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Introduction by the Organisers

Ideas from dynamical systems have had a profound impact on the way we think
about pattern formation. Bifurcation theory, for instance, has helped tremen-
dously in explaining pattern selection in experiments, including Rayleigh–Benard
convection and Belousov–Zhabotinsky reactions. However, these results can typ-
ically only describe patterns with a given prescribed periodic lattice structure on
the plane. Amplitude equations go beyond this limitation: They allow us to inves-
tigate the dynamics of slowly varying amplitude modulations of a fixed spatially
homogeneous state over large, but finite, time intervals.

Over the past few years, the focus has shifted to situations where neither bi-
furcation theory nor the amplitude-equation formalism can give enough insight
into the formation and the dynamics of patterns. Examples are the dynamical
selection of patterns, extracting and describing transient dynamics, the nonlin-
ear stability of patterns in unbounded domains, and the development of efficient
numerical techniques to capture specific dynamical effects and behaviours. This
workshop brought together researchers who work on these questions from different
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perspectives and with different techniques, ranging from dynamical systems the-
ory, qualitative analysis of partial differential equations, and bifurcation theory to
spectral analysis and numerical methods for patterns.

During the workshop, 25 presentations were given. In addition, three PhD
students discussed their projects in shorter talks of 15 minutes length. On Tuesday
afternoon, no talks were scheduled. Instead, the attendees had the opportunity
to discuss more specialized topics in smaller groups. We now describe briefly the
main outcomes and new directions that emerged during the workshop.

The formation and interaction of pulses in one space dimension were one central
theme of the workshop. Recent efforts aim to describe the interaction of localized
pulses analytically and to compute interacting pulses efficiently, using numerical
means. Progress was made in particular for pulses that are only weakly localized:
in certain circumstances, it is then still possible to capture the interaction of such
pulses analytically.

Over the past few years, the freezing method has been investigated thoroughly
from both analytical and numerical viewpoints. This method computes pulses nu-
merically by separating the shape dynamics from the dynamics on the underlying
symmetry group. These developments were discussed together with applications
to spiral waves and to propagating pulses in partial differential equations of mixed
type.

With all these successes, it became clear, however, that both analytic and nu-
merical understanding of the evolution and interaction of two-dimensional localized
spatio-temporal patterns is still very rudimentary.

Spatially extended patterns and their dynamics constituted a further focus.
Much recent work has centered on explaining specific phenomena that have been
observed experimentally: examples include turbulent stripe patterns in fluid flows,
Liesegang precipitation patterns, planar hexagon patches, and vortex dynamics in
flows past cylinders. Significant progress was also made in proving spectral and
nonlinear stability of spatially extended waves such as rotating waves, spatially ho-
mogeneous oscillations, and spatially periodic structures. Furthermore, techniques
to assess spectral stability for multi-dimensional fronts were discussed.

Systems with delay form an important class of infinite-dimensional systems that
exhibit interesting dynamical patterns. State-dependent delays allow the delay of
the system to depend on the prehistory state of that system itself. Hysteresis
is one well-known example. State-dependent delays are motivated by important
applications, generate a plethora of new dynamical patterns, and present formi-
dable obstacles to analysis. Progress reports included patterns of periodicity in
hysteresis, implicitly defined delays, and singularly perturbed equations.

Special Tuesday sessions. No talks were scheduled on Tuesday afternoon to
give participants an additional opportunity for discussion in smaller groups. We
briefly report on two group meetings that took place in this setting.

Poster discussion: More on pulses, shocks, and their interactions. The main in-
tention of the posters during the work session was to discuss among a group of
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specialists the existence, stability and bifurcation of nonlinear waves that are ei-
ther periodic in time or in space. The group discussed progress to these kinds
of problems that involved various different approaches such as singular perturba-
tion techniques, modulation equations, and pointwise Green’s function estimates.
Specific topics and the corresponding contributors were:

• Busse balloons and bifurcations of spatially periodic patterns (Arjen Doel-
man, with Harmen von der Ploeg, Jens Rademacher and Sjors van der
Stelt);

• Interfaces between rolls in the Swift–Hohenberg equation (Mariana Hara-
gus with Arnd Scheel);

• Delayed bifurcation in a simple reaction-diffusion equation (Tasso Kaper
with Peter De Maesschalck and Nikola Popovic);

• Stability of time-periodic viscous shocks (Björn Sandstede with Margaret
Beck and Kevin Zumbrun).

Another intention of the poster discussion was to have interactions between this
group and junior researchers who were given the possibility to present more details
(in particular numerical results) than during their short talks:

• Freezing waves in hyperbolic PDEs (Jens Rottmann-Matthes);
• Numerical decomposition of multistructures (Sabrina Selle).

Global parabolic dynamics. Progress and discussion addressed two aspects of the
global dynamics of semilinear parabolic partial differential equations, mainly on
a circle domain. These aspects are the Morse–Smale or Kupka–Smale property,
on the one hand, and the characterization of global attractors, on the other hand.
The Kupka–Smale property asserts hyperbolicity of all equilibria and periodic
orbits, as well as transversality of their stable and unstable manifolds to hold for
generic (i.e., for “most”) nonlinearities. The Morse–Smale property asserts, in
addition, the absence of any recurrence beyond periodicity. In such situations, it
is conceivable, but still a formidable task, to study the detailed spatio-temporal
structure of the patterns arising in the global attractor.

More precisely, we considered the following reaction-diffusion equations on the
circle S1:

ut(x, t) = uxx(x, t) + f(x, u(x, t), ux(x, t)), (x, t) ∈ S1 × R+,

where f is a regular function from S1 × R2 into R. First, we have recalled that
these equations satisfy the Poincaré–Bendixson property [2]. We have also stated
the recent result of Czaja and Rocha [1], who showed that the stable and unstable
manifolds of hyperbolic periodic orbits intersect transversally.

Geneviève Raugel presented a proof of the Morse–Smale property for the above
equation. She first showed genericity (with respect to the non-linearity) of the
hyperbolicity of all equilibria and periodic orbits [3]. The main ingredients are
the non-increase of the zero number and Sard–Smale theorems. She also showed
automatic transversality of the stable and unstable manifolds of equilibria with dif-
ferent Morse indices, the generic non-existence (with respect to the non-linearity)
of orbits connecting two equilibria with the same Morse index, etc. [4]. These
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properties allow to show that, generically with respect to the non-linearity f , the
above reaction-diffusion equation on the circle S1 indeed possesses the Morse–
Smale property.

In the second part of this discussion, we have considered genericity (with respect
to the non-linearity) of hyperbolicity of all equilibria and periodic orbits in the case
of a scalar reaction-diffusion equation in higher dimension and explained the results
already obtained in a work in progress by P. Brunovskỳ, R. Joly, and G. Raugel.
Geneviève Raugel noticed that the same types of arguments and techniques should
lead them to the proof of the Kupka–Smale property for parabolic PDEs in the
near future.

For x-independent nonlinearities f = f(u, ux) on the circle domain, the Morse–
Smale property enters the description of all generic global attractors given in [5].
Carlos Rocha indicated how to characterize the set of 2π-periodic solutions of pla-
nar Hamiltonians of the form u′′ + g(u) = 0 and obtained a useful tool for the
description of the associated global attractors. He discussed a permutation char-
acterization for the periodic solutions of the corresponding stationary problems.
Essentially, the permutation describes the braid formed by the stationary solutions
and traveling waves of the semilinear parabolic equation [6]. Extending this result
to equilibria in the x-reversible case f(u,−p) = f(u, p), this characterization in-
deed extends to describe the precise heteroclinic structure of the above parabolic
partial differential equation in this case.
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reaction-diffusion equations, Arch. Rational Mech. Analysis 107 (1989), 325–345.
[3] R. Joly and G. Raugel, Generic hyperbolicity of equilibria and periodic orbits
of the parabolic equation on the circle, to appear in Transactions of the AMS.
[4] R. Joly and G. Raugel, Generic Morse–Smale property for the parabolic equation
on the circle, manuscript.
[5] B. Fiedler, C. Rocha, M. Wolfrum, Heteroclinic orbits between rotating waves
of semilinear parabolic equations on the circle, J. Diff. Eqs. 201 (2004), 99–138.
[6] B. Fiedler, C. Rocha, M. Wolfrum, A permutation characterization of periodic
orbits in autonomous Hamiltonians or reversible systems, Preprint (2009).



Dynamics of Patterns 3205

Workshop: Dynamics of Patterns

Table of Contents

John Mallet-Paret (joint with Roger Nussbaum)
Temporal patterns in solutions of state-dependent delay-differential
equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3207

Hans-Otto Walther
Semiflows for differential systems with state-dependent delays: Implicitly
given delay, and neutral equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3210

Pavel Gurevich (joint with Willi Jäger, Alexander Skubachevskii)
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Abstracts

Temporal patterns in solutions of state-dependent delay-differential
equations

John Mallet-Paret

(joint work with Roger Nussbaum)

We study a class of state-dependent delay-differential equations of the form

εẋ(t) = g(x(t− r1), x(t− r2), . . . , x(t− rm)), ri = ri(x(t)), (1)

where g : Rm → R is a given nonlinearity, ri : R → (0,∞) are time delays, and
ε > 0 is a singular perturbation parameter. Such equations arise in a variety of
scientific applications. Numerical simulations indicate that even for very simple
(linear or affine) functions g and ri, highly stable periodic solutions seem to exist.
Moreover, in many cases the graph of the solution has a complicated structure
involving multiple critical points, and which settles to a nontrivial singular solution
for the limit ε→ 0.

It is a fundamental question to predict the limiting shape as ε → 0 of such
solutions from g and ri. A second fundamental question is to show that given a
singular solution (composed of inner and outer solutions) for ε = 0, then there
exists a true solution for small ε. It is also fundamental to understand the char-
acteristic multipliers and stability of such solutions.

In this lecture we discuss progress and new results for these problems. Most
results have dealt with the case m = 1 of a single delay, for systems of negative
feedback of the form of a generalized Mackey-Glass equation

εẋ(t) = −x(t) + f(x(t− r)), r = r(x(t)). (2)

Here f(0) = 0, uf(u) < 0 for u 6= 0, f ′(0) < −1, and a boundedness condition on
f holds (one such condition being that f(f(u)) has sublinear growth at infinity).
Under such conditions, a basic result from [1] is the following.

Theorem 1. For every small ε > 0, equation (2) possesses at least one slowly
oscillating periodic solution.

By a slowly oscillating periodic solution (SOPS) x(t) we mean a solution with
consecutive zeros tn satisfying

ẋ(tn) 6= 0, tn+1 − tn > r(0), tn+2 − tn = p,

where p is the minimal period of the solution. Fixed point theorems and degree
theory for cone maps are used to prove Theorem 1.

In many cases the limiting shape of SOPS’s can be explicitly given in terms of f
and r. A first step in this direction is the following result for equation (2) under
the above conditions.
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Theorem 2. Assume that either (A) r(u) ≡ r(0) > 0; or (B) r′(0) 6= 0; or (C)
r′(0) = 0 and r′′(0) > 0; or (D) r′(0) = 0 and r′′(0) < 0. Then there exists K > 0
and ε0 > 0 such that

sup
t∈R

|x(t)| ≥ K

for all SOPS’s of equation (2) with 0 < ε < ε0.

The above theorem ensures that the limit of SOPS’s for small ε is nontrivial.
Formally, the result is no surprise, due to the instability assumption f ′(0) < −1.
One could think of the result as stating that the unstable manifold of the origin
is of uniform size (i.e., does not shrink) as ε→ 0. But interestingly, the proofs for
the four cases are all completely different, and technically rather complicated and
nonituitive. Case (A) was proved in [1]; cases (B) and (C) in [3]; and case (D)
very recently [6].

Under an additional monotonicity condition on f , the precise limiting shape of
SOPS’s as ε→ 0 can often be explicitly determined in terms of eigensolutions of a
max-plus operator; see [4], [5]. More recently [6], finer details of the asymptotics
along with stability information has been obtained. For example, one has for the
period p = p(ε) in three of the above cases that

(A) p = 2r(0) + εp1 + o(ε) for some p1 > 0;
(B) p = p0 + ε| log ε|p1 + εp2 + o(ε) for some pi with p1 > 0;
(D) p = p0 + ε4/3p1 + o(ε4/3) for some pi with p1 > 0.

Case (C) awaits analysis. The quantity p1 in case (A) is determined by a global
Mel’nikov analysis involving a connecting orbit for an associated system of delay
equations; for cases (B) and (D) explicit but complicated formulas for p1 are given;
in case (D) in particular, this formula involves the leading zero of the Airy function.

For the model case of equation (2) where f(u) = −ku with k > 1, and r(u) =
1 + u, there is known to be an SOPS x(t) which asymptotically has a sawtooth
shape with limiting period k + 1. Namely, the limiting graph of this solution has
diagonally sloping pieces near the lines x = t− 1− n(k+ 1) for t ∈ [n(k+ 1), (n+
1)(k+1)], and transition layers near the vertical lines t = n(k+ 1) for x ∈ [−1, k],
for each n ∈ Z. (The earlier assumptions on f and r do not hold here, however,
appropriate modifications of the methods can be made to allow for this variance.)
It is further known [6] that this SOPS exhibits “superstability,” namely, all of its
nontrivial characteristic multipliers µ satisfy µ = O(ε) as ε→ 0.

Generally, the techniques used in proving the above asymptotic results are scal-
ing results, with judicious choices of scaling obtained through geometric singular
perturbation theory and center manifold analysis.

Results for multiple (m ≥ 2) delays are in their infancy, but it is clear from
numerical simulations that a rich array of solutions and asymptotics awaits. For
the equation

εẋ(t) = −x(t) + f(x(t− r1), x(t− r2), . . . , x(t− rm)), ri = ri(x(t)),
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with conditions similar to those assumed for equation (2), no general analog of
Theorem 1 has been known except [2] in the special (and artificial) case where

r1(0) = r2(0) = · · · = rm(0) > 0.

And even here, no analog of Theorem 2 is known, and no analog of the max-plus
analysis is known. However, very recently [6], the model two-delay equation

εẋ(t) = −x(t) − k1x(t− r1) − k2x(t− r2),

r1 = 1 + x(t), r2 = a+ cx(t),
(3)

was studied, where here ki, a, and c are fixed positive constants. Under the
assumptions

(i) 0 < a− c < k + 1;
(ii) 0 < a+ ck < k + 1;
(iii) k1 + ck2 > 1;
(iv) (1 − c)(k2k − k1) < 1 − a < (1 − c)(k1k − k2);
(v) (k1 + k2)k > k2(a− c) + 1,

where k =
k1 + ak2

1 + (1 − c)k2
, there exists for small ε > 0 a sawtooth-shaped periodic

solution, with the same limiting shape as for the one-delay example above. This
solution is obtained by means of a fixed point theorem.

While conditions (i)–(v) may seem artificial, they are roughly (but in a sense
that can be made precise) the necessary and sufficient conditions for such a limiting
sawtooth-shaped solution to exist. Moreover, it seems clear that the approach
taken for the model equation (3) here can be extended to more general equations
(1) with multiple delays.
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Semiflows for differential systems with state-dependent delays:
Implicitly given delay, and neutral equations

Hans-Otto Walther

Consider an autonomous feedback system which reacts to its present state x =
x(t) ∈ R only after a delay time d ∈ [0, h] which depends on the present state:
d = d(x(t)). The differential equation for this reads

(1) x′(t+ d(x(t))) = f(x(t)).

It can be rewritten in the more familiar form of a delay differential equation

x′(u) = f(x(u+ r(u)))

coupled to the algebraic equation

0 = d(x(u + r(u)) + r(u).

More generally, we consider algebraic-delay differential systems of the form

x′(t) = g(r(t), xt),(2)

0 = ∆(r(t), xt).(3)

Here xt : [−h, 0] → Rn is given by xt(a) = x(t + a), g(s, φ) ∈ Rn for s ∈ Rk and
φ : [−h, 0] → Rn, and ∆(s, φ) ∈ Rk. These systems cover also several other types
of differential equations with state-dependent delay: Equations with explicit delay

x′(t) = f(x(t), x(t −R)), R = R(x(t))

as in [14, 10, 11, 12, 13, 6], equations with a threshold condition
∫ 0

s

K(φ(0), φ(u))du = θ

for the delay s [1, 7], and signal delays s [18, 19] which are given by an equation

c s = φ(s) + φ(0) + 2w.

A specific example WBC with a delayed reaction as described initially models the
regulation of the density of white blood cells [8].

For threshold and transmission delays the modelled situation often suggests
natural hypotheses which guarantee that the algebraic equation corresponding to
Eq. (3) uniquely determines the delay r(t) as a function of the state xt. This re-
duces the algebraic delay differential system to a single delay differential equation.
A general delayed reaction as in Eq. (1), which we studied in [20], does not offer
such hypotheses. It is here that a need for a more general theory of the system
(2-3) arises.

Let C and C1 denote the Banach spaces C1([−h, 0],Rn) and C1([−h, 0],Rn),
respectively, with the usual norms. Guided by earlier work on equations without
the algebraic component [16, 17, 3] we consider the system (2-3) for continuously
differentiable maps g : Rk × C1 ⊃ U → Rn and ∆ : Rk × C1 ⊃ U → Rk. Under
mild additional smoothness conditions, which include existence of linear extensions
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Deg(s, φ) : R
k × C → R

n and D2,e∆(s, φ) : C → R
k of derivatives Dg(s, φ) and

D2∆(s, φ), respectively, we obtain that the set

M = {(s, φ) ∈ U : φ′(0) = g(s, φ), 0 = ∆(s, φ), det D1∆(s, φ) 6= 0}

is a continuously differentiable submanifold of codimension k+ n in Rk ×C1, and
that the system (2-3) generates a continuous semiflow F on M with continuously
differentiable solution operators F (t, ·) and F continuously differentiable for t > h.

Solutions with r(t), xt) /∈M are also possible, but outsideM we have no unique-
ness for the initial value problem. We shall come back to this below.

The second part of the lecture, about the model WBC, addresses a phenom-
enon which is not seen in differential equations with constant delay. Now the
r-components of solutions are scalar, and one may ask whether for a given solu-
tion (r, x) the associated delayed argument function

τ : t 7→ t+ r(t)

(which in WBC appears on the right hand side of Eq. (2)) is increasing or not.
Often in differential equations with state-dependent delay the delayed argument

functions are increasing, see the survey paper [3]. This property may be felt natural
and seems to facilitate the analysis.

A decrease of τ , on the other hand, means that the system reacts to states
ξ1 = x(τ(t1)), ξ2 = x(τ(t2)) in the past, with τ(t1) < τ(t2), in reverse temporal
order, namely by reactions x′(t1) to ξ1 and x′(t2) to ξ2 at t2 < t1.

In the experiment by Libet et al. [4] on unconscious brain activity before the
moment of awareness and voluntary action it was found that awareness of certain
external stimuli in short time intervals arises in reverse temporal order. This
may be taken as an indication that decreasing delayed argument functions have a
counterpart in biological reality.

For WBC the manifold M decomposes into an open subset M+ 6= ∅ formed
by flowlines with strictly increasing delayed argument function, and into another
open subset M− formed by flowlines with strictly decreasing delayed argument
function. The lifespan of the flowlines in M− is bounded by h, and M− = ∅ for
constant delay.

It is proven that for any solution the set of t with (r(t), xt) ∈ M = M+ ∪M−

is open and dense, and the delayed argument function is injective. This excludes
transients between both patterns, from M+ via the separatrix given by

det D1∆(s, φ) = 0,

into M− or vice versa. Unless the delay is constant, there are flowlines in M+ and
in M− which terminate at points on the separatrix with the same delay component
r. In addition there exist points (s, φ) on the separatrix from which two solutions
bifurcate, one into M+ and the other one into M−.

A report about most recent work on neutral equations is deferred to another
occasion.



3212 Oberwolfach Report 57/2008

References

[1] Alt, W., Periodic solutions of some autonomous differential equations with variable time
delay. In: Functional Differential Equations and Approximation of Fixed Points, Bonn
1978, pp. 16-31, Peitgen, H.O., and H.O. Walther eds., Lecture Notes in Math., vol. 730,
Springer, Berlin 1979.

[2] Arino, O., Hadeler, K. P., and M. L. Hbid, Existence of periodic solutions for delay differ-
ential equations with state-dependent delay. J. Differential Eqs. 144 (1998), 263–301.

[3] Hartung, F., Krisztin, T., Walther, H. O., and J. Wu, Functional differential equations
with state-dependent delay: Theory and applications. In HANDBOOK OF DIFFEREN-
TIAL EQUATIONS, Ordinary Differential Equations, volume 3, pp. 435-545, Canada, A.,
Drabek., P. and A. Fonda eds., Elsevier Science B. V., North Holland, Amsterdam 2006.

[4] Libet, B., Wright, E. W., Feinstein, B., and D. Pearl, Subjective referral of the timing for a
conscious sensory experience: A functional role for the somatosensory specific projection
system in man. Brain 102 (1979), 193–224.

[5] Krisztin, T., C1-smoothness of center manifolds for differential equations with state-
dependent delays. In Nonlinear Dynamics and Evolution Equations, Fields Institute Com-
munications 48 (2006), 213–226.

[6] Krisztin, T., and O. Arino, The 2-dimensional attractor of a differential equation with
state-dependent delay. J. Dynamics and Differential Eqs. 13 (2001), 453–522.

[7] Kuang, Y., and H. L. Smith, Slowly oscillating periodic solutions of autonomous state-
dependent delay differential equations. Nonlinear Analysis TMA 19 (1992), 855–872.

[8] Mackey, M. C., personal communication.
[9] Magal, P., and O. Arino, Existence of periodic solutions for a state-dependent delay dif-

ferential equation. J. Differential Eqs. 165 (2000), 61–95.
[10] Mallet-Paret, J., and R. D. Nussbaum, Boundary layer phenomena for differential-delay

equations with state-dependent time-lags: I. Archive for Rational Mechanics and Analysis
120 (1992), 99–146.

[11] Mallet-Paret, J., and R. D. Nussbaum, Boundary layer phenomena for differential-delay
equations with state-dependent time-lags: II. J. für die reine und angewandte Mathematik
477 (1996), 129–197.

[12] Mallet-Paret, J., and R. D. Nussbaum, Boundary layer phenomena for differential-delay
equations with state-dependent time-lags: III. J. Differential Eqs. 189 (2003), 640–692.

[13] Mallet-Paret, J., Nussbaum, R. D., and P. Paraskevopoulos, Periodic solutions for func-
tional differential equations with multiple state-dependent time lags. Topological Methods
in Nonlinear Analysis 3 (1994), 101–162.

[14] Nussbaum, R. D., Periodic solutions of some nonlinear autonomous functional differential
equations. Annali di Matematica Pura ed Applicata IV Ser. 101 (1974), 263–306.

[15] Qesmi, R., and H. O. Walther, Center-stable manifolds for differential equations with
state-dependent delay, Discrete and Continuous Dynamical Systems, to appear.

[16] Walther, H. O., The solution manifold and C1-smoothness of solution operators for dif-
ferential equations with state dependent delay. J. Differential Eqs. 195 (2003), 46–65.

[17] Walther, H. O., Smoothness properties of semiflows for differential equations with state
dependent delay. J. Mathematical Sciences 124 (2004), 5193–5207.

[18] Walther, H. O., Stable periodic motion of a system using echo for position control. J.
Dynamics and Differential Eqs. 15 (2003), 143–223.

[19] Walther, H. O., On a model for soft landing with state-dependent delay. J. Dynamics and
Differential Eqs. 19 (2007), 593–622.

[20] Walther, H. O., A periodic solution of a differential equation with state-dependent delay.
J. Differential Eqs. 244 (2008), 1910–1945.



Dynamics of Patterns 3213

Parabolic problems with hysteresis

Pavel Gurevich

(joint work with Willi Jäger, Alexander Skubachevskii)

1. Preliminaries

We consider parabolic equations in bounded domains coupled with ODEs whose
right-hand side is a nonlinear hysteresis operator. These models describe thermo-
control processes in biological cells, chemical reactors, and various climate control
systems.

Thermocontrol models similar to ours were originally proposed in [2, 3], where
the existence of solution was proved. The question whether periodic solutions
exist turns out to be much more difficult. The one-dimensional case was treated
in [1, 9, 4]. Large-time behavior of solutions for parabolic problems with hysteresis
but without coupling with ODE was considered in [6, 7].

Periodicity and large-time behavior of solutions for the above coupled systems
in the multidimensional case is generally an unsolved problem. We give a survey
of recent results in this direction and formulate some open questions.

Note that, in spite of the fact that we study particular problems, they are of
general interest, since evolution equations involving hysteresis nonlinearities arise
in many applied fields, however, standard techniques cannot be used.

2. Setting of the problem

Consider the following example. Let Q ⊂ Rn (n ≥ 1) be a bounded domain
with smooth boundary Γ. Let w(x, t) be the temperature at the point x ∈ Q at
the moment t ≥ 0 satisfying

(1) wt(x, t) = ∆w(x, t) − p(x)w(x, t) ((x, t) ∈ QT ),

(2) w(x, 0) = ϕ(x) (x ∈ Q),

where QT = Q× (0, T ), p ∈ C∞(Rn), p(x) ≥ 0.
The boundary condition contains a control function u(t) which regulates the

heat flux through the boundary:

(3)
∂w

∂ν
= K(x)(u(t) − uc) ((x, t) ∈ ΓT ),

where ΓT = Γ×(0, T ), ν is the outward normal to ΓT at the point (x, t), uc ∈ (0, 1).
We introduce the “mean” temperature wm(t) as

wm(t) =

∫

Q

m(x)w(x, t) dx,

where m ∈ L∞(Q) is a given (nonnegative) function.
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We assume that u is a solution of the following Cauchy problem:

u′(t) + au(t) = H(wm)(t) (t ∈ (0, T )),(4)

u(0) = u0,(5)

where a > 0, u0 ∈ R, and w is the function satisfying relations (1)–(3). The
operator H(wm)(t) is a hysteresis operator, which acts as follows (see [8, 10] for
precise definitions). There are two given temperature thresholds w1 < w2. If
wm(t) ≤ w1, then the operator H “switches” to 1. If wm(t) ≥ w2, then the
operator H “switches” to 0. If wm(t) is in the interval (w1, w2), then the value
of H at the moment t is the same as its value at the moment “just before” t.

Thus, we have a parabolic system (1)–(3) coupled with the Cauchy problem (4),
(5) for the ODE.

3. Results

• We prove the existence and uniqueness of solution for problem (1)–(5) in
appropriate Sobolev spaces.

• We show that a periodic solution exists, provided that a mean-periodic
solution exists, which is a pair (w(x, t), u(t)) such that the “mean” tem-
perature wm(t) and the control function u(t) are both periodic in time
with the same period.

For example, this is the case if p(x) ≡ 0 and m(x) ≡ const, i.e., the
“uniform” distribution of thermal sensors inside the domain is assumed.
The mean-periodic solution (wm(t), u(t)) forms a limit-cycle trajectory.

• We consider the model where the discontinuous hysteresis operator H is
replaced by the continuous Preisach operator and Eq. (1) is replaced by

wt(x, t) = ∆w(x, t) − p(x)w(x, t) + f(x, t, w, u) ((x, t) ∈ QT ).

We find conditions implying that there exists a T -periodic solution if f
is T -periodic.

• The existence of a global B-attractor for the system with the Preisach
operator is proved.

Some of the above results are published in [5] without proofs. The full version
will appear in SIAM J. Math. Anal.

4. Some open questions

• Given the discontinuous hysteresis operator:
(a) Find periodic solutions in the general case and study their stability

property.
(b) Study large-time behavior of solutions (global attractors).

• Given the Preisach operator:
(a) It is known that stationary solutions exist in some cases. Check

whether there are periodic solutions different from stationary solu-
tions in this case.

(b) Investigate the structure of the global attractor.
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The tumbling universe: dynamics of Bianchi models in the Big-Bang
limit

Stefan Liebscher

(joint work with M. Georgi, J. Häerterich, K. Webster)

We consider cosmological models of Bianchi type. They yield spatially homoge-
neous, anisotropic solutions gαβ of the Einstein field equations,

Rαβ − 1

2
Rgαβ = Tαβ .

Here Rαβ denotes the Ricci curvature and R the scalar curvature of the Lorenzian
metric gαβ whereas Tαβ denotes the stress energy tensor of an ideal non-tilted
fluid.

Representing the spatial homogeneity by a three-dimensional Lie algebra, the
problem can be reduced to a five-dimensional system of ordinary differential equa-
tions in expansion-normalized variables, see for example [6, 5]. For unimodal Lie
algebras, Bianchi class A, the reduced system in terms of the spatial curvature
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Bianchi Class N1 N2 N3

I 0 0 0
II + 0 0

VI0 0 + −
VII0 0 + +
VIII − + +
IX + + +

Table 1. Bianchi classes given by the signs of the spatial cur-
vature variables Ni. Remaining cases are related by equivariance.

variables Ni and the shear variables Σ± reads

(1)

N ′
1 = (q − 4Σ+)N1,

N ′
2 = (q + 2Σ+ + 2

√
3Σ−)N2,

N ′
3 = (q + 2Σ+ − 2

√
3Σ−)N3,

Σ′
+ = −(2 − q)Σ+ − 3S+,

Σ′
− = −(2 − q)Σ− − 3S−.

The abbreviations

(2)

q = 2
(
Σ2

+ + Σ2
−

)
+

1

2
(3γ − 2)Ω,

Ω = 1 − Σ2
+ − Σ2

− −K,

K =
3

4

(
N2

1 +N2
2 +N2

3 − 2 (N1N2 +N2N3 +N3N1)
)
,

S+ =
1

2

(
(N2 −N3)

2 −N1 (2N1 −N2 −N3)
)
,

S− =
1

2

√
3 (N3 −N2) (N1 −N2 −N3) .

include the deceleration parameter q, the density parameter Ω, and the curvature
parameter K. The fixed parameter 2

3 < γ ≤ 2, given by the equation of state of
the ideal fluid, describes the uniformly distributed matter. For example, a value
γ = 1 corresponds to dust, whereas γ = 4/3 corresponds to radiation.

Equivariances are given by permutations of {N1, N2, N3} together with appro-
priate linear transformations of Σ+,Σ− corresponding to a representation of S3

on IR2. Together with the reflection (N1, N2, N3) 7→ (−N1,−N2,−N3), the system
yields a S3 × ZZ2 equivariance group.

Note the classification of restrictions of the dynamical system to the various
invariant regions, that corresponds to the Bianchi classification of Lie algebras,
see table 1.

The invariant set {Ω = 0} of (1) corresponds to the 4-dimensional vacuum
model. The Kasner circle K = {N1 = N2 = N3 = 0, Ω = 0}, Bianchi class I,
consists of equilibria. The attached spheres Hk = {Nk 6= 0, Nl = Nm = 0, Ω = 0},
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Σ+

Σ−

N1

K

H+
1

Σ+

Σ−

−1 +2

√
3

K

H1

T1

T2

T3

Figure 1. Heteroclinic caps H of vacuum Bianchi II solutions
to the Kasner circle K.

{k, l,m} = {1, 2, 3}, Bianchi class II, consist of heteroclinic orbits to equilibria on
the Kasner circle, see figure 1. The projections of the trajectories of Bianchi
class-II vacuum solutions onto the Σ±-plane yield straight lines through the point
(Σ+,Σ−) = (2, 0) in the cap {N1 6= 0, N2 = N3 = 0}. The projections of the other
caps are given by the equivariance.

Away from the tangential points, Tk, k = 1, 2, 3, the Kasner circle K is nor-
mally hyperbolic with 2-dimensional center-stable manifold given by the incoming
heteroclinic orbits.

The Kasner map Φ : K → K is defined as follows: for each point q+ ∈
K \ {T1, T2, T3} there exists a Bianchi class-II vacuum heteroclinic orbit q(t) con-
verging to q+ as t → ∞. This orbit is unique up to reflection (N1, N2, N3) 7→
(−N1,−N2,−N3). Its unique α-limit defines the image of q+ under the Kasner
map

(3) Φ(q+) := q−

Including the three fixed points, Φ(Tk) := Tk, this construction yields a continuous
map, Φ : K → K. In fact Φ is a non-uniformly expanding map and Φ(K) is a double
cover of K, see figure 2.

The α-limit, t→ −∞, of the full system (1) corresponds to the big-bang singu-
larity of the cosmological model. The dynamics in this limit, however, is not yet
understood. It has been conjectured [3, 1] that the dynamics follows the (formal)
Kasner map (3).

At least for Bianchi class-IX solutions the Bianchi attractor formed by the
union of the Kasner circle and its heteroclinic orbits has been proven to indeed be
a (global) attractor for trajectories to generic initial data under the time-reversed
flow [4].

Therefore, as the first step towards a rigorous description of the α-limit dy-
namics of the Bianchi system, we describe the set of initial conditions near the
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Figure 2. Kasner circle with Kasner map and its heteroclinic 3-cycle.

Bianchi attractor that follow the (up to equivariance) the unique period-3 hetero-
clinic cycle of the Kasner map, see figure 2. In fact we prove that this set forms a
codimension-one Lipschitz manifold [2].

References

[1] M.H. Bugalho, A. Rica da Silva, and J. Sousa Ramos, The order of chaos on a Bianchi-IX
cosmological model, Gen. Relativ. Gravitation 18 (1986), 1263–1274.

[2] M. Georgi, J. Härterich, S. Liebscher, K. Webster, Ancient dynamics in Bianchi models. I:
The three-cycle (2009), in preparation.

[3] C.W. Misner, Mixmaster universe, Phys. Rev. Lett. 22 (1969), 1071–1074.
[4] H. Ringström, The Bianchi IX attractor, Ann. Henri Poincaré 2(3) (2001), 405–500.
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Semi-strong front interaction by the renormalization group method

Peter van Heijster

(joint work with A. Doelman, T.J. Kaper, K. Promislow)

The 3-component reaction-diffusion system





Ut = Uξξ + U − U3 − ε(αV + βW + γ),

τVt =
1

ε2
Vξξ + U − V,

θWt =
D2

ε2
Wξξ + U −W

introduced in [2] has become a paradigm model in pattern formation. It exhibits
a rich variety of dynamics of fronts, pulses, and spots. The front and pulse inter-
actions range in type from weak, in which the localized structures interact only
through their exponentially small tails, to strong interactions in which they an-
nihilate or collide and in which all components are far from equilibrium in the
domains between the localized structures. Intermediate to these two extremes sits
the semi-strong interaction regime, in which the activator component of the front
is near equilibrium in the intervals between adjacent fronts, but both inhibitor
components are far from equilibrium there, and hence their concentration profiles
drive the front evolution. In this article, we focus on dynamically-evolving N -front
solutions in the semi-strong regime. The primary result is to use a renormalization
group method to rigorously derive the system of N coupled ODEs that governs
the positions of the fronts. The operators associated to the linearization about the
N -front solutions have N small eigenvalues, and the N -front solutions may be de-
composed into a component in the space spanned by the associated eigenfunctions
and a component projected onto the complement of this space. This decomposi-
tion is carried out iteratively at a sequence of times. The former projections yield
the ODEs for the front positions, while the latter projections are associated to
remainders that we show stay small in a suitable norm during each iteration of
the renormalization group method. Our results also help extend the application
of the renormalization group method from the weak interaction regime for which
it was initially developed to the semi-strong interaction regime. The second set
of results that we present is a detailed analysis of this system of ODEs, providing
a classification of the possible front interactions in the cases of N = 1, 2, 3, 4, as
well as how front solutions interact with the stationary pulse solutions studied
earlier in [1, 3]. Moreover, we present some results on the general case of N -front
interactions.
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Freezing stable multipulses and multifronts

Sabrina Selle

(joint work with Wolf-Jürgen Beyn, Vera Thümmler)

We consider time dependent reaction diffusion systems in one space dimension
that have multiple pulse or multiple front solutions, i.e. solutions that look like a
finite superposition of several waves, see [1]. The systems are of the form

(1) ut = Auxx + f(u), x ∈ R, t ≥ 0, u(x, 0) = u0(x), x ∈ R, u(x, t) ∈ R
m,

where A ∈ R
m,m is positive definite and f : R

m → R
m is sufficiently smooth.

Furthermore, we assume that (1) has N ≥ 2 traveling wave solutions of the form

uj(x, t) = wj(x− cjt), j = 1, . . . , N,

with different speeds cj and with limits w±
j = limξ→±∞wj(ξ). Assume that the

left and right limits of the single waves match in the sense that

w+
j = w−

j+1, j = 1, . . . , N − 1.

Consider the superposition

(2) W (x, t) =
N∑

j=1

ŵj(x − cjt), ŵj(ξ) = wj(ξ) − w̃−
j , w̃−

j =

{
0, j = 1

w−
j , j ≥ 2,

where we have subtracted left limits so that the modified profiles ŵj fit together
upon summation. We are interested in solutions u(x, t) that have the shape of W
for large times.
We present a numerical method for decomposing solutions of the Cauchy problem
(1) into a superposition of functions vj(·, t) that asymptotically assume the shape
of the shifted waves ŵj . Our decomposition of the solution is analogous to (2) and
has the form

(3) u(x, t) =

N∑

j=1

vj(x− gj(t), t).

Here gj denotes the position of the pattern vj at time t and N denotes the num-
ber of pulses or fronts. The functions vj , gj are unknowns and will be uniquely
determined by the numerical process if we add extra phase conditions such that
the decomposition (2) holds in an asymptotic sense.
The approach extends the method of freezing single pulses, which was developed in
[4] to study the stability of single traveling waves, see [2, 3]. The freezing method
allows to compute a moving coordinate frame in which, for example, a traveling
wave becomes stationary.

We insert the ansatz (3) into equation (1), we introduce new coordinates ξ =
x−gj(t) and use a positive bump function ϕ ∈ C∞(R) to generate a time-dependent
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partition of unity. A computation shows that u from (3) is a solution of (1) if
(vj , gj , µj), j = 1, . . . , N solves the following system with nonlocal couplings for
j = 1, . . . , N

vj,t(ξ, t) = Avj,ξξ(ξ, t) + vj,ξ(ξ, t)µj(t) + f(w̃−
k + vj(ξ, t)) + Fj(v, g)(ξ, t)(4)

and the simple set of ODEs

gj,t = µj(t), j = 1, . . . , N,

where v = (v1, . . . , vN ), g = (g1, . . . , gN ), ξg
kj = ξ − gk + gj and

Fj(v, g)(ξ, t) =
ϕ(ξ)

∑N
k=1 ϕ(ξ

g(t)
kj )

[
f

(
N∑

k=1

vk(ξ
g(t)
kj , t)

)
−

N∑

k=1

f
(
w̃−

k + vk(ξ
g(t)
kj , t)

)]
.

The system is completed by initial data for vj , gj and by phase conditions

〈vj − v̂j , v̂j,ξ〉L2 = 0, j = 1, . . . , N

with given reference functions v̂j . Note the difference to [1] in the nonlinear terms
of (4).

We present a stability theorem for multipulse and multifront solutions which
states that the shifted traveling waves ŵj are asymptotic stable solutions of (4) in
a slightly weigthed space H1. This implies that the solution (3) of (1) converges
to W with suitably shifted waves.

Example: Nagumo equation

ut = uxx + u(1 − u)(u− a), x ∈ R, t ≥ 0, a = 0.25

0 50 100
−5

0

5

t

 

 

µ

µ
1

µ
2

Figure 1. Two fronts moving in opposite directions in the
Nagumo equation, evolution of superposition and velocities µ1, µ2,
supports of v1, v2 are shaded
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[1] W.-J. Beyn, S. Selle, V. Thümmler, Freezing Multipulses and Multifronts, SIAM Journal on
Applied Dynamical Systems, Number 2 (Volume 7) Pages 577-608, 2008.
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[4] W.-J. Beyn, V. Thümmler, Freezing solutions of equivariant evolution equations, SIAM

Journal on Applied Dynamical Systems, Number 2 (Volume 3) Pages 85-116, 2004.

Spiral waves in excitable media

Sebastian Hermann

(joint work with Georg Gottwald)

Spiral waves are generic solutions in two-dimensional excitable media. Our studies
concentrate on rigidly rotating spiral waves in the large core limit. Depending on
the chosen excitability ǫ a finger-like initial condition will either start to curl
and subsequently develop into a rotating spiral wave or retract. Determining the
critical excitability ǫc where spiraling fails is a non-trivial task from a numerical
point of view since in the large core limit the spiral tip is moving on a large circle
around the spiral core requiring computationally expensive large domain sizes. To
overcome the restrictions of finite domains we employ a freezing method introduced
by Beyn and Thümmler [1] which makes use of the underlying equivariance of
excitable media with respect to the Euclidean group action of translation and
rotation in the plane. By performing a symmetry reduction the dynamics of the full
PDE can be split into two parts, one describing the dynamics on the group orbits
(i.e. rotation and translation) and one, the so called base dynamics, describing
the shape of the solution. This allows calculations to be performed on a relatively
small domain with a small number of grid points.

Here we consider the Barkley model [2]. It turns out that freezing exhibits
severe problems for this system and other excitable media where the inhibitor
is non-diffusive. This causes the resulting symmetry reduced system to be of
mixed hyperbolic-parabolic type which therefore causes numerical instabilities.
Furthermore, the standard Neumann boundary conditions have a strong impact
on the freezing procedure since they do not respect the underlying symmetries
of the system. This symmetry breaking introduces large errors at the boundary
which consequently propagate inwards and prevent numerically stable results.

To solve the numerical problems that arise at the boundary, we introduce (so
far completely numerical) transparent spiral boundary conditions for polar and
cartesian coordinates respectively. They respect the shape of the spiral much
better by following contourlines across the boundary. It proves very useful in
diminishing artificial oscillations occurring at the boundary during the process
of freezing in polar coordinates. For the simulation of unfrozen large spirals in
cartesian coordinates we also obtain very good improved results. However it cannot
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prevent the freezing method from failing in this setting due to missing information
at the corners of the used box. We report on an application for this transparent
boundary condition to remove boundary induced spiral drift [3].
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The Eckhaus scenario in delay differential equations with large delay

Matthias Wolfrum

(joint work with Serhiy Yanchuk)

Delay-differential equations (DDEs) play an important role in many applied prob-
lems including e.g. economy, neuroscience, and optoelectronics. In particular,
semiconductor lasers with optical feedback or coupling show a huge variety of
complex dynamical behavior, induced by the transmission delay of the feedback
signal. In many cases this delay, which is caused by the finite speed of propagation
of the light, has even to be considered as large compared to the time scale of the
internal processes in the laser, being in the range of picoseconds. For a laser with
delayed optical feedback the Lang-Kobayashi model has extensively been used in
the physical literature to investigate the dynamical behavior related to the large
delay, showing the coexistence of many periodic solutions with different stability
properties, high dimensional chaos and other.

Starting from these phenomena, the following mathematical questions arise:

• How can the singular limit of delay τ → ∞ be used to study general
systems with large delay

• What types of dynamics can arise typically in DDEs with large delay

In the following, we will briefly summarize some recent results related to these
questions.

Scaling properties of the spectrum. We consider here an autonomous system
of DDEs with a single fixed delay τ . Since the limit τ → ∞ is a singular limit,
one has to expect dynamical phenomena on different timescales. On the level of
linear stability analysis, this leads to different scaling behavior of the eigenvalues.
To meet the standard notation, we introduce the small parameter ε = 1

τ . The
characteristic equation for the spectrum of the linearized system at a stationary
solution has in general the form

(1) χ(λ) = det(λId −A− e−
λ
ε B) = 0,

where the matrices A and B are the Jacobians with respect to the instantaneous
and the delayed argument, respectively. It turns out that generically, two types
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of eigenvalues exist. (1) Strong instabilities, given in leading order by eigenvalues
λ of A with positive real part. (2) Pseudo-continuous spectrum (PCS), which is
obtained by introducing the scaling

(2) λ = ε+ iω

into equation (1) and omitting higher order terms. In this way, we obtain

(3) det(iωId −A− e−γe−iΦB) = 0,

where Φ = ω
ε . The solutions of equation (3) defines a family of curves in the

(γ, ω)-plane, which are parametrized by Φ. Since Φ is a rapidly oscillating term,
these curves will for ε → 0 more and more densely be filled with approximated
eigenvalues, i.e the true eigenvalues will accumulate densely along these curves.
Taking into account the scaling (2), we call instabilities originating from PCS
with positive real part weak instabilities. It is evident that classical bifurcation
theory can give only a very rough picture of the resulting dynamical scenarios,
since immediately a large number of eigenvalues is involved in the destabilization.
Instead, a description by spatially extended systems, i.e. amplitude equations,
seems to be more adequate. We will now use this approach to study an example
of an oscillatory instability under the influence of large delay.

The Stuart-Landau oscillator with delayed feedback. As the most simple
example for an oscillatory instability under the influence of large delay, we inves-
tigate the Stuart-Landau oscillator with delayed feedback

z′ = (α+ iβ)z − z|z|2 + eiφzτ

for the complex variable z and large delay τ . Due to the phase-shift equivariance,
periodic solutions can be calculated here explicitely. They emerge from the trivial
solution at supercritical Hopf-bifurcations that are located on the circle

(4) α2 + (ω − β)2 = 1,

where ω denotes the frequency. The number of Hopf points along this curve is
proportional to the delay τ , such that for large τ there can be found a large number
of periodic solutions in the frequency band ω ∈ [β−1, β+1]. In Figure 1 the region
of existence of these periodic solutions is shown in grey. Note that omitting the
feedback term, the system shows a single supercritical Hopf bifurcation at α = 0,
leading to a strong instability for α > 0. Including the delay term we can calculate
the PCS

γ(ω) = −1

2
ln
(
α2 + (ω − β)2

)
.

and note that it is unstable exactly within the circle (4). Concerning the stability
of the bifurcating periodic solutions, we have obtained the following results: The
primary branch, bifurcating closest to α = −1 and ω = β is stable everywhere. All
other branches emerge unstable from the trivial solution and undergo a sequence
of Hopf-bifurcations. After that, the branches emerging for α < 0 become stable.
The asymptotic location of this stability boundary can be calculated explicitely in
the following way. Due to symmetry, each periodic solution becomes a family of
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Figure 1. Regions with periodic solutions: existence (grey), sta-
bility (dark), torus bifurcations (hatched). Panel (a): bifurcation
parameter α versus frequency ω. Panel (b): amplitude a versus α.

stationary solutions in a respectively corotating frame. Calculating for them again
the PCS, one can observe that, caused by symmetry, one of the two branches γ1(0)
touches the imaginary axis at 0. At the points where the curvature γ′′1 (0) becomes
positive, the periodic solution undergoes a so called modulational instability. Their
location can be calculated as

(5) α =
2(β − ω)2 − 1√

1 − (β − ω)2
.

This curve coincides in leading order with the classical Eckhaus parabola for the
stability boundary of periodic spatial patterns close to a Turing bifurcation. In
Figure 1, it is depicted by the curve (E), separating the region of torus bifurcations
from the region of coexisting stable periodic solutions. In analogy to the classical
Eckhaus scenario in the case of a large but finite domain (see [2]), we obtain here
a similar structure of a large number of coexisting periodic solutions interacting
in a global picture with a universal stability boundary.
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Stability in nonlinear hyperbolic PDEs

Jens Rottmann-Matthes

We consider an abstract hyperbolic semilinear partial differential equation

(PDE) ut = Bux + g(u), t ∈ R+, x ∈ R, u(x, t) ∈ R
m.
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We present a proof of the asymptotic stability with asymptotic phase of a sta-
tionary solution u under certain spectral assumptions, see [3] for a different proof.
For parabolic problems the result is classic and a proof using analytic semigroup
theory can be found in [2].

For simplicity we consider smooth functions g, and assume that B is a constant
diagonal matrix with pairwise different diagonal entries. We make the following
assumptions:

H1: u ∈ C3, ux ∈ H2, is a stationary solution,
H2: C(x) := gu(u(x)) satisfies

C±jj = lim
x→±∞

Cjj(x) ≤ −2δ < 0, j = 1, . . . ,m,

H3: for ω ∈ R holds:

s ∈ σ(iωB + C+) ∪ σ(iωB + C−) ⇒ Re ≤ −δ.
By P we denote the linearization of (PDE) about the steady state u:

Pu = Bux + gu(u)u,

note that 0 is always an element of the spectrum of P due to the autonomy.
Our main result is as follows.
Theorem 1 (Main Theorem). Under the assumptions from above and fur-

thermore the assumption that 0 is a simple eigenvalue of P , there are constants
ρ > 0, C > 0 such that for all initial data u0 ∈ u+H2, ‖u0−u‖H2 < ρ the solution
u exists for all positive times and is an element of C1(R+, u+L2)∩C0(R+, u+H1).
Moreover there is a phaseshift ϕ∞ ∈ R with

‖u(t) − u(· − ϕ∞)‖H1 ≤ Ce−
δ
2
t ∀t ≥ 0.

To deal with the unknown phaseshift we use nonlinear coordinates to write the
solution u as

u = u(· − ϕ) + w,

where w is in H1 and ϕ in R. These nonlinear coordinates increase the dimension
of the problem by one and we pose a suitable algebraic constraint, a so called
phase-condition which we write as 〈ψ,w〉 = 0, to obtain a well-posed problem
again. This leads to a reformulation of (PDE) as a partial differential algebraic
equation (PDAE) of the form

wt = Pw + ϕtux +G(ϕ,w),

〈ψ,w〉 = 0,
(PDAE)

where G is an at least quadratic function in ϕ and w. We assume that ψ from the
algebraic condition satisfies ψ ∈ H1 ∩ L1 with 〈ψ, ux〉L2 6= 0.

The following Lemma shows that this reformulation really is equivalent to the
original system and hence it suffices to analyze the (PDAE) for the proof of The-
orem 1.
Lemma 1. There exist ρ0, ρ1 > 0 such that a function u ∈ C1([0, T ];u + L2) ∩
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C0([0, T ];u+H1) is a solution of (PDE) with ‖u− u‖L2 < ρ0 for all t if and only
if u = u(· − ϕ) + w, where

ϕ ∈ C1([0, T ]; R), |ϕ| < ρ1, and w ∈ C1([0, T ];L2) ∩ C0([0, T ];H1)

solve (PDAE).
The effect of the reformulation is that the asymptotic stability with asymp-

totic phase for (PDE) becomes a classical Lyapunov stability for the reformulation
(PDAE).

To show the stability for the partial differential algebraic equation we use the
Laplace-transform technique for vector-valued functions [1] and directly analyze
the spectral properties of the resulting resolvent equation

(
sI − P −ux

〈ψ, ·〉L2 0

)(
ŵ
ϕ̂t

)
=

(
F̂
0

)
.

These are shown to imply exponential stability for the linear PDAE. Carefully an-
alyzing the nonlinearity, also nonlinear stability of (PDAE) under the assumptions
of Theorem 1 can be concluded:

Theorem (Stability of (PDAE)). There exists ε > 0 such that for all initial
data

(ϕ0, w0) with |ϕ0| < ε and ‖w0‖H2 < ε

the partial differential algebraic equation (PDAE) has a unique solution (ϕ,w) for
all t ≥ 0 which satisfies

ϕ ∈ C1([0,∞); R) and w ∈ C1([0,∞);L2) ∩ C0([0,∞);H1).

Moreover there are ϕ∞ ∈ R and C = C(ε) > 0 such that

|ϕ(t) − ϕ∞| ≤ Ce−
δ
2

t,

‖w(t)‖H1 ≤ Ce−
δ
2

t, ∀t ≥ 0.

Together with Lemma 1 this result implies Theorem 1.
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Shooting and exit manifolds in planar reaction diffusion equations

J. Douglas Wright

If a system possesses spatially localized traveling wave solutions which are stable
under perturbations, then one expects that such a system will also possess solutions
which are roughly the linear superposition of multiple pulses, at least until such
a time as those pulses pass close by one another. In this talk, we discuss how one
can rigorously prove this assertion for planar reaction-diffusion equations

(1) ut = D∆u+ F (u).

(See [1, 4, 5] for similar work done on the real line.) It is assumed that exponentially
localized traveling pulses Q (R(θ)(x − cti)) exist (R(θ) is a rotation matrix) and
that the spectrum of linearization (denoted A) about such a pulse is sectorial and
stable, apart from the triple eigenvalue which arises from translation and rotation
invariance of the equation.

The first difficulty is that one cannot put (1) into a moving reference frame
which renders the linear piece of the problem autonomous (as one can do for
single pulses). This problem is circumvented by considering the larger system

Ut = D∆U + F (U) + χ1(x, t)(F (U + V ) − F (U) − F (V )),

Vt = D∆V + F (V ) + χ2(x, t)(F (U + V ) − F (U) − F (V )).
(2)

Here χ1 and χ2 are a partition of unity subordinate to half planes containing each
pulse. Notice that u = U + V solves (1). Making the substitution

U = Q (R(θ1)(x − cti− x1)) + V1(R(θ1)(x − cti − x1), t),

V = Q (R(θ2)(x − cti − x2)) + V2(R(θ2)(x − cti − x2), t),

one arrives at an equation of the form

Vt = AV + B(t)V + H(x, t) +N(V),

where V = (V1, V2), A = diag(A,A), N(V) = O(|V|2) and the inhomogeneous
piece H(x, t) = O(exp(−Kρ(t)) where ρ(t) is the distance between the two pulses.
Since we assume that the operatorA is sectorial we know A is sectorial as well (with
a six-dimensional kernel). Thus, if we knew that B(t) was small, we could modify
the proof that a single pulse is stable and show that ‖V(t)‖ decays exponentially
quickly provided the pulses do not come to close together.

However, B(t), while linear, is an O(1) operator (it consists of terms like Q2R1,
for instance). This is the second difficulty in the problem. We prove a key
lemma which says that (a) B(t) has a small operator norm provided the func-
tion |V(x, t)| ≤ C exp(−β|x|) and (b) that |B(t)V(x, t)| ≤ C exp(−β|x|) even
if V itself exhibits no such decay for large x. Finally, we prove that these two
properties are sufficient to treat B as if it were a small perturbation of A. In this
way, we can prove our main results, for instance:
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Theorem (Stability of the Exit Manifold): Let

(3) Mexit := {Q(R(θ1)(· − x1)) +Q(R(θ2)(· − x2)) :

θ1 6= θ1 and inf
t≥0

|x1 − x2 + ct(R(θ1)i −R(θ1)i)| ≥ L}.

There exists a neighborhood of Mexit (in W 1,p) such that solutions of (1) with
initial data in this neighborhood converge exponentially quickly to Mexit as t→ ∞.
Specifically, the solution converges to the superposition of two pulses which are
asymptotically the linear superposition of two pulses.
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A role of network of unstable patterns in dissipative systems

Yasumasa Nishiura

(joint work with Takashi Teramoto, Yuan Xiaohui, and Kei-Ichi Ueda)

The issue here is to study the dynamics of moving spatially localized patterns
when they interact with external environments. Hereafter such a localized patterns
is called particle pattern. Two interesting cases are considered here: one is a
colision with other particle ones, and the other is the response of pattern when the
media is changed from homogeneous to heterogeneous, typically jump or bump
heterogeneity. In both cases it turns out that unstable patterns play a crucial role
to understand their dynamics, although those ones are only observable transiently.

1. Collision dynamics

Particle patterns mean any spatially localized structures sustained by the bal-
ance between inflow and outflow of energy-material which arise in the form of
chemical blob, discharge pattern, morphological spot, and binary convection cell.
These are modeled by typically three-component reaction diffusion systems or a
couple of complex GL equations with concentration field. Strong interaction such
as collision among particle patterns is a big challenge, since dissipative systems do
not have many conservative quantities. Unlike weak-interaction through tails of
those objects, there are so far no systematic methods to handle them because of
large deformation of patterns during the collision process. We present a new ap-
proach to clarify a backbone structure behind the complicated transient collision
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process. A key ingredient lies in a hidden network of unstable solutions called scat-
tors which play a crucial role to understand the input-output relation for collision
process (namely the relation of two dynamics before and after collision). More
precisely, the associated network of scattors via heteroclinic connections forms a
backbone for the whole collisional dynamics. It should be noted that collision
dynamics for traveling breathers depends the phase differnce of those waves (see
[4]). The viewpoint of scattor network seems quite useful for a large class of model
systems arising in gas-discharge phenomena, chemical blobs, and binary fluid con-
vection. For references, see [2, 3, 5, 6, 1].

2. Dynamics in heterogeneous media

Localized waves are one of the main carriers of information and the effect of
heterogeneity of the media in which it propagates is of great importance for the
understanding of signaling processes in biological and chemical problems. A typ-
ical and simple heterogeneity is a spatially localized bump or dent in 1D or 2D,
which in general creates associated defects in the media. One of the main issues
is how the geometry of heterogeneity influences over the dynamics of waves. Here
the geometry means slope, height, size, curvature and so on. Localized waves are
sensitive to those factors and in fact present a variety of dynamics including re-
bound, pinning, splitting, and traveling motion around the defect. A reduction
method to finite-dimensional system is presented, which clarifies the mathematical
structure for those dynamics. In the reference below we mainly focus on a class of
one-dimensional traveling pulses the associated parameters of which are close to
drift and/or saddle-node bifurcations. The great advantage to study the dynamics
in such a class is two-fold: firstly it gives us a perfect microcosm for the variety
of outputs in general setting when pulses encounter heterogeneities. Secondly it
allows us to reduce the original PDE dynamics to tractable finite dimensional sys-
tem. Such pulses are sensitive when they run into the heterogeneities and show rich
responses such as annihilation, pinning, splitting, rebound as well as penetration.
The reduced ODEs explain all these dynamics and the underlying bifurcational
structure controlling the transitions among different dynamic regimes. It turns out
that there are hidden ordered patterns associated with the critical points of ODEs
which play a pivotal role to understand the responses of the pulse. We mainly
focus on a bump and periodic types of heterogeneity, however our approach is also
applicable to general case. It should be noted that there appears spatio-temporal
chaos for periodic type of heterogeneity when its period becomes comparable with
the size of the pulse. For references, see [7, 8, 9].

3. Behaviors of amoeba (Physarum plasmodium) in heterogeneous
environments

We report here a new kind of behavior that seems to be “findecisive” in an amoe-
boid organism, the Physarum plasmodium of true slime mold. The plasmodium
migrating in a narrow lane stops moving for a period of time (several hours but
the duration differs for each plasmodium) when it encounters the presence of a
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chemical repellent, quinine. After stopping period, the organism suddenly begins
to move again in one of three different ways as the concentration of repellent in-
creases: going through the repulsive place (penetration), splitting into two fronts
of going through it and turning (splitting) and turning back (rebound). In rela-
tion to the physiological mechanism for tip migration in the plasmodium, we found
that the frontal tip is capable of moving further although the tip is divided from
a main body of organism. This means that a motive force of front locomotion
is produced by a local process at the tip. Based on this finding, a mathematical
model for front locomotion is considered in order to understand the dynamics for
both the long period of stopping and three kinds of behavior. A model based on
reaction-diffusion equations succeeds to reproduce the experimental observation.
The origin of long-time stopping and three different outputs may be reduced to
the hidden instabilities of internal dynamics of the pulse, which may be a skeleton
structure extracted from much more complex dynamics imbedded in the Physarum
plasmodium. For references, see [10, 11].
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Localised two-dimensional patterns

David J. B. Lloyd

(joint work with Daniele Avitabile, John Burke, Alan R. Champneys, Edgar
Knobloch, Juergen Knobloch, Björn Sandstede, Thomas Wagenknecht)

Localized stationary structures play an important role in many biological, chem-
ical and physical processes. Such structures have been observed in a variety of
experiments ranging from vertically vibrated granular materials, liquid crystals,
binary-fluid convection, autocatalytic chemical reactions such as the Belousov–
Zhabotinsky system, electrochemical systems, and localized micro-structures in
solidification to nonlinear optical devices. Localized patterns have also been found
in many nonlinear models such as those derived from magnetohydrodynamics,
flame fronts, lasers, vibrated granular materials, neural networks, and cellular
buckling as well as in the Swift–Hohenberg equation, which often serves as a par-
adigm for general pattern-forming systems.

In my talk, I consider stationary solutions of the Swift–Hohenberg equation

(1) ut = −(1 + ∆)2u− µu+ νu2 − u3

where x ∈ R for the 1D version and (x, y) ∈ R2 in the planar case. We focus
on the region ν ≥ 0 since the case ν < 0 is then recovered upon replacing u
by −u. The trivial state u = 0 is stable for µ > 0 and destabilizes at µ = 0
with respect to perturbations that have nonzero finite spatial wavelength. At
µ = 0, hexagons bifurcate in a transcritical bifurcation from u = 0 for each ν > 0,
while rolls bifurcate in a subcritical pitchfork bifurcation from u = 0 provided
ν > νr :=

√
27/38. While the bifurcating hexagons and rolls are initially unstable

for µ > 0, they stabilize in a subsequent saddle-node bifurcation, leading to a
region of bistability between the nontrivial patterns and the trivial state for µ > 0.
This bistability region of trivial and patterned states opens up the possibility of
finding fully localized stationary patches of hexagons or rolls.

In the talk, we will look at recent results pertaining to localised 2D patterns; see
[2, 4, 3, 1]. We start by looking at the link between heteroclinic orbits (connecting
the trivial state and a periodic orbit) with localised patterns in reversible, Hamil-
tonian ODEs. Geometric analysis allows one to predict the bifurcation structure
of localised patterns from knowledge of the heteroclinic orbit. Also, asymmetric
(ladder) localised states connecting symmetric branches of localised patterns are
also predicted. This analysis is extended to localised patterns on the cylinder
where we compare the geometric predicts with numerical investigations.

We then examine the shape of the hexagon patches along the snaking curve.
We find their interfaces resemble planar hexagon fronts with different orientations
with respect to a fixed hexagonal lattice. The saddle-node bifurcations of the
localized hexagon patches are aligned with saddle-nodes of planar hexagon fronts.

By looking at planar hexagon interfaces and their interfacial energies, we present
a direction of research that may allow us to analyse and predict the dynamics of
large hexagon patches. This direction is based on the ideas of spatial-dynamics
and variational analysis.
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Finally, several open problems are presented ranging from analysis of localised
2D patches and oscillating localised patterns.
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Grassmannian spectral shooting and the stability of multi-dimensional
travelling waves

Simon J.A. Malham

(joint work with Veerle Ledoux, Jitse Niesen and Vera Thümmler)

We will present a new numerical method for computing the pure-point spectrum
associated with the linear stability of coherent structures. In the context of the
Evans function shooting and matching approach, all the relevant information is
carried by the flow projected onto the underlying Grassmann manifold. We show
how to numerically construct this projected flow in a stable and robust manner. In
particular, the method avoids representation singularities by, in practice, choosing
the best coordinate patch representation for the flow as it evolves. The method
is analytic in the spectral parameter and of complexity bounded by the order of
the spectral problem cubed. For large systems it represents a competitive method
to those recently developed that are based on continuous orthogonalization. We
demonstrate this by first comparing the two methods in three finite-dimensionsal
applications: Boussinesq solitary waves, autocatalytic travelling waves and Ekman
boundary layer. Second we then consider the linear stability of multi-dimensional
travelling fronts to nonlinear parabolic systems. Transverse to the direction of
propagation we project onto a finite Fourier basis. This generates a large, lin-
ear, one-dimensional system of equations for the longitudinal Fourier coefficients.
We also compare the two methods with standard projection methods that di-
rectly project the spectral problem onto a finite multi-dimensional basis satisfying
the boundary conditions. As a model application, we study the stability of two-
dimensional wrinkled front solutions to a cubic autocatalysis model system.
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Turing-type pattern and non-Turing-type pattern in mathematical
biology

Angela Stevens

(joint work with Ivano Primi, Juan J. L. Velázquez)

Cells can detect chemical and mechanical information by signal specific recep-
tors on the cell surface. Cells signal to interact with their environment and with
neighboring cells, e.g. by

- diffusive signals,
- spatially localised signals, which are bound to the extra cellular matrix,
- cell surface bound signals.
The reactions of cells to external signals often result in macroscopic structure

formation on the population level. The understanding of pattern formation on this
level, in wildtype populations as well as in mutant populations, thus can reveal
basic underlying principles of cellular signaling, motion, and growth.

A question of major interest is as follows: Can possible relevant mechanisms be

ruled out or detected from the pattern we see?

In Turing’s famous work [1] diffusion driven instabilities for symmetry breaking
and pattern formation in cellular systems were introduced. The following necessary
conditions resulted from his theoretical analysis

- two or more chemicals,
- with different rates of diffusion.
- Chemical interaction of activator-inhibitor type.
For the chemicals C1, C2 two reaction diffusion equations were considered - for

simplicity we have a look at the linear one-dimensional situation

∂tC̃1 = D1∂xxC̃1 + a11C̃1 + a12C̃2,

∂tC̃2 = D2∂xxC̃2 + a21C̃1 + a22C̃2.

Calculating the characteristic equation for the system without diffusion, the con-
ditions for stability (no pattern) are

a11 + a22 < 0,

a11a22 − a12a21 > 0.

With diffusion the crucial condition for diffusion driven instabilities is

a11D1 + a22D2 > 2
√
D1D2(a11a22 − a12a21) > 0.

So it is necessary to have a short range acting activator with a smaller diffusion
coefficient, and a long range inhibitor with a larger diffusion coefficient. Then
a characteristic wavelength driven by diffusion can be found and a characteristic
pattern is in principal possible.

In this context a natural next question is Which pattern can result from local

interactions, like e.g. from direct cell-cell contact, and not from cell growth and

death?



Dynamics of Patterns 3235

An example for such a kind of phenomenon are the counter-migrating traveling
population waves of myxobacteria, which occur before their final aggregation under
starvation conditions takes place, [2]. The cells align in a nearly one-dimensional
fashion. If countermigrating cells come into direct contact, they exchange a so-
called C-signal, which makes them move into the opposite direction. Looking at
a simple one-dimensional model, one aims to find nonlinearities with a suitable
structure to obtain rippling patterns. Let u, v be the counter-migrating species,
then

∂tu+ ∂xu = −T (u, v)u+ T (v, u)v,

∂tv − ∂xv = T (u, v)u− T (v, u)v.

In this model the steady states are not isolated, like in the Turing case. A one-
dimensional curve of steady states exists. Linearization does not show instabilities
with a defined wavelength. Without symmetry, three equations of this type are
sufficient to obtain a pattern with a defined wavelength. Since in the given bio-
logical context symmetry is important, we have a look at the following system

∂tu1 + ∂xu1 = −T1(u1, u2, v1, v2) + T2(v1, v2, u1, u2),

∂tu2 = T1(u1, u2, v1, v2) − T2(u1, u2, v1, v2),

∂tv1 − ∂xv1 = T2(u1, u2, v1, v2) − T1(v1, v2, u1, u2),

∂tv2 = T1(v1, v2, u1, u2) − T2(v1, v2, u1, u2).

Here T1, T2 are supposed to be positive. Examples of such systems for which a
defined wavelength can be found, need suitable dependencies for T1, T2, e.g.,

T1 = F1(u1 + u2 + v1 + v2, u1, v1, v2),

T2 = F2(u1 + u2 + v1 + v2).

If u2, v2 do move, they need a different speed than u1, v1, and inhibiting effects
are necessary to obtain a defined wavelength. This assumption is not reasonable
in the context of rippling in myxobacteria, but interesting by itself. Only for six
such equations all ’species’ can be assumed to move with the same speed, and
reasonable kinetics are possible to obtain a defined wavelength.

A good test experiment for the model is the following experiment. Wildtype
cells are mixed with mutant cells, which do not produce the cell-surface bound
C-signal. Upon contact of a wildtype cell with a countermigrating mutant, the
wildtype cell does not change direction, whereas the mutant does. The more
mutants exist in these mixed populations, the larger the observed wavelength is
on the population level. Too many mutants make the rippling pattern disappear.
To allow for the above mentioned phenomena, three types of wildtype cells moving
in one direction are needed, as well as the respective mutants, so overall twelve
equations. The species change from u1 → u2 → u3 → v1 → v2 → v3. All are
allowed to move with the same speed. Let

λ = u1 + u2 + u3 + v1 + v2 + v3 + ū1 + ū2 + ū3 + v̄1 + v̄2 + v̄3
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denote the total population density, where ūl, v̄l, l + 1, 2, 3 denote the respective
mutants, which also move with the same speed. Then, for instance the follow-
ing dependencies are needed in order to qualitatively observe the effects of the
biological experiment.

T1 = F1(λ, u1), T2 = u2F2(v1 + v2 + v3), T3 = f3u3

T̄1 = F1(λ, ū1), T̄2 = ū2F2(v1 + v2 + v3), T̄3 = f3ū3.

Details are given in the preprint [3]. Interestingly the nonlinearities have to be
quite specific to allow for the rippling pattern, its increasing wavelength, and the
loss of the pattern.
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Fronts in Fermi–Pasta–Ulam chains

Jens D.M. Rademacher

(joint work with Michael Herrmann)

This abstract is a summary of the main results of [9]. We consider infinite chains
of identical particles as plotted in Figure 1. These are nearest neighbour coupled
in a convex potential Φ : R → R by Newton’s equations

(1) ẍα = Φ′(xα+1 − xα) − Φ′(xα − xα−1),

where ˙ = d
dt is the time derivative, xα(t) the atomic position, α ∈ Z the index.

xα−1 xα
xα+1 xα+2

rα

Figure 1. The atomic chain with nearest neighbour interaction.

Such chains model particles connected by springs in one dimension and serve as
simplified models for crystals and solids. In their seminal paper [3] Fermi, Pasta
and Ulam studied such chains assuming that the interaction potential Φ contains
only cubic or quartic terms. We consider convex Φ with nonlinear force function
Φ′ and allow for turning points, i.e., points where Φ′′′ = 0, but still refer to (1) as
FPU chains. In fact, the existence of fronts, which is studied in this paper, requires
that Φ′ has at least one turning point, see [8], and this excludes, for instance, the
famous Toda potential.

Fronts are travelling waves, i.e., solutions for which there exists a smooth profile
that travels with constant speed and shape through the chain. The main types of
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travelling waves are periodic wave trains, homoclinic solitons (or solitary waves),
and heteroclinic fronts. Rigorous existence proofs of such solutions are an impor-
tant basic issue and during the last two decades a lot of research addressed the
existence of solitons and wave trains: [6, 4, 7, 2] establish the existence of such
waves by solving constrained optimization problems, [15, 13, 12, 16] apply the
Mountain Path Theorem to the action integral for travelling waves, and [10] uses
center manifold reduction with respect to the spatial dynamics.

In comparison, little is known rigorously for fronts. For (non-smooth and non-
convex) double-well potentials composed of the same quadratic parabolas, the
existence of fronts connecting oscillatory states has been recently shown in [17].
Such fronts can be interpreted as phase transitions and more physical results can
be found for instance in [14, 18].

In these cases the connection between fronts and shocks in the naive continuum
limit of (1) was crucial. This limit is the so-called p-system formed by the hyper-
bolic conservation laws for mass and momentum. Shocks come in different types
given by the relation of their speed and the sound speed of the asymptotic states,
though in the case of quadratic parabolas there is only one sound speed. Shocks
that are faster (slower) than these sound speeds are called supersonic (subsonic).
The fronts found in [17] for the quadratic double-well case correspond to subsonic
shocks when taking the average of the asymptotic oscillations.

The connection to p-system shocks is also crucial for our result, but we solely
consider convex potentials and the fronts we find are supersonic and monotone
with constant asymptotic states, see Figure 2. For such potentials, the only pre-
vious result concerning fronts we are aware of is the bifurcation result by Iooss
in [10] for supersonic fronts of small amplitude connecting constant states near a
convex-concave turning point of Φ′.

The analytical investigations in this paper are motivated by the numerical sim-
ulations of atomistic Riemann problems which have recently been studied by the
authors in [8]. We observed fronts in numerical simulations of (1) even for initial
data that are far from the data of a front, see Figure 2. Hence, fronts are dy-
namically stable and provide fundamental building blocks for atomistic Riemann
solvers.
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+2.60
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-0.70

+1.00

+2.70
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1600 1625

+0.20
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Atomic distances, zoom in

Figure 2. Fronts appear in the numerical simulations of FPU
chains: snapshots of the atomic data with monotone front around
particle α = 1610.

Solving the p-system in the case of forces with turning points requires non-
classical hyperbolic theory, see e.g., [11], and energy conservation provides the
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necessary “kinetic relation.” The arising non-classical shocks conserve energy,
while classical shocks typically dissipate energy. As expected classical shocks do
not correspond to fronts in FPU, but the chain generates microscopic oscillations,
see Figure 2, that form so-called dispersive shocks and lead to measure-valued
macroscopic solutions, see, e.g., [8] for a review in this context.

The main result is the following theorem.

Theorem 1. For all convex and twice continuously differentiable potentials Φ the
following assertions are satisfied:

(1) Each front in the chain corresponds to a conservative shock in the p-system.
(2) For each supersonic conservative shock in the p-system there exists a cor-

responding monotone front in the chain.

The first part of Theorem 1 is fairly straightforward and was proven in a different
way in [1]. The second part is new and uses the convexity of Φ as well as the
supersonic front speed in various fundamental steps. We next give an overview of
the key ideas for the proof.

(1) We use the a priori knowledge of the front speed in order to reformulate
the problem as a nonlinear fixed point equation for a suitably normalised
profile.

(2) We identify an action functional for the deviation from the discontinuous
shock profile such that the fixed point equation is the corresponding Euler-
Lagrange equation.

(3) We use the invariance of the cone of monotone profiles under the gradient
flow of the Lagrangian to connect stationary points in this cone with fronts.

(4) We establish bounds for the action functional and use the direct approach
to show that the Lagrangian attains its minimum in the cone.
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Patterns in pipe flow

Dwight Barkley

(joint work with D. Moxey)

There is now good evidence to suggest that in shear flows, such as channels and
pipes, there is a generic transition from a state of uniform turbulence, in which
turbulence fills the system, to a state in which turbulent and laminar flow coexist -
turbulent-laminar patterns. Such patterns have been observe in very large-aspect-
ratio Couette systems (Prigent et al. 2002; Barkley and Tuckerman, 2005), rotor-
stator flow (Cros and Le Gal, 2002), pressure driven channel flow (Tsukahara et
al. 2005), and in connection to turbulent puffs in pipe flow (Moxey and Barkley,
2009). These fascinating states were not appreciated until recently because they
develop on very long length scales. in terms of channel heights or pipe diameters.
The onset of such pattern occurs as the Reynolds number is decreased from large
values toward the lower limit, Rec for which turbulence in sustained. It appears
that turbulent-laminar patterns are in fact inevitable intermediate states on the
route from turbulent to laminar dynamics in large aspect shear flows.

We report on numerical simulations of flow in pipes at Reynolds numbers from
2500 down to 2000 - near the minimum Reynolds numbers that supports turbu-
lence. The computational domains are periodic in the streamwise direction with
lengths up to 150 pipe diameters. We find both intermittent and equilibrium puffs.
More particularly we find that, just as with other shear flows near the transition
to turbulence, there are well defined transitions between uniform turbulence, in-
termittent states of turbulent and laminar flow, and spatially periodic states of
turbulent and laminar flow.
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Figure 1. Schematic diagram for the discontinuous (subcritical)
transition to turbulence typical of shear flows. States are repre-
sented as a function of non-dimensional control parameter, the
Reynolds number Re. For small Re the flow is always laminar.
For Re larger than the critical value, Rec, turbulent flow is also
possible. If laminar flow is perturbed beyond the boundary then
the flow becomes and remains turbulent.

The interest and importance of this problem are the following: At the most
basic level, understanding how laminar fluid flows become turbulent in pipes and
channels is important for numerous practical engineering applications. Turbulent-
laminar patterns are rather unique flow states connecting turbulent and laminar
states of fluid motions. One would like to understand how the flow maintains an
equilibrium in which fluid parcels continually move between turbulent and laminar
motions. Why does this occur near Rec in so many shear flows and why is the
length scale of the pattern so large? Answering these questions should shed light
on the transition from laminar to turbulent flow.

Even more fundamentally, turbulent-laminar patterns represent a new type of
symmetry breaking and pattern formation in nonlinear dynamical systems since
the patterns involve highly dynamical states and are only steady in some appro-
priately defined average sense. This problem thus has high potential for novel
mathematics and will likely have applications far outside of fluid dynamics.
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[1] A. Prigent, G. Gregoire, H. Chaté, O. Dauchot, and W. van Saarloos, Large-scale finite-

wavelength modulation within turbulent shear flows, Phys. Rev. Lett. 89 (2002) 014501.
[2] D. Barkley and L.S. Tuckerman, Computational study of turbulent laminar patterns in

Couette flow, Phys. Rev. Lett. 94 (2005) 014502.
[3] A. Cros and P. Le Gal, Spatiotemporal intermittency in the torsional Couette flow between

a rotating and a stationary disk, Phys. Fluids 14 (2002) 3755-3765.
[4] T. Tsukahara, Y. Seki, H. Kawamura, and D. Tochio, DNS of turbulent channel flow at very

low Reynolds numbers, In Proc. 4th Intl Symp. on Turbulence and Shear Flow Phenomena,
(2005) 935-940.



Dynamics of Patterns 3241

Figure 2. Space time diagram for turbulent flow in a pipe. Nu-
merical simulations are shown from Re = 2500 down to Re =
2000. The state of the turbulence in the pipe is shown as trans-
verse kinetic energy in grey scale with light indicating turbulence
and dark indicating laminar flow. The horizontal axis is the axis
of a pipe, which here is 150 diameters long. The vertical axis
shows the time evolution as well as changes in Re. The figure
shows clearly the emergence of a patterned state of turbulent and
laminar flow as Re is decreased.
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Full center manifold discretizations for near-onset convection patterns
in the spherical Bènard problem

Klaus Böhmer

(joint work with G. Dangelmayr)

We use this problem for demonstrating the power of the methods in [2, 3]. Large
dynamical systems are often obtained as discretizations of parabolic PDEs with
nonlinear elliptic parts, either equations or system of order 2 or 2m, m > 1. Space
and time discretization methods, so called full discretizations, are necessary to
determine the dynamics on center manifolds. We report that, allowing stable and
center manifolds for the standard space discretization methods, e.g., the standard
methods used in nonlinear elliptic PDEs (cf. [2, 3]), the space discrete center
manifolds converge to the original center manifolds in the following sense (cf. [1, 3]).
The coefficients of the Taylor expansion of a discrete center manifold and its normal
form converge to those of the original center manifold. Then standard, e.g., Runge–
Kutta or geometric time discretization methods can be applied to the discrete
center manifold system of small dimension of ordinary differential equations.

These results are applied to near-onset convection patterns in the spherical
Bènard problem in the Earth mantle. The governing dimensionless parameters are
Rayleigh and Prandtl numbers R,P. Decomposing the velocity field into toroidal
and poloidal scalar field Φ, Ψ, yields with λ ≡ R−Rc

(1) S
∂

∂t
u = G(u, λ) = (L+ λN11)u +N20[u, u].

Here u =
(
Φ,Ψ, θ

)
, the linear operators S and L are given by

S =




1
P ∇2L2 0 0

0 1
P L2 0

0 0 1



 , L =




∇4L2 0 −Rcg(r)L2

0 ∇2L2 0
τ(r)L2 0 ∇2



 ,

N11 =




0 0 −g(r)L2

0 0 0
0 0 0



 ,

N20[u, u] is an extremely complicated bilinear operator (cf. [6]), and L2 =

− 1

sin θ

∂

∂θ
sin θ

∂

∂θ
− 1

sin2 θ

∂2

∂φ2
is the angular part of the full Laplacian ∇2. The

operators L2, ∇2L2, and ∇4L2 are of order 2, 4, and 6, respectively.
We aim for the second bifurcation point with

(2) l2 = 2 : N := N (Gu(u0 = 0, λ)) = {ϕm − 2 ≤ m ≤ 2}, ϕm ≡ f0
2 (r)Y2m(θ, φ),

with the spherical harmonics Y2m(θ, φ), and the unknown radial null eigenvector
f0
2 of L defined by L(f0

2Y2m) = 0. Then the center manifold, with u = v + w, is

(3) Wc := {u = v + w; (v, w); v ∈ N , w = W (v) ∈ M = R(L) ⊥ N (L∗)},
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Figure 1. Bifurcation diagrams for (i) α > 0, b < 0; (ii) α > 0,
b > 0; (iii) α = 0; (iv) α < 0. Bold lines indicate stable solution
branches.

where

v = zϕ =

2∑

m=−2

zm(t)ϕm ∈ N , zm ∈ C, z−m = (−1)iz̄m.

This problem is 5-determined, so we need the center manifold, instead of a Liapu-
nov–Schmidt technique. The numerical method has to inherit the equivariance, so
the spherical harmonics and the L2 remain unchanged, the ∆h replaces ∆. Thus,
the f0

2 are approximated by a Chebyshev collocation spectral method,

Lh(f0,h
2 Y2m) = 0.

Instead of the exact we obtain the approximate vh = zhϕ =
∑2

m=−2 zmh(t)ϕm

and the corresponding discrete normal form, where we determine the first terms
in

żh = gh(zh, λ) = gh
111λz +

∑

i≥2

mi
2∑

j=1

∑

k≥0

gh
ijkλ

kZij
2 (z).

With the universal topological unfolding parameter α and the the modal param-
eter b = sgn(gh

310)g
h
111gb/g

2,h
a , we obtain the bifurcation diagrams in Figure 1 for

solutions with O(2) and D(2) symmetries. A retransformation of the dynamical
scenarios w.r.t. the parametres in the original problem is presented in [4, 5, 3].
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[2] K. Böhmer, Numerical Methods for Nonlinear Elliptic Differential Equations, a Synopsis
(2009). Preliminary Version, ca 650 p.



3244 Oberwolfach Report 57/2008
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Orbital stability of spatially periodic waves to the generalized KdV
equation

Todd Kapitula

(joint work with Bernard Deconinck)

In this paper we generalize previous work on the stability of waves for infinite-
dimensional Hamiltonian systems to include those cases for which the skew-sym-
metric operator J is singular. We assume that J restricted to the orthogonal
complement of its kernel has a bounded inverse. With this assumption and some
further genericity conditions we show that the spectral stability of the wave implies
its orbital stability, provided there are no purely imaginary eigenvalues with nega-
tive Krein signature. We use our theory to investigate the (in)stability of spatially
periodic waves to the generalized KdV equation for various power nonlinearities
when the perturbation has the same period as that of the wave. Different solutions
of the integrable modified KdV equation are studied analytically in detail, while
numerical computations come to our aid for the nonintegrable cases with a fifth-
and sixth-order nonlinearity. The stability question for KdV has been answered
when the period of the perturbation is the same as that of the underlying cnoidal
wave. However, by using the integrable structure associated with KdV we are
able to affirmatively settle the question of the orbital stability of these waves with
respect to periodic perturbations whose period is an integer multiple of the wave
period.
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Nonlinear stability of localized rotating patterns

Wolf-Jürgen Beyn

(joint work with Jens Lorenz)

We consider reaction-diffusion equations for a vector function U(x, t) ∈ Rm

(1) Ut = A∆U + f(U), x ∈ R
2,

where A ∈ R
m×m is a positive definite matrix and f : R

m 7→ R
m is sufficiently

smooth. In the talk we present a theorem on nonlinear stability with asymptotic
phase in the Sobolev space H2 = H2(R2,Rm) for a rotating pattern of the form

(2) U(x, t) = u∗(R−ctx), x ∈ R
2, t ∈ R, Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Here c 6= 0 denotes the rotational velocity and u∗ : R2 7→ Rm is a smooth function.
We discuss the main result and refer to [2] for details of the proof.

We assume that the pattern is localized in the following sense:
Assumption 1: For some u∞ ∈ Rm we have u∗ − u∞ ∈ H2 and

sup
|x|≥R,1≤|α|≤2

(|u∗(x) − u∞| + |Dαu∗(x)|) → 0 as R→ ∞.

Our second assumption concerns stability of the pattern in the far field, i.e., of the
ODE obtained by linearizing (1) at x = ∞.
Assumption 2: The matrix B∞ = f ′(u∞) is negative definite, more precisely
B∞ +BT

∞ ≤ −4βI for some β > 0.
By a simple shift we may assume u∞ = 0. It is well known that the operator

F (u) = A∆u + f(u), u ∈ H2, on the right-hand side of (1) is equivariant with
respect to the action of the Euclidean group SE(2); see [3]. That is, for the action
given by [a(γ)u](x) = u(R−θ(x− η)), γ = (η, θ) ∈ SE(2) = R2 ⋉ S1, the following
relation holds:

F (a(γ)u) = a(γ)F (u), for u ∈ H2, γ = (η, θ) ∈ SE(2).

As a consequence, equation (1) has a three-dimensional solution manifold obtained
by replacing u∗ in (2) by any element of the group orbit G(u∗) = {a(γ)u∗ : γ ∈
SE(2)}. We also note that a rotating wave is a special type of a relative equilibrium
for general equivariant evolution equations (cf. [3],[6]).

Transforming (1) to a corotating frame via U(x, t) = u(R−ctx, t) leads to

(3) ut = A∆u+ cDφu+ f(u) where Dφu = −x2D1u+ x1D2u,

and equivariance implies that all elements of G(u∗) are steady states of (3). Dif-
ferentiating with respect to the group variables shows that the linearized operator

(4) Lv = A∆v + cDφv + f ′(u∗)v

has eigenvalues 0 and ±ic on the imaginary axis with corresponding eigenfunctions
Dφu∗ and D1u∗ ± iD2u∗.
Assumption 3: The functions D1u∗, D2u∗, Dφu∗ are nontrivial elements of the
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space H2
Eucl = {v ∈ H2 : Dφv ∈ L2(R2,Rm)} and the corresponding eigenvalues

0 and ±ic of L from (4) are algebraically simple.
Assumption 2 implies that the operator L : H2

Eucl 7→ L2 has essential spec-
trum strictly to the left of the imaginary axis. Assumption 3 guarantees that the
three known eigenvalues on the imaginary axis are simple. Our final assumption
excludes further isolated eigenvalues with nonnegative real part.
Assumption 4: The operator L : H2

Eucl → L2 has no eigenvalues s ∈ C with
ℜs ≥ −2β except for the eigenvalues 0,±ic from Assumption 3.

Main Theorem Let Assumptions 1-4 hold. Then there exists ε > 0 such that
for any solution of (1) satisfying ||U(0) − u∗||H2 ≤ ε, U(0) ∈ H2

Eucl, there is a
C1-function γ(t) = (θ(t), η(t)) ∈ SE(2) and some (θ∞, η∞) ∈ SE(2) so that we
have for all t ≥ 0:

||U(·, t)− a(γ(t))u∗||H2 + |η(t) − η∞|+ |θ(t) − (ct+ θ∞)| ≤ Ce−βt||U(0)− u∗||H2 .

Remarks:
1. Our Main Theorem states nonlinear stability of the pattern in H2 with asymp-
totic phase. Moreover, we have exponential convergence towards the pattern u∗
and to some asymptotic phase depending on the initial values. Structurally, our
approach follows Henry’s method [5, Ch.5] for proving stability with asymptotic
phase of traveling waves. We decompose the solutions of (3) as

u(·, t) = a(γ(t))u∗ + w(·, t), γ(t) ∈ SE(2), w(·, t) ∈ W,

where W ⊂ H2
Eucl is an invariant subspace of L that is complementary to

span{D1u∗, D2u∗, Dφu∗}. Equation (3) may then be written as a system

γ̇ − Ecγ = r[γ](γ, w(·, t)), ẇ − Lw = r[w](γ, w(·, t)), Ec =

(
−cRπ

2
0

0 0

)

with suitable estimates for the remainders r[w], r[γ]. In contrast to the situation
considered in [5], the operator L generates only a C0-semigroup etL on H2, but not
an analytic semigroup. Consequently, exponential decay estimates do not follow
from the integral representation of etL and resolvent estimates.
2. Bates and Jones [1] set up an invariant manifold theory for C0-semigroups that
allows to conclude exponential decay towards traveling waves for certain mixed
hyperbolic-parabolic systems in one space dimension. More generally, an abstract
principle of reducing the dynamics near a relative equilibrium to a center mani-
fold is derived in [6]. The authors also prove exponential attraction of the center
manifold, which applies to the rotating waves considered here. However, stability
with asymptotic phase is not discussed in [6].
3. The exponential estimate for etL is obtained via an abstract result on C0-
semigroups [2, Appendix] that states the following. Suppose the operator A :
D(A) ⊂ X 7→ X generates a C0 semigroup with bound etω and B : X 7→ X is
bounded such that BetA, t > 0, is compact and all eigenvalues of A+B have real
part ≤ ω. Then A + B generates a semigroup with bound etω. Essentially, this
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theorem is applied to (Bu)(x) = (f ′(u∗(x)) − f ′(u∞))u(x) and A = L−B.
4. In [2, Ch.8] our Main Theorem is applied to spinning solitons found in the
quintic-cubic Ginzburg Landau equation; see [4]. In this case, the essential spec-
trum forms a zig-zag structure to the left of the imaginary axis and Assumption
2 can be verified explicitly. The further assumptions are tested numerically. In
particular, we find that in addition to the three eigenvalues on the imaginary axis
there are eight pairs of isolated simple eigenvalues that lie between the zig-zag
structure and the imaginary axis.
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Bifurcating tori in spatially extended systems

Guido Schneider

(joint work with Andreas Kirchhoff)

We are interested in the existence of bifurcating invariant tori in spatially ex-
tended dissipative systems with marginally stable background state. Examples of
systems we are interested in are reaction-diffusion systems in Rd with spatially
localized amplification terms or the flow around some obstacle problem. Such tori
can bifurcate in case that simultaneously pairs of complex conjugate eigenvalues
cross the imaginary axis and possibly contain quasiperiodic solutions. These tori
are the second bifurcation in the Ruelle-Takens scenario [2] of the onset of tur-
bulence. There is a serious difficulty in the construction of such tori according
to the fact that the linearization around the trivial solution possesses continuous
spectrum up to the imaginary axis for all values of the bifurcation parameter.

As a toy problem we consider

∂tU(x, t) = ∆U(x, t) +
4∑

j=1

|vj(t)|4vj(t)e
−x2 − U(x, t)3,(1)

∂tvm(t) = (α+ iωm)vm(t) − |vm(t)|2vm(t) + vm(t)

∫
U(x, t)e−x2

dx(2)

with ωm = −ω−m for m ∈ {−2,−1, 1, 2} where U : Rd × R+ → R, vj : R+ → R

and ω1, ω2 rationally independent which can be seen as some kind of normal form
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of the mentioned systems. For all values of the bifurcation parameter α the system
possesses the trivial solution (U, V ) = (0, 0). The linearization around the trivial
solution decouples and possesses essential spectrum {−|ξ|2 : ξ = (ξ1, . . . , ξd) ∈ Rd}
up to the imaginary axis for all values of the bifurcation parameter α. Moreover,
for α = 0 simultaneously two pairs of complex conjugate eigenvalues α ± iω1 and
α± iω2 cross the imaginary axis from left to right. Our major goal is an existence
result for an invariant torus associated to the modes v1 = r1e

iφ1 = v−1 and
v2 = r2e

iφ2 = v−2. It turns out that vj = O(ε) and U = O(ε5) for ε2 = α → 0.
Hence in polar coordinates the equations for the vjs are given by

∂tr1 = αr1 − r31 + h.o.t., ∂tφ1 = ω1,

∂tr2 = αr2 − r32 + h.o.t., ∂tφ2 = ω2.

Ignoring the h.o.t., we see that this system possesses an invariant torus if the
first two equations possess a nontrivial fixed point with r1 6= 0 and r2 6= 0, here
(r∗1 , r

∗
2) =

√
α(1, 1). With some hard implicit function theorem the persistence of

the torus can be established in the full system, too. Hence, our result is as follows.

Theorem. Let d ≥ 5. Then there exists an α0 > 0 such that for all α ∈ (0, α0)
there exists a two-dimensional torus M = {(r, U) = (r, U)(φ) | φ ∈ T2} of size
O(

√
α) which is invariant under the flow of the toy problem.

The question is motivated by the flow around some obstacle problem leading to
the same principal difficulties to be overcome. The difficulty of the proof comes
from the essential spectrum up to the imaginary axis. In case that there is a
spectral gap an application of the center manifold theorem easily would give the
existence of an invariant torus for every α > 0 sufficiently small. However there
is no spectral gap and so the center manifold theorem cannot be applied. For
the construction of the invariant torus, we use its invariance which leads to some
condition in differential form, namely ∂tr = ∂r

∂φ∂tφ, ∂tU = ∂U
∂φ ∂tφ. Inserting the

above equations for ∂tr and ∂tU yields for w = r − r∗ and U the PDEs

−2ε2w + h.o.t. =
∂w

∂φ
(Ω + h.o.t.), ∆U + h.o.t. =

∂U

∂φ
(Ω + h.o.t)

where Ω = (ω1, ω2). Since h.o.t. also contains inhomogeneous terms, for h.o.t. 6= 0
the point (w,U) = (0, 0) is no longer a solution. In order to apply the implicit
function theorem two serious difficulties have to be overcome. The first difficulty
already occurs for the first equation. The spectrum of the linear operator w 7→
−2ε2w−∂w

∂φ Ω is given by {−2ε2−in1ω1−in2ω2 | n1, n2 ∈ Z} and therefore possesses

a bounded inverse of order O(ε−2) fromHs(T2) to Hs(T2). However, this operator
is not smoothing, but the nonlinear terms ∂w

∂φ (h.o.t) loose one derivative w.r.t. φ.

Therefore, the usual implicit function theorem has to be replaced by the hard
implicit function theorem or Nash-Moser theorem, cf. [3]. The iteration scheme to
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solve an equation F (r) = 0 is a smoothed Newton method

rn+1 = rn −
(
∂F

∂r
(rn)

)−1

SnF (rn),

where Sn is some smoothing operator with Sn → I for n→ ∞. The limit function

r∞ ∈ Hs(T2,R2) satisfies r∞ = r∞−
(

∂F
∂r (r∞)

)−1
IF (r∞), i.e. r∞ solves F (r∞) =

0. The idea of the hard implicit function theorem is more or less as follows. First
we have to show that (∂F

∂r (rn))−1 is a bounded operator from Hs to Hs with a
bound independent of n. In order to avoid the loss of regularity of the nonlinear
terms the smoothing operator Sn is added. Due to the quadratic convergence of
Newton’s method Sn can be chosen closer and closer to the identity such that for
n→ ∞ the limit function r∞ solves F (r∞) = 0. The major difficulty in applying
the hard implicit function theorem is the proof of so called tame estimates

‖(F ′(r))−1ϕ‖Hs ≤ Cs‖ϕ‖Hs+q + ‖u‖Hs+q‖ϕ‖H2q for all s ≥ q

for the inverse for all r in an Hs-neighborhood of r∗. However, for our problem
these estimates easily follow with energy estimates.

The second difficulty is the inversion of the linear operator U 7→ ∆U − ∂U
∂φ Ω in

the second equation. The spectrum of this operator is given by {−k2 − in1ω1 −
in2ω2 | n1, n2 ∈ Z k ∈ R}. Hence we have essential spectrum coming arbitrary
close to the origin. Nevertheless, this operator still can be controlled due to the
fact that ∆ is invertible from L1 ∩Hs into Hs for d ≥ 5 and due to the Cauchy-
Schwarz inequality which shows that nonlinear terms are bounded from Hs into
L1 ∩Hs. This is a consequence of

‖∆−1u‖2
L2 = ‖|k|−2û‖2

L2 ≤ ‖|k|−2χ|k|≤1û‖2
L2 + ‖|k|−2χ|k|>1û‖2

L2

≤ ‖|k|−2χ|k|≤1‖2
L2‖û‖2

L∞ + ‖|k|−2χ|k|>1û‖2
L2

≤ C‖û‖2
L∞ + ‖û‖2

L2 ≤ C‖u‖2
L1 + ‖u‖2

L2,

where we used

‖|k|−2χ|k|≤1‖2
L2 =

∫

|k|≤1

|k|−4dk ≤ C

∫ 1

0

rd−5dr <∞,

which is true for d ≥ 5.
The existence proof of quasiperiodic solutions would lead to some small divisor

problem similar to KAM theory. For dissipative systems an overview about exis-
tence proofs of quasiperiodic solutions can be found for instance in [1]. By proving
only the existence of an invariant torus the small divisor problem is avoided. The
hard implicit function theorem which is usually used to solve this problems is used
here for the above mentioned reasons.

Numerical experiments in order to illustrate our result in the general situa-
tion are hard to obtain due to d ≥ 5. However, by restricting to the rotational
symmetric situation the problem can be reduced to a problem on the real line,
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namely

(3) ∂tU(x, t) = ∂2
xU(x, t) +

d− 1

x
∂xU(x, t) +

4∑

j=1

|vj(t)|4vj(t)e
−x2 − U(x, t)3

with Neumann boundary conditions at x = 0.

References

[1] H.W. Broer, G.B. Huitema, M.B. Sevryuk, Quasi-periodic motions in families of dynamical
systems. Order amidst chaos. Lecture Notes in Mathematics. 1645. Berlin: Springer. 1997.

[2] D. Ruelle, F. Takens, On the nature of turbulence. Comm. Math. Phys. 20 (1971), 167–192.
[3] X. Saint Raymond, A simple Nash-Moser implicit function theorem. Enseign. Math., II.

Ser. 35, No. 3/4, (1989), 217–226.

A Hamiltonian analogue of the meandering transition

Claudia Wulff

The meandering transition in spiral wave dynamics is a transition from rigidly
rotating to meandering and drifting spiral waves. In symmetry terms, it is a bifur-
cation from rotating waves to modulated rotating and modulated traveling waves
in systems with SE(2)-symmetry. Here SE(2) = SO(2) ⋉ R2 is the special Eu-
clidean group of motions of the plane. Rotating waves are solutions which become
stationary in a corotating frame and are examples of relative equilibria. Modulated
rotating and modulated traveling waves are solutions which become periodic in a
corotating/comoving frame and are examples of relative periodic orbits (RPOs).
In non-Hamiltonian systems, the meandering bifurcation corresponds, in a ro-
tating frame, to a Hopf bifurcation induced by changing an external parameter.
Typically the bifurcating relative periodic orbits are modulated rotating waves,
and modulated traveling waves only occur at certain resonances. See for example
[1, 2, 3] and the references therein.

The transition from rotating waves to modulated traveling waves occuring in
the meandering transition is an example of resonance drift, as analyzed in [7].
Resonance drift occurs if there is a discontinuity of the average drift velocities of
the bifurcating relative periodic orbits at the relative equilibrium. In the case of
the meandering transition it is a discontinuous jump between a rotational and a
translational velocity.

In this talk the first ever analysis of the Hamiltonian analogue of this mean-
dering transition is presented (for more details see [8]). Examples of Hamiltonian
systems where such a transition occurs are rotating point vortices on the plane [5]
or rotating rigid bodies in ideal fluids [4]. In a Hamiltonian system it is natural to
study the persistence and bifurcation of the rotating wave to nearby momentum
levels since the momentum map is a conserved quantity and hence an internal
parameter of the system. In the case of SE(2) symmetry, the components of the
momentum map are angular and linear momentum.
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The differential equations near Hamiltonian relative equilibria in symmetry-
adapted local coordinates from [6] are used to study the transition from rotating
waves to modulated rotating and modulated traveling waves on nearby momen-
tum levels in Hamiltonian systems with SE(2)-symmetry. Thereby a Hamiltonian
analogue of the meandering transition of spiral waves is obtained.

It is shown that, depending on the symmetry properties of the momentum map,
either modulated traveling waves are typical near rotating waves, as momentum
is varied, or that modulated traveling waves do not occur. The first scenario
occurs in the case of momentum maps which are equivariant with respect to the
coadjoint group action on the dual Lie algebra se(2)

∗
of the symmetry group

SE(2). The second case occurs if the group action on se(2)∗ has a non-trivial
cocycle. Moreover, rotating waves and transitions to relative periodic orbits are
continued in the cocycle parameter which determines the symmetry properties of
the momentum map. These results hold under conditions which are generically
satisfied.

The meandering transition is a transition from relative equilibria to relative
periodic orbits. In non-Hamiltonian systems it is a Hopf bifurcation of the sym-
metry reduced dynamics. The Hamiltonian analogue of a Hopf bifurcation is
a Lyapounov centre bifurcation. Lyapounov centre bifurcations for the reduced
Hamiltonian system on the symplectic slice readily yield families of RPOs nearby
elliptic relative equilibria. In the case of SE(2) symmetry these are families of
MRWs with zero linear momentum. Lyapounov centre type theorems are also
proved for the full symmetry reduced system which is a Poisson system and not a
Hamiltonian system. It is shown that on the bifurcating family of RPOs which cor-
respond to periodic orbits of the reduced dynamics outside the symplectic leaf of
the original equilibrium resonance drift occurs. For systems with SE(2) symmetry
the bifurcating RPOs are MTWs with non-vanishing linear momentum.

In [8] the Hamiltonian analogue of the meandering transition is also discussed
for systems with spherical symmetry and for systems with the Euclidean symmetry
group of three-dimensional space.

It remains a challenging open problem to extend these results to infinite dimen-
sional Hamiltonian systems such as PDE models of vortex dynamics.
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How robust are Liesegang patterns?

Arnd Scheel

We review Liesegang patterns as an elementary, yet puzzling pattern form-
ing mechanism. Liesegang patterns exhibit precipiatation spikes at locations that
obey a characteristic spatial scaling law. We argue that such patterns are untyp-
ical in reaction-diffusion systems. We then propose a restricted class of reaction-
diffusion systems, based on the irreversibility of certain chemical reactions, in
which Liesegang patterns are robust, that is, they occur for an open subset of
kinetic, diffusion constants, and boundary conditions. The proof is constructive.
We superimpose elementary building blocks such as spikes and boundary layers
and control errors using a spatial dynamics homoclinic bifurcation analysis.
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Effective dynamics in nonlinear lattices

Jannis Giannoulis

Let us consider a macroscopic body of material, the internal microscopic structure
of which we know exactly. In the case of an infinite monoatomic crystal in one
dimension, the latter could be given by the rest positions j ∈ Z of the atoms
and the interaction potentials V between neighbouring atoms as well as some
background potential W acting on each atom independently of its neighbours.
Then the displacement xj(t) at time t ∈ R of the j-th atom is given by Newton’s
equations of motion

(1) ẍj(t) = V ′
(
xj+1(t) − xj(t)

)
− V ′

(
xj(t) − xj−1(t)

)
−W ′(xj(t)), j ∈ Z.

Given this complete microscopic description, we are able to determine exactly the
dynamics within the object at hand, as for instance the propagation of a wave
caused by an initial excitation (xj(0), ẋj(0)) of the atoms. Doing so,we observe
that for initial data of a macroscopically traceable shape — i.e. a shape varying
with respect to a macroscopic space variable y = εj, 0 < ε ≪ 1 — the ensuing
wave, calculated by (1), displays at later times t > 0 also some macroscopic shape.
If we are interested in the evolution of only this shape, the question arises whether
a corresponding evolution equation can be derived from (1), which relates to the
macroscopic initial data directly the macroscopic form at time t > 0, without
the ’uninteresting’ (from this point of view) microscopic information delivered
automatically by the solutions of (1). Of course, we require from such an effective
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evolution equation that its solutions are comparable to the macroscopic shapes
obtained from the solutions of (1), when starting from the same macroscopic
initial data. More precisely, making the multiscale ansatz

(2) x = XA
ε + O(εa+1), (XA

ε )j(t) = εaA(εbt, ε(j − ct))ei(ω(ϑ)t+ϑj) + c.c.

we are interested in the dynamics of the amplitude A : [0,∞) × R → C. Here,
E(j, t) = ei(ω(ϑ)t+ϑj), as well as its complex conjugate (c.c.), is a plane wave so-
lution to the linearization of (1), which means that its frequency ω(ϑ) ∈ R and
wavenumber ϑ ∈ T = R/2πZ satisfy the dispersion relation ω2(ϑ) = 2v(1− cosϑ)+w,
v = V ′′(0), w = W ′′(0), where, in order to guarantee stability of solutions, we as-
sume w, 4v+w > 0. Hence, considering ϑ as fixed, AE + c.c. is a macroscopically
(amplitude-)modulated pulse. Based on the macroscopic space scale y = ε(j − ct)
(thereby allowing for moving space-coordinate frames with velocity c ∈ R \ {0}),
we can choose the corresponding macroscopic time scale τ = εbt as well as the
relative size of the amplitude by choosing a, b among certain values. This choice
depends on the macroscopic phenomena we want to capture.

Having determined the form (2) of solutions we are looking for, and recalling
that we want them to satisfy (1) as exact as possible, i.e. up to some residual
terms of order O(εk), k ∈ N, we obtain corresponding necessary conditions to be
satisfied by A, by inserting (2) into (1), expanding the left and right hand side of
the latter in terms of εk and En (recall here that (1) is nonlinear), and equating the
respective coefficients of the two sides. In particular, for a = 1, b = 2, we obtain
c = −ω′(ϑ) from the equation for ε2E, and the nonlinear Schrödinger equation

(3) i∂τA =
1

2
ω′′(ϑ)∂2

yA+ ρ|A|2A,

from the equation for ε3E, ρ depending on ϑ, V,W (cf. (2.12) in [1]). Equation
(3) describes the dispersive deformation of the amplitude of a single pulse, which
is observed by travelling with its group velocity c. The extremely slow time scale
τ = ε2t (dispersive scaling) is needed in order to capture the deformation of A,
since the dynamics of εA are close to linear. The justification of (3) is established
by the following theorem, see [2].

Theorem 1. Let V,W ∈ C5(R) with w, (16/3)v+w > 0, A : [0, τ0]×R → C,
τ0 > 0, the solution of (3) with A(0, ·) ∈ H6(R), and XA

ε the approximation (2)
with c = −ω′(ϑ). Then, for any c > 0 there exist ε0, C > 0 such that for all
ε ∈ (0, ε0) and any solution x of (1)

(4) ‖(x(0), ẋ(0)) − (XA
ε (0), ẊA

ε (0))‖ℓ2×ℓ2 ≤ cε3/2

=⇒ ‖(x(t), ẋ(t)) − (XA
ε (t), ẊA

ε (t))‖ℓ2×ℓ2 ≤ Cε3/2 for all t ∈ [0, τ0/ε
2].

The proof relies on a Gronwall-type argument, and is straight-forward for po-
tentials V,W with absent cubic terms (cf. [1]), since the time is scaled by τ = ε2t.
In the presence of quadratic nonlinear terms in (1), one has first to make use of a
normal form transformation, see [2].
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As a second example for the above modulational approach let us briefly discuss
the interaction of modulated pulses. In the simplest setting we make the ansatz

(5) xj(t) = ε

3∑

n=1

A(εt, εj)En(j, t) + O(ε2) + c.c.

with three different plane-waves En(j, t) = ei(ω(ϑn)t+ϑnj), ω(ϑn) > 0, n = 1, 2, 3,
which satisfy the resonance condition

(6) ϑ1 + ϑ2 = ϑ3 in T, ω1 + ω2 = ω3.

This means that the three pulses AnEn interact with each other. (One can imag-
ine this as two pulses which collide and create a third.) We formally derive the
evolution equations for the amplitudes An by inserting (5) into (1) and following
the same steps as above. To this end we need the nonresonance conditions
(7)
(kω(ϑ1)+ℓω(ϑ2))

2 6= ω2(kϑ1+ℓϑ2), (k, ℓ) = (2, 0),(0, 2),(2, 2),(2, 1),(1, 2),(1,−1).

They guarantee that no pulses except those considered are generated by interac-
tion. This yields the three-wave-interaction equations

(8)






∂τA1 − ω′(ϑ1)∂yA1 =
ic

ω(ϑ1)
A3A2,

∂τA2 − ω′(ϑ2)∂yA2 =
ic

ω(ϑ2)
A3A1,

∂τA3 − ω′(ϑ3)∂yA3 =
ic

ω(ϑ3)
A1A2

with c = 4iV ′′′(0) sin
(

ϑ1

2

)
sin
(

ϑ2

2

)
sin
(

ϑ3

2

)
+ 1

2W
′′′(0). Equations (8) can be jus-

tified by the same method as above.

Theorem 2. For V,W ∈ C3(R) and the solution A = (A1, A2, A3) : [0, τ0]×R →
C3, τ0 > 0, to (8) with A(0, ·) ∈ (H3(R))3, the approximation XA

ε = ε
∑3

n=1AnEn

for three pulses with (6) and (7) satisfies (4) for all t ∈ [0, τ0/ε].

Note, that the hyperbolic scaling τ = εt, y = εj used here ’fits’ exactly to
quadratic nonlinearities. For the full details of the proof as well a complete discus-
sion of all possible resonance and nonresonance conditions and the corresponding
macroscopic equations up to an arbitrary order of approximation in the case of
arbitrary many pulses in multidimensional lattices with scalar displacement x, we
refer the reader to [3].

We conclude by mentioning a different approach to effective dynamics. The
macroscopic equations (3) and (8), corresponding to (2) and (5), were derived by
inserting the latter into the microscopic system (1), which posseses Lagrangian and
Hamiltonian structure (LHS). However, as in these examples, often one observes a
posteriori that also the derived equations possess a (macroscopic) LHS. Thus, the
question arises, whether the latter can be derived directly from the microscopic
LHS of (1). Here, the interesting features of the problem are the discreteness of
(1) as well as the inherent microscopic patterns of (2) and (5). Embedding (1) in
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a corresponding continuous system, and taking into account the microscopic pat-
terns by introducing a corresponding number of phase variables φ ∈ Tn (e.g. n = 1
for (2) and n = 2 for (5)), reveals the existence of additional integrals of motion in-
herent to the miroscopic (continuous) system which are hidden from (1). Only the
consideration of these new integrals of motion allows for a correct, exact two-scale
transformation of the microscopic LHS. Then, considering the Hamiltonian struc-
ture on the tangent bundle, one can expand the transformed LHS consistently with
respect to ε, which gives immediately the relevant reduced macroscopic structures.
The consistency of these expansions can be obtained only on the tangent (and
not on the more familiar co-tangent) bundle, due to different scaling behaviour of
velocities and momenta. For the full exposition of this reduction procedure and
further examples, see [4].

Finally, for an overview of results and literature concerning the derivation of
macroscopic continuum limits from nonlinear lattices we refer the reader to [5].
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Diffusive stability of oscillations in reaction-diffusion systems

Thierry Gallay

(joint work with Arnd Scheel)

Synchronization of spatially distributed oscillators is a very common phenomenon
which has been observed in a wide variety of physical systems. The aim of this
work is to study the stability of synchronized oscillations in spatially extended
systems under very general assumptions, without detailed knowledge of internal
oscillator dynamics or coupling mechanisms.

To be specific, we consider the reaction-diffusion system

(1) ut = D∆u+ f(u), u = u(t, x) ∈ R
N , x ∈ R

n , t ≥ 0 ,

with positive coupling matrix D ∈ MN×N (R), D = DT > 0, and smooth kinetics
f ∈ C∞(RN ,RN ). We suppose that the ODE u̇ = f(u) has a periodic solution
u∗(t) with minimal period T > 0 (of course, this is possible only if N ≥ 2.)
Assuming that this solution is asymptotically stable for the ODE dynamics, our
goal is to investigate the stability of the spatially homogeneous, time-periodic
solution u(t, x) = u∗(t) of (1).
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Linearizing (1) at u∗ we obtain the time-periodic equation

ut = D∆u+ f ′(u∗(t))u ,

which (after Fourier transformation in space) is equivalent to the family of ODE’s

(2) ût = −k2Dû+ f ′(u∗(t))û , k ∈ R
n .

For each fixed k we denote by Fk(t, s) the two-parameter evolution operator asso-
ciated to the linear time-periodic system (2), so that û(t) = Fk(t, s)û(s) for any
t ≥ s. The k-dependent Floquet exponents λ1(k), . . . , λN (k) are then classically
defined by

det
(
Fk(T, 0) − eλj(k)T

)
= 0 , j = 1, . . . , N ,

and the set of all Floquet exponents is referred to as the Floquet spectrum. We
assume that the periodic orbit u∗ is spectrally stable in the following strict sense:

Hypothesis (Spectral stability)
(i) The Floquet spectrum in the closed half-space {Reλ ≥ 0} is nonempty only for
k = 0, in which case it consists of the simple Floquet exponent λ1 = 0;
(ii) Near k = 0, the neutral Floquet exponent continues as λ1(k) = −d0k

2 +O(k4)
for some d0 > 0.

We emphasize that these assumptions are satisfied for an open class of reaction-
diffusion systems. In particular, since by (i) λ1 = 0 is a simple Floquet exponent
for k = 0, it is clear from (2) that λ1(k) satisfies an expansion of the form (ii) for
some d0 ∈ R. Assuming d0 > 0 is therefore robust.

Of course, a necessary condition for our spectral assumption to hold is that u∗(t)
be a stable periodic solution of the ODE u̇ = f(u), but this hypothesis alone is
not sufficient in general, except if the diffusion matrix is a multiple of the identity.
Indeed, even if N = 2, one can find examples of periodic solutions which are
asymptotically stable for the ODE dynamics, but become unstable if a suitable
diffusion is added [3, 4]. One possible scenario, which is usually called phase
instability or sideband instability, is that the coefficient d0 be negative, in which
case the periodic orbit is unstable with respect to long-wavelength perturbations.
It may also happen that the Floquet spectrum is stable for k in a neighborhood
of the origin, but that there exists an unstable Floquet exponent for some k∗ 6= 0,
and therefore for all k in a neighborhood of k∗. This mechanism is reminiscent of
the Turing instability for spatially homogeneous equilibria.

Having assumed that u∗ is spectrally stable, we now discuss the nonlinear sta-
bility of this periodic orbit as a solution of the PDE (1). Of course, the stability
properties may depend on the class of admissible perturbations. The only result
we have so far concerns the relatively simple situation where the perturbations
are spatially localized. In that case, one can optimally exploit the properties of
the heat semigroup to show that the perturbations decay diffusively to zero as
t→ +∞. Denoting X = L1(Rn) ∩ L∞(Rn), our result can be stated as follows:

Theorem. Assume that the periodic orbit u∗ is spectrally stable as specified in the
Hypothesis above. Then there are positive constants C and δ such that, for any
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initial data u(0, x) = u∗(t0) + v0(x) with t0 ∈ R arbitrary and ‖v0‖X ≤ δ, there
exists a unique, smooth global solution u(t, x) of (1) for t ≥ 0. Moreover u(t, x)
converges to the periodic solution u∗ in the sense that

(3) sup
x∈Rn

∣∣∣u(t, x) − u∗(t0 + t)
∣∣∣ ≤ C‖v0‖X

(1 + t)n/2
, for all t ≥ 0 .

We emphasize in particular that the perturbations we consider, being localized
in space, do not alter the overall phase t0 of the periodic solution. We also observe
that the decay rate in (3) is optimal. As a matter of fact, under the assumptions
of the Theorem, one can show that the solution of u(t, x) of (1) has the following
asymptotic expansion as t→ +∞:

u(t, x) = u∗(t0 + t) + u′∗(t0 + t)
α∗

(4πd0t)n/2
e−|x|2/(4d0t) + o(t−n/2)

= u∗

(
t0 + t+

α∗

(4πd0t)n/2
e−|x|2/(4d0t)

)
+ o(t−n/2) ,

uniformly in x ∈ Rn, for some α∗ ∈ R. To leading order, the effect of the per-
turbation is thus a spatially localized modulation of the phase of the periodic
solution.

The proof of the Theorem is relatively simple in high space dimensions. If we
look for solutions of (1) of the form u(t, x) = u∗(t) + v(t, x), we obtain for the
perturbation v the equation

(4) vt = D∆v + f ′(u∗(t))v +N(u∗(t), v) ,

where N(u∗, v) = f(u∗ + v) − f(u∗) − f ′(u∗)v = O(v2). Let F(t, s) be the two-
parameter semigroup defined by the linear, time-periodic equation vt = D∆v +
f ′(u∗(t))v. The Hypothesis above implies that the operator F(t, s) satisfies the
same Lp–Lq estimates as the heat semigroup e(t−s)∆, namely

(5) ‖F(t, s)v‖Lq(Rn) ≤ C

(t− s)
n
2
( 1

p
− 1

q
)
‖v‖Lp(Rn) , t > s ,

for 1 ≤ p ≤ q ≤ ∞. Using this observation, it is straightforward to show that
small solutions of (4) in X stay bounded and decay diffusively to zero as t→ +∞
provided that n > 2. If n = 1 or n = 2, the quadratic terms in the nonlinear-
ity N(u∗, v) are no longer “irrelevant” (in the terminology of [1]) and the naive
approach breaks down.

To prove stability in low space dimensions, the main idea is to use a normal form
transformation for the ODE dynamics which removes all “relevant” terms in the
perturbation equation. This transformation is defined in a tubular neighborhood
of the periodic orbit and takes the form u = Ψ(θ, v), where θ ∈ S1 is the phase
variable and v ∈ RN−1 the transverse coordinate. The ODE u̇ = f(u) becomes

(6) θ̇ = ω , v̇ = L(θ)v + g(θ, v)[v, v] ,

where ω = 2π/T , L is a linear operator in RN−1 depending on θ, and g is a
quadratic form on RN−1 depending on θ and v. In particular, the periodic orbit



Dynamics of Patterns 3259

u∗(t) corresponds to the trivial solution θ(t) = ωt, v(t) = 0 of (6). If we now apply
the normal form transformation Ψ to the full equation (1), we obtain a quasilinear
system of PDE’s in which the reaction terms, describing the kinetics, have the
simpler form (6). Moreover, the two-parameter semigroup corresponding to the
linearization at the periodic orbit satisfies better estimates than (5), with a faster
decay in time of the transverse variable v. These estimates are sufficient to control
the nonlinear terms in the pertubation equation, in any space dimension n > 0.
All details can be found in [2].

An important question is whether our spectral stability assumption is sufficient
to ensure nonlinear stability with respect to perturbations in a larger class (for
instance, bounded perturbations). This problem is left for future investigations.
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Pattern formation and partial differential equations

Felix Otto

In this talk, I discussed three partial differential equations (PDE) that model
pattern formation. Numerical simulations reveal that solutions of these determin-
istic equations have indeed stationary or self-similar statistics, which are indepen-
dent of the system size and of the details of the initial data. We show how PDE
methods can be used to understand some aspects of this universal behavior.

The first PDE has the structure of a gradient flow (a feature on which the
analysis relies), the second PDE has the structure of a driven gradient flow, whereas
the third PDE is half-way between a conservative and a dissipative system.

1. Bounds on the coarsening rate in spinodal decomposition

The PDE — the Cahn–Hilliard equation — is given by

∂tu+ △(u(1 − u2) + △u) = 0

with periodic boundary conditions in the spatial domain (0, L)d. Here, u de-
notes the (renormalized) volume fraction of a binary mixture, which is quenched
(slightly) below the critical temperature and thus wants to segregate.

Numerical simulations reveal that for generic initial data (e. g. small amplitude
white noise) after an initial layer, (0, L)d divides into a convoluted domain where
u ≈ 1 and its complement where u ≈ −1, separated by a characteristic interfacial
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layer of width O(1). This domain configuration coarsens over time in a statistically
self-similar way. More precisely, the average length scale of the domains behaves
as O(t1/3). This is reflected by the fact that the average energy per volume, i.e.,

E = L−d

∫
1

2
|∇u|2 +

1

4
(1 − u2)2 dx,

which is proportional to the total interfacial area per system volume, behaves as
O(t−1/3).

PDE analysis is only able to rigorously establish a much weaker result: In a joint
work with R. V. Kohn [6] we prove that, in a time-averaged sense, E ≥ O(t−1/3).
The proof makes use of the gradient flow structure of the evolution. This allows
to translate a bound on the energy landscape (energy cannot decrease too fast as
a function of the intrinsic distance to the reference configuration) into a bound on
the steepest descent dynamics (energy cannot decrease too fast as a function of
time).

2. Bounds on the Nusselt number in Rayleigh–Bénard convection

The system of PDEs is given by an advection-diffusion equation for the tem-
perature T , and the Stokes equations with buoyancy for the fluid velocity u, i.e.,

∂tT + ∇ · (Tu) −△T = 0,

−△u+ ∇p = T (0, 0, 1),

∇ · u = 0

in the 3-d spatial domain (0, L)2×(0, H) with periodic boundary conditions in the
two horizontal dimensions. The PDE is complemented by inhomogeneous (and
thus driving) Dirichlet boundary conditions at the top and bottom boundaries

T = 1 for z = 0, T = 0 for z = H, u = 0 for z = 0, H.

Experiments and numerical simulations for H,L ≫ 1 show a chaotic velocity
field u, with regions of high temperature T ≈ 1 in form of mushrooms (plumes).
This leads to a high upwards heat transport — much higher than the one mediated
by diffusion allone. This upwards heat flux is given by the Nusselt number

Nu := lim sup
T↑∞

T−1L−2H−1

∫
Tu · (1, 0, 0)dx.

Experiments and asymptotic analysis suggest that Nu = O(1).
Again, PDE analysis is only able to rigorously establish a much weaker result:

In a joint work with C. Doering and M. Reznikoff-Westdickenberg [4] we show
that indeed Nu ≤ O(1) in H ≫ 1 (up to the cube root of a logarithm). This
slightly improves an earlier result by P. Constantin and C. Doering [3]. We use the
background field method; our background temperature profile is non-monotone,
and thus enjoys enhanced stability which allows to contain its boundary layers.
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3. Bounds on the average dissipation
in the Kuramoto–Sivashinsky equation

The PDE — the Kuramoto–Sivashinsky equation — is given by

∂tu+ ∂x

(
1

2
u2

)
+ ∂2

xu+ ∂4
xu = 0

with periodic boundary conditions on (0, L). In one particular application, u
denotes the slope ∂xh of a (one-dimensional) crystal surface. The Kuramoto-
Sivashinsky equation describes the evolution of the crystal surface in the presence
of slope selection, curvature regularization and strong deposition — in a regime
where there is no coarsening of facets. It can also be seen as a toy model for the
energy transfer from large wave lengths to small wave lengths in the Navier Stokes
equations.

For L ≫ 1, numerical simulations reveal that the solutions have an average
length scale of O(1), and an average amplitude of O(1) and display spatio-temporal
chaos. Moreover, numerical simulations of the power spectrum show “equipartition
of energy”.

Again, PDE analysis is only able to rigorously establish a much weaker result:
in [8], we prove that the average dissipation rate, i.e.,

lim
T↑∞

T−1L−1

∫ T

0

∫ L

0

(∂2
xu)

2dxdt,

is O(1) in L ≫ 1 (up to a logarithm). The argument relies on a new observation
on the inhomogeneous inviscid Burger’s equation

∂tu+ ∂x

(
1

2
u2

)
= ∂xf.

It improves earlier results by [7, 2, 1].
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Infinite-dimensional hyperbolic attractors in a periodically driven
Swift–Hohenberg equation

Dmitry Turaev

(joint work with Sergey Zelik)

We show that given any ε > 0 one can find a space- and time-periodic function
f(x, t) such that ‖f‖ < ε and the equation

(1) ∂tu = −(1 + ∂xx)2u+ αu+ βu2 − u3 + f(x, t)

(here x ∈ R1) has, for some open region of values of α and beta, a local attractor Λ
the flow on which is topologically conjugate to a suspension over a direct product
of an infinite number of two-dimensional hyperbolic Plykin attractors. This result
augments a previous result of [1] about the existence of an infinite-dimensional
hyperbolic set within the maximal attractor of equation (1); namely, we show that
such hyperbolic sets can be locally attracting.
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Traveling waves in heterogeneous media: pinning and homogenization

Karsten Matthies

Pinning. We analyze traveling and pinned fronts for reaction-diffusion equations
of the form

(1)
uτ = D(x/ǫ)∆x,yu+ f(u,∇u, y, λ, x/ǫ)

u(0) = u0 ∈ Hs
loc(R × Ω,Rn),

with a domain in form of a strip (x, y) ∈ R ×Ω with periodic boundary condition
in the cross-section Ω. The nonlinearity is assumed to be an entire function of u,
∇u, y, and continuous in x/ǫ, ǫ. The dynamics of these fronts are compared with
homogenized problems like

uτ = D∆u+ f̄(u,∇u, y, λ)
When looking for stationary solutions of (1), e.g. pinned waves, we obtain an
equation of the form

∆x,yu+ f̃(u,∇u, x/ǫ) = 0.

We rewrite this equation by using spatial dynamics. This is a way to construct
special solutions to PDEs on unbounded domains. For this we let

U =

(
u
ux

)
, A =

(
0 I

−∆y 0

)
, F (U, x/ǫ) =

(
0

−f̃(u, ux,∇yu, x/ǫ)

)
.

Renaming x as time t for the spatial dynamics approach, we have the equation

(2) Ut = AU + F (U, t/ǫ),
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which has the form of a rapidly forced evolution equation. The phase space X is
a function space on the cross-section Ω like X = Hs+1(Ω,Rn) ×Hs(Ω,Rn). Here
the initial value problem is not well-posed. We compare this with a corresponding
homogenized equation

(3) Ūt = AŪ + F̄ (Ū)

Then we obtain in [3] that pinning can only occur exponentially small parameter
intervals.

Theorem 1. Assume a standing front for homogenized equation (3) connect-
ing two t-independent equilibria for λ = λ0 and some transversality and non-
degeneracy conditions. Then there exist solutions Uǫ, λǫ of (2) and

‖Uǫ − Ū‖ ≤ Cǫ, |λǫ − λ0| ≤ Cǫ

for all 0 < ǫ < ǫ0.
Furthermore, other pinned solutions Vǫ can only exist in an exponentially small

parameter interval. In other words, let Vǫ, λ̃ǫ be a solution of (2) nearby, i.e.,

‖Vǫ − Ū‖ ≤ Cǫ0, |λ̃ǫ − λ0| ≤ Cǫ0,

then

|λ̃ǫ − λǫ| ≤ C exp(−cǫ−1/2).

A main ingredient in the proof is the homogenization of equation (2), here
methods from [2] are used.

Variants. When considering traveling waves in heterogeneous media, the ansatz

u(x, y, t) = v(x − ct, y, x/ǫ),

is used. The profile v of the traveling wave is changing periodically while moving
through the periodic medium. This can be also formulated as a spatial dynamics
problem, for details how to obtain homogenization results, see [4].

Future research should aim e.g. at the question of pinning of planar waves
in R2. Here variants also include heterogeneities in the main part like in classical
homogenization theory. A first example are second-order elliptic equations like

−∇ · (A(x/ǫ)∇u)(x)) = f(x)

with A ∈ L∞(T d) symmetric and uniformly elliptic. Assuming periodic boundary
conditions for x, exponential homogenization results could be obtained in [1]. This
should be a first step to understand pinning in reaction-diffusion system multi-
dimensional heterogeneous media.
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Traveling waves and spreading fronts in spatially heterogeneous media

Hiroshi Matano

A function is called ergodic if it has a certain averaging property. This class is
wider than and is often more natural than the class of almost periodic functions
when one studies front propagation under spatially heterogeneous environtments.
In this talk, I have discussed the following subjects:

(1) speed of traveling waves in spatially ergodic media;
(2) long-time behavior of ergodically disturbed planar fronts in the Allen–

Cahn equation;
(3) spreading fronts in spatially stratified diffusive media.

Here, by “ergodic”, I mean uniquely ergodic with respect to the space variable.
Note that I only consider deterministic models.

Before presenting the main results, let us clarify the meaning of some basic
concepts. Let X be a metric space with Rm action. This means that there exists
a family of homeomorphisms Ta : X → X (a ∈ Rm) satisfying Ta ◦ Tb = Ta+b.
Given an element g ∈ X , we define its hull Hg by

Hg := { Tag | a ∈ Rm }X
,

where A
X

stands for the closure of a set A in the X-topology. We say that an
element g ∈ X is uniquely ergodic if there is a unique probability measure on Hg

that is invariant with respect to all Ta (a ∈ Rm). One can easily check that g is
uniquely ergodic if and only if, for any continuous function Ψ on Hg, the following
limit exists uniformly in a ∈ R

m:

lim
R→∞

1

|BR(a)|

∫

BR(a)

Ψ(Txg) dx.

A typical situation we have in mind is when X is the space of uniformly contin-
uous functions on R or Rn with the L∞

loc topology, and Ta is the spatial translation
g(x) 7→ g(x + a). Any almost periodic function is uniquely ergodic, but the con-
verse is not true. For example, a function on R

2 whose level sets have the Penrose
tiling pattern is uniquely ergodic but not almost periodic in the sense of Bohr.

One can also consider the situation when the translation Ta is limited to a
subspace of Rn. For example, given a bounded uniformly continuous function
g(x, y) in (x, y) ∈ Rm ×Rn−m, we say that g is uniquely ergodic in the x-direction
if it is uniquely ergodic with respect to the translations Ta : g(x, y) 7→ g(x+ a, y).
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1. Topic 1: Speed of TW in spatially ergodic media

Consider the following simple model equation:

(1D) ut = uxx + b(x)f(u),

where f(u) is a nonlinear term satisfying f(0) = f(1) = 0, and b(x) is a positive
smooth function on R. The classical notion of traveling wave does not apply to
such an equation unless b(x) is a constant. But one can naturally extend the notion
of traveling waves using the hull of b. See [5] or [4] for details. The question then
is whether the generalized traveling wave has a well-defined average speed. The
following theorem answers this question.

Theorem 1 ([5]). In problem (1D), the traveling wave has an average speed if
b(x) is uniquely ergodic.

The same result holds for a more general class of equations. For example, the
recent paper [4] considers traveling waves in a two-dimensional infinite cylinder
whose boundary undulates ergodically. It is shown that the traveling wave has an
average speed, and the homogenization limit of this traveling wave is determined.
A similar study was made in an earlier paper [6] for periodically undulating cylin-
ders.

2. Topic 2: Ergodically disturbed planar fronts

Consider the Allen–Cahn equation on Rn:

(AC) ut = ∆u+ f(u),

where f is a bistable nonlinearity with −1 and +1 being its stable zeros. A solution
u(x, y, t) with (x, y) ∈ Rn−1 ×R is called a planar wave if it is written in the form
u(x, y, t) = Φ(y − ct), where c is a constant representing the speed of this planar
wave. Most of the previous studies on the asymptotic stability of planar waves is
limited to small perturbations. Recently, [8] proved the stability with asymptotic
phase for perturbations that are almost periodic in the x-direction. The following
theorem extends this result:

Theorem 2 ([7]). A planar wave of (AC) is stable with asymptotic phase under
perturbations that are uniquely ergodic in the x-direction.

Note that smallness of the initial perturbation is assumed here, but that some
mild condition near y = ±∞ is imposed, as in [8]. This theorem is proved by using
the following key observations:

(a) u(x, y, t) can be approximated by Φ(y−γ(x, t)) for all large t, where γ(x, t)
is the zero-level surface of u;

(b) γ(x, t) can be approximated by a solution of the mean curvature flow with
a drift term;

(c) the ergodicity of the initial value u0(x, y) is inherited by the solution,
therefore γ(x, t) remains ergodic in x for every large t;
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(d) solutions of the mean curvature flow with uniquely ergodic initial value
converges to a drifting hyperplane uniformly as t→ ∞.

3. Topic 3: Spreading fronts in spatially stratified media

By a spreading front we mean a solution that starts from a non-negative com-
pactly supported initial data.

Here we consider a KPP type diffusion equation on R2 of the form

(KPP) ut = uxx + uyy + b(x)f(u),

where f is a KPP type monostable nonlinearity, and b(x) is positive. In [3],
assuming that b(x) is L-periodic, we have considered a variational problem of
finding the optimal b(x) that maximizes the spreading speed of the front in each
direction, under the integral constraint 〈b〉 = α, where 〈b〉 denotes the mean of
b(x) and α is any given constant. We have shown that the maximizing b is not a
function but a periodically arrayed line measure, and that the spreading front has
a parabolic shape when L is very large. The result is proved by using a result in
the earlier paper [2], in which a similar variational problem was considered in one
space dimension.

Front propagation for a system of equations is much harder, but we have recently
obtained partial results for the following epidemic model:






St = δS − S + rI

Ht = −α(x)HS

It = α(x)HS − βI.

More precisely, what we have obtained is the existence of near planar waves in
each direction. This is a first step for analysing the asymptotic shape of spreading
fronts, but whether such an asymptotic shape exists for this system of equations
is completely open, largely because lack of comparison principle.

Coming back to the equation (KPP), where b(x) is no longer periodic, the
question of spreading front is largely open. In particular, it is not even known
whether or not there exists a near-planar wave in every direction, except for the
special case where b(x) is a uniform limit of periodic functions.
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Universitätsstr. 25
33615 Bielefeld

Prof. Dr. Klaus Böhmer
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