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Introduction by the Organisers

Random trees are a central concept in mathematics, with important applications
in a variety of different disciplines. They provide a key way of thinking about rela-
tionships between objects of various kinds. Typically, these objects are organised
randomly in space and time, such as particles in a fluid, individuals in a population,
or labels in a search algorithm. Random trees both qualify and quantify important
phenomena in these systems, such as phase transitions, genetic extinction, or the
breaking of codes. They are capable of revealing important links between these
phenomena, often from surprising angles, and as such play a unifying role.

The workshop focussed on the role of random trees in physics, biology and
computer science. The goal of the workshop was two-fold: (1) to reinforce the
link between the discrete and the continuum parts of the random tree commu-
nity, through an exposition of common ideas, tools and techniques; (2) to address
emerging connections between applications of random trees in the three disciplines,
centering around a number of core topics. In this way, participants were able to
learn about their different approaches and their recent progress.
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During the workshop, two types of lectures were given: (a) longer lectures
(1.5 hour) in the morning, highlighting specific research areas; (b) shorter lectures
(1 hour) in the afternoon, enlarging these areas into a broader spectrum. The
following themes were covered:

• History of branching processes : Jagers.
• Geometry of random trees: Evans, Le Gall.
• Properties of random trees : Bertoin, Pfaffelhuber.
• Random processes on random trees : Külske, Popovic, Swart.
• Dynamics of random trees : Winter.
• Spin glasses and ultrametricity: Bovier, de Sanctis.
• Self-avoiding walk and renormalisation: Slade.
• Construction of genealogical processes: Kurtz.
• Ancestral selection and statistical inference: Tavaré, Wakeley.
• Lambda-coalescents : Birkner, Blath, Sturm.
• Random search algorithms : Chauvin, Devroye, Grübel.
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Abstracts

The continuous limit of large random planar maps

Jean-François Le Gall

In the present report, we discuss recent progress towards the study of scaling
limits of large random planar maps. This leads to a continuous random metric
space called the Brownian map, which can be defined as a quotient space of Aldous’
Continuum Random Tree.

Let us recall some basic definitions. A planar map is a proper embedding of
a finite connected graph in the two-dimensional sphere S2. Loops and multiple
edges are a priori allowed. The faces of the map are the connected components
of the complement of the union of edges. A planar map is rooted if it has a
distinguished oriented edge called the root edge. Two rooted planar maps are said
to be equivalent if the second one is the image of the first one under an orientation-
preserving homeomorphism of the sphere, which also preserves the root edges. Two
equivalent rooted planar maps are always identified.

Given an integer p ≥ 3, a p-angulation is a planar map where each face has
degree p, that is p adjacent edges. One should count edge sides, so that if an edge
lies entirely inside a face it is counted twice. We denote by Mp

n the set of all
rooted p-angulations with n faces. Thanks to the preceding identification, the set
Mp

n is finite. A 3-angulation is called a triangulation, and a 4-angulation is called
a quadrangulation.

Consider a planar map M . Let V (M) denote the vertex set of M . A path in
M with length k is a finite sequence a0, a1, . . . , ak in V (M) such that ai and ai−1

are connected by an edge of the map, for every i ∈ {1, . . . , k}. The graph distance
dgr(a, a

′) between two vertices a and a′ is the minimal k such that there exists a
path γ = (a0, a1, . . . , ak) with a0 = a and ak = a′. The set V (M) equipped with
the metric dgr is a (finite) metric space.

In order to state our main result, we denote by Te the random rooted real tree
known as the CRT (Continuum Random Tree). The notation Te comes from the
fact that the CRT can be defined as the random tree coded by a normalized Brow-
nian excursion e. This coding also makes it possible to define a lexicographical
order on the vertices of the CRT: For every a, b ∈ Te, one can consider the lexico-
graphical intervals [a, b] and [b, a]. Roughly speaking, [a, b] is the set of all vertices
of the CRT that are visited when going from a to b in clockwise order around the
tree.

We also need to introduce Brownian labels on the CRT. Conditionally given Te,
we consider the centered Gaussian process (Za)a∈Te

with covariance cov(Za, Zb) =
|a ∧ b|, where |a ∧ b| stands for the distance between the root of the CRT and the
vertex a∧ b which is the most recent common ancestor of a and b in the tree. The
process Z should be understood as Brownian motion indexed by the tree Te: Za

is a “label” assigned to vertex a, and this label evolves as linear Brownian motion
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when varying a along a line segment of the tree. Finally, we define a random
equivalence relation ≈ on the CRT by setting

a ≈ b iff Za = Zb = min
(

min
c∈[a,b]

Zc, min
c∈[b,a]

Zc

)

.

Theorem 1. [1] Let p ≥ 2 be a fixed integer. For every integer n ≥ 2, let Mn

be a random planar map, which is uniformly distributed over M2p
n . From every

increasing sequence of positive integers, one can extract a subsequence along which
the following holds: The random metric spaces (V (Mn), n−1/4dgr) converge in
distribution to (Te/ ≈, D), in the sense of the Gromov-Hausdorff distance. Here
D is a distance on Te/ ≈, which induces the quotient topology.

The limiting random metric space (Te/ ≈, D) is called the Brownian map. To
be more precise, we should say that we use the name Brownian map for any of
the limiting random metric spaces that can arise in the theorem, when we vary p
and the subsequence. The need for a subsequence in the theorem comes from the
fact that the limiting random metric D has not been fully characterized, and so
there might be different metrics D corresponding to different subsequences. Still
one believes that it should not be necessary to take a subsequence, and that the
limiting metric space should be the same independently of p (and the same limit
should hold for triangulations, etc.). This would imply that the Brownian map is
in some sense the universal scaling limit of random planar maps.

We finally state two theorems that give properties of the Brownian map.

Theorem 2. [1] The Hausdorff dimension of the Brownian map is almost surely
equal to 4.

Theorem 3. [3] The Brownian map is almost surely homeomorphic to the 2-sphere
S2.

More information about the Brownian map can be found in the preprint [2],
which provides a detailed analysis of geodesics in this random metric space.
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Probability fringe convergence and the eigenvalues of large random
trees

Stevan N. Evans

(joint work with Shankar Bhamidi, Erick Matsen, Arnab Sen)

The eigenvalues of the adjacency matrix of a graph are of interest because of their
intimate connection with many of the graph’s “graph-theoretic” properties. The
talk described recent research on the eigenvalues of quite general models of (large)
random rooted trees, including various of the preferential attachment schemes
that have recently attracted interest in computer science as models of real-world
networks, as well as random recursive trees,Yule trees, and uniform random trees.

Many such ensembles possess the following property of probability fringe con-
vergence. Suppose that Tn is the member of the ensemble with n vertices. Given
a vertex v that is at distance h from the root ρ, let (v = v0, v1, . . . , vh = ρ) denote
the path from v to ρ. Write T 0

n for the subtree rooted at v0 = v that consists of
all vertices for which the path to the root passes through v0, and for 1 ≤ k ≤ h,
write T k

n for the subtree rooted at vk that consists of all vertices for which the
path from the root passes through vk but not through vk−1. For k > h, define
T k

n to be ∗, where ∗ is some element adjoined to the space T of finite rooted
trees. The empirical distribution of the sequences (T 0

n )∞k=0 as v ranges over Tn is
a random probability measure on (T ⊔ {∗})∞. We say that (Tn)∞n=1 converges in
the probability fringe sense if this sequence of random probability measures con-
verges in distribution to a deterministic probability measure on (T⊔{∗})∞ that is
concentrated on T∞. The usual tool for proving probability fringe convergence is
to embed the random trees of interest into a suitable continuous time-branching
process.

We used fairly simple ideas from linear algebra (primarily the interlacing in-
equalities) to show that if (Tn)∞n=1 converges in the probability fringe sense, then
the empirical distributions of the eigenvalues of the corresponding adjacency ma-
trices converge in distribution to a deterministic limit (in the topology of weak
convergence of probability measures). Moreover, the masses assigned by the em-
pirical distributions to individual points also converge in distribution to constants.
We conclude for ensembles such as the linear preferential attachment models and
the random recursive trees that the limiting spectral distribution has a set of atoms
that is dense in the real line. However, we are unable to tell whether the limiting
spectral distributions are purely atomic. One technically interesting feature of this
work is that the most commonly used tool in random matrix theory, the method
of moments, cannot be applied to some natural ensembles, because the expected
values of higher moments of the empirical spectral measure diverge.

We were able to get precise asymptotics on the mass assigned to zero by the
empirical spectral measures due to the connection between the number of zero
eigenvalues of the adjacency matrix of a tree and the cardinality of a maximal
matching on the tree. In particular, we used a simplified version of an algorithm
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due to Karp and Sipser to construct maximal matchings and understand their
properties.

We also established the joint convergence in distribution of the suitably nor-
malized k largest eigenvalues of the linear preferential attachment ensemble for
any k using a previously known connection between the largest eigenvalues of this
model and the largest out-degrees.

Random trees in computer science

Luc Devroye

The purpose of this talk was to survey the study of random trees from the perspec-
tive of computer science. There were three interwoven parts in the presentation:
the introduction of various random tree models, the motivation for studying cer-
tain tree parameters, and the latest probability theoretical results for those models
and parameters.
The models. By far the most important tree in computer science is the binary
search tree. When constructed on the basis of a uniform random permutation,
its shape is distributed like that of a random Yule tree, and also as that of the
Kingman coalescent. It is also the tree underlying the popular quicksort method
of sorting n elements.

There are various other tree models that matter, but many are simple extensions
of random binary search trees. A conveniently wide class of trees are the so-
called split trees on n nodes, in which the root node has subtrees of random
sizes N1, . . . , Nk, where (N1/n, . . . , Nk/n) is suitably close in some probabilistic
sense to a random vector V = (V1, . . . , Vk). All splits at lower level nodes are
performed independently according to the same law. Special cases of such trees
include random quadtrees, random m-ary search trees, random median-of-(2k−3)
trees, Dirichlet trees (in which V is Dirichlet), random tries, and random simplex
trees.

Recent developments on random networks and web models have propelled other
models to the front. Tree models are defined incrementally, with the n-th node
making a link to one of the nodes of lower index, selected in some random manner.
A simplistic model is given by the uniform random recursive tree: the node with
label n selects a link to a uniformly chosen node in {1, . . . , n− 1}. Barabasi and
Albert, and Biggins and Gray, and others introduced the preferential attachment
models (or plane-oriented recursive trees): here node n selects a node of lower
index with probability proportional to one plus the degree (number of neighbors)
of that node. Popular nodes thus attract more links. Both models have been
generalized in numerous ways.
The parameters. Search trees are used for searching, and costs are measured with
respect to distances from the root. The depth of a node is its path distance from
the root, and the height of a tree is the maximal depth of any of its nodes. Both
should be small, i.e., the mean and the tails of these random variables matter.
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For sorting, the number of comparisons between elements is the usual yardstick.
This corresponds to the sum of all depths of nodes in a tree, or, by duality, to
the sum of all proper subtree sizes over all nodes in a tree. In general, recursive
algorithms give rise to complexities (costs) that are sums of functions of subtree
sizes, totaled over all nodes. Such parameters are called toll functions, a term
coined by Philippe Flajolet.

The distribution or histogram of the depths, also called the profile, is of some
interest as it measures the volatility in the complexities of search times.
The results. For the models described above, a number of different probability
theoretical tools are useful. By taking logarithms, one can regard the partition
process of split trees as a branching random walk with unit steps in the walk
corresponding to logVi for the split variables. The height of the tree is more than
k if and only if the maximal displacement of the branching random walk (which
is started from the value logn) after k steps is more than zero. But maximal
displacements of branching random walks are now well understood. Two papers in
2008 by Hu and Shi, and by Addario-Berry and Reed, basically describe the precise
asymptotics of the height of random split trees as a function of n: it is in probability
proportional to a logn − b log logn + O(1) for some positive constants a and b
that depend upon the distribution of V . These results use certain assumptions
and idealizations that may not hold for some trees used by computer scientists,
but they provide sharp insights into them. It should be noted that first-term
asymptotics can easily be obtained following large deviation proofs from the 1970s
by Biggins for maximal displacements in Bienaymé trees.

We showed in the talk how many other models, such as the two web models
cited above can be reduced to weighted split trees, i.e., trees in which the edges
have random weights. The maximal weighted height of these trees is then equal
to the weight of the original trees. In this manner, Broutin (2008) studied the
weighted height for split trees combining Biggins’ ideas and two-dimensional large
deviation theory. It is quite generally asymptotic to a logn in probability for
a > 0 depending upon the joint distribution of the split vector V and the vector
of weights.

The depth of a randomly selected node is studied by following a random path
from the root that in weighted by subtree sizes, until it reaches a leaf. Standard
renewal theory yields a central limit theorem for the length Ln of this path, which
states that (Ln − µ logn)/σ

√
logn tends in law to the standard normal. Here µ

and σ are parameters that depend upon the entropy of first and second order,
respectively, of the split vector V .

The profile of split trees at a level θ logn with θ 6= µ has mean nf(θ)+o(1) for
some function f , which, after normalization by the mean, tends to a limit distri-
bution, which is described by a stochastic fixed-point equation. The contraction
method used in the proof of these results was pioneered by Rösler in 1989, and
has since then seen quite a few striking applications in the study of tree parame-
ters. Additional relevant work is due to Neininger, Rüschendorf, Hwang, Drmota,
Chauvin, Janson, Fill, and many others. Perhaps the main open problem solved
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by this method is that of the limit law for the properly scaled complexity of quick-
sort and of toll functions of random trees. Toll functions that are O(

√
n) lead to

normal limit laws and can be obtained by Stein’s method, as shown by Hwang,
Neininger and the speaker. If the toll functions increase faster than linearly with
n, then the stochastic fixed-point equation result can be obtained quite trivially
without resorting to contraction methods. However, the rates of increase that
are squeezed in-between, such as the linear toll function of quicksort, are more
difficult—their limit laws require a careful application of the contraction method.
A general theorem valid for all split trees and most toll functions was obtained by
Neininger.

Limit distributions for m-ary search trees when m ≥ 27

Brigitte Chauvin

(joint work with Nicolas Pouyanne)

Consider an m-ary search tree process and denote by Xn the Rm−1-valued random
vector whose coordinates are the number of nodes containing 0, . . . ,m− 2 keys at
time n. Since [4, 2, 6] and [7], it is well known that the asymptotics of this vector
admits a phase transition:

• if m ≤ 26, then (Xn − nv1)/
√
n converges in law to a Gaussian vector,

where v1 is a deterministic vector;
• if m ≥ 27, then Xn = nv1 +nσℜ

(

niτWDT v2
)

+ o(nσ) where 1/2 < σ < 1,

τ ∈ R, v2 is a suitable complex deterministic vector, WDT is a complex
random variable1. The small o is almost sure and in any L≥1-space and
the joint moments of WDT and its conjugate can be recursively computed.

The random variable W appears in the proof as a martingale’s limit. The
present paper deals with the open question of its distribution.

To this effect, we embed the search tree’s node process in a multi-type branching
continuous time process, taking its values in the space of m-ary trees whose leaves
have colors (or types) in {1, . . . ,m−1}: each external node of type j ∈ {1, . . . ,m−
1} is equipped with an Exp(j) distributed clock, every clock being independent
from each other. When a clock rings, the corresponding external node is replaced
by a node of type j + 1 when j ∈ {1, . . . ,m − 2}, or by m nodes of type 1 when
j = m − 1. Besides, all the clocks are then reset to zero. We denote by X(t) the
composition vector at time t, i.e. X(t) = (X(t)(j))1≤j≤m−1 where X(t)(j) is the
number of external nodes of type j alive at time t. The n-th jump time of the
continuous-time process is denoted by τn.

We prove that the continuous time process, for large values of m, has the
following asymptotics: if m ≥ 27, then

X(t) = etξv1 + ℜ
(

eλtWCT v2
)

+ o
(

eσt
)

1The exponent DT is used to denote random variables concerned with discrete time processes,

while CT means continuous time.
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where ξ is a suitable Gamma-distributed random variable, λ = σ + iτ (same no-
tations as above), WCT is a complex random variable, the small o being in the
sense of any L≥1-space. In the spirit of [7], the method consists in decompos-
ing the infinitesimal generator of this Markov process on spaces of m-variables
polynomials.

The discrete time process (Xn)n≥0 and the stopped continuous time process
(X(τn))n≥0 have the same distribution. This property allows us to connect the
asymptotics of both processes. In particular, the complex random variables are
related by the a.s. formula

(1) WCT = ξλ WDT ,

so that, since ξλ is invertible, the distribution of WDT is determined by WCT ’s
one. On the other hand, this relation shows for example that WCT has a density.

Let (Xk(t))t denote the continuous time process starting from the initial condi-
tion X(0) = (0, . . . , 1, . . . 0) where the 1 is placed at the k-th position. We denote
by Wk = WCT

k the corresponding martingale limit. The independence gained in
the continuous time process and the branching property lead to the dislocation
system

(2)































































W1
L
= e−λτ(1)W2

W2
L
= e−λτ(2)W3

. . .

Wm−2
L
= e−λτ(m−2)Wm−1

Wm−1
L
= e−λτ(m−1) [m]W1

where the random variables τ ’s are all independent of each other and independent
of the W ’s, τ(j) being Exp(j) distributed; notation [m]X denotes the sum of m
independent copies of the random variable X .

For any k ∈ {1, . . . ,m− 1}, let Fk be the two-dimensional Fourier transform of
the complex variable Wk: for any z ∈ C,

Fk(z) = E
(

ei(zW+zW)
)

.

The dislocation system (2), transposed on these characteristic functions, implies
that the function F1 is solution of the integral equation

F1(z) = (m− 1)

∫ +∞

0

Fm
1 (ze−λu)e−u(1 − e−u)m−2du;

boundary conditions F1(0) = 1 and F ′
1(0) = 1/Γ(1 + λ) are also satisfied.
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Relations on the formal Laplace series of the Wk’s can also be derived from
dislocation equations (2). If one denotes them respectively by Lk, namely

Lk(T ) =
∑

p≥0

E(Wk)p

p!
T p,

then these series are formal solutions of the differential system

(3)











∀k ∈ {1, . . . ,m− 2}, Lk +
λ

k
TL′

k = Lk+1

Lm−1 +
λ

m− 1
TL′

m−1 = Lm
1 .

together with the same boundary conditions as above. In particular, after a very
simple (ramified) change of functions, these formal solutions are related to the
solutions of the nonsingular differential equation

(4) y(m−1) = ym.

Many properties of WCT ’s distribution can be derived from relations (3) and
(4).
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Genealogies and ordered approximations for measure-valued processes

Thomas G. Kurtz

Two types of particle representations of measure-valued processes as given in
[1, 2, 3, 7] are described. In the first, at each time t, the particle locations
X1(t), X2(t), . . . are exchangeable and the state of the measure-valued process is
given by the corresponding de Finetti measure Φ(t) = limn→∞

1
n

∑n
k=1 δXk

(t). In
the second, each particle location Xi(t) is assigned a positive “level” Ui(t) in such
a way that the random counting measure ξ(t) =

∑

i δ(Xi(t),Ui(t)) is a condition-
ally Poisson random measure with Cox measure Ξ(t)×m, where Ξ(t) is the state
of the measure-valued process and m is Lebesgue measure. The measure-valued
state is then obtained as Ξ(t) = limK→∞

1
K ξ(t, · × [0,K]). In the exchangeable

representation, we refer to the index of the particle location as the level of the
particle.

The measure-valued processes considered arise naturally as limits of finite popu-
lation models. To obtain the desired representation for the measure-valued process,
representations for prelimiting models are constructed in which the behavior of the
particles is highly dependent on the level of the particle, but observations of the

empirical measure Z(t) =
∑N(t)

i=1 δXi(t) of the particle locations give no information
about the levels of the particles. For discrete levels,

E[f(X1(t), . . . Xm(t))|FZ
t ] =

1
(

N(t)
m

)

∑

{x1,...,xm}⊂X(t)

f(x1, . . . xm).

The prelimiting models with continuous levels have levels in an interval [0, r] and

E[

N(t)
∏

i=1

g(Xi(t), Ui(t))|FZ
t ] =

N(t)
∏

i=1

1

r

∫ r

0

g(Xi(t), u)du,

that is, conditioned on Z, the levels are iid and uniformly distributed.
In both constructions, the locations of the particles evolve independently be-

tween birth and death events. In the discrete-level construction, the population
size process N is given a-priori, for example by a birth and death process. If a
death occurs, the particle with the highest level is eliminated. To an observer who
knows only Z and hence has no information about the levels, it appears that a
randomly selected particle has been eliminated. Similarly, when a birth occurs,
the lower level particles are more likely to reproduce, but again, to an observer
ignorant of the levels, it appears that parents are chosen at random.

For the constructions with continuous levels, the levels change with time, for
example, as solutions of an ode of the form

U̇i(t) = a(Xi(t))U
2
i (t) − b(Xi(t))Ui(t).

In the prelimiting model, the particle dies when its level hits r. In the infinite
population limit, r → ∞, and a particle dies when the level hits infinity.

In the discrete case, if N never hits zero, for example, as might occur if N is a
supercritical branching process, then the bottom level particle is never eliminated
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since it is never the highest level particle at the time of a death. It should be
understood, however, that the bottom level really represents a line of descent that
never terminates, not a single individual who lives forever.

In the discrete case, the measure-valued process is given by the limit of a se-
quence of finite models {(Xn

1 (t), . . . , Xn
Nn(t)(t))}, where the normalized population

size, n−1Nn, is assumed to converge to a process P and

(Xn
1 (t), . . . , Xn

Nn(t)(t)) ⇒ (X1(t), X2(t), . . .).

The limiting model is given by a system of particles that is infinite up until the
first time P hits zero. For each t, the sequence of locations is exchangeable, and
the state of the limiting measure-valued process is given by P (t)Φ(t), where Φ(t)
is the de Finetti measure for {Xi(t)}.

In the continuous case, the limiting sequence of levels {Ui(t)} is conditionally a
Poisson process whose intensity gives the total mass of the limiting measure-valued
process.

The investment made to achieve the complex particle representation is returned
in a number of ways. The representations incorporate the limits of the complete
genealogies of the finite approximating models, including models whose genealogy
corresponds to the Λ-coalescents of Pitman [8], they give insight into a number of
conditioning results such as those given in [4, 5, 6], and they provide a powerful tool
for proving a variety of limit theorem including ergodicity for the measure-valued
processes and weak approximation results.
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Measure-valued processes, multiple merger coalescents and population
genetic inference

Jochen Blath and Matthias Birkner

(joint work with Matthias Steinrücken)

Jochen Blath and Matthias Birkner
One of the main problems in mathematical genetics is the inference of evolutionary
parameters of a population (such as the mutation rate) based on the observed
genetic types in a finite DNA sample. If the population model under consideration
is in the domain of attraction of a classical Fleming-Viot process, then the standard
means to describe the corresponding genealogy is Kingman’s coalescent. For this
process, powerful inference methods are well-established. An important feature
of this class of models is, roughly speaking, that the number of offspring of each
individual is small when compared to the total population size.

Recently, more general population models have been studied, in particular in the
domain of attraction of so-called generalised Lambda Fleming-Viot processes, as
well as their (dual) genealogies, given by the so-called Lambda-coalescents. More-
over, Eldon & Wakeley (2006) have provided evidence that such more general
coalescents, which allow multiple collisions, might actually be more adequate to
describe real populations with extreme reproductive behaviour, in particular many
marine species.

We show how Ethier & Griffiths’ (1987) recursion for the probability of observed
types under the infinitely-many sites model can be extended from the Kingman-
to a Lambda-coalescent framework and how it may then be applied to obtain
likelihood based inference methods. In particular, we present and compare various
Monte Carlo- and Importance Sampling methods, generalizing results by Griffiths
& Tavaré (1994), Stephens & Donnelly (2000) and Hobolth et. al. (2008) to the
Lambda-case.

Further, we argue that within the (vast) family of Lambda-coalescents, the
parametrisable sub-family of Beta(2 − α, α)-coalescents, where α ∈ (1, 2], are of
particular biological relevance. We apply our inference methods in this case to
simulated and several real datasets (taken from Árnason (2004) and various other
sources).

We conclude that for populations with extreme reproductive behaviour, the
Kingman-coalescent as standard model might have to be replaced by more general
coalescents, in particular by Beta(2 − α, α)-coalescents.

References
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Spatial coalescents with multiple mergers

Anja Sturm

(joint work with Vlada Limic)

The Λ-coalescent, sometimes also called the coalescent with multiple mergers, is a
Markov process Π whose state space is the set of partitions of the positive integers,
P . The standard Λ-coalescent Π starts at the partition of the positive integers into
singletons, and its restriction to [n] := {1, . . . , n}, denoted by Π|n ∈ Pn, is the
Λ-coalescent starting with n initial partition elements. The measure Λ, which is a
finite measure on [0, 1], dictates the rate of coalescence events, as well as how many
of the (exchangeable) partition elements, which we will also refer to as blocks, may
coalesce into one at any such event. More precisely, if we define for 2 ≤ k ≤ b,
k, b ∈ N integers,

(1) λb,k :=

∫

[0,1]

xk−2(1 − x)b−kdΛ(x),

then the parameter λb,k ≥ 0 is the rate at which any collection of k blocks coalesces
into one new block when the current configuration has b blocks.

The Λ-coalescent was introduced by Pitman [9], and also studied by Schweins-
berg [11]. It was obtained as a limit of genealogical trees in Cannings models
by Sagitov [10]. The well-known Kingman coalescent [6] corresponds to the Λ-
coalescent with Λ(dx) = δ0(dx), the unit atomic measure at 0. For this coalescent,
each pair of current partition elements coalesces at unit rate, independently of
other pairs. The survey [1] gives many pointers to the literature. The Λ-coalescent
generalizes the Kingman coalescent in the sense that now any number of partition
elements may merge into one at a coalescence event, but the rate of coalescence for
any k-tuple of partition elements depends still only on k. Alongside a further gen-
eralization, coalescents with simultaneous multiple collisions, Λ-coalescents have
been studied intensely in recent years.

We first extend the notion of the Λ-coalescent to the spatial setting. Here,
partition elements migrate in a geographical space, a finite graph G, and may only
coalesce while sharing the same location, namely:

(i) at each site blocks coalesce according to the Λ-coalescent,
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(ii) the location process of each block is an independent continuous Markov
chain on G with jump rate 1 and transition probabilities p(gi, gj), gi, gj ∈ G.

The spatial Λ-coalescent started from a finite configuration {(1, i1), . . . , (n, in)} is
a well-defined strong Markov process (chain) with state space being the set of all
partitions of [n] = {1, . . . , n} labeled by their location in G, which we call Pℓ. We
construct the spatial Λ-coalescents Πℓ with general (possibly infinite) initial states
and show that this is a càdlàg Feller and strong Markov process on Pℓ.

Earlier works on variants of spatial coalescents, sometimes also referred to as
structured coalescents, have all assumed Kingman coalescent-like behavior, and
include Notohara [8], Herbots [5], and more recently Barton et al. [2] in the case
of finite initial configurations, and Greven et al. [4] with infinite initial states. A
related model has been studied by Zähle et al. [12] on two-dimensional tori. Spatial
coalescents are related to coalescing random walks, the difference being that for
coalescing random walks blocks coalesce instantaneously when they enter the same
site. Coalescing random walks have been studied extensively, in particular as dual
processes to the voter model, see for example Cox [3].

It can be shown that spatial Λ-coalescents describe the genealogy of spatial
population models in the limit as the population size of each colony at the sites
in G tends to infinity. One spatial model whose genealogy converges appropriately
is a spatial Cannings model. Here, each colony has a fixed large size over time.
After reproduction, in which the parent generation is replaced by another genera-
tion of offspring, a certain number of individuals is selected at random from each
colony and exchanged with individuals from another colony. If the variance of the
offspring distribution is relatively large then spatial Λ-coalescents are obtained
instead of spatial Kingman coalescents (as in [5]).

After constructing the general spatial Λ-coalescent, we turn to characterizing
those that come down from infinity. Denoting by #Π(t) the total number of blocks
in Πℓ(t) with any label we show that

(2)
∑

b≥2

1

γb
<∞, where γb :=

b
∑

k=2

(

b

k

)

(k − 1)λb,k

implies coming down from infinity, namely P [#Π(t) < ∞, ∀t > 0] = 1, even
if the initial configuration Πℓ(0) contains infinitely many blocks. We also show
via a coupling to the non-spatial coalescent that if (2) does not hold, provided
#Π(0) = ∞ and Λ has no atom at 1, then P [#Π(t) = ∞, ∀t > 0] = 1, that is the
spatial Λ-coalescent stays infinite. Our results extend to the spatial coalescent for
which the migration mechanism may be more general, for example non-exponential
or depending on the past and in a restricted sense even on the future of the
coalescence mechanism. Our results are analogous to those found by Schweinsberg
[11] for non-spatial Λ-coalescents. A key result for showing coming down from

infinity, is the following estimate for T
(k)
n , the time until there are on average k or
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fewer blocks per site if there are initially n blocks per site:

(3) sup
n
E[T (k)

n ] ≤
∞
∑

b=k

1

γb
+

k

γk
.

Note that this estimate, which is uniform not only in n but also in the number of
sites of the graph G, relies on the independence of the coalescence and migration
mechanisms. For more general migration mechanisms we find a somewhat weaker
bound which is however still sufficient for showing coming down from infinity.

Finally, we study space-time asymptotic properties of Λ-coalescents that come
down from infinity uniformly in the sense of (3) on large finite tori at time scales
on the order of the volume. Thus, we consider G to be the d-dimensional torus
TN = [−N,N ]d for some N ∈ N, where d ≥ 3 is fixed. The migration is
given by p(x, y) ≡ ∑

{z:(z−y) mod N=0} p̃(z − x), such that
∑

x |x|2p̃(x) < ∞ and

G :=
∑∞

k=0 p̃k(0) <∞. In [4], this asymptotic behavior was studied for the spa-
tial Kingman coalescent where Λ = γδ0 for some γ > 0. It is interesting that
on appropriate space-time scales, the scaling limit is again (as in [4]) the King-
man coalescent, with only its starting configuration (and time scale) depending
on the specific properties of the underlying Λ-coalescent: Let Kπ be a non-spatial
Kingman coalescent with Kπ(0) = π. Set

κ =
2

G+ 2/λ2,2
, λ2,2 = Λ([0, 1]).

We obtain a functional limit theorem for the partition structure.
Theorem Assume that for n ≥ 1 and all large N,

ΠN,ℓ(0)|n = ΠN+1,ℓ(0)|n.
Then for each n ∈ N, we obtain as N → ∞, convergence of the (unlabeled)
partition processes:

(ΠN |n(t(2N + 1)d))t≥0 ⇒ (KΠZd |n(∞)(κt))t≥0,

on the càdlàg space D(R+,Pn). where both ΠN,ℓ|n and ΠZ
d,ℓ|n are started from

ΠN,ℓ(0)|n ∈ Pℓ
n. Here, ΠZ

d |n(∞) is the limiting partition for the n-coalescent on
Zd and ” ⇒ ” denotes weak convergence.
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S. Tavaré, editors, Progress of Population Genetics and Human Evolution,
pages 231-255, Springer.

[6] Kingman, J.F.C. (1982) The coalescent, Stochastic Process. Appl., 13, 235-
248.
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The allelic partition of Galton-Watson trees

Jean Bertoin

We consider a Galton-Watson process, i.e. a population model with asexual re-
production such that at every generation, each individual gives birth to a random
number of children according to a fixed distribution, and independently of the
other individuals in the population. We are interested in the situation where a
child can be either a clone, that is of the same type (or allele) as its parent, or a
mutant, that is of a new type. We stress that each mutant has a distinct type and
in turn gives birth to clones of itself and to new mutants according to the same
statistical law as its parent, even though it bears a different allele. In other words,
we are working with an infinite alleles model where mutations are neutral for the
population dynamics. We might as well think of a spatial population model in
which children either occupy the same location as their parents or migrate to new
places and start growing colonies on their own.

We are interested in the partition of the population into clusters of individuals
having the same allele, which will be referred to as the allelic partition. Statistics
of the allelic partition of a random population model with neutral mutations have
been first determined in a fundamental work of Ewens [3] for the Wright-Fisher
model (more precisely this concerns the partition of the population at a fixed
generation).
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This talk is based on [1] whose main purpose is to describe explicitly the struc-
ture of the allelic partition of the entire population for Galton-Watson processes
with neutral mutations. We will always assume that the Galton-Watson process is
critical or sub-critical, so the descent of any individual becomes eventually extinct,
and in particular the allelic clusters are finite a.s. We suppose that every ancestor
(i.e. individual in the initial population) bears a different allele; it is convenient
to view each ancestor as a mutant of the zero-th kind. We then call mutant of
the first kind a mutant-child of an individual of the allelic cluster of an ancestor,
and the set of all its clones (including that mutant) a cluster of the first kind. By
iteration, we define mutants and clusters of the k-th kind for any integer k ≥ 0.

In order to describe the statistics of the allelic partition, we distinguish an
ancestor which will then be referred to as Eve, and focus on its descent. The
set of all individuals bearing the same allele as Eve is called the Eve cluster.
The Eve cluster has obviously the genealogical structure of a Galton-Watson tree
with reproduction law given by the distribution of the number of clone-children
of a typical individual. Informally, the branching property indicates that the
same holds for the other clusters of the allelic partition. Further, it should be
intuitively clear that the process which counts the number of clusters of the k-th
kind for k ≥ 0 is again a Galton-Watson process whose reproduction law is given
by the distribution of the number of mutants of the first kind; this phenomenon has
already been pointed at in the work of Täıb [6]. That is to say that, in some loose
sense, the allelic partition inherits branching structures from the initial Galton-
Watson process. Of course, these formulations are only heuristic, and precise
statements will be given later on. We also stress that the forest structure which
connects clusters of different kinds and the genealogical structure on each cluster
are not independent since, typically, the number of mutants of the first kind who
stem from the Eve cluster is statistically related to the size of the Eve cluster.

Our approach essentially relies on a variation of the well-known connection due
to Harris [4, 5] between ordinary Galton-Watson processes and sequences of i.i.d.
integer valued random variables. Specifically, we incorporate neutral mutations
in Harris representation and by combination with the celebrated ballot theorem
(which is another classical tool in this area, see [7]), we obtain expressions for
the joint distribution of various natural variables (size of the total descent of an
ancestor, number of alleles, size and number of mutant-children of an allelic cluster)
in terms of the transition probabilities of the two-dimensional random walk which
is generated by the numbers of clone-children and of mutant-children of a typical
individual. These formulas can be viewed as extensions of that of Dwass [2] for
the total population of a Galton-Watson process.
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Catalytic Branching Models

Lea Popovic

(joint work with Andreas Greven, Anita Winter)

It is well-known that Feller’s branching diffusion and continuous state branching
processes appear as weak limits of a broad range of suitably rescaled Galton-
Watson processes. Provided one introduces a suitable topology the rescaled family
forests of these Galton Watson processes converge to limit forests which can be
represented by paths of a reflected Brownian motion, and a reflected Levy process
without negative jumps [1, 2]. These invariance principles are the main tool for
analyzing the asymptotic behavior of genealogies of Galton-Watson processes.

One of the next important steps is to investigate genealogies of multitype
branching models with possible interactions between populations. For neutral
two-type branching models there are three universality classes of behavior: inde-
pendent branching, (one-sided) catalytic branching and mutually catalytic branch-
ing. Loss of independence in the two latter models generates many new features
as well as some new technical difficulties for its analysis.

We describe in this talk the genealogy of a catalytic branching diffusion. This
is the many individual fast branching limit of an interacting branching particle
model involving two populations, in which one population, the “catalyst”, evolves
autonomously according to a continuous time critical branching process with con-
stant branching rate, while the other population, the “reactant”, evolves according
to a continuous time critical branching process whose rate depends on the current
mass of catalyst particles.

We show that the sequence of suitably rescaled family forests for the reactant
population converges in Gromov-Hausdorff topology to a limit forest and we char-
acterize the distribution of this limit. We first describe the limit of the reactant
family forest cut off at a height where the catalyst falls below a certain threshold.
We show that its contour process is given by a path of a reflected diffusion pro-
cess. From that path we derive a collection of point processes each describing the
mutual genealogical distances between all individuals in the population alive at a
certain time. Such point-processes were introduced in [4] and provide a convenient
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structure for recording the mutual distance between pairs of extant individuals via
a Poisson intensity measure.

Our analysis from a “quenched” point of view, i.e., by fixing a realization of
the catalyst population as an autonomous branching process, and considering the
reactant population as a branching process in a given medium. One can then
change to an “annealed” point of view and show that the joint law of the rescaled
catalyst and the reactant population converges to a limit.

In the end we draw conclusions about the differences between the reactant limit
forest and the classical continuum random forest which is known to be associated
with a reflected Brownian motion. The point processes exhibit the difference
in genealogical structure between the reactant population family forests and the
classical Brownian continuum random tree. The differences are due to two different
effects: the vanishing branching rate once the catalyst becomes extinct, and the
temporal inhomogeneity of the branching rates. The differences are roughly as
follows. If we pick from the population of the reactant at time t two individuals at
random, their mean genealogical distance is smaller than in the classical case (with
a suitable choice of the branching rate). Furthermore the total tree length becomes
infinite in a stronger sense, namely instead of having Hausdorff dimension 2 with
finite Hausdorff measure function, we now have a Hausdorff measure function
that grows faster than a square. As a consequence, with positive probability the
reactant limit forest can not be associated with the path of a diffusion.
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The length of Kingman’s coalescent: asymptotics and dynamical
properties

Peter Pfaffelhuber

(joint work with Anton Wakolbinger, Heinz Weisshaupt)

1. Introduction

The classical Moran model describes the evolution of a constant size population.
The population consists of N individuals. Any (unordered) pair of individuals
resamples at constant rate 1. In a resampling event one individual dies and the
other individual reproduces. Neutral evolution refers to the case when both events



Random Trees 167

have probability 1
2 . Looking back in time, any pair of individuals has a common

ancestor some exponential-(rate 1)-time ago. More generally, for any time t, a
random tree describes the genealogy of all individuals alive at time t. This tree is
known as Kingman’s N-coalescent [Kin82]. As N → ∞, the N-coalescent converges
to a random tree which we refer to as the full coalescent. We are interested in
(asymptotics of) the total length of the N coalescent, i.e. the sum of all branch
lengths. Interesting questions arise both, for fixed and varying t, leading to a
study of the length of an evolving coalescent. All details of the presentation can
be found in [PWW09].

2. The tree length for fixed t

The total sum of all branch lengths in Kingman’s N-coalescent is easily described.
Let Xi be the amount of time the tree has i lines, i = 2, ...,N and L

N
t the

length of the genealogy of the population at time t. If there are k lines in the
coalescent, there are

(

k
2

)

pairs, each coalescing independently at rate 1. Hence,

the time to the next coalescence event is Xk
d
= EXP

(

k
2

)

and L N
t

d
=

∑N
k=2 kXk. It

is straightforward to write

1
2L

N
t

d
= 1

2

N
∑

k=2

k · EXP
(

k

2

)

d
=

N−1
∑

k=1

EXP(k)
d
= max

1≤k≤N−1
E(1)

and consequently, 1
2 (L N

t − log N)
N→∞
=⇒ G, where G is Gumbel distributed. This

argument dates back to [Tav84]; see also [Wak08]. The convergence statement
can readily be extended to an L2–version: Consider a full coalescent which has
intercoalescent times Xk, k = 1, 2, ... and take a sample of size N from the infinitely
many lines in the coalescent. Then, the sample tree is a subset of the full coalescent.
More exactly, let KN

i be the number of lines in the sample coalescent while the

full coalescent has i lines, i = 2, 3, .... Then, L N
t

d
=

∑∞
i=2K

N
i Xi. It is possible to

show that there is a Gumbel distributed random variable G with

1
2

∞
∑

i=2

KN
i Xi − log N

N→∞−−−−→ G in L2(1)

3. The evolution of tree lengths

When the population evolves, genealogical relationships evolve as well. For a
Moran model of size N, the total tree length at time t can e.g. be read off from its
graphical representation. The evolution of the tree length consists of two mech-
anisms: in between resampling events, the tree grows by Ndt during time dt. In
addition, by resampling events, a randomly chosen external branch breaks off from
the coalescent. If JN is an external branch of a coalescent of size N, recent results

of [CNKR07] show that N · JN N→∞
=⇒ J , where E[J ] = 2

N and V[J ] = ∞. The
expectation is not surprising since during one time unit, the tree grows by N units
which must be compensated by

(

N
2

)

jumps. Hence, each jump must approximately

be of size 2
N on average. However, the infinite variance of J implies that typical
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jumps of the process may create paths without quadratic variation. Indeed, we
can prove the following Theorem:

Theorem 1. Let L N = (L N
t )t∈R be the tree length process of a Moran model of

size N. There is a process L = (Lt)t∈R with sample paths in D(R; R)such that

L
N N→∞

=⇒ L .

The process L has infinite quadratic variation; in particular,

1

t| log t|E[(Lt − L0)
2]

t→0−−−→ 2.(2)

To prove the Theorem one has to show convergence of finite dimensional distribu-
tions as well as tightness of (L N)N∈N. The former is a corollary of the L2–version
of the convergence (1), extended to a finite number of time points. Tightness,
however, requires at least to show that

lim sup
N→∞

V[L N
ε − L

N
0 ]

ε→0−−−→ 0.(3)

As Figure 1 shows, one can represent

L
N
ε − L

N
0

d
= AN

0,ε −BN
0,ε,(4)

where AN
0,ε and BN

0,ε are explained in the caption of that figure. If SN
s,t is the

number of time-s-ancestors of the population of size N at time t, we may write

AN
0,ε =

∫ ε

0

SN
t,εdt.

Using results obtained in [Ald99, (35)], we obtain

lim
N→∞

V[AN
0,ε]

t→0∼ t.(5)

To bound the variance of BN
0,ε, consider an M-coalescent embedded in an N-

coalescent, with M < N. We write KM,N
i for the number of lines in the M-

coalescent at times the N-coalescent has i lines. It is then clear that

BN
0,t

d
=

N
∑

i=2

(i−K
SN

0,ε,N

i )Xi

where Xi
d
= EXP

(

i
2

)

and SN
0,ε are independent. Using that SN

0,ε ≈ 2
ε for small ε

and that (KM,N
i )i=N,N−1,... is a Markov Chain, we can show that

lim
N→∞

V[BN
0,ε]

ε→0∼ 2ε| log ε|.(6)

Combining (6) and (5) immediately shows (3). A refinement of these arguments,
using [EK86, Lemma 3.4.3], leads to a proof of tightness of the family (L N)N∈N.
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1 N

t

number of ancestral lines

t=0
t=εε

B0,εε
N

A0,εε
N

S0,εε
N

Figure 1. Schematic picture of tree change between two times
0 and ε for a population of size N. Tree topology is ignored in
the figure and only the number of ancestral lines are given. The
population at time ε has SN

0,ε ancestors at time 0. The genealogical
tree at time ε overlaps with the tree at time 0. The part of length
AN

0,ε belongs to the tree at time ε but not to the tree at time 0.

The part of length BN
0,ε is lost between time 0 and ε.
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Notes on the history of branching processes

Peter Jagers

First I make some remarks about the early history of the family extinction prob-
lem, in particular about the discussion of that time about Galton’s and Watson’s
mistaken conclusion that all families must die out. I move on to the rebirth of the
theory in the early 20th Century, largely motivated by genetics, and the correct
solution of the extinction problem then.

After the 2nd World War, the connection to nuclear physics steps into the
foreground. So called age-dependent, but still splitting processes are introduced.
Then for some decades pure mathematical research, largely analytical, dominates.
In the late 60’s general branching processes are introduced, where individuals can
have arbitrary lifespans and give birth also during their lives, but individuals still
lead independent lives, once born.

Thus, finally, branching processes encompass realistic frameworks for animal
and plant, and even human population dynamics. A further step is taken by the
letting individuals be of various (geno)types, so that individual lives need not be
identically distributed. Thereby a structure that is Markov over the population
tree, but not in real time arises. It can be studied with a combination of martingale
and Markov renewal methods. In particular, in the 80’s the doubly infinite lim-
iting tree structure of non-extinct single, and later multi-type, general branching
processes was established. Through this, relational properties and the history of
individuals chosen at random (typical individuals) can be investigated. Examples
of this are the probability of being first-born and the time back to a given ancestor.

What remains is now to broaden the perspective so as to allow interaction
between individuals, while keeping in mind that the very definition of a population
implies that changes are effectuated by individuals; in this non-precise sense they
are the agents of change.

This perspective, mine, is basically theoretical biological, and stresses the inter-
play of the theory with society, science in general, and even culture. During the
last two decades branching processes have however also been stimulated by influ-
ences from computer science and theoretical probability, and also used to interpret
non-linear partial differential equations. But these aspects are not discussed in the
lecture [1].
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A renormalisation group analysis of the 4-dimensional self-avoiding
walk

Gordon Slade

(joint work with David C. Brydges)

Self-avoiding walks on Zd are simple-random walk paths without self-intersections.
Self-avoiding walks of the same length are declared to be equally likely. Basic
questions are: (1) how many self-avoiding walks are there of length n (started
from the origin), and (2) how far on average is their endpoint from the origin?
In dimensions 5 and higher, these questions have been answered using the lace
expansion. For d = 2, SLE appears to hold the key to the answer, but so far no
one has understood how to unlock the door. For d = 3, there are only numerical
results.

In this lecture, I described work in progress with David Brydges [6] for the case
d = 4 (see also [1]). Our immediate goal is to prove that the critical two-point
function (Green function) for a particular spread-out model of self-avoiding walks
on Z4 decays like |x|−2 at large distances, as it does for simple random walk,
and that the same is true for the nearest-neighbour weakly self-avoiding walk if
the repulsion is sufficiently small. The latter extends previous results of [2] (see
also [4, 5]) that were obtained for weakly self-avoiding walk on a 4-dimensional
hierarchical lattice.

We begin with an exact representation (due to John Imbrie [7]) of the two-
point function for self-avoiding walks as the two-point function of a certain super-
symmetric field theory involving both bosons and fermions. In the first part of the
lecture, I explained this representation. Given the representation, we forget about
the walks, and perform a renormalisation group analysis of the field theory. In the
second part of the lecture, I described some of the ingredients in the renormalisa-
tion group analysis, of which the first is the finite-range covariance decomposition
of [3].
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Extremality of Tree-indexed Markov chains in equilibrium

Christof Külske

(joint work with Marco Formentin)

We provide a method to prove extremality of tree-indexed Markov chains obtained
by broadcasting a signal from the root with a given transition matrix. This is
equivalent to proving that it is impossible to reconstruct the state of the root
from observing a typical signal at a large distance. The method is based on the
use of symmetric entropy as a Lyapunov function to control the contractivity of a
stochastic recursion relation.

1. The result

Consider an infinite rooted tree T having no leaves. For v, w ∈ T we write
v → w, if w is the child of v, and denote by |v| the distance of a vertex v to the
root. We write TN for the subtree of all vertices with distances ≤ N to the root.

To each vertex v there is associated a spin variable σ(v) ∈ {1, 2, . . . , q}. Our
model will be defined in terms of the stochastic matrix with non-zero entries

M = (M(v, w))1≤v,w≤q

By the Perron-Frobenius theorem there is a unique single-site measure α =
(α(j))j=1,...,q which is invariant under the application of the transition matrix
M , meaning that

∑q
i=1 α(i)M(i, j) = α(j).

Then the object our study is the corresponding tree-indexed Markov chain in
equilibrium. This is the probability distribution P on {1, . . . , q}T whose restrictions

PT N to the state spaces of finite trees {1, . . . , q}T N

are given by

PT N (σT N ) = α(σ(0))
∏

v,w:
v→w

M(σ(v), σ(w))
(1)

The notion equilibrium refers to the fact that all single-site marginals are given
by the invariant measure α.

A probability measure µ on {1, 2, . . . , q}T is called a Gibbs measure if it is has
the same finite volume conditional probabilities. This means that, for all finite
subsets V ⊂ T , we have for all N sufficiently large

µ(σV |σV c) = PT N (σV |σ∂V )

µ-almost surely. The Gibbs measures, being defined in terms of a linear equation,
form a simplex, and we would like to understand its structure, and exhibit its
extremal elements [3]. Multiple Gibbs measures (phase transitions) may occur if
the loss of memory in the transition described by M is small enough compared
and there are sufficiently many offspring along the tree T . Uniqueness of the
Gibbs measure trivially implies extremality of the measure P, but interestingly the
converse is not true. Parameterizing M by a temperature-like parameter may lead
to two different transition temperatures, one where P becomes extremal and one
where the Gibbs measure becomes unique. Broadly speaking, statistical mechanics
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models with two transition temperatures are peculiar to trees (and more generally
models indexed by non-amenable graphs [5]). This is one of the reasons for the
interest in models on trees compared to models on lattices.

Now, our present aim is to provide a general theorem which is able to cover
such cases, yielding computable bounds on parameter regions for given models.
To formulate our result we need the following notations.

We write for the simplex of length-q probability vectors

P = {(p(i))i=1,...,q, p(i) ≥ 0 ∀i,
q

∑

i=1

p(i) = 1}

and we denote the relative entropy between probability vectors p, α ∈ P by

S(p|α) =
∑q

i=1 p(i) log p(i)
α(i) . We introduce the symmetrized entropy between p

and α and write

L(p) = S(p|α) + S(α|p) = (p− α) log
dp

dα

While the symmetrized entropy is not a metric since (the triangle inequality fails)
it serves us as a ”distance” to the invariant measure α.

Let us define the constant

C1 = sup
p∈P

L(pM rev)

L(p)

where M rev(i, j) = α(j)M(j,i)
α(i) is the transition matrix of the reversed chain. Note

that numerator and denominator vanish when p takes the invariant distribution α.
Consider a random tree with i.i.d. offspring distribution concentrated on {1, 2, . . .}
and denote the corresponding expected number of offspring by Ed.

Here is our main result.

Theorem 1. If (Ed)C1 < 1 then the tree-indexed Markov chain P on the random
tree T is extremal for almost every tree T .

For the specific example of the q-state Markov chain corresponding to the Potts
model the proof can be found in [2](2), the proof in the general case is given in a
forthcoming paper.

2. Discussion

Non-uniqueness of the Gibbs measures corresponds to the existence of boundary
conditions which will cause the corresponding finite volume conditional probabil-
ities to converge to different limits. Extremality of the measure P means that
conditioning the measure P to acquire a configuration ξ at a distance larger than
N will cease to have an influence on the state at the root if ξ is chosen according
to the measure P itself and N is tending to infinity. In the language of information
theory this is called non-reconstructability (of the state at the origin on the basis
of noisy observations far away).

The bound given in the theorem is sharp (on a regular tree) for the symmetric
Ising model and reproduces the known results of [1, 4]. The bound is not sharp
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(but close to the true values [9]) for the symmetric Potts model with more than
2 states, and provides an explicit parameter regime where P is extremal but the
Gibbs measure is not unique.
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Spin models on sparse random graphs: results and puzzles

Luca De Sanctis

We want to illustrate some results and some puzzles in the statistical mechanics
of spin systems on graphs (sparse or complete). The models we consider are
physically known as ferromagnets, glasses, antiferromagnets. We mainly focus on
the variational principles providing the free energy of the models.

Given a set of N points, our models are defined for configurations σ : i →
±1, i = 1, . . . , N of Ising spins. The simplest model we consider is mean field
ferromagnet on the complete graph, with N vertices and N2 edges, defined by the
Curie-Weiss (CW) Hamiltonian

HCW
N (σ) = − 1

N

1,N
∑

i<j

σiσj = −N 1

2
m2(σ) ,

where the magnetization of configuration σ is by definition m(σ) =
∑N

i=1 σi/N .
More generally, we could consider a ferromagnetic Hamiltonian with a concave de-
pendence on the magnetization: HCW

N (σ) = −Nf(m), f convex. With ZCW
N (β) =
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∑

{σ} exp(−βHCW
N (σ)) and β ≥ 0, one is interested in computing the pressure

pCW (β) = lim
N→∞

pCW
N (β) = lim

N→∞

1

N
lnZN (β) .

An estimate of the pressure can be immediately found simply using the inequality

f(m) ≥ f(m̃) + (m− m̃)f ′(m̃)

holding for any numerical trial magnetization m̃. Plugging this approximation
into the pressure one obtains a trial function in the form

gCW (β; m̃) =
1

N
ln

[

exp(−βNm̃f ′(m̃))
∑

σ

exp(βNmf ′(m̃))

]

+ βf(m̃)

which is independent of N and is easy to compute explicitly and to optimize
over the possible choices for m̃. An additional argument shows that the bound is
optimal in the thermodynamic limit, i.e.

pCW (β) = sup
m̃
gCW (β; m̃) = gCW (β; barmβ) , m̄β : tanh(βm̄β) = m̄β

Hence the pressure is obtained through a variational principle in agreement with
the predicament of statistical mechanics: as a supremum over a space of trial
states (here in terms of trial order parameters of clear physical meaning: the trial
magnetization representing a trial state). It is not difficult to see that the second
term of gCW (β; m̃) is minus β times the internal energy per spin −∂βp

CW (β),
in the state m̃. Therefore one expects the other term to be the entropy s(m̃).
Unfortunately this term depends on the form of the interaction through f ′ and
not on the state only, so preventing the classical Legendre structure [4]. But if one
takes the infimum inff ′ of this term over the possible forms of the interactions,
then the expression does not depend on f ′ anymore and it actually coincides with
the entropy s(m̃) of a spin with average magnetization m̃: s(m̃) = −µ+ lnµ+ −
µ− lnµ−, with µ± = (1 ± m̃)/2. Then one can optimize over m̃ recovering the
classical Legendre structure: pCW (β) = supm̃{s(m̃) + βf(m̃)}.

We want to study to what extent all this can be reproduced for models on s
parse random graphs, both in the case of ferromagnetic interactions and in the
case of random interactions.

By {iν, jν , kν , lν}, ν ∈ N, we will denote families independent random variables
all uniformly distributed on 1, . . . , N . The Hamiltonian of the dilute ferromagnet
and the one of the Viana-Bray (VB) model of dilute spin glass are

HN (σ;J ) = −
1,N
∑

i,j

Kijσiσj ; HV B
N (σ;J ) = −

1,N
∑

i,j

JijKijσiσj

where Kij are independent Poisson random variables of mean α/N , for some given
connectivity α ∈ R+. So the models are defined on a graph with N vertices and
each on the N2 possible edges has a Poisson random weight. The (so called
quenched) expectation with respect to the Poisson random variables is denoted
by E and pN (α, β) = 1

N E ln
∑

σ exp(−βHN (σ)) is the pressure (analogously for
the VB model). A first theorem that can be proven states that the pressure of
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both models is not altered if the variables Kij are Bernoulli with same mean, like
in the most standard choice for the underlying graph. A second theorem states
that the pressure of the dilute ferromagnet does not change if the model is put
on any locally tree-like rooted tree [1]. A third theorem states that if α → ∞
and β → 0 with 2α tanhβ = β′ kept constant, then pN (α, β) → pCW

N (β′), and
similarly for the VB model whose pressure tends to that of the (Gaussian) model
on the complete graph (the Sherrington-Kirkpatrick model). In the case of the VB
model, the existence of the thermodynamic limit of the pressure per spin is ensured
by the inequality lnZV B

N+M ≥ lnZV B
N + lnZV B

M , easy to prove by interpolation on
the connectivity, which has the opposite verse as compared to the CW model.
The fact that the natural interpolation is on the connectivity and the verse of
the inequality have major consequences. The generalization [2] to spin glasses on
sparse random graphs of the method illustrated for the CW model is expressed in
the next variational principle

pV B(α, β) = lim
N→∞

pV B
N (α, β) = inf

R
gV B(R;α, β) = inf

R
E ln

Ω[
∑

σ exp(−βh̃σ)]

Ω[exp(−βĤ)]

where R consists in a set of random probability weights (the expectation with
respect to which is denoted by Ω) defined on some discrete space Σ and a positive
semi-definite multi-overlap kernel {q2n}n∈N : Σ2n → [0, 1], which provides a con-

straints on the random fields h̃ and Ĥ (see [2] for details). Now, the trial pressure
is again the difference between two competing terms, and the denominator in gV B

can be seen to be essentially the derivative of the pressure with respect to α [2].
Two deep problems arise. A first one is well known since it emerged in the spin
glass theory on the complete graph: the infimum as opposed to the supremum
appearing in the standard statistical mechanics. The second problem is instead
due to the sparse nature of the graph: since the two terms come basically from
a differentiation with respect to α, they cannot be interpreted as internal energy
and entropy. The main current open problem is however proving that the con-
jecture from theoretical physics (which corresponds to a particular R associated
to a GREM) is correct. Another interesting question is whether the numerator
can be given in terms of a differential equation like the Parisi one in the case of
the complete graph. Among the various other questions one may pose, let us only
recall that a Legendre structure in principle can be found for this model, but the
interpretation of the various terms remains obscure.

Getting back to the ferromagnet on a sparse graph, which is expected to be sim-
pler than spin glasses and the exact rigorous expression of its pressure is known [1],
it is somewhat surprising that many basic features still escape good understanding.
For instance, is there a direct proof that lnZN+M ≤ lnZN + lnZM? Such a proof
was given in [3] for low enough β and for β → ∞ only. How can one formulate
a variational principle for the pressure using proper trial order parameters? Is
there a way to find a trial pressure as the difference between entropy and internal
energy? Is there Legendre structure?
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Notice that in the case of ferromagnetic interaction the variational principle
has the right verse (sup) and the pressure is sub-additive, while in the case of
spin glasses and antiferromagnets the variational principle has the opposite verse
(inf) and the pressure is super-additive. In fact, one can introduce a model [4]
interpolating between a ferromagnet and an antiferromagnet, with spin glass at
intermediate value of the interpolating parameter. For this model, even on a sparse
graph, one can identify the high temperature region and relative pressure, and also
formulate for instance a replica symmetric approach. It would be very interesting
to study the additivity property of the pressure and obtain a variational principle,
as there should emerge a cross-over between super-additivity and sub-additivity,
and between sup and inf in the variational principle as the interpolating parameter
varies. So one may aim at finding a quantitative control of the thermodynamic
limits and of the pressure not relying on bounds in a specific verse, and the study
of this interpolating model may offer insights on the Hopfield model of neural
networks too, since it also lacks a proof of the existence of the thermodynamic
limit of the pressure density.
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Martin boundary for randomly growing binary trees

Rudolf Grübel

(joint work with Steven N. Evans, Anton Wakolbinger)

Half a century ago Doob [1] introduced a general method of compactifying the
countable state space S of a transient Markov chain (Xn)n∈N0 in such a way that
Xn converges almost surely to a limit random variable X∞ in the enlarged space
S̄. We apply Doob’s method to specific Markov chains with values in the set of
finite binary trees.

Let N := {0, 1}⋆ be the set of finite sequences of 0’s and 1’s. The elements
of N represent the nodes of the tree t, which can thus be regarded as a prefix-
stable subset of N . By a randomly growing sequence (Xn)n∈N of binary trees
we then mean a sequence of random binary trees with the property that Xn ⊂
Xn+1, #Xn = n for all n ∈ N. Such tree sequences that grow by one node at a
time arise by applying algorithms for searching and sorting to random input, for
example. Typically, the input is a sequence (ξn)n∈N of independent and identically
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distributed real random variables and Xn is the tree associated with ξ1, . . . , ξn.
It turns out that two standard algorithms, digital search tree (DST) and binary
search tree (BST), lead to the same compactification S̄ but have different exit
laws, and that these Markov processes are related in the sense that the DST chain
is an h-transform of the BST chain. The Martin boundary ∂S = S̄ \ S consists
of the set of probability measures µ on the set {0, 1}∞ of ‘ends’ of the complete
binary tree t∞ = N . Conditionally on an exit via µ, i.e. X∞ = µ, the BST chain
is identical in distribution to a DST chain with base parameter µ. Ignoring binary
rationals this parameter can in turn be identified with the distribution of the input
random variables ξn, n ∈ N, for the DST algorithm.

For Xn’s that are uniformly distributed on the set of binary trees with n nodes,
for all n ∈ N, we use the Markovianization obtained by Luczak and Winkler [3].
This process of randomly growing binary trees leads to a different compactification,
which reflects the well-known qualitative difference between the uniform and the
search tree cases. In both cases, however, the compactification can be based on
an embedding that uses the subtree size functional, which associates with a tree t
the function ψ(t, ·) : N → N0, where ψ(t, u) is the size of the subtree of t rooted
at the node u. In the case of search trees we need a standardization, for uniformly
distributed trees we use the subtree size functional in its raw form.

For these results information on the respective Martin kernel is important. For
this we relate the trees to urn models, using the well known fact that the BST chain
behaves locally like the famous Pólya urn. We also obtain the exit distributions in
the search tree and in the uniform case. The latter turns out to be concentrated
on a specific set of infinite binary trees, which we identify, thereby providing an
alternative proof for a result of Janson [2].
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The CRT-valued limit dynamics of the Aldous move on cladograms

Anita Winter

(joint work with Leonid Mytnik)

A N -phylogenetic tree is a semi-labeled, un-rooted and binary tree with N ≥ 4
leaves labeled {1, 2, ..., N} and with N − 2 unlabeled internal leaves and positive
edge lengths representing the time spans between common ancestors. In biological
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Figure 1

systematics N -phylogenetic trees are used to represent the revolutionary relation-
ship between N species. If one focuses only on the kingship (that is, taking all
edge length of unit length), a more precise term is the cladogram.

Markov chains that move through a space of finite trees are an important in-
gredient for several algorithms in phylogenetic analysis. Usually, such chains are
based on a set of simple rearrangements that transform a tree into a “neigh-
boring” tree. One such Markov chain is based on the so-called Aldous move on
cladograms (introduced in [Ald00]) which is a finite tree-valued Markov chain that
has the uniform distribution on all cladograms with a fixed number of vertices as
its stationary distribution. The discrete time version has the following transition
dynamics (compare Figures 1 and 2).

• Pick a leaf u at random,
• erase the unique edge which connects u with the sub-tree spanned by all

leaves but u,
• pick then an edge from the remaining sub-tree at random, and split it into

two pieces.
• reintroduce the above edge at the split point.

Since the Aldous move is symmetrically defined and each cladogram can be
reached after a finite number of steps classical Markov chain theory implies that
the Aldous move approaches the uniform distribution as time goes to infinity. In
[Ald00] David Aldous showed that the inverse of the spectral gap (as a measure-
ment for the relaxation time) is at least of order of magnitude N2 and not greater
that O(N3). The latter upper bound was improved by Jason Schweinsberg in
[Sch02] to the effect that the mixing time is of the order O(N2).

On the other hand, David Aldous gives in [Ald93] a notion of convergence
of cladograms which shows that the uniform cladogram with N leaves and edge
length re-scaled by a factor of 1√

N
converges to the so-called Brownian continuum
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Figure 2

random tree (CRT) which is the tree “below” a standard Brownian excursion and
can be thought of as the uniform compact real tree.

These two results suggest that if we re-scale edge lengths by a factor of 1√
N

and speeding up time by a factor N2 the Aldous move on cladograms converges
in some sense to a continuous tree-valued diffusion.

The main emphasis of the talk is to give first precise statements towards that
direction. To make life easier we ignore the labels on the leaves. This allows to code
a cladogram with N -leaves as 0-hyperbolic metric spaces which are equipped with
a probability measure (assigning mass 1

N to each point representing a leaf) and
use the Gromov-weak topology on spaces of metric measure spaces as introduced
in [GPW06[.

The main result presented in the talk is the following: If (TN , rN , µN)N∈N is
the uniform N -cladogram (ignoring the labels), ΩN the operator describing the
changes in the Aldous move (run at unit time) and

Φ
(

(T, r, µ)
)

:=

∫

T 2

µ⊗2(d(u1, u2))φ
(

r(u1, u2)
)

,

then in probability,

N
3
2 ΩNΦ

(

(TN ,
1√
N
rN , µN )

)

−→
N→∞

1
2

∫

T 2

µ⊗2(d(u, u′))
{

φ′
(

r(u, u′) big)
(

1 − 1
2r

2(u, u′)
)

+ r(u, u′) · φ′′
(

r(u, u′)
)

}

provided (TN ,
1√
N
, µN ) −→

N→∞

(T, r, µ), in probability.

Note that the slower time scale (N
3
2 rather than N2) reflects the fact that our

approach does not follow the distance of two initially specified leaves but rather
considers the evolution of the averaged distance between any two points. Notice
also that the action of the generator on the test function φ implies that in equi-
librium the distance of two randomly samples leaves has a Rayleigh distribution
which supports the conjecture that the uniform distribution on metric probability
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measure spaces will turn out to be the unique stationary distribution of the limit
diffusion under construction.
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The contact process seen from a typical infected site

Jan M. Swart

1. Contact processes on Cayley graphs

Let Λ be a countable, finitely generated group, with group action denoted by
(i, j) 7→ ij and unit element (origin) 0, and let ∆ ⊂ Λ be a finite symmetric
generating set for Λ. Then the (left) Cayley graph G(Λ,∆) associated with Λ and
∆ is the graph with vertex set Λ, where there is an edge connecting i, j ∈ Λ if and
only if j = ki for some k ∈ ∆. Examples of Cayley graphs are Zd, equipped with
the usual nearest-neighbor structure, or the regular tree Td in which each site has
d+ 1 neighbors.

The contact process with infection rate λ on a Cayley graph G(Λ,∆) is a Markov
process (ηt)t≥0 taking values in the subsets of Λ. If i ∈ ηt then we say that the
site i is infected at time t ≥ 0; otherwise we say that the site is healthy. Infected
sites infect healthy neighboring sites with rate λ, and infected sites become healthy
with recovery rate 1. We let (ηA

t )t≥0 denote the contact process started from the
initial state A ⊂ Λ.

Let

θ(λ) := P
[

η
{0}
t 6= ∅ ∀t ≥ 0

]

= P
[

(0, 0) → ∞
]

denote the probability that the process started with one infected site survives.
Then λc := inf{λ > 0 : θ(λ) > 0 is the critical infection rate. In the celebrated
paper of Bezuidenhout and Grimmett [1], it is proved that θ(λc) = 0 for the process
on Zd in all dimensions d ≥ 1. The analogue result for trees has been proved by
Morrow, Schinazi, and Zhang in [3]. The next result generalizes this, in the spirit
of [2], to any nonamenable Cayley graph:

Theorem 1. [4] Assume that Λ is nonamenable. Then θ(λc) = 0.
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2. The exponential growth rate

Theorem 1 is proved by looking at the exponential growth rate of contact pro-
cesses. A simple subadditivity argument shows that each contact process on a
Cayley graph has a well-defined exponential growth rate, i.e., there exists a real
constant r = r(λ) such that the process started in any finite nonzero initial state
satisfies:

lim
t→∞

1

t
log E

[

|ηt|
]

= r.

On Cayley graphs of subexponential growth, e.g. on Zd, it is not hard to show
that r ≤ 0. On the other hand, on graphs with exponential growth, it is possible
that r > 0. Theorem 1 is a consequence of the following proposition.

Proposition 2. For any Cayley graph G(Λ,∆):

(a) The function λ 7→ r(λ) is Lipschitz continuous.
(b) r(λ) > 0 implies θ(λ) > 0.
(c) If Λ is nonamenable and θ(λ) > 0, then r(λ) > 0.

3. The process seen from a typical site

Proposition 2 (c) is proved by relating the exponential growth rate r to the
configuration seen from a typical infected site at a typical late time.

Set P+(Λ) := {A ∈ P(Λ) : A 6= ∅}, and define locally finite measures µt on
P+(Λ) by

µt :=
∑

i∈Λ

P[η
{i}
t ∈ · ]

∣

∣

P+(Λ)
(t ≥ 0),

where |P+(Λ) denotes restriction of a measure to P+(Λ). Think of µt as the law
at time t of the process started with one infected site, distributed according to
the uniform distribution on Λ. Conditioning µt on the origin being infected is
equivalent to starting with one infected site, and then looking at the process at
time t as seen from a ‘typical’ infected site, chosen according to a Campbell law.

We set

µ̂α :=
1

Zα

∫ ∞

0

µt e
−αtdt (α > r),

where Zα is a normalization constant such that µ̂α{A : 0 ∈ A} = 1.

Proposition 3. The measures {µ̂α : α > r} are tight in the topology of vague
convergence, and each vague limit as α ↓ r yields an ‘eigenmeasure’ with eigenvalue
r, i.e., a locally finite measure µ on P+(Λ) such that

∫

µ(dA) P
[

ηA
t ∈ ·

]∣

∣

P+(Λ)
= ertµ (t ≥ 0).
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4. Proof of Proposition 2 (c) (sketch)

Recall that each contact process has an upper invariant law ν, which is the
long-time limit law of the process started with all sites infected. There exists a
classical proof, based on duality, which shows that if a contact process survives,
then ν is its unique nontrivial spatially homogeneous invariant law. In a similar
fashion, one can prove the following, stronger fact:

Proposition 4. If a contact process on a Cayley graph survives, then, up to a
multiplicative constant, the upper invariant law ν is the only spatially homogeneous
eigenmeasure with eigenvalue zero.

Now assume that a contact process on a Cayley graph survives, and its expo-
nential growth rate r(λ) is zero. Then, by Propositions 3 and 4, the vague limit
limα↓0 µ̂α exists and is up to a multiplicative constant equal to ν.

Consider the law µ̂α, conditioned on the event {A : 0 ∈ A}. By our previous
remarks, for α close to zero, this law describes a random finite set B, containing
the origin, that looks something like this:

random finite set B

origin = “typical” infected site,
chosen with equal probabilities from B

locally ≈ ν

Since seen from the origin, we see something that looks like the spatially ho-
mogeneous law ν, we conclude that 0 lies with high probability far from the outer
boundary of B. Since 0 is a ‘typical’ site, this contradicts nonamenability, which
says that in any finite set B, a positive fraction of the sites must lie near the
boundary.
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The conditional ancestral selection graph with strong balancing
selection

John Wakeley

(joint work with Ori Sargsyan)

The Ancestral Selection Graph (ASG) was introduced by Claudia Neuhauser and
Stephen Krone in 1997 [2] as a model for the joint sampling process of gene ge-
nealogies and genetic types at a locus under the influence of mutation, selection,
and random genetic drift. In the ten or so years since its introduction, the ASG
has not led to many new analyses or results, and has also proven very difficult to
simulate efficiently. The reason for this is that the ASG requires a large graph to
be generated—prohibitively large when selection is strong—even though the gene
genealogy of a sample is always a binary tree.

Somewhat later, Slade [4] described the conditional ASG, which assumes that
the genetic types of the sample are known. The conditional ASG is more efficient
than the original ASG because conditioning on the types allows a much smaller
graph to be generated. A recent general reference for the conditional ASG is the
paper by Stephens and Donnelly [5], upon which the work we present here is based.

We imagine a well-mixed haploid population of size N containing two allelic
types, A1 and A2. The population reproduces with some stochasticity, as in the
Wright-Fisher model or the Moran model. There is mutation both from A1 to A2

and from A2 to A1, with probabilities proportional to θ/N per reproduction event.
Finally, selection is in the form of symmetric heterozygote advantage; specifically,
when an individual dies in the population, the allele that replaces it is chosen
randomly from a pair of alleles sampled at random from the population (A1A1,
A1A2, A2A1, or A2A2) in proportion to their relative fitness: 1 for A1A1 or A2A2,
and 1 + σ/N for A1A2 or A2A1. This type of selection will tend to maintain both
alleles in the population.

A diffusion approximation for the frequency x of allele A1 exists in the limit
N → ∞ with θ and σ constant. The conditional ASG assumes that the population
is at equilibrium with respect to the above processes, so that the frequency of A1

follows a stationary distribution denoted φθ,σ(x). The ancestral process, which
generates the gene genealogy of a sample, will depend on the allelic types of the
sample as well as on θ and σ, e.g. though φθ,σ(x). In particular, the conditional
ASG is a time-reversed Markov process that gives the rates of common-ancestor (or
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coalescent) events, mutation events, and branching events (which create a graph
rather than a tree) along the ancestral lineages of the sample; and is derived under
the assumption of stationarity with equilibrium probability φθ,σ(x) of allele A1.

The rates of events in the conditional ASG involve ratios of sampling proba-

bilities, which have the form
∫ 1

0 x
n1(1 − x)n2φθ,σ(x)dx for a sample of n1 alleles

of type A1 and n2 alleles of type A2. The rates also depend directly on θ and σ.
We are interested the ancestral process when σ is very large. Following a recent
study of directional selection in favor of one allele [6], we expect a limiting σ → ∞
ancestral process to exist. Based on previous work using a different approach we
expect the limiting ancestral process under symmetric heterozygote advantage to
be a simple structured coalescent process between the two subpopulations, corre-
sponding to the two allelic types, whose frequencies will be held nearly constant
when selection is very strong [1].

Using a heuristic separation-of-time-scales argument, based on the work of
Möhole [3], we describe the behavior of the conditional ancestral selection graph
with very strong symmetric heterozygote advantage between a pair of alleles. To
illustrate our approach, we present a more rigorous demonstration that the neutral
conditional ancestral process converges to a simple coalescent in the limit as the
mutation rate θ tends to infinity. In the limit as the strength of selection σ tends
to infinity, we find that the ancestral process does indeed converge to a neutral
structured coalescent, with two subpopulations representing the two alleles and
with mutation playing the role of migration. This agrees with a previous result
of Kaplan et al. [1]. We present the results of computer simulations to support
our heuristic mathematical results. This work is described further in a paper to
appear [7].
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