge-Ampère system generalizing one-dimensional scalar
conservation laws

Yann Brenier

A one dimensional scalar conservation laws such as:

∂tu + ∂x(G(u)) = 0 ,

where G is a given smooth function, admits many possible multidimensional gen-
eralizations. One of particular interest is given by the following coupled system

∂tρ + ∇ · (ρw) = 0 , w = g(∇φ) , ∆φ = ρ ,

where ρ = ρ(t, x), φ = φ(t, x) are unknown, x varies in Rd and g : Rd → Rd is
a given smooth function with bounded derivatives. (This, of course, has to be
supplemented by suitable boundary conditions.) This model, that we call coupled
Poisson system, or CP in short, occurs as a “high field limit” of the Vlasov-Poisson
system (as studied by Nieto, Poupaud and Soler in the early 2000s), or, alternately,
as a simplified model for chemotaxis. In one space dimension (d = 1) the scalar
conservation law

∂tu + ∂x(G(u)) = 0 ,

is recovered just by setting g = G′, ρ(t, x) = ∂xu(t, x).

Another possible extension of the inviscid Burgers equation is obtained by substi-
tuting the Monge-Ampère equation for the Poisson equation, namely:

∂tρ + ∇ · (ρw) = 0 , w = g(∇φ) , det(D2
xφ) = ρ .

Notice that for d = 1, there is no difference between the Poisson and the Monge-
Ampère equations!
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The coupled Monge-Ampère system, CMA in short, has severable features, that
are not shared by the coupled Poisson system.
First, it is easily integrable for short times, by the method of characteristics and
particle trajectories are just straight lines (just as for the inviscid Burgers equa-
tions), at least when g = G′ for some smooth scalar function G : Rd → R with
bounded second order derivatives.
Next, the initial value problem always has a (possibly non unique) global solution
in a suitable sense (which is not known for the coupled Poisson system).
Finally, it has a physical interpretation and can be derived from the Navier-Stokes
Boussinesq (NSB) system

ǫ(∂t + v · ∇ − ∆)v + ∇p = f , (∂t + v · ∇)f = g , ∇ · v = 0,

as ǫ goes to zero, where the unknowns f = f(t, x) ∈ Rd, v = v(t, x) ∈ Rd,
p = p(t, x) ∈ R depend on t and x ∈ Rd and g = g(x) ∈ Rd is given. The limit
system, that we call Hydrostatic Boussinesq (HB) model,

∇p = f , (∂t + v · ∇)f = g , ∇ · v = 0,

is locally well posed under the requirement that p = p(t, x) is a uniformly strictly
convex smooth function in x. The HB and CMA systems are formally equivalent
once we set

p(t, x) = sup
x̃

x · x̃ − φ(t, x̃),

which means that p and φ are Legendre dual. For both HB and CMA systems, we
suggest the following weak formulation: f(t, x) = ∇p(t, x) is a weak solution if it
belongs to C0

t (L2
x), p(t, x) is convex in x, and

d

dt

∫

z(f(t, x))dx =

∫

g(x) · (∇z)(f(t, x))dx,

for all smooth test functions z with quadratic growth at infinity. Then, it is easy to
prove the existence of a (possibly non unique) solution for each compatible initial
condition.

For more details, we refer to the paper “Optimal transport, convection, magnetic
relaxation and generalized Boussinesq equations”, arXiv:0801.1088.

The initial-boundary Riemann problem and the time-variant vanishing
viscosity method

Cleopatra Christoforou

(joint work with Laura V. Spinolo)

We study the initial-boundary Riemann problem for systems of conservation laws
in one-space dimension:

(1)
∂tu + ∂xf(u) = 0,
u(0, x) = u0, x > 0,
u(t, 0) = ū, t > 0 .
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Here, x ∈ R, u = u(x, t) ∈ R
n, f : R

n → R
n smooth function and u0, ū are

constant states in R
n. We assume that (i) the system is strictly hyperbolic, i.e.

A(u) = Df(u) has n real and distinct eigenvalues λi(u), and therefore, n lin-
early independent eigenvectors ri(u), i = 1, . . . , n and (ii) the boundary is non-
characteristic, i.e. det(A) 6= 0.

The boundary problem is very interesting since one faces the additional chal-
lenge of imposing appropriate conditions on the boundary data ū to expect a
well-posed problem and in general, this is a difficult task. This problem has been
studied extensively, especially using the standard vanishing viscosity method:

(2) ∂tu + ∂xf(u) = ε∂2
xu .

Results of existence, stability, uniqueness of solutions, stability of boundary layer
profiles and convergence have been established under various conditions; cf. [1, 5,
7, 8, 9, 11, 12]. We refer the reader to the books [4, 10] and the references therein.

The objective of this work is to construct an entropy weak solution of bounded
variation (BV ) to system (1) via a different vanishing viscosity method, for which
we let the viscosity coefficient to vary with time. Namely, we consider

(3)
∂tu + ∂xf(u) = ε t ∂2

xu,
u(0, x) = u0, x > 0,
u(t, 0) = ūb, t > 0 .

It is easy to check that the solution uε to (3) is given by uε(x, t) = Vε(
x
t ) if and

only if Vε(ξ) is a solution of the ODE

(4)
(A(Vε(ξ)) − ξ I)V̇ε(ξ) = εV̈ε(ξ), ξ > 0 ,
Vε(0) = ūb, Vε(+∞) = ū0 .

Thus, the problem reduces to establishing BV solution to system (1) as a limit of
viscous self-similar solutions to ODE (4).

The notion of self-similar viscous limits was first studied in the context of
Cauchy problems by Dafermos [3], Kalasnikov [6] and Tupciev [13, 14] indepen-
dently. Dafermos initiated the use of self-similar limits as an admissibility crite-
rion, the viscous wave fan criterion, which also serves as an alternative approach
for constructing Riemann solutions. Tzavaras [15] implemented this program for
constructing Riemann solutions to general strictly hyperbolic systems assuming
that the Riemann data are sufficiently close. Moreover, he studied the structure
of the emerging solution and proved that it is the same one with the classical Rie-
mann solution as constructed by Lax and Liu. It should be added that recently
Dafermos [4] revisited this problem and constructed the viscous wave fan curves
in the spirit of Bianchini and Bressan [2].

We consider this program in the setting of the boundary problem with the
additional challenges that arise while treating the boundary layer. Following the
ideas and techniques of Tzavaras [15] and introducing additional tools to treat
carefully the waves that correspond to negative characteristic speeds, we prove
that if |ūb − u0| is sufficiently small, then for each ε > 0, there exists a unique
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solution Vε(ξ) to (4) defined on ξ ∈ (0,∞), that satisfies the decomposition

(5) V̇ε(ξ) =
n

∑

j=1

[τjϕj(ξ) + ϑj(ξ, τ)] rj(Vε(ξ)) ,

where ϕj solves εϕ̇j + [ξ − λj(Vε)]ϕj = 0, τj corresponds to the strength of the
j-wave and θj(·, τ) is the contribution on the j–wave from the interaction of waves.
Studying carefully the interaction of waves, we show that the total variation of
Vε on (0,∞) is small and uniformly bounded. Hence, by Helly’s compactness
theorem, we can extract a convergent subsequence {Vεm

} and the limit V induces
a solution u(x, t) = V (x/t) to the boundary problem (1).

The second part of our project is to characterize the hyperbolic trace ū, the
boundary data of the viscous self-similar limit u(x, t). Namely, we describe ū in
terms of the data ūb and u0 of the viscous approximation (3). To achieve this,
we construct a locally invertible map φB that connects the initial data u0 and the
boundary data ūb

ūb = φB(s1, s2, . . . , sn, u0)

= F (s1, . . . , sn−p, ◦T n−p+1
sn−p+1

◦ · · · ◦ T n
sn

u0)(6)

using the viscous waves fan curves T j
sj

that correspond to positive characteristic
speeds and the boundary layer profiles F that correspond to all negative char-
acteristic speeds. This allows us to establish implicitly a characterization of the
hyperbolic data and get

ū
.
= lim

x→0+
u(x, t) = T n−p+1

sn−p+1
◦ · · · ◦ T n

sn
u0 .(7)

An interesting remark that follows through this work is that we can compare
the hyperbolic trace obtained via the self-similar viscous limits (3) with the one
via the standard vanishing viscosity limit (2) and show that it is the same. This
is very interesting and useful since it is known that the hyperbolic trace depends
in general on the approximate scheme.
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On Discontinuous Galerkin Schemes for Compressible Flow

Miloslav Feistauer

In the numerical solution of compressible flow, it is necessary to overcome a num-
ber of obstacles. Let us mention the necessity to resolve accurately shock waves,
contact discontinuities and (in viscous flow) boundary layers, wakes and their in-
teraction. All these phenomena are connected with the simulation of high speed
flow with high Mach numbers. However, it appears that the solution of low Mach
number flow is also rather difficult. This is caused by the stiff behavior of nu-
merical schemes and acoustic phenomena appearing in low Mach number flows at
incompressible limit. In this case, standard finite volume schemes fail. This led
to the development of special finite volume techniques allowing the simulation of
compressible flow at incompressible limit, which is based on modifications of the
Euler or Navier-Stokes equations. These techniques are adequate for low Mach
number flows, but cannot be applied to transonic and supersonic flows with shock
waves and contact discontinuities.

In the Department of Numerical Mathematics at the Faculty of Mathematics
and Physics of Charles University Prague together with Vı́t Doleǰśı and Václav
Kučera we are concerned with the development of a new technique for the numer-
ical solution of compressible flow.

Here we are concerned with the treatment of two-dimensional flow, but the
method can be applied to 3D flow as well. The system of the Euler equations
describing 2D inviscid flow can be written in the form ([5])

(1)
∂w

∂t
+

2
∑

s=1

∂f s(w)

∂xs
= 0 in QT = Ω × (0, T ),



Hyperbolic Conservation Laws 3157

where Ω ⊂ IR2 is a bounded domain occupied by gas, T > 0 is the length of a
time interval,

(2) w = (w1, . . . , w4)
T = (ρ, ρv1, ρv2, E)T

is the so-called state vector and

(3) fs(w) = (ρvs, ρvsv1 + δs1p, ρvsv2 + δs2p, (E + p) vs)
T

are the inviscid (Euler) fluxes of the quantity w in the directions xs, s = 1, 2. We
use the following notation: ρ – density, p – pressure, E – total energy, v = (v1, v2)
– velocity, δsk – Kronecker symbol. The equation of state implies that

(4) p = (γ − 1) (E − ρ|v|2/2).

Here γ > 1 is the Poisson adiabatic constant. The system (1) – (4) is diagonally
hyperbolic. It is equipped with the initial condition

(5) w(x, 0) = w0(x), x ∈ Ω,

and suitable boundary conditions.
We developed a numerical method for the solution of the above initial-boundary

value problem. Our technique is based on the application of the discontinuous
Galerkin finite element method (DGFEM), which employs piecewise polynomial
approximations without any requirement on the continuity on interfaces between
neighboring elements. The DGFEM was first used for the solution of inviscid
compressible flow in [1].

The discontinuous Galerkin space semidiscretization is combined with a semi-
implicit time discretization proposed in [3]. In this way we obtain a numerical
scheme requiring the solution of only one linear system on each time level solved
either by the direct UMFPACK technique ([2]) or the GMRES iterations with a
block diagonal preconditioning. An important ingredient is a special characteristic
treatment of boundary conditions in inviscid convective terms, transparent for
acoustic effects coming from inside of the computational domain ([6]). In case
of high-speed flow with discontinuous solutions the limiting procedure avoiding
the Gibbs phenomenon manifested by spurious overshoots and undershoots in the
vicinity of discontinuities is applied. It is based on the use of the discontinuity
indicator proposed and tested in [4].

The described method is unconditionally stable and allows the solution of com-
pressible flow for practically all Mach numbers, from very low Mach number flow
up to hypersonic regimes, without any modification of the Euler equations.

The efficiency, accuracy and robustness of the presented technique has been
demonstrated by numerical examples.

Recently, we have adapted the method to the solution of compressible flow in
time-dependent domains and applications to fluid-structure interaction problems
([7]).
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Shock Reflection and Free Boundary Problems

Mikhail Feldman

(joint work with Gui-Qiang Chen)

One of the important problems in mathematical fluid dynamics is reflection of
shock by a wedge. It arises in many physical application, and in the study of
multidimensional conservation laws since its solutions are building blocks and as-
ymptotic attractors for the general solutions of Euler equations for compressible
fluids. The reflection picture was first described by Ernst Mach in 1878. In later
works, experimental, computational, and asymptotic analysis have shown that var-
ious patterns of reflected shocks may occur, including regular and Mach reflection
[2, 5, 6, 7, 8, 9]. However, there has been no rigorous mathematical results on the
global existence and structural stability of shock reflection, especially for potential
flow equation, which has been used in aerodynamics. Such problems involve sev-
eral difficulties in the analysis of nonlinear partial differential equations including
equations of elliptic-hyperbolic mixed type, free boundary problems, degenerate
ellipticity along the sonic line.

In the talk I describe recent results on regular shock reflection for potential flow
equation in dimension two. For potential flow, velocity u is DxΦ, where Φ is the
potential.

A plane shock in the (x, t)–coordinates, x = (x1, x2) ∈ R
2, with left state

(ρ, DxΦ) = (ρ1, u1, 0) and right state (ρ0, 0, 0), u1 > 0, ρ0 < ρ1, hits a symmetric
wedge W := {(x1, x2) : |x2| < x1 tan θw, x1 > 0} at time zero. We can consider
only upper half-plane R

2
+ = {x2 > 0}. We are looking for a solution in Λ = R

2
+\W

of the time-dependent potential flow system satisfying initial data

(1) (ρ, Φ)|t=0 =

{

(ρ0, 0) for |x2| > x1 tan θw, x1 > 0,

(ρ1, u1x1) for x1 < 0,

and boundary condition

(2) ∇Φ · ν|∂Λ = 0.
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Since self-similar solutions are expected, we rewrite this as a quasi-static problem
in self-similar plane.

Potential flow equation for self-similar solutions, in self-similar variables (ξ, η) =

(
x

t
,
y

t
), is

(3) div (ρ(|Dϕ|2, ϕ)Dϕ) + 2ρ(|Dϕ|2, ϕ) = 0,

with ρ(|Dϕ|2, ϕ) =

(

ργ−1
0 −(γ−1)(ϕ+

1

2
|Dϕ|2)

)
1

γ−1

, where ϕ(ξ, η) is the pseudo-

velocity potential, ρ is density, and γ > 1, ρ0 > 0 are constants. Equation is
elliptic-hyperbolic mixed, which is elliptic (resp. hyperbolic) if and only if

|Dϕ| < c(|Dϕ|2, ϕ),
(

resp. |Dϕ| > c(|Dϕ|2, ϕ)
)

,

where c(|Dϕ|2, ϕ) is the sonic speed defined by c2 = ργ−1. Solution is called
subsonic (resp. supersonic) in elliptic (resp. hyperbolic) regions. Shocks are

discontinuities in the pseudo-velocity Dϕ. That is, if Ω+ and Ω− := Ω \ Ω+ are
two nonempty open subsets of Ω ⊂ R

2 and S := ∂Ω+ ∩Ω is a C1–curve where Dϕ
has a jump, then ϕ ∈ W 1,1

loc (Ω) ∩ C1(Ω± ∪ S) ∩ C2(Ω±) is a global weak solution
of (3) in Ω if and only if ϕ satisfies equation (3) in Ω± and the Rankine-Hugoniot
conditions on S:

(4) [ϕ]S = 0,
[

ρ(|Dϕ|2, ϕ)Dϕ · ν
]

S
= 0.

The plane incident shock solution in the (x, t)–coordinates with states
(ρ,∇xΨ) = (ρ0, 0, 0) and (ρ1, u1, 0) corresponds to a weak solution ϕ of (3) of
the form:

ϕ0(ξ, η) = −1

2
(ξ2 + η2) for ξ > ξ0,(5)

ϕ1(ξ, η) = −1

2
(ξ2 + η2) + u1(ξ − ξ0) for ξ < ξ0,(6)

respectively, where S0 = {ξ = ξ0} is the incident shock. Here ξ0 is uniquely
determined by (ρ0, ρ1, γ) through (4). Denote by P0 the point of intersection of S0

with the wedge boundary, that is, P0 = (ξ0, ξ0 tan θw). Shock reflection problem
is now reduced to the following problem in self-similar plane:

Problem 1. Seek a solution ϕ of equation (3) in the self-similar domain Λ with
the slip boundary condition (2) and the asymptotic boundary condition at infinity:

ϕ → ϕ̄ :=

{

ϕ0 for ξ > ξ0, η > ξ tan θw,

ϕ1 for ξ < ξ0, η > 0,
when ξ2 + η2 → ∞,

where the convergence holds in the sense that lim
R→∞

‖ϕ − ϕ‖C(Λ\BR(0)) = 0.

Since ϕ1 does not satisfy the slip boundary condition (2), the solution must
differ from ϕ1 in {ξ < ξ0} ∩ Λ and thus a shock diffraction by the wedge occurs.

Denote by P0 = (ξ0, ξ0 tan θw) the point of intersection of the incident shock S0

with the wedge boundary. There exists an angle θsonic ∈ (0, π/2) determined by
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ρ0, ρ1, γ such that for the wedge angles θw ∈ (θsonic, π/2) there exists a uniform
state

(7) ϕ2(ξ, η) = −1

2
(ξ2 + η2) + u2(ξ − ξ0) + (η − ξ0 tan θw)u2 tan θw,

which satisfies (2) on the wedge boundary {η = ξ tan θw}, and satisfies Rankine-
Hugoniot conditions (4) with ϕ1 at P0 and thus along the line S1 = {ϕ1 = ϕ2}.
Constant velocity (u2, u2 tan θw) and density ρ2 are determined by (θw, ρ0, ρ1, γ)
from the two algebraic equations expressing the conditions above. Moreover ρ2 >
ρ1, and ϕ2 is supersonic(hyperbolic) at the point P0. For such wedge angles
θw ∈ (θsonic, π/2) the structure of global solution ϕ to Problem 1 is expected to
be regular reflection which described as following:

Let B be the sonic circle for state (2) with center (u2, u2 tan θw) and radius

c2 = ρ
(γ−1)/2
2 > 0 (the sonic speed of ϕ2). Denote by P1 (resp P4) the point of

intersection of ∂B with S1 (resp. with the wedge boundary {η = ξ tan θw}). It is
expected that the solutions ϕ and ϕ1 differ within {ξ < ξ0} only in the domain
P0P1P2P3P4, where P2 ∈ {ξ < 0, η = 0} and P3 = (0, 0). The curve P0P1P2 is
the reflected shock with the straight segment P0P1. Then, within P0P1P2P3P4,
solution ϕ differs from ϕ2 in the domain Ω = P1P2P3P4, where the equation (3) is
elliptic. The boundary of Ω consists of the sonic arc P1P4, line segments P2P3 and
P3P4 and the curved part of the reflected shock P1P2, which is apriori unknown
(the free boundary).

Theorem 1 ([3]). For any γ > 1 and ρ1 > ρ0 > 0 there exist θc = θc(ρ0, ρ1, γ) ∈
(0, π

2 ) and α = α(ρ0, ρ1, γ) ∈ (0, 1) such that, when θw ∈ [θc,
π
2 ), there exists a

weak solution of Problem 1, which satisfies the following:

(i)

ϕ ∈ C0,1(Λ), ϕ ∈ C∞(Ω) ∩ C1,α(Ω̄),

ϕ =







ϕ0 for ξ > ξ0 and η > ξ tan θw,
ϕ1 for ξ < ξ0 and above the reflection shock P0P1P2,
ϕ2 in P0P1P4.

(ii) equation (3) is elliptic in Ω;
(iii) ϕ ≥ ϕ2 in Ω;
(iv) the reflected shock P0P1P2 is C2 at P1 and C∞ elsewhere;
(v) ϕ is C1,1 across the part Γsonic = P1P4 of the sonic circle.

Theorem 2 ([4]). Let γ > 1 and ρ1 > ρ0 satisfy the condition u1 < c1, where
c2
1 = ργ−1. Then solution of Problem 1 satisfying properties (i)-(v) of Theorem 1

exists for all θw ∈ (θsonic, π/2).

The condition in Theorem 2 is an explicit algebraic condition in terms of
γ, ρ0, ρ1.

Next we show that C1,1 regularity near and across sonic arc Γsonic = P1P4

where ellipticity degenerates is optimal:
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Theorem 3 ([1]). Let ϕ be a solution of Problem 1 satisfying properties (i)-(v) of
Theorem 1. Then:

(i) ϕ is C2,α in Ω up to Γsonic away from the point P1 for any α ∈ (0, 1),
(ii) ϕ is C1,1 but not C2 across Γsonic, specifically D2ϕ has a jump across

Γsonic,
(iii) The limit lim (ξ,η)→P1

(ξ,η)∈Ω

D2ϕ does not exist.

For the proofs, we reformulate Problem 1 as a free boundary problem for the
free boundary Γsonic and ϕ in the elliptic region Ω. Free boundary conditions
are Rankine-Hugoniot conditions on Γsonic. We solve this problem by method of
continuity, which involves deriving some regularity estimates for degenerate elliptic
equations, and controlling geometry of free boundary using maximum principle.
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Anelastic and weakly compressible motions in the atmosphere

Rupert Klein

(joint work with Didier Bresch)

Most atmospheric motions of meteorological interest are characterized by low
Mach numbers and Strouhal numbers of order one, where the Strouhal number de-
scribes the ratio of a typical advection and the characteristic flow time scales. As
a consequence, the assumption of complete pressure equilibration through rapid
acoustic wave propagation is justified, and this leads to “sound-proof” model equa-
tions in the spirit of the zero Mach number incompressible flow models in engineer-
ing fluid mechanics. However, due to the strong pressure and density variations in
the vertical over distances comparable to and larger than about 10 km, the struc-
ture of sound-proof models for atmospheric flows differs from the incompressible
flow models. Instead of the velocity itself, the velocity weighted by the background
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density ρ(z) or by a certain power of the background pressure P (z) = p(z)
1
γ is

divergence-controlled, i.e., one has

∇ · (ρ(z)~v) = 0 or ∇ · (P (z)~v) = 0.

In addition, the ubiquitous background stratification of entropy (or potential
temperature θ) enables internal gravity wave propagation, and these waves are of
crucial importance for a range of meteorological phenomena. Ogura and Phillips
[1] systematically derived, from the full compressible flow equations, a reduced
“sound-proof” system that combined the above-mentioned divergence constraint
based on the density stratification with a Boussinesq-type approximation for the
effects of gravity. This model, as desired, does not support acoustic modes but it
maintains advection and internal gravity waves. Yet, it is based on the assumption
that internal waves and advection act on comparable characteristic time scales,
which implies unrealistically weak stratification of the potential temperature.

Later extensions of the Ogura-Phillips model by, e.g., Lipps and Hemler [2] or
Durran [3] yielded more satisfactory results in simulations, yet their derivations
were partially inconsistent as revealed recently by the author. The physical set-
up targeted by Lipps-Hemler, Durran and others corresponds, mathematically
speaking, to a three-scale asymptotic problem, where the sound propagation time
is much shorter than the characteristic internal gravity wave time scale, which
in turn is much shorter than the time scale of advection. The goal in designing
sound-proof models now is to eliminate the fastest of these three modes while
retaining simultaneously the internal wave and advection time scales.

In this presentation I have explained this problem set-up, pointed out that
the desired type of model is not in reach of classical single or multiple scales
asymptotics, and have summarized recent attempts at constructing a sound-proof
two-scale model from the full compressible flow equations which involve three
separated time scales.
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New relaxation solvers for Hydro- and Magnetohydrodynamics
applied to astrophysical flow simulations

Christian Klingenberg

(joint work with François Bouchut, Wolfram Schmidt, Knut Waagan)

We present a relaxation system for ideal MHD that is an extension of the Suliciu
relaxation system for the Euler equations of gas dynamics. From it one can derive
approximate Riemann solvers with three, five or seven waves, that generalize the
HLLC solver for gas dynamics [1]. Under some subcharacteristic conditions, the
solvers satisfy discrete entropy inequalities, and preserve positivity of density and
internal energy. The subcharacteristic conditions are nonlinear constraints on
the relaxation parameters relating them to the initial states and the intermediate
states of the approximate Riemann solver itself. The 7-wave version of the solver
is able to resolve exactly all material and Alfven isolated contact discontinuities.

Next we consider the practical implementation, and derive explicit wave speed
estimates satisfying the stability conditions [2]. We present a 3-wave solver, and
a 5-wave solver that resolves accurately the cases when characteristic speeds co-
incide. For the full 7-wave solver we make some simplifications when deriving the
explicit speed estimates, but we still get accurate and robust results. We test the
solvers on one-dimensional shock tube data and smooth shear waves.

We put this into an astrophysical application by comparing our new positive
and entropy stable approximate Riemann solver with state-of the-art algorithms
for astrophysical fluid dynamics [3]. We implemented the new Riemann solver
into an astrophysical PPM-code, the Prometheus code. We present shock tube
tests, two-dimensional instability tests and forced turbulence simulations in three
dimensions. We find differences between the codes in the shock tube tests, and
in the statistics of the turbulence simulations. The new Riemann solver increases
the computational speed without significant loss of accuracy.

These 3-dimensional turbulence simulations are part of a plan to develop, im-
plement, and apply a new numerical scheme for modeling turbulent, multiphase
astrophysical flows such as galaxy cluster cores and star forming regions [4] [5].
The method combines the capabilities of adaptive mesh refinement and large -
eddy simulations to capture localized features and to represent unresolved turbu-
lence, respectively; we therefore refer to it as Fluid mEchanics with Adaptively
Refined Large- Eddy SimulationS or FEARLESS. We shall present advances in
this ongoing project.
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Fast explicit operator splitting method for convection-dominated
problems

Alexander Kurganov

(joint work with Alina Chertock, Charles R. Doering, E. Kashdan, and Guergana
Petrova)

We study numerical methods for (systems of) convection-diffusion equations that
arise in a variety of applications and represent mathematical models for a number
of (physical) processes in fluid mechanics, astrophysics, meteorology, multiphase
flow in oil reservoirs, polymer flow, financial modeling, and many other areas.

We consider the initial value problem

(1) qt + ∇x · f(q) = D∆q, q(x, 0) = q0(x),

where, q(x, t) = (q1(x, t), . . . , ql(x, t))
T

is an unknown l-vector, f is a nonlinear
convection flux, and D = diag(ε1, . . . , εl) is a constant diagonal matrix with posi-
tive entries. In the general multidimensional case, q is a vector function of a time
variable t and d-dimensional spatial variable x = (x1, . . . , xd) with corresponding
fluxes f = (f1, . . . , fd). We also consider a closely related viscous Hamilton-Jacobi
(HJ) equation

(2) ϕt + H(ϕx1 , . . . , ϕxd
) = ε∆ϕ,

where ϕ(x, t) is an unknown function, H is a nonlinear Hamiltonian, and ε is a
positive constant.

It is well-known that the considered models are parabolic and thus they admit
global smooth solutions even for discontinuous initial data. This makes it easy
to design stable and convergent numerical methods for (1). Their resolution,
however, will depend on the size of the diffusion coefficients. The convection
dominated regime (ε ≪ 1) is the most challenging one from a numerical perspective
since utilizing the grid refinement strategy for small ε may be computationally
unaffordable, especially in the multidimensional case. In practice, one is forced to
use underresolved methods (with ∆x ≫ ε) and therefore may want to ignore the
right-hand side of (1) by taking εi = 0 ∀i, and applying a shock-capturing method
to the resulting hyperbolic system. This, however, may produce unphysical shocks
and boundary layers solely determined by numerical diffusion.

One way to overcome this difficulty is to use an operator splitting method,
which can be briefly described as follows. Consider the system (1) and denote
by SH the exact solution operator associated with the corresponding hyperbolic
system:

(3) qt + ∇x · f(q) = 0,
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and by SP the exact solution operator associated with the (linear) parabolic system

(4) qt = D∆q.

Let us assume that the solution of the original convection-diffusion system (1) is
available at time t. We then introduce a (small) time step ∆t and evolve the
solution of (1) from t to t + ∆t according to the Strang splitting method, which
consists of three substeps:

(5) q(x, t + ∆t) = SH(∆t/2)SP(∆t)SH(∆t/2)q(x, t).

Our fast explicit operator splitting method is based on the Strang splitting algo-
rithm (5).

In practice, the exact solution operators SH and SP are to be replaced by their
numerical approximations. Note that the hyperbolic, (3), and the parabolic, (4),
subproblems, which are of different nature, can be solved by different numerical
methods—this is one of the main advantages of the operator splitting technique.

Hyperbolic Solvers. The choice of a discrete hyperbolic solution operator is
typically motivated by the properties of the flux function in (3) or the Hamiltonian
in (2). If f(q) is nonlinear, then (3) is a hyperbolic system of conservation laws,
whose solutions are generically discontinuous. In this case, the system (3) should
be solved by a shock-capturing scheme. If H is nonlinear, the corresponding
inviscid HJ equation should be solved by an appropriate high-resolution method.
If f (H) is linear, then the shock-capturing techniques may be overly diffusive, so
that one may prefer to use either a spectral or particle method, or the method of
characteristics.

Parabolic Solvers. Using the method of lines, the parabolic subproblem (4) can
be reduced to a system of ODEs, which can be efficiently and accurately integrated
by either an appropriate implicit, large stability domains explicit, or implicit-
explicit ODE solver. As an alternative, (4) may be solved exactly using the heat
kernel solution formula, as proposed in [2, 5, 4], or using a pseudo-spectral method.
In the latter cases, there is no stability restriction on the size of the “parabolic”
substep, which is the key point in designing an efficient explicit method.

In the recent paper [3], we have provided a detailed description of three different
versions of a fast explicit operator splitting method:

• Version I: FV-GF method, which is based on the finite-volume (FV) hy-
perbolic solver and the exact parabolic solver implemented by discretizing
the convolution with the Green function formula for the exact solution of
the heat equation;

• Version II: MC-GF method, in which the hyperbolic solver is the method
of characteristics (MC) while the parabolic solver is the same as in the FV-
GF method;

• Version III: FD-PS method, which is based on a high-order finite-
difference (FD) scheme and the exact parabolic solver implemented in
the pseudo-spectral manner.
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We note that the FV-GF and the MC-GF methods have been proposed in [5, 4]
and [2], respectively.

Depending on the convection-diffusion model at hand, one of the above versions
may be particularly advantageous. When the system (1) with a nonlinear flux
function f is considered, the FV-GF method seems to be a natural choice since its
hyperbolic solver is designed to treat (systems of) hyperbolic conservation laws.
Our particular choice of the FV method is the second-order Godunov-type central-
upwind schemes [6, 7, 8]. We have successfully applied the FV-GF method to the
Burgers equation and to a polymer system modeling flooding processes in enhanced
oil recovery.

The MC-GF method, on the other hand, seems to be optimal when the hyper-
bolic problem is linear and thus can be easily solved by the method of characteris-
tics, which is diffusion-free. The latter guarantees that the only diffusion present in
the splitting method is the physical one because it comes from the parabolic part.
The MC-GF method has been applied to a linear convection-diffusion equation as
well as to a model describing the propagation of a passive pollutant in shallow
water.

Finally, the FD-PS method seems to be preferable in the case of a viscous HJ
equation with periodic boundary conditions, in which one may take advantage of
the FFT algorithm to significantly speed up the implementation of the exact para-
bolic solver. We have applied the FD-PS method to the vorticity formulation of the
two-dimensional incompressible Navier-Stokes equations written in the transport
form, which thus can be viewed as a HJ equation with a global Hamiltonian. Our
particular choice for the hyperbolic solver is a fourth-order FD scheme based on
the central-upwind numerical Hamiltonian from [7] and the fifth-order Weighted
Power-ENO reconstruction [1, 9].
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Kinetic Theory and Gas Dynamics

Tai-Ping Liu

There are two general approaches to the study of Boltzmann equation in the
kinetic theory. There is the more probabilistic approach, which is generally prac-
ticed by those coming from the field of statistical mechanics. Such an approach
relies primarily on the equilibrating mechanism of the collision operator as exem-
plified by the Boltzmann H-Theorem. The approach yields strong results for space
homogeneous solutions. The other approach is practiced by those coming from the
fluid dynamics. The second approach has the advantage of being able to study
the dynamics around the equilibrium manifolds of local Maxwellians. The around
the equilibrium manifold the fluid nonlinearity plays a basic role for the Boltz-
mann solutions. With Shih-Hsien Yu, we have been working on the quantitative
aspect of the Boltzmann equation using the Green’s function approach. Such a
quantitative study allows us to consider the Boltzmann boundary layers through
our recent works on invariant manifolds for stationary Boltzmann equation. We
show that when one of the Euler characteristics for the flow around the boundary
is close to zero, there are boundary layers containing both the Knudsen layer and
gas dynamics layers such as the compression, expansion, and thermal layers. There
are direct correspondences between our results and those studied by Yoshio Sone
and others in the Kyoto School of physicists and engineers, particularly on the
bifurcation phenomena of transition between subsonic and supersonic evaporation
and condensation. We believe that the Green’s function approach is useful for the
study of other subtle relation between kinetic theory and gas dynamics.

On the entropy stability of some finite volume schemes

Mária Lukáčová-Medvid’ová

(joint work with Eitan Tadmor)

It is a well-known fact that numerical schemes based on a linearization strat-
egy can produce solutions violating the entropy condition. In particular, such
an phenomenon is profound on sonic rarefaction. In [2] we have studied the
entropy stability of a class of finite volume methods for systems of hyperbolic
conservation laws. The methods under consideration are based on a Roe-type
linearization coupled with the multidimensional FV evolution Galerkin (FVEG)
method [1].

In order to prove entropy-stability of these FV schemes we follow the lines of
Tadmor [3], see also [4] for a related work. Applying the local analysis of entropy-
stable schemes and comparing the numerical viscosity of our FV schemes with the
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entropy-conservative schemes we derived in [2] an entropy stable variant of the
FVEG scheme as well as the Roe-type scheme.

Let {rj
ν+1/2}N

j=1, {ℓj
ν+1/2}N

j=1 be given orthonormal systems, such that

〈rj
ν+1/2, ℓ

k
ν+1/2〉 = δjk for all j, k = 1, . . . , N. Construct the Riemann path

{uj
ν+1/2}N

j=1 connecting the left state uν with the right state uν+1,

u1
ν+1/2 = uν ,

u
j+1
ν+1/2 = u

j
ν+1/2 + αj

ν+1/2r
j
ν+1/2, j = 1, . . . , N(1)

with αj
ν+1/2 := 〈ℓj

ν+1/2, ∆uν+1/2〉 and ∆uν+1/2 = uν+1 − uν .

Let us assume now that the path (1) consists solely of shocks. Thus the Rankine-
Hugoniot shock condition is satisfied:

f(uj+1
ν+1/2) − f (uj

ν+1/2) = sj
ν+1/2(u

j+1
ν+1/2 − u

j
ν+1/2),

where sj
ν+1/2 denotes the speed of discontinuity.

For one-dimensional systems of hyperbolic conservation laws we can show that
the following numerical flux yields an entropy-stable FVEG scheme, see [2],

(2) Hν+1/2(uν , uν+1) := f(u∗
ν+1/2) − Jν+1/2,

where u∗
ν+1/2 := uν +

∑N
j=1;sj≤0 αj

ν+1/2r
j
ν+1/2. The jump term controlling the

entropy production reads

Jν+1/2 :=
κ

2

N
∑

j=1

[

λj
ν+1/2

]+

j+1/2
αj

ν+1/2r
j
ν+1/2, κ ≥ 1/4,

where
[

λj
ν+1/2

]+

j+1/2
:= max

(

λj
(

A(uj+1
ν+1/2)

)

− λj
(

A(uj
ν+1/2)

)

, 0
)

.

For the Roe-type scheme an entropy stable variant has the following form
(3)

Hν+1/2(uν , uν+1) :=
1

2
(f (uν) + f(uν+1))−

1

2

N
∑

j=1

|sj
ν+1/2|α

j
ν+1/2r

j
ν+1/2−Jν+1/2.

More precisely, we are able to show that the numerical viscosity of FVEG scheme
(2) as well as of the Roe-type scheme (3) is larger in leading order terms than the
numerical viscosity of entropy stable scheme. Our numerical experiments for the
Euler equations of gas dynamics as well as for the shallow water equations indeed
demonstrate the entropy stability of modified FV schemes and show, for example,
a correct resolution of sonic rarefaction wave, see [2] for details.
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Mesh redistribution and error control for Navier-Stokes solvers

Charalambos Makridakis

(joint work with Eberhard Bänsch, Fotini Karakatsani)

We consider certain issues related to the combination mesh redistribution algo-
rithms with known efficient solvers for the nonstationary-incompressible Navier-
Stokes equations,

ut − ν ∆u + u · ∇u + ∇p = f in Ω × [0, T ],

divu = 0 in Ω × [0, T ],
(1)

with Dirichlet boundary conditions, on a bounded domain of R
d (d = 2, 3)

with a sufficiently smooth boundary. For the space discretization one can con-
sider finite elements or finite volumes. Time-discretization schemes that are pop-
ular for Navier-Stokes are e.g., the Crank-Nicolson method, the θ−fractional step
method of Glowinski, and the class of projection methods introduced by Chorin
and Temam and further developed by several others. It is well known that Compu-
tational/Numerical Analysis Challenges for Navier - Stokes are mainly due to the
incompressibility condition and to the highly not trivial physical effects that are
present at high Raynolds numbers (i.e. for very small viscosity coefficients ν). The
effect of the incompressibility condition and its involved numerical approximation
is present in the saddle point formulation and the corresponding inf-sup conditions
related to the discrete velocity and pressure spaces, the difficulties associated to
the solution of the resulting linear systems etc. In certain cases, the need of de-
coupling velocity and pressure in the linear systems leads to non-standard time
discretizations, such as the methods mentioned above.

Self adjusted meshes have important benefits approximating PDEs with solu-
tions that exhibit nontrivial characteristics. When appropriately chosen, they lead
to efficient, accurate and robust algorithms. Error control is also important, since
appropriate analysis can provide guarantees on how accurate the approximate so-
lution is through a posteriori estimates. Error control may lead to appropriate
adaptive algorithms by identifying areas of large errors and adjusting the mesh
accordingly. Error control and associated adaptive algorithms for Navier-Stokes is
an open problem. Main obstacles are due at one hand to open methodological is-
sues and on the other hand to the lack of techniques applicable to popular efficient
schemes.
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In this talk we highlight the main structure of an algorithm which permits mesh
redistribution with time and the nontrivial characteristics associated with it. The
simplest such algorithm has roughly the form: Given the approximation un at the
time step n, which belongs to a finite dimensional space Vn (reflecting the spatial
discretization method)

1a : choose the next space Vn+1,
1b : project un to the new space Vn+1 to get ũn,
1c : use ũn as starting value to perform the evolution step in Vn+1 resulting

the new approximation un+1 .

Standard schemes involve only step (1c) (uniform or nonuniform mesh). The
presence of (1a) and (1b) are in most of the cases neglected in the analysis. It
should be noted though that, on one hand, such algorithms can accumulate the
nodes of the computational mesh in the areas of interest, as expected, and on the
other hand (1a) and (1b) have fundamental influence on the qualitative behavior of
the schemes. For schemes related to the proper approximation of (1) we mention
three interesting such cases: 1). Refinement can spoil Crank-Nicolson schemes.
Indeed, in [3] we present examples where recursive refinement can spoil standard
Crank-Nicolson schemes. This is reflected in the a posteriori estimate by the
presence of a term of the type kn‖(An+1

h − An
h)un‖ which might grow without

control (An
h denotes the discrete elliptic operator corresponding to the space Vn

and kn the local time step.) A version of the Crank-Nicolson scheme consistent
with mesh redistribution is introduced and analyzed in [3]. Similar effects appear
in θ−fractional schemes. 2). Severe pressure pollution in Navier Stokes solvers.
Mesh redistribution can pollute in a severe way the pressure approximation. In
[4] examples based on van Karman vortex shedding highlighting this effect are
presented. On the other hand, this problem is addressed, [4], by appropriate
modifications which lead to consistent with mesh redistribution algorithms for (1).
3). Geometric mesh redistribution can stabilize unstable schemes. For very small
viscosity ν one should use schemes with artificial numerical diffusion (upwinding).
The right selection of such schemes is a nontrivial task. Recent results obtained
by our group, see e.g., [1, 2] and their references, show that when steps (1a) and
(1b) are based on geometric information on un they effectively stabilize schemes
even without additional terms reflecting artificial diffusion or upwinding.

Towards error control the approach summarized in [4] is presented. This is

based on the appropriate definition of an auxiliary function Û which we call Re-
construction of the approximation U. Then the error estimate relies on the separate
control of u − Û and Û − U. A key ingredient of this approach is the fact that
Û should satisfy the same PDE with the exact solution, but perturbed with an
a posteriori term which we would like to have in the final estimate. Once this
goal is achieved the final result relies on PDE estimates. Regarding Navier-Stokes
solvers the error control of space discrete approximations (by finite elements or
finite volumes) was based in [5] in the introduction of Stokes Reconstruction. This
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is the weak solution of a stationary Stokes problem for each fixed t ∈ [0, T ],

−∆Û + ∇P̂ = gh(t),

div Û = 0,

where gh := −∆̃huh − fh + f . Here uh denotes the space-discrete approxima-
tion to the time-dependent problem, and ∆̃h denotes the projection of the dis-
crete Laplacian into the space of discrete divergence free functions. A technical
obstacle for the error control of space discrete approximations of Navier-Stokes
solvers that this definition addresses is the fact that the discrete approximations
are almost never divergence free; thus comparing with uh directly would lead
to error equations with nonzero divergence. As another example of application
of the above framework we presented a posteriori error estimates for projection
time-stepping schemes. PDE estimates and appropriate error equations through
a time-reconstruction can lead to a posteriori error control of rotational pressure
correction time-stepping schemes. Such schemes can be formulated in a compact
form, [6],

1

k
(un+1 − un) − νP

J
∆un = ν∆(un+1 − un+1) + ν∇divun + P

J
f(tn+1).

The a posteriori bounds follow by using this formulation, an appropriate error
equation which the time-reconstruction satisfies, an important commutator esti-
mate for P

J
∆−∆ P

J
proved in [6], and energy estimates. The case of error control

of fully discrete Navier-Stokes solvers combined with mesh redistribution with n
is of course more technical and involved. Such estimates are derived in [4] by
combining ideas presented in this talk.
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[4] E. Bänsch, F. Karakatsani, Ch. Makridakis, On fully discrete approximations for time-
dependent Stokes problems, To appear (2009).

[5] F. Karakatsani, Ch. Makridakis, A posteriori estimates for approximations of the time-
dependent Stokes equations, IMA Journal of Numerical Analysis 27 (2007) 741-764.

[6] J.-G. Liu, J. Liu, R.L. Pego, Stability and convergence of efficient Navier-Stokes solvers via
a commutator estimate, Com. Pure Appl. Math. 60 (2007) 1443-1487.

[7] Ch. Makridakis, Space and time Reconstructions in a posteriori analysis of evolution prob-
lems, ESAIM: Proceedings, 21, (2007) 31–44 G. Galoz and M. Dauge Editors.



3172 Oberwolfach Report 56/2008

A Numerical Diffusion Flux Based on the Generalized Diffusive
Riemannproblem

Claus-Dieter Munz

(joint work with Gregor Gassner, Frieder Lörcher)

Overview. We propose numerical approximations for diffusion fluxes for both,
finite volume and discontinuous Galerkin schemes. These methods share the prop-
erty that the approximate solutions belong to the space of piecewise polynomials,
which may be discontinuous across grid cell interfaces, even for the approximation
of diffusion terms containing second order derivatives. To take this into account
a framework based on Riemann problems for diffusion equations is introduced
to define suitable numerical diffusion fluxes at grid cell interfaces. For convec-
tion diffusion equations this gives the possibility to approximate both convection
and diffusion in the same spirit. We start from the one-dimensional scalar case
and extend this exact Riemann solutions to an approximative Riemann solver for
multi-dimensional diffusion systems. The proposed fluxes are validated within the
discontinuous Galerkin framework for several test cases including the compressible
Navier-Stokes equations.

Introduction. In finite volume (FV) or discontinuous Galerkin (DG) schemes
the approximate solution may jump at the grid cell interface. Any physical phe-
nomena which can not be resolved on the given grid will result in such a jump.
If the time evolution of these jumps can be approximated in a stable and consis-
tent way, then the numerical scheme does not generate spurious oscillations and
gives meaningful mean values of the under-resolved phenomena. In his pioneering
work Godunov proposed to approximate the convection flux between grid cells by
solving the break down of the jumps into different waves.

We propose to follow Godunov’s way also for diffusion and to base the flux on
the local diffusion of a discontinuity. We look at the exact solution of the so called
diffusive generalized Riemann problem. We start with a scalar linear diffusion
equation and extent the results to systems of diffusion equations. A linearization
leads to the general nonlinear case. For finite volume schemes this diffusion flux
is based on the same reconstruction as the convection flux and establishes a self-
consistent treatment of convection and diffusion.

The Generalized Riemann Problem for Diffusion. Motivated by the
success of Riemann problem based schemes for hyperbolic problems, we will make
use of ideas within this Godunov type methodology to construct accurate and
robust discretizations for parabolic problems.

0.1. Scalar Diffusion. For a scalar diffusion diffusion equation

(1) ut = (µ(x)ux)x =: fd(u, ux)x with µ(x) =

{

µ+, for x > 0,

µ−, for x < 0,
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where µ(x) denotes the positive diffusion coefficient the pure initial value problem
with piecewise linear data

(2) u(x, 0) =

{

u+ + xu+
x , for x > 0,

u− + xu−
x , for x < 0

is considered. We call this initial value problem the diffusive generalized Riemann
problem (dGRP). We note that it is important to allow the diffusion coefficient to
be discontinuous at x = 0, because this is the basis to extend the consideration for
the linear case to nonlinear diffusion problems. In this case the diffusion coefficients
will be discontinuous, if the data are discontinuous.

The exact solution of this problem can be obtained, e.g. by Laplace transfor-
mation and solving the linear second order ordinary differential equations. This
can be done separately for the right and left part of the x-axis. The right and left
solutions are then put together by imposing the boundedness of the solution and
the continuity of the solution together with the heat flux. The numerical diffusion
flux is then defined to be the physical flux at the point of the initial jump of the
data x = 0 averaged over the time step.

The dGRP diffusion flux can be extended to linear systems by a diagonalization
of the diffusion matrix. The scalar flux is then applied to every equation of the
uncoupled system. The transformation back then gives the desired diffusion flux
for the system. For nonlinear systems the solution of the dGRP (1),(2) are takes
as the state for linearization. The diffusion coefficients in (1) are defined to be
the limits of the nonlinear diffusion function from the left and from the right to
the initial jump. In such a way the diffusion flux is defined for the compressible
Navier-Stokes equations. More details can be found in [1] and [2].

A Discontinuous Galerkin Scheme Based on a Space-Time Expansion.
The class of DG schemes is quite interesting for practical calculations in complex
geometries, because the DG schemes reproduce the order of accuracy even on dis-
torted unstructured grids. The approximate solution in the discontinuous Galerkin
schemes may be discontinuous at grid cell interfaces which allows the approxima-
tion of strong gradients on coarse grids or even discontinuities. Usually, high order
time discretization of DG schemes for unsteady computations is done separately
from space discretization by the method of lines approach using a Runge Kutta
scheme (RK-DG).

An actual topic of research are explicit discontinuous Galerkin (DG) schemes
which provide the time approximation in one single step. Using ideas of the so
called ADER finite volume approach (Arbitrary order using DERivatives) we pro-
pose the space-time expansion discontinuous Galerkin scheme which are based on
a space-time Taylor expansion about the barycenter ~xi of a grid cell Qi and about
the old time level tn:

(3) U(~x, t) = U(~xi, tn) +

Ni
∑

j=1

1

j!
((t − tn)

∂

∂t
+ (~x − ~xi) · ~∇)j U(~xi, tn).
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With this space time Taylor series it is possible to approximate U at all space
time points (~x, t) ∈ Qi × [tn; tn+1], which is needed for the evaluation of the
volume and surface integrals. While the space derivatives are known from the
approximate solution at time tn, the time and mixed space-time derivatives are
the problem. These are replaced by pure space derivatives using the differential
equation several times. This is called the Cauchy-Kovalevskaya or Lax-Wendroff
procedure, see, e.g. [5] for more details. This expansion gives the values for
the Gaussian quadrature in the case of nonlinear problems by which the surface
and volume space-time integrals in the variational formulation are approximated.
In the linear case the polynomials may be integrated analytically resulting in
quadrature-free DG schemes.

The so-called space-time expansion discontinuous Galerkin scheme (STE-DG)
scheme may be locally adapted to the behavior of the solution. This includes
h-adaptivity, which is especially efficient due to the possibility of using noncon-
forming mesh nodes, and p-adaptivity allowing the degree of the local approxima-
tion space to vary from grid cell to grid cell. The STE-DG scheme is also locally
adapted with respect to the time approximation, see [3], [4]. Each grid cell may
evolve in time with a local time step corresponding to the local stability restric-
tions. This technique strongly increases the performance for multi-scale problems
or distorted grids where the local time steps strongly vary in the computational
domain. The local time stepping guarantees efficiency of the simulation on the
entire domain. Large grid cells in the far field allow larger time steps there.
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A systematic approach to high resolution well-balancing

Sebastian Noelle

(joint work with Chi-Wang Shu, Yulong Xing)

Over the last decade, the development of high resolution well-balanced schemes
was a central topic in the numerical analysis of hyperbolic systems. Indeed, many
applications in continuum mechanics lead to systems of balance laws. For such
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flows, the source terms are often in near-perfect equilibrium with the convective
forces. A numerical scheme which does not respect these equilibria at the discrete
level may produce spurious oscillations, and hence convergence may slow down.
Most numerical approximations are only well-balanced for certain subclasses of
equilibria. Often, these stationary states are characterized by constant momentum
and energy, together with further simplifying assumptions. The more complex the
equilibria are, the more involved well-balancing becomes. For example, compared
with balancing still water (Audusse, Bouchut, Bristeau, Klein, Perthame 2004), the
moving water case solved by Noelle, Xing and Shu [4] was a tremendous technical
challenge. More and more, these publications are only accessible to a small circle
of experts.

Unifying framework

Therefore, we see a strong need for a unifying and at the same time simplifying
framework within which existing schemes may be rederived and reinterpreted, and
new ones may be developed more easily. Here we will present such a framework
for finite volume and discontinuous Galerkin schemes.
When deriving a well-balanced scheme, we first select a class of stationary states
which the scheme should preserve. Examples are the lake at rest, river flows, jets
in a rotational frame, or multi-layer shallow water flows. For each component of
the algorithm

• reconstruction
• quadrature
• flux-source-computation for the singular layer at the cell interface

we define appropriate notions of well-balancing, always tailored to the class of
stationary states under consideration. Once these three balancing-properties are
fulfilled, well-balancing of the overall scheme follows immediately. As an example,
we demonstrate that the scheme based on hydrostatic reconstruction of Audusse
et al., the scheme based on a more general equilibrium reconstruction by Noelle,
Xing and Shu [4] and the schemes based on a general hydrostatic reconstruction
by Castro, Pares et al (2007) fall into this framework.

Applications, non-standard schemes, and open questions

Instabilities of the gulf stream. Together with Pankratz, Natvig and Gjevik
[2] we extended our high-order-accurate well-balanced scheme [1] to the atlantic
shelf off the Norwegian coast, and verified a theory of Gjevik on the onset of
horizontal vortex-instabilities for the gulf stream. We derived a new non-reflecting
inflow-boundary condition. Non-reflecting outflow boundary conditions are still
an issue. The main computational issue here is whether fourth- and higher-order
codes are more efficient that second order central differences (when there are no
discontinuities).
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Bi-characteristic FVEG (Finite Volume Evolution Galerkin) schemes.
In [3] we constructed a well-balanced scheme on bicharacteristic theory. In a cur-
rent joint project with M. Lukáčová-Medvidová, A. Bollermann and A. Zauskova
we are studying low Froude number flows.

Non-Uniquenes. Beyond the technical difficulties contained in some of these
steps (which are now clearly recognized and separated from each other), there is a
major issue concerning hyperbolic balance laws which is not yet resolved, neither
analytically nor numerically. This concerns the non-uniqueness of the solution
to the Riemann problem when both the conservative variables and the source
term exhibit discontinuities. From another point of view, the choice of paths
defining non-conservative products of measures in state space is not unique, and
different paths may define different weak solutions (Dal Maso, Lefloch, Murat 1995;
Castro, Chacón, Fernández-Nieto, Parés 2007). For the shallow water equations,
two different choices, each with a sound physical justification, have recently been
proposed. They both concern the choice of the auxiliary, intermediate height at an
interface. Audusse et al. choose it to be the maximum of the neighboring heights,
which preserves positivity at the shore. In [4] we show that for waterfalls, which
occur frequently in rivers, the natural height is the minimal one. Preliminary
studies of entropy production (with J.A. Lopez-Garcia and T. Morales) did not
reveal a general principle how to choose the intermediate height.
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Reduced Basis Methods for Non-Linear Conservation Laws

Mario Ohlberger

(joint work with Bernard Haasdonk)

Reduced basis methods [9] are increasingly popular methods for complexity re-
duction in problems, where parameterized partial differential equations are to be
solved repeatedly for varying parameters. This means that high-dimensional finite
element or finite volume approximations uH(µ) ∈ WH are to be computed for
varying parameter vectors µ ∈ P from some polygonal parameter domain. Ex-
amples for such applications are design, control, optimization, inverse modeling
based on PDEs, etc. Instead of repeated computation of these expensive detailed
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simulations, a problem-specific low dimensional subspace WN ⊂ WH is chosen in a
preprocessing step, which captures the solution variety under parameter changes.
Based on this reduced basis space WN , a reduced model is devised, which inexpen-
sively computes uN (µ) ∈ WN as approximation of the unknown uH(µ) for any
new parameter vector.

In this contribution we focus on a reduced basis method for parameterized non-
linear conservation laws, discretized by finite volume schemes. Such conservation
laws can be formulated as

∂tu(µ) + Lµ[u(µ)] = 0 in Ω × [0, T ],

where Ω ⊂ R
d is a spatial domain, µ ∈ P ⊂ R

p a parameter vector and Lµ[u(µ)]
denotes a parameter dependent space operator in divergence form, i.e

Lµ[v] := ∇ · f(µ; v)

with a non-linear flux function f : P × R → R
d.

The foundation for the reduced basis method consists of a monotone finite
volume discretization of the conservation law, which can be expressed in abstract
form as

uk+1
H (µ) = uk

H(µ) − ∆tLk
H(µ)[uk

H(µ)]

where uk
H(µ) ∈ WH is an approximation of u(µ) at time tk. The approximation

space WH is the space of piecewise constant functions on a given triangulation of Ω
with dimension H := dim(WH). The principal idea of the reduced basis method for
such discrete evolution equations is to construct a reduced basis space WN ⊂ WH

with low dimension N := dim(WN ) << H and to approximate uk
H(µ) ∈ WH

further by a reduced basis solution uk
N(µ) ∈ WN defined through a Galerkin

projection of the finite volume scheme into the space WN . i.e.
∫

Ω

uk+1
N (µ)ϕ =

∫

Ω

(

uk
N (µ) − ∆tLk

H(µ)[uk
N (µ)]

)

ϕ, ∀ϕ ∈ WN .

For details concerning this method in the case of linear problems we refer to [7].
Having this general approach in mind, there are at least two open problems. First,
we have to construct a suitable subspace WN , and second, we have to ensure that
our method is efficient and gives good approximations.

The efficiency of the method is usually obtained by a so called offline-online
decomposition, such that all computations depending on the complexity H can be
done in an offline phase, while in the online-phase only problems with complexity
polynomial in N have to be solved. While online-offline decomposition is easy to
achieve for linear equations with affine parameter dependence (see [9]), it is not at
all straight forward for non-linear problems (see [2]). In [8] we therefore introduced
the concept of empirical interpolation for localized operators, which we apply here
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in order to approximate the non-linear operator Lk
H(µ) by its empirical interpo-

lation IM [Lk
H(µ)]. This again results in an affine parameter dependence. Hence,

offline-online decomposition can be done as in the linear, affine case. For the
empirical interpolation it is necessary to construct a second approximation space
which is called collateral reduced basis space WM with low dimension M . This
space is defined as a span of discrete functions given by the operator Lk

H(µ) ap-
plied to a snapshot uk

H(µ) for thoroughly chosen parameters µ and time instances
tk. For details in the context of finite volume approximation for conservation laws
we refer to [6], where also numerical results are discussed.

Finally, it remains to discuss the efficient construction of the reduced basis space
WN . This should be done in such a way that we can guarantee a certain approx-
imation quality of the resulting method. The key to this issue are a posteriori
error estimates for the error between the finite volume approximation uH and the
reduced basis approximation uN . Having such an error estimate at hand, we may
define an algorithm for adaptive basis enrichment in order to construct WN with
a prescribed error tolerance. For details we refer to [4, 5]. In recent work we also
advised a concept of adaptively choosing the reduced basis space in time using a
posteriori error estimates. The concept and preliminary results are given in [3].

In our ongoing work on reduced basis methods we are currently also working on
an application of the technology to evolution equations on parameterized geome-
tries. Such problems for instance appear in shape optimization [10]. By mapping
the physical geometry to a fixed reference geometry, the partial differential equa-
tions are transformed to quite general non-linear evolution equations that can be
again treated with the concept of empirical interpolation for localized operators.
We refer to [1] for first results for such applications.

So far, the concept of empirical interpolation for localized operators is restricted
to explicit evolution schemes. In a new project we will also start to look at a gen-
eralization of this technique to implicit and semi-implicit discretizations.
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2D Viscous Boussinesq Equations on a bounded domain

Ronghua Pan

(joint work with M. Lai and K. Zhao)

This talk reports my recent joint work with M. Lai and K. Zhao on the initial
boundary value problem for 2D Boussinesq equations on a bounded domain. More
precisely, we consider the following problem

(1)











Ut + U · ∇U + ∇P = ν∆U + ρe2

ρt + U · ∇ρ = 0,

∇ · U = 0,

where U = (u, v) is the velocity vector field, P is the scalar pressure, ρ is the scalar
density, the constant ν > 0 models viscous dissipation, and e2 = (0, 1)T. Here we
consider (1) in a bounded domain Ω ⊂ R2 with smooth boundary ∂Ω. The system
is supplemented by the following initial and boundary conditions:

(2)

{

(U, ρ)(x, 0) = (U0, ρ0)(x), x ∈ Ω,

U |∂Ω = 0.

The Boussinesq system is potentially relevant to the study of atmospheric and
oceanographic turbulence, as well as other astrophysical situations where rotation
and stratification play a dominant role (see e.g. [4] and [5]). In fluid mechanics,
system (1) is used in the field of buoyancy-driven flow. It describes the motion
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of incompressible inhomogeneous viscous fluid under the influence of gravitational
force (c.f. [3]). In addition to its own physical background, the Boussinesq sys-
tem was known by its close connection to the fundamental models, such as Euler
and Navier-Stokes equations, for 3D incompressible flows by sharing the vortex
stretching effect.

Recent progress is made for the Cauchy problem by [2] and [1] for the global
regularity. Our purpose is to prove the existence of unique global smooth solution
if the data is smooth. We propose the following compatibility conditions

(3)

{

∇ · U0 = 0, U0|∂Ω = 0,

ν∆U0 + ρ0e2 −∇P0 = 0, x ∈ ∂Ω, t = 0,

where P0(x) = P (x, 0) is the solution to the Neumann boundary problem

(4)

{

∆P0 = ∇ · [ρ0e2 − U0 · ∇U0], x ∈ Ω,

∇P0 · n|∂Ω = [ν∆U0 + ρ0e2] · n|∂Ω,

with n the unit outward normal to ∂Ω.
Our main results are stated in the following theorem.

Theorem 4. Let Ω ⊂ R2 be a bounded domain with smooth boundary. If
(ρ0(x), U0(x)) ∈ H3(Ω) satisfies the compatibility conditions (4)–(5), then there
exists a unique solution (ρ, U) of (1)–(2) globally in time such that ρ(x, t) ∈
C([0, T ); H3(Ω)) and U(x, t) ∈ C([0, T ); H3(Ω))∩L2([0, T ]; H4(Ω)) for any T > 0.
Moreover, there exists a constant C̄ > 0 independent of t such that

(5) ‖U(·, t)‖2
L2 ≤ max

{

‖U(·, 0)‖2
L2 ,

C̄2

ν2
‖ρ(·, 0)‖2

L2

}

, ∀ t ≥ 0.
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Numerical schemes for the BGK kinetic model

Gabriella Puppo

(joint work with Sandra Pieraccini)

Kinetic models describe fluid flows at rarefied regimes. These flows include gas
flows in the upper layers of the atmosphere, but also microflows in MEMS, where
the dimensions of the device are of the same order as the mean free path of a gas
molecule. The main tool of kinetic theory is Boltzmann equation, which describes
the evolution of the flow, taking into account the impact of the distribution of the
microscopic velocities of fluid particles. We are interested in the computational
issues arising from kinetic models. The reference scheme for kinetic flows is the
DSMC (Direct Simulation Monte Carlo) method [3], which however becomes ex-
tremely costly close to hydrodynamic regimes. This is one reason to motivate the
study of simplified models for Boltzmann equation. In this work, we concentrate
on the BGK model, [9].

This model has several characteristics which are of interest from a computa-
tional point of view. It is a microscopic model, which takes into account the
microscopic effects of a gas not in equilibrium. Thus it can be applied also in
kinetic regimes, and approximating macroscopic models, such as Grad moment
method or Burnett equations can be derived from BGK [10]. It has a strong the-
oretical background, see for instance [6] where the existence of solutions for the
BGK model is proved. Moreover, it is known that the BGK model is endowed
with an H-theorem describing the approach towards equilibrium for an isolated
system, [9].

Several extensions have been proposed, enabling the application of the BGK
model to different regimes. Among these we consider the ES-BGK model [2], for
flows approaching the Navier Stokes regimes, BGK models for mixtures [1] and
for gas mixtures undergoing chemical reactions [5]. The widening of applications
of the BGK model has prompted a parallel development of numerical schemes
designed to integrate the BGK equation. In the following, we will outline the
main difficulties arising in the discretization of the BGK equation, and describe
the ideas we have developed to overcome them.

The BGK model describes the evolution of the probability density f(x, v, t) of
finding a gas molecule in the volume element dV centered at the point (x, v) in
phase space at time t:

(1)
∂f

∂t
+ v · ∇xf =

1

τ
(fM − f) t ≥ 0, x ∈ R3, v ∈ R3

Here f and fM are functions of (x, v, t), i.e. space, microscopic velocity and time,
respectively; τ is the relaxation time, which is a function of (x, t), and close to
the hydrodynamic regime is τ << 1. The function fM is the Maxwellian obtained
from the moments of f , namely:

(2) fM (x, v, t) =
ρ(x, t)

(2πRT (x, t))3/2
exp

(

−‖v − u(x, t)‖2

2RT (x, t)

)

.
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Here R is the constant of a perfect gas, and we are considering a monoatomic gas,
with 3 translational degrees of freedom. The quantities ρ, u and T are respectively
the macroscopic density, velocity and temperature of the gas, and they are obtained
from the moments of f , which are defined as

(3)





ρ
m
E



 =

〈

f





1
v

1
2‖v‖2





〉

≡
∫

R3

f





1
v

1
2‖v‖2



 dv.

Here m is momentum, so that the macroscopic velocity is simply u = m/ρ, while E
is the total energy, and the temperature is obtained from the relation: 3ρRT/2 =
E − 1

2ρu2.
The macroscopic moments of f are conserved, in the sense that:

∂t < f > +∇x· < fv > = 0,(4)

∂t < fv > +∇x· < v ⊗ vf > = 0,(5)

∂t <
1

2
‖v‖2f > +∇x· <

1

2
‖v‖2vf > = 0.(6)

A numerical scheme for (1) should be able not only to yield an accurate solution
to equation (1), but also to satisfy the conservation equations and the entropy
principle in some discretized form. Moreover, the BGK equation is stiff when
the relaxation time τ is small, and the convective part of the equation (left hand
side of (1)) gives a restrictive CFL, if the quadrature in velocity space, needed to
compute the macroscopic moments of f , involves large values of the microscopic
velocity, which can be much larger than the local sound speed.

In [7] we have constructed a scheme which is explicit in the convective part and
implicit in the stiff source term, exploiting the fact that the distribution f and
the corresponding Maxwellian fM have the same moments defined in (3). Thus,
taking moments of (1), the source term disappears, and the updated values of the
macroscopic moments do not depend on the values of f at the new time step, and
can be computed starting from known values of f . Once the updated values of
the moments are known, the Maxwellian at the new time level can be computed
from (2). In this fashion, the stiff source term is implicit, but it remains linear in
f . The resulting scheme is conservative, if the discrete Maxwellian is computed as
in [4]. However, the scheme is explicit in the stiff fast velocity modes.

To overcome this difficulty, we are currently working on a new scheme, for which
the Maxwellian at the new time step is computed integrating explicitly the macro-
scopic conservation equations, (4)-(6). This system of equations in fact has a CFL
depending on macroscopic quantities, independently of the fast microscopic modes.
From the updated moments, the new Maxwellian function can be computed. Fi-
nally, this quantity is substituted in the time discretized equation obtained from
the BGK equation (1), which now becomes linear in the unknown values of f at
the new time level. At this point, the equation can be integrated implicitly with
respect to both the fast velocity modes and the source term, see [8], with no need
to trigger the CFL to the fast microscopic velocities.
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Identification of an average temperature and a dynamical pressure in
a multi-temperature mixture of fluids

Tommaso Ruggeri

We first present the different models of a mixture of compressible fluids and we
discuss in the case of Euler fluids the local and global well-posedness of the rela-
tive Cauchy problem for smooth solutions. Then we present a classical approach
of mixture of compressible fluids when each constituent has its own temperature.
The introduction of an average temperature together with the entropy principle
dictates the classical Fick law for diffusion and also new constitutive equations
associated with the difference of temperatures between the components. The con-
stitutive equations fit with results recently obtained through the Maxwellian it-
eration procedure in extended thermodynamics theory of multi-temperature mix-
tures. The differences of temperatures between the constituents imply the exis-
tence of a new dynamical pressure even if the fluids have a zero bulk viscosity.
The non-equilibrium dynamical pressure can be measured and may be convenient
in several physical situations as for example in cosmological circumstances where -
as many authors assert - a dynamical pressure played a major role in the evolution
of the early universe.
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The nature of viscous dissipation in conservation laws

Denis Serre

Let us consider a first-order system of conservation laws

(1) ∂tu + divf(u) = 0, (x ∈ R
d, u(x, t) ∈ U),

where U is a convex, open subset of R
n. We assume that (1) admits a strongly

convex entropy η of flux Q. Strong convexity just means that D2η(u) is positive
definite for every state u ∈ U .

We are interested in viscous extensions of (1):

(2) ∂tu + divf(u) = div(B(u)∇u) =
∑

α,β

∂α(Bαβ(u)∂βu).

We say that (2) is strongly entropy-dissipative if it implies, at least for smooth
solutions, the inequality

(3) ∂tη(u) + divQ(u) + ω
∑

α

∣

∣

∣

∣

∣

∣

∑

β

Bαβ(u)∂βu

∣

∣

∣

∣

∣

∣

2

≤ div(dη(u)B(u)∇u),

where ω = ω(u) is strictly positive and continuous. This amounts to saying that

∑

α,β

D2η(u)(Xα, Bαβ(u)Xβ) ≥ ω
∑

α

∣

∣

∣

∣

∣

∣

∑

β

Bαβ(u)Xβ

∣

∣

∣

∣

∣

∣

2

=: ω|B(u)X|2, ∀u ∈ U , ∀X1, . . . , Xd ∈ R
n.(4)

This definition can be weakened by asking only that (here, we drop the word
strongly and keep only entropy-dissipative)

(5)

∫

Rd

∑

α,β

D2η(U)(∂αU, Bαβ(U)∂βU) dx ≥ ω0

∫

Rd

∑

α

∣

∣

∣

∣

∣

∣

∑

β

Bαβ(U)∂βU

∣

∣

∣

∣

∣

∣

2

dx.

We notice that (5) implies the algebraic condition
(6)

D2η(u)(X, B(ξ; u)X) ≥ ω(u)
∑

α

|Bα(ξ; u)X |2 , ∀u ∈ U , ∀ξ ∈ R
d, ∀X ∈ R

n,

where the symbol B is defined by

Bα(ξ) :=
∑

β

ξβBαβ , B(ξ) =
∑

α

ξαBα(ξ) :=
∑

α,β

ξαξβBαβ , (ξ ∈ R
d).

We prove the following result.
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Theorem. Assume that (2) is entropy dissipative. Assume moreover that the
dissipation tensor has the structure

B(ξ; u) =

(

0p×n

b(ξ; u)

)

,

with b of full rank n − p when ξ 6= 0.
Then the dissipative terms can be rewritten in the following way

Bαβ(u)∂βu =

n
∑

i=p+1

Y αβ(u)∂βzi,

with

zi :=
∂η

∂ui
.

At last, one has

Y (ξ, u) =

(

0p

Z(ξ; u)

)

,

where Z satisfies the Legendre–Hadamard condition

XT Z(ξ; u)X ≥ ω1|X |2|ξ|2 ∀ξ ∈ R
d, ∀X ∈ R

n.

If the viscous system is strongly entropy-dissipative, we have the stronger property
that

∑

i,j

∑

αβ

FiαFjβZαβ
ij ≥ ω2‖F‖2

for every matrix F ∈ M(n−p)×d(R).
♣

This theorem is well illustrated by various models of fluids, but it not limited
to this area. The assumption about the block structure of B is a natural one.
For instance, in the Navier-Stokes equations, we have p = 1, and the derivatives,
z2, . . . can be rewritten in terms of those of the velocity and the temperature. The
structure found in the theorem is one of the main assumptions of Kawashima in
his fundamental study of the hyperbolic-parabolic Cauchy problem [2].

Details can be found in [3, 4]. The assumption of strong entropy dissipation is
taken from [1].

References

[1] C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Math-
ematischen Wissenschaften 325 (2005), Springer-Verlag.

[2] S. Kawashima, Systems of a hyperbolic parabolic type with applications to the equations of
magnetohydrodynamics, PhD Thesis, Kyoto University (1983).

[3] D. Serre, Systems of conservation laws with dissipation, In preparation.
[4] D. Serre, The structure of dissipative viscous system of conservation laws, submitted.



3186 Oberwolfach Report 56/2008

Mixtures

Konstantina Trivisa

Multicomponent reactive mixtures arise daily in science and engineering. Many
practical applications such as modeling pollutant formation, chemical vapor de-
position reactors, laminal flame extinction limits, astrophysical plasma and atmo-
spheric modeling, for instance, require us to take into account complex chemistry
mechanisms and detailed transport phenomena. The objective of this work is to
develop a rigorous mathematical framework based on the principles of continuum
physics and in particular to analyze the global in time existence, stability and
asymptotic behavior of multicomponent reactive flows.

The state of such flows is, in general, characterized by the macroscopic variables:
the total mass density ̺ = ̺(t, x), the velocity field u = u(t, x), the absolute
temperature ϑ = ϑ(t, x), and the species mass fractions Yk = Yk(t, x), k = 1, ..., N ,
depending on the time t ∈ (0, T ) and the Eulerian spatial coordinate x ∈ Ω ⊂ R3.

The primitive conservation equations governing multicomponent flows, express
the conservation of mass, momentum, energy, and conservation of species mass
(cf. Feireisl, Petzeltová and Trivisa [6], Giovangigli [7, Chapter 2, Section 2.2]):

(1) ∂t̺ + divx(̺u) = 0,

(2) ∂t(̺u) + divx(̺u ⊗ u) + ∇xp = divxS + ̺f ,

(3) ∂t(̺E) + divx

(

(̺E + p)u
)

+ divx

(

q − Su−
N

∑

k=1

hkFk

)

= 0,

(4) ∂t(̺Yk) + divx(̺Yku) = divx(Fk) + ̺ωk, k = 1, ..., N.

Here, p denotes the pressure, S stands for the viscous stress tensor, E represents
the total energy per unit mass, q is the heat flux, Fk denotes the diffusion flux,
ωk is the production rate of the k-th species, while hk are the species formation
enthalpies.

The objective of this research activity is the investigation and mathematical
analysis of a wide spectrum of physical systems in compressible fluids, nonlinear
materials sciences, combustion, multi–phase flows, astrophysics and other applied
areas. The systems under investigation are governed by the Navier–Stokes equa-
tions in Eulerian coordinates often coupled with additional equations depending
on the specific physical context.

The articles [3, 4] deal with multidimensional models which generalize the
Navier–Stokes equations for compressible reacting fluids, in the sense that they
involve the coupling of the hyperbolic-parabolic system (Navier-Stokes-Equations)
with one chemical kinetics equation modeling one irreversible chemical reaction.
The goal of this work is to analyze the dynamics of mixtures of compressible re-
acting fluids. In these articles, global existence results have been obtained by
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extending the framework and techniques introduced by P.L. Lions [10] for the
nonisentropic Navier-Stokes equations and by Feireisl [5] in the framework of vari-
ational solutions. More precisely, the articles [3], [4] focus on multidimensional
models for the combustion of a viscous, compressible, radiative–reactive gas. The
motion of the gas is governed by the Navier–Stokes equations, which represent
the balance of mass, momentum and energy and the two–species chemical kinetics
equation for higher–order kinetics. The gas is viewed here as a continuum occupy-
ing at a given time t a bounded domain Ω ⊂ R3. This work establishes the global
existence of weak solutions to an initial–boundary–value problem with large initial
data.

The article [11] deals with general multicomponent models formulated by sys-
tems governed by the Navier Stokes equations in Eulerian coordinates coupled
with the species concentration balance. The system of equations takes now a new
form due to the choice of rather complex constitutive relations that can accom-
modate appropriately the physical context. The transport fluxes satisfy rather
general constitutive laws, the viscosity and heat conductivity depend on the tem-
perature, the pressure law is a nonlinear function of the temperature depending on
the species concentration as well as the molecular weights of the individual species.
In accordance the heat flux depends also on the density of the individual species
and contains additional terms accounting for the enthalpy. The constitutive laws
presented here are in agreement with the fundamental principles of continuum
physics. The dependence of the pressure and the heat flux on the species concen-
tration captures quite accurately the physical setting offering a better description
of the dynamic behavior of fluid mixtures. This addition in the pressure law, due
to the underlying physics, complicates the mathematical analysis since it affects
both the constitutive relations and the equations of the system in a significant way.
The main ingredients of the approach in this work can be formulated as follows:

• A suitable variational formulation of the underlying physical principles
based on the second law of thermodynamics, in particular, replacing the
energy balance by the corresponding equation for the total entropy of the
system.

• Physically grounded structural hypotheses imposed on the thermal equa-
tion of state for the pressure p. In particular, the effect of radiation,
significant in the high temperature regime, as well as the concentration of
the individual components in the mixture are taken into account.

• A priori estimates based solely on boundedness of the initial energy and
entropy of the system. As a matter of fact, this step requires the trans-
port coefficients µ, κ, and Dk to be effective functions of the absolute
temperature.

• The weak stability property of the effective viscous pressure combined with
the approach based on the oscillation defect measures (see also [5, 10]).

The main contribution of this work to the existing theory, and the principal
new difficulties to be dealt with can be characterized as follows:
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• The approximation scheme used to construct the solution is based, on one
hand, on the Faedo-Galerkin type approximation to deal with the “fluid”
part of the system while the “reaction” part requires uniform estimates
based on the invariant regions technique (cf. Chueh et al.). These two ap-
proaches being rather incompatible, some extra terms must be introduced
in the approximate system.

• In order to accommodate the presence of individual components in the
mixture and therefore the dependence of the state equation for the pressure
on the concentrations of the individual species a new technique based on
weighted oscillations defect measures must be used.

• The standard entropy with the corresponding balance equation must be
considerably modified (cf. Giovangigli [Chapter 2, Section 2.6] [97]) in
order to accommodate the presence of multiple individual components in
the mixture.

• Motivated by several recent studies devoted to the scale analysis as well as
numerical experiments related to multicomponent models (see Klein et al. [119]),
article [6] deals with multicomponent reactive flows governed by the Navier-Stokes
system coupled with a given set of N reversible chemical reactions. Several addi-
tional difficulties appear in the coupling of the hyperbolic-parabolic Navier-Stokes
system with the reaction diffusion part for the chemistry consisting of N > 1 re-
versible chemical reactions (see for instance Bose [Chapter 6]). Therefore, there is
a fundamental need for developing a relevant existence theory. The main objective
of this work is to undertake a first step in this direction.

This rich and complex system has been investigated by Giovangili in [7] where
an existence result was presented under the assumption that the initial state is
near an equilibrium. For general large data, however, the pertubative arguments
of [7] no longer apply and a new machinery is required.

The main contribution of this work to the existing theory, and the principal
new difficulties to be dealt with can be characterized as follows:

• In order to accommodate realistic growth conditions imposed on the trans-
port coefficients, a new technique based on weighted oscillations defect
measures must be used. Moreover, the velocity does not (is not known
to) belong to the standard “energy space” W 1,2(Ω; R3). This fact calls for
rather delicate energy estimates. In particular, a generalized version of
Korn’s inequality is shown that may be of independent interest.

• In order to ensure strict positivity of the absolute temperature, a singular
source term must be added to the approximate thermal energy equation
as well as to the corresponding total energy balance, which makes the
analysis quite delicate.

• The standard entropy with the corresponding balance equation must be
considerably modified (cf. Giovangigli [Chapter 2, Section 2.6][97]) in order
to handle the reversibility of one or several chemical reactions.
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Results on the stability and large time behavior for multicomponent flows are
presented in [9]. The current research activity of the PI extends the earlier work
by Chen, Hoff, Trivisa [1], [2] on one-dimensional models.
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Effective equations for shear band formation at high strain rates

Athanasios Tzavaras

(joint work with Th. Katsaounis)

One striking instance of material instability is observed in the course of de-
formations of metals at high strain-rates. It appears as an instability in shear
and leads to regions of intensely concentrated shear strain, called shear bands.
In experimental investigations of high strain-rate deformations of steels, obser-
vations of shear bands are typically associated with strain softening response –
past a critical strain – of the measured stress-strain curve [1]. It was early recog-
nized that the effect of the deformation speed is twofold: First, an increase in the
deformation speed changes the deformation conditions from isothermal to nearly
adiabatic. Second, strain rate has an effect per se, and needs to be included in the
constitutive modeling.

Under isothermal conditions, metals, in general, strain harden and exhibit a sta-
ble response. As the deformation speed increases, the heat produced by the plastic
work causes an increase in the temperature. For certain metals, the tendency for
thermal softening may outweigh the tendency for strain hardening and deliver net
softening. A destabilizing feedback mechanism is then induced, which operates
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as follows ([1]): Nonuniformities in the strain rate result in nonuniform heating.
Since the material is softer at the hotter spots and harder at the colder spots, if
heat diffusion is too weak to equalize the temperatures, the initial nonuniformities
in the strain rate are, in turn, amplified. This mechanism tends to localize the
total deformation into narrow regions. On the other hand, there is opposition to
this process by ”viscous effects” induced by strain-rate sensitivity. The outcome
of the competition depends mainly on the relative weights of thermal softening,
strain hardening and strain-rate sensitivity, as well as the loading circumstances.

This qualitative scenario is widely accepted as the mechanism of shear band
formation. On the other hand, this qualitative picture is somewhat imprecise in
terms of what determines (or rules out) the onset of localization. The goal of this
work is to develop a quantitative criterion explaining the onset of instability. We
use the model

(1)

vt =
1

r
σx,

θt = κθxx + σγt,

γt = vx,

where r, κ are non-dimensional constants, and the stress is given by an empirical
power law in the normalized form

(2) σ = θ−αγmγn
t ,

appropriate for the flow rule of a viscoplastic material exhibiting thermal softening,
strain hardening and strain-rate sensitivity.

The model (1) admits a class of special solutions describing uniform shearing

(3)

vs = x,

γs = t + γ0,

θs =

[

θ1+α
0 +

1 + α

m + 1

[

(t + γ0)
m+1 − γm+1

0

]

]
1

1+α

,

σs = θ−α
s (t)(t + γ0)

m ,

Much of the previous analysis on (1) has centered on the issue of their stability.
The form of (3) suggests the change of variables

(4)
θ(x, t) = (t + 1)

m+1
α+1 Θ(x, τ(t)), γ(x, t) = (t + 1)Γ(x, τ(t)),

σ(x, t) = (t + 1)
m−α
α+1 Σ(x, τ(t)), v(x, t) = V (x, τ(t)), τ = ln(1 + t).

that transforms the problem into the study of the asymptotic behavior for a
reaction-diffusion system.

In the special case of a fluid with temperature dependent viscosity (m = 0) the
kinematic equation (1)3 decouples from the remaining equations, and the problem
reduces to the study of a simplified system of two equations. This simpler system
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has been analyzed in most detail [2, 3, 5]. Its rescaled variant can be rewritten as

(5)

Στ =
ℓ

r
e

1
1+α

τΘ−α
ℓ Σ

ℓ−1
ℓ Σxx +

(

−αΘ
α
ℓ
−1Σ

ℓ+1
ℓ +

α

1 + α

)

Σ,

Θτ =

(

Θ
α
ℓ
−1 Σ

ℓ+1
ℓ − 1

1 + α

)

Θ .

The system (5) admits invariant rectangles in the parameter range q = −α+n > 0
but misses this property in the range q = −α + n < 0. It is this dichotomy that
provides a quantitative threshold to stability: In the parameter range q > 0 the
invariant rectangles yield asymptotic stability of the uniform shearing solution.
By contrast, in the complementary region q < 0 moderate perturbations of the
uniform solutions can lead to instability and formation of shear bands.

We present a connection with the theory of relaxation systems that turns out
to be instrumental for understanding the onset of localization. This connection
motivates the derivation of an effective equation for the onset of localization. The
result is the following [6]: Let T be a parameter describing a time-scale, and
consider a change of variables of the form

(6)
θ(x, t) = (t + 1)

m+1
α+1 Θ(x,

s(t)

T
) , γ(x, t) = (t + 1)Γ(x,

s(t)

T
) ,

σ(x, t) = (t + 1)
m−α
α+1 Σ(x,

s(t)

T
) , vx(x, t) = Vx(x,

s(t)

T
) ,

where T is a parameter representing a change of time-unit and s(t) : [0,∞) →
[0,∞) is selected as a monotone increasing, surjective map that represents a change
of time-scale. The new functions (UT , ΘT , ΓT , ΣT ) with UT = V T

x satisfy the
system

(7)

∂sU = Σxx,

1

T
(βs + 1)Θs = ΣU − m + 1

1 + α
Θ,

1

T
(βs + 1)Γs = U − Γ,

Σ = Θ−αΓmUn.

If (UT , ΘT , ΓT , ΣT ) stabilizes as T → ∞ then its limiting profile will describe the
asymptotic form of (vx, θ, γ) as t → ∞. The asymptotic behavior problem is then
reduced to studying the large T behavior of (7), a problem lying within the realm
of relaxation theory. Using ideas analogous to the Chapman-Enskog expansion
in kinetic theory of gases, one shows that for large T >> 1 and r = O(T ) the
quantity UT = V T

x satisfies the effective equation

(8) ∂sU = ∂xx

(

c Up +
λc2

T
(βs + 1)Up−1∂xxUp

)

,

within order O( 1
T 2 ). The parameters are p = q

1+α = −α+m+n
1+α , β = m+1

1+α , c =

β
α

1+α and the coefficient of the fourth order term is λ =
α(1 + m + n) − m(m + 1)

(m + 1)(1 + α)
.
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The leading order term in the effective equation (8) changes type from forward
parabolic for q = −α + m + n > 0 to backward parabolic for q = −α + m + n < 0.
This change of type captures the parameter regime associated with the onset of
localization. We note that in the region of instability q < 0 the coefficient λ > 0
and thus the fourth order term has a regularizing effect. Numerical comparisons
between the effective equation (8) and the system (7) indicate good agreement
between the effective equation and the response of the original problem for T >> 1.
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Optimal Transport for the System of Isentropic Euler Equations

Michael Westdickenberg

(joint work with Wilfrid Gangbo, Jon Wilkening)

It is well-known that for the one-dimensional system of isentropic Euler equations,
there exists a large family of convex entropies. Control over the entropy dissipation
of all entropies of this family is the crucial ingredient for the proof of global exis-
tence of weak solutions. In the multidimensional case, on the other hand, the only
convex entropy seems to be the total energy. Consequently, the global existence
of weak solutions is an open problem.

In joint work [1] with Wilfrid Gangbo, we try to make better use of the convex
entropy provided by the total energy, by adding a variational flavor to the entropy
condition: As advocated by Dafermos, we try to construct weak solutions for which
the total energy is not only nonincreasing in time, but for which the total energy
is in fact dissipated as fast as possible. We proposed a time discretization for the
isentropic Euler equations that consists of a sequence of minimization problems:
In each timestep the energy is minimized subject to a constraint that measures the
deviation of particles from their characteristic paths. This constraint is realized in
terms of a new functional, called the Minimal Acceleration Cost, which is modeled
after the Wasserstein distance. The intuition is that the particles prefer to stay
on their free flight paths, but may deviate from a straight line in order to decrease
the energy. We analyze the convergence of the approximations towards a measure-
valued solution.
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In joint work [2] with Jon Wilkening, we developed a fully discrete version of
the variational time discretization described above, for the one-dimensional case.
Experiments show that the method captures very well the nonlinear features of
the flow, such as rarefaction waves and shocks. While our scheme is too expensive
to be competitive, it clearly demonstrates that our interpretation of the isentropic
Euler equations as a “steepest descent” is plausible.

There is intense research activity on flows on spaces of probability measures. By
interpreting the isentropic Euler equations in this framework (suitably modified),
we can use techniques from this body of work, as well as from convex analysis and
the calculus of variations.
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Two-Dimensional Riemann Problems for Conservation Laws

Yuxi Zheng

Consider the two-dimensional compressible Euler system

(1)















ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρu ⊗ u + pI) = 0,

(ρE)t + ∇ · (ρEu + pu) = 0,

where ρ is the density, u = (u, v) is the velocity, p is the pressure, and E =
pρ−1/(γ − 1) + (u2 + v2)/2 where γ > 1 is the gas constant. The other variables
we use are speed of sound c such that c2 = γp/ρ and entropy S = pρ−γ . Cauchy
problems for (1) are open. Riemann problems for (1) are a current research topic,
as they are reducible to involve fewer independent variables.

Riemann problems are Cauchy problems with special initial data that are con-
stant along each ray from the origin. The four-wave Riemann problems are special
Riemann problems whose initial data yield single waves along the interfaces of the
four quadrants. A list of all possible configurations is available in [12, 10, 7, 14].
Numerical solutions to these configurations have been done in [1, 3, 4, 5, 10]. In
particular, paper [3], being the latest, concentrates on Configurations A and B,
the simplest two of the many cases, and reveals new details of the solutions.

In Config. A, the initial data {pi, ρi, ui, vi} in the ith-quadrant (i = 1, 2, 3, 4) are
such that a forward planar rarefaction wave R+

ij is there to connect the neighboring

states i and j for each interface (i, j) ∈ {(1, 2), (2, 3), (3, 4), (4, 1)}. The entropy
turns out to be constant Si = Sj, while (u, v, c) are related by

(2)
ui − uj = 2(ci − cj)/(γ − 1), vi = vj , (i, j) ∈ {(1, 2), (3, 4)},
vi − vj = 2(ci − cj)/(γ − 1), ui = uj , (i, j) ∈ {(2, 3), (4, 1)}.
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Figure 1. Left: Configuration A from [3] shows some pseudo-
characteristic curves (light) and Mach number contours (bold)
marked with M = 1.0 and M = 0.8, in which a shock occurs
along curve AP. Right: Configuration B from [3] shows contour
curves of pseudo-Mach number (light closed curves), some pseudo-
characteristic curves (bold, short, and light curves), and shocks
with large data.

For simplicity, we assume ρ2 = ρ4 and u1 = v1(= 0). Connections (2) are possible
iff we have

(3) 2c2 = c1 + c3.

For any fixed {ρ1, p1, u1, v1, ρ3}, we find c2 from compatibility condition (3) and
other variables from (2) and the symmetry. We use γ = 1.4. We draw both families
of (pseudo) characteristic curves corresponding to λ± by (see e.g. [7]),

(4)
dη

dξ
= λ±(ξ, η) ≡ (u − ξ)(v − η) ± c[(u − ξ)2 + (v − η)2 − c2]1/2

(u − ξ)2 − c2
,

where ξ = x/t, η = y/t. The pseudo-Mach number is M = [(u−ξ)2+(v−η)2]1/2/c.
In numerical simulation in which ρ1 = 1.0, p1 = 0.444, u1 = v1 = 0.0, ρ3 =
0.15, ∆x = ∆y = 1/3200, shock formation is found in paper [3] which has not
been expected or seen in earlier work, see Figure 1.

In Config. B, the initial data (pi, ρi, ui, vi) in the i-th quadrants (i = 1, 2, 3, 4)
are such that states 1 and 2 form a forward rarefaction wave R+

12, states 2 and 3
form a backward rarefaction wave R−

23, states 3 and 4 form a forward rarefaction
wave R+

34, and states 4 and 1 form a backward rarefaction wave R−
41. These

requirements on the data force the speed of sound to satisfy c2 = c4, c1 = c3,
and Si = S1(i = 2, 3, 4). For data p1 = 0.444, ρ1 = 1.0, u1 = v1 = 0.00, ρ2 =
0.5197, γ = 1.4, shock formation occurs, see Fig. 1.

The difficulty to a rigorous proof lies in the shortage of effective methods of
analysis. Using methods that we have developed in recent years [8, 2, 6], we are
able to construct a class of analytic solutions to Configuration B. We have
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Theorem ([13]) Consider Config. B for system (1). Let γ > 1 +
√

2. Then, there
exists a number c∗2(γ) ∈ (0, 1) such that Config. B has a global continuous solution,
provided 0 < c2 < c∗2(γ)c1. The solution has a vacuum at the center.

Additionally, if the waves R+
12, R

−
23 etc. are not large, then shock waves form

internally for Config. B. In our paper [9] we construct solutions for Config. B that
show shock wave formation and other waves which we call semi-hyperbolic wave
patches. For the pressure gradient system, which is a very interesting model of
the Euler system, the semi-hyperbolic wave patches are constructed in paper [11].

For future simulations of Config. B, we suggest to use normalization c1 = 1,
and the only two free parameters are c2 ∈ (0, c1) and γ > 1. The other variables
are given by u1 = (c1 − c2)/(γ − 1) > 0, v1 = v2 = u4 = u1, u2 = u3 = v3 = v4 =
−u1, c3 = c1, c4 = c2 with constant entropy Si = S1(i = 2, 3, 4). The set-up is
symmetric w.r.t. both lines ξ ± η = 0.

We hope that the properties of these solutions of Config. A and B are useful in
applying these problems as testing cases for various numerical schemes.

Acknowledgment Writing has been partially supported by NSF-DMS-0603859.
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