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Abstract. The development, analysis and implementation of efficient and
robust numerical techniques for optimization problems associated with partial
differential equations (PDEs) is of utmost importance for the optimal control
of processes and the optimal design of structures and systems in modern tech-
nology. The successful realization of such techniques invokes a wide variety
of challenging mathematical tasks and thus requires the application of ad-
equate methodologies from various mathematical disciplines. During recent
years, significant progress has been made in PDE constrained optimization
both concerning optimization in function space according to the paradigm
’Optimize first, then discretize’ and with regard to the fast and reliable so-
lution of the large-scale problems that typically arise from discretizations of
the optimality conditions.

The contributions at this Oberwolfach workshop impressively reflected the
progress made in the field. In particular, new insights have been gained in
the analysis of optimal control problems for PDEs that have led to vastly
improved numerical solution methods. Likewise, breakthroughs have been
made in the optimal design of structures and systems, for instance, by the so-
called ’all-at-once’ approach featuring simultaneous optimization and solution
of the underlying PDEs. Finally, new methodologies have been developed for
the design of innovative materials and the identification of parameters in
multi-scale physical and physiological processes.
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The workshop Numerical Techniques for Optimization Problems with PDE Con-
straints, organised by Matthias Heinkenschloss (Houston), R.H.W Hoppe (Augs-
burg/Houston), and Volker Schulz (Trier), held January 25th–January 31st, 2009,
was the third in series, following two Oberwolfach workshops on the same subject
in 2003 and 2006. One of the main objectives of the first two meetings was to
bring together leading experts from the fields of optimal control/optimization on
one hand and the efficient and reliable numerical solution of PDEs on the other
hand in order to encourage and foster new approaches by the exchange of state-of-
the-art methods and fresh ideas. The achievement of this goal was well reflected
by the 2009 workshop which was attended by almost fifty active researchers from
nine countries including a few students and postdoctoral fellows. A total of thirty-
one presentations was given at the workshop covering a wide spectrum of issues
ranging from the analysis of specific theoretical problems to more algorithmic as-
pects of computational schemes and various applications in aerodynamics and fluid
mechanics as well as life and material sciences.

A particular area of active research, where the adaptation of new insights from
optimization and numerical PDEs was extremely beneficial, is the

Numerical solution of control and/or state
constrained optimal control problems for PDEs.

This topic was one of the central themes of the workshop addressed in several
talks including the a priori and a posteriori error analysis of numerical schemes
(Hinze, Vexler, Weiser), a convergence analysis for the approximate solution of
controlled conservation laws (St. Ulbrich), numerically verified bang-bang con-
trols (Tröltzsch), as well as recent progress in mathematical programs with equi-
librium constraints (Hintermüller), optimal control of state constrained dynamical
systems with ODEs and PDEs (Pesch), robust solution methods via the virtual
control approach (Ridzal), and interior-point methods for state constrained pro-
blems (Schiela). The important class of semi-smooth Newton methods was stu-
died focusing on independence results (M. Ulbrich) as well as on its application
to time-optimal control problems (Kunisch) and to systems of Allen-Cahn varia-
tional inequalities (Blank). Further contributions dealt with the efficient solution
of PDE control problems with random coefficients (Borzi), the combination of the
Hamilton-Jacobi-Bellman approach and Pontryagin’s minimum principle (Cris-
tiani), and control problems for elliptic and parabolic PDEs promoting directional
sparsity (Griesse).

Another central theme of the workshop was

Optimal Design/Shape and Topology Optimization.

Researchers in these areas reported on the use of game theoretic concepts in multi-
objective optimization (Desideri), the state-of-the-art in the analysis and numerics
of topology optimization (Leugering), the optimal design of metamaterials (Sig-
mund), and recent analytical results for shape optimization of the compressible
Navier-Stokes equations (Sokolowski). Applications included a PDE approach to
optimization/optimal control of high performance buildings (Burns), efficient and
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fast numerical methods in aerodynamic shape design (Gauger, Schmidt), acous-
tic optimization of plates and shells (Hardesty), and robust shape optimization
in computational fluid dynamics (Schillings). The aspect of shape optimization
based on reduced order modeling was covered by a contribution dealing with a
combination of domain decomposition and balanced truncation techniques (An-
til).

The important topic of

Parameter Identification/Inverse Problems

was the subject of four talks concerned with PDE-based statistical inverse pro-
blems in geology (Ghattas), adaptive concepts for parameter identification (Kalten-
bacher), reduced order modeling by proper orthogonal decomposition for hydro-
logical inverse problems (Kelley), and parameter estimation for diffusion processes
in hippocampal neuron nuclei (Wittum).

The efficient solution of large-scale optimization problems was addressed by a
survey on methods based on iterative linear solvers (Gill) and on a priori bounds
for the ratio between the cost of an optimization run and a single system simulation
(Griewank).
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Abstracts

Shape Optimization Governed by the Heat and the Stokes Equations
Using Domain Decomposition and Model Reduction

Harbir Antil

(joint work with M. Heinkenschloss, R.H.W. Hoppe)

This work is concerned with the numerical solution of shape optimization problems
governed by time dependent partial differential equations (PDEs) using derivative
based methods. In particular, we are interested in problems where only a small
part of the spatial domain on which the governing PDE is posed can be modified.
This is, e.g., the case in the applications discussed in [1] and [3].

Our goal is to reduce the cost of the numerical solution of such problems using
domain decomposition [6] and model reduction [2]. We use domain decomposi-
tion techniques to decouple the problem into a subproblem that involves only the
subdomain that can be varied and a subdomain that corresponds to the fixed sub-
domain. These two subdomains could be subdivided further, but this is not con-
sidered here. Introducing the additional problem structure introduced by domain
decomposition into the shape optimization is already beneficial for computation of
shape sensitivities and other parts of the optimization algorithms. We use the de-
composition further to apply model reduction to the subproblem corresponding to
the fixed subdomain. The goal is to derive a reduced order model of much smaller
size than the original one, but with the property that the solution of the shape op-
timization problem corresponding to the reduced order model approximates that
of the full order model. To describe the ideas in more detail, we consider a shape
optimization problem governed by the heat equation.

The domain Ω ⊂ R
2 is decomposed into Ω̄ = Ω̄1 ∪ Ω̄2, Ω1 ∩ Ω2 = ∅ such

that only subdomain Ω2 is allowed to be modified by shape optimization. We use
the method of mapping, i.e., we assume that Ω2 can be mapped onto a reference
domain Ωref by a bijective map Φ which is parametrized by α ∈ Aad ⊂ R

k. We
assume that the set of admissible parameters Aad is closed and convex. In our
applications, parts of the boundary of Ω2 are described by Bézier polynomials.
We write Ω(α), Ω2(α) to emphasize the dependence on the shape parameters. We
assume that the subdomain Ω2(α) is much smaller than the fixed subdomain Ω1.

We consider the model problem

min

∫ T

0

∫

D

|y(x, t) − d(x, t)|dx +

∫

Ω2(α)

ℓ(y, t, α)dx dt

subject to heat equations

∂ty(x, t) −∇(k(x)∇y(x, t)) = f(x, t) (x, t) ∈ Ω(α) × [0, T ] ,

y(x, t) = g(x, t) (x, t) ∈ ∂Ω(α) × [0, T ] ,

y(x, 0) = y0(x) x ∈ Ω(α)
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and to the parameter constraints α ∈ Aad. Here D ⊂ Ω1. After a finite element
discretization in space we obtain the semi-discretized shape optimization problem

(1a) min

∫ T

0

l(y(t), t, α) dt

subject to semi-discretized heat equations

M(α)
d

dt
y(t) + A(α)y(t) = B(α)u(t) , t ∈ [0, T ] ,(1b)

M(α)y(0) = M(α)y0 , α ∈ Aad .(1c)

The term B(α)u(t) captures the inhomogeneous right hand side f and boundary
data g.

We use domain decomposition [6] in a standard way to arrive at

min
1

2

∫ T

0

‖CI
1y

I
1 − dI

1(t)‖2
2 + l̃(yΓ(t),yI

2(t), t, α)dt

subject to

MII
1

d

dt
yI

1(t) + MIΓ
1

d

dt
yΓ(t) + AII

1 yI
1(t) + AIΓ

1 yΓ(t) = BI
1u

I
1(t)

MII
2 (α)

d

dt
yI

2(t) + MIΓ
2 (α)

d

dt
yΓ(t) + AII

2 (α)yI
2(t) + AIΓ

2 (α)yΓ(t) = BI
2(α)uI

2(t)

MΓI
1

d

dt
yI

1(t) + MΓΓ(α)
d

dt
yΓ(t) + MΓI

2 (α)
d

dt
yI

2(t)

+AΓI
1 yI

1(t) + AΓΓ(α)
d

dt
yΓ(t) + AΓI

2 (α)yI
2(t) = BΓ(α)uΓ(t)

yI
1(0) = yI

1,0 , yI
2(0) = yI

2,0 , yΓ(0) = yΓ
0 , α ∈ Aad .

To apply model reduction, we derive the first order necessary optimality con-
ditions. Due to the domain decomposition of the problem, the first order neces-
sary optimality conditions is a system of coupled differential equations, which is
decomposed into two subdomain optimality systems, which are coupled by inter-
face conditions. Since the heat equation is linear and since we assumed that the
objective function corresponding to subdomain Ω1 is quadratic, the subdomain
optimality system corresponding to the fixed subdomain Ω1 and its interface con-
ditions with the second subdomain optimality system is exactly of a form that is
needed for balanced truncation model reduction [2]. We apply balanced truncation
model reduction to the subdomain optimality system corresponding to the fixed
subdomain Ω1 and interface the reduced subdomain optimality system with the
(original) subdomain optimality system for Ω2(α). The existing error bounds for
balanced truncation model reduction indicate that if we apply balanced trunca-
tion model reduction to the subdomain optimality system corresponding to the
fixed subdomain Ω1, then the coupled optimality system closely approximates the
original optimality system. This conjecture is supported numerically.
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From the model reduction of the first order necessary optimality conditions we
also construct a reduced order shape optimization problem which is given by

min
1

2

∫ T

0

‖ĈI
1ŷ

I
1 − dI

1(t)‖2
2 + l̃(yΓ(t),yI

2(t), t, α)dt

subject to

M̂II
1

d

dt
ŷI

1(t) + M̂IΓ
1

d

dt
yΓ(t) + ÂII

1 ŷI
1(t) + ÂIΓ

1 yΓ(t) = B̂I
1u

I
1(t)

MII
2 (α)

d

dt
yI

2(t) + MIΓ
2 (α)

d

dt
yΓ(t) + AII

2 (α)yI
2(t) + AIΓ

2 (α)yΓ(t) = BI
2(α)uI

2(t)

M̂ΓI
1

d

dt
yI

1(t) + MΓΓ(α)
d

dt
yΓ(t) + MΓI

2 (α)
d

dt
yI

2(t)

+ÂΓI
1 yI

1(t) + AΓΓ(α)
d

dt
yΓ(t) + AΓI

2 (α)yI
2(t) = BΓ(α)uΓ(t)

ŷI
1(0) = ŷI

1,0 , yI
2(0) = yI

2,0 , yΓ(0) = yΓ
0 , α ∈ Aad .

Here the state variables ŷI
1 are of much smaller size than the state variables yI

1 in
(1). The ·̂ -matrices are generated by balanced truncation model reduction.

The number of state variables in the reduced order shape optimization problem
is much smaller than the number of state variables in the original shape optimiza-
tion problem (1). Moreover, one can show that the first order necessary optimality
conditions for the reduced order shape optimization problem is identical to the re-
duced first order necessary optimality conditions. This is important, since we solve
the reduced order shape optimization problem, but can only expect error bounds
for the reduced order optimality system.

We have also successfully applied domain decomposition and model reduction
to a shape optimality system governed by the Stokes equations. Because of the
incompressibility conditions, domain decomposition and model reduction becomes
more involved. See [4,5]. In particular, it is not so obvious that in this case there
exists a reduced order shape optimization problem such that its first order opti-
mality conditions are the reduced first order necessary optimality conditions. We
are able to derive a reduced order shape optimization problem with this property.
The results mirror those obtained for the heat equation.
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Systems of Allen-Cahn Variational Inequalities

Luise Blank

(joint work with Harald Garcke, Lavinia Sarbu, Vanessa Styles)

Interface evolution in time can be studied using a phase field model. The Cahn-
Hilliard, the Allen-Cahn equation and other phase field type equations are based
on the Ginzburg Landau energy using e.g. a double well potential or an obstacle
potential. Considering two possible phases they correspond to the values ±1. In
interfacial regions solutions rapidly change from values close to 1 to values close to
−1 and the thickness of this interfacial region is proportional to a parameter ε. The
Cahn-Hilliard approach modells the evolution with mass conservation and results
in a variational inequality of fourth order. Discretizing in time the corresponding
gradient flow equation results into a control problem with box constraints and with
a cost functional including the H1-semi-norm as well as the norm of the dual space
H−1. Hence, we face problems similar to control problems with state constraints.

Our approach for solving the Cahn-Hilliard variational problems efficiently is
based on a primal-dual active set strategy which can also be formulated as a semi-
smooth Newton method. In each iteration step one has to solve a subproblem given
by a coupled system of PDEs where one is given on the whole domain while the
other is to be solved on the interface only. Hence the size of the problem is drasti-
cally reduced. In the discrete setting we have shown local superlinear convergence
where we first had to show the existence of the solutions of all subproblems. Global
convergence is not of large interest here, as we study a discrete time evolution and
hence we always have good starting values from the previous time step. However,
the appropriate scaling of the arising Lagrange multiplier µ by 1

ε , or respectively
the choice of the parameter c in the PDAS method is essential to avoid oscillatory
behaviour due to bilateral constraints.

Computations have been performed in two and three space dimensions using
adaptive meshes. The number of primal dual active set iterations are typically
between one and four, when the active set is initialized using the solution at the
previous time step. As far as we can compare the results with other methods the
PDAS-method outperformed previous approaches. Up to now one of the bottle
necks for a speed-up is the linear algebra solver. Currently a multigrid solver is
under consideration. However, this freedom of choosing a linear algebra solver is
one of the advantages of using the primal-dual method instead of other simulation
approaches. A further advantage is the enourmos reduction of the dimension due
to small inactive sets.

As in the case of Cahn-Hilliard variational inequalities we studied successfully
also the PDAS approach for the L2-gradient flow of Ginzburg-Landau energy,
namely the Allen-Cahn variational inequality. Then mass conservation is not of
interest.
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In many applications more than two phases or materials appear. In case that
several materials appear one can introduce a concentration vector. In this formu-
lation one component is the concentration of the “void” and the other components
are the concentrations of the materials. Examples where such an approach can
be used appear in in structural topology optimization, materials science (differ-
ent grains or phases) or fluid mechanics. The simplest phase field method in this
context is the vector valued Allen-Cahn system for which we studied primal-dual
active set methods for systems of Allen-Cahn variational inequalities. Apart from
the consideration of systems we face additional constraints due to the fact that
the components have to lie in the Gibbs simplex.

We first established H2-regularity in space for the vector valued parabolic vari-
ational inequality. This made it possible to reformulate the problem using com-
plementarity conditions or in other words employing Lagrange multipliers. For
the fully discretized setting we proved local superlinear convergence of the PDAS-
algorithm for the corresponding optimization problem in a situation where in ad-
dition to unilateral bounds the unknown is vector-valued and has to fulfill an
equality constraint.

Also the computations for Allen-Cahn systems have been performed with adap-
tive meshes using ALBERTA as mesh generator. We performed computations for
a system of 30 phase field variables (a situation which frequently arises in materials
science) as well as in 3D for a double bubble as initial data. In the test cases our
ansatz outperforms previous solution techniques in CPU-time. Additional gain is
expected with a problem adapted linear algebra solver. Moreover, it is important
to note that the PDAS-method allows for the more accurate fully implicit time
discretization and also for much larger time steps than other approaches in the
literature.

One of our goals is to solve multimaterial structural topology optimization prob-
lems with a phase field approach. In this context also additional mass constraints
have to be taken into account when using the Allen-Cahn modell. Incorporating
these constraints into the primal-dual active set method leads to additional diffi-
culties as Lagrange multipliers for the non-local constraints have to be considered.
To our knowledge such a situation has not been studied yet before within the
context PDAS-methods.

In case of this vector-valued and nonlocal mass-conserving Allen-Cahn system
we can also show H2-regularity. In spite of nonlocal mass constraints it is possible
to use a semi-smooth Newton method to solve the discretized system. Being able
to solve such a system will be a key ingredient for the application of a phase field
approach to structural topology optimization problems.
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Multigrid and Sparse-Grid Techniques for PDE Control Problems
with Random Coefficients

Alfio Borz̀ı

(joint work with Greg von Winckel)

An established tool for the construction of control strategies for real systems is
provided by optimal control theory [4] where an optimal control problem is formu-
lated as the minimization of an objective, that models the purpose of the control
and describes the cost of its action, under the constraint given by the modeling
equations. We focus on the control of nonlinear elliptic and parabolic PDEs with
random coefficients where the nonlinearity is nonmonotonic. Therefore the result-
ing optimal control problem may be singular in the sense that without control the
model equation may not admit solutions.

With this benchmark, we discuss elliptic and parabolic optimal control problems
with random coefficients that describe the reaction nonlinearity and the linear
diffusion. The present work is based on previous work on deterministic models
[2] and on recent research [8] on modeling and optimization problems where the
coefficients of the problem are described by random fields. We present efficient
multigrid [6] schemes and sparse-grids methodology to solve these problems. Our
setting is based on the work in [1, 5, 7] on elliptic problems with random inputs.
We assume that the reaction coefficient is modeled by random fields that can
be approximated by a truncated Karhunen–Loève expansion on the probability
space. With this representation, we can use the Smolyak sparse-grid algorithm [3]
to model a high-dimensional stochastic coefficient space.

We use a stochastic collocation method, where the solution of the stochastic
optimal control problem is obtained solving, in the physical space, a determin-
istic optimality system for each point of the sparse-grids coefficient space. For
the solution of the deterministic optimality system, we use a collective-smoothing
multigrid (CSMG) scheme [2] that provides optimal computational performance
independently of the values of the optimization parameters and of the problem’s
coefficient. The combination of sparse-grids and multigrid techniques results in a
solution process with optimal computational complexity with respect to the sizes
of the physical and probability grids.

We discuss the modeling of random fields and their representation by the
Karhunen–Loève expansion and define the concept of solution of a stochastic PDE
problem. We formulate representative nonlinear elliptic and parabolic optimal
control problems with a random coefficient and consider a deterministic objec-
tive. Then, we discuss the discretization of the stochastic parameter space using
sparse-grids collocation and describe the Smolyak scheme. A collective-smoothing
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multigrid scheme for nonlinear PDE optimal control problems is discussed. Numer-
ical experiments for validating the numerical performance of the CSMG multigrid
scheme combined with sparse-grids collocation techniques are illustrated. Typical
multigrid convergence rates and robustness with respect to a large choice of op-
timization parameters is obtained. Results of computation of stochastic optimal
control solutions are reported with a focus on the moments of the tracking ability
of the optimization scheme. We discuss the construction of a robust control ob-
tained as the mean of the controls resulting from different realizations of reaction
fields and demonstrate that this control represents an improvement compared with
the control obtained considering a mean field reaction coefficient.
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A PDE Approach to Optimization and Control of High Performance
Buildings

J. A. Burns

(joint work with J. Borggaard, E. M. Cliff, L. Zietsman)

Commercial buildings are responsible for a significant fraction of the energy con-
sumption and greenhouse gas emissions in the U.S. and worldwide. Consequently,
the design, optimization and control of energy efficient buildings can have a tremen-
dous impact on energy cost and greenhouse gas emission. Mathematically, build-
ing models are complex, multi-scale, multi-physics, highly uncertain dynamical
systems with wide varieties of disturbances. By itself, building simulation is a
significant computational challenge. However, when addressing the additional re-
quirements that center on design, optimization (for energy and CO2) and control
(both local and supervisory) of whole buildings, it becomes an immense challenge
to develop practical computational tools that are scalable and widely applicable
to current and future building stock. The development of mathematical and com-
putational methods to deal with such complex systems will be an enabling science
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because at some point in the design and control process, numerical methods must
be employed. In this paper we use a model problem to illustrate that distributed
parameter control based on PDEs, combined with high performance computing
can be used to provide practical insight into important issues such as optimal
sensor/actuator placement and optimal supervisory building control. In order to
illustrate some of the ideas, we consider the problem illustrated by a single room
shown in Figure 1.

SENSOR

c

OUT FLOW 

IN FLOW 

Figure 1. Room Con-
trol Problem

Here, the goal is to design the room
(locate vents, place sensors, etc.) in
order to control the room temperature
near the workspace and minimize en-
ergy. The problems of design and con-
trol should be considered simultane-
ously because the type and effective-
ness of the controller depends on the
type and quality of the sensed infor-
mation and conversely. For simplicity,
we assume flow v(t,x) is given, the
thermal control input is given by u(t) and the noise is v(t). The fully coupled
flow-energy case where the control is applied at the boundary is slightly more
complex and requires a different technical framework. However, for the discussion
here it is sufficient to focus on the thermal equation

(1)
∂T (t,x)

∂t
+ v(t,x) · ∇T (t,x) =

1

RePr
∆T (t,x) + b(x)u(t) + g(x)v(t) ,

and to think of b(x) as a function with support near the wall vent defined on
the domain Ω ⊂ R

3 and T (t,x) is the temperature. The control term is given
by b(x)u(t) and we assume there is a noise term g(x)v(t) where b(x) and g(x)
are given functions in L2(Ω). The controlled output, ξ(t), of the system will be
defined by a weighted average over the sub-domain in the room occupied by the
workspace. In particular, let

(2) ξ(t) =

∫

Ωc

d(x)T (t,x)dx+w(t) ,

where Ωc ⊂ Ω is specified to be a region around the workspace and w(t) represents
sensor noise. Consider the problem of finding the control that minimizes

(3) J(u) =

∫ ∞

0

{
[ξ(t) − r(t)]2 + R[u(t)]2

}
dt ,

where R > 0 and r(t) is a desired average temperature to be tracked. For the
discussion here, we set r(t) = 0 and note that this is a “zonal control problem” in
that we care only about controlling the average temperature in the zone Ωc.

Under suitable assumptions and applying the appropriate boundary conditions,
we formulate (1) as a differential equation on the Hilbert space Z = L2(Ω), of the



Numerical Techniques for Optimization Problems with PDE Constraints 207

form

(4) ż(t) = Az(t) + Bu(t) + Gv(t) , t > 0 , z(0) = z0 ∈ Z ,

where A : D(A) ⊆ Z → Z generates a C0-semigroup S(t) on Z, B : R → Z and
G : R → Z are linear input operators defined in the natural way

[Bu](x) = b(x)u and [Gv](x) = g(x)v ,

respectively. If the operator D : Z → R is defined by (2) and Q = D∗D, then
the linear quadratic regulator (LQR) control problem is defined by minimizing the
cost (3) subject to the linear dynamics (4). In this simple case one can show that
under reasonable conditions (see [4]) the LQR problem has an optimal control, in
feedback form,

(5) uopt(t) = −Kz(t) ,

where K : Z → R is the bounded linear gain operator. Moreover, K = R−1B∗Π
where Π : Z → Z is a bounded linear operator, Π = Π∗ and Π satisfies the Riccati
equation

(6) A∗Π + ΠA− ΠBR−1B∗Π + Q = 0 .

The operator Π is nuclear and there exist a function kT (x) such that

(7) Kz(t) =

∫

Ω

kT (x)T (t,x)dx ,

where the kernel kT (x) is called the functional feedback gain. The functional gain
defines the optimal LQR controller and can be used to place sensors and design
low order controllers (see [4]). We have developed practical methods for computing
3D functional gains kT (x) (see [3]), and we can use this gain to guide the choice
and placement of the sensors. As we show below, the functional gains often have
localized (or nearly localized) support and one can use this fact to determine what
regions in space are most important to the controller. For example, if

kT (x) =

{
kT (x) ≫ 0, x ∈ ωk ⊂ Ω
kT (x) ≅ 0, x 6∈ ωk ⊂ Ω

,

then it is important (when possible) to place sensors in the region ωk where
kT (x) ≫ 0. In particular, in this case

(8) Kz(t) =

∫

Ω

kT (x)T (t,x)dx ≅

∫

ωk

kT (x)T (t,x)dx ,

and one would optimally place sensors so that the integral in (8) is best approxi-
mated by a quadrature evaluated at the sensor locations.

If one can not place sensors in ωk, then one needs to estimate the state only
inside the zone ωk. This is a zonal estimation problem (see [1], [2]). For example,
assume that there is one sensor with support in the region Ω(q) located near a
wall given by

(9) y(t) =

∫

Ω(q)

c(x)T (t,x)dx+w(t) = C(q)z(t) + w(t) ,
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where Ω(q) =
{
x ∈ Ω̄ : ‖x − q‖ < ǫ

}
⊂ Ω̄ contains the support of the function

c(x) ∈ L2(Ω). Standard linear state estimators (observers) have the form

(10) że(t) = Aeze(t) + Fy(t) ,

Figure 2. Feedback Func-
tional gain

where F : R → Z has the repre-
sentation [Fy](x) = fT (x)y and
ze(t) is an estimate of the re-
stricted state T (t,x)|ωk

.
In Figure 2 we show the

functional feedback gain for the
room problem above. Note that
the “support” ωk of kT (x) is
largest near the workspace as ex-
pected. The optimal zonal esti-
mation problem will be addressed
in the full talk.
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Coupling the Hamilton-Jacobi-Bellman and the Pontryagin’s
Minimum Principle Approach to Solve Optimal Control Problems

Emiliano Cristiani

(joint work with Pierre Martinon, Hasnaa Zidani)

We investigate the possibility of coupling the Hamilton-Jacobi-Bellman (HJB)
approach and the Pontryagin’s Minimum Principle (PMP) approach to solve a
class of control problems. We show that a rough approximation of the value
function computed by the HJB equation can be used as optimal initial guess for a
shooting method based on the PMP.

We deal with the following controlled dynamics

(1)

{
ẏ(t) = f(y, u) , t > 0 ,
y(0) = x , x ∈ R

d ,

where u = u(t) is the control and can be chosen in a set of admissible controls
U = {u : [0, +∞) → U}, and U is a compact set of R

m. We denote by yx(t; u) the
solution of the system (1) starting from the point x with control u. Let T ⊂ R

d be
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a given closed target. We denote by tf (x, u) the first time the trajectory yx(t; u)
hits T (we set tf (x, u) = +∞ if the trajectory never hits the target). We also
define a functional cost J

(2) J(x, u) :=

∫ tf (x,u)

0

ϕ(yx(t; u), u)dt

for some cost function ϕ : R
d × U → R. The final goal is to find

u∗ ∈ U such that J(x, u∗) = min
u∈U

J(x, u) .

We also define the value function T as T (x) := J(x, u∗) for every x ∈ R
d. Choosing

ϕ ≡ 1 in (2) we obtain the classical minimum time problem.
The Hamilton-Jacobi-Bellman (HJB) approach is based on the resolution of the

following first-order nonlinear hyperbolic PDE

(3)

(

v(x) + sup
u∈U

{−f(x, u) · ∇v(x) − ϕ(x, u) + (ϕ(x, u) − 1)v(x)} = 0 , x ∈ R
d\T ,

v(x) = 0 , x ∈ T ,

where v = 1−e−T [1]. Once solved (3) and computed T , we easily obtain the opti-
mal control u∗ and the corresponding optimal trajectory [1]. The main advantages
of this approach are: 1) the optimal control u∗ realizes the global minimum of J ,
2) u∗ is obtained in feedback form, 3) once T is computed, the initial point x can
be changed at will, the computation of the optimal trajectory is done in real time.
The main drawbacks are: 1) it is needed to fix a box Ω where T is approximate,
this results in not desired state constraints, 2) to obtain a good precision a very
fine discretization of Ω is required, 3) this approach suffers from the ”curse of di-
mensionality”, so in general it is restricted to problems in low dimension (d ≤ 3).
Otherwise, parallel computation is needed.

The shooting method (SM) consists in finding trajectories that satisfy the nec-
essary conditions stated by the PMP. This is done in practice by searching a zero
of a certain shooting function, typically with a (quasi-)Newton method [4]. In
order to evaluate the shooting function, a system of ODEs for y and the costate p
must be solved in the time interval [0, t∗f ], starting from the initial condition y(0)

and p(0). Note that the exact values of t∗f and p(0) are not known. The main

advantages of this approach are: 1) it is fast, 2) u∗ is computed very accurately.
The main drawbacks are: 1) finding a suitable initial guess for t∗f and p(0) for the

convergence of the shooting method can be extremely difficult in practice, 2) u∗

is in general only a local minimum of J , 3) u∗ is open-loop.
The proposed algorithm consists in solving the HJB equation on a very coarse

grid computing a rough approximation of T and t∗f . Then we exploit the fact that

if T is differentiable at x, then p(0) = ∇T (x) [3]. With these information we can
initialize the shooting method and obtain in most cases an immediate convergence
to the optimal solution.

Equation (3) is solved in a bounded domain Ω by the semi-Lagrangian scheme
described in [6]. We denote the approximate value function by T h

k , where k and
h are the two discretization steps needed by the numerical method. Then, the
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approximate gradient ∇̃T h
k is computed by first order centered finite differences

(with step z). We have the following

Theorem 1. Let ϕ ≡ 1 and let η̂(x) be the exterior unit normal vector of ∂T
at x. Assume f(x, u) · η̂(x) < 0 for x ∈ ∂T . Assume T ∈ C1(Ω) and T < +∞.
Finally assume that k = Ch for some constant C. Then it exists Ω′ ⊂ Ω (explicitly
computable) such that

‖∇̃T h
k −∇T ‖L∞(Ω′) ≤ O

(√
h

z

)
+ O(z2) .

Here we show the results of our algorithm for the Goddard problem (see f.e. [5]):




ṙ = v

v̇ = −D(r,v)
m − 1

r2 + Tmax
u
m

ṁ = −Tmax b u

where D(r, v) = 310v2e−500(r−1), Tmax = 3.5, b = 2, φ(x, u) = u, U = [0, 1],
(r(0), v(0), m(0)) = (1, 0, 1), T = {r ≥ 1.01} and Ω = [0.998, 1.012]×[−0.02, 0.18]×
[0.1, 1.8].
The three state variables are the altitude, velocity and mass of a rocket which
climbs in the vertical direction. Here the goal is to find the optimal control to
steer the rocket at a given altitude minimizing the fuel consumption. The HJB
equation needs a huge number of iterations to converge, and the approximate value
of p(0) is sensible to the choice of Ω. For the SM, the problem is hard because it
involves singular arcs. Solving the HJB equation on a 203 grid with 21 discrete
controls we find in 211 seconds p(0) = (−7.79, −0.31, 0.04) and t∗f = 0.17. It
is also possible to locate the singular arc, tentry = 0.02 and texit = 0.06. On the
other hand, the HJB approach is not able to compute a good approximation of
the optimal control as we can in the last plot of Fig. 1. The application of the
PMP to this problem and the resulting shooting formulation are described in [2].
With the initialization provided by the HJB solution, the shooting method con-
verges in 1 sec to the solution t∗f = 0.1741, p(0) = (−7.2753,−0.2773, 4.382e− 2),
tentry = 0.02350 and texit = 0.06684. The corresponding trajectory and optimal
control are shown in Fig. 2, with the expected singular arc clearly visible on the
control.
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Two-Discipline Optimization: Split of Territory for Optimum-Shape
Design in Aerodynamics with Coupling to Another Discipline

Jean-Antoine Désidéri

A difficult issue in applied optimization and related numerical analysis, is the
treatment of multi-objective problems when the criteria originate from different
physical phenomena, each one being governed by a non-trivial set of PDEs. For
such problems, the most general method consists in identifying the front of Pareto-
optimal solutions. However, this identification is logically complicated in cases
where more than two criteria are considered. Additionally, to realize this identi-
fication computationally, the Non-dominated Sorting Genetic Algorithm (NSGA)
by Srinivas and Deb [7] is a well-known and effective algorithm, but it is very
costly in distributed problems where the criteria are functionals of fields that are
computed by finite-volume or finite-element-type simulations. Thus a challenging
area of research in computational optimization is the definition and analysis of
more economical algorithms to handle several physics concurrently in design.

We first focus on Nash games associated with a special split of variables to
handle multi-objective shape optimization problems in which one criterion is either
fragile or preponderant. A treatment of multi–criterion problems that removes
the question of adjusting penalty constants, and that is computationally more
economical than identifying the Pareto equilibrium front, is to seek a pseudo-
optimal solution as the equilibrium point of a simulated dynamic game in which
the set of design parameters is split into subsets, each subset being considered as
the strategy (or territory) of a given functional. Nash or Stackelberg games [6], [2]
are usually considered. Of course, the adopted definition of the splitting also
introduces a bias, but one demonstrated to be weaker. Examples of successful
concurrent optimizations realized numerically by such dynamic games have been
provided from [8], [9] where the necessity to define a proper split of design variables
in adequacy with the physics of the problem has also been strongly pointed out.

A sensitivity-analysis-based theoretical splitting strategy has been introduced
in [5] for the treatment of cases in which a hierarchy between a primary and a sec-
ondary criteria to be minimized is introduced. An algorithm has been proposed in
which the absolute optimum of the primary criterion is first identified, presumably
numerically. Then, a secondary criterion is improved in a virtual Nash game, in
which the design variables have been split, according to the diagonalization of a
reduced Hessian, and assigned to the two virtual players, in a way that is devised
to cause the least possible degradation to the primary criterion from its absolute
optimum. Additionally, the approach puts in evidence the existence of a contin-
uum of Nash equilibrium points originating from the initial absolute optimum of
the primary criterion considered alone. Certain properties of robust design have
also been established for the proposed formulation. Successful implementations
and algorithmic generalizations can be found in [1].

These elements have been extended recently to cases where the initial point is
arbitrary instead of resulting from the optimization of a single discipline alone.
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We have proposed to define a notion of “Pareto-stationarity”, according to which
a design-point Y 0 is said to be Pareto-stationary w.r.t. a set of criteria iff a convex
combination of these criteria is stationary at Y 0. Evidently, for smooth criteria,
Pareto-optimal points are Pareto-stationary. Thus, inversely, if Y 0 is not such
a Pareto-stationary point, a simple formula provides the definition of a direction
along which all the criteria diminish from Y 0. For example, for two criteria, the
descent direction can be −w, where

w =
‖v‖ u + ‖u‖ v

‖u‖ + ‖v‖ ,

in which u and v are the local values of the gradients of the two criteria. Thus,
a “cooperative phase of optimization” is conducted by successive steps along such
common descent directions and until a Pareto-stationary point is achieved (in a
finite or infinite number of steps). Then, the confrontation of the criteria can be
organized in a “competitive phase of optimization”, according to a Nash game in
which information on local gradients and Hessians is used to guide the definition of
a special split of variables, in a way similar to the first analyzed situation where the
Nash game was initiated from a stationary point of the single primary criterion.
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Efficient One-Shot Methods for Aerodynamic Shape Design

Nicolas R. Gauger

Two different one-shot optimization techniques for aerodynamic shape design prob-
lems will be presented. These methods enable aerodynamic shape designs for the
computational effort of a small, constant multiple of the effort of an aerodynamic
simulation.
The first methodology is applicable to all areas of scientific computing, where
large scale governing equations involving discretized PDEs are treated by custom
made fixed point solvers. To exploit the domain specific experience and exper-
tise invested in these simulation tools, it is proposed to extend them in a semi-
automated fashion by the use of automatic differentiation (AD) tools. First they
are augmented with adjoint solvers to obtain (reduced) derivatives and then this
sensitivity information is immediately used to determine optimization corrections.
In other words, rather than applying an outer optimization loop we prefer the
‘one-shot’ strategy of pursuing optimality simultaneously with the goals of primal
and adjoint feasibility.
The second methodology presented follows the ‘first optimize then discretize’ phi-
losophy. Integral parts of this approach are gradient preconditioning and shape
derivatives in order to ensure efficiency.
The aerodynamic shape design examples, solved by the two presented one-shot
methodologies, are drag reduction without and with constraints on lift under tran-
sonic flight conditions (with compressible Euler as governing equations) and the
control of a viscous channel flow around a cylinder (here the governing equations
are the incompressible Navier-Stokes equations with pressure correction).
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A Stochastic Newton Method for Bayesian Inverse Problems

Omar Ghattas

(joint work with James Martin, Lucas Wilcox, and Carsten Burstedde)

The problem of estimating uncertain parameter inputs to a mathematical model
from output observations is fundamentally an inverse problem. The forward prob-
lem seeks to predict the outputs given the inputs by solving the governing equa-
tions. The forward problem is usually well-posed (the solution exists, is unique,
and is stable to perturbations in inputs), causal (later-time solutions depend only
on earlier time solutions), and local (the forward operator includes derivatives
that couple nearby solutions in space and time). The inverse problem, on the
other hand, reverses this relationship by seeking to estimate uncertain parame-
ters from observations. The great challenge of solving inverse problems lies in the
fact that they are usually ill-posed, non-causal, and non-local: many different sets
of parameter values may be consistent with the data, and the inverse operator
couples solution values across space and time.

Non-uniqueness stems from sparsity of the observations and uncertainty in both
the measurements and the model itself. The popular approach to obtaining a
unique “solution” to the inverse problem is to formulate it as an optimization
problem: minimize the misfit between observed and predicted outputs in an ap-
propriate norm while also minimizing a regularization term that penalizes un-
wanted features of the inputs. This has been called Occam’s approach: find the
“simplest” set of inputs that are consistent with the measured data. The inverse
problem thus leads to a nonlinear optimization problem that is constrained by the
forward problem. When the forward model is governed by PDEs, the result is an
optimization problem that is large-scale in the (discretized) state variables, even
when the number of inversion parameters is small. More generally, when the un-
certain parameters represent fields (as in the case of medium or source functions),
the inverse problem is of large scale in the (discretized) model parameters as well.

Solution of this optimization problem using this regularization approach to
inverse problems will yield an estimate of the “best” values of input parameters
that simultaneously fit the data and minimize the regularization penalty term.
However, we are interested in not just point estimates of the best-fit inputs, but a
complete statistical description of the input parameters that are consistent with the
data. The Bayesian approach does this by reformulating the inverse problem as a
problem in statistical inference, incorporating uncertainties in the measurements,
the forward model, and prior information on the inputs [3,5]. The solution of this
inverse problem is the joint “posterior” probability density of the inputs, which
reflects the degree of confidence in their values. Thus we are able to quantify the
resulting uncertainty in the inputs, taking into account uncertainties in the data,
model, and prior information.

The Bayesian solution of the inverse problem proceeds as follows. Suppose
the relationship between output observables y and uncertain input parameters p
is denoted by y = f(p, e), where e represents noise due to measurement and/or
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modeling errors. In other words, given the inputs p, the function f(p) invokes
the solution of the forward problem to yield y, the predictions of the observables.
Suppose also that we have the prior probability density πpr(p), which encodes the
confidence we have in prior information on the unknown inputs (i.e. independent of
information from the present observations), and the likelihood function π(yobs|p),
which describes the conditional probability that the inputs p gave rise to the
actual measurements yobs. Then Bayes’ theorem of inverse problems expresses
the posterior probability density of the inputs, πpost, given the data yobs, as the
conditional probability

(1) πpost(p)
def
= π(p|yobs) = k πpr(p)π(yobs|p) ,

where k is a normalizing constant. The expression (1) provides the statistical
solution of the inverse problem as a probability density for the model inputs p.

While it is easy to write down expressions for the posterior probability density
such as (1), making use of these expressions poses a challenge, because the pos-
terior probability density is a surface in high dimensions (equal to the number of
inputs), and because the solution of the forward model is required at each point
on this surface. Straightforward grid-based sampling is out of the question for
anything other than a few inputs or cheap forward simulations. Special sampling
techniques, such as Markov chain Monte Carlo (MCMC) methods, have been de-
veloped to generate sample ensembles that typically require many fewer points
than grid-based sampling [2, 3]. Even so, MCMC methods become prohibitive as
the complexity of the forward simulations and the dimension of the input space in-
crease. When the input is a (suitably-discretized) field, and when the forward PDE
requires hours to solve on a parallel computer, the MCMC framework collapses.

The central problem in scaling up conventional MCMC for large-scale forward
simulations and high-dimensional input spaces is that this is a purely black-box ap-
proach, i.e. it does not exploit the structure of the input-output map f(p). Several
decades of work on algorithms for deterministic large-scale PDE-constrained opti-
mization have taught us that making use of Hessian information can greatly speed
up the search process for extremum points; we believe this information should
prove valuable in addressing the curse of dimensionality in sampling methods as
well. Using adjoint techniques, actions of Hessians on vectors can be computed
at a cost of a pair of linearized forward solves, and this combined with special-
ized inexact Newton-CG solvers that exploit the fact that many ill-posed inverse
problems have compact data misfit operators, often permits solution of determin-
istic inverse problems in a dimension-independent number of iterations (and thus
forward solves).

Here, we build on the Langevin dynamics approach to sampling, which uses gra-
dient information to accelerate sampling of a target density, e.g. [4]. The Langevin
equation is a stochastic differential equation (SDE) with πpost(p) as an invariant
density:

(2) dP t = A∇ log πpostdt +
√

2A1/2dW t ,
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where W t is the i.i.d. vector of standard Brownian motions. Preconditioning by a
symmetric positive definite operator A preserves the invariance of the density. In
practice, we discretize in time with timestep ∆t, yielding (e.g. for explicit Euler)
the update

(3) pk+1 = pk + A∇ log πpost∆t +
√

2∆tA1/2N (0, I)

where N (0, I) is the i.i.d. standard normal density. Discretization in time can add
bias, so typically we use the Langevin steps as proposals for MCMC. The form (3)
shows immediately the connection with deterministic optimization methods: the
gradient term ∇ log πpost is a steepest ascent direction for the posterior density.
In its absence (and in the absence of preconditioning, i.e. A = I) we recover a
Gaussian random walk. The addition of this term drives the samples in (the locally
steepest) direction of higher probability. However, steepest descent is a poor choice
for large-scale optimization (particularly for anisotropic problems), and we seek to
improve on it.

Taking the preconditioner A as the inverse of the Hessian matrix of log πpost,
we obtain the stochastic equivalent of Newton’s method. In the common case of
Gaussian additive noise and prior, the (negative) log of the posterior density is
simply the misfit objective (i.e. the sum of the data misfit and prior/regularization
term) that deterministic inverse methods seek to minimize. Thus, similar to New-
ton’s locally-quadratic approximation of the objective, the Hessian-preconditioned
Langevin step makes a locally-Gaussian approximation of πpost. This endows
the sampling process with curvature information for the posterior density surface,
which is crucial in high dimensions. We expect this to result in a need for substan-
tially fewer sampling points, just as deterministic Newton requires substantially
fewer iterations to find the optimum compared to a derivative-free optimization
method.

Moreover, it can be shown [1] that in the limiting case when the posterior den-
sity πpost is in fact Gaussian (such as when the inverse problem is linear and the
noise is additive and Gaussian), this so-called stochastic Newton method not only
samples the target density at long times, but accurately samples from πpost at
every time step. This means that Metropolis-Hastings will accept all of the pro-
posed sample points, and that a minimum number of points will be necessary to
accurately sample from the given distribution. For densities that are not Gauss-
ian, stochastic Newton will still provide a substantial speedup over a conventional
random walk, since a local Gaussian approximation (based on a local quadratic ap-
proximation of log πpost, or equivalently a linearized approximation of the inverse
problem) will generally prove to yield more useful information on the behavior of
πpost than a standard normal density approximation will. Indeed, our preliminary
experience with stochastic Newton on a 1D (nonlinear) inverse medium scatter-
ing problem, with the medium parametrized by 65 layers, indicates just O(102)
samples are necessary to adequately sample the (non-Gaussian) posterior density,
while a state-of-the-art (but non-derivative) MCMC method (Delayed Rejection
Adaptive Metropolis) is nowhere near converged after even O(105) samples [1].
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Moreover, because the (inverse) Hessian captures the (local) covariance structure
of the posterior density, this orders-of-magnitude speedup is expected to become
even larger as the parameter dimension increases.
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Methods for Large-Scale Optimization Based on Iterative Solvers

Philip E. Gill

(joint work with Jennifer B. Erway)

Although a range of algorithms and software exist for general-purpose optimization
by interior and SQP methods (see, e.g., [3, 7, 12, 21, 25, 26]), conventional meth-
ods are unable to take full advantage of the structure present in the huge finite-
dimensional problems defined by the “discretize-then-optimize” paradigm of ODE-
and PDE-constrained optimization. We consider large-scale finite-dimensional
problems of the form:

(1) min
x∈ℜn

f(x) subject to c(x) = 0 , x ≥ 0 ,

where c denotes an m-vector of nonlinear functions that includes the discretized
differential equations. (To simplify the discussion, we consider the bounds x ≥ 0
in place of the more general form ℓ ≤ x ≤ u.) The Lagrange multipliers associated
with the constraints c(x) = 0 and x ≥ 0 are denoted by y and z respectively.
Following common practice, we refer to x as the primal variables and (y, z) as
the dual variables. Our approach involves a class of primal-dual path-following
methods based on the properties of the well-known augmented Lagrangian method,
which solves the constrained problem as a sequence of unconstrained subproblems
(see, e.g., [2, 10, 17]). Let µ be a small positive scalar and assume that ye and ze

(ze ≥ 0) are estimates of the optimal dual variables y∗ and z∗. Each subproblem
involves finding an approximate minimizer of the function Mµ(x, y, z) such that

(2)

Mµ(x, y, z) = f(x) − c(x)T ye +
1

2µ
‖c(x)‖2 +

1

2µ
‖c(x) + µ(y − ye)‖2

− µ

m∑

i=1

ze
i ln

(
(xi + µ)2zi

)
−

m∑

i=1

(
µ(ze

i − zi) − xizi

)
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(for further details, see [8,13,22]). Unlike the conventional augmented Lagrangian,
Mµ is minimized with respect to both the primal and dual variables. Moreover,
the parameter µ need not go to zero to force convergence, but may be fixed at a
small value that provides a regularization of each subproblem.

If v = (x, y, z) denotes the vector of primal and dual variables, then each it-
eration of Newton’s method for minimizing M(v) = M(x, y, z) involves solving
the linear equations ∇2M(v)∆v = −∇M(v), where ∇M and ∇2M(v) denote the
gradient and Hessian of M with respect to x, y and z. These equations have fixed
structure and are positive definite if the curvature of the underlying constrained
problem is correct. The direction ∆v is found by solving a related generalized
saddle-point problem of the form:




H −JT −I
J µI
I Z−1(X + µI)








∆x
∆y
∆z



 = −




r1

r2

r3



 ,

where J is the Jacobian of c, H is the Hessian of the Lagrangian and X and Z
are diagonal matrices with diagonal entries xi and zi. In [1,9] we describe efficient
iterative methods for these equations based on the application of the conjugate-
gradient method with certain structured preconditioners (also known as constraint
preconditioners, see, e.g., [11, 14, 18–20]). The algorithm has the crucial property
that the preconditioner equations need not be solved exactly, thereby allowing the
use of multilevel preconditioners in the PDE context.

In order to ensure the convergence of each unconstrained minimization, we
employ the trust-region modification of Newton’s method. Trust-region methods
define ∆v as an approximate solution of the subproblem

(3) min
s

q(s) = ∇M(v)Ts + 1
2sT∇2M(v)s subject to ‖s‖ ≤ δ ,

where ‖ · ‖ is an inner-product norm and δ is a positive scalar that is updated as
the iterations proceed (see, e.g., [3,21]). One of the most widely-used trust-region
methods for the large-scale case is the Steihaug-Toint method [23,24], which uses
the conjugate-gradient method to minimize q(s) over a sequence of expanding sub-
spaces until the iterates either converge to an interior point or cross the boundary
of the constraint ‖s‖ ≤ δ. However, if a preconditioner is used with the conjugate-
gradient method, the Steihaug-Toint method requires that the trust-region norm
be defined in terms of the preconditioning matrix. This implies that in the typical
situation where a different preconditioner is used for each subproblem, the shape of
the trust-region may change substantially from one subproblem to the next, which
invalidates many of the assumptions on which standard methods for adjusting δ
are based. To avoid this difficulty, we solve the inequality constrained trust-region
subproblem (3) over a sequence of evolving low-dimensional subspaces. At the kth
step, an estimate of ∆v is given by

∆vk = argmin
s

{∇M(v)Ts + 1
2sT∇2M(v)s, ‖s‖ ≤ δ, s ∈ Sk} ,

where Sk is a subspace spanned by the previous iterate ∆vk−1, an estimate zk of the
leftmost eigenvector of ∇2M(v), and an “accelerator” direction sa

k (see [4–6,15,16]).
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The accelerator direction is obtained by applying a few iterations of a primal-dual
interior method to the trust-region subproblem (3). A crucial property of this
direction is that it is defined by applying the preconditioned conjugate-gradient
method to a positive-definite system in both the primal and dual variables of the
trust-region subproblem. This approach allows the trust-region norm to be defined
independently of the preconditioner.
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Optimal Control Problems with Directional Sparsity

Roland Griesse

(joint work with Georg Stadler, Gerd Wachsmuth)

It is a feature of the 1-norm, both in R
n and function space, that it promotes

sparsity of the solutions of optimization problems [1]. In particular, optimal control
problems of the form

minimize
1

2
‖Su − yd‖2

H +
α

2
‖u‖2

2 + β ‖u‖1

were considered by G. Stadler [2], where u is the control in L2(Ω) and Ω is a
bounded domain. These problems exhibit optimal controls which are zero on
significant parts of the domain, but they do not provide any a priori information
on the shape of the controls’ support.

We consider here the following modification

(1) minimize
1

2
‖Su − yd‖2

H +
α

2
‖u‖2

2 + β ‖u‖1(2) ,

where α, β ≥ 0 and the last term denotes the L1-norm in some directions of the L2-
norm in the remaining directions of Ω. The coordinate directions are partitioned
according to R

N = R
n × R

N−n for some 1 ≤ n < N . The partition induces the
sets

Ω1 = {x1 ∈ R
n : ∃x2 ∈ R

N−n : (x1, x2) ∈ Ω} ,(2a)

Ω2(x1) = {x2 ∈ R
N−n : (x1, x2) ∈ Ω} for x1 ∈ Ω1 ,(2b)

and Ω1 can be interpreted as the projection of Ω onto R
n, whereas Ω2(x) is the

cross section of Ω at position x1 ∈ R
n. Then ‖u‖1(2) becomes

‖u‖1(2) =

∫

Ω1

(∫

Ω2(x1)

u(x1, x2)
2 dx2

)1/2

dx1 .

The ”outer” direction x1 is the one w.r.t. to which sparsity is promoted.
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We assume that S ∈ L(L2(Ω), H) is a bounded linear map into a Hilbert space
H , and that Uad := {u ∈ L2(Ω) : a ≤ u ≤ b a.e. in Ω} with bounds ua, ub ∈ L2(Ω).
A function ū ∈ Uad is optimal for (1) if and only if

(3) 〈u − ū,−p̄ + βλ̄ + αū〉 ≥ 0

holds for all u ∈ Uad, where p̄ = S⋆(yd − Sū) is the optimal adjoint state and
λ̄ ∈ ∂‖ · ‖1(2)(ū) is a subgradient.

In the presentation, we discuss algorithms of fixed-point and semismooth New-
ton type which address the solution of (3), and give some numerical results for
elliptic and parabolic optimal control problems.
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From Simulation to Optimization with A Priori Bounded Retardation

Andreas Griewank

We consider the task of minimizing an objective function f(y, u) with (y, u) ∈
Y ×U the product of two Hilbert spaces subject to a state equation in fixed point
form G(y, u) = y. The Jacobian Gy = ∂G/∂y is assumed to have a spectral
radius ρ < 1 at all points of interest. Then feasible solutions y = y(u) can be
computed by the iteration yk+1 = G(yk, u) for k = 1, . . . . We assume that the
iteration function G is user supplied and may represent a simple local relaxation
method or a sophisticated multigrid scheme [1]. The rate of convergence and thus
the computational effort for resolving the state equation with a certain accuracy
is determined by ρ or rather 1 − ρ, which may be dependent on discretization
parameters like for example the mesh width if the state equation is originally a
PDE.

With L(y, ȳ, u) ≡ f(y, u) + ȳ⊤(G(y, u)− y) the Lagrangian of the optimization
problem we may append the primal iteration above with a dual iteration and an
optimization loop to obtain the coupled system

yk+1 = yk + Lȳ(yk, ȳk, uk)

ȳk+1 = ȳk + Ly(yk, ȳk, uk)

uk+1 = uk − B−1
k Lu(yk, ȳk, uk) .

The key ingredient of this one-shot approach is the design space preconditioner
Bk, which must be selected as a symmetric positive definite n × n matrix in the
practical situation n ≡ dim(U) < ∞. Ideally Bk should be defined and computed
such that the spectral radius ρ̂ of the coupled system is below 1 and as close as
possible to ρ.
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We refer to the ratio r ≡ (1 − ρ)/(1 − ρ̂) as the retardation factor of op-
timization relative to simulation. We believe that by chosing for a given state
equation G(y, u) = Y a family of more and more difficult objective functions the
ratio can be made arbitrarily large. Moreover, we believe this conjecture to be true
irrespective of the methodology in use for solving the primal. Naturally, there is
the tacit assumption that the method for solving the dual is somehow ’naturally’
related to that for solving the primal and in particular not much more sophis-
ticated. In any case the retardation factor should be independent of incidental
parameters like the discretization width.

Based on the theory developed in the papers [2–4] we have arrived at the ten-
tative conclusion that a fairly optimal choice for Bk is given by

B ≡ αG⊤
u Gu + βLuyLyu + Luu .

Here the weighting coefficients are defined by

α ≡ ‖Lyy‖
(1 − ρ)2

+
q

(1 − ρ)
and β ≡ 1

q(1 − ρ)

where

q ≡ max
06=v∈U

‖Lyuv‖
‖Guv‖ .

The ratio q quantifies the perturbation of the adjoint equation Ly = 0 caused by
a design variation v relative to that in the primal equation G − y = 0. It can be
shown that in the vicinity of a fixed point for this Bk = B the coupled system
cannot have real eigenvalues outside the open interval (−1, 1). The modulus of
complex eigenvalues is still under investigation.

The given preconditioner may be viewed and practically approximated as second
order derivative with respect to the design u of the double augmented Lagrangian

La(y, ȳ, u) ≡ L(y, ȳ, u) +
α

2
‖Lȳ‖2 +

β

2
‖Ly‖2 .

Globally one can show that this merit function is consistently reduced by the
coupled step defined above.

The one-dimensional case the the test problem proposed in [5] is given by

min
y,u

∫ 1

0

0.5
[
(y(t) − yd(t))2 + µu(t)2

]
dt s.t. − y′′(t) = u(t) , y(0) = 0 = y(1) .

Here we derived for our approach applied to Jacobi’s method on a central difference
discretization that the retardation factor r is proportional to the reciprocal of the
regularization factor µ in the objective. We consider this to be a natural relation
and are currently striving to derive a priori estimates of r for the general case,
including nonseparable problems where Lyu does not vanish.
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Acoustic Optimization of Plates and Shells

Sean Hardesty

(joint work with Matthias Heinkenschloss)

We consider optimization of the radiated acoustic field produced by the vibrations
of mechanically driven elastic shell structures. Changes in the radiated field are
effected by variations in the structure geometry.

The structure occupies the domain Ω− ⊂ R
3. We set Γ = ∂Ω− and Ω+ = R

3 \
(Γ∪Ω−). The model problem is formulated with 3D elasticity and the Helmholtz
equation for the displacement vector u and the acoustic velocity potential ϕ:

−ω2ρu =∇ · σ(u) in Ω−

σ(u) =H : e(u) in Ω−

σ(u) · n =f − iωρ0ϕn on Γ

∂nϕ = − iωu · n on Γ

△ϕ + κ2ϕ =0 in Ω+

|∇ϕ · x/|x| − iκϕ| =O
(
1/|x|2

)
as |x| → ∞ .

Here f is an applied boundary traction. In the optimization problem we wish to
modify the acoustic response ϕ over some frequencies ω in an observation region
O ⊂ Ω+ by varying the shape.

To model this problem, it is convenient to use Naghdi shell equations in con-
junction with boundary integral equations so that the problem can be posed purely
on a two-dimensional set of reference coordinates: it is thus possible to update the
shape without modification of the mesh. To discretize the problem we apply MITC
shell elements [9] and the piecewise-linear Galerkin boundary element formulation
of [12]. In particular, the Duran-Libermann modification [4] of MITC3 plate el-
ements is extended to Naghdi shells. The shell and boundary element equations
are coupled using the thin boundary element method [11], which allows coupling
at the shell mid-surface.

Existence and uniqueness theory for a problem that couples 3D elasticity with
an integral equation formulation for exterior acoustics that is similar to ours is
given in [2]. However, existence and uniqueness results for our coupled problem
are not yet known.

Figure 1 shows numerical simulations of the acoustic response of a driven box
that encloses the region [−1, 1] × [−1, 1] × [0, 1] with unit-circle hole in the top
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Figure 1. The driven box encloses the region [−1, 1]× [−1, 1]×
[0, 1] with unit-circle hole in the top face. It is driven with a
spatially Gaussian pulse, centered near the red spot at 200 Hz.
The x-marks on the graph were computed on a refined mesh to
test convergence.

face that is driven with a spatially Gaussian pulse. Simulations were done for
two different thicknesses t = 0.1 and t = 0.05 of the box and two meshes for each
thickness. The left plot shows the pressure for a spatially Gaussian pulse, centered
near the red spot at 200 Hz. The right plot shows the pressure at a point outside
the box for different frequencies. The right plot shows that the acoustic response
can be modified by changing the thickness of Ω−. It also indicates that the chosen
mesh is sufficient to resolve the acoustic response at lower frequencies.

The next step is to apply optimization to find the best Ω−, among a set of
admissible shapes, so that the acoustic response matches a desired response. We
can define the transfer function

TΓ(ω) = |ϕω(x∗)|/‖fω‖Γ .

Formally our optimization problem can be written as follows. We seek the solution
over some admissible set of domain boundary shapes Γad to

min
Γ∈Γad

‖TΓ − T ∗‖ ,

with T ∗ the desired transfer function. Formulation, analysis, and solution of this
optimization problem is work in progress.

Optimization of similar problems has been done in [3,5,8], but with a variety of
simplifying assumptions that limit the range of potential applications. In partic-
ular, it is often assumed that the structure is dense enough, that the air pressure
loading can be neglected, or that the structural motions can be expanded in a
basis of low-frequency eigenmodes of the elastic problem. Shape optimization has
been done over a very targeted set of possible shape modifications using a small
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parameter set, and without adjoint calculations. We aim to explore the possibili-
ties of optimization using fully adjoint-based gradient calculation, and so to allow
a wider variety of possible shapes. This is facilitated by choosing finite element
schemes that make the coupling as simple as possible.

Thickness optimization of plates has been studied by [6,7], optimization of shells
in [1]. Results on the existence of optimal solutions established in this papers are
useful for the study of the optimization of our coupled problem.
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Recent Advances in the Numerical Solution of MPECs in Function
Space

Michael Hintermüller

(joint work with Ian Kopacka, Moulay Hicham Tber)

In the recent past the problem class of Mathematical Programs with Equilibrium
Constraints (MPECs) has received a considerable amount of attention in finite
dimensions. In brief an MPEC is a constrained optimization problem where the
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decision variables are related via the solution of a variational inequality, modeling
an equilibrium process.

A general formulation of an MPEC is given by

min J(y, u) subject to (s.t.) (y, u) ∈ Z , y ∈ S(u) ,

where Z is a joint upper-level feasible region of the pair (y, u) and S(u) is the
solution set of a variational inequality invoked by u. Many applications can, e.g.,
be found in economics (game theory, option pricing) or mechanics (lubrication
problems, obstacle problems, elasto-plastic torsion).

From a mathematical point of view MPECs are especially interesting as they
exhibit a number of challenging properties. Due to the nature of the constraints
the feasible domain often exhibits structural intricacies, such as non-convexity
or non-closedness. For some MPECs the feasible domain is not connected, or
it might comprise of a finite union of sets giving rise to combinatorial issues.
Furthermore classical constraint qualifications are generically violated for MPEC
problems, hence the existence of Lagrange multipliers cannot be guaranteed using
classical optimization theory. As a consequence a unique KKT-system cannot be
defined for MPECs, rather a hierarchy of stationarity concepts has been developed
for the problem class in finite dimensions (strong stationarity, M-stationarity, C-
stationarity, W-stationarity, etc [6]).

In function space the MPEC theory is still significantly less researched. While
additional difficulties, related to low multiplier regularity need to be taken into
account, a theory in function space is appealing as numerical stability under re-
finement of the discretization can be expected for solution algorithms that allow a
convergence analysis in function space. In our work we considered two approaches
that enabled us to introduce counterparts of the finite dimensional stationarity con-
cepts for a class of MPECs in function space, such as strong- and C-stationarity.
Further weaker concepts, resulting from ambiguities due to low regularity, called
E-almost strong and E-almost C-stationarity are introduced. The constructive na-
ture of the proofs allows us to construct solution algorithms which admit function
space based convergence analysis.

Relaxation/Regularization. We consider the following model problem, where
the MPEC is governed by an elliptic variational inequality.

(1)
min J(y, u) =

1

2
‖y − yd‖2

L2 +
ν

2
‖u‖2

L2 over (y, u) ∈ H1
0 (Ω) × L2(Ω)

s.t. y ∈ K, a(y, v − y) ≥ (u + f, v − y)L2 ∀v ∈ K ,

where Ω ⊂ R
n, n ≤ 3 is a bounded domain, a(·, ·) : H1

0 (Ω) × H1
0 (Ω) → H−1(Ω) is

a bounded, coercive bilinear form, yd, f ∈ L2(Ω), ν > 0 and the cone K is given
by K = {v ∈ H1

0 (Ω) : v ≥ 0 a.e. in Ω}. If Ω and the coefficients of a(·, ·) are suffi-
ciently smooth, the solution y of the variational inequality in (1) gains regularity
and is in H2(Ω)∩H1

0 (Ω). Hence introducing a slack variable ξ ∈ L2(Ω) the varia-
tional inequality can equivalently be reformulated as a nonlinear complementarity
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system and (1) is equivalent to

(2)
min J(y, u) over (y, u, ξ) ∈ H1

0 (Ω) × L2(Ω) × L2(Ω)

s.t. Ay − u − f = ξ, y ≥ 0, ξ ≥ 0, (y, ξ)L2 = 0 ,

where A : H1
0 (Ω) → H−1(Ω) is the operator associated to the bilinear form a(·, ·).

The MPEC (2) is relaxed by introducing a relaxation parameter α > 0 and
replacing the product condition (y, ξ) = 0 by (y, ξ) ≤ α. Thus the feasible domain
is artificially inflated and it turns out that constraint qualifications are satisfied for
the relaxed problems. Due to the relaxation the bilevel structure of the problem is
destroyed and boundedness of ξ has to be artificially ensured in order to guarantee
the existence of a solution. This can either be done by adding a term of the form
κ
2 ‖ξ‖2

L2 with κ > 0 to the cost functional or by adding an explicit constraint on the
norm of ξ. The resulting problem resembles a state constrained optimal control
problem, hence the problem of low multiplier regularity has to be dealt with.
Introducing a further parameter γ > 0 the pointwise constraint on y is penalized
using a Moreau-Yosida based regularization. The relaxed-regularized problem is
then given by

(3)

min J(y, u) +
κ

2
‖ξ‖2

L2 +
1

2γ
‖max(0, λ̄ − γy)‖2

L2

over (y, u, ξ) ∈ H1
0 (Ω) × L2(Ω) × L2(Ω)

s.t. Ay − u − f = ξ, ξ ≥ 0, (y, ξ)L2 ≤ α ,

where λ̄ ∈ Lq(Ω), q ≥ 2 is a shift parameter. Using standard Banach space the-
ory, first order optimality conditions for (3) can be derived. The convergence
behavior of stationary points for the relaxed-regularized problem (3) with re-
spect to the parameters (α, κ, γ) is studied. If γ → ∞ and (α, κ) → 0 with
max

(
(α

√
γ)−1, κ

√
γ
)
≤ C it turns out that accumulation points of stationary

points of (3) are E-almost C-stationary for the MPEC (2); see [3]. Conditions are
formulated that further ensure that the accumulation points are C- or strongly
stationary.

Due to the nature of the approach a solution algorithm can be defined based
on a continuation method with respect to the parameters (α, κ, γ). In each it-
eration a stationary point of (3) has to be computed. The optimality system is
Newton-differentiable, hence a semismooth Newton method can be applied and
local superlinear convergence can be expected. The theoretical results are verified
by means of examples, including problems which lack strict complementarity, show
degenerate behavior and utilize a nonsymmetric operator.

Application: Local volatility identification for American options. Given the price
yd of an American option, the objective is to recover the local volatility u. This
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inverse problem can be formulated as the following MPEC:

min J(y, u) =
1

2
‖y − yd‖2

L2(Q) +
1

2
‖y(T, ·) − yT ‖2

L2(Ω) +
δ

2
‖u‖2

U

over (y, u, ξ) ∈ W (0, T ) × Uad × L2(Q)
s.t. u ∈ Uad ,

∂y

∂t
− u

∂2y

∂x2
+ f(u, y0) − ξ = 0 in L2(0, T, H−1(Ω)) ,

y(0) = 0 a.e. in Ω ,

y ≥ 0 a.e. in Q, ξ ≥ 0 a.e. in Q, (ξ, y)L2(Q) = 0 ,

where Q is the time-space domain, Uad is the admissible set for volatilities and f
is a function depending on u and the pay-off y0. The relaxed-regularized version
of this problem reads

min Jγ(y, u) = J(y, u) +
1

2γ
‖max(0, λ − γy)‖2

L2(Ω)

over (y, u, ξ) ∈ W (0, T )× U × L2 (Q)

s.t. u ∈ Uad ,

∂y

∂t
+ A(u)y + f (u, y0) − ξ = 0 in L2(0, T, H−1(Ω)) ,

y(0) = 0 in Ω ,

ξ ≥ 0 a.e. in Q, (ξ, y)L2(Q) ≤ αγ ,

1

2
‖ξ‖2

L2(Q) ≤ R ,

with λ̄ ≥ 0 fixed. In [5] a first order optimality system of C-stationarity type
is derived. Moreover, an active-set-Newton with feasibility restoration solver is
proposed. The stationary concept as well as the algorithmic approach used to
solve this problem are supported by numerical results.

Smooth penalty. In the second approach the variational inequality in (1) is
directly penalized using a max-operator, which is subsequently smoothed using
a regularization max ε which is at least C1. This approach allows us to further
consider pointwise constraints on the control variable u. The MPEC is hence
approximated by the smooth penalty problem

(4)

min J(y, u) over (y, u) ∈ H1
0 (Ω) × L2(Ω)

s.t. Ay − γ max ε(0,−y)− u = f ,

a ≤ u ≤ b ,

where γ > 0 is a penalty parameter and a, b ∈ L2(Ω) ∪ {−∞,∞} with b > a.
Again the penalization acts as a regularization of the feasible domain and op-
timality conditions of (4) can be derived using standard theory. As with the
previous approach the convergence behavior of stationary points with respect to
the parameters (γ, ε) is of interest. If γ → 0 and ε → 0 (depending on the nature
of max ε) it is again shown that accumulation points of stationary points of (4) are
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E-almost C-stationary for the MPEC (1); see [4]. Based on these results a solution
algorithm can again be formulated. The first order system of (4) is solved using
nonlinear multigrid methods, such as the full approximation scheme (FAS) [1],
where a smoother is designed utilizing a collective Gauss-Seidel scheme for which
the scalar nonlinear equations are solved analytically in each grid point.

The theoretical results are verified by tests, where stability under mesh refine-
ment and the typical convergence factors for FAS are shown.

Application: Lubrication problem. Estimating the film thickness in lubricated de-
vice when the cavitation phenomenon is taken into account by Reynolds model,
gives rise to the following MPEC problem:

minimize J(y, u) :=
1

2
‖y − yd‖2

L2 +
δ

2
‖∇u‖2

L2 over (y, u) ∈ K × Uad

s. t. y ∈ K, 〈−div(u3∇y), v − y〉 ≥ (
∂u

∂x2
, v − y) ∀v ∈ K ,

where y is the pressure, u is the film thickness, K = {v ∈ H1
0 (Ω) =: V |v ≥ 0} and

Uad ⊂ H1(Ω). In [2] the variational inequality constraint is interpreted as a lower
level optimization problem and a C-stationary optimality system is derived using
the penalization approach. The penalized sub-problem reads

minimize J(y, u) :=
1

2
‖y − yd‖2

L2 +
δ

2
‖∇u‖2

L2 over (y, u) ∈ V × Uad

s. t. 〈−div(u3∇y), v〉 − (
∂u

∂x2
+ max ε(0, λ − γy), v) = 0 ∀v ∈ V .
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Numerical Analysis of Parabolic Control Problems with State
Constraints

Michael Hinze

(joint work with Klaus Deckelnick)

In this talk we discuss parabolic optimal control problems with pointwise state con-
straints. The optimization problem is approximated using variational discretiza-
tion combined with linear finite elements in space and a discontinuous Galerkin
scheme in time for the discretization of the state equation. Error bounds for con-
trol and state are obtained both in two and three space dimensions. To achieve
these bounds, uniform estimates for the discretization error of the state are proven
which use natural regularity requirements on the optimal state. For the numerical
analysis of the optimal control problem we use an approach which avoids error
estimates for the adjoint state and which was developed in [2] for the analysis of
elliptic optimal control problems with gradient constraints.

Let Ω ⊂ R
d (d = 2, 3) be a bounded convex polygonal domain, T > 0 and

ΩT := Ω × (0, T ). Let us consider the initial boundary value problem

yt − ∆y = f in ΩT(1)

∂y

∂ν
= 0 on ∂Ω × (0, T )(2)

y(·, 0) = y0 in Ω .(3)

If f ∈ L2(0, T ; H1(Ω)) and

(4) y0 ∈ H2(Ω) with
∂y0

∂ν
= 0 on ∂Ω ,

then we have

(5) y = G(f) ∈ W := {w ∈ C0([0, T ]; H2(Ω)) | wt ∈ L2(0, T ; H1(Ω))} .

Next, suppose that the functions f1, . . . , fm ∈ H1(Ω) are given and define
U := L2(0, T ; Rm) as well as B : U → L2(0, T ; H1(Ω)) by

Bu(x, t) :=

m∑

i=1

ui(t)fi(x), (x, t) ∈ ΩT .

Then y = G(Bu) ∈ W with

(6) max
0≤t≤T

‖y(t)‖2
H2 +

∫ T

0

‖yt(t)‖2
H1dt ≤ C

(
‖y0‖2

H2 +

∫ T

0

|u(t)|2dt
)

,

where the constant C depends in addition on the H1–norms of f1, . . . , fm.
We consider the optimization problem

(7) (TP )





minu∈U J(u) :=
1

2

∫ T

0

‖y(·, t) − ȳ(·, t)‖2dt +
α

2

∫ T

0

|u(t)|2dt

s.t. y = G(Bu), and y(x, t) ≥ 0 in ΩT ,
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where ȳ ∈ H1(0, T ; L2(Ω)) and α > 0 are given. From now on we shall assume
(4) and that minx∈Ω̄ y0(x) > 0. It is not difficult to verify with the help of a
comparison argument that

(8) G(0)(x, t) > 0 in ΩT .

Since the state constraints form a convex set and the set of admissible controls is
closed and convex, one obtains the existence of a unique solution u ∈ U to problem
(7) by standard arguments. Moreover, using (8) combined with [1, Theorem 5.2]
we have

Theorem 1. Let u ∈ U denote the unique solution to (7). Then there exist µ ∈
M(ΩT ) and a function p ∈ Ls(0, T ; W 1,σ(Ω)) for all s, σ ∈ [1, 2) with 2

s + d
σ > d+1,

such that with y = G(Bu) there holds

(9)

∫ T

0

(wt − ∆w, p) +

∫ T

0

∫

∂Ω

∂w

∂ν
p =

∫ T

0

(y − ȳ, w) +

∫

ΩT

wdµ ∀w ∈ W̃0 ,

αui(t) + (p(·, t), fi) = 0 a.e. in (0, T ), i = 1, . . . , m ,(10)

µ ≤ 0, y(t, x) ≥ 0 in ΩT and

∫

ΩT

ydµ = 0 ,(11)

where W0 := W ∩ {w ∈ C0(ΩT ) |w(·, 0) = 0 in Ω̄} and W̃0 := {w ∈ W0 |wt ∈
L∞(ΩT )}.

1. Discretization

Let Th be a quasi–uniform triangulation of Ω with maximum mesh size h :=
maxS∈Th

diam(S). Let us denote by x1, . . . , xJ the set of nodes of Th. We consider
the space of linear finite elements

Xh := {φh ∈ C0(Ω̄) |φh is a linear polynomial on each S ∈ Th} .

Next, let 0 = t0 < t1 < . . . < tN1 < tN = T a time grid with τn := tn − tn−1, n =
1, . . . , N and τ := max1≤n≤N τn. We set

Wh,τ := {Φ : Ω̄ × (0, T ) |Φ(·, t) ∈ Xh is constant in t ∈ (tn−1, tn), 1 ≤ t ≤ N} .

For Y, Φ ∈ Wh,τ we let

A(Y, Φ) :=

N∑

n=1

τn(∇Y n,∇Φn) +

N∑

n=2

(Y n − Y n−1, Φn) + (Y 0
+, Φ0

+) ,

where Φn := Φn
−, Φn

± = lims→0± Φ(tn + s). Given u ∈ U , our approximation
Y ∈ Wh,τ of the solution y of (1)–(3) is obtained by the following discontinuous
Galerkin scheme:

(12) A(Y, Φ) =

N∑

n=1

∫ tn

tn−1

(Bu(t), Φn) + (y0, Φ
0
+) ∀Φ ∈ Wh,τ .
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The above solution will be denoted by Y = Gh(Bu). From here onwards it is
convenient to suppose that τ ≤ γh2 for some γ > 0. We have the following
uniform error estimate.

Lemma 1. Let u ∈ U, y = G(Bu), Y = Gh(Bu). Then

max
1≤n≤N

‖y(·, tn) − Y n‖L∞ ≤
{

Ch
√
| log h|, d = 2,

C
√

h, d = 3.

}(
‖y0‖H2 + ‖u‖U

)
.

We use the variational approach of [3] in order to discretize our optimal control
problem as follows:

(13) (TP )h





minu∈U Jh(u) :=
1

2

N∑

n=1

τn‖Y n − ȳn‖2 +
α

2

∫ T

0

|u(t)|2dt

s.t. Y = Gh(Bu) and Y n(xj) ≥ 0, 1 ≤ j ≤ J, 1 ≤ n ≤ N .

As a minimization problem for a quadratic functional over a closed and convex
domain (TP )h admits a unique solution uh ∈ U . Furthermore, for h > 0 small
enough Lemma 1 ensures the Slater condition Gh(0) > 0 in ΩT , so that [1, Theorem
5.2] again yields that there exist µn

j ∈ R, 1 ≤ n ≤ N, 1 ≤ j ≤ J as well as P ∈ Wh,τ

such that

(14) A(Φ, P ) =

N∑

n=1

τn(Y n − ȳn, Φn) +

N∑

n=1

J∑

j=1

Φn(xj)µ
n
j ∀Φ ∈ Wh,τ ,

αuh,i(t) + (Pn, fi) = 0 a.e. in (tn−1, tn), i = 1, . . . , m ,(15)

µn
j ≤ 0, Y n(xj) ≥ 0 , and

N∑

n=1

J∑

j=1

Y n(xj)µ
n
j = 0 .(16)

From this we infer

Lemma 2. Let uh ∈ U be the optimal solution of (13) with corresponding state
Y = Gh(Buh) and adjoint variables Pn, 0 ≤ n ≤ N and µn

j , 1 ≤ n ≤ N, 1 ≤ j ≤ J .
Then there exists h0 > 0 such that

N∑

n=1

τn‖Y n‖2 +

∫ T

0

|uh(t)|2dt +

N∑

n=1

J∑

j=1

|µn
j | ≤ C for all 0 < h ≤ h0 .

With the help of Lemma 1 and Lemma 2 we obtain our main result which reads

Theorem 2. Let u be the solution of (TP ), uh the solution of (TP )h with corre-
sponding states y = G(Bu) and Y = Gh(Buh). Then

N∑

n=1

τn‖y(·, tn) − Y n‖2 +

∫ T

0

|u(t) − uh(t)|2dt ≤
{

Ch
√
| log h|, if d = 2 ,

C
√

h, if d = 3 .
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Adaptive Discretization of Inverse Problems

Barbara Kaltenbacher

(joint work with Hend Ben Ameur, Anke Griesbaum, Boris Vexler)

Adaptive discretization in inverse problems especially in the context of PDEs is
motivated by the need for high precision due to the inherent instability on one
hand, and the by high computational effort on the other hand. The latter re-
sults from the fact that each regularized inversion involves several PDE solves,
and it is necessary to repeatedly solve the regularized problem to determine the
regularization parameter.

In this context we emphasize that for solving inverse problems it does not
suffice to just make the residual (in the PDE) small as it is typically done by error
estimator based adaptivity, but regularization has to be done by an appropriate
tradeoff between smallness of the residual on one hand and stability on the other
hand.

Among the recently increasing number of references on adaptivity for inverse
problems, we wish to point out

• [Haber&Heldmann&Ascher’07]: Here Tikhonov regularization with a BV
type regularization term is used and adaptive refinement is carried out for
the state u such that the residual term is computed sufficiently precisely
whereas adaptive refinement for the parameter q aims at computing the
regularization term sufficiently precisely;

• [Neubauer’03, ’06, ’07]: The so-called moving mesh regularization and
adaptive grid regularization are also based on Tikhonov regularization with
a BV type regularization term: The grid is refined where the parameter q
has jumps or large gradients;

• [Chavent&Bissell’98], [Ben Ameur&Chavent&Jaffré’02] propose to use re-
finement and coarsening indicators derived from Lagrange multipliers, see
also [1] as well as below;

• Goal oriented adaptivity, see [2], [3], and below.

Refinement and coarsening indicators. Consider the example of identifying
the piecewise constant spatially distributed transmissivity q from measurements
of the hydraulic potential u in the PDE

s
∂u

∂t
− div (q grad u) = f in Ω ⊆ IR2 .
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To identify the zonation for q as well as its values inside each zone, we minimize
the misfit

J(q) := ‖u(q) − uδ‖2 = min!

Starting from a coarse zonation, in order to decide whether and where to place
zone interfaces, we consider the minimization problem for J under the constraint
that the jump height across some tentative interface is equal to some value B.
The Lagrange multiplier with respect to this constraint gives the sensitivity of the
optimal misfit functional with respect to B and within a Taylor expansion around
B = 0 (corresponding to the zonation without this interface) at first order indicates
the potential decrease of the misfit by introducing this interface. The Lagrange
multipliers can be cheaply evaluated for a large number of tentative interfaces and
therewith serve as refinement indicators. Similarly, coarsening indicators can be
defined. Confining the set of possible cuts to grid lines with a minimal mesh size
h, we show convergence of the resulting refinement and coarsening algorithm in
the following sense (for details on the assumptions, see [1]):

Theorem (Convergence with exact data to solution q† as h → 0):

‖q∗h − q†‖L2(Ω) = O(
√

h) and ‖q∗h − q†‖L∞(Ω) = o(1) .

Theorem (Convergence with noisy data uδ with ‖u−uδ‖ ≤ δ as δ → 0): h :∼ δ
2
5

‖q∗h(δ) − q†‖L2(Ω) = O(δ
1
5 ) and ‖q∗h(δ) − q†‖L∞(Ω) = o(1) .

Goal oriented error estimators. These were originally developed in the con-
text of optimal control problems for PDEs, cf. [Becker&Kapp&Rannacher’00],
[Becker&Rannacher’01], [Becker&Vexler ’04, ’05]. For PDE constrained minimiza-
tion problems

Minimize J(q, u) over q ∈ Q , u ∈ V

under the constraints A(q, u)(v) = f(v) ∀v ∈ V ,

they allow to estimate the error due to discretization with finite dimensional spaces
Qh ⊆ Q, Vh ⊆ V in some quantity of interest I by means of (discrete) stationary
points xh = (q0, u0, z0) of an auxiliary functional

M(q, u, z, p, v, y) = I(q, u) + L′(q, u, z)[(p, v, y)] (q, u, z, p, v, y) ∈ (Q × V × V )2 ,

where L is the Lagrange functional. The error estimator η is a sum of local contri-
butions due to either q, u, z, p, v, or y, which enables local refinement separately
for q ∈ Qh, u ∈ Vh, z ∈ Vh. A crucial question in the context of inverse problems
such as parameter identification in PDEs formulated as operator equation

solve F (q) = g , given gδ with ‖g − gδ‖ ≤ δ

is how to define appropriate quantities of interest there, since their number should
be finite and low, therewith excluding control of high (i.e., discretized infinite
dimensional) quantities like ‖Fh − F‖ or ‖(Fh − F )q†‖ for the discretized forward
operator Fh. Our choice of I is based on the following convergence analysis results
for Tikhonov regularization with the discrepancy principle (for details, see [2]
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and [3])

Theorem Let α∗ = α∗(δ, g
δ) and Qh × Vh × Vh be such that for I(q, u) :=

‖F (q) − gδ‖2
G there holds

τ2δ2 ≤ I(qδ
h,α∗

, uδ
h,α∗

) ≤ τδ2 .

(i) If additionally

|I(qδ
h,α∗

, uδ
h,α∗

) − I(qδ
α∗

, uδ
α∗

)| ≤ cI(qδ
h,α∗

, uδ
h,α∗

)

for some sufficiently small constant c > 0, then qδ
α∗

−→ q† as δ → 0.
Optimal rates are achieved under source conditions (logarithmic/Hölder).

(ii) If additionally for I2(q, u) := J(q, u)

|I2(q
δ
h,α∗

, uδ
h,α∗

) − I2(q
δ
α∗

, uδ
α∗

)| ≤ σδ2

for some constant C > 0 with τ2 ≥ 1 + σ , then qδ
h,α∗

−→ q† as δ → 0.

as well as on the following convergence result for Newton’s method for computing
the regularization parameter

Theorem Define

i( 1
α ) := I(q, u) := ‖F (q) − gδ‖2

G , I2(q, u) := i′( 1
α )

β∗ solution to i(β∗) = τ2δ2 (discr.princ.) βk+1 = βk − ikh − τ2δ2

i′kh
(Newton)

for k ≤ k∗ − 1 with k∗ = min{k ∈ IN | ikh − τ2δ2 ≤ 0} with ikh, i′
k
h satisfying

|i(βk) − ikh| ≤ εk , |i′(βk) − i′
k
h| ≤ ε′

k
,

εk, ε′
k

sufficiently small.
Then βk satisfies an asymptotically optimal quadratic convergence estimate and

(τ2 − τ̃2)δ2 ≤ i(βk∗) ≤ (τ2 + τ̃2)δ2 .

Consequently, the important quantities of interest for achieving fast convergence
to the correctly regularized Tikhonov approximation are the squared residual,
its derivative with respect to the regularization parameter, and the value of the
Tikhonov functional. Efficient computation of the error estimators is enabled by

• computation of error estimators for i(β) by to just one more SQP type
step;

• direct extraction of i′(β) from quantities computed for error estimators for
i(β);

• error estimators for i′(β) that can be cheaply obtained from the stationary
point of another auxiliary functional;

Similar conclusions can be drawn for regularization by discretization instead of
Tikhonov’s method, which has the additional advantage of a possible straightfor-
ward implementation in an iterative multilevel scheme.
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Calibration of Ground Water Models with POD

C. T. Kelley

(joint work with C. Winton, O. J. Eslinger, S. E. Howington, J. Pettway)

1. Introduction

We develop a version of proper orthogonal decomposition (POD) [3] for calibration
of finite element models of three-dimensional steady state subsurface flow. We
build the POD basis from the sensitivities, so only a single matrix assembly and
factorization is needed for the entire optimization loop of the reduced model. After
each optimization of the reduced model, we recompute the sensitivities and the
reduced model, and then reoptimize the POD model. We present preliminary
numerical results which indicate that the results can be as good as those obtained
by putting the full three-dimensional simulator in the optimization.

We seek to identify a spatially-dependent conductivity K given measurements
of the solution of the saturated flow equations

(1) div (K∇h) = f

with appropriate boundary conditions. In the context of the application, the
inverse problem is regularized by assuming that the media consists of a finite (and
small) number of zones, each composed of a single material. The unknowns are
the conductivities in each zone.

These problems are naturally poorly scaled, with

10−7 ≤ K ≤ 10−2 and 10 ≤ h ≤ 10, 000 .

The standard remedy is to fit the logarithms of K, and we do that here.
This project is a collaborative effort between our group at North Carolina State

University and a group at the US Army Engineer Research and Development
Center (ERDC). An important part of that collaboration was the need to integrate
the solution of the inverse problem with the existing ERDC simulator ADH [7] and
PEST [2], a nonlinear least squares solver which has been designed for hydrology
problems. PEST is a well-designed bound-constrained Levenberg-Marquardt [4–6]
code with an interface which has been developed with ERDC applications in mind.
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The linear solvers in ADH assemble and store stiffness matrices, with a view
toward using the matrix information either in a direct solver or as part of a domain-
decomposition preconditioner. Hence we can assume that the stiffness matrix is
available and we will use it to construct sensitivity vectors.

The zonal approximation to K is the piecewise constant approximation

K(x) =

N∑

i=1

piχi(x) .

Here χi is the characteristic function of the ith zone and pi is the hydraulic con-
ductivity of that zone. Typically N , the number of zones, is small. We exploit the
zones when we do matrix assembly. The finite element formulation of (1) has the
form

Ah = f

where

A(p) = A0 +
∑

i

Aipi and f = f0 +
∑

fipi .

We need assemble the partial stiffness matrices Ai only once and then can rebuild
A(p) as needed when p changes. Given a solution h we then obtain the sensitivity
vectors (the columns of the Jacobian) by solving

A(p)
∂h

∂pi
= −Aih + fi ,

which requires no new matrix assembly or factorization.
The inverse problem is to find p ∈ RN which best fits measured pressure data

with the computed pressure h. We let d ∈ RM denote the data, which are measure-
ments of h at points in space {xi}M

i=1. Then if h(p) is the output of the simulator,
we define the vector D(h(p)) to be evaluations of h(p) at the points {xi}. With
this in mind the nonlinear least squares problem is to minimize

f(p) =
1

2
R(p)TR(p) ,

R : RN → RM is

R(p) = D(h(p)) − d .

The unconstrained Levenberg-Marquardt iteration is

p+ = pc − (νc + R′(pc)
TR′(pc))

−1R′(pc)
TR(pc) ,

where pc is the current value of the parameter vector, p+ the updated value, and
R′ the Jacobian of R. The Levenberg parameter νc depends on the status of the
iteration in a standard way [1, 2, 4].

The cost of the optimization is mostly the evaluation of R, which requires the
computation of of h, i. e. matrix assembly and solving the differential equation.
The matrix assembly is by far the most expensive part, and we see to use POD
methods to take this out of the optimization.

In general terms POD begins with some vectors in the range of the solution
operator for the differential equation, say W = (w1, . . . wL), takes a singular value
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decomposition to obtain UΣV T = W , identifies a K for which σK+1 is “small”,
and uses Ū = [u1, . . . , uK ] as a basis for the reduced order model. In time-
dependent problems, W is typically built using “snapshots”, i. e. solutions u(x, t)
of a differential equation sampled a discrete points in time.

Our problem is elliptic, so we must form W in a different way. We do this
by using the sensitivities, which we would compute in any case to construct the
Jacobian. We are currently setting K = N . The reduced order problem, which
we put into the optimization loop instead of (1) is

Āh̄ = Q̄T AŪh̄ = f̄ = Q̄T f ,

where Q̄R̄ = AŪ is the QR factorization of AŪ .

2. Results

The results in this section are preliminary for a small model problem in three
dimensions. We used direct solvers to solve (1) and compute the sensitivities for a
give p. After that we solved a nonlinear least squares problem for the POD model

min ‖D(Ū h̄(p)) − d‖2

to obtain a new p, for which we solved (1) and computed sensitivities until ∇f
was sufficiently small.

As an example we use a column with three materials. The ADH discretization
has roughly 6, 000 nodes and 31, 000 elements. The data are the exact solution
perturbed by various levels of uniform noise. In Table 1 we report optimization
statistics using the POD model for theses scenarios and compare them to opti-
mization results using the fully resolved model. The important point is that the
number of optimization iterations and the value of the objective function at the
final results are roughly the same, but the number of calls to the full model is
significantly reduced when the POD model is put into the optimization.

Table 1. Optimization Statistics

Noise Full Model Calls POD Model Calls Final Residual
0% 38 N/A 8.1148E-03

11 546 2.9348E-06
1% 60 N/A 8.3577E-03

3 162 7.2897E-03
5% 63 N/A 1.0192E-01

1 38 1.0651E-01
10% 30 N/A 3.2042E-01

3 114 3.1953E-01
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Semi-smooth Newton Methods for Time Optimal Control for a Class
of Linear Systems

Karl Kunisch

(joint work with Kazufumi Ito)

Consider the time-optimal control problem for a linear multi input system

(P)





minτ≥0

∫ τ

0
dt

subject to

d
dtx(t) = Ax(t) + Bu(t), |u(t)|ℓ∞ ≤ 1, x(0) = x0, x(τ) = x1 ,

where A ∈ R
n×n, B ∈ R

n×m, x0 ∈ R
n, x1 ∈ R

n are given, u(t) ∈ R
m, u is

measurable, and | · |ℓ∞ denotes the infinity-norm on R
m. It is assumed that x1

can be reached in finite time by an admissible control. Then (P) admits a solution
with optimal time denoted by τ∗, and associated state x∗ and control u∗.

Under the assumption of strict transversality the first order optimality system
for (P) can be expressed in terms of the adjoint p and the Hamiltonian

H(x, u, p0, p) = p0 + pT (Ax + Bu) ,

as

(1)





ẋ = Ax + Bu, x(0) = x0 , x(τ) = x1 ,

−ṗ = AT p ,

u = argmin|u|ℓ∞≤1 H(x, u, p) , a.e. in (0, τ) ,

1 + p(τ)T (Ax(τ) + Bu(τ)) = 0 .
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The non-differentiable operation involved in characterizing the optimal control,

u = −σ(pT B) ,

where σ is defined as coordinate-wise operation, with

σ(s) ∈






−1 if s < 0

[−1, 1] if s = 0

1 if s > 0

(2)

prohibits the use of Newton-type methods for solving (1) numerically.
Therefore a family of regularized problems

(Pε)





minτ≥0

∫ τ

0
(1 + ε

2 |u(s)|2) ds

subject to

d
dtx(t) = Ax(t) + Bu(t), |u(t)| ≤ 1, x(0) = x0, x(τ) = x1 ,

with ε > 0 is considered.

Proposition 1. For every 0 < ε0 < ε1 and any solution (τ∗, u∗) of (P ) we have

(3) τ∗ ≤ τε0 ≤ τε1 ≤ τ∗(1 +
ε1

2
) ,

(4) |uε1 |L2(0, τε1) ≤ |uε0 |L2(0, τε0) ≤ |u∗|L2(0, τ∗) .

If u∗ is a bang-bang solution, then

(5) 0 ≤ |u∗|2L2(0, τ∗) − |uε|2L2(0, τε) ≤ meas {t ∈ [0, τ∗] : |uε(t)| < 1}

for every ε > 0.

Theorem 1. For ε → 0+ we have τε → τ∗ and every convergent subsequence of
solutions {(uε, xε)}ε>0 to (Pε) converges in L2(0, τǫ; R

m) × W 1,2(0, τǫ; R
n) to a

solution (u∗, x∗) of (P), where u∗ is a minimum norm solution.

We turn to the optimality condition for (Pε). Let

σε(s) ∈






−1 if s ≤ −ε
s
ε if |s| < ε

1 if s ≥ 0 .

(6)

Theorem 2. Assume that the pair (A, B) is normal and let (xε, uε, τε) be a solu-
tion of (Pε). If there exist αi, δ > 0, η > 0 such that

(7) | (ûε)i(t)| ≤ 1 − 2η for a.e. t ∈ (αi, αi + δ) ⊂ (0, 1), i = 1 . . . , m ,
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then there exists an adjoint state pε such that

(8)





ẋε = Axε + Buε, xε(0) = x0, xε(τε) = x1

−ṗε = AT pε

uε = −σε(p
T
ε B)

1 + ǫ
2 |uε(τε)|2Rm + pε(τε)

T (Axε(τε) + Buε(τε)) = 0 .

We turn to the semi-smooth Newton method [2] for solving the regularized
optimality system (8). For this purpose the system is transformed to the fixed time
interval (0, 1). We fix ε > 0 and denote by (xε, uε, τε) ∈ W 1,2(0, 1)×L2(0, 1)×R

a solution to (Pε) with associated adjoint pε ∈ W 1,2(0, 1). It is assumed that

(H1) |bT pε(1)| 6= 1

ε
, and meas {|pε| <

1

ε
} 6= 0 .

Here {|pε| < 1
ε} is shorthand for {t : |pε(t)| < 1

ε}. With (H1) holding there exists

a neighborhood Upε
in W 1,2(0, 1), t̄ ∈ (0, 1) and c̄ > 0 such that for p ∈ Upε

we
have

|bT p(t)| 6= 1

ε
for all t ∈ [t̄, 1] ,

and

(9) meas {|p| <
1

ε
} > c̄ .

We set U = {u ∈ L2(0, 1) : u|[t̄, 1] ∈ W 1,2(t̄, 1)} endowed with the norm

|u|U = (|u|2L2(0,1) + |u̇|2L2(t̄,1))
1
2 ,

and introduce
F : DF ⊂ X → L2(0, 1) × L2(0, 1) × U × R

2

where
DF = W 1,2(0, 1) × Upε

× U × R ,

X = W 1,2(0, 1) × W 1,2(0, 1) × U × R,

and

(10) F (x, p, u, τ) =




ẋ − τAx − τbu

−ṗ− τAT p

u + σε(b
T p)

x(1) − x1

1 + ε
2u(1)2 + p(1)T (Ax(1) + bu(1))




.

For (x, p, u, τ) ∈ DF we define A ∈ R
(n+1)×(n+1) by

A =

(
A11 A12

A21 0

)
,
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where

(11) A11 = ε−1τ

∫ 1

0

eτA(1−t)bbT χI eτAT (1−t) ∈ R
n×n

(12)
A12 = ε−1τ

∫ 1

0 eτA(1−t)bbT χI

∫ 1

t e−τAT (t−s)AT p(s)ds dt

−
∫ 1

0
eτA(1−t)(Ax + bu)dt ∈ R

n

(13) A21 = (Ax(1) + bu(1))T − (bT p(1) + ε)σ′
ε(b

T p(1))bT ∈ (Rn)T ,

where χI is the characteristic function of the set

I = I(p) = {t : |bT p| <
1

ε
} ,

which is nonempty for p ∈ Upε
.

(H2)





there exists a bounded neighborhood U ⊂ DF ⊂ X of (xε, pε, uε, τε)

and c > 0 such that |A21 A−1
11 A12| ≥ c for all (x, p, u, τ) ∈ U .

Theorem 3. If (A, B) is normal, (H1), and (H2) hold and (xε, uε, τε) denotes
a solution to (Pε) with associated adjoint pε, then the semi-smooth Newton algo-
rithm converges superlinearly, provided that the initialization is sufficiently close
to (xε, uε, τε).
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On optimization of Materials and Processes

Günter Leugering

(joint work with Michael Stingl, Michal Kočvara)

We are generally concerned with optimization and control problems of the following
type:

minJ (y, A, ρ, f, u) s. t.

ρÿ − div(A∇y) = f in Ω

∂ν,Ay + γy = u on Γ

y(0) = y0, ẏ(0) = y1

(A, ρ, f, u) ∈ Uad .
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Applications are in context of Elastodynamics, structural optimization, Piezoelec-
tricity, acoustics, and couplings. In particular, besides the more classical dis-
tributed and boundary controls, we focus on controls in the coefficients which is a
widely open and challenging field of research. For the sake of brevity, we restrict
ourselves to static problems that arise in material optimization [2–4]. To be even
more specific, let us consider the following notation

Ω : Elastic body (design space), Ω ⊂ Rd

∂Ω : Lipschitz boundary, ∂Ω = Γ0 + Γ
f : surface force, f ∈ L2(Γ)d,
u : displacement field, u ∈ H := H1(Ω,Rd)
E : material tensor, symmetric, pos. def.
e : (small) strain tensor, e(u) = 1

2 (∇u+∇u⊤)
σ : stress tensor, σ = E · e(u)

in particular

e = (e11, e22,
√

2e12)
⊤, σ = (σ11, σ22,

√
2σ12)

⊤,

and

E =




E1111 E1122

√
2E1112

E2222

√
2E2212

symm. 2E1212





and the corresponding problem in elasticity:
Find displacement field u ∈ H1(Ω;RN ), such that

−div(σ) = g in Ω, (Equilibrium)

σ · n = f in Γ, (Neumann b. c.)

u = 0 in Γ0, (Dirichlet b. c.)

σ = Ee(u), (Hooke’s law) .

The variational format is: Find u ∈ V := {u ∈ H|uΓ0 = 0}, such that
∫

Ω

e(u)(x)⊤ · E · e(v)(x)dx

︸ ︷︷ ︸
aE(u, v)

=

∫

Γ

f(x)⊤v(x)dx

︸ ︷︷ ︸
l(v)

∀v ∈ V .

The minimal compliance problem reads as:

min
E∈E

c(E) :=

∫

Γ

f(x)⊤uE(x)dx ,

where

uE solves aE(uE , v) = l(v) ∀v ∈ V

E :=

{
E ∈ L∞(Ω,SN ) | E � 0, ρ ≤ tr(E) ≤ ρ,

∫

Ω

tr(E) dx ≤ V

}
.
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The class of problems is considerably enlarged in this lecture. In order to obtain
existence of solutions one may introduce various concepts of convergence of min-
imal sequences En. In fact for a general functional J(E, u) we treat sequences of
pairs (En, un)n, where un solves state equation associated with En.
First trial: Can we show compactness in L∞(Ω, SN ) × V?

• En′
w−∗
⇀ E∗ in L∞(Ω, SN )

• un′
w
⇀ u in V

. . . but e.g. σn = Ene(un) 6→ E∗u

i.o.w. u is not necessarily a solution of state equation associated with E∗!( Coun-
terexample by F. Murat 79’). We consider

Eα,β :=
{
E ∈ L∞(Ω, SN ) | 0 < αIN 4 E 4 βIN a. e. in Ω

}
.

Definition (Murat, Tartar ’79): (En) in Eα,β is said to H-converge to an H-limit
E∗ ∈ Eα,β if, for any right hand side g ∈ L2(Ω;RN ), the sequence un of solutions
of (∗) with E = En satisfies

(un) ⇀ u∗ weakly in V
(σn) := (Ene(un))n ⇀ σ∗ := E∗e(u∗) weakly in L2(Ω;RN̄)

where u∗ is the solution of (∗) with E = E∗. It is well-known that Eα,β is
H-compact. We can prove
Lemma: [2] The set

Eǫ :=

{
E ∈ L∞(Ω, SN) | ǫI 4 ρI 4 E; tr(E) ≤ ρ,

∫

Ω

tr(E) dx ≤ V

}

is H-compact.
Consider cost functionals of the type

J : Eα,β × V → R

with the following property:

(En)
H→ E in Eε

(vn) ⇀ v in V

}
⇒ lim inf

n→∞
J(En, vn) ≥ J(E, v) .

Theorem: [2] The regularized FMO problem

min
E∈Eǫ

C(E) := J(E, uE)

has at least one solution.
Typical examples with property

(En)
H→ E in Eε

(vn) ⇀ v in V

}
⇒ lim inf

n→∞
J(En, vn) ≥ J(E, v)

are
• J1(E, u) =

∫
Γ

f · u dx or J2(E, u) = ‖u − u0‖2
L2(Ω;RN ).
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Even more importantly, we can handle some sort of state- and stress-constraints
• Quadratic or tracking type displacement constraints of the form

∫

Ω

(u(x) − u0(x))
⊤

(u(x) − u0(x)) dx ≤ C ,

with here u0 ∈ V .
• Integral stress constraints of the form

∫

ω

σ(x)⊤Mσ(x) dx ≤ C ,

where ω ⊂ Ω and M is either the unit or the von Mises matrix.
Theorem: [2]Let g and h be weakly lower semicontinuous functions of the state
variables u and σ, respectively. Then the set

Eε,g,h := {E ∈ Eε | g(uE) ≤ Cu, h(σE) ≤ Cσ} ,

with uE = S(E) and σE = Ee(S(E)) is H-compact.
We now consider approximations of the problem above. Let {Tκ}κ→0+ be a

family of partitions of Ω with i = 1, 2, . . . , N(κ) and

Ω =

N(κ)⋃

i=1

Ωi, max
i

diam(Ωi) ≤ κ .

Associated with any Tκ we define an approximation of Eε,h,g as

Eε,h,g
κ =

{
E | Ei := E|Ωi

∈ P0(Ωi), Ei < ρIN̄ , tr(Ei) ≤ ρ ,

i = 1, .., N(κ) ,

N(κ)∑

i=1

tr(Ei) = v̂, g(uE) ≤ Cu, h(σE) ≤ Cσ

}
.

There exists κ0 > 0 : Eε,h,g
κ is non-empty for all κ ≤ κ0. (∗)

Lemma: [2]Under assumption (*) the system
(
Eε,h,g

κ

)
κ≤κ0,κ→0+

is dense in Eε,h,g,

i.e., for each E ∈ Eε,h,g there exists (Eκ) ∈
(
Eε,h,g

κ

)
such that Eκ

H
⇀ E.

Define
(Pκ) inf

E∈Eε,g,h
κ

J(E, uE) .

Obviously: Problem (Pκ) admits a solution for each κ ≤ κ0 Assume further (see
also [1])

(Eκ)
H
⇀ E in Eε

(vκ) ⇀ v in V

}
⇒ lim

κց0
J(Eκ, vκ) = J(E, v) (∗∗)

Theorem [2] Let the cost functional J satisfy (**). Let further, for each κ ≤ κ0,
Eκ ∈ Eε,g,h

κ be a solution of problem Pκ and uκ the associated (unique) solution of
the state problem. Then there exist subsequences (E′

κ) and (u′
κ) of (Eκ) and (uκ)

such that

E′
κ

H
⇀ E∗ in Eε, u′

κ ⇀ u∗ in V as κ′ ց 0 .
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Moreover, E∗ is an optimal solution of problem

(P) inf
E∈Eε,g,h

J(E, uE)

and u∗ solves the associated state problem.
The state problem is approximated by FEM, uh

E denotes the approximate so-
lution of the state equation, πh is a standard interpolation operator. We consider
the fully discretized problem:

(Pκ,h) inf
E∈Eε,g,h

κ

J
(
E, πh(uh

E)
)

.

E∗
κj ,hj

denotes the solution of (Pκ,h) Then: We can find a diagonal sequence

(κj , hj) such that (
E∗

κj ,hj

)

κj ,hj

H
⇀ E∗ .
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Optimal Control of a Special Class of State-Constrained Dynamical
Systems with ODEs and PDEs

Hans Josef Pesch

(joint work with Armin Rund, Wolf von Wahl, and Stefan Wendl)

Realistic mathematical models of dynamical processes from scientific or engineer-
ing background may often have to consider different physical phenomena and there-
fore may lead to coupled systems of equations that include partial and ordinary
differential equations as well as algebraic equations. Frequently, their numerical
solution is only the first step. The identification of system parameters and the
control of such systems are tackled subsequently. Mathematically one obtains op-
timization problems with constraints given by the underlying dynamical process.
Because of their complexity, such optimization problems are not widely studied in
literature, neither theoretically nor numerically.

The flight of a hypersonic aircraft under the objective of minimum fuel consump-
tion may serve as a typical example. The flight trajectory is described, as usual,
by a system of ordinary differential equations (ODE). This system is controlled by
the usual control variables of flight path optimization under various control and
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Figure 1. A detailed model of the lower stage of the German
two-stage-to-orbit concept Sänger II [1], [5] provides the model
for a hypersonic passenger aircraft, which gave the motivation for
the “hypersonic car problem” investigated in [3], [4].

state variable inequality constraints. However, due to the hypersonic flight con-
ditions, a thermal protection system is indispensable. A major additional goal of
the optimization is the limitation of the heating of the thermal protection system.
This additionally requires to take into account a quasi-linear heat equation with
nonlinear boundary conditions, which is coupled with the ODE system through its
coefficients and boundary conditions. Finally a pointwise state constraint enforces
the limitaton of the heating of the thermal protection system. This constraint
couples the PDE with the ODE reversely. See Ref. [1].

For our investigations, we take this challenging problem as motivation for a new
class of optimal control problems with constraints in form of a coupled system of
ordinary and partial differential equations. We call this class of problems hyper-
sonic rocket car problems, since it is inspired, on the one hand, by the well-known
rocket car problem, which often serves as a propaedeutic example in courses of
optimal control, and, on the other hand, by the above mentioned recently investi-
gated flight path trajectory optimization problem for a hypersonic aircraft. These
problems mimic partly the coupling structure of the hypersonic aircraft problem
and exhibit some intrinsic difficulties of such coupled systems.
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Figure 2. Although the hypersonic rocket car investigated in [3],
[4] is virtually faster than the Bloodhound Supersonic Car of [2],
this rocket car will most probably have a much better chance to
be realized. Nevertheless, the hypersonic car problems of [3], [4]
are an appealing challenge from the mathematical point of view.

Moreover, these problems can be considered as undressed abstract examples
for a class of staggered state-constrained ODE-PDE-constrained optimal control
problems that are typical for many current applications. The simplication allows
to obtain analytical solutions to a certain extent which is normally prohibited by
the enormous complexity of real-life problems.

Firstly, the analysis of structural questions concerning the existence of bound-
ary arcs and touch points of state constraints is the aim of the talk. This is novel
in the context of PDE-constrained optimal control. We obtain results, which are,
at a first glance, similar to state-constrained ODE optimal control problems and
show their relation to the differentiation index of the related partial differential al-
gebraic equation system along state-constrained subarcs. At a second glance, new
phenomena are observed caused by the non-local character of the state constraint
in the ODE context and lead to additional hidden constraints on the ODE states
from the beginning of the process on.

A crucial point namely is that the state constraint, which is pointwisely defined
in the PDE context, looses its local character from the ODE point of view. This
leads to new types of optimal control problems and new necessary conditions, both
for the ODE and the PDE formulations of the hypersonic rocket car problems. In
any case, integral relations between variables are present in certain necessary con-
ditions making the application of adjoint based methods a challenge, if not almost
impossible. In particular, new necessary conditions for unspecified terminal time
and new jump conditions for certain state-constrained parabolic control problems
are developed.
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Investigations concerning the two essential numerical solution approaches, first
discretize, then optimize (direct method) and first optimize, then discretize (in-
direct method) are carried out. It seems that only the first method can be per-
formed with a passable effort. Nevertheless, many of the necessary conditions can
be at least approximately verified on the basis of adjoint estimates from the direct
method.

As outlook, an interesting approach could be based on the connection of state-
constrained optimal control problems to free boundary value problems with the
boundary (interface) between the active and inactive sets as optimization variable.
This approach would contain the spirit of determining the junction points in ODE
state-constrained problems as optimization parameters of a multi-point boundary
value problem with jump conditions.
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Robust Solution Methods via Optimal Control Reformulation

Denis Ridzal

(joint work with Pavel B. Bochev)

We develop and analyze an optimization–based approach for robust and efficient
solution of PDE problems consisting of multiple physics operators with funda-
mentally different mathematical properties. Our approach relies on three essential
steps: decomposition of the original problem into subproblems for which robust
solution algorithms are available; integration of the subproblems into an equivalent
PDE–constrained optimization problem; and solution of the resulting optimization
problem. The thrust of the work builds on the ideas of Lions on virtual control in
the context of operator decomposition [4], and can be further related to the work
of Gunzburger et al. [2].
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Additive split of a model problem. We present the optimization–based ap-
proach using as an abstract model problem a strongly coercive variational formu-
lation comprising a bilinear form Q(·, ·) : V × V 7→ R and a data function f ∈ V ∗:
given f ∈ V ∗ we seek u ∈ V such that

(1) Q(u, v) = (f, v)H ∀ v ∈ V ,

where V and H are Hilbert spaces and V ∗ is the dual of V . We require that Q(·, ·)
is V –elliptic and continuous. The key idea of the optimization–based approach
for the solution of the model problem (1) rests on the assumption that the form
Q(·, ·) can be written as a difference of two component bilinear forms

Q(·, ·) = Q1(·, ·) − Q2(·, ·)

for which efficient solvers are available. We assume that Q1(·, ·) and Q2(·, ·) are
V –elliptic and continuous. We derive an equivalent formulation of (1) in terms of
its component problems. First, note that we can write (1) as seek u ∈ V such that

(2)
{
Q1(u, v) − (θ, v)V − (f, v)H

}
−
{
Q2(u, v) − (θ, v)V

}
= 0 ∀ v ∈ V ,

where θ ∈ V is arbitrary. To uncouple the component forms Q1(·, ·) and Q2(·, ·)
we split the test function into a pair {v1, v2} ∈ V × V and consider the following
weak problem: seek {u, θ} ∈ V × V such that

(3) Q̃
(
{u, θ}, {v1, v2}

)
= (f, v1)H ∀ {v1, v2} ∈ V × V ,

where

(4) Q̃
(
{u, θ}, {v1, v2}

)
=

{
Q1(u, v1) − (θ, v1)V

}
−
{
Q2(u, v2) − (θ, v2)V

}
.

In contrast to (2), well–posedness of (3) and its equivalence with (1) is not imme-
diately obvious. We address these issues first.

Theorem 1. The bilinear form Q̃(·, ·) defined in (4) is weakly coercive on V ×V :
there exists a positive constant γ̃ such that

sup
{v1,v2}∈V ×V

Q̃
(
{u, θ}, {v1, v2}

)

‖v1‖V + ‖v2‖V
≥ γ̃

(
‖u‖V + ‖θ‖V

)
∀ {u, θ} ∈ V × V ,

and

sup
{u,θ}∈V ×V

Q̃
(
{u, θ}, {v1, v2}

)

‖u‖V + ‖θ‖V
≥ 0 ∀ {v1, v2} ∈ V × V .

Corollary 1. The variational problem (3) has a unique solution {u, θ} ∈ V × V
for any f ∈ V ∗ and that solution depends continuously on the data: ‖u‖V +‖θ‖V ≤
(1/γ̃)‖f‖V ∗ . The first component of the solution {u, θ} is the solution of (1).
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Reformulation into optimization problem. We replace (1) by the constrained
optimization problem

(5)





minimize Jε(u1, u2, θ) =
1

2

(
‖u1 − u2‖2

H + ε‖θ‖2
V

)

subject to

{
Q1(u1, v1) − (θ, v1)V = (f, v1)H ∀ v1 ∈ V

−
(
Q2(u2, v2) − (θ, v2)V

)
= 0 ∀ v2 ∈ V ,

where ε > 0 is a regularization parameter. Existence and uniqueness of optimal
states and controls can be shown using standard techniques. The following key
result estimates the error introduced by the optimization reformulation.

Theorem 2. Let {uε
1, u

ε
2, θ

ε} ∈ V ×V ×V denote the solution of the optimization
problem (5) and u ∈ V the solution of (1). Then, there exists a positive constant
C such that

‖uε
1 − u‖V + ‖uε

2 − u‖V ≤ εC‖f‖V ∗ .

The proof relies on the use of the intermediate variational problem (3), see [1].

Solution of the reformulated problem. We develop robust solution methods
for (1). A finite element discretization of (5) typically yields

(6)






minimize
~u1,~u2,~θ

1

2

(
(~u1 − ~u2)

T H(~u1 − ~u2) + ε~θ
T
V~θ
)

subject to

{
Q1~u1 − V~θ = ~f

−Q2~u2 + V~θ = ~0 .

Our approach is based on the premise that robust and efficient solution methods
for linear systems involving the component operators Q1, Q2 are readily available.
We solve (6) using the reduced–space approach, i.e. we solve the linear system

(7) Hred
~θ
∗

= −~fred

where the reduced Hessian matrix Hred is given by

(8) Hred =
(
V V

)(Q−T
1 0

0 Q−T
2

)(
H −H

−H H

)(
Q−1

1 0
0 Q−1

2

)(
V
V

)
+ εV

and the reduced right–hand side ~fred is computed as follows,

(9) ~fred =
(
V V

)(Q−T
1 0

0 Q−T
2

)(
H −H

−H H

)(
Q−1

1
~f

~0

)
.

Application to scalar advection–diffusion equation. As proof of concept,
we offer evidence indicating that standard multigrid solvers lack robustness when
applied to problems with complex advection fields and large Péclet numbers, and
demonstrate that our approach offers a robust alternative. We consider the so–
called double–glazing problem, see [3, p.119]. For this example, a generic discrete
SUPG–stabilized Q(·, ·) form is given by (w.l.o.g. we assume |b| ≈ 1 and |b| ≫ ν)

Q(uh, vh) = ν
(
∇uh,∇vh

)
+
(
b · ∇uh, vh + δb · ∇vh

)
−
(
ν∆uh, δb · ∇vh

)
h

.
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To reformulate it using robust components we make the identification

Q1(u
h, vh) =

(
∇uh,∇vh

)
+
(
b · ∇uh, vh + δb · ∇vh

)
−
(
ν∆uh, δb · ∇vh

)
h

,

Q2(u
h, vh) = (1 − ν)

(
∇uh,∇vh

)
,

which makes Q1(·, ·) and Q2(·, ·) heavily diffusion–dominated.
For the solution of (1) we use multigrid solvers BoomerAMG (BAMG) and ML

as preconditioners for GMRES. We note that the stated numerical results reflect
the best solver settings that we could find for the example problem, and require
expensive smoothing strategies. The optimization approach is denoted by OPT,
and solves (7) using GMRES. Every optimization iteration involves four linear sys-
tems, see (8), which are solved efficiently using ML with a basic smoother. Only
5–8 iterations are required for the solution of each system within the optimization
loop. The table below presents a comparison of the number of outer GMRES itera-
tions for the optimization approach and the total number of GMRES iterations for
multigrid solvers applied to the full problem. For the example problem, featuring
a complex advection field and a large Péclet number (ν = 10−8), ML and BAMG

show very strong mesh dependence, and fail to converge on the 256×256 mesh. In
contrast, OPT is robust to mesh refinement, and successfully solves the problem
for all mesh sizes. In addition, we show that while ML and BAMG are very sensi-
tive to the size of the Péclet number, OPT’s performance is affected only mildly.
Overall, our optimization–based strategy provides a robust solution alternative for
problems on which widely used multigrid solvers struggle.

ν = 10−8 128 × 128
64 × 64 128× 128 256× 256 ν = 10−2 ν = 10−4 ν = 10−8

OPT 135 97 77 62 97 97

ML 71 196 — 9 96 196

BAMG 72 457 — 7 33 457
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Interior Point Methods in Function Space for State Constraints

Anton Schiela

(joint work with Andreas Günther, Michael Hinze)

The solution of PDE constrained optimal control problems with pointwise state
constraints is a challenging and important issue. In the following we are going to
sketch the main ideas of an interior point method in function space for its solution.
To have an easy example at hand, consider the following problem, where u is the
control and y is the state:

min
y∈H1

0 (Ω),
u∈L2(Ω)

J(y, u) :=
1

2
‖y − yd‖2

L2(Ω)+
α

2
‖u‖2

L2(Ω)

s.t. a(y, v) = (u, v) ∀v ∈ H1
0 (Ω)(1)

y ≥ y on Ω .

Here a(·, ·) is a continuous and elliptic bilinear form with suitable regularity prop-
erties. We stress, however, that our algorithms and the corresponding analysis
apply much more generally. The main requirement is that all feasible controls
produce continuous states.

Interior point methods replace the inequality constraints by barrier functionals,
so that our model problem is replaced by

(2) min
y∈H1

0 (Ω),
u∈L2(Ω)

J(y, u) +

∫

Ω

l(y(x); µ) dx s.t. a(y, v) = (u, v) ∀v ∈ H1
0 (Ω) ,

where l is either a logarithmic or a rational barrier function, which is scaled by a
parameter µ, and limµ→0 l(y(x); µ) = 0, if y(x) > y(x).

The idea is that for µ > 0 the smooth problem (2) is easier to solve than (1)
and that the computation of a sequence of solutions of (2) for µ → 0 may yield
an efficient algorithm for the solution of (1). Interior point methods for finite
dimensional optimization are popular and well established in many variants, so
the main challenge here is to analyse such a method in function space, and to
construct an algorithm that exploits the particular structure of state constraints.

The following is a brief sketch of the results, achieved so far. Details can be
found in the references, given below.

The Central Path [3,4]. The basis for the analysis of any path-following method
is a systematic study of the corresponding homotopy path. Such a study consists
of existence and uniqueness results, regularity considerations, and the study of
analytic properties of the path, such as convergence, continuity and smoothness
with respect to the homotopy parameter. In the context of optimization methods
the characterization of points on the path via first order optimality conditions is
an additional issue.

The homotopy path for interior point methods is traditionally called the central
path. An analysis in function space has been performed for the state constrained



Numerical Techniques for Optimization Problems with PDE Constraints 255

case with the expected positive results on existence, uniqueness and regularity.
Furthermore, first order optimality conditions have been derived.

Interestingly, first order optimality conditions only look as expected, if the state
is strictly feasible. This leads to the idea of using higher order barrier functionals,
which guarantee strict feasibility of the state.

Analytically, the central path is well behaved. It is locally Lipschitz continuous
with respect to the barrier parameter µ, and the Lipschitz constant behaves like
O(µ−1/2) for µ → 0. A particular topological feature of barrier methods is already
visible at this stage of analysis: the Lipschitz estimates can be shown for the scaled
norm

‖(δy, δu)‖2
l′′ := 〈(1 + l′′(y; µ))δy, δy〉L2(Ω) + α‖δu‖2 .

If the central path is strictly feasible, then it is also continuously differentiable.
Further, the central path converges to the exact solution of the state constrained
problem with a rate of convergence O(µ1/2), and the function values converge
monotonically from above with a rate of convergence O(µ).

Path-following in Function Space [5]. The next step in the construction of
path-following algorithms is a specification of a computational scheme for the
solution of the homotopy subproblems. As usual we use a variant of Newton’s
method, applied to the control reduced optimality system, where the state and the
adjoint state are the iteration variables and the control is eliminated. A special
feature of the correction is a pointwise damping step, which guarantees feasibility
of the iterates, exploiting the pointwise structure of the state constraints.

The resulting algorithm, which is still an algorithm in function space, can be
shown to produce iterates, which converge to the solution of the original state
constrained problem. So there is not only a convergence result for the homotopy
path (see above), but also for a corresponding path-following algorithm.

Closely related to the analysis, a scheme for the update of the homotopy param-
eter has been constructed. It is based on computational estimates of the crucial
quantities used in the convergence analysis. Here the use of the scaled norm ‖ · ‖l′′

turns out to be central. This observation corresponds to similar results in finite
dimensional algorithms.

Discretization and Adaptivity [1, 6]. Up to now, we are equipped with an
algorithm in function space, while actual computations only can solve discretized
problems. So there is still a gap to be bridged.

First of all, a discretization scheme was established, and a-priori error esti-
mates have been derived. State and adjoint state have been discretized - straight-
forwardly - by linear finite elements. As a detail of practical importance, it was
shown that the evaluation of the barrier functionals and their derivatives can be
performed simply by quadrature without losing convergence.

Second, an adaptive grid refinement procedure has been constructed to imple-
ment Newton steps in function space inexactly. This means that the discretization
error of each Newton step is controlled by a-posteriori error estimation and adap-
tive grid refinement. This is performed with the aim to keep the iterates within
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the radius of convergence of the Newton corrector in function space. For this an
error estimator in the problem suited norm ‖ · ‖l′′ is desirable, and it turns out
that such an estimator exists and can be evaluated inexpensively with techniques,
known from goal oriented error estimation. Its construction exploits the special
structure of the Jacobian matrix, which is the sum of a symmetric positive definite
operator and a skew symmetric operator.

As first numerical test indicate, these techniques allow the solution of state
constrained problems with an effort that is not much higher than the computation
of the last Newton step on the finest grid.

Outlook. Some extensions and applications to related problems have been con-
sidered. The analysis of the central path also includes pointwise (upper and/or
lower) control bounds and/or bilateral bounds on the states. Further, an applica-
tion of interior point techniques to gradient bounds on the state [7] and max-norm
optimization [2] has been considered.

So far, interior point methods have mostly been applied to elliptic problems in
a convex setting. So it is straightforward to look for extensions to other types of
partial differential equations and to non-convex non-linear problems. Some results
can already be anticipated, but there are still several challenging problems to be
solved.

Closely connected to these questions is the search for efficient linear iterative
solvers for the computation of the Newton steps. Our algorithmic framework al-
lows the inexact solution of these systems. Just as the a-posteriori error estimators
an iterative solver should have the property to converge with respect to the scaled
norm ‖ · ‖l′′ .

Acknowledgment. The work of the speaker was supported by the DFG Research
Center Matheon ”Mathematics for key technologies”. The co-authors acknowl-
edge support of the DFG Priority Program 1253 through grants DFG06-381 and
DFG06-382.
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Robust Shape Optimization in CFD

Claudia Schillings

(joint work with Volker Schulz)

Recently, optimization has become an integral part of the aerodynamic design pro-
cess chain. However, because of uncertainties with respect to the flight conditions
and geometry uncertainties, a design optimized by a traditional design optimiza-
tion method seeking only optimality may not achieve its expected performance.
Robust optimization deals with optimal designs which are robust with respect to
small (or even large) perturbations of the optimization setpoint conditions. That
means, the optimal designs computed should still be good designs, even if the
input parameters for the optimization problem formulation are changed by a non-
negligible amount. Thus even more experimental or numerical effort can be saved.
In this talk, we aim at an improvement of existing simulation and optimization
technology, so that numerical uncertainties are identified, quantized and included
in the overall optimization procedure, thus making robust design in this sense pos-
sible.
We consider the following aerodynamic shape optimization problem

min
y,p

f(y, p)(1)

s.t. c(y, p) = 0 ,(2)

h(y, p) ≥ 0 .(3)

We think of the equation (2) as the discretized outer flow equation around, e.g.,
an airfoil described by geometry parameter p ∈ R

np . The vector y is the state
vector (velocities, pressure,...) of the flow model (2) and we assume that (2) can
be solved uniquely for y for all reasonable geometries p. The objective in (1)
f : (y, p) 7→ f(y, p) ∈ R typically is the drag to be minimized. The restriction (3)
typically denotes lift or pitching moment requirements. The general deterministic
problem formulation (1-3) is influenced by stochastic perturbations described by a
random variable s defined on a given probability space (Ω, Y, P ) characterized by
a probability density function ϕ : R → R+, or in the case of spatially distributed
uncertainties, the perturbations are described by a random field. To compute
a solution which is stable to stochastic variations in s, we introduce two robust
formulations: the semi-infinite formulation and chance constraint formulation.
The semi-infinite formulation aims at optimizing the average objective function
but maintaining the feasibility with respect to the constraints everywhere. Thus,
it aims at an average optimal and always feasible robust solution. The ideal
formulation is of the form

min
y,p

∫

Ω

f(y, p, ζ)dP (ζ)(4)

s.t. c(y, p, ζ) = 0 , ∀ζ ∈ Ω ,(5)

h(y, p, ζ) ≥ 0 , ∀ζ ∈ Ω .(6)
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This defintion of robustness can also be found in Ref. [3] and in Ref. [9]
Chance constraints leave some flexibility with respect to the inequality restrictions
(cf. Ref. [5]) . The inequality restrictions are only required to hold with a certain
probability P0

min
y,p

∫

Ω

f(y, p, ζ)dP (ζ)(7)

s.t. c(y, p, ζ) = 0 , ∀ζ ∈ Ω ,(8)

P ({ζ |h(y, p, ζ) ≥ 0}) ≥ P0 .(9)

We will show some numerical results considering the velocity and the angle of
attack as an uncertainty source and compare the two introduced robust formula-
tions. The semi-infinite formulation leads to a better lift to drag ratio than the
chance constraint formulation and seems most promising in our application. In
order to obtain fast convergence, we have generalized the one-shot methods which
are based on approximate reduced SQP iterations (cf. [2]) to the semi-infinite ap-
proach.
Beside the scalar valued uncertainties in the flight conditions we consider the
shape itself as an uncertainty source and apply a Karhunen-Loève expansion to
approximate the infinite-dimensional probability space. To overcome the curse of
dimensionality an adaptively refined sparse grid is used in order to compute statis-
tics of the solution. These investigations are part of the current German research
program MUNA.
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Fast Non-Parametric Large Scale Aerodynamic Shape Optimization

Stephan Schmidt

(joint work with Caslav Ilic, Volker Schulz, Nicolas Gauger)

The talk focuses on structure exploitation for the aerodynamic shape optimization
problem. Especially in three dimensions, the number of unknowns for both the
fluid and the shape of the aircraft can be huge, requiring sophisticated numerics
and analytic structure exploitation.

We present a Shape-OneShot method which combines the usual OneShot ap-
proach with the Hadamard-representation [2,6] of the shape derivative and a Hes-
sian approximation based on the operator symbol of the pseudo-differential oper-
ator governing the shape Hessian, preventing any loss of regularity in the shape.
The aircraft is treated like a submanifold, and the discretization of these two in-
gredients leads to an optimization procedure which operates on the surface of the
“aircraft manifold” alone, which thus allows a huge deformation of the shape while
being very fast for almost any number of design parameters.

We study the operator symbol of the Hessian similar to [1, 3] for the viscous
energy dissipation problem:

min
(u,Ω)

J(u, Ω) :=

∫

Ω

ν

3∑

i,j=1

(
∂ui

∂xj

)2

dA

subject to

−µ∆u + ρu∇u + ∇p = 0 in Ω

div u = 0

u = 0 on Γ

Vol(Ω) = V0 .

The speed of the fluid is given by u = (u1, u2)
T , µ is the absolute or dynamic

viscosity, p denotes the pressure, and ρ is the density which is constant in an
incompressible fluid. Also, Γ1 ⊂ ∂Ω, the no-slip surface of the flow obstacle, is the
unknown to be found. The shape derivative for this problem is given by:

dJ(u, Ω)[V ] =

∫

Γ

〈V, n〉
[
−ν

3∑

k=1

(
∂uk

∂n

)2

− ∂uk

∂n

∂λk

∂n

]
dS ,

where λ = (λ1, λ2)
T and λp again satisfy the adjoint equation

−ν∆λ − ρλ∇u − ρ (∇λ)
T

u + ∇λp = −2∆u in Ω
div λp = 0 in Ω

λ = 0 on Γ .

In the limit of the Stokes-Problem, i.e. ρ = 0, it can be shown that an oscillation
of the form

Γ̃ := {(x1, x2) ∈ R
2 : x2 ≥ q̃(x1)}
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where

q̃(x) = q̂eiωx

is mapped by the Hessian H as follows:

Hq̃ = |ω|q̃ .

Hence, the shape Hessian for this problem shares the same symbol as the Poincaré-
Stecklov Operator. In the Navier-Stokes case, ρ > 0, the same can be shown
discretely by comparing wave propagations numerically. More details can be found
in [5].

Using such operator symbols, we employ the Shape-OneShot method to opti-
mize a wing in three dimensions for a transonic and supersonic inviscid, compress-
ible fluid modeled by the Euler equations:

min
(U,Ω)

Fdrag(U, Ω) :=

∫

Γ

〈pd, n〉 dS

subject to
3∑

i=1

Ai(V )
∂U

∂xi
= 0 in Ω (Euler equations)

〈u, n〉 = 0 on Γ (Euler slip condition)

Flift(U, Ω) :=

∫

Γ

〈pl, n〉 dS ≥ l0 (lift force)

L :=

∫

Γ

dS ≤ L0 (airfoil contour length, 2D only)

Ix :=

∫

Γ

(y − yc)
2
dS ≥ Ix0 (airfoil bending stiffness, 2D only)

V :=

∫

int Γ

dA ≥ V0 (airfoil volume, 2D and 3D) .

A detailed derivation of the shape derivative and more numerical results can be
found in [4]. The contour length and bending stiffness constraint are usually not
both enforced at the same time. Also, they are substitute models not sophisticated
enough for the structural loads in 3D.

The proposed Shape-OneShot method works extremely effective, tested by op-
timizing a 3D Onera M6 wing at α = 3.01◦ angle of attack and a reference Mach
number of M∞ = 0.83. A comparatively coarse mesh was used, resulting in
4, 335, 840 unknowns for the state and 18, 285 unknowns for the shape. The state
equation is solved using the DLR flow solver TAU. With an additional Laplace-
Beltrami solve for the Hessian approximation, a single thread Intel Core2Duo
E6600 needs about a minute per approximative SQP step in terms of CPU time.
Each optimization step consists of roughly 10 primal solver time steps and 1 dual
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time step for each of the adjoints. Note that due to the slower convergence of the
adjoint solvers, this results in a retardation factor of ≈ 2, well below the expected
retardation factor of 3 (primal solver and two adjoints).
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Towards Systematic Design of Metamaterials

Ole Sigmund

We describe a topology optimization approach for the systematic synthesis of
dielectric based metamaterials. The procedure is based on repeated finite element
analyses, S-parameter extractions, and gradient-based design updates. Examples
include planar negative µ and ǫ materials.
Metamaterials are artificially designed materials with properties beyond those of
naturally occurring materials. Lately a lot of attention has been devoted to electro-
magnetic metamaterials with negative indexes which may provide cloaking, perfect
imaging and miniaturization of antennas [1] (see also Figure 1 for illustrations).
Sofar practical realizations of metamaterials have been based on scientists’ clever
physical insight and intuition, and solutions depend strongly on wavelength (from
microwaves to visible light).
The topology optimization method originally developed for mechanical systems
design (see [2] for a review) and later extended to a range of other applications
including photonic crystal design [3,4] may provide a basis for the systematic design
of low-loss, isotropic metamaterials with desired properties. In this presentation
we discuss initial results for dielectric-based planar metamaterial design using the
topology optimization method.
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Figure 1. Applications and realizations of electromagnetic meta-
materials from the literature.
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Modeling and Drag Minimization in Compressible Navier-Stokes
Flows in Bounded Domains

Jan Sokolowski

(joint work with Pavel I. Plotnikov, Antoni Zochowski)

In the series of papers [1]-[8] the mathematical theory of shape optimization for
compressible Navier-Stokes inhomogeneous boundary value problems is developed.
The key part of the theory includes the new results on the existence and shape
differentiability of the weak solutions to compressible Navier-Stokes equations. In
particular, our results lead to the rigoruous mathematical framework for the drag
minimization of an obstacle in the flow of gas with small adiabatic constant.

The viscous gas occupies the double-connected domain Ω = B\S, where B ⊂
R

3, is a hold-all domain with the smooth boundary Σ = ∂B , and S ⊂ B is
a compact obstacle. The velocity of the gas coincides with a given vector field
U ∈ C∞(R3)3 on the surface Σ. The boundary of the flow domain Ω is divided into
the three subsets, inlet Σin, outgoing set Σout and the characteristic set Σ0. The
compact Γ = Σ0∩Σ splits the surface Σ into three disjoint parts Σ = Σin∪Σout∪Γ.
The problem is to find the velocity field u and the gas density ̺ satisfying the
following equations along with the boundary conditions

∆u + λ∇div u = R̺u · ∇u +
R

ǫ2
∇p(̺) in Ω, div (̺u) = 0 in Ω ,(1)

u = U on Σ, u = 0 on ∂S, ̺ = ̺0 on Σin ,(2)
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where the pressure p = p(̺) is a smooth, strictly monotone function of the density,
ǫ is the Mach number, R is the Reynolds number, λ is the viscosity ratio, and ̺0

is a positive constant.
Drag minimization. One of the main applications of the theory of compressible
viscous flows is the optimal shape design in aerodynamics. The classical sample
is the problem of the minimization of the drag of airfoil travelling in atmosphere
with uniform speed U∞. Recall that in our framework the hydro-dynamical force
acting on the body S is defined by the formula

J(S) = −
∫

∂S

(∇u + (∇u)∗ + (λ − 1)divuI − R

ǫ2
pI) · ndS .

In a frame attached to the moving body the drag is the component of J parallel
to U∞,

(3) JD(S) = U∞ · J(S),

and the lift is the component of J in the direction orthogonal to U∞. For the
fixed data, the drag can be regarded as a functional depending on the shape of
the obstacle S.

The minimization of the drag and the maximization of the lift are between
shape optimization problems of some practical importance. We describe briefly the
numericals results given in Figures 1-4. The results are only preliminary, since they
are obtained with few steps of the simple gradient method, with the shape gradient
numerically evaluated according to the formulae given in [7]. Triangulation and
computational domain are shown in Fig.1. The flow is from the left. Reynolds
number R = 0.01, viscosity ratio λ = 100, the flow velocity is U1 = 1, U2 = 0
on outer boundary. The coefficient in gas law is γ = 5/3. The optimized shapes
after few iterations are shown. In order to prevent moving the obstacle toward
the boundary of the computational region, it is assumed that its gravity centre is
fixed at the origin. The total volume of the obstacle is kept constant.

References

[1] P. I. Plotnikov and J. Sokolowski, Stationary Boundary Value Problems for Navier-Stokes
Equations with Adiabatic Index ν < 3/2. Doklady Mathematics (2004), 70(1):535–538.

[2] P. I. Plotnikov and J. Sokolowski, On compactness, domain dependence and existence of
steady state solutions to compressible isothermal Navier-Stokes equations. J. Math. Fluid
Mech. (2005), 7(4):529–573.

[3] P. I. Plotnikov and J. Sokolowski, Concentrations of solutions to time-discretizied com-
pressible Navier -Stokes equations. Communications in Mathematical Physics (2005),
258(3):567–608.

[4] P. I. Plotnikov and J. Sokolowski, Domain dependence of solutions to compressible Navier-
Stokes equations. SIAM Journal on Control and Optimization (2006), 45:1165–1197.

[5] P. I. Plotnikov and J. Sokolowski, Stationary solutions of Navier-Stokes equations for
diatomic gases. Russian Mathematical Surveys (2007), 62:561–593, Uspekhi Mat. Nauk
117-148.

[6] P. I. Plotnikov and J. Sokolowski, Stationary Boundary Value Problems for Compressible
Navier-Stokes Equations. In: M. Chipot (ed.), Handbook of Differential Equations (2008),
6:313–410.



264 Oberwolfach Report 04

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 1. Initial computational domain with triangulation. Ini-
tial flow u and pressure p.

Figure 2. Shape of minimal drag for rough (dashed line) and
finer discretizations. On the left history of optimization.
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Figure 3. Shape after few steps of drag maximization and the
history of drag values.
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Figure 4. Pressure distribution around shapes of maximal (left)
and minimal drag. The vertical range on the left is 0.96–1.06
input pressure, on the right 0.99–1.025.

Verification of Bang-bang Properties of Optimal Controls for
Parabolic Boundary Control Problems

Fredi Tröltzsch

(joint work with Vili Dhamo)

We discuss the parabolic optimal control problem

(1) min J(y, u) :=
1

2

∫ 1

0

(y(x, T ) − yd(x))
2
dx
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subject to the one-dimensional heat equation

(2)

yt(x, t) = yxx(x, t) , (x, t) ∈ (0, 1) × (0, T ] ,

yx(0, t) = 0 , t ∈ (0, T ] ,

yx(1, t) + αy(1, t) = βu(t) , t ∈ (0, T ] ,

y(x, 0) = 0 , x ∈ (0, 1) ,

and to the pointwise control constraints

(3) |u(t)| ≤ 1 for almost all t in [0, T ] ,

where T > 0, α > 0, and β > 0 are fixed constants, and yd ∈ L2(0, 1) is given.
The function u ∈ L∞(0, T ) is the unknown boundary control. We consider the
cases α = β (Robin) or α = 0, β = 1 (Neumann).

By Theorem 2, optimal boundary controls must be of bang-bang type, unless
the optimal value J(ȳ, ū) is zero. In other words, the optimal control is bang-
bang, if the target state yd is not reachable by admissible controls. Numerically
computed optimal values of J are in general positive and it is difficult to decide if
this holds also true for the exact value.

Using Theorem 3 together with numerical computations and careful estimations
of Fourier series, we are able to verify bang-bang properties of optimal controls for
concrete examples.

Let us first recall the known necessary optimality conditions for (1)–(3):

Theorem 1. An admissible control ū and its corresponding state ȳ are optimal
for the boundary control problem (1)–(3), if and only if

ū(t) =

{
−1 when p(1, t) > 0
+1 when p(1, t) < 0

holds for a.a. t ∈ [0, T ], where p is the adjoint state, defined as weak solution of
the adjoint equation

−pt(x, t) = pxx(x, t) , (x, t) ∈ (0, 1) × (0, T ] ,

px(0, t) = 0 , t ∈ (0, T ] ,

px(1, t) + αp(1, t) = 0 , t ∈ (0, T ] ,

p(x, T ) = ȳ(x, T ) − yd(x) . x ∈ [0, 1] .

Therefore, the roots of px(1, t) determine the form of ū. The following bang-
bang principle is also well known:

Theorem 2 ( [2]). Let ū be optimal for (1)–(3) and let ȳ be the associated state.
Suppose that ‖ȳ(·, T ) − yd‖L2(0,T ) > 0. Then the function t 7→ p(1, t) has at most
countably many zeros 0 < t1 < t2 < . . . < ti < . . . < T in [0, T ], which can
accumulate only at t = T . Therefore, either ū(t) = (−1)i or ū(t) = (−1)i+1 holds
a.e. on [ti, ti+1] for all i ∈ N.
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Figure 1. Illustration of the main idea

Our main idea is as follows. Assume that numerical optimization indicates
an optimal control ū, which is bang-bang with exactly one switching point at an
unknown value τ̄ , 0 < τ̄ < T . Assume w.l.o.g. that ū is positive in [0, τ̄ ]. Then ū
should belong to the class of controls u having the form

u(t) = u(t, τ) :=

{
1 for t < τ
−1 for t > τ .

Therefore, we try to verify that among those bang-bang controls there is really
one that satisfies the optimality conditions.

Let ui = u(·, τi), i = 1, 2, be two controls of this form, with switching points
τ1 < τ2. Assume that the associated adjoint state p(1, ·, τ1) has exactly one zero
at t1 = t(τ1) located right of τ1. Let analogously the adjoint state p(1, ·, τ2) have
a single root t2 = t(τ2) located left of τ2. The situation is shown in Figure 1. In
the application, these relations must be verified by careful estimations. For this
purpose, we used Fourier expansions of y and p.

It turns out that the associated root t(τ) of p(1, t, τ) defines a strongly monotone
decreasing and continuous function of τ on [τ1, τ2]. Increasing the switching point
τ will decrease the zero t(τ) of p. We have t(τ1) − τ1 > 0 and t(τ2) − τ2 < 0 so
that the intermediate value theorem ensures the existence of a value τ̄ ∈ [τ1, τ2],
where τ̄ = t(τ̄ ). This root of p(1, ·, τ̄) coincides with the switching point τ̄ . Our
idea leads to the following result:

Theorem 3. Assume the existence of values 0 ≤ T1 ≤ τ1 < τ2 ≤ T2 ≤ T with
the following properties: p(1, ·, ·) is continuously differentiable on D := (T1, T2) ×
[τ1, τ2], p(1, τ1, τ1) < 0, p(1, T2, τ1) > 0, p(1, T1, τ2) < 0, p(1, τ2, τ2) > 0, and
p(1, t, τ) is strongly monotone increasing w.r.t. t and τ , for all (t, τ) ∈ D.
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Then, for all τ ∈ [τ1, τ2], the function t 7→ p(1, t, τ) has a single root t(τ) between
t(τ1) and t(τ2). There exists a unique fixed point τ̄ of the mapping τ 7→ t(τ) in
(τ1, τ2).

If we show in addition that the function t 7→ p(1, t, τ̄) does not have any other
root in (0, T ) and is negative on (0, τ̄), then u(·, τ̄) satisfies the optimality condi-
tions and is optimal. To check this requires extensive and very precise estimates,
which cannot be obtained on using finite element or finite difference methods. We
again used Fourier expansions of p. For the details, the reader is referred to [1].

Example 1. We applied our technique for the Neumann problem with T = 1
and

yd(x) =
1

2
(1 − x2) .

To verify the assumptions of Theorem 3, we took τ1 = 0.66, τ2 = 0.6665, T1 = 0,
T2 = T . In this way, we were able to prove that the optimal control is bang-bang
with exactly one switching point τ̄ ∈ (0.66, 0.6665). Numerically we found τ̄ at
0.66639. Moreover, we verified that the optimal value of J is positive so that yd

is not reachable under our restrictions.

Example 2. For the Robin problem with T = 1.58, α = 1 and the same yd

as in Example 1, we proved that the optimal control is bang-bang with exactly
one switching point τ̄ ∈ (1.329, 1.3294). To this end, we used τ1 = 1.329, τ2 =
1.3294, T1 = 1.2 and T2 = 1.42. Also here, yd cannot be reached, as we showed
by further estimates. This example was introduced by Schittkowski [3] and it was
open since that time, if the optimal control is bang-bang or not. It was even not
known, if the number of switching points is finite.

While these results concern the case of single switching points, an application
of a theorem by Miranda permits to discuss also problems with more switching
points, we refer to [1].
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A New Mesh-Independence Result for Semismooth Newton Methods

Michael Ulbrich

We investigate the mesh-independence properties of semismooth Newton methods
for bound-constrained variational inequalities of the form

u ∈ L2(Ω), α ≤ u ≤ β, (V (u), û − u)L2(Ω) ≥ 0 ∀ û ∈ L2(Ω), α ≤ û ≤ β .
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Here, −∞ ≤ α < β ≤ +∞ are constant (for simplicity) bounds, Ω ⊂ R
n is a

measurable set with 0 < meas(Ω) < ∞, and V : L2(Ω) → L2(Ω) is a continuously
Fréchet differentiable operator. It is a well-known approach to reformulate the
variational inequality as a nonsmooth equation of the form

F (u) := u − P[α,β](u − σV (u)) = 0

by using the pointwise projection P[α,β](t) = min(max(α, t), β) and to apply semis-
mooth Newton methods to it. Under the frequently encountered structural as-
sumption that V (u) = λu+A(u), where λ > 0 and A : L2(Ω) → Lp(Ω), p ∈ (2,∞],
is a locally Lipschitz continuous operator that is continuously Fréchet differentiable
from L2(Ω) to L2(Ω), it is known [3, 5] that for the choice σ = 1/λ the operator
F : L2(Ω) → L2(Ω),

F (u) = u − P[α,β](u − σV (u)) = u − P[α,β](−(1/λ)A(u))

is semismooth. For convenience, we focus on the unilateral case α = 0, β = ∞,
i.e., F (u) = u − max(0,−(1/λ)A(u)). In this case, the variational inequality is
equivalent to the complementarity problem

u ≥ 0, V (u) ≥ 0, uV (u) = 0 in Ω .

We start by examining the order of semismoothness of the operator F in de-
tail, which under a regularity condition on the generalized derivatives determines
the order of local q-superlinear convergence of the semismooth Newton’s method.
Here, defining the residual

RF (u, d) := F (u + d) − F (u) − MF (u + d)d ,

with MF (u + d) ∈ ∂F (u + d) denoting an element of the (suitably defined,
see [3, 5]) generalized differential of F , F is semismooth of order α > 0 at u if
‖RF (u, d)‖L2 = O(‖d‖1+α

L2 ) for ‖d‖L2 → 0. It was already observed in [4] that the
size of RF (u, d) compared to d is not stable with respect to perturbations of u
and d. This makes mesh-independence proofs different to the smooth case, where,
e.g., local Lipschitz continuity of the Fréchet derivative of the underlying operator
is a typical assumption [1], which is not transferable to the semismooth case in
general.

If the operator A is sufficiently well-behaved (e.g., if A′ is locally Lipschitz
continuous), the order of semismoothness of the nonsmooth reformulation turns
out to be dominated by the order of semismoothness of the superposition operator
G : Lp(Ω) → L2(Ω), G(z) = max(0, z). We show that the order of semismoothness

of this operator at z̄ ∈ Lp(Ω) is given by γ(p−2)
2(p+γ) , where γ > 0 quantifies the growth

rate of the measure of the set where |z̄| is small:

(1) meas({x ∈ Ω ; 0 < |z̄(x)| < t}) ≤ Ctγ ∀ 0 < t ≤ t0

with constants C > 0 and t0 > 0. If ū solves F (ū) = 0 and if z̄ = −(1/λ)A(ū),
then it is not difficult to see that |z̄(x)| > 0 is equivalent to |ū(x)|+ |V (ū)(x)| > 0
and thus |z̄| can be interpreted as a measure of strict complementarity.
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We now consider the reformulated complementarity problem F (u) = 0 and
corresponding discretizations Fh(uh) = 0 with

Fh(uh) := uh − max(0,−(1/λ)Ah(uh)) = uh − G(−(1/λ)Ah(uh))

of the discrete complementarity problems

uh ≥ 0, Vh(uh) ≥ 0, uhVh(uh) = 0 in Ω .

Here, h > 0 measures the accuracy of the discretization, uh ∈ Uh ⊂ L2(Ω) is a
suitable discrete approximation of u (e.g., by piecewise constant finite elements as
it is often used for control discretizations), and Vh(uh) = λuh + Ah(uh), where
Ah : Uh → Uh is a suitable discrete approximation of A. The aim is to derive
mesh-independence results for the semismooth Newton iteration for F (u) = 0 in
a neighborhood of the solution ū and for the corresponding discrete semismooth
Newton iterations for Fh(uh) = 0 in neighborhoods of the discrete solutions ūh,
0 < h ≤ h0. For compact notation, we let h = 0 correspond to the original
problem, i.e., A0 = A, F0 = F , ū0 = ū, etc.

The first mesh-independence result for this setting was presented by M. Hin-
termüller and the author [4]. They proved under suitable assumptions on the solu-
tion ū, the problem data, and the discretization that for every given q-linear rate
0 < η < 1 there exist δ > 0 and h1 ≤ h0 such that the semismooth Newton meth-
ods started at initial points u0

h lying in δ-neighborhoods Bδ(ūh), 0 ≤ h ≤ h1, gen-
erate sequences (uk

h) that converge at least q-linearly with rate η to ūh, 0 ≤ h ≤ h1.
The contribution of the present work is to extend this mesh-independence result

to a mesh-independent order of q-superlinear convergence. Under suitable assump-
tions, our above investigations of the order of semismoothness of G show that the
q-superlinear orders of convergence of the semismooth Newton processes are deter-
mined by the orders of semismoothness of G at z̄h = −(1/λ)Ah(ūh), 0 ≤ h ≤ h0.
From this, we can derive the following first version of a mesh-independent order
of convergence result:

If there exist γ > 0, C > 0, t0 > 0, and h1 ≤ h0 such that (1) is satisfied for all
z̄h = −(1/λ)Ah(ūh), 0 ≤ h ≤ h1, then there exists δ > 0 such that for all initial
points u0

h ∈ Bδ(ūh), 0 ≤ h ≤ h1, the semismooth Newton iterates (uk
h) converge

q-superlinearly to ūh, 0 ≤ h ≤ h1, with order 1 + γ(p−2)
2(p+γ) .

Next, we investigate if the growth condition on the continuous and all discrete
solutions can be replaced by a condition on the continuous solution alone. An
example, however, shows that the order of semismoothness of G at z̄ is not stable
with respect to perturbations, even if strict complementarity holds at z̄ in the
sense that meas({x ∈ Ω ; z̄(x) = 0}) = 0.

An escape from this difficulty is provided by the observation that, for the con-
structed example, the orders of ‖RG(z̄, s)‖L2 and of ‖RG(z̄h, s)‖L2 in terms of
‖s‖Lp differ significantly only if ‖s‖Lp is much smaller than the discretization er-
ror ‖z̄h − z̄‖Lp . Motivated by this observation we are able to prove that, under a
growth condition (1) only for z̄, strict complementarity of z̄, and further suitable



Numerical Techniques for Optimization Problems with PDE Constraints 271

assumptions, there holds

‖RG(z̄h, s)‖L2 ≤ C1 max(‖z̄h − z̄‖Lp , ‖s‖Lp)
γ(p−2)
2(p+γ) ‖s‖Lp ∀ 0 ≤ h ≤ h1, ‖s‖Lp ≤ ε

with appropriate constants C1 > 0, h1 ≤ h0, and ε > 0. From this, we can derive
that under appropriate assumptions, there exist h1 ≤ h0, δ > 0, and C2 > 0
(depending, in particular, on λ), such that for all initial points u0

h ∈ Bδ(ūh),
0 ≤ h ≤ h1, the semismooth Newton iterates (uk

h), satisfy

‖uk+1
h − ūh‖L2 ≤ C2 max(‖Ah(ūh) − A(ū)‖Lp , ‖uk

h − ūh‖L2)
γ(p−2)
2(p+γ) ‖uk

h − ūh‖L2

for all k ≥ 0, 0 ≤ h ≤ h1. This shows that the full order of convergence is achieved
as long as there exists c > 0 with ‖uk

h − ūh‖L2 ≥ c‖Ah(ūh) − A(ū)‖Lp . If this
condition is not satisfied for reasonably sized c, it is preferable to try to detect this
situation by appropriate error estimators and to adapt the discretization instead
of performing a further Newton step on the current discretization level.

Using results from [2,4], we can verify our assumptions for a class of semilinear
elliptic optimal control problems. Numerical tests are presented that support the
theoretical results. A preprint containing the full details of the presented mesh-
independence results is in preparation.
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Convergence of Linearised and Adjoint Approximations for
Discontinuous Solutions of Conservation Laws

Stefan Ulbrich

(joint work with Michael B. Giles)

In this talk, which is based on [3], we analyse the convergence of discrete ap-
proximations to the linearised and adjoint equations arising from optimal control
problems governed by an unsteady one-dimensional hyperbolic equation with a
convex flux function. As control the initial data are considered. A simple mod-
ified Lax-Friedrichs discretisation is used on a uniform grid, and a key point is
that the numerical smoothing increases the number of points across the nonlin-
ear discontinuity as the grid is refined. It is proved that this gives convergence
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in the discrete approximation of linearised output functionals, and pointwise con-
vergence almost everywhere for the solution of the adjoint discrete equations. In
particular, the adjoint approximation converges to the correct uniform value in the
region in which characteristics propagate into the discontinuity. As a consequence,
the discrete reduced gradient converges to the correct gradient of the continuous
problem.

More precisely, we consider objective functionals

J(u) =

∫

R

γ(x)G(u(x, T )) dx

where u = u(u0) is the entropy weak solution of the conservation law

N(u) ≡ ut + f(u)x = 0 , on ΩT := R × (0, T ) ,

u(·, 0) = u0 , on R .

We assume that γ ∈ C∞
c (R), G ∈ C∞(R) and that the flux function f ∈ C∞(R)

is convex. Consider the case that (which will be generalised below)

(A1) apart from a discontinuity at xs(0), u0(x) is C∞ with all derivatives in L1,
(A2) the discontinuity has finite strength for the entire time interval [0, T ] and

no other discontinuity is formed during this time interval.

Let ũ0 ∈ C∞
c (R) be a perturbation of u0. The corresponding linear perturbation

J̃ of J is [2, 6]

J̃ =

∫

R\{xs(T )}

γ(x) G′(u(x, T )) ũ(x, T ) dx − x̃s(T ) γ(xs(T )) [G(u)]T ,

where [G(u)]T is the jump in G(u(x, T )) across the shock, x̃s(T ) is the linear
perturbation of the shock position and ũ is outside of the shock governed by the
linear PDE

L(u) ũ ≡ ũt + (f ′(u)ũ)x = 0 , ũ(·, 0) = ũ0 .(1)

With the appropriate definiton of ũ as duality solution of (1) in the sense of [1,4,5],
which is a measure, since it develops a Dirac measure along the shock, one obtains
the representation

J̃ =

∫

R

wT (x) ũ(dx, T )

where

wT (x) =

{
γ(x)G′(u(x, T )), x 6= xs(T ) ,

γ(xs(T ))[G(u)]T /[u]T , x = xs(T ) .

It can be shown that the adjoint representation of J̃ is [2, 6, 7]

J̃ =

∫

R

w(x, 0) ũ0(x) dx ,

where w is the reversible solution of the adjoint equation

wt + f ′(u)wx = 0 , w(·, T ) = wT
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with wT as above. Here, the reversible solution is defined along generalised back-
ward characteristics and satisfies automatically the interior boundary condition
w(xs(t), t) = γ(xs(T ))[G(u)]T /[u]T , see [7].

The aim of this talk is to show the convergence of discretised approximations

J̃h for the linearised objective function and wh of the adjoint state, if a numerical
scheme with sufficiently large viscosity together with its discrete linearised and
adjoint scheme is used. More precisely, we consider a modified Lax-Friedrichs
scheme

Un+1
j − Un

j + 1
2 r
(
f(Un

j+1) − f(Un
j−1)

)
− ε d

(
Un

j+1 − 2Un
j + Un

j−1

)
= 0 ,

U0
j = u0(xj) ,

with timestep k, meshsize h in space, and

k =
T

N
, r ≡ k

h
, d ≡ k

h2
, ε = hα , ε

k

h2
= c

for some fixed constants 2/3 < α < 1, 0 < c < 1/2. Hence, the scheme has
numerical viscosity O(ε) = O(hα), which is essential to approximate the influence

of the shock sensitivity x̃s(T ) on J̃ correctly.
The objective functional is approximated by

Jh ≡ h
∑

j

γ(xj)G(UN
j ) .

Then the linearised objective functional reads

J̃h = h
∑

j

γ(xj)G
′(UN

j )ŨN
j ,

where Ũn
j is given by the linearised scheme

Ũn+1
j − Ũn

j + 1
2r
(
f ′(Un

j+1) Ũn
j+1 − f ′(Un

j−1) Ũn
j−1

)
− ε d

(
Ũn

j+1−2Ũn
j +Ũn

j−1

)
= 0

Ũ0
j = ũ0(xj) .

The adjoint representation has the form

J̃h = h
∑

j

W 0
j Ũ0

j ,

where Wn
j is given by the discrete adjoint scheme

Wn−1
j = Wn

j + 1
2 r f ′(Un−1

j )
(
Wn

j+1 − Wn
j−1

)
+ ε d

(
Wn

j+1 − 2Wn
j + Wn

j−1

)
,

WN
j = γ(xj) G′(UN

j ) .

To show the convergence of J̃h and wh as h → 0 we use the technique of matched
inner (i.e. close to the shock) and outer asymptotic expansions to construct ap-

proximations to both Un
j and Ũn

j . Discrete stability estimates are used to bound
the errors in the asymptotic approximations.

Assume that assumptions (A1), (A2) hold. Then we show the following by
using the structure of the constructed approximations and the error estimates.
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(1) For smooth initial perturbations ũ0 and corresponding approximations

Ũ0
j = ũ0(xj) one has |J̃ − J̃h| = O(hα).

(2) For Dirac initial perturbations ũ0 with support apart from the extreme

characteristics confining the shock region, the error is |J̃ − J̃h| = O(hα).
(3) Outside of the extreme backward characteristics the error in the discrete

adjoint is |w(0, x) − wh(0, x)| = O(hα). The discrete adjoint within the
shock region (more precisely, within any subdomain bounded away from
its two bounding characteristics) is constant to within o(hq), for any q > 0.

The results can be extended to the essentially more general case, where (A1),
(A2) are replaced by the requirement on u0 that no new shocks form at time T ,
pre-existing shocks have a smooth behaviour in an open neighbourhood of T , and
between the shocks the solution u(x, T ) is smooth. Numerical results are presented
that confirm the obtained convergence results and that show the necessity of a
numerical viscosity O(hα), 2/3 < α < 1. For details we refer to [3].
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A Priori Error Estimates for Finite Element Discretization of State
Constrained Optimal Control Problems Governed by Parabolic

Equations

Boris Vexler

(joint work with Dominik Meidner, Rolf Rannacher)

In this talk we present an a priori error analysis for finite element discretization of
an optimal control problem, which is governed by a linear parabolic equation and
is subject to state constraints. The problem under consideration is formulated as
follows:

(1) Minimize J(q, u) =
1

2

∫ T

0

∫

Ω

(u(t, x)− û(t, x))2 dx dt+
α

2

∫ T

0

∫

Ω

q(t, x)2 dx dt
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for the control q ∈ Q = L2(0, T ; L2(Ω)) and the state u ∈ W (0, T ) subject to

(2)

ut − ∆u = q in (0, T ) × Ω ,

u = 0 on (0, T ) × ∂Ω ,

u = u0 in {0} × Ω ,

with control constraints

(3) qa ≤ q(t, x) ≤ qb a. e. in (0, T ) × Ω

and state constraints

(4) (Gu)(t) ≤ b in [0, T ] ,

where G : L2(Ω) → R, G(v) =
∫
Ω v ω dx and ω ∈ L2(Ω). The last inequality is a

state constraint, which is formulated pointwise in time, see, e. g., [3] for an analysis
of optimal control problems with this type of state constraints.

The main difficulty in the analysis of optimal control problems with state con-
straints is the lack of regularity caused by the fact that the Lagrange multiplier
corresponding to state constraint (4) is a Borel measure µ ∈ C([0, T ])∗. The
optimality system for the problem under consideration consists of the state equa-
tion (2), an adjoint equation, a variational inequality, and complementarity con-
ditions. The adjoint state z lies in the space L2(0, T ; H1

0(Ω)) and is in general
discontinuous in time. From the regularity of the adjoint solution, one can deduce
a regularity result for the optimal control q̄ ∈ L2(0, T ; H1(Ω)) ∩ L∞((0, T ) × Ω).
The lack of temporal regularity is one of the challenges in deriving a priori error
estimates for finite element discretization of this problem.

For the numerical solution of this optimal control problem we consider the
discretization of the state equation (2) in time using the discontinuous Galerkin
methods dG(0) and in space using usual conforming linear finite elements. The
control variable q is discretized by cellwise constant functions in space and time.
We refer to [6,7] for an error analysis of this type of discretization for unconstrained
optimal control problems and for problems with control constraints.

We denote by k the maximal step size in the temporal discretization and by
h the maximal cell size of the spatial mesh. For the optimal solution q̄σ of the
discrete optimal control problem we prove the following error estimate:

Theorem 4 (see [5]). Let Ω ⊂ R
d (d = 2, 3) be a convex polygonal domain,

û ∈ L2(0, T ; L2(Ω)), u0 ∈ H2(Ω) ∩ H1
0 (Ω) and α > 0. Then there holds

‖q̄ − q̄σ‖L2(0,T ;L2(Ω)) ≤
C√
α
| log k| 14 (k

1
2 + h) ,

where the constant C depends on u0, û, Ω and T .

To our knowledge, this is the first error estimate for the discretization of a state
constrained optimal control problem governed by a parabolic PDE. In the talk
of M. Hinze at this Oberwolfach workshop, he presented error estimates for the
optimal control problem in a different setting. Error estimates for state constrained
elliptic problems can be found for example in [1, 8].
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The proof of Theorem 4 is divided in two steps. In the first step we discretize the
state equation in time and provide estimates for the error between optimal control
q̄ and the optimal solution q̄k of the semi-discrete problem. Due to the fact that the
control variable stays undiscretized in this step, the temporal regularity of q̄ is not
required. From the optimality system of the semi-discrete problem one can deduce
that the optimal solution q̄k is piece-wise constant in time. In the second step the
state variable and the control variable are discretized in space and one proves an
error estimate for q̄k − q̄σ. The essential tools for our proof are error estimates
with respect to the L∞(0, T ; L2(Ω))-norm for the state equation. Denoting by u(q)
the solution of the state equation (2) for a fixed control q ∈ L∞(0, T ; L2(Ω)), by
uk(q) the corresponding solution of the semi-discretized equation and ukh(q) the
solution of the discretized state equation, we provide the following estimates:

‖u(q) − uk(q)‖L∞(0,T ;L2(Ω)) ≤ c| log k| 12 k
(
‖u0‖H2(Ω) + ‖q‖L∞(0,T ;L2(Ω))

)

and

‖uk(q) − ukh(q)‖L∞(0,T ;L2(Ω)) ≤ c| log k| 12 h2
(
‖u0‖H2(Ω) + ‖q‖L∞(0,T ;L2(Ω))

)
.

The derivation of these estimates is based on techniques from [2, 4, 9].
As a byproduct of our error estimate in Theorem 4, we derive a new regularity

result for the optimal control,

q̄ ∈ Hs(0, T ; L2(Ω)) for all 0 ≤ s <
1

2
,

see [5] for details.
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On Goal-Oriented Error Estimation for Optimal Control Problems

Martin Weiser

Goal-oriented error estimation and mesh refinement for optimal control problems
with PDE constraints has been proposed by Becker, Kapp, and Rannacher [1].
Quite naturally, the quantity of interest in optimization problems is the value
of the cost function to be minimized, whereas the distance of the approximate
solution to the exact one measured in some general norm is of less importance.
This is different from parameter identification problems written as optimization
problems, where the natural quantity of interest is the value of the parameter to
be identified [7] or the data mismatch in case a regularization parameter needs to
be determined from a discrepancy principle [3].

For simplicity of presentation we consider linear problems of the form

(1) min
y∈Y,u∈U

J(y, u) = 〈y,
1

2
Hyyy − by〉 + 〈u,

1

2
Huuu − bu〉

subject to the equality constraint

(2) Ay + Bu − bλ = 0 .

Here, Y and U are Banach spaces, Hyy : Y → Y ∗ and Huu : U → U∗ are symmetric
and positive semidefinite, and A : Y → Y ∗ has a bounded inverse. B : U → Y ∗ is
merely continuous, and clearly by, bλ ∈ Y ∗ and bu ∈ U∗ hold. In this setting, the
state is determined by a given control as y(u) = A−1(bλ − Bu).

For any approximate solution (yh, uh), the quantity of interest proposed in [1]
and subsequently used throughout the literature (see the survey [6] and recent
work on inequality constrained problems [2, 4, 5, 8]) is the all-at-once error

E(yh, uh) = J(yh, uh) − Jopt .

However, if the aim of optimization is to compute a control that is to be applied
in a physical system, the discretized state yh is of little interest. All that matters
is the control uh and the resulting state y(uh) of the physical system (here we
neglect modelling erros, which are a completely different topic). In this setting,
the relevant quantity of interest is the black-box error

Ẽ(uh) = J(y(uh), uh) − Jopt .

Even though the formal difference is small, since both concepts capture the error
in the cost functional, the quantitative difference and the impact on mesh refine-
ment can be significant.

Error representation. We introduce the reduced cost function J̃(u) = J(y(u), u)

and the reduced Hessian H̃ = J̃ ′′ = B∗A−∗HyyA−1B + Huu, which we assume is

positive definite such that (1) has a unique minimizer (ȳ, ū). Due to J̃ ′(ū) = 0 we

have Ẽ(uh) = 1
2 〈δu, H̃δu〉 for δu = ū − uh.

We assume that (1) is solved numerically by a Galerkin discretization of the
KKT system. Elementary calculation reveals the error representation in terms of
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the residuals ry , ru, and rλ of the adjoint equation, optimality equation, and state
equation, respectively:

Ẽ(uh) =
1

2
(〈wy , ry〉 + 〈wu, ru〉 + 〈wλ, rλ〉)

with the weight functions w̃y = −A−1Bδu, w̃u = δu, and w̃λ = −A−∗Hyyw̃y.

Hierarchical error estimation. The Galerkin approximation xh = (yh, uh, λh) ∈
Xh ⊂ Y × U × Y satisfies Hhhxh = bh, where Hhh is the Galerkin representation
of the Hessian of the Lagrangian L = J(y, u) + 〈λ, Ay + Bu− bλ〉. The remaining
residual r = b − Hxh is then polar to Xh. For approximating δu and computing
the weight functions w̃ we extend the Galerkin ansatz space Xh with an extension
space Xe ⊂ Y × U × Y such that Xh ∩Xe = {0}. On the extended ansatz space,
the error δx = x̄ − xh can be approximated by solving

(3)

[
Hhh Heh

Hhe Hee

] [
δxh

δxe

]
=

[
0
re

]
.

As is usual in hierarchic error estimators, only local defect problems are solved by
dropping all off-diagonal entries in the blocks of Hee. Moreover, Hhe is neglected
in (3), such that δxh and δxe can be computed sequentially. It is important not to
drop Heh, because otherwise δxh = 0 results and since only local defect problems
are solved in Xe, the pollution error would be neglected. The same considerations
lead to the computation of the weight functions as

[
Ahh

Ahe Âee

] [
w̃h

y

w̃e
y

]
=

[
Bhh Beh

Bhe Bee

] [
δuh

δue

]

and [
Ahh Aeh

Âee

]∗ [
δwh

λ

δwe
λ

]
=

[
Hhh

yy Heh
yy

Hhe
yy Hee

yy

] [
w̃h

y

w̃e
y

]
.

Finally, the error estimate can be computed as

Ẽ(uh) ≈ 1

2

(
〈we

y, re
y〉 + 〈we

u, re
u〉 + 〈we

λ, re
λ〉
)
.

Illustrative example. The following example with scalar control is tailored to
highlight the differences between all-at-once error and black-box error:

min
y∈H1(Ω),u∈R

1

2
‖y − 1‖2

L2(Ω) s.t. −∆y = 3 + χΩc
u in Ω ,

y = 0 on ∂Ω ,

∂ny = 0 on ∂ΩN .

The control acts on a subset Ωc of the domain Ω that is separated from the cor-
ner singularity by the narrow neck of the domain. Linear finite elements with
quadratic bubbles for error estimation have been used. Figure 1 shows adaptively
refined meshes for both error concepts as well as the actual and estimated error
values. The black-box error is smaller than the all-at-once error by orders of mag-
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nitude, which makes an important difference in case a desired accuracy is used as
termination criterion. Moreover we observe that the generated meshes are quite
different. The result is that the actually computed value of the cost functional is
worse by a factor of up to 100 when using the black-box error for mesh refinement,
but the value of the reduced cost functional is indeed better by a factor of up to
4.
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Modelling of Signal Processing in Neurons

Gabriel Wittum

The crucial feature of neuronal ensembles is their high complexity and variability.
This makes modelling and computation very difficult, in particular for detailed
models based on first principles. The problem starts with modelling geometry,
which has to extract the essential features from those highly complex and variable
phenotypes and at the same time has to take in to account the stochastic variabil-
ity. Moreover, models of the highly complex processes which are living on these
geometries are far from being well established, since those are highly complex, too,
and couple on a hierarchy of scales in space and time. Simulating such systems al-
ways puts the whole approach to test, including modeling, numerical methods and
software implementations. In combination with validation based on experimental
data, all components have to be enhanced to reach a reliable solving strategy.

To handle problems of this complexity, new mathematical methods and soft-
ware tools are required. In recent years, new approaches such as parallel adaptive
multigrid methods and corresponding software tools have been developed allowing
to treat problems of huge complexity.

In the lecture we present a three dimensional model of signaling in neurons.
First we show a method for the reconstruction of the geomety of cells and sub-
cellular structures as three dimensional objects. With this tool, NeuRA, complex
geometries of neuron nuclei were reconstructed. We present the results and discuss
reasons for the complicated shapes. To that end, we present a model of calcium
signaling to the nucleus and show simulation results on reconstructed nuclear ge-
ometries. We discuss the implications of these simulations.

We further show reconstructed cell geometries and simulations with a three
dimensional active model of signal transduction in the cell which is derived from the
Maxwell equations and uses generalized Hodgkin-Huxley fluxes for the description
of the ion channels.

Reporter: Ronald H. W. Hoppe
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