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Introduction by the Organisers

Discrete Differential Geometry is an active mathematical terrain where differen-
tial geometry (the theory of smooth manifolds, providing notions of curvature,
flows, integrability, etc.) interacts with discrete geometry (concerned with poly-
hedral surfaces, frameworks and their rigidity, polytopes and their subdivisions,
etc.), using tools and ideas from all parts of mathematics, including, for example,
conformal geometry, integrable systems, algebraic combinatorics, mathematical
physics (discrete electrodynamics, hydrodynamics and elasticity), computational
geometry, and geometry processing.

In view of two books entitled “Discrete Differential Geometry” – the proceed-
ings of the 2004 Oberwolfach Seminar (Birkhäuser 2008) and the recent volume by
Bobenko & Suris (AMS 2008) – as well as a number of workshops in recent years
(St. Petersburg 2003, Oberwolfach 2006, Berlin 2007) treating the subject, it can
be said that Discrete Differential Geometry has started to be a well-established
mathematical discipline. Nevertheless, the boundaries of the field are not fixed;



76 Oberwolfach Report 02

quite to the contrary, it is branching out into new directions, and new and some-
times unexpected connections and lines of development appear frequently – as can
also be seen in the following pages.

The present collection of extended abstracts documents the lectures and the
open problems session at the second Oberwolfach workshop on Discrete Differential
Geometry. It records a successful and very active workshop, and thus presents a
multi-facetted picture of the field. We are grateful to all the participants of the
Workshop for their manifold contributions, and to the institute in Oberwolfach
and all its staff for providing, once again, a perfect setting for this.
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Abstracts

Semidiscrete Surface Representations

Johannes Wallner

(joint work with Christian Müller and Helmut Pottmann)

A semidiscrete surface representation x(u, k) is a mapping x : R × Z → R3, i.e.,
a bivariate function with one continuous and one discrete parameter. It can be
interpreted as the limit of discrete surfaces (εZ) × Z → R

3 as ε tends to zero.
There is actually an entire spectrum of mappings Zr × Rs → Rd of which the
purely discrete and the purely continuous surfaces are the extremal cases, and
which are discussed in depth by [2]. A major point of that theory is that for
r ≥ 1, s ≥ 2 they represent the classical topic of transformations of surfaces, and
that the limit viewpoint allows us to consider transformations and especially their
permutability theorems within the theory of discrete integrable systems.

The low-dimensional case r = d = 1 turned out to be very interesting in its
own right when in [4] the approximation of surfaces by a sequence of single-curved
strips was discussed from the viewpoint of geometry processing, motivated by
applications in architectural design. Such ‘developable strip models’ are recognized
as semidiscrete conjugate nets, and their theory and specializations to circular and
conical nets are developed by [4]. A general discussion of relations between discrete
differential geometry and architectural design is given by [5].

In the following we report on results of [4] concerning conjugate nets, as well
as material not yet published [3, 7].

Our basic entity is a net which can be discrete, semidiscrete, or continuous, and
which is a mapping “x” defined in Z × Z, or R × Z, or R × R, having values in
R3. We write x(j, k), x(u, k), and x(u, v), respectively. The dependence on the
continuous parameters is understood to be C2. We write ∂ux for derivatives w.r.t.
smooth variables, and ∆kx for discrete derivatives, i.e., forward differences.

Conjugate nets. These are defined by planarity of elementary (infinitesimal)
quadrilaterals, which is expressed as the linear dependence of three vectors, namely

∆j∆kx, ∆jx, ∆kx, or ∆k∂ux, ∆kx, ∂ux, or ∂u∂vx, ∂ux, ∂vx,

in the three respective categories. For semidiscrete x this means that the ruled
strip generated by curves x|R×{k} and x|R×{k+1}, viz.,

s(k) : R × [0, 1] → R
3, (u, v) 7→ (1 − v)x(u, k) + v x(u, k + 1),

is developable. Circularity of the net means that each strip has a family of inscribed
circles which are tangent to the boundary curves in corresponding points. In
this way a developable strip is a 1D Jonas transform, which becomes a Darboux
transform if the strip is in addition circular. The net is conical, if for each vertex
there is a right circular cone tangent to the two adjacent strips. It turns out that
circular and conical strips are convertible into each other and possess a nice focal
theory similar to [6].
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We have further investigated the circular nets with regard to equivalence, iso-
thermicity, the Koenigs property, and Christoffel duality. It is instructive to
demonstrate how properties like the incidence-geometric characterization of dis-
crete Koenigs nets manifest themselves in the semidiscrete category. First the
discrete version: A discrete conjugate net is Koenigs ⇐⇒ The diagonals of ele-
mentary quadrilaterals intersect in the vertices of yet another conjugate net. For
the semidiscrete case it is first necessary to consider the limit of a planar 4-gon
abcd with points e = ac ∩ bd, f = bc ∩ ad as shown, as a → b and c → d:

a

b c

d

e f x h x + ∆x r

It is not difficult to see that the limit points have cross ratio −1, and that the
interpretation of abcd as an infinitesimal quad in a net yields the following: A
semidiscrete conjugate net x is Koenigs ⇐⇒ The net h which is defined by the
condition that cr(x, h, x + ∆x, r) = −1 is itself a conjugate net, where r(u, k) is
the singular point of the strip s(k) located on the ruling x(u, k)x(u, k + 1).

Asymptotic nets. Also here there is much analogy between the three categories.
Asymptotic nets (A-nets) are defined by the condition that the second derivatives
w.r.t. both parameters are co-planar with the first derivatives. In the semidiscrete
case this amounts to the condition that

∂x, ∂2x, ∆x, ∆−x

are co-planar, where ∆− is the backwards difference, and where we dropped the in-
dices after ∂, ∆. Consequently the union of ruled surface strips {s(k)(R×[0, 1])}k∈Z

associated with an A-net is a smooth surface, provided it does not overfold, with
the strip boundaries being asymptotic curves of each adjacent strip.

Each semidiscrete A-net (possibly after changing handedness) has a semidiscrete
Lelieuvre vector field U with ∆x = U × ∆U and ∂x = −U × ∂U which is unique
(like for continuous A-nets) and which fulfills a Moutard equation. In addition,

the net Ũ(u, k) = (−1)kU(u, k) is a conjugate net (like in the discrete case): The
ruled surface defined by the curves

−U |R×{k}, U |R×{k+1},

is developable, with its curve of regression exactly in between at ∆U(u, k)/2. This

means that Ũ is actually a T-net. Taking the definition

K = −‖U‖−4

of Gauss curvature from the continuous category, we can show that A-nets of
constant Gaussian curvature are characterized by the weak Chebyshev property:

K = const. ⇐⇒ ∆ ‖∂x‖ = ∂ ‖∆x‖ = 0.
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Further, both associated nets U , Ũ enjoy the weak Chebyshev property. Knowing
the relations between discrete and continuous A-nets of constant Gaussian curva-
ture [1, 8], this theorem is to be expected. It is however interesting to observe the

role of the T-net Ũ in the proof of this fact.
This research is supported by the National Research Network Industrial Geom-

etry (grant No. S92, Austrian Science Fund).
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Discrete Differential Geometry: Integrable structure

Yuri B. Suris

(joint work with Alexander I. Bobenko)

This talk was based on the textbook with A. Bobenko [1] recently published by
the AMS, and aimed at giving an overview of an (integrable part of) discrete
differential geometry. Discrete differential geometry (DDG) develops discrete ana-
logues and equivalents of notions and methods of differential geometry of smooth
curves, surfaces etc. The smooth theory appears in a limit of the refinement of
discretizations. Integrable differential geometry deals with parametrized objects
(surfaces and coordinate systems) described by integrable differential equations.
As integrability attributes one counts traditionally: zero curvature representations,
transformations with remarkable permutability properties, hierarchies of commut-
ing flows etc. Development of DDG led, somewhat unexpectedly, among other
things, to a better understanding of the very notion of integrability.

The basic notion of DDG is that of a discrete net, i.e., a map f : Zm → X . Here
X is some space; in the most straightforward examples, like Q-nets (or discrete
conjugate nets), X is just the ambient space of the underlying geometry, like

X = RP
N , however more intricate mathematical models require for other spaces

X , and a good deal of this talk was devoted to these less trivial situations. Notation
for discrete nets: f = f(u), fi = f(u + ei), fij = f(u + ei + ej), etc.

We started with the following definitions:
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– A (hyperbolic) 2d system (with fields assigned to vertices) is a geometric con-
dition, equation, etc., which allows to determine the 4th point of an elementary
square of Z2 if other three are arbitrarily prescribed.

– A (hyperbolic) 3d system (with fields assigned to vertices) is a geometric con-
dition, equation, etc., which allows to determine the 8th point of an elementary
cube of Z3 if other seven are arbitrarily prescribed.

These notions are schematically represented in Figure 1. Natural boundary value
problems for these systems are Goursat problems (prescribing initial data along
coordinate axes for a 2d system, resp. along coordinate planes for a 3d system)
and Cauchy problems (prescribing initial data along a non-characteristic staircase
line, resp. along a non-characteristic stepped surface).

f

f2

f1

f12

f

f3

f12

f1

f13

f2

f23 f123

Figure 1. Elementary square of a 2d system (left) and an ele-
mentary cube of a 3d system (right). Black circles mark the initial
data; white circles mark the vertices uniquely determined by the
initial data.

One of the fundamental organizing principles of integrable DDG is the multi-
dimensional consistency principle: discretizations of surfaces, coordinate systems
and other parametrized objects should be extendable to multidimensionally con-
sistent nets. Multidimensional consistency is, in our understanding, synonymous
with integrability. For a 2d system, it is enough to establish its 3d consistency,
and likewise for a 3d system it is enough to establish its 4d consistency. These
notions are schematically represented in Figure 2. Given a multidimensionally
consistent discrete net, a smooth limit in some of the coordinate directions leads
to smooth surfaces with transformations possessing permutability properties. As
a rule, consistency is a consequence of elementary incidence theorems of geometry,
which therefore constitute a true root of integrable differential geometry.

Several classes of discrete nets were considered, with an emphasis on the situa-
tions where a less simple choice of the space X becomes crucial.

• The most fundamental class of discrete nets constitute Q-nets f : Zm → RP
N ,

characterized by the property that four vertices of each elementary quadrilateral
lie in a plane. A generalization has been recently proposed in [2]: Grassmannian
Q-nets are nets f : Zm → GN

r with values in the Grassmannian GN
r of r-planes

in RP
N , characterized by the property that for each elementary quadrilateral the

four r-planes f , fi, fj and fij assigned to its vertices span a (3r+2)-plane. (Usual
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Figure 2. 3d consistency of a 2d system (left) and 4d consistency
of a 3d system (right). Black circles mark the initial data; white
circles mark the vertices uniquely determined by the initial data;
white square marks the vertex where the consistency condition
appears.

Q-nets correspond to r = 0.) It has been proven in [2] that Grassmannian Q-nets,
like the usual ones, are described by a multidimensionally consistent 3d system.

• Another remarkable class of discrete nets described by a 3d system featuring
multidimensional consistency constitute A-nets f : Zm → RP3, characterized by
the property that all neighbor points f(u± ei) of f(u) lie in a plane P(u) through
f(u). It turns out to be natural to consider A-nets as maps with values in the
space X of all pairs (f,P) satisfying f ∈ P , characterized by the condition that
for two neighboring pairs (f,P) ∼ (fi,Pi) there holds f ∈ Pi and fi ∈ P . The
incidence theorem underlying the 4d consistency of this system is that of Möbius
on the pairs of mutually inscribed tetrahedra. The space X of contact elements
admits a beautiful realization in the framework of Plücker line geometry: contact
elements (f,P) are interpreted as sets of lines in P through f and are represented
by isotropic lines in the Plücker quadric in P(R3,3). The characteristic property
of A-nets reduces to the condition that any two neighboring isotropic lines ℓ, ℓi

intersect. In other words, A-nets correspond to discrete congruences of isotropic
lines in the Plücker quadric.

• If one interprets contact elements (f,P) in the framework of Lie sphere
geometry as the sets of all spheres through f in oriented contact with P , one arrives
at the notion of principal contact element nets, which serve as a discretization of
the curvature line parametrized surfaces. The defining condition is that for two
neighboring pairs (f,P) ∼ (fi,Pi) there is a sphere through both f and fi in
oriented contact with both P and Pi. The points of a principal contact element
net build a circular net, while the planes build a conical net. In the framework of
Lie sphere geometry, the space X of contact elements admits a realization as the
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space of isotropic lines in the Lie quadric in P(R4,2). The characteristic property of
principal contact element nets translates to the condition that any two neighboring
isotropic lines ℓ, ℓi intersect. Thus, principal contact element nets correspond to
discrete congruences of isotropic lines in the Lie quadric.

In conclusion, it has been stressed that multidimensional consistency serves as
the organizing principle of integrable discrete differential geometry, and that inter-
esting geometries appear as discrete nets in some less trivial spaces X . Presumably,
many important examples still wait to be discovered.
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Discrete Ricci curvature for metric spaces and Markov chains

Yann Ollivier

We define the coarse Ricci curvature of metric spaces in terms of how much small
balls are closer (in Wasserstein transportation distance) than their centers are.
This definition naturally extends to any Markov chain on a metric space. For a
Riemannian manifold this gives back, after scaling, the value of Ricci curvature
of a tangent vector. Examples of positively curved spaces for this definition in-
clude graphs such as the discrete cube. Moreover this generalization is consistent
with the Bakry–Émery Ricci curvature for Brownian motion with a drift on a
Riemannian manifold.

Positive Ricci curvature implies a spectral gap, a Lévy–Gromov–like Gaussian
concentration theorem and a kind of modified logarithmic Sobolev inequality. The
bounds obtained are sharp in a variety of examples.

Our starting point is the following: Is there a common geometric feature be-
tween the N -dimensional sphere SN , the discrete cube {0, 1}N , and the space
RN equipped with a Gaussian measure? For a start, all three spaces exhibit the
concentration of measure phenomenon [Led01]; moreover, by the Dvoretzky the-
orem random small-dimensional sections of the cube are close to a sphere, and
small-dimensional projections of either the sphere or the cube give rise to nearly-
Gaussian measures.

So one can wonder whether there exists a common underlying geometric prop-
erty. A hint is given by the Gromov–Lévy theorem [Gro86], which states that
Gaussian concentration occurs not only for the N -dimensional sphere, but for all
Riemannian manifolds of positive curvature in the sense that their Ricci curvature
is at least that of the sphere. In Riemannian geometry, Ricci curvature is the
relevant notion in a series of positive-curvature theorems.

One is left with the problem of finding a definition of Ricci curvature valid for
spaces more general than Riemannian manifolds. Moreover, the definition should
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be local and not global, since the idea of curvature is to seek local properties
entailing global constraints. A first step in this direction is provided by Bakry–
Émery theory [BE85], which allows to define the Ricci curvature of a diffusion
process on a Riemannian manifold (or equivalently, of a second-order differential
operator); when the diffusion is ordinary Brownian motion, this gives back usual
Ricci curvature. When applied to the natural process on RN associated with the
Gaussian measure, this yields a positive curvature for the Gaussian space.

Because the Bakry–Émery definition involves differential calculus, it is not read-
ily adaptable to discrete spaces. If one wants to deal with the third basic example,
the discrete cube, one has to drop the continuity aspect and deal with more “ro-
bust” or “coarse” notions that forget the small-scale properties of the underlying
space. This is similar in spirit to what has been done for a long time in the
(very different) world of negative curvature, for which coarse notions such as δ-
hyperbolicity and CAT(0) spaces have been developed.

Such a notion can be summarized as follows [Oll07, Oll09]: a metric space has
positive curvature if small balls are closer than their centers are. Here one uses
transportation distances [Vil03] to measure the distance between balls.

It is possible to put emphasis on a random process (consistently with Bakry–

Émery theory) and replace the ball centered at a point with the transition proba-
bility of a random walk. Doing so, one finds that the property above is equivalent
to a property first introduced by Dobrushin [Dob70, DS85] for Markov fields, and
still known in the Ising community as the “Dobrushin criterion” (several variants
of which are in use). The 1970 Dobrushin paper was actually the one to make
transportation distances known to a wider audience.

Examples. Here are some spaces for which coarse Ricci curvature can be easily
computed:
– Riemannian manifolds: we get usual Ricci curvature up to some scaling.
– The discrete cube {0, 1}N : coarse Ricci curvature is positive.
– Zn with its lattice metric: coarse Ricci curvature is 0.
– Diffusions on a manifold: we recover the Bakry–Émery curvature, in a more

visual way.
– Multinomial distributions, waiting queues, and similar examples.
– Ising model and its variants: coarse Ricci curvature depends on temperature, in

an explicit way.
– δ-hyperbolic groups: coarse Ricci curvature is negative.

Results. Here are some of the results obtained when coarse Ricci curvature is
positive:
– Concentration results (Gaussian or exponential concentration) as in the

Gromov–Lévy theorem.
– Spectral gap estimate as in the Lichnerowicz theorem.
– Logarithmic Sobolev inequality and gradient contraction by the heat kernel, as

in Bakry–Émery theory.
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– Convergence rates of the underlying Markov chain; in particular, explicit con-
vergence rates for the Markov chain Monte Carlo (MCMC) method.

– Good behavior in Gromov–Hausdorff topology.
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in statistical mechanics, held in Köszeg, August 26–September 1, 1984, Progress in
Physics 10, Birkhäuser, Boston (1985), 347–370.

[Gro86] M. Gromov, Isoperimetric inequalities in Riemannian manifolds, in V. Milman,
G. Schechtman, Asymptotic theory of finite dimensional normed spaces, Lecture Notes
in Mathematics 1200, Springer, Berlin (1986), 114–129.

[Led01] M. Ledoux, The concentration of measure phenomenon, Mathematical Surveys and
Monographs 89, AMS (2001).

[Oll07] Y. Ollivier, Ricci curvature of metric spaces, C. R. Math. Acad. Sci. Paris 345 (2007),
nr. 11, 643–646.

[Oll09] Y. Ollivier, Ricci curvature of Markov chains on metric spaces, J. Funct. Anal. 256

(2009), nr. 3, 810–864.
[Vil03] C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics 58,

American Mathematical Society, Providence (2003).

The discrete Hilbert-Einstein functional: History and applications

Ivan Izmestiev

1. The total mean curvature

Jacob Steiner found in 1840 that the volume of the parallel body

Kt = {x | dist(x, K) ≤ t}

to a convex body K ⊂ R3 can be expanded as

(1) vol(Kt) = vol(K) + t · area(∂K) + t2 · S(K) + t3 ·
4π

3
,

provided that K is either a polytope or a body with smooth boundary. If K is a
polytope, then the coefficient at t2 is

(2) S(K) =
1

2

∑

e

ℓe(π − θe),
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where the sum is taken over all edges of K, and ℓe is the length of, θe is the
dihedral angle at the edge e. If K is a body with smooth boundary, then we have

(3) S(K) =

∫

∂K

k1 + k2

2
d area,

where k1 and k2 are the principal curvatures of the boundary of K. This is a
reason to call the sum (2) the total mean curvature of the polyhedral surface ∂K.

Later, Steiner’s argument war reinforced by Minkowski who proved that the
expansion (1) holds for an arbitrary convex body K, and its coefficients depend
continuously on K in the Hausdorff metric. In particular, if a convex body with
smooth boundary is approximated by convex polytopes, then (2) converges to (3).

2. The total scalar curvature, or the Hilbert-Einstein functional

Let M be a closed manifold equipped with a Riemannian metric g. The Hilbert-
Einstein functional is the integral of the scalar curvature

(4) S(g) =

∫

M

sg d volg .

Theorem 1 (Hilbert). For a fixed manifold M , consider the space of all unit
volume metrics g. Then the critical points of S correspond to Einstein metrics.

Unfortunately, the functional S is neither bounded from above, nor from below,
so that critical points are hard to find. But there are good news too.

Theorem 2 (Yamabe, see [6]). On the space of the unit volume metrics confor-
mally equivalent to g

{u · g | u : M → R+, volu·g(M) = 1},

the functional S can be minimized. The point of minimum is a metric of constant
scalar curvature.

The discrete Hilbert-Einstein functional for dim M = 3 is defined as follows.
Call a discrete Riemannian metric on M a pair (T, ℓ) of a triangulation T of M
and an assignment ℓ : e 7→ ℓe of a positive number to every edge of T such that
the tetrahedra of T can be realized as Euclidean ones with edge lengths ℓe. Let

(5) S(T, ℓ) =
∑

e

ℓe(2π − ωe),

where ωe is the angle around e. The functional (5) is also known as the Regge
functional, and can be defined with hyperbolic or spherical tetrahedra as well.

Similarly to Section 1, (5) converges to (4) (up to a constant factor), when the
discrete Riemannian metric (T, ℓ) converges to the Riemannian metric g, see [3].

Theorem 3. The discrete Hilbert-Einstein functional (5) has the property

(6)
∂S

∂ℓe
= 2π − ωe =: κe

Thus, the critical points of S correspond to Euclidean metrics on M , subdivided
by the triangulation T .
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Equation (6) is a direct consequence of the Schläfli formula.
Consider the matrix of the second partial derivatives of S

(7) Hess(S) =

(
∂2S

∂ℓi∂ℓj

)
=

(
∂κi

∂ℓj

)
.

• If Hess(S) is positive (negative) semidefinite, then S is convex (concave).
• If detHess(S) 6= 0, then the metric (T, ℓ) is infinitesimally rigid, that is a non-

zero first-order change in ℓ entails a non-zero first-order change in κ.

3. Partial results on the signature of Hess(S)

A discrete Riemannian metric (T, ℓ) is called a ball packing metric, if there exists
a function r : i 7→ ri on the set of vertices of T such that ℓij = ri + rj holds for all
edges ij.

Theorem 4 (Cooper, Rivin [4]). The functional S is convex on the space of all ball
packing metrics. The nullspace of the Hessian is one-dimensional and corresponds
to scaling.

A consequence of Theorem 4 is the infinitesimal rigidity of ball packings in
3–dimensional manifolds.

A change of ℓ defined by ℓ′ij = ℓij +ui +uj can be viewed as a discrete analog of
a conformal deformation; then Theorem 4 says that S is convex on the conformal
class of an “equilateral” metric {ℓij = 1 for all ij}.

In the next two theorems the discrete Hilbert-Einstein functional of manifolds
with boundary is considered. It is obtained by adding to (5) a boundary term
similar to (2). We consider only deformations that preserve the metric on the
boundary. The property (6) remains valid for deformations of the interior edges.

Theorem 5 (I., Schlenker [5]). Let M ≈ B3, and let the metric (T, ℓ) on B3 be
such that ωe = 2π for all interior edges and θe ≤ π for all boundary edges. That
is, let (T, ℓ) be a triangulation of a convex polytope P . Let

i = the number of the interior vertices of T ;

f = the number of the boundary vertices of T not in the 1–skeleton of P.

Then the Hessian (7) has corank 3i + f and exactly i positive eigenvalues.

In particular, the Hessian is negatively definite, if there are no interior vertices
and no vertices inside the faces of P . This fact was used in [5] to prove the
infinitesimal rigidity for a class of non-convex polytopes.

Note that the number of positive eigenvalues in Theorem 5 is equal to the
dimension of the space of conformal deformations. However, we were unable to
describe an i–dimensional space of deformations on which the Hessian would be
positively definite.

Theorem 6 (Bobenko, I. [2]). Let M ≈ B3, let T be the cone over a triangulation
of S2, and let θe ≤ π for all boundary edges. The interior edges are then in
one-to-one correspondence with the boundary vertices.
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• Assume that φi < ωi < 2π, where φi is the angle around the vertex i in the
metric on S2. Then Hess(S) is non-degenerate and has at least one positive
eigenvalue. Namely, dℓi = 1

ℓi
is a positive direction for Hess(S).

• Assume that ωi = 2π for all i, so that (T, ℓ) is a triangulation of a convex
polytope. Then Hess(S) has corank 3 and exactly one positive eigenvalue. The
vectors dℓi = 1

ℓi
and dℓi = 1 both belong to its positive cone.

The first statement of Theorem 6 suggests that (ℓ′ij)
2 = ℓ2

ij + ui + uj could be
considered as a discrete analog of a conformal deformation.

The main result of [2] is a new proof of Alexandrov’s theorem on the existence of
a convex polytope with a given metric on the boundary. Note that for its smooth
analog, Weyl’s problem, a variational approach based on the Hilbert-Einstein func-
tional was proposed by Blaschke and Herglotz in [1].
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Hyperbolization of ornaments

Jürgen Richter-Gebert, Martin von Gagern

1. What is hyperbolization?

While ornamental patterns based on the 17 Euclidean wallpaper groups are
widely present in art and architecture, designs of similar ornaments based on hy-
perbolic symmetries are rare. The reason for this is twofold. First of all, the gener-
ation of hyperbolic ornamental patterns requires already a substantial knowledge
or intuition in hyperbolic structures. Secondly, the technical process of rendering
may be tedious (at least if performed by manual work) since it in principle requires
the generation of infinitely many smaller and smaller objects.

We present a method that can be used to automatically transform an existing
Euclidean ornamental pattern into a corresponding one with an underlying hy-
perbolic symmetry group. During this process we want to preserve as much as
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Figure 1. Transforming a scanned Euclidean input image to a
hyperbolic ornament

possible from the original artistic input. Our process can be roughly divided into
three steps:

Pattern recognition: Based on auto-correlation methods calculated via fast
Fourier transformation we first analyze a Euclidean ornamental pattern. We ex-
tract its symmetry group and a fundamental region (see [1]).

Deformation: In a second step we deform the fundamental region such that we
get a new region that could serve as fundamental region of a hyperbolic ornament.
For this step we require only distortions of the pattern that are mathematically
motivated, artistically reasonable and performable in reasonable time. We require
the deformation to be a conformal map. This preserves the intersection angles of
objects. Furthermore once the combinatorics is fixed a conformal map is uniquely
determined. A detailed analysis is presented in [2].

Rendering: Finally, the deformed fundamental region is used to create the entire
hyperbolic picture. To get a perfect rendering a reverse pixel lookup strategy is
used that associates to every pixel of the final image a preimage in the central
fundamental region (for details again see [2]).

2. Hyperbolization

We will exemplify the concept of hyperbolization in the relatively simple case of
triangular reflection groups. Deformations of seven out of the 17 crystallographic
groups can be reduced to this case (namely those with orbifold symbols 442, ∗442,
4∗2, 333, ∗333, 3∗3, 632, ∗632). The others groups have to be treated by slightly
more advanced methods. Assume that we have an ornamental kaleidoscopic pat-
tern based on a triangular reflection group for instance with corner angles π

2 , π
4

and π
4 . The fundamental region of this pattern is the triangle itself. The corner

angles imply 2-fold, 4-fold and 4-fold rotational symmetry at the corners.
We want to conformally deform the triangle to a circular arc triangle (represent-

ing a hyperbolic triangle in the Poincaré disk model) such that the corner angles
are other fractions of π (say π

2 , π
4 and π

5 ). Riemann’s mapping theorem guaran-
tees that the map relating the two triangles is uniquely defined by conformality. In
essence this map can be computed by a composition of Schwarz-Christoffel map
(SCM) that maps the unit disk to the deformed triangle with an inverse SCM
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Figure 2. Deformation of a fundamental domain via discrete
conformal maps

that maps the original triangle to the unit disk. This map can be extended to
the Euclidean plane (punctured at the rotation centers) via the Schwarz reflection
principle applied to the boundaries of the triangle.

3. Discrete conformal maps

Unfortunately, there is no known reasonably fast way to calculate the map
described above. This is where Discrete Differential Geometry enters the stage.
The concept of discrete conformal maps of a triangular mesh (as introduced by
Bobenko, Pinkall, Schröder and Springborn [3]) is perfectly suited to calculate
an approximation of the above map in reasonably short time using a variational
principle. The method introduced there has several advantages that makes it per-
fectly suitable for applications in computer graphics. A discrete conformal map
of a triangular mesh is defined by a collection of weights at the vertices. The
edge lengths of the image mesh are related to the original mesh by scaling them
according to the weights of the incident endpoints. Under successive refinement of
the mesh this method approximates a smooth conformal map. The specification
of target angle sums for the whole mesh allows an easy way to express the required
changes to corner angles and flatness conditions elsewhere. A discrete conformal
map can used as basis for a continuous interpolation of triangle interiors by assign-
ing suitably chosen projective transformations to each of them. Here continuity is
a consequence of the discrete conformality property. Figure 2 illustrates a discrete
conformal map for a quadratic fundamental region from the Euclidean symmetry
group 442 to the hyperbolic symmetry group 562. The Hyperbolic fundamental
domain was approximated with a triangle mesh, which was then transformed to
the corresponding Euclidean mesh.

4. The other groups

For the remaining (low symmetry) groups where all centers of rotation are
at most two-fold, the symmetry type does not automatically fix the shape of
the fundamental region. Thus also in the hyperbolization the exact shape of the
deformed boundary is a priori unknown. As a consequence, the transformation has
to start with an Euclidean mesh, and be performed in hyperbolic geometry to yield
a conformally equivalent hyperbolic mesh. In general, straight boundary edges of
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Figure 3. Straight edged hyperbolic fundamental region (red)
and deformation of a straight edged Euclidean region (blue) for a
low symmetry group

the Euclidean fundamental domain will not map to geodesics in the hyperbolic
ornament. In this general case, any distinguished boundary curve will be straight
in at most one world, as Figure 3 illustrates. This problem can be avoided by
performing the deformation process directly on a triangle mesh of the orbifold, i.e.,
with corresponding edges identified, (see [2]). This approach avoids the problem
of distinguished non-reflecting lines altogether.
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Earthquakes on hyperbolic surfaces

Jean-Marc Schlenker

(joint work with Francesco Bonsante and Kirill Krasnov)

Consider a closed surface S, of genus at least 2. A weighted multicurve on S is a
disjoint union of simple closed curves c1, . . . , cn, each with a positive number wi.
Given a hyperbolic metric g on S, each ci can be uniquely realized as a simple
closed geodesic and those geodesics are disjoint. The fractional Dehn twist along
a weighted multicurve is a surgery on hyperbolic metrics on S: one cuts (S, g)
open along each of the ci, rotates the right-hand side by wi, and glues back (this
does not depend on the orientation chosen for the ci). This defines a map from
the Teichmüller space T of S to itself.

Thurston showed that the space of weighted multicurves on S has a natural
completion, the space ML of measured laminations on S. A geodesic measured
lamination on (S, g) is a closed set which is a disjoint union of complete geodesics,
endowed with a “transverse measure”. Thurston also proved that map defined by
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the notion of fractional Dehn twist extends continuously to the notion of earth-
quake on a measured lamination, therefore defining a map

E : ML× T → T .

A neat property of this map is that it can be used to parameterize the Teich-
müller space of S from a fixed point by the space of measured lamination, thanks
to Thurston’s Earthquake Theorem:

Theorem (Thurston). Let g0, g1 ∈ T , there exists a unique λ ∈ ML such that
E(λ, g0) = g1.

A proof was given in [Ker83] and another one, based on anti-de Sitter geometry,
in [Mes07].

A first extension concerns hyperbolic surfaces with conical singularities of angle
less than π. For those surfaces the notion of measured lamination still makes
perfect sense, and we proved with Francesco Bonsante [BS06] that given any two
hyperbolic metrics with cone angles (with the same angles) there is a unique
measured lamination λ such that the right earthquake on λ transforms one into
the other.

A second extension, obtained with Francesco Bonsante and Kirill Krasnov
[BKS06], applies to hyperbolic surfaces with geodesic boundary. Let TS,N be
the Teichmüller space of hyperbolic metrics with geodesic boundary on S with N
disks removed (note that the length of the boundary components is not fixed).
Let MLS,N be the space of measured geodesic laminations on the interior of S for
such a metric (that is, the weight of the lamination can accumulate close to the
boundary). Then, given g0, g1 ∈ TS,N , there are exactly 2N elements λ ∈ MLS,N

such that the right earthquake on λ sends g0 to g1.
The proof of both results uses the arguments of Mess’ proof in [Mes07], but

new twists are necessary. Instead of globally hyperbolic AdS manifolds as those
considered in [Mes07], it is necessary to use corresponding manifolds with “parti-
cles” (cone singularities along time-like geodesics) for the statement on hyperbolic
surfaces with cone singularities, and on multi-black holes (see e.g. [ÅBB+98]) for
the statement on surfaces with geodesic boundary. In both cases, it is necessary
to understand the moduli spaces of the 3-dimensional metrics involved, as well as
properties of their “convex cores”.
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Discrete square peg problem

Igor Pak

The square peg problem is beautiful and deceptively simple. It asks whether every
Jordan curve C ⊂ R2 has four points which form a square. We call such squares
inscribed into C.

The problem goes back to Toeplitz (1911), and over almost a century has been
repeatedly rediscovered and investigated, but never completely resolved. By now
it has been established for convex curves and curves with various regularity con-
ditions, including the case of piecewise linear curves. While there are several
simple and elegant proofs of the convex case, the piecewise linear case is usually
obtained as a consequence of results proved by rather technical topological and an-
alytic arguments. We present a simple proof in the piecewise linear case following
Schnirelmann’s ideas in [3]. Our proof follows [1, 2].
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Volume and angle structures on 3-manifolds

Feng Luo

We propose an approach to find constant curvature metrics on triangulated closed
3-manifolds using a finite dimensional variational method whose energy function
is the volume. The concept of an angle structure on a tetrahedron and on a
triangulated closed 3-manifold is introduced. This follows the work of Casson,
Murakami and Rivin who introduced the similar concept for ideal triangulations of
compact 3-manifolds with torus boundary. It is proved by A. Kitaev and the author
that any closed 3-manifold has a triangulation supporting an angle structure. The
space of all angle structures on a triangulated 3-manifold is a bounded open convex
polytope in a Euclidean space. The volume of an angle structure is defined by
generalizing the Schläfli formula. Both the angle structure and the volume are
natural generalizations of that of tetrahedra in the constant sectional curvature
spaces and their volume. It is shown that the volume functional can be extended
continuously to the compact closure of the moduli space, answering affirmatively
a question of Milnor. In particular, the maximum point of the volume functional
always exists in the compact closure of the space of angle structures. The main
result shows that if the volume function on the space of angle structures has a local
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maximum point, then either the manifold admits a constant curvature Riemannian
metric or the triangulation supports a normal 2-sphere which intersects each edge
in at most one point.

Extremal configurations of revolute-jointed robot arms

Ileana Streinu

(joint work with Ciprian S. Borcea)

A fundamental question in Robotics is the Reach Problem: given a 3D
revolute-jointed robot, compute the extremal values of the endpoint distance func-
tion and the corresponding extremal configurations.

The most general type of revolute-jointed robot arms are the body-and-hinge
chains: rigid bodies connected serially by hinges, as in Figure 1. Panel-and-hinge
chains are a special case, with 2D panels instead of 3D bodies, i.e., consecutive
hinges are coplanar. Polygonal chains with fixed edge lengths and fixed angles
between consecutive edges can also be viewed as panel-and-hinge chains. A hinge
is understood here as an entire line or turning axis, constraining the relative motion
of two connected bodies to a rotation around their common hinge. We mark two
points: the origin or start point s on the first body and the terminus t on the
last body. We ask what are the extremal values of the distance function from s
to t, as the chain takes all possible configurations (the boundaries of the bodies
are immaterial and self-intersections are permitted). The problem was intensely
studied in the 1980’s, when a necessary condition for extremal configurations was
recognized and proven in several papers [2, 3, 4, 6]: the line joining the marked
points must intersect all the hinges. This incidence is understood projectively, that
is, includes the possibility of parallelism, and the hinges are thought of as lines
(not line segments).

Figure 1. A body-and-hinge chain in R3 with n = 3 hinges, four
bodies (visualized as tetrahedra) and two marked points s and t
on the end-bodies. In a maximum reach position, the axes meet
the oriented segment st in the natural order.
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This talk presented our recent results, giving an intrinsic, combinatorial char-
acterization of the configurations attaining the global extremal values. The proofs
work in arbitrary dimension d. The results are somewhat different for the global
maximum and minimum, and for body-and-hinge as opposed to panel-and-hinge
structures.

The natural order of the hinges is 1, 2, 3, · · · as they appear on the chain. The
complement of a line segment is with respect to the projective line containing the
affine line segment, i.e., it goes through the point at infinity.

Theorem 1. (Global Maximum) A body-and-hinge chain is in a global maxi-
mum configuration if and only if the segment from the origin s to the terminus t
intersects all hinges in their natural order. Generically, the global maximum is
attained in a unique configuration.

Indeed, given a configuration satisfying this condition, we will mark in red the
segment from s to t. In any other configuration of the chain, the red path appears
as a polygonal chain in 3D, hence the endpoint distance will be shorter than
in the straightened position. The necessity of the condition is obtained from a
characterization of the global maximum as a global minimum of another function:

Theorem 2. (Global Maximum as a Global Minimum) The global maxi-
mum of the endpoint distance function coincides with the length of the shortest
path from s to t which meets all hinges in their natural order.

The treatment of the minimum endpoint distance and minimal configurations
is more specialized. When the endpoints can reach each other and the mini-
mum distance is zero, an entire submanifold of critical values (rather than isolated
points) occurs. Under suitable genericity assumptions, the endpoint squared dis-
tance function becomes a Morse-Bott function, leading to a formula for the Euler
characteristic of the inverse kinematics solution space in terms of indices of critical
configurations.

We derive an explicit formula for the Hessian, which is particularly useful for
panel-and-hinge chains. In this case, we prove that local extrema are already global
extrema, a fact which is not true for general body-and-hinge chains. Moreover:

Theorem 3. (Global Non-Zero Minimum) A panel-and-hinge chain is in a
global non-zero minimum configuration if and only if the complementary endpoint
line segment oriented from the start point to the terminus meets the hinges in the
natural order.

Panel-and-hinge chains in critical configurations are subdivided into flat pieces
connected at fold points: the endpoint axis cuts across the hinges in the flat regions,
and goes through two consecutive hinges at fold points. When a panel-and-hinge
chain is folded, the angles induced by the two incident hinges at a fold point and
the constrained shortest path between the endpoints will satisfy a simple condition
related to the triangle inequality on the sphere. At each fold point, the incident
panels can be folded in two distinct ways. We obtain:
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Figure 2. The shortest path between the chain endpoints gives
the maximum reach value. The turning points of the path become
the fold points in a 3D maximum configuration.

Theorem 4. (Number of Extremal Configurations) Generically, the number
of distinct extremal configurations is 2f , where f is the number of fold points.

These characterizations lead directly to elementary, surprisingly efficient algo-
rithms for the four fundamental problems of robot arm reachability listed below,
in the case of the class of panel-and-hinge satisfying the local criterion at the fold
points. This class includes robot arms presented as polygonal chains with equal
obtuse angles, including the orthogonal case. Until now, only numerical methods
based on standard gradient descent methods were known.
(1) Extremal distances: compute the minimum and the maximum value of the

endpoint distance function.
(2) Extremal configurations: compute one (or all) of the configurations that

achieve the global minimum or maximum endpoint distance.
(3) Motion Planning: given an arbitrary configuration of the chain, reconfigure

it to an extremal position: i.e., compute a trajectory in configuration space
ending at an extremal configuration.

(4) Optimized Motion Planning: given a flat non-extremal configuration, re-
configure it in such a way that the distance function is monotone throughout
the motion: decreases towards the minimum, or increases towards the maxi-
mum.

The first problem is solved using a shortest path calculation in an associated
flat polygonal region, as in Figure 2. Fold angles are then computed and a maxi-
mum configuration is derived. To reconfigure from a flat position to a maximum
configuration in a monotone fashion, we adapt Streinu’s pseudo-triangulation al-
gorithm [5] for the planar Carpenter’s Rule Problem.

A more detailed theoretical development is presented in an arXiv preprint [1].
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Discrete random interfaces

Richard Kenyon

We discussed a model of discrete two-dimensional interfaces in R
3. These are

piecewise-linear surfaces composed of translates of the faces of the unit cube, glued
edge to edge, and with the property that the orthogonal projection to the plane
x+y +z = 0 is injective. These interfaces can be thought of as tilings of the plane
with “lozenges”, that is, with 60◦ rhombi. Given a closed curve in Z3 which can be
spanned by such an interface, consider the uniform probability measure on the set
of all such spanning interfaces. There is a law of large numbers, proved by Cohn,
myself and Propp [1], which says that for a fixed “wire frame” boundary curve γ,
in the limit that the lattice spacing tends to zero the uniform random interface will
concentrate on a nonrandom limit shape, which is a continuous surface spanning γ.
The limiting surface can be obtained through a variational principle, essentially
maximizing a local entropy functional. Here the local entropy is a function only
of the slope of the interface, and is just the exponential growth rate of interfaces
having average slope in that direction.

Techniques of Kasteleyn show how to compute explicitly the entropy function
as a function of slope, and the resulting formula is very simple: when the normal to
the interface has (positive) coordinates (px, py, pz), the growth rate is proportional
to the volume of the idea hyperbolic 3-simplex with dihedral angles proportional
to (px, py, pz).

In work with Okounkov [2] we were able to solve explicitly the corresponding
PDE for the limit interface, reducing it to the complex Burgers’ equation. This
permits parameterization of solutions with analytic functions.

Many related interface models, associated with underlying dimer models, have
very similar solutions [3, 2].
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The Pentagram map: a discrete integrable system

Serge Tabachnikov

(joint work with Valentin Ovsienko, Richard Schwartz [2, 3])

Given a convex n-gon P in the projective plane, let T (P ) be the convex hull of
the intersection points of consecutive shortest diagonals of P . The map T is the
pentagram map. The pentagram map commutes with projective transformations.
Let Cn be the space of convex n-gons modulo projective transformations. Then
the pentagram map induces a self-diffeomorphism T : Cn → Cn.

T is the identity map on C5 and an involution on C6, see [5]. Experimentally, for
n ≥ 7, the orbits of T on Cn exhibit the kind of quasi-periodic motion associated
to a completely integrable system: T preserves a certain foliation of Cn by roughly
half-dimensional tori, and the action of T on each torus is conjugate to a rotation.
A conjecture in [6] that T is completely integrable on Cn is still open, but we are
very close to proving it.

A twisted n-gon is a map φ : Z → RP2 such that φ(n+k) = M◦φ(k) for all k ∈ Z

and some fixed element M ∈ PGL(3, R) called the monodromy. Set vi = φ(i) and
assume that vi−1, vi, vi+1 are in general position for all i. Let Pn be the space of
twisted n-gons modulo projective equivalence. We show that the pentagram map
T : Pn → Pn is completely integrable in the classical sense of Arnold–Liouville.
We give an explicit construction of a T -invariant Poisson structure and complete
list of Poisson-commuting integrals for the map.

We apply this result to universally convex twisted n-polygons. These are poly-
gons for which the map φ is such that φ(Z) ⊂ R2 ⊂ RP2 is convex and contained
in the positive quadrant, and the monodromy M : R

2 → R
2 is a diagonal linear

transformation with eigenvalues 0 < a < 1 < b. The image of φ looks some-
what like a “polygonal hyperbola”. Denote by Un the space of universally convex
twisted n-gons modulo projective equivalence.

Theorem. Almost every point of Un lies on a smooth torus that has a T -invariant
affine structure. The orbit of almost every universally convex n-gon undergoes
quasi-periodic motion under the pentagram map.

We associate to every vertex vi two numbers:

xi = [vi−2, vi−1, ((vi−2, vi−1) ∩ (vi, vi+1)) , ((vi−2, vi−1) ∩ (vi+1, vi+2))]

yi = [((vi−2, vi−1) ∩ (vi+1, vi+2)) , ((vi−1, vi) ∩ (vi+1, vi+2)) , vi+1, vi+2],

see Figure 1, where the bracket is the cross ratio of 4 points in RP1 given by

[t1, t2, t3, t4] =
(t1 − t2) (t3 − t4)

(t1 − t3) (t2 − t4)

in an affine parameter t. We call these coordinates the corner invariants.
The pentagram map is described in these coordinates as follows:

T ∗xi = xi
1 − xi−1 yi−1

1 − xi+1 yi+1
, T ∗yi = yi+1

1 − xi+2 yi+2

1 − xi yi
.
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v
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i−1

v
i−2
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Figure 1. Points involved in the definition of the corner invariants.

Consider the rescaling operation given by

Rt : (x1, y1, ..., xn, yn) → (tx1, t
−1y1, ..., txn, t−1yn).

It follows that the pentagram map commutes with the rescaling operation. Let

On =

n∏

i=1

xi , En =

n∏

i=1

yi , On/2 =
∏

i even

xi +
∏

i odd

xi , En/2 =
∏

i even

yi +
∏

i odd

yi,

the latter two when n is even. These functions are invariant under the penta-
gram map. Let φ be a twisted n-gon with invariants x1, y1, ..., and let M be the
monodromy. Lift M to an element of GL3(R). Then

Ω1 =
trace3(M)

det(M)
; Ω2 =

trace3(M−1)

det(M−1)
;

depend only on the conjugacy class of M . Set: Ω̃1 = O2
nEnΩ1, Ω̃2 = OnE2

nΩ2.

In [6] it is shown that Ω̃1 and Ω̃2 are polynomials in the corner invariants. Since
the pentagram map preserves the monodromy, and On and En are invariants, the

two functions Ω̃1 and Ω̃2 are also invariants. Consider the decomposition into
homogeneous components with respect to the scaling:

Ω̃1 =

[n/2]∑

k=1

Ok; Ω̃2 =

[n/2]∑

k=1

Ek

where Ok has weight k and Ek has weight −k. It follows that the functions
O1, E1, O2, E2, ... are integrals of the pentagram map. These are the monodromy
invariants. In [6] it is shown that the monodromy invariants are algebraically
independent.

The Poisson bracket on Pn is as follows:

{xi, xi±1} = ∓xi xi+1, {yi, yi±1} = ±yi yi+1,

and all other brackets of coordinates functions vanish. The main lemmas concern-
ing the Poisson bracket are:

(1) The Poisson bracket is invariant with respect to the Pentagram map.
(2) The monodromy invariants Poisson commute.
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(3) The invariants On, En and, in the even case, On/2, En/2, are Casimir functions.
(4) The Poisson bracket has corank 2 if n if odd and corank 4 if n is even.

These results imply that Pn is foliated by symplectic leaves which carry a leaf-
wise T -invariant Lagrangian foliation. The leaves of a Lagrangian foliation carry a
canonical affine structure, in which T is a parallel translation, cf. [1]. For univer-
sally convex twisted n-gons, the leaves are compact, and hence tori. This implies
the theorem.

We also consider the continuous limit n → ∞ of a twisted n-gon as a smooth
twisted non-degenerate parametrized curve γ : R → RP2 such that γ(x + 1) =
M(γ(x)), for all x ∈ R and a fixed M ∈ PGL(3, R). As in the discrete case, we
consider classes of projectively equivalent curves.

It is well known that the space of non-degenerate twisted curves is in one-to-one
correspondence with the space of linear differential operators

A =

(
d

dx

)3

+ u(x)
d

dx
+ v(x),

where u and v are smooth periodic functions, see [4].
The construction of a continuous analog of the map T is as follows. Given a

non-degenerate curve γ(x), at each point x draw the chord (γ(x − ε), γ(x + ε))
and obtain a new curve, γε(x), as the envelop of these chords. Let uε and vε be
the respective periodic functions. It turns out that

uε = u + ε2ũ + (ε3), vε = v + ε2ṽ + (ε3),

giving the curve flow: u̇ = ũ, v̇ = ṽ. Excluding v yields

ü +

(
u2

)′′

6
+

u(IV )

12
= 0,

which is the classical Boussinesq equation. Thus the pentagram map is a dis-
cretization of the Boussinesq equation.
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Piecewise linear saddle spheres on S
3

Gaiane Panina

By S3 ⊂ R4 we denote the unit sphere centered at the origin O. A plane on
the sphere S3 is a plane in the sense of spherical geometry. A closed surface Γ
immersed in S3 is called saddle if no plane intersects Γ locally at just one point.

Definition. A piecewise linear saddle sphere (a PLS-sphere, for short) on S3 is
an immersed piecewise linear surface which is homeomorphic to S2. We assume in
addition that a PLS-sphere does not coincide with a plane, that all its edges are
shorter than π, and that its vertex-edge graph is 3-connected.

A PLS-sphere is called elementary Barner if there is a point p ∈ S3 such that
each great semicircle with endpoints p and −p hits the surface exactly once.

The interplay between PLS-spheres and smooth saddle spheres is not well un-
derstood. On the one hand, it seems plausible that a piecewise linear saddle
sphere can be approximated by a smooth saddle sphere and vice versa. On the
other hand, there is just one proven result (see [7]). It asserts that an elementary
Barner PLS-sphere with a trivalent vertex-edge graph has a C∞-smooth saddle
approximation.

Definition. A face f of a PLS-sphere Γ is called an inflexion face if
(1) f is bounded by two convex broken lines (say, by L1 and L2) such that the

convexity directions look like in Figure 1,
(2) all the edges of L1 are convex, whereas all the edges of L2 are concave.

Figure 1. An inflexion face.

Definition. A face f of a PLS-sphere Γ is called a reflex face if its supplement
fits an open hemisphere.

We announce here the following result:

Theorem.
(1) Each immersed saddle sphere Γ ⊂ S3 belongs to one of the following disjoint

classes:
(a) Γ has at least two reflex faces.
(b) Γ has exactly one reflex face and at least two inflexion faces.
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(c) Γ has no reflex faces and at least 4 inflexion faces.
(2) There are no embedded PLS-spheres on S3 of type (a).
(3) There are no embedded PLS-spheres on RP 3.
(4) There exist immersed PLS-spheres on RP 3.
(5) There exist elementary Barner PLS-spheres of type (c). Moreover, the set

of elementary Barner PLS-spheres with any fixed number of inflexion faces
(greater than 3) is non-empty and disconnected.

Sketch of the proof. Given an oriented PLS-sphere, we can speak of its convex
and concave edges. We paint all the convex (respectively, concave) edges red
(respectively, blue).

Combinatorially, a PLS-sphere is a planar graph with additional equipment:
its edges are colored and some of the angles (the reflex ones) are marked. (Some
similar phenomena are studied in [3] and [4].)

Definition. For a face f of a PLS-sphere, we algorithmically define its index i(f):
(1) At the beginning, put i(f) := 0. Start going along the boundary of the face f .
(2) Once we pass by a vertex at which the color changes, put i(f) := i(f) + 1.
(3) Once we pass by a vertex, if the color does not change and the angle we are

passing by is not reflex, put i(f) := i(f)+2. (If the color does not change and
the angle is reflex, we keep i(f) unchanged.)

Some counts based on a discrete version of Segre’s Theorem yield that one of
the following cases holds:
(1) Γ has at least two faces with i(f) = 0.
(2) Γ has one face with i(f) = 0 and at least two faces with (f) = 2
(3) Γ has no faces with i(f) = 0 and at least 4 faces with i(f) = 2.

This yields statement (1) of the Theorem. The statements (2–4) follow from (1),
whereas (5) is proven in [5, 7]. �

Motivations.

• The proof of the Theorem is based on and generalizes the Segre’s Theorem: Let
a closed smooth simple curve c ⊂ S2 have a non-empty intersection with any
great semicircle. Then c has at least 4 inflexion points.

• There exist embedded saddle tori on RP 3. V. I. Arnold [2] formulated some
conjectures about them (and about their higher dimensional versions). Some
of the conjectures proved to be wrong [6], but two of them still stand open for
RP 3. In particular, he conjectured that the set of all smooth embedded saddle
tori on RP 3 is connected (compare with Theorem, (5)).

• Smooth elementary Barner saddle spheres arose originally in a relationship (see
[5, 7]) to the following uniqueness conjecture proven for analytic surfaces by A.
D. Alexandrov in [1]:

Let K ⊂ R3 be a smooth convex body. If for a constant C, at every point of
∂K, we have R1 ≤ C ≤ R2, then K is a ball. (R1 and R2 stand for the principal
curvature radii of ∂K).
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Here is the link: Let K be a counterexample to the conjecture. Denote by
hK its support function and denote by hC the support function of the ball of
radius C. The graph γ of the difference hK − hC is a conical surface in R4

with the apex at the origin O. Its intersection with S3 is an elementary Barner
saddle sphere.

Vice versa, a smooth elementary Barner saddle sphere spans a cone in R4

which can be interpreted as the graph of some positively homogeneous function
h. For a sufficiently large C, the sum h + hC is a convex function. Then it is
a support function of some convex body K which is a counterexample to the
conjecture.
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Discrete conformal equivalence for triangle meshes

Boris Springborn

(joint work with A. I. Bobenko, U. Pinkall, P. Schröder)

Two Riemannian metrics g and g̃ on a smooth 2-manifold M (possibly with bound-
ary) are conformally equivalent if g̃ = e2ug for some u : M → R. This means that
infinitesimal lengths are scaled by a conformal factor eu which does not depend
on direction but only on position. In this talk, we explore a straightforward dis-
cretization of this concept of conformal equivalence [1]. Instead of smooth surfaces
we consider surface triangulations, and instead of Riemannian metrics g we con-
sider functions ℓ on the set of edges which assign to each edge ij a length ℓij in
such a way that the triangle inequalities are satisfied for all triangles of the trian-
gulation. We consider two such discrete metrics ℓ and ℓ̃ as discretely conformally
equivalent if a conformal factor eui can be associated to each vertex i such that
for all edges ij

ℓ̃ij = e(ui+uj)/2ℓij .
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In terms of the logarithmic edge lengths λ = 2 log ℓ, this relation is linear:

(1) λ̃ij := λij + ui + uj .

Edge lengths ℓ̃ij determine triangle angles. Let α̃k
ij be the angle at vertex k in

triangle ijk with edge lengths ℓ̃ij , ℓ̃jk, ℓ̃ki, and let Θ̃k =
∑

ijk∋k α̃k
ij be the sum of

angles around vertex k. We consider the following problem:
Given (i) a triangulation with a discrete metric ℓ, and (ii) a desired angle

sum Θ̂k for each vertex k, find a discretely conformally equivalent metric ℓ̃ that

has at each vertex the desired angle sum, that is, Θ̃k = Θ̂k for each vertex k. In

particular, we are interested in the case where the desired angle sum Θ̂k equals
2π for all interior vertices k. In this case, the problem asks for a discretely confor-
mally equivalent flat metric with prescribed total angles at the boundary vertices
(discrete conformal flatterning problem).

Analytically, the above problem amounts to one non-linear equation per vertex
in the variables ui, which are also associated to the vertices. It turns out that
these equations are variational: The discrete metric ℓ̃ solves the problem if and
only if u is a critical point of the function

S(u) =
∑

ijk

(
2f

(
1
2 λ̃ij ,

1
2 λ̃jk, 1

2 λ̃ki

)
− π(ui + uj + uk)

)
+

∑

i

Θ̂iui,

where the first sum is taken over all triangles ijk of the triangulation, the second
sum is taken over all vertices i, the λ̃ij are defined by equation (1) as functions
of u, and the function f(x1, x2, x3) is defined as follows: If x1, x2, x3 are real
numbers such that there exists a Euclidean triangle with sides ex1, ex2 , ex3 , then
let α1, α2, α3 be the opposite angles, and define

f(x1, x2, x3) = α1x1 + α2x2 + α3x3 +Ë(α1) +Ë(α2) +Ë(α3),

where Ë(α) = −
∫ α

0
log|2 sin t| dt is Milnor’s Lobachevsky function [2]. It turns

out that ∂f
∂xi

= αi, and therefore ∂S
∂ui

= Θ̂i − Θ̃i, which proves the claim about the

critical points of S(u).
The above definition of f(x1, x2, x3) assumes that ex1 , ex2 , ex3 satisfy the tri-

angle inequalities. Otherwise, a triangle with these sides does not exist and the
angles α1, α2, α3 are not defined. However, the definition of f can be extended to
all of R3 by setting the angles to 0, 0, π whenever a triangle inequality is violated,
where the value π is assigned to the angle opposite the side that is too long. If f is
extended in this way, it is still continuously differentiable and convex. (It is strictly
convex in the original domain and linear outside.) In fact, the extended function
f is (up to a factor of π) the Ronkin function of the polynomial z1 + z2 + z3:

1
π f(x1, x2, x3) = ( 1

2πi)
3

∫∫∫

S1(ex1 )×S1(ex2 )×S1(ex3 )

log
∣∣z1 + z2 + z3

∣∣ dz1

z1
∧ dz2

z2
∧ dz3

z3
.

(This Ronkin function also played an important role in Rick Kenyon’s talk.)
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With f extended in this way, the function S(u) is convex and defined on
R(#vertices). This reduces the discrete conformal flattening problem to an uncon-
strained convex optimization problem which is easy enough to solve numerically
to render this approach useful for practical applications [3].

The fact that Milnor’s Lobachevsky function appears in the variational principle
indicates that there should be some connection with hyperbolic geometry. Indeed,
the discrete conformal flattening problem is equivalent with the following one [4]:
Given a surface with complete hyperbolic metric with cusps, find a hyperbolic
polyhedron with vertices at infinity whose boundary is isometric to the given
surface. The same variational principle can also be used to solve this problem.
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Open problems in Discrete Differential Geometry

Collected by Günter Rote

Problem 1 (Günter M. Ziegler). What is the smallest possible maximum ver-
tex degree f(d) for a centrally symmetric triangulation of the d-sphere? (Or a
simplicial (d + 1)-polytope.) The known bounds are f(1) = 2, f(2) = 4, and
d + 1 < f(d) ≤ 2d. The upper bound comes from the cross-polytope. If one could
show f(d) < 3d/2 for some large d that would have interesting consequences.

Problem 2 (Richard Kenyon). Let M be a closed polyhedral surface homeomor-
phic to S2 which is entirely composed of equal regular pentagons. If M is immersed
in 3-space, is it necessarily the boundary of a union of solid dodecahedra that are
glued together at common facets? The pentagonal faces may intersect each other
(and the “union of solid dodecahedra” must be defined appropriately) but two
different faces are not allowed to coincide. (The corresponding question for equal
squares has an affirmative answer.)

Note (Ulrich Brehm): The great dodecahedron (Kepler-Poinsot polyhedron) is
an interesting example, but it has genus 4. Moreover, the vertex-figures are self-
crossing pentagrams, and therefore the surface is not immersed. The question
would be interesting even for immersions of arbitrary closed surfaces, and for ori-
entable closed surfaces of genus smaller than four where arbitrary selfintersecctions
are allowed.
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Problem 3 (Wolfgang Kühnel). Let Md be a triangulated d-manifold (simply
connected, closed) with a discrete metric such that the discrete curvature (angle
defect) along any (d − 2)-simplex is positive. Give a discrete proof that Md is
homeomorphic to Sd. (Or give a counterexample.)

For d = 3, recent unpublished work of Matveev/Shevshichin verifies this by
explicitly smoothing the metric; presumably the smoothing could also be done
using Ricci flow. See also earlier work of Cheeger for general dimensions.

Note: Nonnegative curvature is not sufficient, as demonstrated by a flat torus.
CP 2 has a metric of positive sectional curvature, but the polyhedral condition
should correspond to the stronger condition of positive curvature operator.

Problem 4 (Joseph O’Rourke). Can a finite number of disjoint (closed) line seg-
ments in the plane, acting as 2-sided mirrors, and a point light source be arranged
so that no light ray escapes to infinity? It seems most natural to treat the mirrors
as open segments, but they should be disjoint when closed. The conjecture is that
this is impossible.

Problem 5 (Günter Rote). Take the complete graph K4 embedded in the plane
in general position, with vertices p1, p2, p3, p4. Pick two arbitrary points a and b
and define two functions ωij and fij on the six edges of this graph:

(1) ωij :=
1

[pipjpk][pipjpl]
, fij := [apipj ][bpjpj],

where k and l are the two vertices different from i and j, and [q1q2 . . . qn] denotes
signed area of the polygon q1q2 . . . qn. (The function ωij is a self-stress: the
equilibrium condition

∑
j ωij(pj − pi) = 0 holds for every vertex i, where the

summation is over all edges ij incident to i.) Then we have the following identity:

(2)
∑

1≤i<j≤4

ωijfij = 1

This generalizes to any wheel (graph of a pyramid) with a vertex p0 that is con-
nected to vertices p1, . . . , pn forming a cycle, with the self-stress

ωi,i+1 :=
1

[pipi+1p0][p1p2 . . . pn]
, ω0,i :=

[pi−1pipi+1]

[pi−1pip0][pipi+1p0][p1p2 . . . pn]
.

(The summation in (2) extends over all edges of the graph.) A different formula
for fij that fulfills (2) is given by a line integral over the segment pipj :

f ′
ij := 3

2 · ‖pi − pj‖ ·

∫

x∈pipj

‖x‖2 ds = 1
2 · ‖pi − pj‖

2 ·
(
‖pi‖

2 + ‖pj‖
2 + 〈pi, pj〉

)

Question 1: Are there other graphs with n vertices and 2n − 2 edges, for which
a self-stress ω satisfying (2) can be defined? The next candidates with 6 vertices
are the graph of a triangular prism with an additional edge, and the complete
bipartite graph K3,3 with an additional edge.

Question 2: Are these formulas an instance of a more general phenomenon? What
are the connections to homology and cohomology?
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Question 3: By positive scaling of the function f given by (1) or by adding a
function that is orthogonal to the space of self-stresses (i. e., it lies in the range
of the rigidity map), one obtains different functions f for which the expression in
(2) is positive, see [1, Lemma 3.10]. Are all functions f that assign a number to
each segment in the plane and that make (2) positive for all embeddings of K4

obtained in this way?

[1] Günter Rote, Francisco Santos, and Ileana Streinu, Expansive motions and the polytope of
pointed pseudo-triangulations, in: Discrete and Computational Geometry—The Goodman-
Pollack Festschrift, Springer, 2003, pp. 699–736, arXiv:math/0206027 [math.CO].

Problem 6 (Jürgen Richter-Gebert). Take 2 · 5 = 10 vectors A, B, C, D, E and
A′, B′, C′, D′, E′ in C2. Consider 2 × 2 determinants [AB] etc. Take the quotient

α(A, B, C, D, E|A′, B′, C′, D′, E′) :=
[AB][BC][CD][DE][EA]

[A′B′][B′C′][C′D′][D′E′][E′A′]

The alternating sum of α over all 4! simultaneous permutations of A . . . E and
A′ . . . E′ that start with A/A′ is 0. This should also be true for a general number
of 2n points. Thus we conjecture in [1]:

Let A1, . . . , An, A′
1, . . . , A

′
n ∈ K2 be 2n points in a 2-dimensional vector space over

a commutative field K. Then the following formula holds
∑

π=(1,π2,...,πn)∈Sn

σ(π)α(π(A1 , . . . , An)|π(A′
1, . . . , A

′
n)) = 0.

where α(A1, , . . . , An|A′
1, , . . . , A

′
n) is a cyclic quotient analogous to the above one.

(This follows trivially from symmetry arguments for n = 3, 4, 7, 8, 11, 12, . . .,
has been proved for 5 and 6, and seems true for 9 and 10.)

[1] Alexander Below, Jürgen Richter-Gebert, Vanessa Krummeck, Complex matroids, phirotopes
and their realizations in rank 2, in: Discrete and Computational Geometry—The Goodman-
Pollack Festschrift, Springer, 2003, pp. 203–233.

Problem 7 (Ivan Izmestiev). An embedded graph in S3 is called linked if it
contains two disjoint linked cycles. Is there a convex 4-polytope P such that its
1-skeleton P (1) is linked as a graph in ∂P ≈ S3, but has a different embedding
that is not linked?

Background: Let G be a graph with Colin de Verdière invariant µ(G) = 4, and
let M be a Colin de Verdière matrix for G. According to a conjecture of [1] and [2],
the null-space of M yields then a non-linked embedding of G.

The positive solution of the problem would disprove this conjecture: Since
G = P (1) has a non-linked embedding, µ(G) = 4. By [3], there is a Colin de
Verdière matrix M whose null-space represents G as the skeleton of P , and thus
in a linked way.

[1] László Lovász, Alexander Schrijver, On the null space of a Colin de Verdière matrix, Sym-
posium à la Mémoire de François Jaeger (Grenoble, 1998). Ann. Inst. Fourier (Grenoble)
49 (1999), no. 3, 1017–1026.

[2] László Lovász, Steinitz representations of polyhedra and the Colin de Verdière number,
J. Combin. Theory Ser. B 82 (2001), no. 2, 223–236.
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Problem 8 (Serge Tabachnikov). The standard origami model of a hyperbolic
paraboloid is made from a square paper, folded zig-zag along many concentric
squares and along the two diagonals. What is really going on in this model? Can
it be realized with straight creases and with (developable) faces that are isometric
to plane faces, or does it necessarily involve some stretching of the paper?

Problem 9 (Serge Tabachnikov). We are given a partition of the unit square
into T triangles (not necessarily a triangulation). A vertex that lies on an edge of
some triangle or of the bounding square has 1 degree of freedom, all other interior
vertices have 2. In total, there are T −2 degrees of freedom for moving the vertices
while maintaining the combinatorial structure. If we consider the map sending any
configuration to the T -tuple of signed areas, the image must satisfy two relations.
One is that the sum of the areas is 1. What is the other?

Problem 10 (Ken Stephenson). Uniqueness of inversive distance packings. Let
K be a doubly periodic hexagonal lattice in the plane, that is, some affine image
of a regular hexagonal lattice. Define a circle packing P for K by centering a circle
of radius r at every lattice point, where r is sufficiently small that no two circles
intersect. For each pair of neighboring lattice points record the inversive distance
between their circles. (The Möbius invariant inversive distance between separated
circles C1 = C(z, s) and C2 = C(w, t) is given by (C1, C2) = |s2+t2−|z−w|2|/2st.
See [1, Appendix E] for details on inversive distance circle packings.)

By lattice periodicity, just three inversive distances occur, a, b, c ≥ 1, each
associated with an axis direction for K: every pair of circles that are neighbors in
the parallel direction share that inversive distance.

Question: Is the packing P rigid? That is, suppose Q is a second circle packing
for K whose circles realize the corresponding inversive distances. Is it the case
that all circles of Q share a common radius?

Dennis Sullivan [2] proved that the answer is yes when a = b = c = 1, that is,
when every circle is tangent to its six neighbors. Zheng-Xu He [3] extended this
to the case a, b, c ∈ [0, 1], in which the circles overlap with specified overlap angles
up to π/2.

[1] Ken Stephenson, Introduction to Circle Packing: the Theory of Discrete Analytic Functions,
Cambridge Univ. Press (2005).

[2] Dennis Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic
motions, in: Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook
Conference, Ann. of Math. Stud. 97 (1981), 465–496.

[3] Zheng-Xu He, Rigidity of infinite disk patterns, Annals of Mathematics 32 (1999), 1–33.

Problem 11 (John Sullivan). It has recently been shown [1] that any combi-
natorial triangulation of a two-torus (as a simplicial complex) can be realized
geometrically in R3 (that is, embedded with flat triangles).

Any topological embedding of a torus in space (up to isotopy) determines not
only the knot type (of the core curve) but also a marking of the torus, that is, a
choice of complementary homology classes to be the meridian and longitude.
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In which isotopy classes can a given combinatorial triangulation be realized? It
is not hard, for instance, to show that the smallest triangulated torus (the Möbius
torus) can only be realized as an unknot, and that the meridian and longitude
must be chosen from the three homology classes that are realizable as edge cycles
of length 3.

[1] Dan Archdeacon, C. Paul Bonnington and Joanna A. Ellis-Monaghan, How to exhibit toroidal
maps in space, Discr. Comput. Geom. 38 (2007), 573–594.

Problem 12 (Feng Luo and Igor Pak). Given a simplicial convex 3-polytope, is
it infinitesimally rigid when at each edge either length or dihedral angle is fixed
and at least one edge length is given?

Dehn’s infinitesimal rigidity says the answer is yes if each edge length is given.
Also the recent work of A. Pogorelov [1] shows infinitesimal rigidity up to scaling
when dihedral angles at all edges are fixed, assuming all face angles are acute.
Most recently, R. Mazzeo announced a complete solution of the Stoker conjecture,
thus in particular removing the acute angle condition. This question of mixed
type is motivated by the variational principle point of view. For instance, it is
now known that a circle packing metric on a triangulated surface is determined
when at each vertex either the curvature or the radius is given. On the other hand,
global rigidity is not always true.

[1] Pogorelov, A. V.: On a problem of Stoker (Russian), Dokl. Akad. Nauk, Ross. Akad. Nauk
385 (2002), no. 1, 25–27; English translation in Dokl. Math. 66 (2002), no. 1, 19–21.

Problem 13 (Joseph O’Rourke). Given a simple piecewise-geodesic curve on S2,
develop it onto the plane (same lengths and angles). Find conditions which guar-
antee that the developed image does not intersect itself. This is true if we start
with a closed convex polygon on S2. What about star-shaped polygons?

Problem 14 (Alexander Bobenko). Are there (discrete) integrable systems in
dimension four and higher? An n-dimensional discrete system is an equation for a
function (field) defined at the vertices of an n-dimensional cube. Given values of
the function at all the vertices of the cube but one, the discrete system determines
the value at the last vertex. Following [1], a discrete system is called integrable if it
is consistent, i. e., can be consistently set at all n-dimensional faces of an (n + 1)-
dimensional cube. The same problem can be also formulated for the systems
with the fields on edges or faces. Many incidence relations in discrete differential
geometry are discrete integrable systems.

There are many 2-dimensional and a few 3-dimensional discrete integrable sys-
tems (see the talk of Suris in this workshop). No examples in dimension four and
higher are known.

[1] Alexander I. Bobenko, Yuri B. Suris, Discrete Differential Geometry: Integrable Structure,
Graduate Studies in Mathematics, Vol. 98, AMS, 2008.
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Lattice triangulations of 3-space and of the 3-torus

Ulrich Brehm

(joint work with Wolfgang Kühnel)

Parallelohedra (i.e., convex bodies which tile by translation) are a very classical and
important topic in crystallography and in the theory of tilings. Already Voronoi
showed that there are exactly five types of 3-dimensional parallelohedra [2]. Of
particular interest are primitive tilings of Rd, i.e., tilings where exactly d + 1 tiles
meet in every vertex. Dually one gets triangulations of Rd, where a group Γ ∼= Zd

of translations operates transitively on the set of vertices.
In the 3-dimensional case exactly one of the five types of parallelohedra is the

prototile for a primitive tiling. It is the truncated octahedron (with 14 facets).
If one drops the assumption of “convexity of the tiles,” the situation changes

drastically and one gets already in the 3-dimensional case infinitely many types of
primitive lattice tilings by “nonconvex parallelohedra”. We prefer the dual point
of view and consider triangulations by “curvilinear simplices”. A more systematic
investigation of such “lattice triangulations” is the topic of the talk. We start with
the basic definitions.

Definitions. An abstract lattice triangulation of Rd is a pair (K, G), where K is an
infinite simplicial complex with |K| ∼= Rd and G ∼= Zd is a group of automorphisms
of K acting transitively on the set of vertices.

Let Γ ⊆ Rd, Γ ∼= Zd be a lattice. If there exists a homeomorphism ϕ : |K| → Rd

and a group isomorphism α : G → Γ, such that for all g ∈ G and x ∈ |K| the
equality ϕ(g(x)) = ϕ(x) + α(g) holds, we call (K, G) geometrically realizable and
the induced tiling of Rd a lattice triangulation (with lattice Γ).

Two abstract lattice triangulations (K, G) and (K′, G′) are isomorphic if there
exists a simplicial isomorphism f : K → K′ and a group isomorphism α : G → G′

such that f(g(x)) = α(g)(f(x)) for all g ∈ G and vertices x ∈ |K|.
Two lattice triangulations are called equivalent if their underlying abstract lat-

tice triangulations (K, G) and (K′, G′), respectively, are isomorphic. For an ab-
stract lattice triangulation we can assume w.l.o.g. that the set of vertices is Zd

and G = Zd operating by addition. Then we define the basic link L as the link
of 0.

Proposition 1. L has the following properties:
(1) L is a simplicial Sd−1 with vertices in Zd \ {0}
(2) 〈x1, · · · , xd〉 ∈ L ⇒ 〈−x1, x2 − x1, · · · , xd − x1〉 ∈ L
(3) The set of vertices of L generates Zd.

Definition. If L is a simplicial Sd−1 satisfying (1), (2), (3), it is called an abstract
basic link.

Proposition 2. If L is an abstract basic link then there is a unique Zd-invariant
simplicial complex K having L as its basic link.
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Proposition 3. Two Z
d-invariant abstract lattice triangulations are equivalent if

and only if there is a ϕ ∈ GL(d, Z) such that its restriction to the vertex set of the
basic links L, L′ is a simplicial isomorphism.

In the remaining part of the talk we consider in more detail the 3-dimensional
case, although we are aware that most of the constructions and ideas can be
generalized to the d-dimensional case.

The basic construction method is a simultaneous application of bistellar flips.
Let L be an abstract basic link and 〈x, y, z〉 ∈ L. Then there is a unique u ∈ Z3\{0}
with 〈x− u, y − u, z − u〉 ∈ L. If u is not a vertex of L then simultaneous bistellar
flips can be applied yielding another abstract link L′ with u and −u as additional
vertices and eight triangles being replaced by twelve other triangles. This is our
basic operation. If L′ is an abstract link with a 3-valent vertex u then the inverse
operation can be applied.

Proposition 4. Geometric realizability is preserved under the operation described
above and under its inverse.

Starting with the basic link of the unique standard lattice triangulation with or-
dinary tetrahedra we get explicitly infinitely many geometrically realizable lattice
triangulations of R3. Some of these are investigated in more detail. Particularly
remarkable is a basic link with 18 vertices having an automorphism group of order
24 and without 3-valent vertices.

Theorem 1. For each even n ≥ 14 there is a lattice triangulation of R3 for which
the basic link has n vertices.

Factorizing a lattice triangulation of R3 by a suitable subgroup of the lattice Γ
one gets a simplicial 3-torus.

Proposition 5. Let L be an abstract basic link and f : Z3 → G be a surjective
group homomorphism such that f is injective on the union of {0} and the set
of vertices of L. Then {〈a, f(x) + a, f(y) + a, f(z) + a〉|〈x, y, z〉 ∈ L, a ∈ G} is
the set of tetrahedra of a simplicial 3-torus with a vertex transitive group G of
automorphisms.

Theorem 2. For each odd n ≥ 15 there is a neighbourly triangulation (i.e., any
two vertices are joined by an edge) of the 3-torus with n vertices and Zn as a group
of automorphisms. Moreover each of these tori has a geometrically realizable lattice
triangulation as universal covering.
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Lattice triangulations of 3-space, and PL curvature

Wolfgang Kühnel

(joint work with Ulrich Brehm)

We consider lattice triangulations – abstract and geometric in Euclidean space – as
defined in the talk by Ulrich Brehm. Usually the PL curvature of a combinatorial
3-manifold, equipped with a simplexwise Euclidean metric (or discrete metric or
PL metric), is defined as follows: For any edge e let βi denote the interior dihedral
angles at e. Then the quantity

K(e) := 2π −
∑

i

βi

is called the PL curvature along e. In a triangulation of flat Euclidean space we
have K ≡ 0 provided that all simplices are Euclidean. This is to be understood in
the sense that a Euclidean d-dimensional simplex is assumed to be isometric with
the convex hull of d + 1 points in Euclidean d-space which are in general position.
In particular all edges have to be straight in this case. In contrast, a topological
simplex is assumed to be only homeomorphic with a Euclidean simplex, possibly
with curved edges. Degenerate simplices with volume zero are not admitted here.
In Riemannian geometry the following is certainly a trivial statement:

Proposition (trivial). The unique flat metric on the Euclidean d-space is G-equi-
variant for any lattice G ∼= Z

d acting by pure translations, meaning that G acts by
isometries.

The question is whether this carries over to the discrete case.

Question: Assume that we have an abstract lattice triangulation of d-space
where a group G ∼= Zd acts transitively on the set of vertices, and where any
simplex is isometric with a Euclidean simplex (i.e., we have an associated PL
metric). Is it true that on the same triangulation we can associate a flat PL
metric, still preserving the G-equivariance and the property of the simplices to be
Euclidean?

It turns out that the answer is “yes” only in dimension d = 2 and “no” in any
dimension d ≥ 3. In 3-space a particular family of examples can be described as
the universal covering of certain triangulations of the 3-dimensional torus, see the
talk by Ulrich Brehm.

Theorem 1. Assume we have an abstract lattice triangulation of Euclidean 3-
space, equipped with a PL metric by Euclidean simplices such that the group G ∼= Z3

of all translations of the lattice acts isometrically with respect to this PL metric.
Assume further that the PL curvature K(e) vanishes along all edges e. Then the
triangulation is combinatorially unique and, moreover, the metric is affinely equiv-
alent with the one of the standard lattice triangulation of 3-space. This standard
triangulation is the dual of the tiling by translates of the truncated octahedron (also
called orthic tetrakaidecahedron [3]).
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Each vertex link in the unique standard lattice triangulation is combinatorially
equivalent to a subdivided cube with 14 vertices (one extra vertex at the centre
of each of the six squares of the cube). Geometrically, the vertex link can also
be regarded as a subdivided rhombidodecahedron where each rhombus is divided
into two triangles by using the short diagonal. For a picture see [4].

The proof of Theorem 1 is done in the following three steps:

(1) From the condition K(e) = 0 at the edges we conclude that a neighborhood
of each vertex is isometric with Euclidean 3-space. One just has to consider the
distance sphere from the vertex with a certain small radius. We remark that this
step breaks down for d = 2 because the distance sphere there admits coverings
onto itself.

(2) It follows that the flat Euclidean space is triangulated by Euclidean tetra-
hedra, and that the Euclidean group acts on it by translations and transitively on
the vertices. Consequently, the dual of it is a primitive lattice tiling of Euclidean
3-space. Primitive means that at any vertex precisely four tetrahedra meet, the
minimum number.

(3) By a classical theorem of Fedorov-Voronoi [6] there is precisely one primitive
lattice tiling of 3-space (up to affine transformations), namely, the one where the
prototile is a truncated octahedron. An alternative direct proof for the uniqueness
of the lattice triangulation in 3-space (without the duality argument) see [2].

On the other hand we have the following result (see the talk by Ulrich Brehm):

Theorem 2. There are infinitely many combinatorially distinct non-standard lat-
tice triangulations of Euclidean 3-space. For them no associated Z3-equivariant
PL metric can be flat. However, the flat metric becomes equivariant if we realize
the tetrahedra as topological tetrahedra. The vertex link can have an arbitrarily
large even number of vertices.

This proves that the answer to the question above is “no” for d = 3. At least
in some cases it will be possible to realize a flat metric with Euclidean tetrahedra
on the same triangulation, if the lattice symmetry is broken.

The uniqueness of a primitive lattice tiling fails to hold in any dimension d ≥ 4.
There are three distinct items for d = 4, as already classified by Voronoi [6].
However, in any dimension d ≥ 2 there is a standard lattice triangulation of d-
space, just given by the standard triangulation of each cube in the cubical tiling.
Furthermore, this admits a quotient by a sublattice which is a combinatorial d-
torus. This works for any number n ≥ 2d+1 − 1 of vertices [4], [5] and with Zn-
symmetry on the 3-torus. Here only the case n = 2d+1 − 1 leads to a neighborly
triangulation meaning that any two vertices are joined by an edge. The question is
whether there are similar neighborly triangulations of the 3-torus with unbounded
number n ≥ 15 of vertices (and with a vertex transitive Zn-symmetry). We recall
a result from the talk by Ulrich Brehm and add a consequence regarding the PL
curvature.
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Theorem 3. The Euclidean 3-space admits infinitely many G-equivariant trian-
gulation by topological simplices for the group G ∼= Z3 of all translations of a lattice
in such a way that the set of vertices coincides with that lattice. Each vertex link
can have any even number n − 1 ≥ 14 of vertices. There are neighborly n-vertex
triangulations of the 3-torus as quotients admitting a transitive Zn-action by trans-
lations. Moreover, for all cases n ≥ 17 it is not possible to associate a flat discrete
metric to the triangulation such that the group Zn acts by isometries.
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Symmetry as a sufficient condition for a finite flex

Bernd Schulze

A d-dimensional framework is a pair (G, p), where G is a graph and p is a map
that assigns to each vertex of G a point in Euclidean d-space. We can think of a
framework as a collection of rigid bars (corresponding to the edges of G) connected
together at their ends by flexible joints (corresponding to the vertices of G) which
allow bending in any direction. This talk is concerned with the detection of finite
flexes of symmetric frameworks, i.e., flexes that move the joints of a framework on
differentiable displacement paths while holding the lengths of all bars fixed and
changing the distance between two unconnected joints.

It is well known that if a framework (G, p) has a finite flex, then it also has an
infinitesimal flex, i.e., an assignment of velocity vectors, one to each joint, that
neither stretch nor compress the bars of (G, p) [3, 4]. In 1978 L. Asimov and B.
Roth showed that for ‘generic’ frameworks the existence of an infinitesimal flex
also implies the existence of a finite flex [1]. This result, however, is in general not
applicable to frameworks that possess non-trivial symmetries, because the joints
of a symmetric framework are typically forced into non-generic positions.

In this talk we present some new results that provide sufficient conditions for
the existence of a finite flex of a symmetric framework. In particular, we show
that if the joints of a symmetric framework (G, p) are positioned as ‘generically’
as possible (subject to the given symmetry conditions) and there exists a ‘fully-
symmetric’ infinitesimal flex of (G, p) (i.e., the velocity vectors of the infinitesimal
flex remain unaltered under all symmetry operations of (G, p)), then (G, p) also
possesses a ‘symmetry-preserving’ finite flex, i.e., a flex which displaces the joints of
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(G, p) in such a way that all the resulting frameworks have the same symmetry as
(G, p) (or possibly higher symmetry). This and other related results are obtained
by symmetrizing techniques described by L. Asimov and B. Roth in [1] and by using
the fact that the rigidity matrix of a symmetric framework can be transformed into
a block-diagonalized form by means of group representation theory techniques [2].
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Persistence simplification of discrete Morse functions on surfaces

Ulrich Bauer

(joint work with Carsten Lange and Max Wardetzky)

1. Introduction

We apply the concept of persistent homology [1] to Forman’s discrete Morse
theory [2] on regular 2-manifold CW complexes and solve the problem of minimiz-
ing the number of critical points among all functions within a prescribed distance
δ from a given input function. Our result achieves a lower bound on the number
of critical points and improves on previous work [3] by a factor of two.

2. Discrete Morse theory

Let K be a finite CW complex and K the set of cells of K. The cell σ is a
face of τ , denoted by σ < τ , if σ is in the boundary of τ . Facets are faces of
codimension 1. If the attaching maps are homeomorphisms, K is called a regular
complex. A combinatorial surface is a regular CW complex whose underlying
space is a 2-manifold.

Discrete vector fields are one of the central concepts of discrete Morse theory.
They are a purely combinatorial analogon of classical vector fields.

Definition (Discrete vector field). A discrete vector field V on a regular CW
complex K is a set of pairs of cells (σ, τ) ∈ K × K, with σ a facet of τ , such that
each cell of K is contained in at most one pair of V .

Definition (V -path). Let V be a discrete vector field. A V -path Γ from a cell σ0

to a cell σr is a sequence σ0τ0σ1 . . . τr−1σr of cells such that for every 0 ≤ i ≤ r−1:

σi is a facet of τi and (σi, τi) ∈ V,

σi+1 is a facet of τi and (σi+1, τi) 6∈ V.
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A V -path is a nontrivial closed path if σ0 = σr and r > 0.

Definition (Discrete gradient vector field). A gradient vector field is a discrete
vector field V that does not admit any nontrivial closed V-paths.

Definition (Critical cell). A cell σ is a critical cell with respect to a discrete
gradient vector field V if σ is not contained in any pair of V . A cell that is not
critical is a regular cell.

The main technique for reducing the number of critical points is that of reversing
a gradient vector field V along a V -path between two critical cells τ and σ:

Theorem ([2], Theorem 11.1). Let σ and τ be critical cells of a gradient vector
field V with a unique V -path Γ from ∂τ to σ. Then there is a gradient vector

field Ṽ obtained by reversing V along the path Γ. The critial cells of Ṽ are exactly

the critical cells of V other than {σ, τ}. In particular, V = Ṽ except along the
path Γ.

As in smooth Morse theory, a discrete gradient vector field can be understood
as the gradient of some function in the following sense:

Definition ((Pseudo-)Morse function). A discrete Morse function is a function
f : K → R on the cells of a regular CW complex K if there is a gradient vector
field V such that for all pairs of cells we have

σ is a facet of τ ⇒

{
f(σ) < f(τ) if (σ, τ) 6∈ V,

f(σ) ≥ f(τ) if (σ, τ) ∈ V.

For a discrete pseudo-Morse function, the strict inequality is replaced by a weak
one, i.e., f(σ) ≤ f(τ) if (σ, τ) 6∈ V . In either case, we call V consistent with f .

Definition (Induced partial order). The partial order ≺V induced by a discrete
gradient vector field V is the transitive relation generated by

σ is a facet of τ ⇒

{
σ ≺V τ if (σ, τ) 6∈ V,

σ ≻V τ if (σ, τ) ∈ V.

For any pseudo-Morse function g consistent with V and any pair of cells (φ, ρ),
φ ≺V ρ implies g(φ) ≤ g(ρ).

3. Persistent Morse homology

Homological persistence [1] is used to investigate the change of the homology
groups in a sequence of nested topological spaces. We study nested subcomplexes
of a given CW complex.

Definition (Level subcomplex). Let f be a discrete Morse function on a regular
CW complex K. For a cell σ ∈ K, the level subcomplex is the subcomplex of K
consisting of all cells ρ with f(ρ) ≤ f(σ) together with their faces:

K(σ) :=
⋃

ρ∈K

f(ρ)≤f(σ)

⋃

φ∈K

φ≤ρ

φ .
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For K(φ) ⊂ K(ρ), let iφ, ρ
∗ : H∗(K(φ)) → H∗(K(ρ)) denote the homomorphism

induced by inclusion. Let σ and τ be critical cells of dimension d and (d + 1),
respectively, such that f(σ) < f(τ). The predecessor of σ is the cell σ− with the
largest f -value such that f(σ−) < f(σ), and similarly for τ−. Now consider the
sequence

Hd(K(σ−)) → Hd(K(σ)) → Hd(K(τ−)) → Hd(K(τ))

induced by inclusion.

Definition (Birth, death, persistence pair). Let f be an injective Morse function
on a regular CW complex. We say that a class h ∈ H∗(K(σ)) is born at (or created
by) σ if

h 6∈ im(i
σ
−

, σ
∗ ).

Moreover, we say that a class h ∈ H∗(K(σ)) that is born at σ dies entering (or
gets merged by) τ if

iσ, τ
d (h) ∈ im(i

σ
−

, τ
∗ ) but i

σ, τ
−

d (h) 6∈ im(i
σ
−

, τ
−

∗ ).

If there exists a class h that is born at σ and dies entering τ , then (σ, τ) is a
persistence pair. The difference f(τ) − f(σ) is called the persistence of (σ, τ).

To uniquely define persistence pairs for a pseudo-Morse function f consistent
with some gradient vector field V , we require a total order on the cells. This can
be achieved by extending the partial order ≺V to a total order, which allows us to
speak about persistence pairs of (f, V ).

4. Topological simplification of functions

From now on, let f be a pseudo-Morse function consistent with a discrete gra-
dient vector field V on a combinatorial surface K. From the stability theorem for
persistence diagrams [4], we can deduce the following lower bound on the number
of persistence pairs, and therefore on the number of critical points:

Lemma. For a pseudo-Morse function fδ with ‖fδ −f‖∞ < δ and consistent with
a gradient vector field Vδ, the number of persistence pairs of (fδ, Vδ) is bounded
from below by the number of persistence pairs of f with persistence ≥ 2δ.

We are interested in functions that achieve this lower bound:

Definition (Perfect δ-simplification). A perfect δ-simplification of (f, V ) is a
pseudo-Morse function fδ consistent with a gradient vector field Vδ, such that
‖fδ − f‖∞ < δ and the number of persistence pairs of (fδ, Vδ) is equal to the
number of persistence pairs of f with persistence ≥ 2δ.

Our main result states that a perfect δ-simplification always exists for a discrete
pseudo-Morse function on a combinatorial surface.

Theorem. Let f be a discrete pseudo-Morse function on a combinatorial surface.
Then there exists a perfect δ-simplification of f .
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The proof of this theorem is constructive. An analogous statement is not true
in higher dimensions or for non-manifold complexes.
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Approximation of conformal mappings by circle patterns

Ulrike Bücking

Conformal mappings constitute an important class in the field of complex analysis.
They may be characterized by the fact that infinitesimal circles are mapped to
infinitesimal circles. Thurston first introduced in his talk [10] the idea to use
finite circles, in particular circle packings, to define a discrete conformal mapping.
Remember that an embedded planar circle packing is a configuration of closed disks
with disjoint interiors in the plane C. Various connections between circle packings
and classical complex analysis have already been studied. A beautiful introduction
and surway is presented by Stephenson in [9].

The class of circle patterns generalizes circle packings as for each circle packing
there is an associated orthogonal circle pattern. Simply add a circle for each
triangular face which passes through the three touching points. To define a circle
pattern we use a planar graph as combinatorial data. The circles correspond to
vertices and the edges specify which circles should intersect. The intersection
angles are given using a labelling on the edges. Thus an edge corresponds to a
kite of two intersecting circles as in Figure 1. A face of the graph corresponds to
a point where all the circles corresponding to the incident vertices intersect. Such
intersection points are colored black in Figure 1. Moreover, for interior vertices the
kites corresponding to the incident edges have disjoint interiors and their union is
homeomorphic to a closed disk. Thus to a circle pattern we also associate a kite
pattern.

α

Figure 1. The exterior intersection angle α of two intersecting
circles and the associated kite built from centers and intersection
points.
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Given two circle patterns C1 and C2 with the same combinatorics and intersec-
tion angles, define a mapping gC : C1 → C2. Namely, take gC to map the centers
of circles and the intersection points of C1 corresponding to vertices and faces of
G to the corresponding centers of circles and intersection points of C2 and extend
it to an affine map on each kite.

For a given conformal map g we use an analytic approach and specify suitable
boundary values for the radius function according to |g′| in order to define the
(approximating) mappings gC . Generalizing ideas of Schramm’s convergence proof
in [8] we obtain convergence in C1 on compact sets if we take for C1 a sequence of
isoradial circle patterns (i.e., all radii are equal) with decreasing radii ε → 0 which
approximate the domain of g. Note in particular that the combinatorics of the
circle patterns C1 may be irregular or change within the sequence. More precisely,
we obtain for example the following result.

Theorem. Let W ⊂ C be open and let g : W → C be a locally injective holomor-
phic function. Let K ⊂ C be a compact set whose interior is simply connected and
which is contained in W .

Consider a sequence C
(n)
1 of isoradial circle patterns with decreasing radii εn →

0. Assume that the region covered by the closed disks filling the circles of the circle

pattern C
(n)
1 is contained in W and covers K for each n ∈ N. Furthermore, the

centers of circles not contained in K have a distance of at most 2εn to K. As-

sume further that the intersection angles of the circle patterns C
(n)
1 are uniformly

bounded away from 0 and π.

Then a sequence of image circle patterns C
(n)
2 can be defined by setting rn(v) =

εn|g′(v)| for the radius rn(v) of the boundary centers of circles, where v is the

corresponding center of circle of C
(n)
1 . Furthermore, we adjust the translational

and rotational freedom of C
(n)
2 according to the image of g at one vertex (per

connected component of the circle pattern). Then we have for all centers of circles

w of C
(n)
1

g(w) = gC (n)(w) + O(εn)(1)

|g′(w)| = rn(w)/εn + O(εn).(2)

The implicit constants in O(. . . ) of these estimations depend on g and W , K,
and the uniform bound on the intersection angles, but not on the combinatorics of

C
(n)
1 .

The main idea of the proof is to consider a “nonlinear discrete Laplace equation”
for the radius function rn. This equation turns out to be a (good) approximation
of a known linear Laplace equation and can be used in the case of isoradial cir-

cle patterns C
(n)
1 to compare discrete and smooth solutions of the corresponding

elliptic problems. In particular, we obtain (2) if εn is small enough.
Isoradial circle patterns are closely related to rhombic embeddings. Simply

bicolor the vertices of such an embedding and add circles centered at all white (or
all black) vertices with radius equal to the edge length. For rhombic embeddings,
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there is an asymptotic development given by Kenyon in [7] of a discrete Green’s
function which is slightly generalized in [2] and in [4]. Using similar ideas as
Duffin in [5], we can generalize theorems of discrete potential theory concerning
the regularity of solutions of a discrete Laplace equation, see [2]. This regularity
lemma, estimation (2), and a Taylor expansion of the analytic closing condition for
the radii form the basis of our proof of C1-convergence claimed in the theorem.The
proof generalizes a method used by He and Schramm in [6].

Using a repeated application of the regularity lemma, we also obtain C∞-
convergence on compact sets for a class of isoradial circle patterns. In order to
define higher derivatives, we consider the rhombic embeddings as combinatorial
surfaces in Zdn for appropriate dn as in [1]. Using flips of 3-dimensional cubes,
this original surfaces can be changed without changing their boundary curve. This
leads to some region reached by flips in Zdn . Here we still have the same estima-
tions. For a fixed copamct subset K we now additionally assume that the com-
binatorial distance in at least two directions of this region is comparable to the
combinatorial distance to the boundary, independently of n.

An extended and more detailed version of partially weaker results can be found
in [3, 2].
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Stability of the fold

Herbert Edelsbrunner

(joint work with Dmitriy Morozov and Amit Patel)

The fold of a smooth mapping f : M → R
k from a compact n-manifold to Eu-

clidean space of dimension k ≤ n is the image of the points at which the gradients
of the k component functions are linearly dependent. The fold decomposes Rk

into chambers which we glue along shared faces to form immersed k-manifolds.
Measuring difference with the erosion distance (the Hausdorff distance for the
complements adapted to immersed k-manifolds), we prove that the fold is stable.
Specifically, for a second smooth mapping g : M → Rk, we can form corresponding
immersed k-manifolds such that the erosion distance between corresponding pairs
is bounded from above by the maximum Euclidean distance between points f(x)
and g(x).
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The Angle Defect and Its Generalizations

Ethan D. Bloch

The talk started with a review of what is most likely the first theorem in Discrete
Differential Geometry, namely Descartes’ Theorem concerning the angle defect for
convex polyhedra in R

3. This theorem was formulated before there was a subject
called differential geometry. For a triangulated polyhedral surface M2 in Euclidean
space, the usual notion of curvature at a vertex v is the classical angle defect dv =
2π−

∑
αi, where the αi are the angles of the triangles containing v. The classical

angle defect satisfies some standard properties one would expect: it is invariant
under polyhedral local isometries; it is locally defined; it is zero at a vertex that
has a flat star; it is invariant under subdivision; and it satisfies the polyhedral
Gauss-Bonnet Theorem, which says

∑
v dv = 2πχ(M2), where the summation is

over all the vertices of M2, and χ(M2) is the Euler characteristic of M2. Descartes’
Theorem, which predates Euler, is the special case of the polyhedral Gauss-Bonnet
Theorem when M2 is a convex polyhedron in R3. See [8] for the text of Descartes’
work on polyhedra, though Descartes did not give a proof of his theorem; see [12,
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Chapter 25] for two proofs, the second of which is plausibly the one Descartes had
in mind.

The bulk of the talk was a description of three methods for generalizing the
classical angle defect to arbitrary finite simplicial complexes of all dimensions
immersed in Euclidean space. One method, which I refer to as standard curvature,
has been studied from a differential geometric point of view, for example in [1], [6]
and [14]. This approach to generalizing the angle defect, which is based on exterior
angles, is simple to define (though it does not directly resemble the classical angle
defect), and its convergence properties have been well studied. On the other hand,
the definition of standard curvature concentrates all the curvature at the vertices of
simplicial comlexes, which does not necessarily correspond to our intuition about
curvature in dimension greater than 2.

A different approach to generalizing the classical angle defect, known simply
as the angle defect (or angle deficiency), has been studied in the case of convex
polytopes by a number of combinatorialists, for example [13] and [9]. In [10] a
Gauss-Bonnet theorem is proved for the angle defect in polytopes with underlying
spaces that are manifolds. In contrast to standard curvature, the angle defect for
convex polytopes is found at each cell of codimension at least 2, and the definition
completely resembles the classical case.

The talk then discussed the possibility of extending the angle defect, as defined
for polyhedral manifolds, to arbitrary finite immersed simplicial complexes. The
definition of angle defect for polyhedral manifolds cannot be used without mod-
ification for arbitrary simplicial complexes, because it does not satisfy a Gauss-
Bonnet theorem. A method of extending the angle defect to all finite immersed
simplicial complexes, called the generalized angle defect, was then discussed, fol-
lowing [3]. This approach is based upon a simple topological decomposition of
each simplicial complex, which allows for a suitable replacement for “2π” in the
definition of the classical angle defect, where the replacement for a given simplex
depends upon the topological nature of the neighborhood of the simplex. Both
standard curvature and the generalized angle defect satisfy the expected proper-
ties, such as being locally defined, invariant under local isometries, and satisfying
a Gauss-Bonnet theorem, though the Gauss-Bonnet Theorem for the generalized
angle defect uses a modified Euler characteristic rather than the standard Euler
characteristic; this modified Euler characteristic reduces to the standard Euler
characteristic in the case of pseudomanifolds.

Although in many respects the generalized angle defect behaves as nicely as
standard curvature, there is one exception. In [1, Section 5] it is stated that for
an odd-dimensional polyhedral manifold, the standard curvature is zero at every
vertex. It then follows from the Gauss-Bonnet theorem for standard curvature that
every odd-dimensional polyhedral manifold has Euler characteristic zero (a well-
known fact, but the method of [1, Section 5] yields a completely elementary proof).
By contrast, the generalized angle defect is never zero for a convex polytope of
any dimension, as seen in [13]. The talk then discussed the method of [4], where a
variant of the generalized angle defect is defined that satisfies the nice properties
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of the generalized angle defect, and yet also has the additional property that it
is identically zero for any odd-dimensional simplicial complex K (of dimension
at least 3) such that χ(link(ηi, K)) = 2 for all i-simplices ηi of K, where i is
an even integer such that 0 ≤ i ≤ n − 1. As a corollary, we deduce that if
K is an odd-dimensional simplicial complex (of dimension at least 3) such that
χ(link(ηi, K)) = 2 for all i-simplices ηi of K, where i is an even integer such that
0 ≤ i ≤ n−1, then K has Euler characteristic zero. This last result was proved for
Euler spaces by different methods in [2], [7] and [11]; the result for Euler spaces
turn out to be equivalent to the above corollary. The definition of this variant of
the generalized angle defect is based, somewhat surprisingly, on a sequence that
makes use of the Bernoulli numbers.

Given that there is more than one way to generalize the classical angle defect,
it would be helpful to understand the relations between these generalizations, to
determine which approach is useful in which situations. One method of comparing
the different approaches would be to find an axiomatic characterization of each.
Although the classical angle defect has been widely studied, there does not appear
to be in the literature an axiomatic characterization of it. The final part of the
talk discussed such a characterization in dimension 2, as found in [5], where it is
proved that the classical angle defect for embedded simplicial surfaces is character-
ized by being invariant under simplicial isometries of stars and under subdivision,
continuous, and satisfying the Gauss-Bonnet theorem with respect to the Euler
characteristic. The same characterization also works for both standard curvature
and the generalized angle defect for arbitrary immersed 2-dimensional simplicial
complexes, except that for the generalized angle defect it is necessary to use the
modified Euler characteristic.
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Square pegs and beyond

Benjamin Matschke

This talk gave a collection of new theorems and re-opened conjectures related to
the following famous square peg problem.

Conjecture (Square Peg Problem, Toeplitz [9]). Does every continuously embed-
ded circle in the plane contain four points spanning a square?

This conjecture has been proved in the special case when
the curves are smooth enough [7], [8], but it is still open for
continuous curves. In particular, certain local spirals invali-
date all known approaches for continuous curves, all of which
use the fact that “generic” curves circumscribe an odd number
of squares.

Equilateral Triangles on Curves

Theorem ([5, Thm. III.3.2]). Let d : S1 × S1 −→ R be a contin-
uous symmetric map (a generalised metric). Then there are three
points x, y, z ∈ S1, not all of them equal, such that

d(x, y) = d(x, z) = d(y, z).

Polygons on Curves

Lemma ([5, Lem. III.4.7]). Let γ : S1 −→ M be a C∞-embedded curve in a
Riemannian manifold M . Let n be a prime power ≥ 3, ε > 0 and let P ⊂ (S1)n

be the set of polygons whose vertices lie counter-clockwise on γ. Then there is a
closed one-parameter family S1 −→ P of such polygons such that
(1) each of the polygons are up to ε edge-regular, i. e. the edge ratios lie in the

interval [1 − ε, 1 + ε], and
(2) this one-parameter family is invariant under cyclic permutation of the vertices.

It can be proved using the fact that an isotopy of γ changes
the solution set of all edge-regular n-gons on γ by a bordism.
It turned out that Makeev already gave a very similar re-
sult [4, Thm. 3]. Here are two known and one new direct
corollaries:

Corollary (Smooth Square Peg Problem, [7], [8]). Each C∞-embedded circle in
the plane contains four points spanning a square.
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Corollary (A Conjecture of Hadwiger, [4, Thm. 4], [10, Thm. 11]). Each knot,
that is, a C∞-embedded circle in R3, contains four points spanning a planar rhom-
bus.

Corollary (Blagojević–M., see [5, Thm. III.6.1]). Let d1 and d2 be two symmetric
distance functions on S1, where d1 is given by a C∞-embedding of S1 into a
Riemannian manifold. Then there are three pairwise distinct points on S1 forming
an equilateral triangle with respect to d1 and an isosceles triangle with respect to
d2.

Rectangles on Curves

Conjecture. Does every C∞-embedded circle in R2 contain 4 points spanning a
rectangle with prescribed edge-ratios?

Griffiths [1] gave a proof of this conjecture, however there
are slight errors in his calculation of orientations, such that
an intersection number is zero instead of 16. Hence a desired
intersection was not shown (that is, I do not know how to fix
it [5, III.7]).

An ansatz towards solving this conjecture is the following: If the conjecture
were wrong, then there would be a ratio r > 0 and a curve γ : S1 → R2 not
containing rectangles of ratio r such that for all ε > 0 there is a Z4-invariant
one-parameter family of up-to-ε-rectangles S1 → (γ(S1))4, such that the vertices
of the rectangles lie counter-clockwise on γ [6]. It seems that this is essentially
what topology can give us, but now more geometic ideas are needed to deduce a
contradiction.

Tetrahedra on Closed Surfaces

Theorem ([5, Thm. III.8.5]). Every smooth closed surface
in R3 contains four points spanning a tetrahedron that is
similar to a given one.

One can even prescribe an arbitrary vertex.

Regular Octahedra on Embedded Spheres

Conjecture. Does every C∞-embedded S2 in R3 contain
six points spanning a regular octahedron?

Guggenheimer [2] gave a proof of this conjecture, however
there is an error in his main lemma, which he used to prove
the smooth square peg problem, and which he claimed to
be generalisable to prove the above conjecture.
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This conjecture is probably very difficult and a solution would involve deeper
geometric reasoning, since there is the following “topological counter-example”.
Let G be the symmetry group of the regular octahedron and Gor ⊂ G the sub-
group of orientation preserving symmetries. G acts on (S2)6 by permuting the
coordinates in the same way as it permutes the vertices of the regular octahedron.
Let G act on R12 by permuting the coordinates in the same way as it permutes the
edges of the regular octahedron. The subrepresentation (R ·1)⊥ ⊂ R12 is denoted
by Y . Let

X := {(x1 . . . x6) ∈ (S2)6 | xi are pairwise distinct}.

Then any embedding Γ : S2 → R3 gives us a test map

t : (S2)6 −→G Y,

which measures the edges of the parametrised octahedra. The solution set S of
regular octahedra on Γ is S := t−1(0) ∩ X . The subset of S of positively oriented
octahedra gives us a well-defined element in the equivariant normal bordism group
(see [3])

ΩGor

1 (X, const, X × Y − TX) = Ω1(X/G, const, X ×G Y − T (X/G)),

since isotopies of Γ change S only by a normal bordism. This element can be
shown to be zero [6], which I call a topological counter-example. In particular, the
test map t can be deformed G-equivariantly rel ∂X = (S2)6 \X to a map t′, such
that t′−1(0) ∩ X = ∅.
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Optimizing circle arrangements: questions and comments

Robert Connelly

Consider a Boolean expression for an arrangement of overlapping circles in the
plane. A simple example is (B1 ∪B2)∩B3, where each Bi is a circular disk with a
fixed radius. A sample problem asks when is the area of (B1∪B2)∩B3 maximized.
When the two disks B1 and B2 can be packed inside B3 any such packing achieves
the maximum area. When one of the two disks B1 or B2 has a larger radius than
B3, it can cover B3, and the area of B3 is the maximum area of the Boolean
expression. For the intermediate case, a configuration such as the one in the figure
will achieve the maximum area.
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Similarly for the expression (B1∪B2 · · ·∪Bn)∩Bn+1 when the first disks cannot
be packed into or cover the last disk Bn+1, there will be some particular optimum
configuration. But what can be said about such configurations?

In general it seems that it is quite complicated to determine exact solutions to
this type of maximum problem. It is possible, though, to make some observations
and to get more information about particular cases. For example, a result of B.
Csikós in [2] together with connections to tensegrity structures gives a criterion
for the area function to be critical in the space of configurations of disks with fixed
radii. This criterion can also be used to verify when a circle with a fixed radius
maximizes its intersection with a fixed acute triangle. See the result of B. M.
Stewart in [5]. This is also related to the problem of “How must n equal circles
(spherical caps) of given angular radius r be arranged on the surface of a sphere so
that the area covered by the circles will be as large as possible,” which is discussed
in the paper [4] by P. W. Fowler and T. Tarnai. Another example is the problem
discussed by G. Fejes Tóth in [3]. He shows that “the density of the part of the
plane covered by a system of congruent circles of density d is at most df(1/d),
where the function f(x) is defined as the maximum of the area of the intersection
of a circle of unit area and a hexagon of area x.”

The critical formula in [2] can be used in applications to protein folding, where,
instead of using energy functions, one can maximize various weighted lattice poly-
nomials of Boolean area/volumes functions of disks. This follows an idea with
K. Bezdek in [1]. This has the potential of taking into account not only the
pairwise interactions of the atoms, but also their hydrophobic-hydrophilic na-
ture. In addition, using Csikós’s theory, the Voronoi construction in [2] should
allow a computationally feasible algorithm to compute the gradient of the Boolean
area/volume.
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Unfolding convex polyhedra via quasigeodesic source & star unfoldings

Joseph O’Rourke

(joint work with Jin-ichi Itoh and Costin Vı̂lcu)

1. Introduction

There were two general methods known to unfold the surface P of any convex
polyhedron to a simple polygon in the plane: the source unfolding and the star
unfolding. Both unfoldings are with respect to a point x ∈ P . The source unfolding
cuts the cut locus of x on P , and the star unfolding cuts the shortest paths from x
to every vertex of P . Our extension replaces x by a simple closed polygonal
curve Q. Although we do not yet know the widest classes of curves for which
the unfoldings avoid overlap, in both cases the classes include quasigeodesic loops.
Again the source unfolding cuts (a portion of) the cut locus, and the star unfolding
cuts shortest paths from vertices to Q. And both cut all but a segment of Q.

Quasigeodesics extend the notion of geodesics to nondifferentiable, and in par-
ticular, to polyhedral surfaces. Let Γ be any directed curve on a convex surface P ,
and p ∈ Γ be any point in the relative interior of Γ. Let L(p) be the total face
angle incident to the left side of p, and R(p) the angle to the right side. If Γ
is a geodesic, then L(p)=R(p) = π. A quasigeodesic Γ loosens this condition to
L(p) ≤ π and R(p) ≤ π, again for all p interior to Γ [2, p. 16]. A simple, closed
quasigeodesic is a simple closed curve on P that is quasigeodesic throughout its
length. As all curves we consider must be simple, we will henceforth drop that
prefix. Although Pogorelov showed that any convex polyhedron P has at least
three closed quasigeodesics, there is no polynomial-time algorithm known to find
them, so we consider instead a wider class. A geodesic loop is a closed geodesic
with one exceptional loop point x at which the condition L(x)=R(x) = π may be
violated.

2. Quasigeodesic Star Unfolding

P \ Q separates P into two “halves” P1 and P2. If we view the star unfolding
as an algorithm, it consists of three main steps:
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(1) Select shortest paths sp(vi) from each vi ∈ Pk to Q.
(2) Cut along sp(vi) and flatten each half.
(3) Cut along Q, joining the two halves at an uncut segment s ⊂ Q.

After cutting along sp(vi), we conceptually insert an isosceles triangle with
apex angle equal to the curvature ω(vi) at each vi, which flattens each half, a
technique used by Alexandrov [1]. The procedure is illustrated in Figure 1, and
fully described in [3].

Figure 1. (a) Geodesic loop Q on cube. Shortest paths sp(vi) are
shown. Faces are labeled {F, T, L, R, Bt, Bk}. (b) Star unfolding
with respect to Q, joined at s = v′0v

′
7.

3. Quasigeodesic Source Unfolding

The point source unfolding cuts the cut locus of the point x: the closure of set
of all those points y to which there is more than one shortest path on P from
x. Our method also relies on the cut locus, but now the cut locus CPk

on the
half-surface Pk with respect to its boundary ∂P=Q. We cut only the edges of CP

not incident to Q, plus one further cut. An example of the cut loci for a simple
closed quasigeodesic Q are shown in Figure 2.

The main steps of the source unfolding argument for closed quasigeodesics are
as follows:

(1) Develop Q to the plane. It is known that a closed convex curve develops
without self-intersection [4]. Closed quasigeodesics are convex curves to both
sides, and quasigeodesic loops are convex to one side.

(2) From a neighborhood of Q in Pk, determine a doubly covered planar cone P ∗
k

whose boundary is Q. This cone in some sense envelops Pk.
(3) Show that the “peels” of the cut locus of Pk nest inside the peels of the cut

locus of P ∗
k . This implies that those peels will develop in the plane without

overlap by opening P ∗
k along a generator of the cone.

(4) The nested embedding is achieved by cutting the cut loci CP1 and CP2 not
incident to Q.
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Figure 2. (a) Truncated cube and quasigeodesic Q =
(v0, v1, v7, v10). (b) View of CP1 from “front” side P1 (c) View
of CP2 from “back” side P2.

(5) Finally, we cut along Q, joining the two halves at an uncut segment s ⊂ Q.

To capture quasigeodesic loops, and in fact all convex curves, the final step above
is altered.

Theorem. Both the source and the star unfolding of a convex polyhedron P with
respect to a quasigeodesic loop Q unfold P to a simple planar polygon.
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Geometric aspects of discrete elastic rods

Max Wardetzky

(joint work with M. Bergou, S. Robinson, B. Audoly and E. Grinspun)

What this is about

Elastic rods are curve-like elastic bodies that have one dimension (length) much
larger than the others (cross-section). Their elastic energy breaks down into three
contributions: stretching, bending, and twisting. Stretching and bending are cap-
tured by the deformation of a space curve called the centerline, while twisting
is captured by the rotation of a material frame associated to each point on the
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centerline. Building on the notions of framed curves, parallel transport, and ho-
lonomy, we present a smooth and a corresponding discrete theory that establishes
an efficient model for simulating thin flexible rods with arbitrary cross section
and undeformed configuration. To large parts, the material herein is an excerpt
from [1].

Elastic energy

We describe the configuration of a smooth elastic rod by an adapted framed
curve Γ = {γγγ; t,m1,m2}. Here γγγ(s) is an arc length parameterized space curve
describing the rod’s centerline; the assignment of an orthonormal material frame
{t(s),m1(s),m2(s)} to each point on the centerline contains the requisite infor-
mation for measuring twist. We require the material frame to be adapted to the
centerline, i.e., to satisfy t(s) = γγγ′(s). As usual, we refer to κκκ = t′ as the center-
line’s curvature (normal) vector and to τ = m′

1
· m2 as the material frames twist

measuring the rotation of the material around its centerline. The Kirchhoff model
of elastic energy of inextensible (no stretching of the centerline) and isotropic (no
preferred bending direction) elastic rods is given by

(1) E =
1

2

∫

γ

ακκκ2 + βτ2 ds ,

where α and β are constants encoding bending and twisting stiffness, respectively.

Curve-angle representation & the Bishop frame

While (1) completely describes an energy model for inextensible isotropic rods,
there is a more convenient description when turning to simulations—one that
renders the formulation of the material frame more explicit. The requisite tool
is provided by the Bishop (or parallel) frame, an adapted orthonormal frame
{t(s),u(s),v(s)} that has zero twist uniformly, i.e., u′ · v = −v′ · u = 0. The
assignment of an adapted frame to one point on the curve uniquely pins down the
Bishop frame throughout the entire curve. Every smoothly parameterized space
curve with nowhere vanishing derivative carries a Bishop frame—one of several
properties that sets the Bishop frame apart from the Frenet frame (which is not
twist-free).

Denoting by θ the angle between the Bishop and the material frame in the cross
section orthogonal to the centerline’s tangent, i.e., θ = ∠(u,m1) = ∠(v,m2), one
readily checks that the material frame’s twist satisfies τ = θ′. Therefore, we can
rewrite elastic energy of inextensible isotropic rods as

E =
1

2

∫

γ

ακκκ2 + β(θ′)2 ds .

We refer to this formulation as the curve-angle representation, as it previously
also appeared in [3]. This representation reveals a fascinating analogy between
the potential energy of elastic rods and the kinetic energy of Lagrange spinning
tops. Indeed, by identifying the axis of the top with the direction of the rod’s unit
tangent, t, and furthermore identifying the rod’s arc length with the top’s physical
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time, we find that
∫

κκκ2 =
∫
(t′)2 and

∫
τ2 =

∫
(θ′)2 measure the kinetic energy of

the motion of the top’s center of mass and rotation around its axis, respectively.

Holonomy & Fuller’s formula

For a frame to be parallel along a space curve has the following interpretation.
Consider the centerline’s Gauss image, γ̃γγ, traced out on the unit 2-sphere, S2, by
the unit tangent, t. For {u,v} to be parallel (twist-free) along γγγ is then equivalent
for {u,v} to be parallel-transported along γ̃γγ in the usual sense of the Levi-Civita
connection on S2.

Assume γγγ is a closed curve, then γ̃γγ is closed as well. When parallel transporting
{u,v} once around γγγ (or γ̃γγ), the resulting final frame will usually differ from the
initial one by an angle called holonomy, Hol . This angle is related to the so-called
writhe. More precisely, whenever γγγ is a non self-intersecting closed space curve
with (material) frame {m1,m2}, let Lk denote the (unique) linking number of the
two curves {γγγ±(s)} = {γγγ(s) ± ǫm1(s)} for some small enough ǫ > 0. Then

(2) Lk = Tw + Wr ,

where Tw = (1/2π)
∫
γ

τds is the total twist of the material frame, while writhe

satisfies Wr ≡ Hol/2π modulo 1. Equation (2) is sometimes referred to as the
Cǎlugǎreanu-White-Fuller formula, see, e.g., [2].

Furthermore, the Gauss-Bonnet theorem implies that Hol ≡ A modulo 2π,
where A is the signed area enclosed by γ̃γγ on S

2.

Centerline variation

In physical simulations, in order to compute forces, we are required to express
changes of elastic energy due to variations of the position (shape) of the center-
line. The corresponding change of bending energy,

∫
γ
κκκ2ds, is straightforward to

calculate, while computing the change of twisting energy,
∫

γ τ2ds, is slightly more

involved since it requires the computation of the change of holonomy (or writhe).
If γγγ is a closed curve, then it follows from Gauss-Bonnet that the change in holo-
nomy, δHol , with respect to varying the centerline’s tangent (the position of γ̃γγ on
S2) by δt is given by

(3) δHol = δA = −

∫

γ

δt · (t × t′) ds and hence δθ′ = δt · (κb) ,

where κb = t × t′ is the centerline’s curvature binormal vector. For closed
cuves, (3) is the infinitesimal version of Fuller’s calculation for the difference
between the writhe of two space curves, see [2]. From (3) we obtain that the
L2-gradient of Hol with respect to variations of positions (not tangents) is (κb)′.

The discrete picture

We represent a discrete rod’s centerline as a piecewise straight polygonal space
curve, and we associate discrete adapted orthonormal frames with edges of this
curve. Along each edge we assume these frames to be constant. For each pair
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(ei−1, ei) of consecutive edges, discrete parallel transport from one edge to the next
is given by rotating by the angle ∠(ei−1, ei) about the normal to the plane spanned
by ei−1 and ei. This gives rise to discrete Bishop (parallel) frames. Accordingly,
we obtain a discrete notion of holonomy (or writhe) for closed polygonal curves.

We require elastic energy and hence a discrete notion of curvature and twist.
As in the smooth case, twist is nothing but the change of the angle between the
Bishop and the material frame at each edge of the polygonal curve, γγγ.

Consider once more the Gauss image, γ̃γγ of γγγ, on S2. The vertices of γ̃γγ correspond
to unit tangents, ti, along the edges of γγγ, while the edges of γ̃γγ are arcs of great
circles. As in the smooth case before, Gauss-Bonnet tells us that discrete holonomy
is related to the signed area enclosed by γ̃γγ. To obtain forces, it therefore suffices to
study variations of this area with respect to variations of the vertices of γ̃γγ. To this
end, consider an arc of a great circle of length φi = ∠(ti−1, ti) < π between ti−1

and ti and consider respective variations by δti−1 and δti on S2. Consider further
the area swept out by the geodesics that connect the two varying endpoints. It
follows (for example by considering Jacobi fields) that this area (and therefore
discrete holonomy) satisfies

δHol = δA = −
δti−1 + δti

2
· (2 tan

φi

2
bi) with bi =

ti−1 × ti

|ti−1×ti|
,

which is the discrete analogue of (3). By postulating in the discrete case relation (3)
between the gradient of holonomy and curvature, we may define discrete curvatures
at the vertices of γγγ by κi = 2 tan(φi/2), where φi is the angle between the edges
incident to a particular vertex.

For additional material, including anisotropic rods and simulation results, see [1].
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Complex barycentric coordinates for shape deformation

Mirela Ben-Chen

(joint work with Ofir Weber, Craig Gotsman)

Barycentric coordinates are a very useful mathematical tool for computer graphics
applications. Since they allow inferring continuous data over a domain from dis-
crete or continuous values on the boundary of the domain, barycentric coordinates
are used in a wide range of applications.

Traditionally, barycentric coordinates in Rn are defined as the real coefficients
of an affine combination of vectors in Rn, see for example [FHK06, Flo03]. As
such, they operate identically on each coordinate. When working in the plane,
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barycentric coordinates in R
n can also be considered as an affine combination of

complex numbers with real coefficients, thus it is natural to consider also the case
where the coefficients are themselves allowed to be complex. This new point of
view has a few advantages: First, it allows the definition of complex barycentric
coordinates, permitting a different linear operation for each of the two coordinates,
through which new effects can be achieved. Second, it unleashes the rich theory
of complex analysis, simplifying the underlying theory considerably.

Complex barycentric coordinates are especially useful for 2D shape and image
deformation. In a typical application scenario, the user defines a source contour,
usually a polygon, and deforms it to a target contour by moving its vertices. This
indicates to the application that the region within the source contour should be
deformed in some natural way to the region within the target contour such that the
per-edge correspondence is respected. For such applications it is important that
the mapping has certain properties - for example, if the target polygon is identical
to the source polygon, then the mapping should be the identity map. In addition,
for shape deformation applications, conformal mappings are preferred, since they
preserve angles and hence preserve details better than arbitrary mappings.

Complex barycentric coordinates are defined as follows. Let S = {v1, v2, . . . , vn}
⊂ R2 be the vertices of a simply connected planar polygon, oriented in the counter
clockwise direction, vj = (xj , yj). Let zj = xj + iyj be the representation of the
vertices as complex numbers, zj ∈ C. Denote by Ω the interior of S. Given a
point v = (x, y) ∈ Ω, define z = x + iy and consider the following complex linear
combination

∑n
j=1 kj(z)zj , where kj : Ω → C. We say that the functions kj(z) are

complex barycentric coordinates with respect to S if the following two properties
hold for all z ∈ Ω:

Constant precision:
n∑

j=1

kj(z) = 1, Linear precision:
n∑

j=1

kj(z)zj = z

Given complex barycentric coordinates kj(z) for S, we may consider the com-
plex function gS,F (z) which results from applying the complex barycentric coor-
dinates to the vertices of a target polygon F = {f1, f2, . . . , fn} ⊂ C:

gS,F (z) =
n∑

j=1

kj(z)fj

Complex barycentric coordinates can easily be generalized to continuous con-
tours in the following way. Let Ω be a simply connected open planar region with
a smooth boundary S. Given z ∈ Ω and w ∈ S, consider the complex function
k(w, z) : S × Ω → C. As in the discrete case, we say that k(w, z) is a barycentric
coordinate function if it satisfies the following properties for all z ∈ Ω:

Constant precision:

∫

S

k(w, z) dw = 1, Linear precision:

∫

S

k(w, z)w dw = z

The function k(w, z) is sometimes called a kernel function. The integral over S
is a complex integral, where dw = T (w)ds, T (w) is the unit-length tangent vector
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to S at w, and ds is the usual arc-length differential element. Given a continuous
complex function f : S → C, we can define a planar mapping gS,f(Ω) as follows:

gS,f(z) =

∫

S

k(w, z)f(w) dw

As in the case of real barycentric coordinates, the main challenge is to find
kernels k(w, z), or, in the discrete case, coordinate functions kj(z), which sat-
isfy the required properties. As it turns out, simply choosing the Cauchy kernel
C(w, z) = 1

2πi
1

w−z provides us with the required properties. Due to the Cauchy
integral formula, we have that for z ∈ Ω

1

2πi

∫

S

1

w − z
dw = 1,

1

2πi

∫

S

w

w − z
dw = z,

which are the two properties we have required - constant precision and linear
precision. We call the resulting coordinates Cauchy coordinates.

Applying the Cauchy coordinates to a target contour f(S) defines the following
mapping:

gS,f(z) =
1

2πi

∫

S

f(w)

w − z
dw

This mapping is called the Cauchy transform of f [Bel92]. It has various in-
teresting properties, one of which being that if f is continuous on S, then g is
always holomorphic on Ω. Hence, if we apply these coordinates in the context of
planar shape deformation, the deformation is guaranteed to be conformal (if the
derivatives do not vanish). In addition, since holomorphic functions are infinitely
differentiable, the mapping will be smooth.

In a practical shape deformation scenario, the con-
tour S is usually a polygon (sometimes called “cage”)
which the user deforms to a new polygon F with ver-
tices {f1, f2, . . . , fn}. By integrating over the edges of
the source polygon and taking into consideration that
the target contour is also a polygon, we get:

zj

zj+1

z

Bj

zj-1
Bj+1 Bj-1

Aj
Aj+1

gS,f(z) =

n∑

j=1

Cj(z)fj

Cj(z) =
1

2πi

(
Bj+1(z)

Aj+1
log

(Bj+1(z)

Bj(z)

)
−

Bj−1(z)

Aj
log

( Bj(z)

Bj−1(z)

))

As it turns out, these complex coordinates are equivalent to the recently intro-
duced Green coordinates [LLCO08] which generalized the concept of barycentric
coordinates to be a linear combination of the coordinates of the vertices of the
polygon plus a linear combination of the normals to the edges of the polygon.

In addition to the Cauchy-Green barycentric coordinates, we showed how to de-
fine coordinates which minimize a given energy functional. We proposed two such
functionals, one which improves the fit between the target polygon and the bound-
ary of the resulting deformation (inspired by the continuous Szegö transform), and



Discrete Differential Geometry 137

one which allows the user to manipulate a small set of positional constraints, in-
stead of manipulating the vertices of the target polygon.

To conclude, we have generalized the concept of barycentric coordinates from
real numbers to complex numbers, and provided a few examples of known and new
coordinates which can be expressed quite simply in this framework. We believe
there is still much research to be done on the theory and applications of complex
barycentric coordinates. One challenge is to find non-conformal complex coordi-
nates which will generate the more useful “as rigid as possible”-type deformations.
Another interesting theoretical issue is the connection between complex barycen-
tric coordinates and the so-called “primal/dual ratio”. As Mercat [Mer08] pointed
out, complex primal/dual ratios will arise when the primal and dual edges are not
orthogonal. We believe more insight into complex barycentric coordinates can be
gained by studying these concepts.
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Circle packing sampler

Ken Stephenson

After a brief overview of “circle packing”, we discuss three topics of current inter-
est: (1) The “spontaneous geometry” circle packings bring with random triangu-
lations, (2) the “fast geometry” available with a new circle packing algorithm, and
(3) the “warped geometry” one sees in affine circle packings.

Circle packings are configurations P of circles having prescribed patterns K
of tangency. K can be essentially any triangulation of a topological surface, and
the heart of the topic is that P imposes a geometry on K — a geometry that is
“conformal” in nature. For general backgound, see [1].

(1) Random Geometry: Circle packing got its start (in analysis) with a con-
jecture of Thurston regarding the approximation of classical conformal maps by
discrete conformal maps — maps between circle packings sharing the same combi-
natoric pattern K. In the adjustment of circle sizes from one packing to another,
conformal structure is (roughly) perserved. His conjecture was proven by Rodin
and Sullivan, see [3].

However, fairly extensive experiments suggest that much more may be true:
conformal structure seems to be an “emergent” property. A circle packing of a
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random triangulation of a region Ω imposes a geometry on Ω. As the complexity
of such random triangulations grows, the imposed geometries appear to converge
in probability to the conformal geometry Ω inherits from the plane. The following
figure illustrates estimates of two companions of conformal structure, harmonic
measure and extremal length. On the left is the traditional circle packing approach,
which starts with a circle packing of Ω, then repacks it for various purposes. On the
right is our alternate approach, which differs only in that the initial triangulation
of Ω is random.

g
f

g
f

The robustness of convergence of such conformal quantities is suggested by ex-
periments with Ω a square. On the left of the following figure, a random Delaunay
triangulation of Ω is packed as a rectangle, with corner circles associated with
vertices of K closest to the corners of Ω.
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The logarithm of the aspect ratio (width/height) of the resultant rectangle is a
random variable which by symmetry will have mean zero. Trial runs are illustrated
on the right: each plot gives the distribution of outcomes for 5000 random trials
for, respectively, N = 200, 400, 1600, 3200, 6400, or 12800 random points in Ω.
Observe that doubling the number of points almost precisely halves the variance.

Emergent conformality could have broad implications. By varying the notion
of random triangulations, for instance, one might be able to approximate solutions
of the Beltrami equation. In applications, there may be a “central limit” theorem
justifying circle packing as a mechanism for imposing conformal structures.

(2) Fast Geometry: As combinatorial complexity has grown, circle packing com-
putations have become progressively more unweildy. Current methods compute
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local data — radii R — and only then lay out the global configuration, one circle at
a time, to get the centers Z. With large packings, even highly accurate radii lead
to cumulative layout errors that prevent a coherent global packing. My student,
Gerald Orick, has developed a novel new algorithm, applicable now to maximal
packings of complexes K triangulating the disc or sphere.

Orick’s approach is iterative, but alternates between adjustments to R and to
Z via Tutte-style embeddings. Assuming that K triangulates a disc, assign an
arbitrary initial radius label R. In each iteration cycle, the current R determines
centers for boundary circles as well as geometric weights for a Laplace operator
on K. Solving the Dirichlet problem (efficiently done via sparse matrices) gives
an embedding of centers Z. The local geometry of the embedding leads to a new
label R, and the process repeats. This is extremely fast. For instance, a typical
brain flattening application involving 250,000 circles would take half a day on a
laptop and might still suffer layout problems. The new algorithm will compute
the packing in 3 minutes with no layout problems — in fact, reasonably accurate
intermediate layouts will become available within the first few seconds.

The key bit of local geometry is reflected in this image of the
star of v: were the embedding associated with a circle packing,
all the face sectors at v would have the same radius. When they
don’t, a new label r is set for v so that 2πr2 equals the sum of
sector areas. Once new labels are set for all vertices, Dubejko-
style weights [5] can be computed for the edges, giving a Laplace
operator for K. This leads to a new embedding, etc., etc.

Fast computation can be a game-changer in applications of
circle packing.

(3) Warped Geometry: If K triangulates a compact oriented surface, then it
imposes, via circle packing, a unique conformal structure on that surface. A new
approach to the fundamental packing procedures allows us to compute general
“affine” structures. The figure below is based on a combinatorial torus, K. On the
left is the associated conformal torus T , determined by laying out a fundamental
domain — edge shading indicates side-pairings. On the right is an affine torus for
this same K.

The side-pairing maps for the affine torus are generated by z 7→ αz, z 7→ βz. The
construction begins by specifying the moduli |α| and |β| and applying a packing



140 Oberwolfach Report 02

procedure to determine labels [r1 : r2 : r3] (in homogeneous coordinates) for the
faces. These induce, for any vertex v, a locally consistent set of radii defining
a flower for v. In general, however, there is no globally consistent set of radii.
Arg(α) and Arg(β) are uniquely determined in the packing process, reflecting the
anticipated rigidity associated with K.

Circle “packings” consisting of one self-tangent circle have been used to study
the space of affine tori as fibered over the space of conformal tori, [2]. Now one can
experiment not only with more general combinatorial tori, but also with higher
genus surfaces. These affine structures also suggest an approach to discrete holo-
morphic differential forms.
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