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Introduction by the Organisers

The workshop Low Eigenvalues of Laplace and Schrödinger Operators, organised
by Mark Ashbaugh, Columbia, Rafael Benguria, Santiago de Chile, Richard Lauge-
sen, Urbana, and Timo Weidl, Stuttgart, took place at the MFO from February 8th
until February 14th, 2009. The conference was attended by more than 25 interna-
tional participants including experienced specialists as well as young researchers.
During the workshop, 17 talks were delivered about new results concerning spectral
theory and Low Eigenvalues of Laplace and Schrödinger Operators. Furthermore,
open problems, recent developments and new strategies were presented and anal-
ysed in about five problem sessions and numerous vivid discussions. The most
important topics of the talks as well as the discussions were

• Dirichlet and Neumann Eigenvalue Problems
• Isoperimetric Problems
• Gap Inequalities
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• Geometrical Aspects
• Lieb–Thirring type Inequalities.

In the following we include the abstracts of the talks in chronological order. Since
discussions of open problems have been a crucial part of the workshop we pro-
ceed with an extended abstract summarising the problems raised and investigated
during the conference. This part of the report contains contributions from all
paritcipants.

Organisers and participants are grateful to Mathematisches Forschungsinstitut
Oberwolfach for facilitating this fruitful conference.
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Abstracts

Pólya’s conjecture in the presence of a constant magnetic field

Rupert L. Frank

(joint work with Michael Loss, Timo Weidl)

Let Ω ⊂ R2 be a domain of finite measure and let λΩ
n be the n-th eigenvalue

(counting multiplicities) of the Dirichlet Laplacian on Ω. In the famous paper
[7] Pólya has shown that if Ω is tiling, then λΩ

n ≥ 4π|Ω|−1n. This lower bound
is sharp, since by Weyl’s theorem limn→∞ n−1λΩ

n = 4π|Ω|−1. Pólya conjectured
that his bound should be valid without the tiling assumption, but this is unproven.
The best known lower bound for general domains, λΩ

n ≥ 2π|Ω|−1n, is due to Li
and Yau [6] (see also [1]) and is off by a factor 1/2.

In this talk we discuss the analogue of Pólya’s estimate in the presence of a
constant magnetic field of strength B > 0. That is, we seek a lower bound for
the n-th eigenvalue λΩ

n (B) of the operator HΩ(B) = (−i∇−BA)2 in L2(Ω) with
Dirichlet boundary conditions. Here A(x) = 1

2 (−x2, x1)T . Our main result (see
[4] and Theorem 1 below) is that

(1) λΩ
n (B) ≥ 2π|Ω|−1n ,

and that for any given Ω, the constant 2π can not be increased (if the inequality
should be valid for all B > 0). Hence the analogue of Pólya’s conjecture is not
true in the presence of a constant magnetic field.

In fact, we prove a more general result for eigenvalue moments tr
(
HΩ(B) − λ

)γ
−

=
∑

n

(
λ− λΩ

n (B)
)γ
+

with γ ≥ 0. In the case γ = 0 this denotes the number of

eigenvalues less than λ, and hence leads to (1).

Theorem 1. Let γ ≥ 0 and let Ω ⊂ R2 be a domain of finite measure. Then

(2) tr
(
HΩ(B) − λ

)γ
− ≤ ργ

|Ω| λγ+1

4π(γ + 1)
for all λ > 0 and B > 0

with the constant

ργ =






2 if γ = 0 ,

2 (γ/(γ + 1))
γ

if 0 < γ < 1 ,

1 if γ ≥ 1 .

The constant ργ is sharp in the following sense.

(a) For any 0 ≤ γ < 1, any bounded domain Ω ⊂ R2 and any ǫ > 0 there exist
B > 0 and λ > 0 such that

tr
(
HΩ(B) − λ

)γ
− ≥ (1 − ǫ) ργ

|Ω| λγ+1

4π(γ + 1)
.
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(b) For any γ ≥ 1, any domain Ω ⊂ R
2 of finite measure, any B > 0 and any

ǫ > 0 there exists a λ > 0 such that

tr
(
HΩ(B) − λ

)γ
− ≥ (1 − ǫ)

|Ω| λγ+1

4π(γ + 1)
.

The result for γ ≥ 1 is (essentially) due to Erdős, Loss and Vougalter [2], while
the inequality for 0 ≤ γ < 1 appeared in [4] (see also [3] for the sharpness assertion
(a) as stated). Both papers contain results in dimensions d ≥ 3 as well.

It is interesting to note that the sharpness of the constants in Theorem 1 has
different origins for γ ≥ 1 and for 0 ≤ γ < 1. For γ ≥ 1 it is attained in the limit
λ → ∞ with B arbitrary but fixed, while for 0 ≤ γ < 1 it is attained in the limit
λ→ ∞ and B → ∞ with λ/B fixed at a certain, γ-dependent value.

In the context of semi-classical spectral estimates, Theorem 1 is the first example
where the presence of a magnetic field has an influence on the constant in the
inequality. Recall that both the sharp Lieb-Thirring inequality for γ ≥ 3/2 and
the sharp Berezin-Li-Yau inequality for γ ≥ 1 remain valid with the same constant
when an arbitrary, respectively a homogeneous magnetic field is added [5, 2]. This
remarkable phenomenon can not be explained with the diamagnetic inequality,
which only implies that exponential sums of the eigenvalues decrease as a magnetic
field is added. While the lowest eigenvalue certainly goes up, higher eigenvalues
may both increase or decrease as a magnetic field is added. Our main result
(1) gives a sharp bound on the paramagnetic lowering of eigenvalues and states
that the eigenvalues cannot decrease further than to half of the value that Pólya
predicted. The problem of quantifying this ‘failure of diamagnetism’ in an abstract,
operator-theoretic framework was addressed in [8, 3].

As a consequence of our result we see, in particular, that any attempt to prove
Pólya’s conjecture with a method which extends to constant magnetic fields must
necessarily fail.

In [4] we also have shown that tr
(
HΩ(B) − λ

)γ
− can be estimated in terms of

the density of states of the Landau Hamiltonian in R2. In contrast to (2) the right
hand side in this estimate depends on B. More precisely, one has

Theorem 2. Let γ ≥ 0 and let Ω ⊂ R
2 be a domain of finite measure which is

tiling. Then

(3) tr
(
HΩ(B) − λ

)γ
− ≤ |Ω| B

2π

∞∑

k=1

(B(2k − 1) − λ)
γ
− for all λ > 0 and B > 0 .

If γ ≥ 1, then this is true without the assumption that Ω is tiling.

Inequality (3) for γ ≥ 1 is stronger than (2). This follows from the mean value
property of convex functions.

We conclude by remarking that an analogue of (3), with the inequality sign re-
versed, holds if Dirichlet boundary conditions are replaced by Neumann boundary
conditions; see [3].
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Two-dimensional Berezin-Li-Yau inequalities with a correction term

Hynek Kovař́ık

(joint work with Semjon Vugalter and Timo Weidl)

1. Introduction

Let Ω be an open bounded set in Rd and let −∆ be the Dirichlet Laplacian on
Ω. We denote by λj the non-decreasing sequence of eigenvalues of −∆. The main
object of our interest in this paper is the lower bound

(1)

k∑

j=1

λj ≥ dCd

d+ 2
V − 2

d k
d+2

d , Cd = (2π)2ω
−2/d
d ,

where V stands for the volume of Ω and ωd denotes the volume of the unit ball
in R

d. Inequality (1) was proved in [10], and is commonly known as the Li-Yau
inequality. In [9] it was pointed out that (1) is in fact the Legendre transformation
of an earlier result by Berezin, see [1]. Note also that the Li-Yau inequality yields
an individual lower bound on λk in the form

(2) λk ≥ dCd

d+ 2
V − 2

d k
2
d .

For further estimates on λk see [14, 7, 8, 9].
It is important to compare the lower bound (1) with the asymptotical behavior

of the sum on the left-hand side, which reads as follows:

(3)
k∑

j=1

λj =
dCd

d+ 2
V − 2

d k
d+2

d + C̃d
|∂Ω|
V 1+ 1

d

k1+ 1
d + o

(
k1+ 1

d

)
as k → ∞
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with

C̃d =

√
π Γ

(
2 + d

2

)1+ 1
d

(d+ 1) Γ
(

3
2 + d

2

)
Γ(2)

1
d

.

The first term in the asymptotics (3) is due to Weyl, see [17]. The second term
in (3) was established, under suitable conditions on Ω, in [4, 5, 13], see also [15,
Chap. 1.6].

It follows from (3) that the constant in (1) cannot be improved. On the other
hand, since the second asymptotical term is positive, it is natural to ask whether
one might improve (1) by adding an additional positive term of a lower order in k
to the right-hand side. The first step towards this goal was done by Melas, [12],
who showed that the inequality

(4)

k∑

j=1

λj ≥ dCd

d+ 2
V − 2

d k
d+2

d + Md
V

I
k, I = min

a∈R2

∫

Ω

|x− a|2 dx

holds true with a factor Md which depends only on the dimension. However, the
additional term in the Melas bound is not of the order k1+1/d predicted by the
second term in (3). Moreover, the coefficient of the second term in (3) reflects
explicitly the effect of the boundary of Ω, whereas such a dependence is not seen
in the coefficient V/I of (4). Our aim is to improve (1) and (4) by adding a positive
contribution which reflects the nature of the second term in the asymptotic (3).

To keep the presentation as short and stringed as possible, we have decided to
restrict ourselves to the case d = 2. Let us finally mention that a similar effect
of the boundary on the sum of the eigenvalues in the case of the discrete Laplace
operator was already observed in [2], see also the later improvement in [3].

2. Main result

Following notation will be employed in the text. By Θ(·) : R → R we denote the
Heaviside function defined by Θ(x) = 0 if x ≤ 0 and Θ(x) = 1 if x > 0. Moreover,
we impose the following condition of the domain Ω:

Assumption A. There exist C2− smooth parts Γj ⊂ ∂Ω at the boundary of Ω.
Let j = 1, . . . ,m.

Our main result then reads as follows

Theorem 1. Let Ω satisfy Assumption A. Then there exist natural numbers
k1, . . . , km and constants c1, c2 (depending on the geometry of Γj), such that for
any k ∈ N and any α ∈ [0, 1] we have

(1)

k∑

j=1

λj ≥ 2π

V
k2 + α c2 k

3
2
−ε(k) V −3/2

m∑

j=1

L(Γj) Θ(k − kj) + (1 − α)
V

32 I
k,

where L(Γj) denotes the length of Γj and

(2) ε(k) =
2√

log2(2πk/c1)
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2.1. Remarks.

Remark 1. The dependence of the constants kj , c1 and c2 on the geometrical
properties of Γj can be given explicitly, see [6] for details.

Remark 2. Note that the coefficient of the second term on the right hand side
of (1) is very similar to the coefficient of the second term in the Weyl asymptotics
(3). In particular, it reflects the expected effect of the boundary of Ω. On the
other hand, this boundary term becomes visible only for k large enough. However,
we would like to point out that the second term cannot be simply proportional
to
∑

j L(Γj). Indeed, one can make
∑

j L(Γj) arbitrarily large by “folding” the
boundary ∂Ω while keeping the eigenvalues λj with j ≤ k almost unchanged. This
shows that the condition k ≥ kj cannot be removed.

Remark 3. As for the constants in (1), notice that ε(k) ≪ 1 for all k and that
ε(k) → 0 as k → ∞. On the other hand, the values of kj are in general very large.
Nevertheless, the correction term on the right-hand side of (1) can be optimized
according to the geometry of Ω by choosing the boundary segments Γj in an
appropriate way.
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Universal Monotonicity for Eigenvalue Means

Joachim Stubbe

The fact that sharp phase space bounds for a Schrödinger operator can be derived
from universal bounds on its eigenvalues has been discovered recently [1], [3], [6].
The goal of the present talk is to briefly review a few results starting from a joint
work with Evans M. Harrell in 1997 [2] and to present a new proof of sharp Lieb-
Thirring inequalities [6].

We consider the one-parameter family of Schrödinger operators

(1) H(α) = −α∆ + V (x), α > 0

on Ω = Rd or on a bounded domain Ω ⊂ Rd with Dirichlet boundary conditions.
The starting point of our analysis is the following trace formula for H(α) ([2],[6]):

Theorem 1. Suppose that H(α) given in (1) has a spectrum consisting of eigen-
values Ek = Ek(α) with associated eigenfunctions φk forming an orthonormal
basis of the underlying Hilbert space L2(Rd). Then for any function f : R → R

(2) d
∑

Ej

f(Ej) + 2α
∑∑

Ej 6=Ek

Tjk
f(Ek) − f(Ej)

Ek − Ej
= 0

provided all sums are finite where

(3) Tjk = Tkj =

∣∣∣∣
∫

Ω

φj∇φk dx

∣∣∣∣
2

denote the kinetic energy matrix elements.

The assumptions on the spectrum of H(α) can be relaxed to operators having also
continuous spectrum [3] and recently we proved an algebraic projection operator
version of (2) [4]. A standard choice is f(E) = (z − E)2+ and for any positive
integer n and real z one gets ([2])

(4) d
n∑

j=1

(z − Ej)2 − 4α(z − Ej)Tj = 4α
n∑

j=1

n∑

k=n+1

(z − Ej)(z − Ek)

Ek − Ej
Tjk
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with

(5) Tj =

∫

Ω

|∇φj |2 dx.

Example 1. For the Dirichlet Laplacian on a bounded domain one has αTj = Ej .
The r.h.s of (4) is negative for z ∈ [En, En+1] and by analyzing the quadratic
function (in z) on the l.h.s. of (4) one easily obtains the following Weyl-sharp
inequality ([2]):

(6)

(
d+ 2

d

n∑

j=1

Ej

)2

− d+ 4

d

n∑

j=1

E2
j ≥ 0.

In [1] Harrell and Hermi derived from (4) a differential inequality for the Riesz
mean R2(z) =

∑
(z − Ej)2+:

(7)
d

dz
z−2−d/2R2(z) ≥ 0

which implies the well known Berezin-Li-Yau bound for R2(z).

Example 2. Lieb-Thirring inequalities for H(α) are obtained from (4) using the
fact that Tj = d

dαEj(α) by the Feynman-Hellmann theorem ([6]):

Theorem 2. Let V (x) be a continuous function of compact support. For all σ ≥ 2
the mapping

(8) α 7→ α
d
2

∑

Ej(α)<0

(−Ej(α))σ

is non increasing for all α > 0. Consequently

(9) α
d
2

∑

Ej(α)<0

(−Ej(α))σ ≤ Lcl
σ,d

∫

Rd

(V−(x))σ+ d
2 dx

for all α > 0 where

(10) Lcl
σ,d = (4π)−

d
2

Γ(σ + 1)

Γ(σ + d
2 + 1)

.

The result also holds in the presence of magnetic fields or for matrix-valued
Schrödinger operators.

Our result does not cover the full range of exponents ≥ 3
2 for which sharp Lieb-

Thirring inequalities have been shown by Laptev and Weidl [5] via operator valued
Schrödinger operators and an induction on the dimension. Indeed, explicit exam-
ples are known where the monotonicity property fails for all σ < 2. However, we
expect that our method can be applied to situations where an induction on the
dimension will not apply [4].
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Conformal Structure and the First Eigenvalue of the Laplacian

Nikolai Nadirashvili

Let (M, g) be a two-dimensional Riemannian manifold. In local coordinates
(xi, yi), the metric writes g =

∑
gijdxidyj and the Laplace-Beltrami operator has

the form

∆g =
1

|g|
∑ ∂

∂xi

(√
|g|gij ∂

∂yj

)

where we have used the usual convention of repeated indexes and gij = (gij)
−1

,
|g| = det (gij).

We denote by λ1(g) the first non-zero eigenvalue of ∆g and we have

λ1(g) = inf
u∈E

RM,g(u)

where RM,g(u) is the so-called Rayleigh quotient given by

RM,g(u) =

∫
M

|∇u|2dAg∫
M u2dAg

and the infimum is taken over the space

E =

{
u ∈ C∞(M),

∫

M

u = 0

}
.

Due to the scaling property of the first eigenvalue under a metric change cg, it
is natural to introduce a normalization for the metric and we denote by A(g) the
set of all metrics on (M, g) satisfying |Ag| = 1. We then consider on M the class
[g] of metrics conformal to g in A(g), i.e.

[g] = {g′ ∈ A(g), g′ conformal to g} .
We have the following definition of conformality.

Definition 1. A metric g′ is said to be conformal to g on the manifold M if there
exists a map µ > 0 from M into M such that

g′ = µg.
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The following result was proved in the joint work of Y.Sire and the author.

Theorem 1. Let (M, g) be as above. There exists a metric g ∈ [g] smooth outside
a finite number of conical singularities such that

(1) The metric g extremalizes the first eigenvalue, i.e.

λ1(g) = sup
g′∈[g]

λ1(g′).

(2) If U1(g) is the eigenspace associated to λ1(g), there exists a family of
eigenvectors {u1, · · ·, uℓ} ⊂ U1(g) such that the map

{
φ : M → Sℓ−1 ⊂ Rℓ

x→ (u1, · · ·, uℓ)

is harmonic.

The theorem reduced to a careful analysis of a Schrödinger type operator. In-
deed consider g′ ∈ [g], by conformal covariance, the equation −∆g′u = λ1(g′)u
reduces to the following system

(1)

{
−∆gu = λ1(g′)µu, on M∫

M
µdAg = 1.

Maximization of Neumann and Steklov eigenvalues on planar domains

Iosif Polterovich

(joint work with Alexandre Girouard and Nikolai Nadirashvili)

Let Ω be a simply-connected bounded planar domain with Lipschitz bound-
ary, and ∆ be the Laplace operator. Consider the Neumann (1) and Steklov (2)
eigenvalue problems on Ω:

(1) −∆u = µu in Ω and
∂u

∂n
= 0 on ∂Ω,

(2) ∆u = 0 in Ω and
∂u

∂n
= σu on ∂Ω.

Both problems have discrete spectra (see [4, p. 7 and p. 113])

0 = µ0 < µ1(Ω) ≤ µ2(Ω) ≤ µ3(Ω) ≤ · · · ր ∞,

0 = σ0 < σ1(Ω) ≤ σ2(Ω) ≤ σ3(Ω) ≤ · · · ր ∞.

The eigenvalues µ0 = 0 and σ0 = 0 are simple and correspond to constant eigen-
functions. The eigenvalues µk and σk satisfy the following variational characteri-
zations:

µk(Ω) = inf
Uk

sup
06=u∈Uk

∫
Ω
|∇u|2 dz∫
Ω
u2 dz

, k = 1, 2, . . .

σk(Ω) = inf
Ek

sup
06=u∈Ek

∫
Ω |∇u|2 dz∫

∂Ω
u2 ds

, k = 1, 2, . . .
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The infima are taken over all k–dimensional subspaces Uk and Ek of the Sobolev
space H1(Ω) which are orthogonal to constants on Ω and ∂Ω, respectively.

Both Neumann and Steklov eigenvalue problems describe the vibration of a
free membrane. In the Neumann case the membrane is homogeneous, while in the
Steklov case the whole mass of the membrane is uniformly distributed on ∂Ω. In
other words, the mass of the membrane Ω is equal to area(Ω) in the Neumann
case, and to the perimeter L(∂Ω) in the Steklov case. We focus on the following

Question 1. How large can µk and σk be on a membrane of a given mass?

In 1954, this problem was solved by G. Szegő [9] for µ1 (this result was later
generalized by H. Weinberger [10] to arbitrary domains in any dimension) and by
R. Weinstock [11] for σ1. They showed that in both cases the maximum is attained
if and only if the domain Ω is a disk.

In [1] we prove the following

Theorem 1. (i) Let Ω be a simply-connected bounded planar domain with Lips-
chitz boundary. Then

µ2(Ω) area(Ω) < 2µ1(D)π ≈ 6.78π.

(ii) There exists a family of simply-connected bounded Lipschitz domains Ωε ⊂ R2,
degenerating to the disjoint union of two identical disks as ε→ 0+, such that

lim
ε→0+

µ2(Ωε) area(Ωε) = 2µ1(D)π.

Note that Theorem 1 implies the Pólya conjecture [8] for the second nonzero
Neumann eigenvalue of a simply-connected planar domain:

µ2(Ω) area(Ω) ≤ 8π.

The best previous upper bound on µ2 was obtained in [7]:

µ2(Ω) area(Ω) ≤ 16π.

In 1974, Hersch–Payne–Schiffer [5, p. 102] proved the following estimates for
the products of Steklov eigenvalues:

σk(Ω)σn(Ω) L(∂Ω)2 ≤
{

(k + n− 1)2 π2 if k + n is odd,

(k + n)2 π2 if k + n is even.

In particular, for n = k and n = k + 1 we obtain

σk(Ω) L(∂Ω) ≤ 2πk, k = 1, 2, . . . ,

σk(Ω)σk+1(Ω) L(∂Ω)2 ≤ 4π2k2, k = 1, 2, . . . .

Note that for n = k = 1 one gets Weinstock’s inequality. It is easy to check that
the inequality is sharp for k = 1 and n = 2, with the equality attained on a disk.
As was proved in [2], in fact a much stronger result holds:
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Theorem 2. There exists a family of simply-connected bounded Lipschitz domains
Σε ⊂ R2, degenerating to the disjoint union of k identical disks as ε → 0+, such
that

lim
ε→0+

σk(Σε) L(∂Σε) = 2πk, k = 2, 3, . . .

and

lim
ε→0+

σk(Σε)σk+1(Σε) L(∂Σε)2 = 4π2k2, k = 2, 3, . . .

In particular, the Hersch–Payne–Schiffer inequalities are sharp for all n = k and
n = k + 1, k = 1, 2, . . . .

Let us note that one has to be careful in the choice of the family Σε. In
particular, joining the disks by vanishing thin channels (cf. [6]) works for the family
Ωε in Theorem 1, but is not applicable in the Steklov case. As shown in [2], this
construction leads to a “collapse” of the Steklov spectrum: limε→0+ σk(Σε) = 0
for all k = 1, 2 . . . . One way to get around this difficulty is to pull the disks apart
instead of joining them with channels.

Theorem 2 gives an almost complete answer to Question 1 for the Steklov eigen-
values σk. It remains to establish whether the Hersch–Payne–Schiffer inequalities
are strict for all n = k, k ≥ 2. We believe that this is true and prove it for k = 2
in [2].

Further discussion of maximization problems for Neumann and Steklov eigen-
values could be found in a recent survey [3].
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New isoperimetric inequalities for the Steklov problem

Antoine Henrot

(joint work with Gérard A. Philippin, Abdesselem Safoui)

In this talk, we are interested in the Steklov eigenvalue problem :

(1)

{
∆u = 0 in Ω
∂u
∂n = pu on ∂Ω ,

where Ω is a bounded Lipschitz open set in RN . The sequences of eigenvalues and
corresponding eigenfunctions will be denoted 0 = p0(Ω) < p1(Ω) ≤ p2(Ω) ≤ . . .
and u0(= const.), u1, u2, . . .. If Ω = B1 is the unit ball, we have p1(Ω) = p2(Ω) =
. . . = pN (Ω) = 1 and the associated eigenfunctions are the coordinates uk(X) =
xk.

The classical isoperimetric inequality (analogous to Faber-Krahn inequality in
the Dirichlet case or Szegö-Weinberger in the Neumann case) is due to Weinstock
for N = 2 and Brock in the general case, see [1], [7], [3, section 7.3], and states:

(2) p1(Ω) ≤ p1(Ω∗)

where Ω∗ denotes the ball of same volume as Ω. Actually, Brock proves a stronger
result, namely

(3)

N∑

k=1

1

pk(Ω)
≥

N∑

k=1

1

pk(Ω∗)
.

The proof relies on the classical Poincaré principle which is not so known, so it
worth writing it here. Let vk(6≡ 0) ∈ H1(Ω), k = 1, ..., N be N linearly inde-
pendent functions satisfying the conditions

∫
∂Ω
vk ds = 0. Let us introduce the

matrices A := (aij), B := (bij) defined by:

aij :=

∫

Ω

∇vi∇vj dx and bij :=

∫

∂Ω

vivj ds

and let us denote by 0 ≤ p′1 ≤ p′2 ≤ ... ≤ p′N the N roots of the characteristic
equation det |A−pB| = 0 then Poincaré’s variational principle (see e.g. [6]) asserts
that

pk(Ω) ≤ p′k , k = 1, ..., N .

By means of a translation followed by an appropriate rotation, we can assume that∫
∂Ω
xk ds = 0 and

∫
∂Ω
xkxj ds = 0 for k 6= j.

The N functions defined as vk := xk(Ik(Ω))−1/2 (where Ik(Ω) is defined in (5)
below) are admissible for the Poincaré principle and since the matrices A and B
are diagonal here, it follows immediately that, for any domain Ω

(4) pk(Ω) ≤ |Ω|∫
∂Ω x

2
k ds

with equality when Ω is a ball.
Therefore, we see that to obtain isoperimetric inequalities involving Steklov

eigenvalues, we must look for similar inequalities for the moments of inertia
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∫
∂Ω x

2
k ds. Let us introduce the two family of moments of inertia of the boundary

and of the body itself:

(5) Ik(Ω) :=

∫

∂Ω

xk
2 ds and Jk(Ω) :=

∫

Ω

xk
2 dx .

Using a Theorem due to H. Knothe, see [5] (which is itself a consequence of the
Prekopa-Leindler inequality), we prove in [4] the following inequality for convex

domains:

(6) Ik(Ω)N+2 ≥ (N + 2)N+1ωNJk(Ω)N+1

where ωN is the volume of the unit ball (with equality when Ω is ball). It allows
us to generalize the Hersch-Payne-Schiffer inequality proved in [2] for N = 2 (and
for general domains):
Theorem(Henrot-Philippin-Safoui 2008) For any convex domain Ω:

(7)

N∏

k=1

pk(Ω) ≤
N∏

k=1

pk(Ω∗) .

Using the same technique, we can also generalize Brock’s result (3) with any
exponent q > 1:

N∑

k=1

1

pq
k(Ω)

≥
N∑

k=1

1

pq
k(Ω∗)

.

or prove similar isoperimetric inequalities involving symmetric expressions of the
eigenvalues:

σj(p−1
1 (Ω), p−1

2 (Ω), . . . , p−1
N (Ω)) ≤ σj(p−1

1 (Ω∗), p−1
2 (Ω∗), . . . , p−1

N (Ω∗))

where σj is the j-th elementary symmetric function (σ1 is the sum and we get (3),
σN is the product and we get (7)).
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Isoperimetric bounds for Neumann eigenvalues of triangles

Bart lomiej Siudeja

(joint work with Richard Laugesen)

Inequalities for eigenvalues of the Laplacian involving geometric quantities have
been of interest for many years. Surprisingly, only a few of such inequalities have
been obtained for Neumann boundary condition. The goal of the talk is to prove
new bounds for Neumann eigenvalues of triangles.

The preprint on which the talk is based seems the first to study sharp isoperi-
metric inequalities for Neumann triangle eigenvalues. The Dirichlet case, on the
other hand, has received considerable attention (see e. g. [2, 3, 5] and references
therin).

One of the few known bounds for general domains was obtained by Szegő [6]

µ1A is maximal precisely for disks,

where µ1 is the first nonzero eigenvalue of the Laplacian with Neumann boundary
condition on a simply connected planar domain of area A. The analogous result
in higher dimensions is due to Weinberger [7].

We prove a sharper result for triangular domains:

µ1A is maximal when the triangle is equilateral.

It is plausible that for polygons with four or more sides the maximizing polygon
is regular. Such a result would complement Polýa-Szegő conjecture stating that
the minimizer is regular in the Dirichlet case.

We also show three different stronger results. The first includes a stronger
geometric functional, the second includes a stronger eigenvalue functional, and
the last one is a trade-off between the two.

To strengthen the geometric functional, we write L for the perimeter and prove

µ1L
2 is maximal for the equilateral triangle,

which implies the result for µ1A above by invoking the triangular isoperimetric
inequality. Even stronger result can be obtained using an isoperimetric excess
obtained from the triangular isoperimetric inequality. This result provides two
maximizers. In addition to equilateral triangles we get asymptotic equality for
degenerate acute isosceles triangles.

Strengthening instead the eigenvalue functional, we show
( 1

µ1
+

1

µ2

)−1

A is maximal in the equilateral case.

Note that disks are maximizers for general domains as has been proved by Szegő
[6].

In order to further strengthen the eigenvalue functional we need to weaken the
geometric functional. We show the arithmetic mean (µ1 + µ2)/2 of the first two
non-zero eigenvalues is maximal for the equilateral triangle, with the scaling factor
equal to the ratio of the square of the area over the sum of the squares of the side
lengths.
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In addition to such upper bounds, we prove a lower bound for µ1 with diameter
scaling. This bound saturates for the degenerate acute isosceles triangle. Thus
we obtain a triangular sharpening of Payne and Weinberger’s lower bound for
arbitrary convex domains, which saturates for the degenerate rectangle [4].

We also show that the upper bound on µ1D
2 for arbitrary convex domains due to

Cheng [1] is asymptotically correct for degenerate obtuse isosceles triangles. Thus
Cheng’s result is best possible even in the restricted class of triangular domains.

Three kinds of trial function are employed to prove the upper bounds in this
paper: for close-to-equilateral triangles we linearly transform the eigenfunctions
of the equilateral triangle, for close-to-degenerate triangles we deform the eigen-
function of a circular sector, and for all other triangles we make do with linear or
quadratic trial functions.

The lower bound on µ1 under diameter normalization is proved by bisecting
and stretching the triangle repeatedly, in order to approach the degenerate case.
Payne and Weinberger’s method of thinly slicing an arbitrary domain does not
apply here, since the resulting slices would not be triangular. Our procedure relies
on the proof of symmetry/antisymmetry of the first Neumann eigenfunction for
isosceles triangles, which may be of independent interest.

In addition to their intrinsic interest, our results on triangles suggest new open
problems for general domains, such as a possible strengthening of the Szegő–
Weinberger upper bound by an isoperimetric excess term.
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[6] G. Szegő. Inequalities for certain eigenvalues of a membrane of given area. J. Rational

Mech. Anal. 3 (1954), 343–356.
[7] H. F. Weinberger. An isoperimetric inequality for the N-dimensional free membrane prob-

lem. J. Rational Mech. Anal. 5 (1956), 633–636.

Shape analysis of eigenvalues

Dorin Bucur

The generic problem we consider can be formally written as

min
|Ω|=m

F (λ1(Ω), ..., λk(Ω))

where Ω ⊆ R
N is an open set and |Ω| is the Lebesgue measure. By

λ1(Ω) ≤ λ2(Ω) ≤ ... ≤ λk(Ω)
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we denote the first k eigenvalues of the Laplacian with some boundary conditions
that will be specified. Multiplicity is counted.

The questions we deal with are:

• prove the existence of a solution, i.e. an open set Ω;
• find qualitative properties of Ω: regularity, symmetry, convexity,...;
• perform numerical computations.

Here are some of the results that were presented in this talk.

Result 1. This is a joint work with P. Freitas. We prove in a purely variational
way the Faber-Krahn inequality for the first eigenvalue of the Dirichlet-Laplacian.
Precisely, we prove that the following problem

min
|Ω|=m

λ1(Ω)

has the ball as unique solution.The method consists precisely in the following steps:

• prove the existence of a minmizing set;
• use a cut and reflect method in order to prove that is symmetric in all

directions;
• deduce it is a union of annuli;
• select one annulus and use 1D analysis in order to prove that the ball is

the minimizer.

Result 2. This is a joint work with A. Giacomini. We consider β > 0. An
eigenvalue ν of the Laplacian with Robin boundary conditions on some admissible
open set Ω, satisfies forammly

{ −∆u = νu in Ω
∂u
∂n + βu = 0 ∂Ω

The first one is given by the Rayleigh quotient

ν1(Ω) = min
u∈H1(Ω)

∫
Ω |∇u|2dx+ β

∫
∂Ω |u|2dHN−1

∫
Ω u

2dx

Bossel (in R2, 1986) and Daners (in RN , 2006) proved that the ball minimizes ν1
among Lipschitz sets of prescirbed measures.

In a joint work with A. Giacomini [2], we prove that a relaxed form of the Robin
problem still has the ball as minimizer. This situation covers cracked domains, or
more general non-smooth domains. Precisely

ν1(B) ≤

∫

RN

|∇u|2dx+ β

∫

Ju

((u+)2 + (u−)2)dHN−1

∫
RN u2dx

for every measurable function u such that u ≥ 0, u2 ∈ SBV (RN ), |{u 6= 0} = m|.
Above, B stands for the ball of measure equal to m and Ju for the jump set of u2.

In [1], we prove that among Lipschitz domains, the ball is the unique minimizer.



Low Eigenvalues of Laplace and Schrödinger Operators 375

References

[1] D. Bucur, D. Daners, An alternative approach to the Faber-Krahn inequality for Robin
problems, Preprint 2009.

[2] D. Bucur, A. Giacomini A variational approach of the isoperimetric inequality for the
Robin problem, article in preparation, 2009.

On spectral minimal partitions on the sphere

Bernard Helffer

(joint work with T. Hoffmann-Ostenhof and S.Terracini)

Abstract In continuation of works in collaboration with V. Bonnaillie-Noël,
T. Hoffmann-Ostenhof, S. Terracini and G. Vial [14, 12, 13, 2, 3], we analyze
the properties of spectral minimal partitions and focus in this paper our analysis
on the case of the sphere. We prove that a minimal 3-partition for the sphere S

2

should be up to rotation the so called Y-partition. This question is connected to a
celebrated conjecture of Bishop [1] in harmonic analysis.

Let us consider the Laplacian H(Ω) on a bounded regular domain Ω ⊂ S2 with
Dirichlet boundary condition. We denote by λj(Ω) the increasing sequence of its
eigenvalues and by uj some associated orthonormal basis of eigenfunctions. We

define for any function u ∈ C0
0 (Ω) the nodal set of u by N(u) = {x ∈ Ω

∣∣ u(x) = 0}
and call the components of Ω \N(u) the nodal domains of u.
We now introduce the notions of partition and minimal partition.
For 1 ≤ k ∈ N, we call k-partition of Ω a family D = {Di}k

i=1 of mutually disjoint
sets such that

(1) ∪k
i=1Di ⊂ Ω ,

and denote by Ok the set of open connected partitions. For D in Ok, we introduce

Λ(D) = max
i
λ(Di) and Lk = inf

D∈Ok

Λ(D).

and call D ∈ Ok minimal if Lk = Λ(D).
If k = 2, it is rather well known (see [12] or [9]) that L2 is the second eigenvalue and
the associated minimal 2-partition is a nodal partition, i.e. a partition whose
elements are the nodal domains of some eigenfunction. Applying this remark to
the sphere, we get that the optimal 2-partition if the sphere is realized by two
hemispheres.

More generally we can consider (see in [14]) for p ∈ [1,+∞[

Λp(D) = (
1

k

∑

i

λ(Di)
p)

1
p and Lk,p(Ω) = inf

D∈Ok

Λp(D) .

We write Lk,∞(Ω) = Lk(Ω) and recall the monotonicity property

Lk,p(Ω) ≤ Lk,q(Ω) if p ≤ q .
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The notion of p-minimal k-partition can be extended accordingly, by minimizing
Λp(D). Their existence and regularity (their boundary shares the properties of
nodal sets except that now an odd number of lines can meet at a singular point)
has been proved in [7, 8, 9] (see also [16, 5, 6] and references therein)

We describe as usual S2 in R3
x,y,z by the spherical coordinates,x = cosφ sin θ, y =

sinφ sin θ, z = cos θ with φ ∈ [−π, π[ , θ ∈]0, π[ , and we add the two poles “North”
and “South”, corresponding to the two points (0, 0, 1) and (0, 0,−1). Then a basic
point is the introduction of the double covering S2

C of S2 \ {North, South} which
can be described by considering φ ∈ [−2π, 2π[ , θ ∈]0, π[ .

We announce in our talk a proof of the following theorem :
Main Theorem: Any minimal 3-partition of S

2 is up to a fixed rotation obtained
by the so called Y-partition whose boundary is given by the intersection of S2 with
the three half-planes defined respectively by φ = 0, 2π

3 ,
−2π

3 . Hence

(2) L3(S2) =
15

4
.

The value 15
4 is the seventh eigenvalue of the lifted Laplacian on S2

C and corre-

sponds to a spherical harmonic attached to the half integer ℓ = 3
2 . The Y -partition

is actually the projection on S2 of the nodal partition of this spherical harmonic
defined on S2

C . The proof consists in showing that any minimal 3-partition of the
sphere cannot be nodal and can be lifted in a 6-partition of S2

C . This involves a mix-
ture between topological considerations (Euler’s formula, Lyustenik-Shnirelman’s
theorem together with spectral considerations).

This theorem is immediately related (actually a consequence of) to a conjecture
of Bishop (Conjecture 6) proposed in [1] stating that :

The minimal 3-partition for 1
3 (
∑3

i=1 λ(Di)) corresponds to the Y-partition.

A similar question was analyzed (with partial success) when looking in [13] at
candidates of minimal 3-partitions of the unit disk D(0, 1) in R

2. The most nat-
ural candidate was indeed the Mercedes Star, which is the 3-partition given by
three disjoint sectors with opening angle 2π/3, i.e. D1 = {x ∈ Ω | ω ∈]0, 2π/3[}
and D2, D3 are obtained by rotating D1 by 2π/3 , respectively by 4π/3 . Hence
the Mercedes star in [13] is replaced here by the Y-partition in the Main Theo-
rem. We observe that Y-partition can also be described the inverse image of the
mercedes-star partition by the map S2 ∋ (x, y, z) 7→ (x, y) ∈ D(0, 1).

We also present results based mainly on lower bounds obtained in [19] [11] of
Lk(S2) and apply this to the discussion for k large to the Hexagonal conjecture.
The best lower bound for L2,1(S2) is 2, which is optimal and corresponds to the
case of two hemispheres [1].
The best lower bound for L3,1(S2) is at the moment around 3.39.
Another lower bound exploiting [11] is
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(3) Lk,1(S2) ≥ 1

4
j20k −

1

8
j20 − 1

4
.

Asymptotically, we obtain

Area(S2) lim inf
k→+∞

Lk,1(S2)

k
≥ πj20 .

But πj20 is the groundstate energy λ(D1) of the Laplacian on the disk D1 in R2 of
area 1. The Faber-Krahn Inequality gives for planar domains

|Ω|Lk,1(Ω)

k
≥ λ(D1) = πj20 .

As for the case of plane domains, it is natural to conjecture (see for example
[2, 5] but we first heared of this question from M. Van den Berg five years ago )
that :

lim
k→+∞

Lk(S2)

k
= lim

k→+∞

Lk,1(S2)

k
= λ(Hexa1) .

The first equality in the conjecture corresponds to the idea, which is well il-
lustrated in the recent paper by Bourdin-Bucur-Oudet [4] that, asymptotically as
k → +∞, a minimal k-partition for Λp will correspond to Dj ’s such that the λ(Dj)
are equal.
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The Random Displacement Model

Michael Loss

(joint work with Jeff Baker and Günter Stolz)

The random diplacement model describes the motion of a quantum particle
interacting with a randomly deformed lattice. It is given by the Hamiltonian

(1) Hω = −∆ + Vω(x)

where the potential is of the form

(2) Vω(x) =
∑

i∈Zd

q(x − i− ωi)

The single site potential q(x) is a reflection symmetric function with compact
support in the unit cube centered at the origin and the variables ωi are such that
q(x− i−ωi) maintains its support in the unit cube centered at the position i ∈ Zd.
Thus, the variables ωi measure the displacement of the single site potentials from
the lattice points of Zd. If we assume that these variables are independent and
identically distributed with respect to some probability measure, this model is
ergodic with respect to shifts of Zd and one can show [5] that there exists Σ ⊂ R

such that

σ(Hω) = Σ for a.e. ω .

While this model is a natural candidate for describing conductivity properties of
solids, or rather the absence thereof, it has been replaced by the Anderson model
that is in many ways easier to treat and hence most of the research in random
Schrödinger operators is devoted to the Anderson model. Few things are known
about the random displacement model. It was proved in [4] that for independently
distributed ωi the one dimensional problem displays localization, i.e., the spectrum
is dense point spectrum with exponentially localized eigenfunctions.

A much simpler but fundamental question is to determine the configuration for
the single site potentials that minimizes the bottom of the spectrum of Hω. For
arbitrary dimensions, it was shown in [1] that the configuration for the minimizing
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single site potentials is given by squeezing them into the corners where 2d cells of
Zd meet but keeping the support of the potential inside the cell. This determines
the variables ωi, i ∈ Zd and we denote this configuration by ωmin. This pattern is
invariant by translation of twice the period of the underlying lattice Zd. Hence we
know that

E0 := inf Σ = inf σ(Hωmin
) .

The proof proceed by decoupling the various cells by imposing Neumann bound-
ary conditions and then proving for this Neumann problem that the potential that
minimizes the lowest eigenvalue wants to sit in a corner. Further, it was shown
in [2] that if one places the Hamiltonian (1) in a box of size Ld with periodic
boundary conditions then this minimizing configuration is unique for d > 1. The
case d = 1 is very different, there is no uniqueness.

Concerning the Neumann problem, one may ask quite generally whether a
potential must be placed on the boundary of a domain in order to minimize
the energy. More precisely, consider a strictly convex open domain D ⊂ Rd,
bounded and with smooth boundary. Consider the family of Schrödinger opera-
tors H := −∆ + q(x − a) where q(x) ∈ C∞

c (D) with Neumann conditions on the
boundary of ∂D. Denote by G the set {a ∈ Rd : supp q(x − a) ⊂ D}. The set G
is open. Denote by E0(a) the lowest eigenvalue of H .

Theorem 1 (Strong minimum principle). If there exists a point a0 ∈ G with
E0(a0) = infGE0(a), then the function E0(a) vanishes identically in G and for
each a ∈ G the eigenfunction is constant outside the support of the potential.

The proof [1] relies on second order perturbation theory expressing ∆E0(a) in
terms of the curvature matrix of the boundary ∂D. One should note that it is
rather easy to construct potentials so that the lowest eigenvalue of the Neumann
operator −∆+q(x−a) vanishes identically as a function of a and the corresponding
eigenfunction for each is constant outside the support of the potential. Thus one
can move the potential around inside the domain without changing the energy.

Intuitively one expects localization to occur because there are very few eigen-
value degeneracies in the system that allow for the tunneling of the particle into
far away regions, at least for energies close to the bottom of the spectrum. This
is quantified by an estimate what is called Lifshitz tails. This together with the
much harder Wegner estimate suffices to show localization by using a multiscale
analysis. This method, which was pioneered in [7], has been developed further by
many authors with some of the most significant progress in [6, 8, 3].

Assume that the distribution of the single site potential is concentrated with
equal probability in the corners of each cell. One expects that the density of states,
defined by

N(E) = lim
L→∞

1

Ld
E
[
#{of eigenvalues ofHP

ω,L} < E
]

for d ≥ 2 displays Lifshitz tail behavior, i.e.,

(3) N(E) ≈ e−c|E−E0|−d/2

,
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as E → E0.

Here the Hamiltonian HP
ω,L is the original Hamiltonian restricted to the cube

of sidelength L with periodic boundary conditions and the expectation is with
respect to the distribution of the random variables ωi.

A natural and quite standard approach is to show by combining a large deviation
argument with the uncertainty principle, that for most of the configurations of the
potentials, the ground state energy of the Hamiltonian HP

ω,L is not too low, i.e.,

EP
ω,L ≥ E0 +

const.

L2
.

The difficulty with the displacement model is that the spectrum of the Hamiltonian
H does not vary monotonically with the displacement of the potential. A similar
difficulty occurs in the Anderson model in case the potential is not sign definite
which was treated in [9]. Klopp and Nakamura, however, were able to adapt their
method in [10] to the random displacement model. They obtain

(4) N(E) ≈ e−c|E−E0|−1/2

,

far from the desired result for dimensions larger than one. The exponent is a
reminder that the method used is essentially one dimensional which is somewhat
paradoxical because it was shown in [2] that for the one dimesional displacement
model

N(E) ≥ C

log2|E − E0|
;

thus, there are no Lifshitz tails in one dimension. This is strongly related to
the fact that the minimizing configuration in one dimension is degenerate, in fact
highly degenerate (see [2]). Thus in order to apply the method of [10], the fact
that the minimizing configuration for the periodic Hamiltonian is unique for two
and more dimensions has to be turned into a quantitative estimate.
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A Class of New Inequalities for the Eigenvalues of the Dirichlet

Laplacian

Lotfi Hermi

(joint work with Evans M. Harrell II)

The bulk of these results appear in the preprint [3] where various integral transform
techniques were used to prove the equivalence of spectral inequalities hitherto
proved by independent methods. We are concerned with bounds for different
spectral functions of the eigenvalues 0 < λ1 < λ2 ≤ λ3 ≤ · · · of the fixed membrane
problem

−∆u = λ u in Ω ⊂ R
d

u = 0 on ∂Ω.

In [3] four key inequalities were shown to satisfy the following diagram

Yang ⇔ Harrell-Stubbe, ρ ≥ 2
⇓ ⇓

Kac ⇔ Berezin-Li-Yau, ρ ≥ 2

These statements are:

• The H. C. Yang inequality [6]

(1)
∑

k

(z − λk)
2
+ ≤ 4

d

∑

k

(z − λk)+ λk

• The Harrell-Stubbe inequality [6] [3] [4]

(2)
∑

k

(z − λk)ρ
+ ≤ 2ρ

d

∑

k

(z − λk)ρ−1
+ λk

• The inequality of Kac [7]

(3) Z(t) :=
∞∑

k=1

e−λkt ≤ |Ω|
(4πt)

d/2

• The Berezin-Li-Yau inequality [9]

(4)
∑

k

(z − λk)
ρ
+ ≤ Lcl

ρ,d|Ω|zρ+d/2
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Certainly, (4) is known in this sharp form even when 1 ≤ ρ ≤ 2 [9]. Here z+ =
max{z, 0} and

Lcl
ρ,d =

Γ(ρ+ 1)

(4π)
d/2

Γ(ρ+ 1 + d/2)
.

As already shown in [4], (2) is in fact equivalent to the monotonicity principle

Rρ(z)

zρ+d/2
is a nondecreasing function of z when ρ ≥ 2.

Here Rρ(z) :=
∑

k (z − λk)
ρ
+ is the Riesz mean of order ρ ≥ 0. This mono-

tonicity principle, in addition to the semiclassical statement limt→0+ t
d/2Z(t) =

|Ω|/(4π)d/2, are key ingredients paving the way from (3) to (4). Already from
monotonicity and the statement

m∏

k=1

(
1 +

d

2(ρ+ k)

)
=

Γ(ρ+m+ 1 + d/2) Γ(ρ+ 1)

Γ(ρ+m+ 1) Γ(ρ+ 1 + d/2)
,

one can conclude for z ≥ z0, ρ ≥ 1, and m ≥ 1 that

Rρ(z) ≥ Γ(ρ+m+ 1 + d/2) Γ(ρ+ 1)

Γ(ρ+m+ 1) Γ(ρ+ 1 + d/2)

Rρ+m(z0)

z
ρ+m+d/2
0

zρ+d/2,

which in light of the definition of Lcl
ρ,d takes the form

Rρ(z)

Lcl
ρ,d z

ρ+d/2
≥ Rρ+m(z0)

Lcl
ρ+m,d z

ρ+m+d/2
0

.

Fixing z0 and sending z → ∞ and exploiting the semiclassical statement Rρ(z) ∼
Lcl

ρ,d |Ω| zρ+d/2 leads to the Berezin-Li-Yau inequality.
Sum rules in the spirit of Harrell-Stubbe play a key role in direct proofs of these

inequalities and are central to the integral transform technique. Another sum rule
attributed to Bethe [10] provides a new proof [8] [5] [2] to the lower bound universal
statement: For ρ ≥ 1

Rρ(z) ≥ H−1
d λ

−d/2
1

Γ(1 + ρ)Γ(1 + d/2)

Γ(1 + ρ+ d/2)
(z − λ1)

ρ+d/2
+ .

Here

Hd =
2 d

j2d/2−1,1J
2
d/2(jd/2−1,1)

,

where Jα(x) denotes the Bessel function of order α and jα,p is its p−th zero.
In fact, this statement is a particular case of the following general result valid

for functions F and G related by the Weyl transform [1] [3]. For a nonnegative
function f on R+ such that

∫ ∞

0

f(t)
(

1 + t−d/2
) dt
t
<∞

define

(5) F (s) :=

∫ ∞

0

e−stf(t)
dt

t
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and let

(6) G(s) := Wd/2{F (z)}(s),

where

Wµ{F (z)}(s) :=
1

Γ(µ)

∫ ∞

s

F (z) (z − s)
µ−1

dz

denotes the Weyl transform of order µ of the function F (z). According to the

Bateman project, G(s) =
∫∞
0

e−st

td/2 f(t)dt
t . Under such circumstances one has the

following result.
Theorem: For F (s) and G(s) as defined above, and related by the Weyl trans-

form,
∞∑

j=1

F (λj) ≥ Γ(1 + d/2)

Hd
λ
−d/2
1 G(λ1).

It turns out that the correction introduced by Melas to the formula of Li-Yau
leads to the following counterpart statement.

Theorem: For F (s) and G(s) as related by the Weyl transform, one has

∞∑

j=1

F (λj) ≤ 1

(4π)d/2
|Ω|G

(
Md

|Ω|
I(Ω)

)
.

Here Md is a universal constant stemming from the work of Melas. This leads to
the conjecture

∞∑

j=1

F (λj) ≤ 1

(4π)d/2
|Ω|G(|Ω|−2/d)

Here 1
|Ω|2/d replaces Md

|Ω|
I(Ω) . Such a conjecture would follow from the following

adjustment of the Melas result: For ρ ≥ 1

Rρ(z) ≤ Lcl
ρ,d|Ω|

(
z − 1

|Ω|2/d

)ρ+ d
2

+

.

A consequence of which is the following correction of the Kac inequality

Z(t) ≤ |Ω|
(4πt)

d/2
e
−

t

|Ω|2/d
.

It seems that an inequality of the form



k∑

j=1

(z − λj)+




2

≤ 4

d

k∑

j=1

(z − λj)
1/2
+

k∑

j=1

(z − λj)
1/2
+ λj

is tractable [13] and might lead to an interesting statement for Riesz means of
orders ρ = 1/2, 1, 3/2. It remains a question whether one can improve, at least for
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convex domains, a result of Van Den Berg [12] to the following statement

∣∣Z(t) − |Ω|
(4πt)d/2

e−t/|Ω|2/d∣∣ ≤ φ(|∂Ω|, t, d)

where φ is an explicit function.
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A sharp Lieb-Thirring inequality with a remainder term

Leander Geisinger

(joint work with Timo Weidl)

Let Ω ⊂ Rd be an open and bounded set and consider a potential V : Ω → R,
V ≥ 0. Assume that a Schrödinger-Operator H = −∆ − V can be defined as a
selfadjoint operator with Dirichlet boundary conditions, i. e. in the form sense on
the form domain H1

0 (Ω), so that the negative spectrum of H consists of a finite

number of negative eigenvalues (−λk)
N
k=1. These eigenvalues can be estimated

with sharp Lieb-Thirring inequalities, see [6]. For σ ≥ 3/2

(1)
∑

k

λσ
k ≤ Lcl

σ,d

∫

Ω

V σ+d/2dx.

In the case of a constant potential V ≡ Λ > 0 on Ω it is known that the result-
ing semiclassical Berezin-Li-Yau inequalities, [2], can be improved by a negative
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remainder term, see [7], [8] and [5], and [3] for discrete operators. We improve the
semiclassical inequalities (1) for general potentials V ∈ Lσ+d/2(Ω) by analysing
the effect of the Dirichlet boundary condition on individual eigenvalues. Here we
concentrate on the one dimensional case and use results from Sturm-Liouville The-
ory, see e.g. [9], to derive an improved Lieb-Thirring inequality with a remainder
term.
Let I ⊂ R be an open interval of length l < ∞. For simplicity we first assume
I = (0, l) and V ∈ C∞

0 (I). Under these conditions define three types of Operators
with different boundary conditions:

HR = −∆ − V with form domain H1(R)

HD
I = −∆ − V with form domain H1

0 (I)

H
(α,β)
I = −∆ − V for 0 ≤ α, β ≤ π

2
through the closure of the quadratic form

h
(α,β)
I [ϕ] =

∫

I

|ϕ′|2dx−
∫

I

V |ϕ|2dx+ cotα |ϕ(0)|2 + cotβ |ϕ(l)|2

with form domain H1(I). For ϕ from the domain of H
(α,β)
I the boundary condi-

tions
ϕ′(0) = cotα ϕ(0) and ϕ′(l) = − cotβ ϕ(l)

hold. Moreover define σ− (HR) = (−µk), σ−
(
HD

I

)
= (−λk) and σ−

(
H

(α,β)
I

)
=

(−νk(α, β)). To establish a connections between these eigenvalues one can compare

eigenfunctions of HR and H
(α,β)
I in order to prove

Proposition 1. Assume σ−
(
HD

I

)
= (−λk)

N
k=1. Then for the negative eigenvalues

of HR and H
(α,β)
I the identity

−µk = −νk(ωk, ωk)

holds for all k = 1, . . . , N with ωk = arccot
√
µk.

To estimate the difference

µk − λk = νk(ωk, ωk) − νk(0, 0)

we use results from Sturm-Liouville-Theory. The eigenvalues −νk(α, β) can be
differentiated with respect to the boundary conditions depending on α and β and
the derivative can be expressed with the help of functions u(ν, α, t) and ũ(ν, β, t)
defined by

−u′′ − V u = −ν u on I and u(ν, α, 0) = sinα u′(ν, α, 0) = cosα,

−ũ′′ − V ũ = −ν ũ on I and ũ(ν, β, l) = sinβ ũ′(ν, β, l) = − cosβ.

Proposition 2. The identity

µk − λk =

∫ ωk

0

‖ u(νk(α, ωk), α) ‖−2
L2(I) dα+

∫ ωk

0

‖ ũ(νk(0, β), β) ‖−2
L2(I) dβ

holds for all k ∈ N where −λk ∈ σ−
(
HD

I

)
.
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For k = 1, ‖ u(ν1(α, ω1), α) ‖L2(I) and ‖ ũ(ν1(0, β), β) ‖L2(I) can be estimated
from below in terms of l and

√
µ1. Using these estimates, the variational principle

and the inequality

√
µ1 ≤

∫
V dt,

see [4], one can prove

Theorem 1. For an open intervall I ⊂ R of length l <∞ the estimates

∑

k

λσ
k ≤ Lcl

σ,1

∫

I

V σ+1/2dt −
(

2
(∫
V dt

)2

exp
(
l
∫
V dt

)
− 1

)σ

if l

∫
V dt ≥ 2 ln 3

and σ−(H) = ∅ if l

∫
V dt < 2 ln 3

hold for σ ≥ 3/2 and all V ∈ Lσ+1/2(I).

This result can be generalised to higher dimensions by applying operator valued
Lieb-Thirring inequalities, [6], and an induction in the dimension argument similar
to the one used e.g. in [6] and [8]. This process yields improved Lieb-Thirring
inequalities with correction terms in higher dimensions.
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On some inequalities for eigenvalues of Schrödinger operators with

complex-valued potentials

Ari Laptev

(joint work with Oleg Safronov)

We consider the Schrödinger operator H = −∆ + V with a complex-valued
potential V assuming that lim|x|→∞ V (x) = 0 and would like to obtain some
results on the distribution of eigenvalues of H in the complex plane.

The main result of [6] tells us that for any t > 0 the eigenvalues zj of H lying
outside the sector {z : |ℑz| < t ℜz} satisfy the estimate

∑
|zj |γ ≤ C

∫
|V (x)|γ+d/2dx, γ ≥ 1,

where the constant C depends on t, γ and d.
A natural question that appears in relation to this result is what estimates

are valid for the eigenvalues situated inside the conical sector {z : |ℑz| < tℜz},
where the eigenvalues might be close to the positive half-line? The aim of this
note is to present a number of statements that describe the rate of accumulation
of eigenvalues to the set R+ = [0,∞).

Theorem 1. Let ℜV ≥ 0 be a bounded function. Assume that ℑV ∈ Lp(Rd),
where p > d/2 if d ≥ 2 and p ≥ 1 if d = 1. Then the eigenvalues λj of the operator
H = −∆ + V satisfy the estimate

(1)
∑

j

( ℑλj

|λj + 1|2 + 1

)p

+
≤ C

∫

Rd

ℑV p
+(x) dx,

where ℑV + is a positive part of ℑV . The constant C in this inequality can be
computed explicitly:

(2) C = (2π)−d

∫

Rd

dξ

(ξ2 + 1)p
.

The right hand side of the estimate (1) does not contain the potential ℜV .
This means that the conditions on ℜV can be drastically relaxed. It is not the
case when we try to obtain an estimate of the sum

∑
j(ℑλj/(|λj + 1|2 + 1))p

+ for

p ≤ d/2. A certain regularity of ℜV is required in this case because of an essential
reason.

Theorem 2. Let ℜV ≥ 0 and ℑV be two bounded real valued functions. Assume
that ℑV ∈ Lp(Rd), where p > d/4 if d ≥ 4 and p ≥ 1 if d ≤ 3. Then the
eigenvalues λj of the operator H = −∆ + V satisfy the estimate

(3)
∑

j

( ℑλj

|λj + 1|2 + 1

)p

+
≤ (1 + ||V ||∞)2pC

∫

Rd

ℑV p
+(x) dx.

The constant C in this inequality can be computed explicitly:

(4) C = (2π)−d

∫

Rd

dξ

((ξ2 + 1)2 + 1)p
.
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One should mention, that the paper [6] in its turn was motivated by the question
of E.B. Davies about an integral estimate for eigenvalues of H (see [1] and [4]). If
d = 1 then all eigenvalues λ of H which do not belong to R+ satisfy

|λ| ≤ 1

4

(∫
|V (x)|dx

)2

.

Note that the constant in the latter inequality is sharp and is achieved for Dirac
type potentials eiθδ(x), θ ∈ [0, 2π]. It is interesting that for the corresponding
Dirichlet boundary value problem on R+ the constant in this inequality is not as
good as 1/4, see recent preprint [5].

The question is whether a similar integral estimate holds in dimension d ≥ 2.
By the word “similar”, we mean an estimate by the Lp norm of the potential V
with p > d/2. So, the problem can be formulated as a hypothesis in the following
way:

Conjecture. Let d ≥ 2 and let γ > 0 be given. There is a positive constant C
such that

(5) |λ|γ ≤ C

∫

Rd

|V (x)|d/2+γdx,

for every complex valued potential V ∈ C∞
0 and every eigenvalue λ /∈ R+ of the

operator −∆ + V .

So far, we are able to prove only the following result related to this conjecture:

Theorem 3. Let V be a function from Lp(Rd), where p ≥ d/2, if d ≥ 3, p > 1, if
d = 2, and p ≥ 1, if d = 1. Then every eigenvalue λ of the operator H = −∆ + V
with the property ℜλ > 0 satisfies the estimate

(6) |ℑλ|p−1 ≤ |λ|d/2−1C

∫

Rd

|V |pdx.

The constant C in this inequality depends only on d and p. Moreover, C = 1/2
for p = d = 1.

The relation (6) was established in [1] in the case d = p = 1. We prove it in
higher dimensions and in dimension d = 1 for p > 1.

One can easily obtain the following elementary estimate although it is not quite
the same as as (5).

Theorem 4. Let d = 3 and let z = k2 /∈ R+ be an eigenvalue of the operator
H = −∆ + V , ℑk > 0. Then there is a positive constant C depending only on
γ > 0, such that

(ℑk)2γ ≤ C

∫

R3

|V |3/2+γdx.

While we do not prove the conjecture directly, we find some interesting infor-
mation about the location of eigenvalues of the operator −∆ + iV with a positive
V ≥ 0. In particular, in d = 3, we obtain that if

∫
V dx is small and λ /∈ R+ is an

eigenvalue of −∆ + iV , then |λ| must be large. It might seem that eigenvalues do
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not exist at all for small values of
∫
V dx, however their presence in such cases can

be easily established with the help of the following statement.

Proposition 3. Let d ≥ 3. Then there is a sequence of positive functions Vn ≥ 0
such that the “largest modulus” eigenvalue λn /∈ R+ of the operator −∆ + iVn

satisfies |λn| → ∞ as n→ ∞, while limn→∞
∫
Vn(x)dx = 0.

Proof. If λ is an eigenvalue of −∆ + iV (x), then n2λ is an eigenvalue of −∆ +
n2iV (nx). It remains to note that

∫
n2V (nx)dx = Cn2−d. The proof of existence

of a non-real eigenvalue of −∆ + iV (x) at least for one V ≥ 0 is left to the
reader. �

Remark. The proposition does not contradict Conjecture.
Note that our theorems imply also that the eigenvalues of −∆ + iV can not

accumulate to zero in d = 3, if V ≥ 0 is integrable.

One line proof of a Hardy inequality

Hardy’s inequality for convex domains in Rd is usually given in terms of the
distance to the boundary. Namely, let Ω ⊂ Rd be a convex domain and let
δ(x) = dist (x, ∂Ω) be the distance from x ∈ Ω to the boundary ∂Ω. The fol-
lowing Hardy inequality is well known (see [2], [3])

∫

Ω

|∇u|2 dx ≥ 1

4

∫

Ω

|u(x)|2
δ2(x)

dx, u ∈ H1
0 (Ω).

There is one line prove of this inequality based on two geometrical facts:

|∇δ(x)| = 1

and if Ω is convex then
−∆δ(x) > 0.

If now

Q = ∇− 1

2

∇δ(x)

δ(x)

then we have

0 ≤ Q ∗Q = −∆ +
∆δ(x)

δ(x)
− 1

2

|∇δ(x)|
δ2(x)

+
1

4

|∇δ(x)|
δ2(x)

.

The proof is complete.
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Convex sets of constant width

Bernd Kawohl

A bounded convex set has constant width d iff any two parallel (and nonidentical)
tangent planes to it have identical distance d from each other. Clearly balls have
this property, but there are also other sets of constant width. This lecture was
originally designed for a general audience as part of a series of lectures during the
German ”Year of Mathematics” 2008. It starts by presenting evidence from the
Challenger desaster [11]. A lack of geometric insight was a serious contributing
factor to this accident. Then the lecture treats two- (and later three-)dimensional
sets of constant width and their occurence in daily life, for instance as shapes
of coins [18]. These require in general less material than circular ones, because
Barbier proved the following interesting isoperimetric property at the age of 21.
Theorem 1: (Barbier 1860) All plane convex sets of constant width d have the
same perimeter πd as the disc of diameter d.

So by the classical isoperimetric inequality the disc has maximal area among
all plane convex sets of given constant width. Another elegant and elementary
proof that uses only the theorem of Pythagoras and polar coordinates was given
by Littlewood in [19].

There are many plane convex sets of constant width. Their support function
p(θ) necessarily satisfies the functional equation

(1) p(θ) + p(θ + π) = d on [0, 2π],

and this equation has many solutions, for instance p(θ) = d
2 + ε sin(kθ). It is only

natural to ask for the shape of a coin that uses least material for a given width,
and this question is answered by what is commonly called the Theorem of Blaschke
and Lebesgue.
Theorem 2: Among all plane convex sets of constant width d the Reuleaux-
triangle minimizes area.
The Reuleaux triangle is the intersection of three discs of radius d with centers at
the corners of an equilateral triangle with sides of length d. Its beauty has inspired
artists and architects as well as engineers. Very different proofs of this theorem
were provided by Blaschke [4], Lebesgue [21, 22], Fujiwara [13], Eggleston [10],
Besicovich [3], Ghandehari [14], Campi, Colesanti & Gronchi [7] and Harrell [15].
One can calculate the area A of a convex set in terms of its support function p
and try to minimize A. This leads to the variational problem of minimizing the
functional

(2) A(p) :=

∫ 2π

0

{p(θ)2 − p′(θ)2} dθ among 2π-periodic functions p
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under the nonlocal constant width constraint (1) and the convexity constraint

(3) p′′(θ) + p(θ) ≥ 0 on [0, 2π].

Notice that (2) is a nonconvex minimization problem under nonstandard side con-
straints, and it cannot be attacked by direct methods in the calculus of variations.

Reuleaux triangles can be used to construct drills that drill square holes, see
[23] for a video-clip or [27] for an instructive animation, or machines that trans-
form a rotation into a sliding and stopping motion, see [26]. Reuleaux built and
sold collections of small gears as instructional tools for students, and one of those
collections has survived at Cornell University and was recently put on the web.
Such movements were used in movie-projectors, see [28]. Reuleaux was an impres-
sive scientist. I report on some of his achievements. He has only recently been
compared to Leonardo da Vinci by Francis C. Moon, who discovered and saved
the collection of Reuleaux’s kinematic models at Cornell University [24, 26].

There are also threedimensional convex bodies of constant width. Photos of
plaster models can be found in [16] or [12], other shapes in the website that comes
with [6]. Incidentally, Stefan Cohn-Vossen was a postdoc of Courant, came to
Cologne and gave his “Antrittsvorlesung”on convex surfaces on Feb 22, 1932. In
April 1933 he was temporarily suspended from teaching because he was Jewish,
in September 1933 he lost his job permanently. He emigrated to Moscow, where
he died 1936 of pneumonia. It is truely admirable that Richard Courant, who
was also driven out of this country, was later of instrumental help in supporting
the Oberwolfach Institute. As in the twodimensional case, one ask if there is
an analogue to Barbier’s Theorem and one can try to maximize or minimize the
volume of convex bodies of constant width.
Theorem: (Blaschke 1915) Among all 3d convex bodies of given width d the
ball maximizes volume and surface area, and the one that minimizes volume also
minimizes surface area.

The body of minimal volume or surface area is unknown, but there is a suspect.
Conjecture: (documented 1934 by Bonnesen & Fenchel) The threedimensional
convex bodies of constant width that minimize volume are exactly Meissner’s bodies.

Pictures of these bodies can be found at [25, 16, 12]. They are essentially
constructed from modifications of a Reuleaux-tetrahedron, the intersection of four
balls centered at the corners of a regular tetrahedron. There is, however an answer
to the minimal volume problem if we look in the smaller class of rotational bodies,
Theorem: (Campi et al. 1996) Among the class of rotational convex bodies of
constant width d, the one that minimizes volume is the rotated Reuleaux triangle.

Finally I mention two recent results that support the above conjecture. The
first one shows how to construct an n-dimensional body of constant width from
an (n− 1)-dimensional one.
Theorem: (Lachand-Robert, Oudet 2006) Suppose that E± denote the upper and
lower half-plane in Rn. Let K0 ⊂ E+ ∩E− be an (n− 1)–dim. const. width body,
and Q ⊂ Rn satisfy K0 ⊂ Q ⊂ E−

⋂
x∈Ko

B(x, d). Set K+ := E+ ∩⋂x∈QB(x, d)
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and K− := E−
⋂

x∈K+
B(x, d). Then K := K+∪K− is an n-dimensional constant

width body with K0 as a cross section.
If in this construction n = 2 and Q = K0 = (0, d), then K is the Reuleaux-

triangle, and if n = 3 and Q = K0 = Reuleaux-triangle, then K is a Meissner
body. Although this construction seems to be exhaustive only for n = 2, see [9],
it can be used to randomly generate many threedimensional bodies of constant
width. A student of mine, Martin Müller, has recently generated one million of
those. None of them had smaller volume than the Meissner bodies.

And in a recent paper [2] Bayen, Lachand-Robert & Oudet derive a necessary
condition that characterizes a 3d constant width body of (locally) minimal volume:
If one squeezes such a body between two parallel planes, at one of the two points
of tangency its surface is not smooth.

Clearly Meissner’s bodies satisfy this condition, while a ball does not, and this
supports the conjecture, but it does not prove it.
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Approximating low eigenvalues of the Laplacian: analysis, geometry

and numerics

Pedro Freitas

We report on recent progress regarding the approximation of low eigenvalues of
the Laplace operator on bounded domains in n−dimensional Euclidean space with
Dirichlet boundary conditions. Although the general purpose is to be able to
understand better the relationships between the geometry of the domain and the
low eigenvalues, we divide our approach into (roughly) three categories as follows:

(1) asymptotic expansions
(2) bounds depending on geometric quantities
(3) more complex conjectured bounds supported by extensive numerical com-

putations

Below we give some examples of results pertaining to each of these cases.

Asymptotic expansions. In this approach we expand eigenvalues in terms of
a parameter ǫ measuring a scaling in one direction. In order to be able to write
the coefficients of the asymptotic expansion explicitly, this is done around the
(singular) flattened case which corresponds to vanishing ǫ – compare with a dif-
ferent approach in [6]. Furthermore, since we obtain all the coefficients of the
unbounded terms, the approximation is actually good for ǫ not necessarily very
small, and sometimes even up to the original domain, that is ǫ = 1. As an exam-
ple, we have the following expansion for the first eigenvalue of ellipses of radii 1
and ǫ.

λ1(ǫ) =
π2

4ǫ2
+
π

2ǫ
+

3

4
+

(
11

8π
+

π

12

)
ǫ+ O(ǫ2), as ǫ→ 0.
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This has a similar error (maximum of around 5%) as the corresponding expression
derived by Joseph. However, we are not restricted by the fact that we might not
know the eigenvalue of the original domain. An example of such a situation is
given by the lemniscate,

(
x2

1 + x2
2

)2
= x2

1 − x2
2.

for which we now obtain

λ1(ǫ) =
2π2

ǫ2
+

2
√

3π

ǫ
+

97

24
+

(
593

64
√

3π
+

√
3π

4

)
ǫ+ O(ǫ2), as ǫ→ 0.

The error made as ǫ approaches one is in fact smaller than in the case of the
ellipses above. For details, see [3].

It is possible to follow a similar approach in the n−dimensional case, still scal-
ing along one direction. The formulae involved are more complex, and we only
obtained the first three terms [4]. These still control all the unbounded coefficients.
For ellipsoids defined by

E =

{
(x1, . . . , xd) ∈ R

d :

(
x1

a1

)2

+ · · · +

(
xd

ad

)2

≤ 1

}
,

this yields

λ1 (Eǫ) = π2

4a2
dǫ

2 + π
2adǫ

d−1∑

i=1

1

ai
+

1

4



3

d−1∑

i=1

1

a2
i

+
1

2

d−1∑

i=1

d−1∑

j=i+1

1

aiaj



+ O(ǫ1/2)

as ǫ→ +0.

Geometric bounds. We consider the problem of bounding the first Dirichlet
eigenvalue of quadrilaterals. Our main result in this direction is given by the
following theorem [5].

Theorem 1. Let Q be a quadrilateral with side lengths ℓi, i = 1, ..., 4, and diago-
nals of lengths d1 and d2 forming an angle θ in (0, π/2] between them, where it is
assumed that d2 is the length of the largest diagonal contained in Q. Then

2π2

A
+

π2

4A2 (d2 sin θ − d1)2 ≤ λ1(Q) ≤ π2

2A2

(
l21 + l22 + l23 + l24

)
,

where A denotes the area of Q. Equality holds for squares and rectangles in the
lower and upper bounds respectively.

The lower bound improves upon the Faber–Krahn-type bound of Polya and
Szegö which states that among all quadrilaterals of the same area, the square
minimizes the first Dirichlet eigenvalue. The upper bound generalizes a result
established by Hersch in the case of parallelograms.
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Numerics. By using the possibilities afforded not only by the increase in com-
puter power but also by numerical methods which allow for the fast evaluation
of low eigenvalues of the Dirichlet Laplacian on planar domains, we have ana-
lyzed numerically the dependence of the spectral gap of a domain K, γ(K) :=
λ2(K) − λ1(K), on quantities such as the diameter, area and perimeter [1]. In
particular, we considered the effect of the area in the long–standing gap conjec-
ture. In its original form, as proposed by van den Berg [2], this reads as follows

Conjecture 1. For any planar convex domain K we have

γ(K) ≥ 3π2

d2
,

where d denotes the diameter of K.

Apart from providing extensive numerical results supporting the conjecture,
our results also point in the direction that this is a particular case of the following
conjecture which now takes the area into consideration.

Conjecture 2. For any planar convex domain K we have

γ(K) ≥ 12π2γ(B1)

3π3d2 + [4γ(B1) − 3π3]
√
d4 − 16

π2A2

where B1 is the ball of unit area. Equality holds if and only if K is a ball or
asymptotically for infinite strips.

Note that this reduces to the gap conjecture when A vanishes.
We also examined in detail the dependence on the diameter for the gap of convex

polygons and concluded that optimal isodiametric polygons seem to play a role
here. Similar studies were carried out for the spectral quotient ξ(K) = λ2/λ1.

References

[1] P. Antunes and P. Freitas, A numerical study of the spectral gap, J. Phys. A 41 (2008),
055201.

[2] M. van den Berg, On condensation in the free–boson gas and the spectrum of the Laplacian,
J. Statist. Phys. 31 (1983), 623–637.

[3] D. Borisov and P. Freitas, Singular asymptotic expansions for Dirichlet eigenvalues and
eigenfunctions on thin planar domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, to
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An isoperimetric inequality for the free plate eigenvalue

L. Mercredi Chasman

Isoperimetric problems are about minimizing or maximizing a quantity subject to
constraints. The classical isoperimetric inequality states that of all planar regions
of the same perimeter, the disk has maximal area. Equivalently, of all regions
of the same area, the disk minimizes perimeter. Many physical quantities satisfy
isoperimetric-type inequalities.

Researchers have investigated and proved isoperimetric inequalities regarding
frequencies of vibration in related situations. Lord Rayleigh conjectured, and
Faber and Krahn proved, that of all membranes of the same area with constrained
edges, a circular drum produces the lowest pitch. Kornhauser and Stakgold con-
jectured the opposite bound for a membrane with unconstrained edges; this result
was proven by Szegő and Weinberger. In my talk, I proved an isoperimetric result
for a free plate under tension with unconstrained edges: of all such plates having
the same area, the disk has the highest fundamental pitch.

Mathematical formulation. Let Ω be a smoothly bounded region in Rd, d ≥ 2,
and fix a parameter τ > 0. The “plate” Rayleigh quotient is

(1) Q[u] =

∫
Ω |D2u|2 + τ |Du|2 dx∫

Ω
|u|2 dx .

Here |D2u| = (
∑

jk u
2
xjxk

)1/2 is the Hilbert-Schmidt norm of the Hessian matrix

D2u of u, and Du denotes the gradient vector.
Physically, when d = 2 the region Ω is the shape of a homogenous, isotropic

plate. The parameter τ represents the ratio of lateral tension to flexural rigidity of
the plate; for brevity we refer to τ as the tension parameter. Positive τ corresponds
to a plate under tension, while taking τ negative would give us a plate under
compression. The function u describes a transverse vibrational mode of the plate,
and the Rayleigh quotient Q[u] gives the bending energy of the plate.

From the Rayleigh quotient (1), one can derive the partial differential equation
and boundary conditions governing the vibrational modes of a free plate. The
critical points of (1) are the eigenstates for the plate satisfying the free boundary
conditions and the critical values are the corresponding eigenvalues. For simplicity
we give the boundary conditions taking d = 2. The equation is:

(2) ∆∆u − τ∆u = ωu,

where ω is the eigenvalue, with the natural (i.e., unconstrained or “free”) boundary
conditions on ∂Ω:

Mu :=
∂2u

∂n2
= 0(3)

V u := τ
∂u

∂n
− ∂

∂s
(n(D2u)t) − ∂(∆u)

∂n
= 0(4)

Here n is the outward unit normal to the boundary, s the arclength, and t the unit
tangent to the boundary.
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The eigenvalue ω is the square of the frequency of vibration of the plate. The
quantities appearing as boundary conditions have physical significance as well. The
expression Mu is the bending moment. As the plate bends, one side compresses
while the other expands, leading to a restoring moment which must vanish at an
unconstrained edge.

The problem. Using coercivity, we can prove that the spectrum of the free plate
under tension is discrete, consisting entirely of eigenvalues with finite multiplicity:

0 = ω0 < ω1 ≤ ω2 ≤ · · · → ∞.

We also have a complete L2-orthonormal set of eigenfunctions u0 ≡ const, u1, u2,
and so forth.

We call u1 the fundamental mode and the eigenvalue ω1 the fundamental tone;
the latter can be expressed using the Rayleigh-Ritz variational formula:

ω1(Ω) = min

{
Q[u] : u ∈ H2(Ω),

∫

Ω

u dx = 0

}
.

In general, the kth eigenvalue is the minimum of Q[u] over the space of all functions
u L2-orthogonal to the eigenfunctions u0, u1,. . . , uk−1. Because u0 is the constant
function, the condition u ⊥ u0 can be written

∫
Ω u dx = 0.

Let Ω∗ denote the ball with the same volume as Ω. My main goal was to prove
the following theorem.

Theorem 1. For all smoothly bounded regions of a fixed volume, the fundamental
tone of the free plate with a given positive tension is maximal for a ball. That is,
if τ > 0 then

(5) ω1(Ω) ≤ ω1(Ω∗), with equality if and only if Ω is a ball.

In the limiting case τ = 0, the first d + 1 eigenvalues of Ω are trivial because
Q[u] = 0 for all linear functions u. Thus we need the tension parameter τ to be
positive to get a nontrivial conjecture.

The proof can be summarized as follows. Adapting Weinberger’s approach for
the membrane [1], we construct trial functions with radial part ρ matching the
radial part of the fundamental mode of the ball. We use the trial function to
bound the eigenvalue ω by a quotient of integrals over our region Ω, both of whose
integrands are radial functions. These integrands will be shown to have a ”partial
monotonicity”. The denominator’s integrand is increasing and the numerator’s
integrand satisfies a decreasing partial monotonicity condition. From there we
deduce the theorem.
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On computing the instability index of a non-selfadjoint differential

operator associated with coating and rimming flows

Almut Burchard

(joint work with Marina Chugunova)

We examine the computation of the instability index for differential operators
of the form

(1) A[h] = −h′′′′ −
(
a(x)h

)′′
+
(
b(x)h

)′ − c(x)h ,

acting on 2π-periodic functions. Such operators appear as linearizations of models
for thin liquid films moving on the surface of a horizontal rotating cylinder [6, 3].
The flows are called coating, if the fluid is on the outside of the cylinder, and
rimming, if the fluid is on the inside of a hollow cylinder. For instance, in [3],
the linearized operator is given by

A[h](x) = − d

dx

{
(1 − α1 cosx)h+ α2 sinx

dh

dx
+ α3

(
dh

dx
+
d3h

dx3

)}

with periodic boundary conditions. The parameter α1 is related to the gravita-
tional drainage, α2 is related to the hydrostatic pressure (in the lubrication ap-
proximation model this coefficient is very small), and the parameter α3 describes
surface tension effect. One would expect the flow to become unstable, if the fluid
film is thick enough so that drops can form on the bottom of the cylinder (in case
of a coating flow) or on its ceiling (in case of a rimming flow). In both cases,
surface tension and higher rotation speeds should help to stabilize the fluid, but
may also allow for more complicated steady states.

The instability index κ(A) counts the number of eigenvalues ofA (with multiplic-
ity) that have positive real part. Our main result from [4] reduces the instability
index of A to the instability index of its projection to a space of trigonometric
polynomials, as follows. Define the operators Ax and Ay on a function F (x, y)
by acting with the single-variable operator A on F (·, y) and F (x, ·), respectively.
Suppose that U(x, y) solves the partial differential equation

(2)
(
A∗

x +A∗
y

)
U(x, y) = δy−x

with periodic boundary conditions on [0, 2π]× [0, 2π], and let U0(x, y) be the solu-
tion in the special case where a(x) = b(x) = 0 and c(x) = 1. Direct computation
shows that U0 is piecewise smooth, with a jump in the third derivative across
the line x = y. By elliptic regularity, the difference U(x, y) − U0(x, y) lies in the

Sobolev space H4. Although the integral kernel U(x, y) just fails to lie in H
7
2 , it

defines a bounded linear operator from L2 to H4.

Proposition. Let PN denote the standard projection onto the space of trigono-
metric polynomials of order N , assume that U solves Eq. (2) on [0, 2π] × [0, 2π]
with periodic boundary conditions, and set M = 0.52

(
||a||H1 + ||b||H1 + ||c−1||H1

)
.

If

N2 > M(1 +
√
M + 1)

(
1 + ||U(x, y) − U0(x, y)||H4

)
,
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then

κ(A) = κ
(
PNAPN

)
.

Remark. In the condition on N , the factor 1 + ||U(x, y) − U0(x, y)||H4 can be
replaced with a smaller term, given by a suitable norm of U .

Eq. (2) is an instance of Lyapunov’s equation A∗U + UA = I. Classical re-
sults state that it has a unique solution if the spectra of A and −A∗ are disjoint.
Furthermore, κ(A) = κ(U), and the positive and negative cones of U contain
the invariant subspaces associated with the spectrum of A in the right and left
complex half-planes, respectively [7, 5, 1, 2]. We argue that the quadratic form
defined by the self-adjoint operator U is negative on high Fourier modes, because
the fourth order term in A dominates the lower order derivatives. This implies that
κ(U) = κ(PNU

−1PN ). The proof of the proposition is completed by estimating
the off-diagonal terms in the Fourier representation for A and U .
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Problems from the Oberwolfach Workshop on Low Eigenvalues of

Laplace and Schrödinger Operators

Contributed by all Participants

Below we present some open problems raised during the Oberwolfach Workshop
on Low Eigenvalues of Laplace and Schrödinger Operators, February 9-13, 2009.
The name of the participant who suggested the problem is stated in parentheses.
We wish to thank Iosif Polterovich and Rupert L. Frank who collected the prob-
lmes in sections 1-5 and sections 8-10 and Rodrigo Bañuelos who contributed the
problems in sections 6 and 7.
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1. Dirichlet eigenvalues

Consider the Dirichlet boundary value problem on a bounded domain Ω ⊂ Rn:
{
−∆uj = λjuj in Ω,

uj = 0 on ∂Ω.

1.1. (Mark Ashbaugh) Ratios of Dirichlet eigenvalues.

(1) Payne–Pólya–Weinberger conjecture for ratios of consecutive eigenvalues.
Prove that for arbitrary Ω ⊂ Rn

(1) λm+1/λm(Ω) ≤ λ2/λ1(ball in R
n) for all m.

The intuition for the conjectured bound is that one can approach as
close as one wants to having equality in (1) by taking Ω to be m identical
balls connected by thin tubes, and shrinking the widths of the tubes to 0.
Assuming (1) is true, this argument would show sharpness of the bound.
The harder part is to show the truth of (1). We also note that the right-
hand side of (1) is explicitly given as the ratio of squares of Bessel function
zeros j2n/2,1/j

2
n/2−1,1, where jp,k denotes the kth positive zero of the Bessel

function Jp (our notation here is standard, following that of Abramowitz
and Stegun [1]).

Inequality (1) is known for the beginning values of m, namely m =
1, 2, 3. These results were proved by Ashbaugh and Benguria [2, 3, 4, 5].
Indeed, proofs of the m = 1 case can be found in [2, 3], while a proof of
the m = 2 case occurs in [4]. Later, in [5], it was shown that

(2) λ4/λ2(Ω) < λ2/λ1(ball in R
n),

which immediately implies both the m = 2 and m = 3 cases of (1). One
expects (1) to be strict for m > 1 (recall that a domain is a connected

open set; if the connectedness hypothesis were removed, then cases with
m identical disjoint balls would allow equality to occur all the way up).

Beyond what’s been said above, all the cases m ≥ 4 remain open.
Indeed, it would be interesting to find any bound better than 1 + 4/n for
those cases (m ≥ 4). The bound 1 + 4/n was proved by Payne, Pólya,
and Weinberger [9, 10] (done explicitly only for n = 2, but the proof
generalizes straightforwardly to n dimensions). For m ≥ 4 nothing better
is known; for more on the literature of bounds for ratios of low eigenvalues,
see [6, 7, 8].

(2) Prove that for arbitrary Ω ⊂ Rn,

(3) λ2m/λm(Ω) ≤ λ2/λ1(ball in R
n) for all m.

This conjecture is motivated by (2) and is a considerable strengthening of
the conjectured bound (1).



Low Eigenvalues of Laplace and Schrödinger Operators 401

Much as above, one can see that, if true, (3) saturates at examples
consisting of anywhere from m to 2m− 1 identical n–balls, connected by
thin passages, in the limit as the widths of the passages are sent to 0. One
expects (3) to be strict for m > 1. As already mentioned, the proof of the
m = 2 case of (3) can be found in [5]. It relies on Courant’s nodal domains
result for the second eigenfunction (and, of course, the m = 1 case of (1)).
The cases for m = 3 and above all remain open.

(3) Finally, we offer a conjectured inequality concerning the first n nontrivial
ratios of eigenvalues λm to λ1 for domains contained in Rn, the n = 2 case
of which was first stated and studied by Payne, Pólya, and Weinberger in
[10].

Payne–Pólya–Weinberger conjecture for the sum of the first n eigenvalue
ratios: Prove that for arbitrary Ω ⊂ Rn,

(4)
λ2 + λ3 + · · · + λn + λn+1

λ1
(Ω) ≤ λ2 + λ3 + · · · + λn + λn+1

λ1
(ball in R

n).

This inequality has been checked perturbatively for domains in R2 that
are “nearly circular” and found to hold, much as can be done in the m = 1
case of (1). However, one finds that compared to the m = 1 case of (1), this
bound is much tighter, essentially because as the domain breaks away from
being circular (where λ2 = λ3) one finds λ2/λ1 decreases with a certain
slope in the perturbation parameter, while λ3/λ1 increases according to
the negative of that slope. Thus the sum of these ratios is stationary
at first order, and one must go to second order to see that the sum is
concave down, and hence that the desired bound holds for nearly circular
domains. As in the two earlier problems, one can find explicit expressions
for the right-hand side of (4) in terms of zeros of Bessel functions. Here
the bound is n j2n/2,1/j

2
n/2−1,1, since for the n–ball all the eigenvalues λ2

through λn+1 are equal.
In general, inequality (4) is not known for any n ≥ 2, though it has

been proved for certain special cases where the domain has symmetry. See
[6] for these more specialized results. Bounds of similar type to (4) have
been proved, but the constant is always just slightly too large, assuming
(4) is correct. An argument of Payne, Pólya, and Weinberger (given in
[10] for n = 2) shows that n + 4 (i.e., n(1 + 4/n)) is an upper bound for
the left-hand side of the inequality in Problem 3, with further refinements
of this bound having been proved by various later authors.

See [6, 7, 8] for further work relating to these problems and references
to some of the later literature.
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1.2. (Pedro Freitas, based on joint work with P. Antunes) Upper and

lower bounds for the first Dirichlet eigenvalue. Payne and Weinberger
proved in [2] that for a two–dimensional bounded simply connected domain Ω
with area A and perimeter L we have

λ1(Ω) ≤ πj20,1

A

[
1 +

(
1

J2
1 (j0,1)

− 1

)(
L2

4πA
− 1

)]
.

Here J1 is the Bessel function of the first kind of order 1, and j0,1 is the first zero
of the Bessel function of the first kind of order 0. This bound may be written
explicitly in terms of the isoperimetric defect L2 − 4πA in the form

λ1(Ω) ≤ πj201
A

+ C
L2 − 4πA

A2 ,

for some constant C. One may then pose the question of finding the optimal value
of C for which the above inequality holds. Since the factor multiplying C vanishes
when Ω is a ball, it should be possible to lower the constant until there is equality
for another domain. Based on extensive numerical simulations, it was conjectured
in [1] that this domain is the infinite strip (the equality being understood in an
asymptotic sense), and that we should have
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Conjecture. For any planar simply connected domain Ω we have

λ1(Ω) ≤ πj20,1

A
+
π2

4

L2 − 4πA

A2 .

Equality holds for disks and asymptotically for infinite strips.

Note that the coefficient in L2/A2 agrees with that in the following inequality
due to Pólya [3]

λ1(Ω) ≤ π2L2

4A2 .

It is possible to consider inequalities of the above type in the class of n−polygons,
the difference being that then the conjecture should hold with L2 − 4πA replaced
by L2 − κnA, the isoperimetric defect for the corresponding class, and πj201 by
λ1(P reg

n ), the first Dirichlet eigenvalue of the regular polygon of n sides and unit
area.

Regarding lower bounds of this type, namely, bounds of the form

πj201
A

+K
L2 − 4πA

A2 ≤ λ1(Ω),

for some positive constant K, we conjecture that no such inequality exists for
convex domains (the constant K multiplying the isoperimetric defect must vanish,
yielding Faber–Krahn). However, if we again restrict ourselves to n−polygons
(n ≥ 4), and consider

λ1(P reg
n )

A
+ Cn

L2 − κnA

A2 ≤ λ1(Pn),

the bound should hold when the constant Cn is such that it provides equality
not only for the regular n−polygon (which is automatic since the isoperimetric
deffect vanishes then) but also for the regular (n − 1)−polygon – see [1] for the
details. This is stronger than the Pölya–Szegő conjecture which states that of
all n−polygons with the same area, the regular n−polygon yields the lowest first
Dirichlet eigenvalue [4].
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1.3. Miscellaneous problems on Dirichlet eigenvalues.

(1) (Antoine Henrot) Prove that the disk minimizes the sum λ2 + λ3 of the
second and the third eigenvalues of the Laplace-Dirichlet operator among
domains of given area.
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(2) (Antoine Henrot) This problem goes back to G. Pólya (see [4, pp. 50-51]).
Prove that the regular n-gon minimizes the first eigenvalue of the Laplace–
Dirichlet operator among polygons with n sides and given area. It was
proved by Pólya for n = 3, 4 using Steiner symmetrization. Unfortunately,
Steiner symmetrization does not preserve the class of n-gons for n ≥ 5.

(3) (Antoine Henrot) Let Ω be a bounded, simply connected domain and B0

a ball of small radius. Find the location of the ball in order to minimize or
maximize the first eigenvalue of the doubly connected domain λ1(Ω \ B0)
with Dirichlet boundary conditions. In particular, prove that the mini-
mizing position is when B0 touches the boundary of Ω (where?) and the
maximizing one when B0 is centered at some particular point of Ω (which
one?). Such results have been obtained when Ω is a ball (several authors)
and when Ω is a convex set with some symmetry properties [3].

(4) (Dorin Bucur) Let Ω ⊂ RN , N ≥ 2 be a domain of finite volume V . For
each k ∈ N, prove that the isoperimetric problem

min
|Ω|=V

λk(Ω)

has at least one solution Ω∗.
Comments: For k = 1, 2 the previous problems are solved, being the well
known Faber–Krahn inequalities. For k = 3, existence of a solution is
proved in the family of quasi opens sets, while for k ≥ 4 existence of
a solution is conditioned by a mild regularity of the minimizers for λj ,
j = 3, .., k− 1 (see [2]). It is conjectured that for k = 3 the solution is the
ball in R2,R3 and three equal balls for N ≥ 4 (see [4]).

(5) (Dorin Bucur) Prove that if Ω∗ is a solution of the previous problem, then
λk−1(Ω∗) = λk(Ω∗). This conjecture has numerical evidence for several
values of k (see [5]).

(6) (Rafael Benguria) Let Ω ⊂ R2 be a convex domain, symmetric with respect
to the origin, and let χΩ be its characteristic function. Consider the null
set N (Ω) = {ξ ∈ R2 | χ̂Ω(ξ) = 0}, where χ̂Ω denotes the Fourier transform
of the characteristic function of the domain. Denote by κ(Ω) the distance
in R2 from the set N (Ω) to the origin. It is conjectured in [1] that κ(Ω) ≤√
λ2(Ω). Note that one gets equality if Ω is a disk. A weaker estimate

κ(Ω) ≤ 2
√
λ1(Ω) was proved in [1].
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2. Neumann eigenvalues

Consider the Neumann boundary value problem on a bounded, Lipschitz do-
main Ω ⊂ Rn: {

−∆uj = µjuj in Ω,

∂uj/∂n = 0 on ∂Ω.

Here µ0 = 0 with corresponding eigenfunction that is constant. For planar do-
mains, let A be the area of the domain, and L be the perimeter.

(1) (Richard Laugesen) Fix k ≥ 4 and maximize µ1A over all k-gons Ω. Is the
maximizer the regular k-gon? The triangular case k = 3 was proved re-
cently by R. S. Laugesen and B. Siudeja [3]; they also considered harmonic,
geometric and arithmetic means of the first two nonzero eigenvalues, µ1

and µ2, under various normalizations on the triangles.
Recall that for general domains in all dimensions, Szegő [6] and Wein-

berger [7] proved the disk/ball maximizes µ1 subject to area/volume con-
straint, and that among simply connected domains in the plane, the disk
maximizes the harmonic mean 2 (µ−1

1 + µ−1
2 )−1.

(2) (Iosif Polterovich) For planar domains, maximize
√
µ1µ2A, the geometric

mean of the first two positive eigenvalues, subject to area constraint. It is
conjectured that

√
µ1µ2A ≤ πµ1(D), where D is the unit disk, with the

equality if and only if Ω is a disk [4]. Such a result would strengthen the
Szegő’s harmonic mean bound mentioned above. For simply–connected
domains, the estimate on the geometric mean with an extra factor of

√
2

follows from [6] and [2]. Note that the equilateral triangle maximizes√
µ1µ2A among all triangles [5].

(3) (Richard Laugesen) Maximize µ1L
2 among convex plane domains. Are

the maximizers the equilateral triangle and the square? Note that both
these polygons yield the same value (is that a coincidence? or is there an
underlying reason?), and that the disk yields a much lower value. The
maximizer among triangles is equilateral, as is proved in the paper of
Laugesen and Siudeja cited above.

(4) (Dorin Bucur) Assume that (Ωn)n ⊂ RN is a sequence of simply connected
subsets of the unit ball B1, and Ω∗ ⊂ B1 such that

• |Ωn| = m and |Ω∗| < m;
• B1 \ Ωn converges in the Hausdorff metric to B1 \ Ω∗.

For every k ∈ N prove that

lim sup
n→∞

µk(Ωn) < sup
|Ω|=m

µk(Ω).

This problem asserts that a sequence of domains converging in the Haus-
dorff metric and “losing measure” cannot be a maximizing sequence for the
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isoperimetric inequality associated to the k-th eigenvalue of the Neumann
Laplacian (see [1]).
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3. Gap inequalities for triangles (Richard Laugesen)

Let Ω be a convex planar domain of diameter d. As above, λ1, λ2, . . . are
Dirichlet eigenvalues of Ω and µ0 = 0, µ1, . . . are Neumann eigenvalues. Van den
Berg’s Gap Conjecture (1983) states that

(λ2 − λ1)d2 ≥ 3π2.

The best known bound on the right hand side is π2. Background information
and many open problems related to the Gap Conjecture (including problems with
convex potential) can be found in [1], see also section 10 of the current document.

Problem: minimize (λ2−λ1)d2 among triangles. The equilateral triangle is con-
jectured to be minimal; see [2]. Thus the Gap Conjecture for triangles differs from
the case of general domains, where the minimizer is conjectured to be degenerate
(a degenerate rectangular box).

The analogous Gap Problem for Neumann boundary conditions is to minimize
µ1d

2. For general (convex) domains the sharp lower bound of π2 was found by L.
E. Payne and H. F. Weinberger [4]. For triangles the minimizer is the degenerate
acute isosceles triangle, as was recently proved in [3].

For Robin boundary conditions, the appropriate Gap Conjecture is discussed in
[1]. Note that among triangles, the minimizer should presumably be isosceles, but
whether that minimizer should be equilateral or degenerate acute isosceles is not
yet clear. The answer might perhaps depend on the Robin parameter. Numerical
studies are needed.
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4. Mixed eigenvalue problems (Almut Burchard)

Walter Craig’s window placement problem: How should windows of a given size
be positioned on the walls of a room to minimize long-term heat loss?

Let Ω ⊂ Rn stand for the room, and D ⊂ ∂Ω the window, and ∂Ω \ D the
insulating walls. Denote by ∆D the Laplacian on Ω, with Dirichlet boundary
conditions on D and Neumann boundary conditions on ∂Ω \ D. The objective
is to minimize the lowest eigenvalue λ(D) of −∆D among all subsets D ⊂ ∂Ω of
prescribed (n− 1)–dimensional surface measure.

Conjectures: If Ω is smooth, then the minimizing windowD should be connected
and sufficiently regular so that the minimizing eigenfunction is continuous up to
the boundary. Sufficiently small optimal windows should straddle a boundary
point of maximal curvature. In the special case of a square, the optimal D should
be an interval, centered either at a corner, or at the middle of a side (depending
on the prescribed length of D).

Known results: The principal eigenvalue λ(D) approaches its supremum (the
first Dirichlet eigenvalue of Ω) if D is smeared out over ∂Ω. Minimizing windows
are known to exist for arbitrary Lipschitz domains. There are examples of non-
convex domains where the minimizing D must be disconnected. If Ω is a ball, then
the optimal D is a spherical cap. Partial results are known for the square.
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5. Isoperimetric inequalities as variational problems (Nikolai
Nadirashvili)

From the general point of view, isoperimetric problems in mathematical physics
are regular variational problems with constraints of special types. Here we discuss
some questions motivated by this “unified” approach to isoperimetric inequalities.
The central problems of the calculus of variations are existence, regularity and
uniqueness of the minimizer (in the context of isoperimetric problems, the latter
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usually follows from certain symmetry properties). Typically, isoperimetric prob-
lems have the structure of a double variational problem: the physical quantity
itself has a variational nature (like an eigenvalue of the Laplacian), and then one
optimizes it under a certain constraint, say, the area of a domain. This naturally
leads to overdetermined problems, e.g., for the first Dirichlet eigenvalue we are
getting Serrin type conditions on the boundary. It is known from the general the-
ory that the problems with the free boundary have smooth solutions with at most
algebraic singularities. This motivates the following

Question 1. Let M be a smooth complete 2-dimensional manifold. Does there
exist a smooth domain which minimizes the first Dirichlet eigenvalue among all
domains of the same area?

On the space of plane domains of fixed area one can introduce a metric, taking
as the distance between two domains the area of their symmetric difference. In
this way, we can define local minimizers of the first Dirichlet eigenvalue on the
space of plane domains.

Question 2. Is a local minimizer of the first Dirichlet eigenvalue necessarily a
smooth domain?

The positive answer to Question 2 will imply the following generalization of the
classical Faber–Krahn theorem: the disk is the unique local minimizer for the first
Dirichlet eigenvalue. Let us remark that for smooth perturbations, the extremal
property of the disk was proved in the original work of Rayleigh.

Notice that the existence of any minimizer in the problems of isoperimetric type
is not clear at all. The difficulty is that the problem is not “coercive”. By this we
mean that the value of the first Dirichlet eigenvalue does not imply any regularity
of the domain. Moreover, the set of domains of fixed area having the same first
Dirichlet eigenvalue is not even closed under γ-convergence (see [2, p. 18] for the
definition). Thus it is very interesting to find isoperimetric problems having “weak
coercivity”.

Conjecture 3. Let M be a topological 2-sphere endowed with a Riemannian
metric g. Suppose that (M, g) has unit area and let λ1(g) be the first nonzero
eigenvalue of the Laplacian on (M, g). Then (M, g) is isometric to (S2, s g0),
where g0 is the standard metric on the sphere S2, and the conformal factor s
satisfies

||s||H−1(S2,g) ≤ Cλ1(g).

In other words, we conjecture that all conformal factors corresponding to met-
rics on S2 of unit area and with the same first nonzero eigenvalue are uniformly
bounded in the norm of the space dual to the Sobolev space H1(S2, g) (hence
we would get weak coercivity). Note that the conformal structure of the two–
dimensional sphere is trivial: all Riemannian metrics are conformal to the standard
round metric.

There are classical variational problems which admit singular solutions. Typ-
ically, such a solution has singularities of algebraic type. For minimizers of an
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isoperimetric problem it can be different. For example, let λ1 be the first Dirichlet
eigenvalue of a planar domain and α1 be the first Robin eigenvalue (see [2, p. 107])
with a fixed positive Robin constant. Then the infimum of the ratio λ1/α1 over
the set of all plane domains is equal to one. It is attained in the limit by a sequence
of domains with increasingly oscillating boundaries [1]. This example motivates
the following

Question 4. Can an isoperimetric problem for eigenvalues have a fractal so-
lution?
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6. Four unknown constants (Rodrigo Bañuelos)

6.1. Four inequalities. Let Ω ⊂ R2 be an arbitrary simply connected domain
in the plane. We define RΩ = supz∈Ω dΩ(z) (the inradius of the domain) where
dΩ(z) is the distance from z to the boundary of Ω. Let σΩ(z) be the density of
the hyperbolic metric in Ω and let σΩ = infz∈Ω σΩ(z). Finally, denote by λ1 the
lowest eigenvalue for the Dirichlet Laplacian in Ω and denote by τΩ the first exit
time of Brownian motion from Ω. The following four inequalities hold.1

(1) There exists a positive constant C1, independent of the domain, such that
for all functions u ∈ C∞

0 (Ω)

(1)

∫

Ω

|u|2
d2
Ω

≤ C1

∫

Ω

|∇u|2.

This inequality is known as the “Hardy” inequality in the literature. It
holds for domains which are more general than simply connected but does
not hold for all domains, see [2]. The survey paper [11] contains a detailed
account of this inequality as of around 1998. For some recent work, please
see [1], [12], [13], [15], [17], [19] and references therein. In the setting of
simply connected domains the inequality can be easily reduced to that of
the unit disc or half–space with the aid of the Koebe 1

4 -theorem. In fact,

the Koebe 1
4 -theorem proof gives the inequality with C1 = 16, (see [2]).

(2) There exists a positive constant C2, independent of the domain, such that

(2)
C2

R2
Ω

≤ λ1 ≤ j20
R2

Ω

.

The right hand side inequality is trivial by domain monotonicity of the
eigenvalue–the larger the domain the smaller the eigenvalue. The constant
j0 is the smallest positive zero of the first Bessel function J0. Of course,

1Many thanks to Ari Laptev and Tom Carroll for pointing out several recent papers related
to these constants.
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the right hand side inequality is sharp. The left hand side inequality
follows from the variational characterization of the eigenvalue and the
Hardy inequality (1). As above, the left hand side inequality holds for
more general domains than just simply connected domains but not all.
(Adding points to a domain has no affect on the eigenvalue but it can
have a drastic affect on the inradius.) This inequality also has a long and
interesting history, see [3] and [4].

(3) There exists a positive constant C3, independent of the domain, such that

(3)
1

2
R2

Ω ≤ sup
z∈Ω

Ez (τΩ) ≤ C3R
2
Ω.

Here we use Ez to denote the expectation with respect to the Brownian
motion starting at the point z ∈ Ω. Again, the lower bound is trivial
by domain monotonicity (the larger the domain the larger the lifetime).
A necessary and sufficient condition (which includes all simply connected
domains in R2) for a domain in Rd to have (3) is given in [8]. Again, since
Brownian motion does not “see” points in two dimensions, the right hand
side inequality cannot hold for all domains.

(4) There exist a positive constant C4, independent of the domain, such that

(4)
C4

RΩ
≤ σΩ ≤ 1

RΩ
.

As above, the upper bound is obtained by domain monotonicity and the
existence of the constant C4 follows at once from the Koebe 1

4 -theorem

since σΩ(z) = 1
|F ′(0)| , where F is the conformal mapping from the unit

disc onto the domain Ω with F (0) = z.

Problem 1. Identify the extremal constants C1, C2, C3, C4 in the above inequal-
ities and the geometry of the “extremal” domains (whenever they exist).

6.2. Convex domains. In the case of convex domains, all constants are known:

(1) C1(convex) = 4 which is the constant for the half space (or oven the one
dimensional half-line). For a proof of this, see Davies [11]. There are
also other sharper generalizations such as the one given in [1]. (Please
also consult references given in [1] for more on these kind of extensions.)
These results hold for convex domains in Rd.

(2) C2(convex) = π2/4 and the extremal domain is an infinite strip. The same
constant works also for any convex domain in Rd. There are several proofs
of this result including the original one given by J. Hersh in [14]. (See also
[1] for a proof based on the Hardy inequality and other references.)

(3) C3(convex) = 1 (see R. Sperb in [18]). Again, the extremal is given by an
infinite strip (which reduces the problem to an interval). Here again, there
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is a more general inequality which asserts that for any convex domain in
Rd of inradius RΩ,

(5) Pz{τΩ > t} ≤ P0{τ(−RΩ,RΩ) > t},
where τ(−RΩ,RΩ) is the exit time from the interval (−RΩ, RΩ) on the real
line. (For this, see [6] and [7].) The inequality (5) together with the
well-known classical characterization of the the eigenvalue as

−λ1 = lim
t→∞

1

t
logPz{τΩ > t}

gives a different proof that C2(convex) = π2/4. Again, the same results
holds in all dimensions where the extremal domain is the infinite slab.

(4) C4(convex) = π/4. This result was proved by Szegö in 1923 (see [3] for
exact reference). Again, the extremal domain is the infinite strip.

6.3. Arbitrary simply connected domains. The following estimates for the
optimal constants C1, C2, C3, C4 are known.

4 ≤ C1 ≤ 16(6)

0.6194 < C2 < 2.095(7)

1.584 < C3 < 3.228(8)

0.57088 < C4 < 0.6563937(9)

For the estimates for C2 and C3, and some history on these constants, we
refer the reader to [3] and [9]. The paper [3] also contains some examples of
simply connected domains which we conjecture are very close to the extremals for
these four problems. The problem of determining the best constant C4 (known
as the Schlicht Bloch-Landau constant) has a long history in function theory. For
the above estimates on C4 we refer the reader to [16] and [10] and [9]. (The
reference [10] contains many references to the literature on the Schlicht Bloch-
Landau constant.) The upper estimate for C3 follow from the lower estimate on
C4 and inequality (10) below. From the upper estimate on C3 we get a lower
estimate on C2 using (11). The lower estimate for C3 and upper estimate on C2

follow from the example in [3], (see Theorems 2 and 3) and the calculations in
[9]. For an approach using a Hardy-type inequality with σΩ replacing the distance
function, see [5].

Theorem 1 ([3]). For any simply connected domain Ω ⊂ R2, we have

(10)
1

2σ2
Ω

≤ sup
z∈Ω

Ez (τΩ) ≤ 7ζ(3)

8σ2
Ω

and

(11)
2

supz∈Ω Ez (τΩ)
≤ λΩ ≤ 7ζ(3)j20

8 supz∈ΩEz (τΩ)
,

where 7ζ(3)/8 =
∑∞

n=0(2n+ 1)−3.
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et principe de maximumz, (French) Z. Angew. Math. Phys. 11 1960 387–413.

[15] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev, J. Tidblom, Many-particle
Hardy inequalities, J. Lond. Math. Soc. (2) 77 (2008), no. 1, 99–114.

[16] J. Jenkins, On the schlicht Bloch constant, J. Math. Mech. 10 (1961), 729–734.
[17] A. Laptev and A. V. Sobolev, Hardy inequalities for simply connected planar domains,

Amer. Math. Soc. Transl. (2) Vol. 225, 2008, 117-124.
[18] R. Sperb, Maximum principles and their applications, Mathematics in Science and Engi-

neering, 157. Academic Press, Inc. 1981.

[19] J. Tidblom, A geometrical version of Hardy’s inequality for
◦

W 1,p(Ω), Proc. Amer. Math.
Soc. 132 (2004), no. 8, 2265–2271.

7. The Isoperimetric Inequality for Riesz Capacities: A problem of
P. Mattila

The Riesz kernels in Rd, d ≥ 2, are given by

Kα(x, y) =
Γ
(

d−α
2

)

Γ(α
2 )πd/22α−1

1

|x− y|d−α
,
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for any 0 < α < d. Given a compact set A ⊂ R
d, we define its α–Riesz capacity

by

Cα(A) =

[
inf
µ

∫ ∫
Kα(x, y)dµ(x)dµ(y)

]−1

where the infimum is taken over all probability Borel measures supported in A.
If α = 2 and d = 3, this is the classic Newtonian capacity. Let |A| denote the
Lebesgue measure of the set A and let A∗ be the ball centered at the origin and
with same Lebesgue measure as A. Then the classical Pólya-Szegö inequality
implies that

C2(A) ≥ C2(A∗)

with equality if and only if A is ball.
Naturally one might ask if this inequality holds for all Riesz capacities of any

order 0 < α < d. This problem was raised by P. Mattila in his paper “Orthogonal
Projections, Riesz Capacities” (Indiana Univ. Math. J. 39, (1990),185-198). The
case 0 < α < 2 was proved by D. Betsakos in “Symmetrization, symmetric sta-
ble processes, and Riesz capacities,” Trans. Amer. Math. Soc., (2004), 735–755)
using polarization inequalities for transition densities of killed symmetric stable
processes and a well–known relationship between Green’s functions and Riesz ca-
pacities. In “An Isoperimetric Inequality for Riesz Capacities,” (Rocky Mountain
J. Math. (2006), 675–682), P. J. Méndez-Hernández gives an alternative proof of
Betsakos’ result using the rearrangement techniques of Brascamp–Lieb–Luttinger
and a characterization of capacities given by F. Spitzer in 1964 in terms of hit-
ting times. (Spitzer’s characterizations was originally proved for Brownian mo-
tion.) However, as it turns out, in 1983, in “The Isoperimetric Inequality for
Isotropic Unimodal Lévy Processes,” Z. Wahrscheinlichkeitstheorie (1983), 487–
499, T. Watanabe had already proved a more general isoperimetric inequality for
capacities of Lévy processes which implies, in particular, the result for 0 < α ≤ 2.
What remains open is the case of 2 < α < d. The probabilistic techniques do not
apply to this case, at least not in the most “obvious” and direct way.

8. Pólya and Related Inequalities

Consider eigenvalues of the Dirichlet Laplacian on a bounded domain Ω ⊂ R
n:

{
−∆uj = Ejuj in Ω,

uj = 0 on ∂Ω.

Assume n ≥ 2.

(1) (Michael Loss) The Pólya Conjecture claims that the Weyl asymptotic
formula provides a lower bound:

Ej ≥ (2π)2(n/|Sn−1||Ω|)2/nj2/n, j = 1, 2, 3, . . . .

The conjecture remains open even for j = 3.
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The best partial result known is with a factor of n/(n + 2) (which is
less than 1) on the righthand side, as one deduces by estimating Ej ≤ EJ

in the Li-Yau result below.

(2) (Timo Weidl) Berezin proved in 1972 that

∑

j

(E − Ej)σ
+ ≤ |Ω|

(2π)n

∫

Rn

(E − |p|2)σ
+ dp, σ ≥ 1, E > 0.

The cases 0 ≤ σ < 1 remain open. The Pólya conjecture is exactly the
case σ = 0.

Note that the case σ = 1 implies the Li–Yau inequality

J∑

j=1

Ej ≥ n

n+ 2
(2π)2(n/|Sn−1||Ω|)2/nJ (n+2)/n, J = 1, 2, 3, . . . .

The analogues of the Pólya and Li–Yau inequalities under Neumann
boundary conditions are obtained simply by reversing the inequality in the
Dirichlet cases above. The Pólya Conjecture remains open for Neumann
boundary conditions, whereas the analogue of Li–Yau was proved by Pawel
Kröger (1992). We do not know whether there exists a stronger Berezin–
type result for the Neumann problem. For more information, see [8].

(3) (Timo Weidl) The Li–Yau result on Dirichlet eigenvalues extends to Hamil-
tonians with arbitrary magnetic field, as explained in the Lieb–Thirring
section below. For more information and some progress see Item 10 below.

(4) (Timo Weidl) Can one strengthen the Li–Yau result by including a cor-
rection term, perhaps involving the surface area of the boundary? (There
is a result by Melas of Li–Yau type with corrections involving moments of
inertia rather than surface area, see [9]. Elliott Lieb says that this can be
done for the discrete Laplacian on domains in a lattice, see[1].

February 2009: The result of Melas has been strengthened by inclusion
of a correction term involving the surface area of the boundary, see [7]. An
earlier improvement for γ ≥ 3/2, involving a notion of effective boundary,
is due to T. Weidl, [10]. For γ < 3/2 further improvements seem possible
and desirable.

(5) (Evans Harrell, Joachim Stubbe) Problems on eigenvalues of Schrödinger
operators related to commutator methods

Problem - corrections to Weyl type estimates. The trace identity
of [3], [4] implies as shown in [2] that for σ ≥ 2 the mapping

(1) rσ : E 7→ E−σ−d/2

( |Ω|
(2π)n

∫

Rn

(E − |p|2)σ −
∑

j

(E − Ej)σ
+

)

is non increasing. According to Weyl’s asymptotic formula rσ(E) tends to
zero as E tends to infinity and therefore rσ(E) ≥ 0 which is the Berezin-
Li-Yau-inequality. Can one strengthen this bound in the trace identity of
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[3],[4] to obtain correction terms involving the surface area of the bound-
ary? For the Laplacian with periodic boundary conditions a similar mono-
tonicity property holds (see [5] for details). In this case the search for the
correction term is related to the famous Gauss circle problem (or lattice
point problem).

Problem - higher order operators, fractional powers of Laplacians

etc. Prove monotonicity results like (1) for higher order operators (e.g.
clamped plate problem) and fractional powers of Laplacians (see [6] for
some results on

√
−∆) leading to Berezin-Li-Yau inequalities for these

operators.

Problem - universal inequalities and Weyl type bounds. For p > 0
let

(2) Mp(J) :=

(
n+ 2p

n

1

J

J∑

j=1

Ep
j

) 1
p

and for p = 0 define

(3) M0(J) := e
2
n

( J∏

j=1

Ej

) 1
J

.

According the the Weyl asymptotic formula, for all p ≥ 0,

Mp(J) ∼ (2π)2(n/|Sn−1||Ω|)2/nJ2/n

as J → ∞. In [3] it has been shown that

M2
1 (J) −M2(J) ≥ 1

4
(EJ+1 − EJ )2(≥ 0)

and

M1(J) −
√
M2

1 (J) −M2(J) ≤ EJ ≤ EJ+1 ≤M1(J) +
√
M2

1 (J) −M2(J).

Both inequalities are sharp in the Weyl limit. For extensions to other
Mp(J) see [4]. For p > 0 find an upper bound of the form

M2p
p (J) −Mp

2p(J) ≤ C(p,Ω)E2p
1 J2pκ

with κ < 2/n.

Problem - universal inequalities. With the above notations does

EJ ≤Mp(J)

hold for all J and all p ≥ 0?
Can one find Ω and J such that the inequality

M2
1 (J) −M2(J) ≥ 1

4
(EJ+1 − EJ )2

is saturated?
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9. Lieb–Thirring Inequalities

Write E1 < E2 ≤ E3 ≤ · · · ≤ 0 for the eigenvalues of −∆ − V on L2(Rn),
meaning

(−∆ − V )uj = Ejuj.

The eigenfunctions uj represent bound states with energies Ej . For simplicity we
assume V ≥ 0. Assume n ≥ 1.

The Lieb–Thirring inequality can be written as

∑

j

|Ej |γ ≤ Ln,γ

∫

Rn

V γ+n/2 dx,

This inequality holds (with a constant Ln,γ independent of V ) iff the parameter
γ satisfies γ ≥ 1/2 if n = 1, γ > 0 if n = 2 and γ ≥ 0 if n ≥ 3. The case γ = 0
(counting eigenvalues) is the Cwikel–Lieb–Rozenblum Inequality (CLR).

In other words

Tr (−∆ − V )
γ
− ≤ Cn,γ

(2π)n

∫

Rn

∫

Rn

(|p|2 − V (x))γ
− dpdx,

where

Cn,γ =
Ln,γ

Lcl
n,γ

and Lcl
n,γ =

1

(2π)n

∫

Rn

(|p|2 − 1)γ
− dp.

The constant Lcl
n,γ is called the semiclassical Lieb–Thirring constant. Note that

Cn,γ ≥ 1 always, by the Weyl asymptotics, and that Cn,γ is decreasing in γ for
each fixed n, by the Aizenman–Lieb monotonicity result.
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To start with, let us summarize some known results on the constants Cn,γ ,
along with conjectures about best (smallest) values of Cn,γ .

n γ Best known Cn,γ Best constant? status last updated

1 1
2 2 2 known

(1
2 ,

3
2 ) 2* 2

(
γ−1/2
γ+1/2

)γ−1/2

conjectured

[ 32 ,∞) 1 1 known

2 (0, 1
2 ) ?

[ 12 , 1) 3.64 Feb. 2009

[1, 3
2 ) 1.82 Feb. 2009

[ 32 ,∞) 1 1 known

= 3 [0, 1
2 ) 6.87 8/

√
3 ≃ 4.62 conjectured

[ 12 , 1) 3.64 Feb. 2009

[1, 3
2 ) 1.82 1 conjectured Feb. 2009

[ 32 ,∞) 1 1 known

≥ 4 [0, 1
2 ) 10.34 Feb. 2009

[ 12 , 1) 3.64 Feb. 2009

[1, 3
2 ) 1.82 1 conjectured Feb. 2009

[ 32 ,∞) 1 1 known

*better is known for γ ∈ [1, 3
2 ), e.g. C1,1 ≤ π√

3
≃ 1.82 via work of Eden–Foias.

Remark. References to the results in the table and to many of the questions below
can be found in the lecture notes by Michael Loss and Timo Weidl, and in the
survey paper by Dirk Hundertmark (which further states some better estimates
on Cn,γ for special values of n and γ).

For February 2009 updates see [6] and [13].

Now we state open problems on Lieb–Thirring inequalities.

(1) (Richard Laugesen) Must an optimal potential V exist, for those Lieb–
Thirring inequalities in which the best constant is not known? In partic-
ular this question is open for n = 1 and 1

2 < γ < 3
2 .

A restricted version of the problem asks: within the class of potentials
having m bound states (where m ≥ 1 is given), does an optimal potential
exist?

(2) (Richard Laugesen) If an optimal potential exists, then does it have just
a single bound state? (In other words, does −∆ − V have just a single
eigenvalue?) When n = 1 and 1

2 < γ < 3
2 , the natural conjecture is that

the optimal potential is the one found by J. B. Keller when he determined
the best constant in |E1|γ ≤ C

∫
R
V γ+1/2 dx, see [24].
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This “single bound state” conjecture is due to Lieb and Thirring, 1976.
In dimension n = 1, the conjecture is known to be true in the endpoint
cases γ = 1/2 (in which case V is a delta function) and γ = 3/2 (in which
case V is a transparent or reflectionless potential).

(3) (Eric Carlen) Does there exist a bound of the form
∑

j |Ej |γ ≤ C|E1|γ?
Here the factor C could depend on n, γ, and on the integrability of a power
of V sufficient to guarantee that the lefthand side is finite.

(4) (Rafael Benguria) The use of Korteweg–de Vries (KdV) integrable sys-
tem methods when n = 1, γ = 3/2, suggests that one might similarly
study Lieb–Thirring inequalities for the linear equation associated with
the Benjamin–Ono equation (another integrable system). Tomas Ekholm,
Rupert Frank and Dirk Hundertmark made progress during the Workshop
already, by obtaining the analog of the Aizenman–Lieb “monotonicity to-
ward best constants” result. The Lax pair for the Benjamin–Ono equation
can be found for example in [1], see also [23]. D.J. Kaup and Y. Matsuno,
The inverse scattering transform for the Benjamin–Ono equation, Studies
in applied mathematics 101 (1998), 73–98.

(5) (Rupert Frank) The best constant when n = 1, γ = 1, is due to Eden–Foias,
see [7]. More precisely, they proved a Sobolev inequality, which then gives
a Lieb–Thirring inequality via the Legendre transform. So a question is:
can one find a more direct proof of this Lieb–Thirring inequality?

Also, can one sharpen the Eden–Foias bound by including correction
terms in their argument?

February 2009: An operator-valued version of the Eden–Foias bound
has been proved by J. Dolbeault, A. Laptev, M. Loss, see [6]. By the
‘lifting of dimension’-argument this result leads to the best known values
for the constants in the Lieb–Thirring inequalities for γ ≥ 1 if n = 1 and
for γ ≥ 1/2 if n ≥ 2.

(6) (Timo Weidl) Can one find a way to directly estimate the sum of the
eigenvalues, without going through the Birman–Schwinger transformation
(which counts the eigenvalues rather than summing them)?

(7) (Almut Burchard) The Ovals Problem. Consider a smooth closed curve
γ of length 2π in R3, and let κ(s) be its curvature as a function of ar-
clength. The curve determines the one-dimensional Schrödinger operator
HC = −d2/ds2 + κ2 acting on 2π-periodic functions. This operator ap-
pears in the equation for the tension of a smooth, elastic, inextensible
loop [4], and in connection with a Lieb–Thirring inequality in one dimen-
sion [3]; similar Schrödinger operators with quadratic curvature potentials
have been studied in connection with quantum mechanics on narrow chan-
nels [11], Dirac operators on the sphere [15], and curvature-driven flows
describing the motion of interfaces in reaction-diffusion equations [17].

A natural conjecture is that the principal eigenvalue e(γ) is minimal
when γ is a circle, where it takes the value 1. This question is open even
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for planar loops that enclose convex sets (‘ovals’). It is known that the
value e(γ) = 1 is attained for an entire family of planar curves whose

curvature is given by κ(s) =
(
α2 cos2 s + α−2 sin2 s

)−1
. When α → 0,

these curves collapse onto two straight line segments of length π joined at
the ends. The inequality e(γ) ≥ 1 has recently been shown for curves in
some neighborhood of the family [4], and for curves satisfying additional
geometric constraints [28]. The best universal lower bound on e(γ) that is
currently known is .6085 [28].

Several participants at the Workshop had worked on this problem pre-
viously (including Benguria, Loss, Burchard, Thomas, and Linde). All
agreed that classical Calculus of Variations techniques may be exhausted
at this point, and that rearrangement techniques seem to fail. Linde and
Burchard claimed that minimizers can be shown to exist, and should be
convex, but could conceivably contain one corner, or two corners joined
by a straight line segment. Benguria pointed to the family of putative
minimizers (which look like ellipses in polar coordinates) as evidence that
the problem may have a hidden affine symmetry. Carlen, Mazzeo, and
Benguria proposed to search for geometric flows that drive e(γ) towards
its minimum. The affine curvature flow [2] was mentioned as a promis-
ing candidate. Rapti and Lee proposed to analyze the Euler–Lagrange
equation using ODE methods. Laugesen suggested applying the Birman–
Schwinger transformation, after which the conjecture becomes that the
largest eigenvalue of the operator T = κ(d2/ds2 + γ)−1κ is larger than 1,
for each constant 0 < γ < 1. Equivalently, take γ = 1 and try to show
the largest eigenvalue of T is larger than 1, when T acts on functions ψ
with κψ orthogonal to sin s and cos s. The hope is that a good choice of
trial function (in the variational principle for the largest eigenvalue) might
suffice to prove this conjecture.

(8) (Timo Weidl) For n = 2, γ = 0, can one prove a Cwikel–Lieb–Rozenblum
Inequality that involves a logarithmic correction factor? Without some
such correction factor, the inequality fails, since any nontrivial attractive
potential has at least one bound state.

February 2009: This problem has been solved in [25].

(9) (Timo Weidl) Can one obtain improved Lieb–Thirring constants when
working on a domain Ω rather than on all of Rn? For example, can one
obtain a boundary correction term?

(10) (Timo Weidl) Magnetic Schrödinger operators on a domain. Consider
the Dirichlet Laplacian in a domain in Rn. The technique of iteration-
in-dimension gives sharp Lieb–Thirring constants for arbitrary magnetic
fields for γ ≥ 3/2 and any n ≥ 2. (See the final part of [26].) For
1/2 ≤ γ < 3/2 one also gets estimates uniform in the magnetic field, but
the constant is (probably) not sharp. With the same approach, the results



420 Oberwolfach Report 06

of D. Hundertmark, A. Laptev and T. Weidl, [19], carry over to magnetic
operators; see the remark at the end of that paper.

The sharp Li–Yau bound (corresponding to γ = 1) has been proved
by L. Erdös, M. Loss and V. Vougalter, [10], for constant magnetic fields.
Does this bound hold true for arbitrary magnetic fields for 1 ≤ γ < 3/2?

For γ = 0, does the Pólya conjecture hold true for tiling domains in the
presence of magnetic fields?

February 2009: The answer to the latter question is negative for con-
stant magnetic fields. Indeed, the sharp constant in the corresponding
lower bound for 0 ≤ γ < 1 was found in [14].

(11) (Timo Weidl) Magnetic Schrödinger operators on Rn. Consider Lieb–
Thirring bounds for magnetic Schrödinger operators on all of Rn. In all
cases where the sharp constant is known, either the magnetic field is not
relevant (dimension n = 1) or the value of the constant is independent of
the magnetic field (γ ≥ 3/2 and n ≥ 2 as above, where the sharp constant
equals the classical constant).

Can the magnetic field change the optimal value of the Lieb–Thirring
constant in the remaining cases? (February 2009: The magnetic field can
change the optimal value at most by an explicit factor depending only on
γ and d; see [12].

This question is rather speculative, because we do not know the sharp
constants even in the non-magnetic case. But let us put forward the
following more specific version:

Can one construct a counterexample to the Lieb–Thirring conjecture
that the optimal constant is the classical one for n = 3, γ = 1, by using a
suitable magnetic field?

(12) (Eric Carlen) Generalization to manifolds. Do there exist Lieb–Thirring
inequalities on manifolds? As a basic first question, do the critical ex-
ponents (γ = 1

2 when n = 1, and γ = 0 when n = 2) depend on the
geometry?

Some references to get started here are [20] and [21]. A classic reference
for applications to turbulence is [27].

February 2009: Intuition from recent results on continuous trees suggest
that the critical exponents depend on both the local and global dimension
of the manifold, see [9].

Sharp Lieb-Thirring inequalities on manifolds of bounded mean curva-
ture and for periodic Schrödinger operators are proven in [18] when γ ≥ 2.
For applications to turbulence one should study the Stokes operator. For
a Berezin-Li-Yau inequality on flat domains with Dirichlet boundary con-
ditions see [22].

(13) (Mark Ashbaugh) Reverse Lieb–Thirring Inequality. For dimension n = 1,
D. Damanik and C. Remling have proved a Reverse Lieb–Thirring Inequal-
ity in the subcritical range 0 < γ ≤ 1

2 , see [5]. Sharp constants seem not
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to be known. A Reverse Cwikel–Lieb–Rozenblum Inequality for the eigen-
value counting function for dimension n = 2 in the critical case γ = 0 has
been proved by A. Grigor’yan, Yu. Netrusov, S.-T. Yau, [16].

(14) (Rupert Frank) Powers of the Laplacian. Can one prove a critical Lieb–
Thirring inequality for arbitrary powers of the Laplacian? That is, one
wants

tr ((−∆)s − V )γ
− ≤ Lγ,n

∫

Rn

V
γ+n/2s
+ dx

for γ = 1 − n/2s > 0. Such an inequality is known for s a positive integer
by work of Netrusov–Weidl.

Timo Weidl remarked that regardless of whether these operators have
physical significance, the higher order situation can help shed light on what
makes the second-order case work.

(15) (Rupert Frank) Hardy–Lieb–Thirring Inequality. Can one prove a Lieb–
Thirring bound with a Hardy weight, on the half-line? That is, one wants

tr

(
− d2

dr2
− 1

4r2
− V

)θ/2

−
≤ Cθ

∫ ∞

0

V (r)r1−θ dr

for 0 < θ ≤ 1. The inequality is known for θ = 1 (Lieb–Thirring). For θ =
0 it fails (although note that if it were true, it would resemble Bargmann’s
inequality).

February 2009: The inequality for all 0 < θ ≤ 1 has been proved in [8].
The sharp constant Cθ is not known, and there is not even a conjecture
for it.

(16) (Carlo Morpurgo) Cwikel–Lieb–Rozenblum bounds and heat kernel inequal-
ities.

Let Y be the Yamabe operator, or conformal Laplacian, on the euclidean
“round” sphere (Sn, g). That is, Y = ∆Sn + n

2

(
n
2 − 1

)
, where ∆Sn denotes

the Laplace–Beltrami operator on Sn.
Consider a positive smooth function W on Sn, normalized so that∫

Sn W
n/2 =volume of the round sphere. Define YW = W−1/2YW−1/2,

acting on L2(Sn, g).

Conjecture 1. For n ≥ 3,

(1) max
t>0

{
tn/2Tr[e−tYW ]

}
≤ max

t>0

{
tn/2Tr[e−tY ]

}
.

(Note that the eigenvalues of YW are the same as the eigenvalues of
W−(n+2)/4YW (n−2)/4 acting on L2(Sn,Wg), which is the natural Yamabe
operator in the metric Wg.)

In other words we are looking for the best constant C(W ) in the in-
equality

(2) Tr[e−tYW ] ≤ C(W )

tn/2
, t > 0,
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and the conjecture states that this constant is attained precisely by the
right side of (1), which is the best constant in (2) for W ≡ 1.

If Conjecture 1 is true then we can considerably improve the known CLR
bounds, at least in low dimensions, noting that for a given positive poten-
tial V , the eigenvalues of the Birman–Schwinger operator V −1/2∆V −1/2

are the same as those of YW , with W = (V ◦ π)|Jπ |2/n, π being the stere-
ographic projection and Jπ its Jacobian.

Conjecture 2. If n ≥ 4 then the function fW (t) = tn/2Tr[e−tYW ] is
decreasing in t.

An asymptotic expansion fW (t) ∼ a0(W )+ta1(W )+ . . . holds as t→ 0,
with a0(W ) = (4π)−n/2

∫
Sn W

n/2 and with a1(W ) written explicitly in
terms of the total curvature. Hence Conjecture 2 would imply (equality
in) Conjecture 1 for n ≥ 4, because Conjecture 1 normalizes the constant
term a0(W ) in the expansion.

It is known that a1(W ) is negative for n ≥ 5, zero for n = 4, and
positive for n = 3, so that Conjecture 2 fails for small t when n = 3.

On the other hand, Conjecture 2 holds for large t and any n ≥ 3, since
the known sharp lower bound λ0(W ) ≥ λ0(1) = n

2

(
n
2 − 1

)
for the lowest

eigenvalue of YW implies that fW (t) is decreasing when t >
(

n
2 − 1

)−1
.

Conjecture 2 is true if W ≡ 1, n ≥ 4.
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10. Gap Inequalities

Consider eigenvalues of the Dirichlet Laplacian on a bounded convex domain
Ω ⊂ Rn with convex potential V :

{
(−∆ + V )uj = λjuj in Ω,

uj = 0 on ∂Ω.

Assume n ≥ 1. Notice the operator is written with +V , not −V like in the previous
section.

Van den Berg’s Gap Conjecture is that

λ2 − λ1 ≥ 3π2

d2
, d = diam(Ω),

with equality holding when n = 1, V ≡ 0. (In dimensions n ≥ 2, the inequality
should be strict, with equality holding only in the limit as the domain degenerates
to an interval.)

In dimension n = 1 the conjecture has been completely proved by Richard
Lavine (1994).
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In dimensions n ≥ 2, the best partial result says that λ2 − λ1 ≥ π2/d2, which
is missing the desired factor of 3 on the righthand side. The first proof of this
result used P -function techniques based on the maximum principle. The second
proof adapted the methods of Weinberger, who resolved the analogous Neumann
gap problem long ago.

Now we state open problems, beginning with one dimension and then consid-
ering higher dimensional problems.

(1) (Richard Lavine) Can one expand the class of potentials for which the gap
inequality holds, in one dimension? It is known for convex potentials, but
also for single well potentials with a centered transition point. See the
write-up by Mark Ashbaugh.

(2) (Richard Lavine) Normalize the eigenfunctions uj in L2 and define 〈V 〉j =∫
Ω
V u2

j dx. Are these means 〈V 〉j an increasing sequence as j increases?
The question is already interesting in one dimension.

(3) (Richard Lavine) Can one strengthen the gap inequality by adding to its
righthand side a term that involves V ? The question is already interesting
in one dimension.

(4) (Rodrigo Bañuelos) Can Lavine’s approach be extended to higher dimen-
sions?

(5) (Mark Ashbaugh) In dimensions n ≥ 2, one should try to understand
whether genuine barriers exist to pushing the P -function techniques be-
yond the known π2/d2 bound. One seems to need to improve the log-
concavity bound on the groundstate u1 (due to Brascamp–Lieb). That
is, instead of just discarding the Hessian of log u1 when it arises, on the
grounds that it is ≤ 0, one seems to want to bound the Hessian strictly
away from 0. Can this be achieved by the methods of Brascamp–Lieb, or
of Korevaar?

(6) (Antoine Henrot) The Gap Conjecture is already very interesting in the
case of vanishing potential V ≡ 0. A possible approach is as follows.
(a) Prove the gap infimum infΩ∈O(λ2 − λ1) is not attained, when O is

the class of convex domains with diameter 1.
(b) Prove that minimizing sequences shrink to a segment of length 1.
(c) Prove that the gap for a sequence of shrinking domains behaves like

the gap of a one-dimensional Schrödinger operator with convex po-
tential (semiclassical limit arguments).

(d) Complete the proof using the results in the one dimensional case
(Lavine’s Theorem).

It seems that points (b), (c) and (d) are OK. It remains to prove point
(a)!

(7) (Helmut Linde) Operator-valued potentials. In order to prove the gap
conjecture one could consider the Laplacian on a two-dimensional domain
as being a one-dimensional operator with a matrix-valued potential. This
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makes it possible to approach the problem via a sequence of simplified “toy
models”. For example, one can try to prove the gap conjecture first for
very special classes of matrix-valued potentials, like potentials that have
constant eigenvectors and whose eigenvalues are convex functions. Then
one could gradually generalize this theorem to approach the “real” gap
conjecture.

(8) (Timo Weidl and Richard Laugesen) Magnetic Schrödinger operators. For
magnetic Schrödinger operators, the Gap Conjecture cannot hold as stated
because the eigenvalue gap can be reduced to zero by the introduction of
a magnetic field.

Can one still obtain a valid gap inequality by subtracting from the
righthand side a term depending on the magnetic potential A?

(9) (Rodrigo Bañuelos) Powers of the Laplacian. Is the groundstate of
√
−∆

log-concave? See also the comments above on log-concavity of the ground-
state of −∆.

(10) (Rodrigo Bañuelos) Properties of the eigenfunction ratio. The Hot Spots
conjecture of Bernhard Kawohl says that the first nontrivial eigenfunction
of the Neumann Laplacian attains its maximum and mimimum values
on the boundary of the convex domain Ω. This has been proved only
for some special classes of domains. The analogous conjecture for the
Dirichlet Laplacian would be that the ratio u2/u1 attains its maximum and
mimimum values on the boundary of Ω. Note u2/u1 satisfies Neumann
boundary conditions (by explicit calculation, assuming the boundary is
smooth) and satisfies a certain elliptic equation.

(11) (Robert Smits) Robin boundary conditions. Turn now from the Dirichlet
boundary condition to the Robin condition ∂u/∂ν = −αu (for some given
constant α > 0, with ν denoting the outward normal). Is the gap λ2 − λ1

minimal when V = 0 and Ω degenerates to a segment having the same
diameter as Ω?

In one dimension, is the gap minimal when V = 0 and Ω is a segment?
Can Lavine’s methods be adapted to Robin boundary conditions, in one
dimension?

If one could prove the groundstate u1 is log-concave, then existing meth-
ods could be adapted to imply λ2 − λ1 ≥ π2/d2, like is already known for
the Neumann and Dirichlet situations. Incidentally, the Rayleigh quotient
for the gap can be shown (like in the Dirichlet case) to equal

λ2 − λ1 = min
R

Ω
fu2

1 dx=0

∫
Ω |∇f |2u2

1 dx∫
Ω
f2u2

1 dx
,

with the potential entering implicitly through the dependence of u1 on V .

Reporter: Leander Geisinger
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