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Introduction by the Organisers

The workshop Wave Motion that took place in the period February 9–13, 2009
was dedicated to the study of nonlinear wave phenomena. Waves lie at the fore-
front of modern applied mathematics and theoretical physics. The study of wave
phenomena leads to a variety of involved mathematical issues, such as partial
differential equations, functional analysis, harmonic analysis, dynamical systems,
bifurcation theory. Fluids have been a rich source of deep mathematical theories
for over 200 years. The conference focused on four very active areas involving
fluids:

• water waves with vorticity,
• stability theory of fluids,
• mathematical aspects of edge waves,
• current aspects of integrable systems and solitons.

The programme of the workshop consisted in 17 talks, presented by international
experts in nonlinear waves coming from Austria, China, England, France, Ger-
many, Ireland, Italy, Norway, Sweden, U.S.A., and by three discussion sessions
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on the topics “Modelling of water waves”, “Waves of large amplitude”, “Inte-
grable shallow water equations”. Moreover, several doctoral and post-doctoral
fellows participated in the workshop and did benefit from the unique academic
atmosphere at the Oberwolfach Institute. The organisers gratefully acknowledge
the support of two younger scientists by the Leibniz Association within the grant
“Oberwolfach Leibniz Graduate Students”.

The proceedings of the workshop will appear as a special issue of the journal Wave
Motion .
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Abstracts

On two-dimensional steady edge waves

Mats Ehrnström

(joint work with Joachim Escher and Bogdan-Vasile Matioc)

Edge waves are regular, essentially two-dimensional waves propagating along the
beach, and vanishing fast in the direction perpendicular to the shoreline. They re-
side on a semi-infinite domain in the direction away from land. In [3] the following
model for steady two-dimensional edge waves was proposed:

(1) ∆ψ + ∂x|∇ψ|2 = 0 in Ω := R × (−∞, 0).

Here ∇ψ is a normalized velocity field, and the Cartesian coordinates are chosen
so that x denotes the position along the shoreline, and y measures the position in
the direction perpendicular to the beach. Since equation (1) is invariant under the
scaling (x, y, ψ) 7→ (λx, |λ|y, ψ/λ), for periodic waves there is no loss of generality
in restricting attention to the period 2π. To this aim we set Σ := S × (−∞, 0).
We then have the following result [1], showing that small shore-line profiles can be
extended to rapidly decaying waves in the whole fluid domain.

Theorem 1 (Periodic waves) There exists K > 0, such that for given boundary
data ψ(x, 0) = f(x) with ‖f‖C2+α(S) ≤ K, the problem (1) has a solution with
supx∈R ψ(x, y) → 0 as y → −∞,

‖ψ‖C 2+α(Σ) ≤ 1/4, and ‖ψ‖H1(Σ) ≤ 2‖f‖H1(S).

The solution ψ is unique within BUC 2+α(Σ), and if f is odd, then ψ vanishes
exponentially fast as y → −∞, with ψ(·, y) being odd for all y ≤ 0.

The equation (1) is quasi-linear, of changing type, and defined on a an un-
bounded domain. For existence, we therefore first have to establish a priori
properties of solutions. It turns out that the nonlinear part of (1) carries much
structure, and for solutions with a small gradient, it yields decay properties in
the seaward direction. By combining periodicity and elementary integration tech-
niques with maximum principles and classical elliptic estimates, we obtains several
necessary features of solutions. In particular, we find a class of solutions which
admits uniform estimates in a sequence of bounded domains whose limit fill out
the half-plane Ω. The class of solutions found all reside within the elliptic domain
of equation (1).

For the existence of solitary waves, there is the further question of the infi-
nite extension also in the x-direction. In our approach, we consider solitary (i.e.
localized) waves as limits of periodic waves, and one then needs to find uniform
estimates for some class of shoreline data with growing period. For this we use
Sobolev estimates, which rely on the particular form of the nonlinearity in (1).
The following extension of Theorem 1 is obtained [3].
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Theorem 2 (Solitary waves) There exists L > 0, such that for f ∈ BUC 3+α(R)∩
H2(R) with ‖f‖C 3+α(R) < L, there is a solution ψ of (1) with ψ(·, 0) = f ,

‖ψ‖C 3+α(Ω) ≤ 1/4, ‖∇ψ‖H1(Ω) ≤ 27‖f‖H2(R),

and for any n ∈ N, we have max
y∈[−n,0]

ψ(x, y) → 0 as |x| → ∞.

The solutions which correspond to odd shoreline data are also odd, and addition-
ally they vanish as y → −∞. It also turns that any solution which is everywhere
even, has to be of the form λ cos(cx) exp(cy). Such a strong property is not be
expected for a general disturbance of the Laplace equation, and it points to the
specific form of the nonlinearity in (1).

All taken together, equation (1) seems to encompass very well the qualitative
behaviour of steady edge-waves. It allows for desirable well-posedness results, and
for a large class of solutions it imposes a wave-like structure.
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Dispersive properties of surface water waves

Vera Mikyoung Hur

(joint work with Hans Christianson and Gigliola Staffilani)

The water-wave problem in its simplest form concerns the two-dimensional dy-
namics of an incompressible inviscid liquid of infinite depth and the wave motion
on its one-dimensional surface, under gravity and surface tension. The moving
interface is given as a nonself-intersecting parametrized curve. The liquid occu-
pies the domain below the interface, where the motion is described by the Euler
equations with gravity and the flow is irrotational. The kinematic and dynamic
boundary conditions hold at the interface. The motion at great depths is assumed
to be almost at rest, and the interface is to be asymptotically flat.

Since the works by Wu [2, 3] the initial value problem associated to, more gen-
erally, a class of the Euler equations with moving boundary has been well studied
via the energy method. While the method successfully yields local well-posedness,
nonetheless, it does not provide further information about solutions, other than
that they remain as smooth as their initial states. The present investigation is the
dispersive aspect of surface water waves. Specifically, the main result establishes
the local smoothing effect for the water-wave problem with surface tension. It
contrasts markedly to what can be said from the energy method alone.
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The analysis is based on the formulation of the water-wave problem with surface
tension as a second-order in time nonlinear dispersive equation

(1) ∂2
t u− 1

2SH∂
3
αu+ gH∂αu = −2u∂t∂αu− u2∂2

αu+R(u, ∂tu).

Here, u is related to the tangential velocity at the interface; t ∈ R+ is the temporal
variable and α ∈ R is the arclength parametrization of the interface. The Hilbert

transform H may be defined via the Fourier transform as Ĥf(ξ) = −isgn(ξ)f̂(ξ).
The remainder R is of lower order compared to 2u∂t∂αu and u2∂2

αu in the sense
that ‖R(u, ∂tu)‖Hs ≤ C(‖u‖Hs+1 , ‖∂tu‖Hs) for s ≥ 1. Here and elsewhere, Hs

means the Sobolev space of order s in the variable α ∈ R.
Theorem 1 (Main-theorem) Let S > 0 and g ≥ 0. For s > 2 + 1/2 the
initial value problem of (1) with u(0, α) = u0(α) and ∂tu(0, α) = u1(α), where
(u0, u1) ∈ Hs(R) ×Hs−3/2(R), is locally well-posed on t ∈ [0, T0] for some T0 > 0
and (u(t), ∂tu(t)) ∈ C([0, T ];Hs(R) × Hs−3/2(R)). Moreover, if s ≥ s0 > 1 is
sufficiently large, then for 0 < T < T0 sufficiently small, the inequality

(2)

∫ T

0

∫ ∞

−∞
| 〈α〉−ρDs+1/4

α u(t, α)|2 dαdt ≤ C(T, ‖u0‖Hs , ‖u1‖Hs−3/2)

holds, where ρ ≥ 3. Here, 〈α〉 = (1 + α2)1/2 and Dα = −i∂α.
The proof of (2) is motivated by the local smoothing effect of the linear part of

(1). When S > 0 the solution to the initial value problem

∂2
t u− 1

2SH∂
3
αu+ gH∂αu = 0, u(0, α) = u0(α) and ∂tu(0, α) = u1(α)

possesses the estimate

sup
α∈R

(∫ ∞

−∞
|D1/4

α u(t, α)|2dt
)1/2

≤ C(‖u0‖L2
α(R) + ‖u1‖H−3/2

α (R)
),

and the solution to the corresponding inhomogeneous equation

∂2
t v − 1

2SH∂
3
αv + gH∂αv = R(t, α). v(0, α) = 0 = ∂tv(0, α)

possesses the estimate

sup
α∈R

(∫ ∞

−∞
|D2

αv(t, α)|2dt
)1/2

≤ C

∫ ∞

−∞

(∫ ∞

−∞
|R(t, α)|2dt

)1/2

dα.

The main difficulty of the proof is that the dispersive property of (1) is too weak
to control the nonlinearity. The smoothing effect of the linear part of (1) can treat
up to 2 derivatives in the nonlinearity. However, the worst nonlinear term u∂t∂αu
in (1) contains 2 + 1/2 derivatives.

This difficulty is overcome by viewing (1) as

∂2
t u− 1

2SH∂
3
αu+ gH∂αu+ 2u∂t∂αu+ u2∂2

αu = R(u, ∂tu).

That means, 2u∂t∂αu and u2∂2
αu are considered as “linear” components of the

equation, but with variable coefficients which happen to depend on the solution
itself. The chief effort of the proof is then to establish the local smoothing effect
for the variable-coefficient linear operator ∂2

t − 1
2SH∂

3
α + gH∂α + 2V (t, α)∂α∂t +
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V 2(t, α)∂2
α. Our approach is based on the construction of an approximate solution

(“parametrix”) for high frequencies. The proof combines the energy method with
techniques of pseudodifferential operators and Fourier integral operators, propa-
gation of singularities. The detail is contained in [1].
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Two component integrable systems modelling shallow water waves

Rossen I. Ivanov

The aim of this talk is to describe the derivation of shallow water model equa-
tions for the constant vorticity case and to demonstrate how these equations can
be related to two integrable systems: a two component integrable generalization
of the Camassa-Holm equation and the Kaup - Boussinesq system.

The motion of inviscid fluid is described by Euler’s equations:

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P + g, ∇ · v = 0,

where ρ is a constant density, v(x, y, z, t) is the velocity of the fluid at the point
(x, y, z) at the time t, P is the pressure in the fluid, g = (0, 0,−g) is the constant
Earth’s gravity acceleration.

We consider a motion of a shallow water over a flat bottom, which is located
at z = 0. We assume that the motion is in the x-direction, and that the physical
variables do not depend on y. Let h be the mean level of the water and let
η(x, t) describes the shape of the water surface, i.e. the deviation from the average
level. The pressure is P = PA + ρg(h − z) + p(x, z, t), where PA is the constant
atmospheric pressure, and p is a pressure variable, measuring the deviation from
the hydrostatic pressure distribution.

On the surface z = h+η, P = PA and therefore p = ηρg. Taking v ≡ (u, 0, w) we
can write the kinematic condition on the surface as (e.g. following [1]) w = ηt+uηx
on z = h + η. Finally, there is no horizontal velocity at the bottom, thus w = 0
on z = 0.

Let us introduce now dimensionless parameters ε = a/h and δ = h/λ, where a
is the typical amplitude of the wave and λ is the typical wavelength of the wave.
Now we can introduce dimensionless quantities, according to the magnitude of the
physical quantities, see [1, 2] for details: x → λx, z → zh, t → λ√

gh
t, η → aη,

u→ ε
√
ghu, w → εδ

√
ghw, p→ ερgh.

Now let us notice that there is an exact solution of the governing equations of
the form u = Ũ(z), 0 ≤ z ≤ h, w ≡ 0, p ≡ 0, η ≡ 0. This solution represents an
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arbitrary underlying ’shear’ flow. In the presence of a shear flow the horizontal
velocity of the fluid will be Ũ(z) + u. The scaling for such solution is clearly

u →
√
gh(Ũ(z) + εu), and the scaling for the other variables is as before. The

system of equations is (the prime denotes derivative with respect to z):

ut + Ũux + wŨ ′ + ε(uux + wuz) = −px,
δ2(wt + Ũwx + ε(uwx + wwz)) = −pz,

ux + wz = 0,

w = ηt + (Ũ + εu)ηx, p = η, on z = 1 + εη,

w = 0 on z = 0.

The simplest nontrivial case is a linear shear, Ũ(z) = Az, where A is a constant.
We choose A > 0, so that the underlying flow is propagating in the positive
direction of the x-coordinate.

The vorticity is ω = (U + u)z − wx or in terms of the rescaled variables, ω =
A+ε(uz−δ2wx). We are looking for a solution with constant vorticity ω = A, and
therefore we require that uz − δ2wx = 0. Together with the equation ux +wz = 0
it gives

u = u0 − δ2
z2

2
u0xx + O(ε2, δ4, εδ2), w = −zu0x + δ2

z3

6
u0xxx + O(ε2, δ4, εδ2),

where u0(x, t) is the leading order approximation for u.
With these expressions we obtain the following from the condition on the sur-

face, ignoring terms of order O(ε2, δ4, εδ2):

(1) ηt +Aηx +
[
(1 + εη)u0 + ε

A

2
η2

]
x
− δ2

1

6
u0xxx = 0

From the second of the Euler’s equations and the condition on the surface we

have p = η − δ2
[

1−z2
2 u0xt + 1−z3

3 Au0xx

]
, then the first of the Euler’s equations

gives (Note that there is no z-dependence!)

(2)
(
u0 − δ2

1

2
u0xx

)
t
+ εu0u0x + ηx − δ2

A

3
u0xxx = 0.

The linearised equations are

(3) u0t + ηx = 0, ηt +Aηx + u0x = 0,

giving ηtt + Aηtx − ηxx = 0. This linear equation has a travelling wave solution
η = η(x− ct) with a velocity c satisfying c2 −Ac− 1 = 0, or

c =
1

2

(
A±

√
4 +A2

)
.

If there is no shear (A = 0), then c = ±1. In general, there is one positive and
one negative solution, representing left and right running waves. Suppose that we
have only one of these waves, then η = cu0 + O(ε, δ2) - e.g. from (3).
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By introduction of a new variable ρ = 1 + εαη + ε2βη2 + εδ2γu0xx, where

α =
1

3(1 + c2)
+

2c2

3(1 + c2)

(
1+

Ac

2

)
, β =

1 − (3 + c2)(1 + Ac
2 )

3(1 + c2)
α, γ =

α

6(c−A)
,

and a change of variables (rescaling) u0 → 1
αεu0, x → δ√

B
x, t → δ√

B
t where

B = 1
2 + 1

6(c−A)

(
A− 1

c−A

)
the equations (1), (2) transform into the system

mt +Amx −Au0x + 2mu0x + u0mx + ρρx = 0, m = u0 − u0xx(4)

ρt +Aρx + (ρu0)x = 0,(5)

Before the rescaling we had αεη = ρ − 1 − ε2βc2u2
0 − εδ2γu0xx. Since in the

leading order η = cu0 the rescaling of η is η → 1
αεη. Thus in terms of the rescaled

variables η = ρ− 1 − βc2

α2 u
2
0 −B γ

αu0xx.
The system (4), (5) is an integrable 2-component Camassa-Holm system that

appears in [3], generalizing the famous Camassa-Holm equation [4]. The Lax
representation for this system is ( ζ is a spectral parameter)

Ψxx =
(
− ζ2ρ2 + ζ(m− A

2
) +

1

4

)
Ψ,

Ψt =
( 1

2ζ
− u0 −A

)
Ψx +

1

2
u0xΨ.

An alternative derivation for the case of zero vorticity, based on the Green-Naghdi
equations is reported in [5].

Another integrable system matching the water waves asymptotic equations to
the first order of the small parameters ε, δ is the Kaup - Boussinesq system. We
describe briefly its derivation. Introducing V = u − δ2(1

2 − A
3c )uxx the equation

(2) can be written as Vt + εV Vx + ηx = 0. Equation (1) in the first order in ε, δ is

ηt +
[
Aη + (1 + εη)u0 + ε

A

2
η2

]
x
− δ2

1

6
u0xxx = 0

and with a shift η → η − 1
ε it becomes

ηt + ε(1 +
Ac

2
)(ηu0)x − δ2

1

6
u0xxx = 0 or ηt + ε

1 + c2

2
(ηV )x − δ2

1

6
Vxxx = 0.

Further rescaling leads to the Kaup - Boussinesq system

Vt + V Vx + ηx = 0, ηt −
1

4
Vxxx +

1 + c2

2
(ηV )x = 0,

which is integrable iff A = 0 (c2 = 1) with a Lax pair [6]

Ψxx = −
(
(ζ − 1

2
V )2 − η

)
Ψ, Ψt = −(ζ +

1

2
V )Ψx +

1

4
VxΨ.

It is interesting to investigate further which specific properties of the original
governing equations are preserved in the ’integrable’ approximate models. For
example the 2-component Camassa-Holm system for certain initial data admits
breaking waves solutions [5].
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Using parameter asymptotics to find approximate solutions for
periodic waves over finite-depth, constant-vorticity flows

Robin Johnson

We present some preliminary (formal) results that provide asymptotic descriptions
for the flow field (specifically, the streamlines) and for the structure of stagnation
points, if they arise. This work was prompted by the recent successes in producing
rigorous statements about the nature of periodic waves with vorticity (see [1]), and
some corresponding numerical simulations of these solutions (see [2]).

The model that we take is that of classical water waves: an inviscid, incom-
pressible fluid with constant pressure at the free surface (no surface tension) and a
constant undisturbed depth. The flow is steady and so, in a frame moving with the
wave, the problem in terms of the Euler equation (suitably non-dimensionalised)
becomes:

u · ∇u = −∇p, ∇ · u = 0 with ∇ =

(
∂

∂x
,
∂

∂y

)
, u = (u, v),

where p is measured relative to the hydrostatic pressure distribution, and

p = h(x)& v = uhx on y = h(x) and v = 0 on y = −d0 = constant.

(Here, u replaces the actual horizontal velocity component, less the wave speed,
i.e. u replaces the familiar u − c, so our u ≤ 0, with equality at stagnation.)
Equivalently, at the surface, we could us a Bernoulli condition:

u2 + v2 + 2(h+ d0) = Q = constant (the total head) on y = h(x).

The vorticity is vx−uy = γ, and so ∇2ψ = −γ(ψ), where ψ is the stream function;

the total mass flux is
∫ h(x)

−d0 u(x, y) dy = −p0(< 0), a constant, and we can choose

ψ = 0 on y = h(x) (so that ψ = p0 on y = −d0). We shall describe some results in
the cases , where is a constant, the upper sign therefore giving positive vorticity
(and the lower, negative).

Following the work previously mentioned, the problem is conveniently trans-
formed according to the Dubreil-Jacotin formulation, where we define D(x, ψ) =
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y + d0, so that ∂/∂y ≡ (1/Dψ)∂/∂ψ and ∂/∂x → (Dx/Dy)∂/∂ψ (and then
u = 1/Dψ, v = Dx/Dψ). The resulting problem becomes

Dψψ +D2
ψDxx +D2

xDψψ − 2DψDxDxψ = ±ωD3
ψ,

with

1 + (2D −Q)D2
ψ +D2

x = 0 on ψ = 0 and D = 0 on ψ = p0 (> 0);

we seek solutions periodic in x (period 2L) in R = (−L,L) × (0, p0). However,
before we proceed, it is convenient to write this version of the problem in a suitably
normalised form: we define D = d/

√
ω and Q = ωq, to give

(1)





dψψ ± d3
ψ = ω−1(2dψdxdψx − d2

ψdxx − d2
xdψψ)

with 1 − (q − 2ω−3/2d)d2
ψ + ω−1d2

x = 0 on ψ = 0

and d = 0 on ψ = p0.

This is a particularly useful form on two counts: firstly, the terms on the left
in the PDE are the only ones that contribute to the uniform-flow solution and,
secondly, the limiting case of ω → ∞ follows directly. The essential idea behind
our results is to perturb the uniform flows (defined by (1), either by introducing
a wave of arbitrary (but small) amplitude, or simply by allowing ω → ∞ in (1);
we start with the former.

The procedure is altogether routine; we let δ measure the amplitude of the
wave, and impose 2π-periodicity (because this was the choice in the work quoted
earlier). For positive vorticity, we find that
(2)



d ∼
√
b− 2ψ −

√
b− 2p0 +

δ cos(x)√
b− 2ψ

sinh

[
1√
ω

(
√
b− 2ψ −

√
b− 2p0)

]
, δ → 0

where b ≥ 2p0 satisfies tanh

[
1√
ω

(
√
b−

√
b− 2p0)

]
=

b√
bω + ω−1

and solutions of this form exist only for 0 < ω/p0 ≤ k, k ≈ 7.009 (which cor-
responds to b = 2p0.) However, the asymptotic solution described in (2) is not
uniformly valid for b close to 2p0, when ψ is also close to p0; the breakdown occurs
where b − 2p0 = O(δ2), ψ − p0 = O(δ2). In this case, with b = 2p0 + λ2δ2 and
ψ = p0 − δ2ψ, a solution that maches to (2) (when that is evaluated for this new
b, and for ψ − p0 = O(1)) is

b ∼
√

2ψ + (λ− ω−1/2 cosx)2 − (λ− ω−1/2 cosx), δ → 0,

and this predicts a stagnation point at ψ = 0 (i.e. on the bed), under the crest, if
λ = 1/

√
ω.

For this solution, we find that q = 2p0+2ω−3/2(
√

2p0 + δ2λ2−δλ); comparison
with the numerical results is then possible (but we cannot claim good numerical



Wave Motion 441

agreement without a more complete analysis- we are simply attempting to capture
the essential features of this problem).

The corresponding problem for negative vorticity yields

d ∼
√
b+ 2p0 −

√
b + 2ψ +

δ cos(x)√
b+ 2ψ

sinh

[
1√
ω

(
√
b+ 2p0 −

√
b+ 2ψ)

]
, δ → 0,

where tanh
[

2√
ω
(
√
b+ 2p0 −

√
b)

]
= b

ω−1−
√
bω
, and this has solutions for 0 < ω <

∞ (and in particular b ∼ cp2
0/ω as ω → ∞, c ∼ 1.61, b ∼ 1/ω3 as ω → ∞).

However, when we follow the procedure adopted in the previous case, which near
stagnation would require b = O(δ) with ψ = O(δ), we find that there is no ap-
propriate solution. This is because the limit here is b → 0 at ω fixed, and the
perturbation solution (above) suggests that we require ω → ∞ as b → 0. With
this result in mind, we examine the problem of letting ω → ∞, in the case of
negative vorticity.

With a little care, and judicious choices of the parameters, we find that (for
δ → 0)

d ∼
√

2p0 + δA(x) −
√

2ψ + δA(x)

− δ

4ω
sinh

(√
2p0 −

√
2ψ + δA+

2(ψ − p0)

3
√

2p0

)
A′′, δ → 0,

and then with δA(x) = ω−3(1+ω−5/2A0(x)) (so a stagnation point is not possible,
although we shall be close to stagnation as ω → ∞), we find that

(3)
1

3

√
2p0A

′′
0 = Q− 1

4
A2

0

where q ∼ −2ω−3
√

2p0 + ω−3 − ω−3 − Qω−8. Equation (3) possesses an appro-
priate solution in terms of Jacobian elliptic functions; all of this information can
then be used to produce representations of the streamlines, fairly close to stagna-
tion, for suitable q. The corresponding problem (ω → ∞) for positive vorticity
does not appear to lead to a corresponding solution (presumably because of the
non-existence of small-amplitude waves for ω/p0 > k).

These results demonstrate, albeit in only a formal and preliminary way, that
the use of suitable parameter expansions, with due attention to break down and
matching, may provide some useful insights. In particular, we have attempted to
capture some of the details of the mechanisms involved in these interesting and
important flows.
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Asymptotic models for internal waves

David Lannes

We are interested in the asymptotic description of internal waves at the interface
of two fluids. The system we consider here, when it is at rest, consists of a
homogeneous fluid of depth d1 and density ρ1 lying over another homogeneous
fluid of depth d2 and density ρ2 > ρ1. The bottom on which both fluids rest is
presumed to be horizontal and featureless while the top of fluid 1 is restricted by
the rigid lid assumption, which is to say, the top is viewed as an impenetrable,
bounding surface.

We describe here the strategy developed in [1] to describe qualitatively the
motion of the interface. Namely, following the procedure introduced in [2, 3, 4], we
rewrite the full system as a system of two evolution equations posed on Rd, where
d = 1 or 2 depending upon whether a one- or two-dimensional model is being
contemplated. The reformulated system, which depends only upon the spatial
variable on the interface, involves two non-local operators, a Dirichlet-to-Neumann
operator G[ζ], and what we term an “interface operator” H[ζ], defined precisely
below. Of course the operator H[ζ] does not appear in the theory of surface waves,
and this is an interesting new aspect of the internal wave theory.

A rigorously justified asymptotic expansion of the non-local operators with
respect to dimensionless small parameters is then mounted. We consider both the
“weakly nonlinear” case and the “fully nonlinear” situation and cover a variety of
scaling regimes. For the considered scaling regimes, these expansions then lead to
an asymptotic evolution system. In each case a family of asymptotic models may
then be inferred by using the “BBM trick” and suitable changes of the dependent
variables. This analysis recovers most of the systems which have been introduced
in the literature and also some interesting new ones. For instance, in certain of the
two-dimensional regimes, a non-local operator appears whose analog is not present
in any of the one-dimensional cases.

All the systems derived are proved to be consistent with the full Euler system. In
rough terms, this means that any solution of the latter solves any of the asymptotic
systems up to a small error.
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A novel integrable generalization of the nonlinear Schrödinger
equation

Jonatan Lenells

I present joint work with Prof A. S. Fokas. We consider the following integrable
generalization of the nonlinear Schrödinger (NLS) equation, which was first derived
in [A. S. Fokas, Phys. D 87 (1995), 145–150] using bi-Hamiltonian methods:

(1) iut − νutx + γuxx + ρ|u|2(u+ iνux) = 0, x ∈ R, t > 0,

where ν, γ, ρ are real parameters and u(x, t) is a complex-valued function. Equa-
tion eqrefJL is related to NLS in the same way that the Camassa-Holm equation
is related to KdV—note that equation (1) reduces to NLS when ν = 0. In our
study of (1) we: (a) Provide a physical derivation in the context of fiber optics;
(b) Establish a relation with the first negative member of the derivative nonlinear
Schrödinger (DNLS) hierarchy; (c) Derive a Lax pair; (d) Implement the Inverse
Scattering Transform formalism; (e) Consider the initial-boundary value (IBV)
problem formulated on the half-line; (f) Analyze solitons and traveling-wave solu-
tions.

Invariant manifolds of Euler equations

Zhiwu Lin

(joint work with Chongchun Zeng)

Consider the Euler equation

(E)





Dtv , vt + v · ∇v = −∇p in Ω
∇ · v = 0 in Ω
v.N = 0 on ∂Ω

,

where Ω is a bounded domain in R2 or R3, N is the outer normal of ∂Ω. The
function space for (E) is

X , {w ∈ Hk(Ω,Rn) | ∇ · w = 0 in Ω, w ·N = 0 on ∂Ω},
with n = 2 or 3, k > n/2+1. The Euler equation has infinitely many steady states.
Example 1: shear flows v0 = (U (y) , 0) in 2D or (U (y, z) , 0, 0) in 3D. Example
2: in 2D, v0 = ∇⊥ψ0, where the stream function ψ0 satisfies ∆ψ0 = F (ψ0)
in Ω for some function F and ψ0 takes constant on ∂Ω. The stability of these
steady states is an important problem in fluid mechanics. The linearized Euler
operator L around v0 had been studied quite a lot, for both the unstable essential
spectrum (i.e. [3] [5] [6]) and discrete spectrum (i.e. [2] [7] [9]). The passing
of nonlinear instability from linear instability was also proved for the 2D Euler
equation ([1] [4] [8] [11]). The invariant manifolds are important to describe the
local dynamics near an unstable steady flow v0. However, their existence has been
open for Euler equations, due to two main difficulties: First, the nonlinear term
v · ∇v contains the loss of derivatives. Second, L has no smoothing effects! In
the proof of nonlinear instability, some techniques such as a nonlinear bootstrap
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were developed to overcome the difficulty of the loss of derivative. However, these
tricks strongly use the property of solutions of Euler equation and cannot be used
in constructing invariant manifolds.

Recently, with Chongchun Zeng, we obtained the following result.

Theorem 1 (L & Zeng, [10]) The C1 stable and unstable manifolds exist uniquely
in the phase space X ⊂ Hk(Ω) with k > n

2 + 1, under the assumptions that

v0 ∈ Hk+4(Ω) and

1. ∃ closed invariant subspaces Ecs and finite dimensional Eu of L, s. t.

X = {w ∈ Hk(Ω,Rn) | ∇ · w = 0 in Ω, w ·N = 0 on ∂Ω}
= Ecs ⊕ Eu.

2. ∃λu > λcs ≥ 0, C > 0 s. t. for t ≥ 0,

|e−tL|L(Eu) ≤ Ce−λut, |etL|L(Ecs) ≤ Ceλcst.

3. 4(k + 2)µ < λu − λcs where µ is the Liapunov exponent of v0.
In our proof, we use a combination of Lagrangian and Eulerian approaches to

overcome the difficulties mentioned above.
Examples for applying above theorem include:
1. Unstable shear flows between rigid walls

Ω = S1 (2π/α) × (0, π), v0 = (U (y) , 0),

2. Unstable shear flows in a torus

Ω = S1 (2π/α) × S1, v0 = (U (y) , 0),

3. Unstable rotating flows in an annulus

Ω = {a < r < b} , v0 = ρ (r)~eθ,

4. Unstable 3D shear flows

Ω = S1 (2π/α) × (0, π) × S1, v0 = (U (y, z) , 0, 0),

For all above examples, the Liapunov exponent µ = 0 and the assumptions of
the Theorem can be verified if there exists an unstable discrete eigenvalue.
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Fingering patterns for the Muskat problem

Bogdan-Vasile Matioc

(joint work with Joachim Escher)

The Muskat problem, proposed 1934
(see [4]), describes the evolution of the
interface between two immiscible fluids
in a porous medium or Hele-Shaw cell.
The one-phase version of the problem,
in which one of the fluids has zero vis-
cosity is exactly the Hele-Shaw prob-
lem. We consider the Muskat problem
for two fluids in a two-dimensional ver-
tical Hele-Shaw cell or a porous medium
(see the adjacent figure).

Ω+(f)

Ω−(f)

Water

Oil

Γf

g

p = 0

- - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - -

Γ1

Γ0

Γ−1

The laterals and the bottom of the cell are assumed to be impermeable and the
pressure is normalized to be 0 on the boundary component Γ1. It is very common
in literature to presuppose that the fluids are separated by a sharp interface which
moves along with the fluids.

In the unstable case, when the less dense fluid lies on the bottom of the cell, we
prove using a bifurcation argument, existence of non-trivial, finger-shaped station-
ary solutions which are obtained as analytic bifurcation branches from a trivial
flat equilibrium. It is also shown that these equilibria are a priori smooth. The
local bifurcation branches can be actually defined globally. Under some reason-
able assumptions it is also shown that the fingering patterns disappear when the
surface tension coefficient γ → ∞.

Since the bottom an the the laterals of the cell are impermeable we can prove
that the volume of each fluid is preserved by the flow. From the conservation
of mass we derive the following free boundary problem describing the stationary
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states of the Muskat problem:

(1)





∆u± = 0 in Ω±(f),

u+ = g(ρ− + ρ+) + g(ρ− − ρ+)f on Γ1,

∂νu− = 0 on Γ−1,

u+ − u− = γκf on Γf ,

∂νu± = 0 on Γf .

The suffix + refers to the upper fluid and the suffix – to the lower and g denotes
the gravity constant. In this case the fluids occupy the domain Ω := S1 × (−1, 1),

Ω−(f) := {(x, y) ∈ Ω : −1 < y < f(x)}, Ω+(f) := {(x, y) ∈ Ω : f(x) < y < 1}.
and ν denotes the outward unit normal to the boundary ∂Ω−(f). The function
f ∈ C4+α(S1) is to be determined such that ‖f‖C4+α(S1) < 1 and

∫
S1 f dx = 0 (if

we presuppose that the cell contains equal volumes of both fluids).
Let u := g(ρ− + ρ+). For fixed γ, the triple (f, u+, u−) = (0, u, u) is the unique

flat solution for the problem (1). For appropriate γ we prove that there are also
non-flat stationary solutions. To this scope, we reduce the system (1) into an
equation in the Banach space C1+α

0,e (S1) :

(2) Φ(γ, f) = 0, (γ, f) ∈ R>0 × V0,e,

where Φ is a nonlinear and analytic operator and

V0,e := {f ∈ C4+α
0,e (S1) : ‖f‖0 < 1}.

The Banach space Cm+α
0,e (S1), m ∈ N, is the subspace of Cm+α(S1) which contains

only of even functions with integral mean 0. Given l ∈ N, let

(3) γl :=
g(ρ+ − ρ−)

l2 cosh(l)
.

Assume that ρ− < ρ+ and let l ≥ 1 be fixed. Using the bifurcation theorem
from simple eigenvalues due to Crandall-Rabinowitz (see [2]) we obtain in [3] that
the pair (γl, 0), with γl defined by relation (3), is a bifurcation point of the flat
solution (γ, 0, u, u). More precisely, there exists δ > 0 and a real analytical function
(γl, fl) : (−δ, δ) → R>0 × V0,e such that (γl(0), fl(0)) = (γl, 0), (γl(ε), fl(ε)) is a
solution of the free boundary problem (2) for all ε ∈ (−δ, δ) and f ′

l (0) = cos(lx).
Letting

Σ+
l : = {(γ(ε), f(ε)) : ε ∈ (0, δ))},

we may use a global bifurcation result presented in [1] to obtain that there exists
a continuous curve Σl ⊂ R>0 ×C∞(S) which consists only of solutions of (2) and
which extends the local bifurcation branch Σ+

l globally.
Moreover, if we presuppose that the continuous curve Σl satisfies:

(a) limε→∞ γl(ε) = ∞,
(b) supε≥0 ‖fl(ε)‖0 < 1,
(c) supε≥0 ‖fl(ε)‖C4+α(S1) <∞,
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then we have that limε→∞ fl(ε) = 0 in C4+α(S1), i.e. the stationary fingers flatten
out as γ → ∞.
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Stability of multi antipeakon-peakons profile

Luc Molinet

(joint work with Khaled El Dika)

Abstract. The Camassa-Holm equation possesses well-known peaked solitary
waves that are called peakons. Their orbital stability has been established by
Constantin and Strauss in [5]. In [9] we proved the stability of trains of peakons.
Here, we continue this study by presenting a result on the stability of ordered
trains of anti-peakons and peakons.

The Camassa-Holm equation (C-H),

(1) ut − utxx = −3uux + 2uxuxx + uuxxx, (t, x) ∈ R
2,

can be derived as a model for the propagation of unidirectional shalow water
waves over a flat bottom by writing the Green-Naghdi equations in Lie-Poisson
Hamiltonian form and then making an asymptotic expansion which keeps the
Hamiltonian structure ([2]). It was also found independently by Dai [7] as a model
for nonlinear waves in cylindrical hyperelastic rods and was, in fact, first discovered
by the method of recursive operator by Fokas and Fuchsteiner [10] as an example
of bi-Hamiltonian equation.

(C-H) is completely integrable (see [2],[3]). It possesses among others the fol-
lowing invariants

(2) E(v) =

∫

R

v2(x) + v2
x(x) dx and F (v) =

∫

R

v3(x) + v(x)v2
x(x) dx

and can be written in Hamiltonian form as

(3) ∂tE
′(u) = −∂xF ′(u) .

It possesses peaked solitary waves that are given by

u(t, x) = ϕc(x− ct) = cϕ(x − ct) = ce|x−ct|, c ∈ R.

They are called peakon if c > 0 and antipeakon if c < 0. Note that (C-H) has to
be rewriten as

(4) ut + uux + (1 − ∂2
x)

−1∂x(u
2 + u2

x/2) = 0 .
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to give a meaning to these solutions. Their stability seems not to enter the general
framework developed for instance in [1], [11]. However, Constantin and Strauss [5]
succeeded in proving their orbital stability by a direct approach. In [9] we combined
the general strategy initiated in [12](note that due to the reasons mentioned above,
the general method of [12] is not directly applicable here ) and a monotonicity
result proved in [9] with localized versions of the estimates established in [5] to
derive the stability of the trains of peakons. In this work we pursue this study
by proving the stability of trains of anti-peakons and peakons. The main new
ingredient is a monotonicity result on the part of the functional E(·) − δF (·),
δ ≥ 0, at the right of a localized solution traveling to the right.

Before stating the main result we have to introduce the function space where
we will define the flow of the equation. For I a finite or infinite interval of R, we
denote by Y (I) the function space1

(5) Y (I) :=
{
u ∈ C(I;H1(R)) ∩ L∞(I;W 1,1(R)), ux ∈ L∞(I;BV (R))

}
.

We are now ready to state our main result.

Theorem 1 Let be given N non vanishing velocities c1 < .. < cq−1 < 0 < cq <
.. < cN . There exist γ0, A > 0, L0 > 0 and ε0 > 0 such that if u ∈ Y ([0, T [),
with 0 < T ≤ ∞, is a solution of (C-H) satisfying

(6) ‖u0 −
N∑

j=1

ϕcj (· − z0
j )‖H1 ≤ ε2

for some 0 < ε < ε0 and z0
j−z0

j−1 ≥ L, with L > L0, then there exist x1(t), .., xN (t)
such that

(7) sup
[0,T [

‖u(t, ·) −
N∑

j=1

ϕcj (· − xj(t))‖H1 ≤ A(
√
ε+ L−1/8)

Moreover there exists C1-functions x̃1, .., x̃N such that, ∀j ∈ {1, .., N},

(8) |xj(t) − x̃j(t)| = O(1) and
d

dt
x̃j = cj +O(ε1/4) +O(L−1) ∀t ∈ [0, T [ .

Remark 1 Accorging to [13], if u0 ∈ H1(R) satisfies y0 := u0 −u0,xx ∈ M with

rmsuppy−0 ⊂]−∞, x0] and suppy+
0 ⊂ [x0,+∞[ for some x0 ∈ R (Note that trains

of antipeakons-peakons satisfy this properties as soon as they are well-ordered),
then the corresponding solution u belongs to Y (]0, T [) for all T > 0. Therefore for
such initial data that satisfy (6), (7)-(8) hold for all positive times.

References

[1] T. B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. London Ser. A 328 (1972),
153–183.

[2] R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys.
rev. Lett. 71 (1993), 1661–1664.

1
W

1,1(R) is the space of L
1(R) functions with derivatives in L

1(R) and BV (R) is the space
of function with bounded variation



Wave Motion 449

[3] R. Camassa, D. Holm and J. Hyman, An new integrable shallow water equation, Adv. Appl.
Mech. 31 (1994), 1–33.

[4] A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,
Annali Sc. Norm. Sup. Pisa 26 (1998), 303–328.

[5] A. Constantin and W. Strauss, Stability of peakons, Commun. Pure Appl. Math. 53 (2000),
603–610.

[6] A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm.
Math. Phys. 211 (2000), 45–61.

[7] H.-H. Dai, Model equations for nonlinear dispersive waves in compressible Mooney-Rivlin
rod, Acta Mech. 127 (1998), 293–308.

[8] K. El Dika and L. Molinet, Exponential decay of H
1-localized solutions and stability of the

train of N solitary waves for the Camassa-Holm equation, Phil. Trans. R. Soc. A. 365
(2007), 2313–2331.

[9] K. El Dika and L. Molinet, Stability of multipeakons, to appear in Ann. I.H.P (2009).
[10] A. S. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and
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(Generalized) Breather solutions in periodic media

Guido Schneider

(joint work with Vincent Lescarret, Carsten Blank, Martina Chirilus-Bruckner,
Christopher Chong)

We present some results about breather solutions and generalized breather so-
lutions for a nonlinear wave equation of the form

(1) s(x)∂2
t u(x, t) = ∂2

xu(x, t) − q(x)u(x, t) + γr(x)u3(x, t),

where γ = ±1, x ∈ R, t ∈ R, u(x, t) ∈ R and a-periodic coefficients s, q and r, i.e.,

s(x) = s(x+ a), q(x) = q(x+ a), and r(x) = r(x + a),

where w.l.o.g. in the following a = 1. Breather solutions are spatially localized,
2π/ω-time periodic solutions of finite energy. In [2] it has been proved

Theorem 1 There is a coefficient function s = s(x) and a constant µ0 ∈ R such
that either for γ = 1 or γ = −1 and either for q(x) = µ0−ε2 or q(x) = µ0 +ε2 the
following holds. Under the validity of some nondegeneracy condition there exist
an ε0 > 0 and a C > 0 such that for all ε ∈ (0, ε0) Equation (1) possesses breather
solutions with period 2π/ω for an ω > 0, i.e., there are solutions u : R × R → R

of (1) which satisfy

(2)
lim

|x|→∞
u(x, t) = 0, ∀t ∈ R,

u(x, t) = u(x, t+ 2π/ω), ∀x, t ∈ R.
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The breather solutions are given in lowest order by

(3) sup
x,t∈R

∣∣u(x, t) −
(
εη1sech(εη2x)wn(x)eiπxeiωt + c.c.

)∣∣ ≤ Cε2,

with constants η1, η2 and a 1-periodic function wn. The solution is C∞ w.r.t. t,
but only C0 w.r.t. x.

The breather solutions are constructed with the use of spatial dynamics, cen-
ter manifold theory, and bifurcation theory. Spatial dynamics means that (1) is
written as an evolutionary system w.r.t. x ∈ R in the phase space of 2π/ω-time
periodic functions, i.e., we consider

(4)
∂xu(x, t) = v(x, t),
∂xv(x, t) = s(x)∂2

t u(x, t) + q(x)u(x, t) − γr(x)u(x, t)3.

Due to the periodicity of s, q, and r w.r.t. x the system is non-autonomous. Due
to the symmetries we restrict ourselves to solutions which are odd w.r.t. t. If the
linearization of the periodic spatial dynamics system (4) possesses two Floquet
exponents with real part zero and if the rest of the Floquet spectrum is uniformly
bounded away from the imaginary axis by using invariant manifold theory for peri-
odic systems, the infinite-dimensional spatial dynamics system (4) can be reduced
to a two-dimensional system on the center manifold which is associated with the
two Floquet exponents with real part zero. For a given minimal period 2π/ω the
coefficients s and q have to be suitably chosen. By moving the two central Flo-
quet exponents from the imaginary axis, bifurcating homoclinic solutions can be
found in the reduced system using the reversibility of the reduced system. These
homoclinic solutions of the spatial dynamics formulation (4) in the space of time-
periodic solutions correspond to breather solutions in the original formulation (1).
In order to have the reversibility of the spatial dynamics formulation, i.e. the
invariance of (1) under (x, u, v) 7→ (−x, u,−v), the coefficient functions s = s(x),
q = q(x), and r = r(x) have to be even w.r.t. x.

It is well known that the solutions of the linearization are given by Bloch modes
eiℓxwn(x)e

iωn(ℓ)t with wn(x) = wn(x + 1) and curves of eigenvalues ℓ 7→ ωn(ℓ)
with ωn(ℓ) ∈ R for ℓ ∈ [−π

2 ,
π
2 ) and n ∈ Z/{0}. There are spectral gaps, i.e.,

the set { ωn(ℓ) | ℓ ∈ [−π
2 ,

π
2 ), n ∈ Z/{0} } ⊂ C is not connected for periodic s

and q. There is a one-to-one correspondence between the spectral pictures of the
time evolutionary and space evolutionary system (1) and (4). When an integer
multiple of the basic temporal wavenumber ω falls into a spectral gap of the time
evolutionary system (1) then there are two Floquet exponents off the imaginary
axis in the space evolutionary system (4). In the other case the Floquet exponents
are on the imaginary axis. For smooth s the spectral gaps become smaller and
smaller for larger m and, therefore, integer multiples mω of ω in general do not
fall into spectral gaps. If s is continuous then the spectral gaps close proportional
to 1/m for m → ∞. Therefore, for smooth coefficients we thus expect infinitely
many Floquet exponents on the imaginary axis or at least arbitrarily close to the
imaginary axis. Hence, in order to satisfy the spectral assumption the coefficient s
has to be very irregular, i.e. at least some step function. An example of a function
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s leading to O(1)-spectral gaps around each value (2n+1)ω with ω = 13π/16 and
n ∈ N is

s(x) = χ[0,6/13] + 16χ(6/13,7/13) + χ[7/13,1](x mod 1).

Since smooth q does not affect the asymptotics of the spectral gaps we can choose
q to adjust two Floquet exponents on the imaginary axis without destroying the
overall spectral picture. Since we have a cubic nonlinearity it is sufficient that only
every second gap opens in the required way.

For homogeneous nonlinear wave equations there are no spectral gaps and so
all eigenvalues of the spatial dynamics formulation lie on the imaginary axis and
so up to rescaling the sine-Gordon equation is the only nonlinear wave equation
in homogeneous medium which possesses breather solutions in NLS-form [4, 1].
In general, only solutions with small tails at infinity have been proven to exist
[5, 6, 7]. Such solutions also exist for general periodic coefficients as has been
shown in [8].

Theorem 2 Let s, q and r be smooth 1-periodic, even functions. Assume that
in the linearization of Equation (1) there is a band-gap which begins or ends at
ωn0

(0) and that for |j| < N the integer multiples jωn0
(0) of the basic wave number

hit no other band edge at ℓ = 0.
Then under the validity of some non-degeneracy condition there exist an ε0 > 0

and a C > 0 such that either for γ = 1 or γ = −1 and either for ω2−ω2
n0

(0) = ε2 or

ω2 − ω2
n0

(0) = −ε2 the following holds. For all ε ∈ (0, ε0) Equation (1) possesses
generalized modulating standing pulse solutions with period 1/ω, i.e., there are
solutions u : [−ε3−2N , ε3−2N ] × R → R of (1) which satisfy

u(x, t) = u(−x, t), u(x, t) = u

(
x, t+

1

ω

)

and

sup
x∈[−ε3−2N ,ε3−2N ]

|u(x, t) − h(x, t)| ≤ CεN ,

where

lim
|x|→∞

h(x, t) = 0

and

(5) sup
x,t∈R

∣∣h(x, t) −
(
εγ1sech(εγ2x)wn0

(0, x)eiωt + c.c.
)∣∣ ≤ Cε2

with constants γ1, γ2 and wn0
being a 1-periodic function.

Since we have a finite speed of propagation for (1), the solutions exist also for
all t ∈ [0, ε3−2N ], i.e., much longer than the O(1/ε2)-time scale guaranteed by [3].
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Hydroelastic waves–local and global theory

John Toland

We consider steady irrotational fluid motion beneath a heavy, hyperelastic mem-
brane. There are two velocity parameters. The local theory considers a problem
of bifurcation for a double eigenvalue and the existence of 3 sheets of solutions is
established.

The global theory uses the direct method of the calculus on a functional of
displacement and curvature of the membrane, and kinetic and potential energy of
the fluid. Global properties of a Lagrangian are established.

On the existence of extreme waves and the Stokes conjecture with
vorticity

Eugen Varvaruca

(joint work with Ovidiu Savin and Georg Weiss)

We study periodic travelling-wave solutions for the two-dimensional Euler equa-
tions describing the dynamics of an incompressible, inviscid, heavy fluid over a
flat bottom and with a free surface. The corresponding mathematical problem
is to find a domain Ω in the (X,Y )-plane, which lies above a horizontal line
BF := {(X,F ) : X ∈ R}, where F is a constant, and below some a priori unknown
curve S := {(X, η(X)) : X ∈ R}, where η : R → R is 2L-periodic, and a function
ψ in Ω which satisfies the following equations and boundary conditions:

∆ψ = −γ(ψ) in Ω,

0 ≤ ψ ≤ B in Ω,

ψ = B on BF ,
ψ = 0 on S,
|∇ψ|2 + 2gY = Q on S,
ψ(X + 2L, Y ) = ψ(X,Y ) for all (X,Y ) ∈ Ω,
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where B, g, L are given positive constants, γ ∈ C1,α([0, B]) is a given vorticity
function andQ,F are parameters. By a vertical translation, we may always assume
either that Q = 0 or that F = 0.

In most of what follows we consider solutions of type (SMG) (symmetric mono-
tone graphs), for which S := {(X, η(X)) : X ∈ R}, where η is even, η′(X) < 0 on
(0, L), and ψY < 0 in Ω, ψX < 0 in Ω ∩ {(X,Y ) : 0 < X < L}. We are interested
in the existence and properties of extreme waves, which are waves with stagnation
points (∇ψ = (0, 0)) on the free surface S. At such points S need not be smooth,
and we are interested in the shape of S close to such points. Note that for certain
vorticity functions γ : [0, B] → R there exist trivial extreme waves, whose free
surface is a horizontal line all of whose points are stagnation points.

Until recently, most mathematical results on travelling water waves were re-
stricted to the irrotational case, for which γ ≡ 0. A famous result in this theory
is the Stokes conjecture (1880): the profile of any extreme wave has corners with
included angle of 120◦ at stagnation points. The existence of extreme waves was
proved by Toland (1978) and McLeod (1979), and the Stokes conjecture was proved
by Amick, Fraenkel, and Toland (1982), and Plotnikov (1982).

The first global theory of waves with general vorticity γ : [0, B] → R was given
by Constantin and Strauss (2004). Many authors have since then contributed to
this theory. Constantin and Strauss (2004) proved, under very general assumptions
on γ, the existence of almost extreme waves : a sequence of waves of type (SMG)
{(Sj ,B0, ψ

j , Qj)}j≥1 for which

max
Ωj

ψj
Y
→ 0 as j → ∞.

(Being of type (SMG), they satisfy ψj
Y
< 0 everywhere in Ωj .) Numerical evidence

suggests that this sequence converges either to an extreme wave which satisfies
the Stokes conjecture, or to a smooth wave with a stagnation point on the bottom
directly below the crest.

Our main result on the existence of extreme waves deals with the case when
the vorticity is everywhere nonpositive.

Theorem 1 ( Savin and Varvaruca (2009)) Suppose that γ(r) ≤ 0 for all r ∈ [0, B].
Let {(Sj ,B0, ψ

j , Qj)}j≥1 be a sequence of regular waves of type (SMG) such that

max
Ωj

ψj
Y
→ 0 as j → ∞.

Then {(Sj ,B0, ψ
j , Qj)}j≥1 ‘converges’ along a subsequence to an extreme wave

(S̃,B0, ψ̃, Q̃) with stagnation points at its crests. Moreover, the troughs of this
extreme wave are not stagnation points and there are no stagnation points in the
interior or on the bottom of the fluid domain.

Theorem 1 is a consequence of some new a priori estimates obtained by the
maximum principle, combined with Theorem 2 below which might be useful for
proving the existence of extreme waves in more general situations.

Theorem 2 (Varvaruca (2009))Let {(Sj ,B0, ψ
j , Qj)}j≥1 be a sequence of regular
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waves of type (SMG). Suppose that

{Qj}j≥1 is bounded above.

Then {(Sj ,B0, ψ
j , Qj)}j≥1 ‘converges’ along a subsequence towards a ‘weak solu-

tion’ (S̃,B0, ψ̃, Q̃) of the water-wave problem. Let Ω̃ be the domain whose boundary

consists of S̃ and B0. Then

ψ̃
Y
< 0 in Ω̃.

If, in addition,

max
Ωj

ψj
Y
→ 0 as j → ∞,

then

max
∂Ωj

ψj
Y
→ 0 as j → ∞.

We now turn to the Stokes conjecture. For simplicity, we consider first the case
in which the free boundary is monotone locally on each side of a stagnation point.

Theorem 3 (Weiss and Varvaruca (2009)) Let (S, ψ) be an extreme wave, with
Q = 0, such that the origin is a stagnation point. Suppose that S := {(X, η(X)) :
X ∈ R}, where η : R → R is continuous, locally of bounded variation, η(0) = 0
and η is nondecreasing on [−A, 0] and nonincreasing on [0, A] for some A ∈ (0, L].
Suppose also that ψ

Y
< 0 in Ω. Then

either lim
X→0±

η(X)

X
= ∓ 1√

3
or lim

X→0±

η(X)

X
= 0.

Moreover, if γ(r) ≥ 0 for all r ∈ [0, δ], for some δ ∈ (0, B], then

lim
X→0±

η(X)

X
= ∓ 1√

3
.

In the proof of Theorem 3, the behaviour close to the stagnation point of the
curve S and the function ψ is studied by considering a blow-up sequence. Let
{εj}j≥1 be a sequence such εj ց 0 as j → ∞, and let us consider the sequence
{ψj}j≥1 given by

ψj(X,Y ) :=
1

ε
3/2
j

ψ(εjX, εjY ).

It turns up that any weak limit ψ̃ of {ψj}j≥1 along a subsequence satisfies a

limiting problem: find a curve S̃ := {(ũ(s), ṽ(s)) : s ∈ R}, where s 7→ (ũ(s), ṽ(s))
is injective on R, ũ(0) = 0, ṽ(0) = 0, s 7→ ũ(s) is nondecreasing on R, s 7→ ṽ(s) is
nondecreasing on (−∞, 0] and nonincreasing on [0,∞), lims→±∞(|ũ(s)|+ |ṽ(s)|) =

∞, and a function ψ̃ in the unbounded domain Ω̃ below S̃, such that

∆ψ̃ = 0 in Ω̃,

ψ̃ = 0 on S̃,
|∇ψ̃|2 + 2gY = 0 H1-almost everywhere on S̃.
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This has a trivial solution (S̃0, ψ̃0), where S̃0 := {(X, 0) : X ∈ R} and ψ̃0 ≡ 0
in R2

−. Another solution, originally discovered by Stokes and nowadays called the

Stokes corner flow, is the following: let S̃∗ := {(X, η∗(X)) : X ∈ R}, where

η∗(X) := − 1√
3
|X | for all X ∈ R,

let Ω̃∗ be the domain below S̃∗, and let the function ψ̃∗ in Ω̃∗ be given, for all

(X,Y ) ∈ Ω̃∗, by

ψ̃∗(X,Y ) :=
2

3
g1/2 Im

(
i(iZ)3/2

)
where Z = X + iY.

The key to the proof of Theorem 3 is the following uniqueness result.

Theorem 4 (Weiss and Varvaruca (2009)) Any nontrivial solution (S̃, ψ̃) of the
limiting problem which arises as a blow-up limit of a solution of the original prob-
lem is necessarily homogeneous of degree 3/2, and therefore is the Stokes corner

flow (S̃∗, ψ̃∗).
The proof uses a new ingredient, the Monotonicity Formula: the function

Φ(r) := r−3

∫

Br(0)

(
|∇ψ|2 − 2Γ(ψ) − 2gY χ{ψ>0}

)
dL2

− 3

2
r−4

∫

∂Br(0)

ψ2dH1 +

∫ r

0

s−4

∫

Bs(0)

(2Γ(ψ) − 3γ(ψ)ψ) dL2 ds

satisfies, for almost every r sufficiently small,

d

dr
Φ(r) = r−3

∫

∂Br(0)

2

(
∇ψ · ν − 3

2

ψ

r

)2

dH1.

(The function Γ : [0, B] → R is defined by Γ(t) :=
∫ t
0 γ(s) ds for all t ∈ [0, B].)

The proof of this formula is by direct verification, using a Pohozaev-type identity.
Let {ψj}j≥1 be the blow-up sequence

ψj(X,Y ) :=
1

ε
3/2
j

ψ(εjX, εjY ).

It is immediate from the Monotonicity Formula that any weak limit ψ̃ of {ψj}j≥1

along a subsequence is a function homogeneous of degree 3/2, and hence it is either
identically 0 or coincides with the Stokes corner flow.

A more general version of the Stokes conjecture answers a question raised by
Shargorodsky and Toland: if no monotonicity assumption is made on the free
boundary, can there be infinitely many stagnation points on a period of the wave?

Theorem 5 (Weiss and Varvaruca (2009)) Let (S, ψ) be an extreme wave, with
Q = 0. Suppose that S := {(X, η(X)) : X ∈ R}, where η : R → R is continuous
and locally of bounded variation. Suppose also that ψY < 0 in Ω. Let (X0, η(X0))
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be a stagnation point, i.e. η(X0) = 0. Then

either lim
X→X0±

η(X)

X −X0
= ∓ 1√

3
or lim

X→X0±

η(X)

X −X0
= 0.

Moreover, if γ(r) ≥ 0 for all r ∈ [0, δ], for some δ ∈ (0, B], then

lim
X→X0±

η(X)

X −X0
= ∓ 1√

3
.

It is immediate that, in the situation of the second part of Theorem 5, any
stagnation point is isolated and hence there can be at most finitely many stagnation
points on a period of the wave.

Steady water waves with a critical layer

Erik Wahlén

This talk combines two classical subjects in fluid mechanics: critical layers and
steady periodic water waves. The concept of a critical layer, consisting of a region
with closed streamlines surrounding a stagnation point, has appeared in the study
of many different types of fluids over the years. However, as far as we know, there
is a lack of rigorous results concerning critical layers in water waves.

We consider a two-dimensional, inviscid and incompressible fluid of constant
density. The fluid is bounded below by a flat, impermeable bed {y = 0} and
above by a free surface {y = 1 + η}. Neglecting the effects of surface tension, the
only restoring force is that of gravity. The fluid is governed by Euler’s equations
and we restrict ourselves to the case of constant vorticity. In a frame moving with
the wave we then have the following formulation of the water wave problem:

(1)

∆ψ = −ω in 0 < y < 1 + η,

ψ = 0 on y = 0,

ψ = m0 on y = 1 + η,

1

2
|∇ψ|2 + η = Q on y = 1 + η,

where ψ is a stream function, satisfying ψx = −v, ψy = u − c, (u, v) being the
velocity field and c the wave speed, and where ω := vx − uy is the constant

vorticity. The constant m0 =
∫ 1+η(x)

0
(u(x, y) − c) dy is the relative mass flux,

which is independent of x, and the constant Q is the total head. Note that (1) is a
free boundary problem since the domain is a priori unknown. For any ω we have
a family of trivial solutions (shear flows) η = 0, ψ = −ωy2/2 + λy, with λ ∈ R

arbitrary, for appropriately chosen m0 and Q. By choosing λ/ω ∈ (0, 1), we can
produce a trivial solution with internal stagnation.

Historically, the irrotational case ω = 0 has received the most attention. In this
case the stream function is harmonic and one can employ methods from complex
analysis. In particular there is a hodograph transformation which fixes the domain.
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However, except for the case of a flat surface, irrotational waves cannot have
interior stagnation points and hence cannot contain a critical layer.

In recent years there has been a lot of interest in water waves with vorticity,
one of the highlights being the construction of a global continuum of steady pe-
riodic water waves by Constantin & Strauss [2] under the more general condition
that −∆ψ = γ(ψ), that is, the vorticity is functionally dependent on the stream
function. These waves all have the property that u < c, so that critical layers are
excluded. The main mathematical reason is that the transformation to a fixed
domain used in [2] requires that ψy has constant sign.

By using a different change of variables, where the independent variable y is
replaced by y/(1+η), we can formulate problem (1) in a secure functional analytic
setting, in which local bifurcation theory can be applied. This can be done even in
the case when ψy changes sign. Choosing an appropriate wavelength, we can now
produce small-amplitude waves which bifurcate from a trivial solution with internal
stagnation [4]. These non-trivial waves will have a stagnation point surrounded by
a critical layer (see the figure below). This work is inspired by a recent paper by
Ehrnström and Villari [3], in which similar results were found for the water wave
problem linearised about a shear flow with constant vorticity.

0 π/k 2π/k

It is also possible to obtain a qualitative picture of the particle trajectories in the
original physical frame. If the wave speed is chosen so that the horizontal velocity
component u has zero average on the bed the following picture emerges.

X(0) = π/k
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The behaviour near the bottom, where the particles move in almost closed ellipses
with a small forward drift, agrees with a recent investigation of the particle motion
in irrotational Stokes waves [1]. However, farther up in the fluid there is no
backward motion at all, in contrast to the irrotational case.
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Stratified steady water waves

Samuel Walsh

Stratification is a common feature of ocean waves, where the presence of salinity,
in concert with an external gravitational force, can produce substantial hetero-
geneity in the fluid. The pronounced effects that may accompany even a moderate
density variation have earned stratified flows a great deal of scholarly attention,
particularly in the geophysics and oceanography communities. This talk will con-
cern two-dimensional traveling periodic stratified water waves propagating over an
impermeable flat bed and with a free surface at the interface with the atmosphere.
We suppose these waves are subject to an external gravitational force and allow
for surface tension with coefficient σ ≥ 0.

By changing to a semi-Lagrangian coordinate scheme, we transform the domain
into a fixed rectangle R := {(q, p) : 0 < q < L, p0 < p < 0}, where L is the period
and p0 is the volumetric mass flux with respect to the pseudo-stream function.
Reformulating the Yih-Long equation in these variables, we show that it suffices
to solve the following problem: Find (Q, h) ∈ R × C3+α(R), with h even and
L-periodic in q and hp > 0, satisfying

(1)





(1 + h2
q)hpp + hqqh

2
p − 2hqhphpq

−g(h− d(h))h3
pρp = −h3

pβ(−p) p0 < p < 0,
1 + h2

q + h2
p(2σκ(h) + 2gρh−Q) = 0 p = 0,

h = 0 p = p0,

where g is the gravitational constant, κ describes the mean curvature

κ(h) := − hqq(
1 + h2

q

)3/2
,

and the nonlocal operator d is defined by

d(h) :=
1

L

∫ L

0

h(q, 0) dq.
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Here ρ and β are taken to be given. Roughly, they describe the variation of density
and the variation of energy, respectively, as functions of the streamlines. These,
along with the other given quantities are assumed to satisfy a Local Bifurcation
Condition, which is both necessary and sufficient for our results. We also give an
explicit size condition, along the lines of [1], that implies the LBC.

We construct a 1-parameter family of laminar flow solutions to (1), which we
denote T := {(H(·;λ), Q(λ)) : λ ≥ −2Bmin}. Analyzing the linearized problem
along T , we show that the LBC is equivalent to the existence of a generalized
eigenvalue at some (H(·;λ∗), Q(λ∗)). In fact, for σ = 0, or σ > 0 sufficiently large,
we prove that this eigenvalue must be simple. With some additional argument
then, the theory of Crandall and Rabinowitz [2] furnishes us with a C1-curve of
small amplitude solutions bifurcating from T .

As is well-known for constant density capillary-gravity waves, however, when
σ is positive but small the null space of the linearized operator may be two-
dimensional (see, e.g., [4, 6].) This can result in many such curves emanating
from a single point on T . By means of a Lyapunov-Schmidt reduction, we provide
a complete characterization of the bifurcation diagram at such points in certain
regimes. In particular, if the eigenvalues are 0 < n1 < n2, with n2/n1 6= 2, then,
under some additional size assumptions, we have that there exist precisely four
C1-curves of small amplitude solutions. These consist of two pitchfork bifurcation
curves of 2π/n1- and 2π/n2-periodic solutions, respectively, as well as two pitch-
forks of so-called mixed solutions that lie (locally) within the interior of the span
of the eigenfunctions.

Each solution curve is then continued globally by means of an alternative theo-
rem in the spirit of Rabinowitz [5]. The major piece of machinery here is a variant
of the classical Leray-Schauder degree due to Healey and Simpson [3]. In order
to appeal to this theory, we must first prove various compactness properties of
the problem. This is nontrivial, however, because of the presence of the nonlocal
operator d in the interior equation of (1). To overcome this technical obstacle and
obtain the sought-after a priori estimates, we introduce the method of “freezing”
d. The basic idea is to replace d with a real number. Working in appropriately
chosen function spaces, the resulting operator will then be uniformly elliptic with
an oblique boundary condition if σ = 0, or Venttsel boundary data for σ > 0. The
Schauder estimates (or their analogues for Venttsel-type problems) then imply the
desired compactness properties are present for the frozen problem. With some
care, we are able to leverage these estimates to derive similar results for the full
equation and conclude global bifurcation.

Lastly, we prove a uniform regularity result that states, if the bifurcation
curve is unbounded while remaining in a subset of the function space where
the problem is uniformly elliptic and oblique, then it must be that, along some
sequence {(hn, Qn)}∞n=1 on the continuum, we have either (i) |Qn| → ∞, (ii)
supR |∂phn| → ∞, or, if σ > 0, potentially (iii) supT |κ(hn)| → ∞. Possibility (iii)
corresponds to the formation of a corner on the free surface. On the other hand,
if either (i)–(ii) occur, or if the problem loses ellipticity or obliqueness, we show
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that somewhere in the fluid either the horizontal velocity is approaching −∞, or
a stagnation point is forming.
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Shock waves and wave breaking for the Degasperis-Procesi equation

Zhaoyang Yin

In the talk we first give a brief introduction of the Degasperis- Procesi equation. We
then establish local well-posedness of the DP equation. We next present the precise
blow-up scenario and show that the first blow-up of strong solution to the equation
can occur only in the form of wave breaking and shock waves possibly appear
afterwards. Moreover, we present several blow-up results and global existence
results for strong solutions to the equation. Furthermore, we prove the existence
and uniqueness of global ”strong” weak solutions to the equation with certain
initial profiles. We finally give an explicit example of weak solutions to the periodic
DP equation, which may be considered as periodic shock waves.

Reporter: Bogdan-Vasile Matioc
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