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Abstract. Quantum dynamics, both reversible (i.e., closed quantum sys-
tems) and irreversible (i.e., open quantum systems), gives rise to product
systems of Hilbert spaces or, more generally, of Hilbert modules. When we
consider reversible dynamics that dilates an irreversible dynamics, then the
product system of the latter is equal to the product system of the former
(or is contained in a unique way). Whenever the dynamics is on a proper
subalgebra of the algebra of all bounded operators on a Hilbert space, in par-
ticular, when the open system is classical (commutative) it is indispensable
that we use Hilbert modules.

The product system of a reversible dynamics is intimately related to a
filtration of subalgebras that are independent in a state or conditionally in-
dependent in a conditional expectation of the reversible system. This has
been illustrated in many concrete dilations that have been obtained with the
help of quantum stochastic calculus. Here the underlying Fock space or mod-
ule determines the sort of quantum independence underlying the reversible
system.

The mini-workshop brought together experts from quantum dynamics,
product systems and quantum independence who have contributed to the
general theory or who have studied intriguing examples. As the implications
of the tight relationship between product systems and independence had so far
been largely neglected, we expect from our mini-workshop a strong innovative
impulse to this field.
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Introduction by the Organisers

The analysis of dynamical systems, classical or quantum, reversible or irreversible,
is a central issue when applying mathematics to natural sciences, economy, soci-
ology, computer and information sciences, and others.

Since William Arveson’s fundamental work on product systems of Hilbert spaces
(Arveson systems) we know that product systems play an outstanding role in the
classification of quantum dynamics. Boris Tsirelson’s large classes of examples
of spatial product systems of Arveson systems showed that product systems are
intimately related to stochastic independence. If classical dynamics should be
included, then Hilbert modules are an indispensable tool.

The Mini-Workshop Product Systems and Independence in Quantum Dynamics,
concentrated on these connections, with the goal to open a new promising line of
research. To achieve this goal we brought together leading experts in the relevant
fields. In the first two days, the state of the art was presented in a series of lectures
on selected important topics. During last three days more specific aspects were
developed in one-hour research talks. The files of some lectures and talks can be
found on the web page

http://www.math-inf.uni-greifswald.de/algebra/q-dyn/

of the workshop.
Particularly exciting were the open problems sessions. Trying to open a new

line of research, it appeared natural to us scheduling two open problem sessions.
As a matter of surprise to us, each open problem session took almost two hours.
We think it is not possible to underline better the resonance our concept had. It
is our wish to share these open problems, and a detailed description can be found
in the Open Problems Section.

We wish to thank all participants, whose participation made the workshop a
success. We would also like to express our deep gratitude to the MFO, its Director
Prof. Dr. Greuel, the Gesellschaft für Mathematische Forschung e.V., and last but
surely not least, the staff of the MFO, for offering to us the opportunity to organize
this Mini-Workshop.

B. V. Rajarama Bhat, Uwe Franz, Michael Skeide.
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Abstracts

Introductory Lectures — Brief Summary

The lectures give an up-to-date introduction two some aspects of the workshop
which are already well established. Emphasis is on type II Arveson systems
(Tsirelson, Liebscher, and Floricel), on axiomatic quantum independence (Schür-
mann), and on distributional symmetries leading to conditional quantum indepen-
dence by quantum De Finetti theorems (Köstler). The lectures are preceded by
an overall introduction to the concept of the workshop.

An Introduction

For the organizers: Michael Skeide

Idea of the Workshop. All basic (microscopic) laws of nature are reversible,
while everyday’s experience concerns almost always irreversible phenomena. Un-
derstanding irreversible behaviour from first principles is, therefore, a fundamental
task. We explain briefly the connection of that task with product systems and in-
dependence, claimed in the abstract.

Dynamics, dilations, and modules. An irreversible (quantum) evolution is
modelled as a Markov semigroup (that is, a unit-preserving semigroup of com-

pletely positive maps) T =
(
Tt

)
t≥0

on a unital C∗– or von Neumann algebra B.[a]

A reversible quantum evolution is modelled as an automorphism group α =
(
αt

)

on some B(H) (H a Hilbert space).[b] Often one restricts attention to a uni-
tal C∗– or von Neumann subalgebra A ⊂ B(H) that is left invariant by αt for
t ≥ 0. That is, one considers an E0–semigroup (that is, a semigroup of unital
endomorphisms) ϑ =

(
ϑt

)
t≥0

on A.

Even if the evolution ϑ of the algebra A of observables is reversible, usually
not all of A is accessible to measurement but only a rather small subalgebra B of
A. In particular, if B consists of macroscopic parameters of the system, then B
is classical, that is, B is commutative. The evolution ϑ, usually, evolves B into a
subset ϑt(B) ⊂ A which is no longer a subset of B. However, since we can only
measure the observables in B, what we actually can measure is p ◦ ϑt(B) where
p : A → B is a conditional expectation onto B. Clearly, the maps

Tt = p ◦ ϑt ↾ B

[a]The case of a classical Markov semigroup P =
`

Pt

´

t≥0
of transition probabilities on a

state space S is included, if we define the positive maps [Tt(f)](x) :=
R

S
f(y)Pt(y, dx) on the

commutative algebra L∞(S) of bounded random variables.
[b]Wigner’s theorem tells us that such an automorphism group is inner , that is, there is a

unitary group u =
`

ut

´

in B(H) such that αt = ut • u∗
t . The unitary group is related to its

strong generator, the Hamiltonian of the system, by the Schrödinger equation.
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are CP.[c] If the Tt form a Markov semigroup T on B, then it is justified to say
that we can understand the irreversible evolution of the measurable subsystem B
as projection from the reversible evolution of the whole system. Irreversibility, in
that case, is due to the fact that we can never measure all the information about
the actual status of the whole system.

In general, starting from a Markov semigroup T on B, one tries to construct
a dilation of T that allows to understand T as a projection from a reversible
evolution on a bigger system. More precisely, a dilation is a quadruple (A, ϑ, i, p)
where ϑ is an E0–semigroup on A, where i : B → A is an embedding and p : A → B
is such that i ◦ p is a conditional expectation, and where the diagram

B
Tt //

i

��

B

A
ϑt

// A

p

OO

commutes for all t ≥ 0. A dilation is unital , if i is unital. A dilation is weak if,
like in the situation of Footnote [c], i(B) is a corner of A and i ◦ p = i(1) • i(1).

In this setting, Hilbert modules enter in several ways by Paschke’s GNS-
construction for CP-maps [Pas73]: If T : A → B is a CP-map between unital

C∗–algebras, then we find a correspondence [d] E from A to B and a vector ξ ∈ E
such that

T (a) = 〈ξ, aξ〉.

Moreover, if ξ generates E as correspondence (that is, if E = spanAξB), then the

pair (E, ξ) is unique up to bilinear unitary equivalence.[e]

Applying the GNS-construction to each Tt is at the heart of the construction of
product systems for CP-semigroups in [BS00] and, further, a weak dilation. We
come back to this, later. Applying, in a dilation of T , the GNS-construction to the
CP-map p we obtain a correspondence E from A to B and a unit vector ξ ∈ E
(that is, 〈ξ, ξ〉 = 1) such that p(a) = 〈ξ, aξ〉 for all a ∈ A. The left action of A
induces a canonical homomorphism from A into the adjointable operators Ba(E)
on E. Experience shows: Firstly, if the canonical homomorphism is not faithful,
then normally we may divide out its kernel (the E0–semigroup on A gives rise to

[c]If B contains the unit of A, then the Tt are unital, automatically. Also if B = pAp is a
corner of A for some projection p ∈ A and p = p • p, then as soon as the Tt form a semigroup,
Tt must be unital.

[d]Correspondence is the fashionable name for Hilbert bimodule. A Hilbert A–B–bimodule is
a (right, of course) Hilbert B–module E with a nondegenerate left action of A. Recall that a
correspondence E from A to B and a correspondence F from B to C have as (internal) tensor

product a correspondence E ⊙ F from A to C which is determined uniquely (up to a bilinear
unitary) by the requirement that it is generated by elementary tensors x⊙ y with inner product
〈x ⊙ y, x′ ⊙ y′〉 = 〈y, 〈x, x′〉y′〉.

[e]Note that if B ⊂ B(G) is represented by operators on a Hilbert space, then it is easy to
obtain the Stinespring representation [Sti55] of T . Indeed, if we put H := E ⊙ G (see Footnote
[d] for the tensor product), then the induced representation ρ(a) : x⊙g 7→ ax⊙g of A on H is the
Stinespring representation, and ξ : g 7→ ξ⊙ g is an element in B(G, H) such that T (a) = ξ∗ρ(a)ξ.
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an E0–semigroup on the quotient still dilating T ). In other words, we may assume
A ⊂ Ba(E). Secondly, even if A ( Ba(E), then normally the structure (that is,
the E0–semigroup and, of course, the conditional expectation) extends to all of
Ba(E) so that we may assume A = Ba(E). (We do not know of a single concrete
example where it would be known that this does not work.) This is very convenient,
because, though sufficiently general for all (known) applications, the algebra Ba(E)
preserves much of the simplicity that makes B(H) more tractable than general von
Neumann algebras. On the other hand, we know lots of examples where Ba(E)
is contained canonically in some B(H), and where the E0–semigroup on B

a(E)
does not extend to B(H). Also, [Sto72] shows that conditional expectations onto
a unital commutative von Neumann subalgebra B of B(H) exist if and only if
B is purely atomic. This means, almost never we may hope to dilate a classical
irreversible evolution to an E0–semigroup on B(H). But algebras of observables
that are measurable simultaneously, are always commutative.

We think that for these and other reasons the use of Hilbert modules in irre-
versible dynamics is unavoidable. But often the experience in studying Markov
semigroups on B(G) (leading to dilations on B(H)!) can serve as an optimal
preparation for the more general theory.

The objects occurring in dilations, Markov semigroups and E0–semigroups, are
related in several ways to product systems and independence. Independence itself
is intimately related to a large subclass of product systems, the spatial product
systems. On the other hand, also the dynamics leading to spatial product systems
have intrinsic characterizations as spatial E0–semigroups and spatial Markov semi-
groups.

There are lots of open problems in both the intrinsic classification of product
systems — even for Hilbert spaces far from being close to a stable situation, while
for modules not more than just started — and classification of dynamics (reversible
and irreversible) in terms of their associated product systems. The lectures of
Tsirelson (Page 505), of Liebscher (Page 508), and of Floricel (Page 509) deal
with spatial Arveson systems (see the next section), and Izumi’s talk (Page 517)
with nonspatial ones. Apart from making progress in these general questions on
classification, it is in the scope of the mini-workshop to make progress where there
is a relation with independence.

Spatial reversible dynamics and noises. E0–semigroups on Ba(E) give rise
to product systems. For the case B(H), in [Arv89a] this marked the beginning of
the modern theory of product systems of Hilbert spaces or, for short, Arveson
systems; see the monograph [Arv03]. Even in the Hilbert space case the number
of new Arveson systems is still increasing every day; see, for instance, [Tsi00a,
Tsi00b, Lie03, Pow03, BS05]. The relation between E0–semigroups and product
systems was generalized to Ba(E) first in [Ske02] (adapting to the module case the
approach from [Bha96] to Arveson systems in presence of a unit vector). The most
general form is in [Ske04b]. By a product system we mean a family E⊙ =

(
Et

)
t≥0
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of correspondences over B that factor in an associative way as

Es+t = Es ⊙ Et

under tensor product. E⊙ is the product system of the E0–semigroup ϑ on Ba(E),

if we have identifications E = E ⊙ Et such that ϑt(a) = a ⊙ idt.
[f] Depending on

the circumstances, there are also technical conditions on both sides, which we
do not mention here. Arveson systems classify E0–semigroups B(H) up to co-
cycle conjugacy (provided H is infinite-dimensional and separable) and for every
Arveson system there exists an E0–semigroup having that Arveson system; see
[Arv89a, Arv90a, Arv89b, Arv90b, Lie03, Ske06a, Arv06]. The (very recent) clas-
sification in the module case is not up to cocycle conjugacy but up to stable cocycle
conjugacy; see [Ske09a]. The existence results are in [Ske07, Ske09b].

For an E0–semigroup on B(H) with an invariant vector state ϕ = 〈Ω, •Ω〉 (a
so-called noise on B(H)) the factorization H = H⊗Et gives rise to a filtration of
subalgebras At := idH ⊗B(Et) of B(H) that is tensor independent in the state
ϕ. (The increment algebras A[s,t) := ϑs(At−s) to disjoint intervals commute and
the monomials factor in the state.) This is the notion of independence underlying
quantum Lévy processes in the sense of [Sch93] that generalizes the notion of
classical Lévy processes with with values in groups; see [Fra06, FS99] and also
Schürmann’s talk (Page 536). Also Tsirelson noises in the sense of [Tsi98, Tsi03]
give rise to E0–semigroups with invariant vectors states and vice versa; see the
lecture of Tsirelson on Page 505. The critical property of an Arveson system E⊗ in
order that it be derived from a noise, classical or on B(H), is that E⊗ is spatial .
E⊗ is spatial, if it possesses a unit , that is, a family u⊗ =

(
ut

)
t≥0

of elements

ut ∈ Et that composes as us ⊗ ut = us+t. The E0–semigroups having spatial
Arveson system are precisely those that are spatial in the sense of [Pow88]. Not
all E0–semigroups that are spatial possess an invariant vector state. However,
[Pow88] showed that they are always cocycle conjugate to a noise. Recently, in
[Ske08] this fact has been used to prove that all spatial Markov semigroups on
B(G) admit a dilation that is a cocycle perturbation of a noise in a very specific
way, a so-called Hudson-Parthasarathy dilation. We come back to spatial Markov
semigroups, later.

Starting again with an E0–semigroup on B(H) with an invariant vector state
ϕ = 〈Ω, •Ω〉, instead of the filtration of subalgebras At := idH ⊗ B(Et) and their

time shifts, we may use the subalgebras Ât := ΩΩ∗ ⊗B(Et) and their time shifts.
This filtration is monotone independent in the sense of [Mur01]. While tensor
independence may not be generalized to modules (idE ⊙ Ba(Et) does not make
sense, in general), monotone independence does generalize. Indeed, if we start with
an E0–semigroup on Ba(E) with an invariant vector expectation ϕ = 〈Ω, •Ω〉
for a unit vector Ω ∈ E (that is, if we start with a noise on Ba(E) in the sense

of [Ske06b]), then the filtration of subalgebras Ât = (Ω ⊙ idt)B
a(Et)(Ω

∗ ⊙ idt)
and their time shifts is conditionally monotone independent in the vector

[f]This is nothing but the representation theory of Ba(E). The most general form is in
[MSS06].



Mini-Workshop: Product Systems and Independence in Quantum Dynamics 501

expectation ϕ in the sense of [Ske04a]. Also here there is a relation between noises
and spatial product systems. Just that the elements of the unit that makes the
product system a spatial one, must be central (that is, they must commute with
the algebra B over which the Et are bimodules). Again, spatial Markov semigroups
on B admit Hudson-Parthasarathy dilations; see [Ske09a].

Other types of independence might lead even to new types of product systems.
For instance, as indicated in [Ske06b], conditionally free independence in the
sense of [Voi95] leads to free product systems (the tensor product of correspon-
dences replaced by the free product). The relation between the tensor product
system of such free flows [Fow95, Ske06b] and their free product system is sub-
ject to present research, and has been discussed in Skeide’s talk, see Page 528.

Voiculescu’s free independence [Voi87] is just one, though probably the most
fundamental, independence different from monotone or tensor independence. To-
day there is an impressive (and still increasing) number of quantum independences;
see the lectures of Schürmann on Page 511 and of Köstler on Page 512. Next to
independence is exchangeability. Köstler explains in his lecture (see Page 512) that
such and other distributional symmetries, like in the classical De Finetti theorem,
lead to conditional independence.

Many independences have found realizations as noises in quantum dynamics.
There are quantum stochastic calculi with respect to these noises that allow to
construct dilations of Markov semigroups as cocycle perturbation of the underlying
noises. Still today most known examples have been constructed with a calculus for
tensor independence based on the fundamental work [HP84]; see the monograph
[Par92] and the up-to-date survey [Lin05]. But there are also calculi on other
Fock spaces [BSW82, KS92] or modules [GS99, Ske00] or even representation free
versions [AFQ92, Kös00]. For all of them a program like the one indicated in
the preceding paragraph for the free case still has to be carried out. A detailed
study of the underlying product systems promises to provide us with many concrete
examples. Stimulating the analysis of how these examples fit into the classification
of product systems ([Arv89a, Tsi00a, Lie03, Pow03] for Arveson systems and [LS01,
Ske03, BBLS04, Ske06b] for modules) was in the scope of the workshop.

Irreversible dynamics, spatial and not. Clearly, everything that has to do
with Markov properties, actually, regards possible notions of conditional inde-
pendence. Quantum stochastic calculus allowed to construct explicit dilations
of Markov semigroups as cocycle perturbations of noises on Fock spaces or Fock
modules; see above. These dilations are unital and related to independence in
another way through their noises. The construction of a (unique minimal) weak
dilation of a Markov semigroup on B is due to [Bha96] for B = B(G) and [Bha99]
for a general C∗–algebra. However, the dilation of [Bha99] is to a C∗–subalgebra
A of B(H) and does, in general, not extend to B(H).

Starting from a CP-semigroup T on B, [BS00] constructed a product system
E⊙ and a unit ξ⊙ =

(
ξt

)
such that Tt(b) = 〈ξt, •ξt〉 and such that E⊙ is generated

by ξ⊙, the GNS-system of T . In general, whenever E⊙ is a product system with
a unital unit ξ⊙ (that is, all ξt are unit vectors) so that Tt(b) := 〈ξt, •ξt〉 defines a
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Markov semigroup T , one may construct a weak dilation ϑ of T to some B
a(E) (in

a vector expectation 〈ξ, •ξ〉 for some unit vector ξ ∈ E), which has E⊙ as product
system.

Ba(E) contains the C∗–algebra A of the minimal dilation from [Bha99], and ϑ
restricts to A. If E⊙ is the GNS-system of T , then A acts cyclicly on the unit
vector ξ. (The dilation in [Bha99] extends to Ba(E) ⊂ B(H), but not necessarily
to B(H).)

On the other hand, if E⊙ can be chosen spatial, then by the classification of
E0–semigroups, it is stably cocycle conjugate to a noise. This can be used to prove
that the GNS-system of a Markov semigroup T can be embedded into a spatial
product system if and only if T admits a dilation that is a cocycle perturbation
of a noise; see [Ske09a]. This property is equivalent to that T is spatial in a sense
generalising naturally the definition of [Arv97] for B(G).

In [BLS08] it is shown that spatiality of a Markov semigroup on a C∗–algebra
does not imply that the GNS-system is already spatial. But, spatial Markov semi-
groups on C∗–algebras are a bit boring, in that they are all uniformly continuous.
The von Neumann case allows for strongly continuous spatial Markov semigroups
with unbounded generator and all of them have spatial product systems. In fact,
we do not know a single nontrivial example of a nonspatial Markov semigroup on
B(G). (Nontrivial means, it is not a nonspatial E0–semigroup nor derived from
such by trivial tensor product constructions.) On the other hand, we know that
the Brownian semigroup and the Ornstein-Uhlenbeck semigroup (on B = L∞(R))
are nonspatial; see [FLS09]. They admit, however, spatial quantum extensions to
B(L2(R)); see [CFL00]. This raises several natural questions which are discussed
in the open problem; see Page 543.

A large class of (spatial) Markov semigroups on B(G), the largest class we know,
have form generators in the sense of [CF98], which resemble the Lindblad form
[GKS76, Lin76] of bounded generators; see Fagnola’s talk on Page 526. Also here
several questions are postponed to the open problems; see Page 543.

Field versions. It is natural to ask for generalizations of the discussion of one-
parameter semigroups to more general semigroups or even to fields (that is, without
stationarity, therefore, without any semigroup action). There are results in the
dilation of two-parameter Markov semigroups in the discrete case by [Sol06] and in
the continuous case (under an additional condition that still has to be understood
better) by [Sha07]; see the talks by Shalit (Page 519) and by Skalski (Page 531).
Accardi describes in his talk (Page 538) a nonstationary construction for classical
Markov fields. There are several related open problems; see the Section on Open
Problems on Page 539.

Nonspatial dynamics. Nonspatial product systems and the related reversible
dynamics fall a bit outside, as far as the direct relation with independence is
not given. Nevertheless, we think that at least on two stages there are clear
connections. Firstly, once we find (nontrivial) nonspatial Markov semigroups, the
dilation problem relates the associated nonspatial product system to conditional
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independence. Secondly, the latest constructions [Tsi00b, BS05] of nonspatial
product systems arise by perturbing Fock systems (that is, perturbing not only
noises, but even white noises). We think that the question how independence can
be perturbed, clearly, should be interesting also for understanding independence.
Results like [IS07, Izu07] about the structure of such nonspatial product systems
are discussed in Izumi’s talk on Page 517.
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Brownian Motion and Arveson Systems

Boris Tsirelson

Elaborate constructions (especially, counterexamples) in a Hilbert space often use
a coordinate system (orthonormal basis). In other words, the sequence space l2
is used rather than an abstract Hilbert space. An Arveson system consists of
Hilbert spaces, but we cannot choose their bases without sacrificing the given
tensor product structure. Instead, we can choose maximal commutative operator
algebras, which leads to the probabilistic approach. Especially, the white noise (or
Brownian motion) will be used rather than an abstract type I1 Arveson system.

I do not reproduce here the definition of an Arveson system [1, 3.1.1], since we
only need the special case

(1) Ht = L2(Ω,F0,t, P )
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corresponding to a noise, for now, to the white noise generated by the increments
of the one-dimensional Brownian motion (Bt)−∞<t<∞, Bt : Ω → R. The relation
Hs⊗Ht = Hs+t for Hilbert spaces (or rather a unitary operator Hs⊗Ht → Hs+t)
emerges naturally from the similar relation for probability spaces.

We specialize the definition of a unit [1, 3.6.1] to systems of the form (1).

Definition 1. A unit (of the system (1)) is a family (ut)t>0 of non-zero vectors
ut ∈ Ht = L2(F0,t) ⊂ L2(F) such that t 7→ ut is a Borel measurable map (0,∞) →
L2(F), and

usut = us+t for all s, t > 0 .

(In other words, the given unitary operator Hs ⊗Ht → Hs+t maps us ⊗ ut to
us+t.) The unit is normalized, if ‖ut‖ = 1 for all t. (In general, ‖ut‖ = exp(ct) for
some c ∈ R.)

Here is the general form of a unit in our (Ht)t:

ut = exp(zBt + z1t) ; z, z1 ∈ C ;

it is normalized iff (Re z)2 + Re z1 = 0. The units generate (Ht)t in the follow-
ing sense: for every t > 0, Ht is the closed linear span of vectors of the form
(u1) t

n

(u2) t

n

. . . (un) t

n

, where u1, . . . , un are units, n = 1, 2, . . . . Indeed, L2(F0,t)

is spanned by random variables of the form exp
(
i
∫ t

0
f(s) dBs

)
where f runs over

step functions (0, t) → R constant on
(
0, 1

n t
)
, . . . ,

(
n−1

n t, t
)
.

We specialize two notions, ‘type I’ and ‘automorphism’, to systems of the form
(1).

Definition 2. A system of the form (1) is of type I, if it is generated by its units.

We see that our (Ht)t is of type I.

Definition 3. An automorphism (of the system (1)) is a family (Θt)t>0 of unitary
operators Θt : Ht → Ht such that Θs+t(XY ) = (ΘsX)(ΘtY ) for all X ∈ Hs,
Y ∈ Ht, s > 0, t > 0, and the function t 7→ 〈ΘtXt, Yt〉 is Borel measurable
whenever t 7→ Xt and t 7→ Yt are Borel measurable maps (0,∞) → L2(F) such
that Xt, Yt ∈ L2(F0,t) ⊂ L2(F).

Basically, Θs ⊗ Θt = Θs+t. The group G of all automorphisms is called the
gauge group. Clearly, G acts on the set of normalized units, (ut)t 7→ (Θtut)t.

Normalized units (ut)t and (eiλtut)t will be called equilavent. The gauge group
G acts on the set of all equivalence classes of normalized units.

We turn to the gauge group G of our type I system (Ht)t. Equivalence classes
of normalized units of (Ht)t are parametrized by numbers z ∈ C, since each class
contains exactly one unit of the form

ut = exp
(
zBt − (Re z)2t

)
.

The scalar product corresponds to the distance:

|〈u
(1)
t , u

(2)
t 〉| = exp

(
− 1

2 |z1 − z2|
2t

)
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for u
(k)
t = exp

(
zkBt − (Re zk)2t

)
, k = 1, 2. The action of G on equivalence classes

boils down to its action on C by isometries. The orientation of C is preserved,
since

〈u
(1)
t , u

(2)
t 〉〈u

(2)
t , u

(3)
t 〉〈u

(3)
t , u

(1)
t 〉

|〈u
(1)
t , u

(2)
t 〉〈u

(2)
t , u

(3)
t 〉〈u

(3)
t , u

(1)
t 〉|

= exp
(
itS(z1, z2, z3)

)
,

where S(z1, z2, z3) = ℑ
(
(z2 − z1)(z3 − z1)

)
is twice the signed area of the triangle.

So, G acts on C by motions (see [1, 3.8.4]).
Shifts of C along the imaginary axis, z 7→ z + iλ (for λ ∈ R) emerge from

automorphisms

Θt = Θ
shift(iλ)
t = exp(iλBt) ;

here the random variable exp(iλBt) ∈ L∞(F0,t) is treated as the multiplication
operator, X 7→ X exp(iλBt) for X ∈ L2(F0,t).

Shifts of C along the real axis, z 7→ z + λ (for λ ∈ R) emerge from less evident
automorphisms

(2) Θ
shift(λ)
t X = D

1/2
t · (X ◦ θλ

t ) ;

here θλ
t : C[0, t] → C[0, t] is the drift transformation (θλ

t b)(s) = b(s) − 2λs (for
s ∈ [0, t]), Dt is the Radon-Nikodym derivative of the Wiener measure shifted by
θλ

t w.r.t. the Wiener measure itself,

(3) Dt = exp(2λBt − 2λ2t) ,

and X ∈ L2(F0,t) is treated as a function on C[0, t] (measurable w.r.t. the Wiener
measure). Thus,

(Θ
shift(λ)
t X)(b) = exp

(
λb(t) − λ2t

)
X(θλ

t b) .

By the way, these two one-parameter subgroups of G satisfy Weyl relations

Θ
shift(λ)
t Θ

shift(iµ)
t = e−2iλµtΘ

shift(iµ)
t Θ

shift(λ)
t ;

that is, Θshift(λ)Θshift(iµ) = Θtrivial(−2λµ)Θshift(iµ)Θshift(λ).
Rotations of C around the origin, z 7→ eiλz (for λ ∈ R) emerge from automor-

phisms Θrotat(λ). These will not be used, but are briefly described anyway. They
preserve Wiener chaos spaces Hn,

Θ
rotat(λ)
t X = einλX for X ∈ Hn ∩ L2(F0,t) ;

the n-th chaos space Hn ⊂ L2(F) consists of stochastic integrals

X =

∫
· · ·

∫

−∞<s1<···<sn<∞

f(s1, . . . , sn) dBs1
. . . dBsn

where f ∈ L2(R
n) (or rather, the relevant part of Rn). One may say that Θrotat(λ)

just multiplies each dBs by eiλ.
Combining shifts and rotations we get all motions of C. Accordingly, all auto-

morphisms of (Ht)t are combinations of Θshift(iλ), Θshift(λ), Θrotat(λ) and Θtrivial(λ).
More generally, the N -dimensional Brownian motion leads to the (unique up to
isomorphism) Arveson system of type IN and motions of CN . We need N = 1
only; (Ht)t is the Arveson system of type I1.
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See also Sect. 1 of [2].
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Random Sets and Invariants for Type II Product Systems

Volkmar Liebscher

This lecture summarises some results from [1], [3]. Any closed set Z ⊆ [0, 1] is
characterised by the values Xs,t = χ{Z′:Z′∩[s,t]=∅}(Z) for 0 ≤ s < t ≤ 1. For
random closed sets, Xs,t are random variables fulfilling the relation

Xr,sXs,t = Xr,t.

The distribution of these random variables determines the distribution of a random
closed set Z. This is manifested by the fact that a probability measure µ is uniquely
determined by the function cµ : {G ⊆ [0, 1], : G open} 7→ [0, 1], cµ(G) = µ({Z :
Z ∩G 6= ∅}), which has to be a Choquet capacity of infinite order:

∑

S⊆{1,...,n}

(−1)n−#Scµ(G ∪
⋃

i∈S

Gi) ≥ 0

for all G,G1, . . . , Gn.
Let (Et)t≥0 be a product system of Hilbert spaces, i.e. Es+t

∼= Es ⊗ Et in a
consistent and measurable manner. To any product subsystem (Ft)t≥0 one can
associate the family (PF

s,t)0≤s<t≤1 ∈ B(E1),

PF
s,t = 1Es

⊗ PrFt−s
⊗ 1E1−t

These commuting projection fulfil the similar relation

PF
r,sP

F
s,t = PF

r,t.

The reported result is that we can fix in a sense a distribution of these (quan-
tum stochastic) random variables and even a distribution of a random closed set.
Namely, for all normal states η on B(E1) there is a unique probability measure µη

on {Z ⊆ [0, 1] : Z closed} with
∫
Xs1,t1 · · ·Xsk,tk

dµη = η(PF
s1,t1 · · ·P

F
sk,tk

)

for all 0 ≤ si < ti ≤ 1, i = 1, . . . , k. Further, if ω is faithful, there is a unique
isomorphism jω : L∞(µω) 7→ {PF

s,t : 0 ≤ s < t ≤ 1}′′ extending

jω(Xs,t) = PF
s,t

for all 0 ≤ s < t ≤ 1.
If F is the product system generated by all units ξ of E , i.e. factorising vectors

ξs+t = ξs ⊗ ξt,
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then {µω : ω faithful normal state on B(E1)} is an invariant of the product system.
The range of this invariant can be fully characterised.
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CP -Flows and E0-Semigroups of Type II

Remus Floricel

Our purpose in this expository note is to give an account of R.T. Powers’ approach
to classification of E0-semigroups of type II ([4], [3], [1]).

As shown by Bhat [2], E0-semigroups can be obtained as dilations of semigroups
of unital completely positive maps ( CP0-semigroups). More precisely, if α is a
CP0-semigroup of B(H), then there is a Hilbert space H1, an E0 -semigroup αd

of B(H1), and an isometry W : H → H1 such that αt = Ad[W ∗] ◦ αd
t ◦ Ad[W ],

t ≥ 0. Moreover, if the projection E = WW ∗ is minimal, i.e.,

sp{
n∏

i=1

αd
ti
(EAiE)Wξ | ξ ∈ H, Ai ∈ B(H), ti ≥ 0, n ∈ N} = H1,

then αd is unique up to conjugacy. The E0-semigroup αd is called the minimal
dilation of α.

Minimal dilations of CP0-semigroups can be described and classified up to co-
cycle conjugacy in terms of the associated corners ([3]). Recall that if α and
β are CP0-semigroups of B(H1) and B(H2), then a corner from α to β is a
family γ = {γt | t ≥ 0} of mappings γt : B(H1, H2) → B(H1, H2) such that
Θ = {Θt | t ≥ 0} is a CP -semigroup of B(H1 ⊕H2), where

Θt

([
X11 X12

X21 X22

])
=

([
αt(X11) γt(X12)
γ∗t (X21) βt(X22)

])
,

for all t ≥ 0, Xij ∈ B(Hi, Hj). γ is said to be a hyper-maximal corner, if for every
subordinate CP -semigroup Θ′ ≤ Θ of the form

Θ′
t

([
X11 X12

X21 X22

])
=

([
α′

t(X11) γt(X12)
γ∗t (X21) β′

t(X22)

])
,

one has α′ = α and β′ = β. The minimal dilations αd and βd of α and β are then
cocycle conjugate if and only if there is a hyper-maximal corner γ from α to β
([3]).

The simplest objects that can be dilated to spatial E0 -semigroups are the
CP -flows ([4]): if K is a Hilbert space, H = K ⊗ L2(R+) = L2(R+, K), and
U = {Ut}t≥0 is the right translation semigroup of H , then a CP -flow over K is a
CP -semigroup α of B(H) which is intertwined by U , i.e., αt(A)Ut = UtA, for all
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A ∈ B(H) and t ≥ 0.
As shown by Powers ([4]), the problem of constructing CP -flows is equivalent to

constructing q-positive boundary weight maps, objects that are defined as follows.
Consider the contraction Λ : B(K) → B(H), (Λ(A)f)(x) = e−xAf(x), A ∈ B(K),
f ∈ H , x ≥ 0, and denote Λ = Λ(I). The boundary algebra A(H) of B(H) is the

algebra of all operators of the form A = (I − Λ)
1
2B(I − Λ)

1
2 , B ∈ B(H). We say

that ω is a boundary weight on A(H) (write ω ∈ A(H)∗), if ω is a linear functional
on A(H) (a possibly unbounded weight on B(H)), and there is µ ∈ B(H)∗ such

that ω((I − Λ)
1
2A(I − Λ)

1
2 ) = µ(A), A ∈ B(H). A linear completely bounded

map B(K)∗ ∋ ρ 7−→ ω(ρ) ∈ A(H)∗ is said to be a q-positive boundary weight
map if the mappings

π̂t := ωt ◦ (I + Λ̂ωt)
−1

are completely positive. Here ωt ∈ B(H)∗ is the truncated boundary weight
ωt(A) = ω(UtU

∗
t AUtU

∗
t ), A ∈ B(H), and the symbol “̂” denotes the extension

to the predual.

The family π# = {π#
t | t > 0} of completely positive contractions π#

t = πt of
B(H) into B(K), called the generalized boundary representation of the q-positive
boundary weight map ρ 7−→ ω(ρ), provides information about the structure of the
minimal dilation αd of a CP -flow α over K associated to ρ 7−→ ω(ρ) ([4], [3]).

Indeed, the index of αd is is the rank of the normal spine π#
0 = limt→0+ π#

t of the

generalized boundary representation π# = {π#
t | t > 0} of ρ 7−→ ω(ρ), and αd is

of type I if and only if α is the minimal CP - flow derived from π#
0 .

If the Hilbert space K is 1-dimensional, then any q-positive boundary weight
map is specified by a single boundary weight ω on the boundary algebra A(H).
Moreover, if ω is infinite, then the minimal dilation αd of the CP -flow α associated
to ω is of type II0, and the corners from α to α can be described explicitly ([1],
[4]).
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Classification of Notions of Non-commutative Independence

Michael Schürmann

A natural product for linear functionals on algebras assigns to each pair of linear
functionals (ϕ1, ϕ2), ϕi : Ai → C, i = 1, 2, a linear functional ϕ1 • ϕ2 on the free
product A1 ⊔ A2 of the algebras Ai such that

(ϕ1 • ϕ2) ◦ ι1 = ϕ1(1)

(ϕ1 • ϕ2) ◦ ι2 = ϕ2

(ϕ1 • ϕ2) • ϕ3 = ϕ1 • (ϕ2 • ϕ3)(2)

(ϕ1 ◦ j1) • (ϕ2 ◦ j2) = (ϕ1 • ϕ2) ◦ (j1 ⊔ j2)(3)

where ιi are the canonical embeddings of Ai into A1 ⊔ A2, and ji : Bi → Ai are
*-algebra homomorphisms. Then by a result of N. Muraki [Mur1, Mur2], under a
normalization assumption, there are exactly 5 possibilities for a natural product:
the tensor, Boolean, free and monotone/anti-monotone products.
A natural product is equivalent to a family σA1,A2

of linear mappings

σ = σA1,A2
: A1 ⊔ A2 → S(A1 ⊕A2) ∼= S(A1) ⊗ S(A2).

via

ϕ1 • ϕ2 =
(
S(ϕ1) ⊗ S(ϕ2)

)
◦ σ

where S(V ) is the unital symmetric tensor algebra over the vector space V .
The axioms (1)-(3) can be translated to the family σA1,A2

:

σA1,A2
◦ ι1,2 = ιA1/A2

(4)
(
S(σA1,A2

) ⊗ id
)
◦ σA1⊔A2,A3

=
(
id ⊗ S(σA2,A3

)
)
◦ σA1,A2⊔A3

(5)

σB1,B2
◦ (j1 ⊔ j2) =

(
S(j1) ⊗ S(j2)

)
◦ σA1,A2

(6)

We have the functor S from the category of algebras to the category of unital
commutative algebras, and a universal product is a family of maps

σA1,A2
: A1 ⊔ A2 → S(A1) ⊗ S(A2)

from coproduct to coproduct satisfying (4)-(6); see [BGSch2].
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Noncommutative De Finetti Theorems and Noncommutative
Independence

Claus Köstler

The classical de Finetti theorem characterizes an exchangeable infinite sequence of
random variables to be identically distributed and conditionally independent over
its tail algebra. It is a foundational result for the subject of distributional symme-
tries and invariance principles. Since we have still an insufficient understanding
of noncommutative independence (including its conditional versions), a transfer
of this result to noncommutative probability is of great interest. We introduce to
related progress recently made in [20, 12, 21, 22].

Our starting point is a sequence of random variables I, given by the embeddings

(ιn)n≥0 : (A0, ϕ0) → (A, ϕ).

Here (A0, ϕ0) and (A, ϕ) are two (noncommutative) probability spaces, each con-
sisting of a von Neumann algebra and a faithful normal state. (We suppress
some modular conditions needed if ϕ is non-tracial.) It is immediate that such
a sequence is identically distributed. Also the notions of the distributional sym-
metries ‘exchangeability’, ‘spreadability’ (a.k.a. ‘contractiblity’ or ‘subsymmetry’)
and ‘stationarity’ transfer straightforward from probability to present noncommu-
tative setting (see [20] for details). Now the main result of [20] is a noncommutative
extended de Finetti theorem which shows that these symmetries yield noncommu-
tative conditional independence, more general than those permitted by natural
universality rules (see the talk of M. Schürmann). Actually the following notion
of noncommutative conditional independence can be seen to emerge from these
distributional symmetries.

Definition 1 (Noncommutative conditional independence [20]). The sequence I

is said to be full T -independent if

ET (xy) = ET (x)ET (y)

for x ∈ vN{T , ιi(A0) | i ∈ I} and y ∈ vN{T , ιj(A0) | j ∈ J} whenever I and J are
disjoint subsets of N0 = {0, 1, 2, . . .}.
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Here vN{T , ιi(A0) | i ∈ I} means the von Neumann algebra generated by T and
{ιi(A0) | i ∈ I}. Moreover ET denotes the ϕ-preserving conditional expectation
from A onto a von Neumann subalgebra T of A. In the context of de Finetti type
results, T is given by the tail algebra of the considered sequence I:

T =
⋂

n≥0

vN{ιk(A0) | k ≥ n}.

We remark that T may be not commutative and, of course, T may be not contained
in the von Neumann algebra generated by the ranges of finitely many random
variables ιi.

Theorem 2 (Noncommutative extended de Finetti theorem [20]). Given the se-
quence I consider the following conditions:

(E) I is exchangeable;
(S) I is spreadable;
(b) I is stationary and full T -independent;
(a) I is identically distributed and full T -independent.

Then it holds (E)⇒ (S) ⇒ (b) ⇒ (a), but each of the converse implications fails.

These four conditions are equivalent if the ranges of the random variables com-
mute and, in this case, one recovers a dual version of E. Størmer’s pioneering results
on symmetric states on tensor products of C*-algebras [29]. If the underlying von
Neumann algebra A is commutative, i.e. comes from a classical probability space,
then Theorem 2 reduces to the usual extended de Finetti theorem, rewritten in an
algebraic language.

One might object that a quantized result of de Finetti type should provide the
equivalence of all four conditions (E) to (a), in particular since the result of Ryll-
Nadzewski [27] ensures the equivalence of (E) and (S) in the classical setting. But
such common folklore from classical probability would be misleading in the quan-
tum world. It is a well known phenomena in physics that one-dimensional quantum
statistical models correspond to twodimensional classical ones [10]. So Theorem 2
should better be compared to results on classical random arrays, where exchange-
ability and spreadability are known to be inequivalent [18]. On the mathematical
side and as explicated in the introduction of [20], each of the three inverse implica-
tions in Theorem 2 fails due to a deep structural reason (see also [20], Theorems 5.1
& 9.2]). The implication (a) ⇒ (b) fails because noncommutative independence in
the sense of Definition 1 permits examples which are not captured by universality
rules (compare the talk of M. Schürmann). A much better understanding of these
broken equivalences comes from the work [12] on braided random objects which I
address next.

A new way towards a probabilistic interpretation of braid groups is taken in [12].
There we look at braided structures from the perspective of distributional symme-
tries and invariance principles. The guiding idea is that, as representations of the
symmetric group S∞ are connected to exchangeability, the representations of the
braid group B∞ should be connected to a new symmetry which we call braidability.
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The realization of this idea rests on two important pillars, the noncommutative
extended de Finetti theorem, Theorem 2, and product representations of endo-
morphisms in operator theory [13].

Definition 3 (Braidability [12]). The random sequence I is braidable if there
exists a representation of the braid group, ρ : B∞ → Aut(A, ϕ), such that

ιn = ρ(σnσn−1 · · ·σ1)ι0 (n ∈ N)

ι0 = ρ(σn)ι0 (n ≥ 2)

Here denotes σi the Artin generators of B∞ satisfying the relations σiσi+1σi =
σi+1σiσi+1 and σiσj = σjσi if |i − j| > 1. Moreover, Aut(A, ϕ) denotes the
ϕ-preserving *-automorphisms of A. Note also that Definition 3 provides an ex-
tension of exchangeability: I is exchangeable if and only if I is braidable and
ρ(σ2

i ) = id for i ∈ N.
Our key result inserts braidability between the distributional symmetries (E)

and (S):

Theorem 4 (Braided extended de Finetti theorem [12]). Consider the following
additional property in Theorem 2:

(B) I is braidable.

Then one has (E) ⇒ (B) ⇒ (S).

This refinement makes it clear that (E) and (S) are inequivalent in a ‘quantized’
framework, since otherwise representations of B∞ would automatically be repre-
sentations of S∞. Most importantly, since exchangeability and spreadability are
‘purely distributional’ symmetries, Theorem 4 endows braid groups with a new in-
trinsic probabilistic interpretation. We emphasize this by a braided Hewitt-Savage
Zero-One Law (see [12, Theorem 2.5]).

The results in [12] shed fresh light onto braid group representations [5, 9] as
well as on Jones subfactor theory [17, 11]. We illustrate this by means of the braid
group von Neumann algebra L(B∞), a non-hyperfinite II1-factor non-isomorphic
to all free group von Neumann algebras L(Fn), and study an irreducible subfactor
inclusion of infinite Jones index (see [12, Theorem 5.2 and Corollary 5.3]). Our in-
vestigation reveals that the left regular representation of Artin generators provides
a sequence which is neither braidable nor spreadable, but identically distributed
and full C-independent (see [12, Theorem 5.6]). This result prompts our search for
another presentation which we call the square root of free generator presentation
(see [12, Theorem 4.1]). We show that these new generators give rise to braidable
sequences (see [12, Theorem 5.9]) and that their squares are a free system of Haar
unitaries in the sense of Voiculescu. Additional considerations of random walks
on groups [19] lead us to the speculation that combinatorial free probability [26]
has a braided extension.

Some concrete examples from subfactor theory, among them Hecke algebras,
show how this new approach allows to simplify some arguments. For this purpose
we invoke noncommutative Bernoulli shifts (see [20, 12]). They correspond to se-
quences of ‘quantized’ random variables which are conditionally independent over
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their tail algebra1. Together with product representations of endomorphisms, these
shifts provide us with powerful, flexible tools to analyze Galois type structures, in
particular coming from braidable random sequences.

The long list of parallel results in classical probability and free probability
[32, 31] suggests that there should also be a free version of de Finetti’s theorem2.
It is immediate from the noncommutative extended de Finetti theorem, Theorem
2, that many different models of ‘quantized’ conditionally i.i.d. sequences enjoy
exchangeability. So exchangeability as an invariance principle is unable to distin-
guish between them in the full generality of the present ‘quantized’ setting.

A new idea of how to strengthen exchangeability comes from the fact that
exchangeability is not only a distributional symmetry (by its very definition), but
also a dynamical symmetry: for all n ∈ N, there exists a (state-preserving) action
of the symmetric group Sn. Now this action of Sn can equally well be expressed
as a coaction of the commutative Hopf C*-algebras C(Sn) of continuous functions
on Sn. Doing so one can reformulate exchangeability as an invariance property of
this coaction. This observation is a starting point of [22] and the crucial idea is
now to replace ‘permutations’ by ‘quantum permutations’:

Wang introduces in [33] the quantum permutation group As(n) as the universal
quantum automorphism group acting on the C*-algebra C({1, .., n}) of continuous
functions on n points, answering a question of Connes. The C*-algebra As(n) is
a compact quantum group in the sense of Woronowicz [35] and contains C(Sn) as
ordinary automorphisms on C({1, . . . , n}), i.e. as permutation matrices.

As exchangeability is an invariance property under the coaction of all C(Sn)’s,
quantum exchangeability is introduced in [22] as an invariance property under the
coaction of all As(n)’s. This leads us to a new characterization of freeness with
amalgamation:

Theorem 5 (Free de Finetti theorem [22]). The following are equivalent for an
infinite sequence of random variables I:

(a) I is quantum exchangeable.
(b) I is identically distributed and free over its tail algebra.

To our knowledge this is the first result where a quantum group is considered
as a quantum probabilistic invariant. Free independence has so far mainly been
used as a tool in the study and classification of certain quantum groups [3, 2, 6].
On the other hand, actions of quantum groups on noncommutative spaces appear
in subfactor theory (e.g. [34, 14, 1, 30]), random walks on noncommutative spaces
(e.g. [4, 7, 15, 16]) and in examples for noncommutative Bernoulli shifts [28].
Together with Theorem 2 and Theorem 4, the characterization result in Theorem 5

1Due to the broad concept of independence, our notion of a noncommutative Bernoulli shift
is more general than shifts on tensor products or free products, in particular the one considered

for the Connes-Størmer dynamical entropy [8, 25].
2A first attempt in this direction is undertaken by F. Lehner, based on a cumulant approach

via exchangeability systems [23, 24]. But the investigations in [21] reveal that weak freeness (as
introduced in [24]) implies already freeness with amalgamation in a stationary setting.
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hints at a very deep connection between quantum symmetries and noncommutative
conditional independence.
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[20] C. Köstler. A noncommutative extended de Finetti theorem. J. Funct. Anal. To appear.

Preprint (electronic) arXiv:0806.3621 [math.OA].
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[22] C. Köstler and R. Speicher. A noncommutative de Finetti theorem: Invariance under quan-

tum permutations is equivalent to freeness with amalgamation. Commun. Math. Phys. To

appear. (electronic) arXiv:0807.0667 [math.OA].
[23] F. Lehner. Cumulants in noncommutative probability theory I. Noncommutative exchange-

ability systems. Math. Z., 248(1):67–100, 2004.
[24] F. Lehner. Cumulants in noncommutative probability theory IV. Noncrossing cumulants:

De Finetti’s theorem and Lp-inequalities. J. Funct. Anal., 239:214–246, 2006.
[25] S. Neshveyev and E. Størmer. Dynamical entropy in operator algebras. Ergebnisse der Math-

ematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics.
Springer-Verlag, Berlin, 2006.



Mini-Workshop: Product Systems and Independence in Quantum Dynamics 517

[26] A. Nica and R. Speicher. Lectures on the combinatorics of free probability, volume 335 of
London Mathematical Society Lecture Note Series. Cambridge University Press, 2006.

[27] C. Ryll-Nardzewski. On stationary sequences of random variables and the de finetti’s equiv-
alence. Colloq. Math., 4:149–156, 1957.

[28] C. Rupp. Non-Commutative Bernoulli Shifts on Towers of von Neumann Algebras. PhD
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Research Talks — Brief Summary

While the lectures served to give an overview over the state of the art about
some well specified aspects relevant to the workshop, the talks gave occasion to
present also recent and tentative news. The talks by Izumi and by Sinha deal
with type III Arveson systems. The talks by Shalit, by Skalski, and by Accardi
discuss versions different from one-parameter semigroups (the former two more-
parameter semigroups, the latter a general nonstationary situation). The talks
by Köstler, by Skeide, by von Waldenfes, and by Schürmann are in some sense
related to independence. The talks by Tsirelson and by Bhat deal with specific
problems of type II Arveson systems. The talk by Fagnola discusses the role of
form generators.

Generalized CCR Flows

Masaki Izumi

(joint work with R. Srinivasan)

An E0-semigroup is a weakly continuous semigroup of unital ∗-endomorphisms of
B(H), where H is a separable infinite dimensional Hilbert space. The notion of a
product system was introduced by W. Arveson in his study of E0-semigroups. He
showed, on one hand, that the product system associated with an E0-semigroup
completely determines the cocycle conjugacy class of the E0-semigroup, and on
the other hand, that every product system arises from an E0-semigroup (see [1]).
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Therefore classification of E0-semigroups up to cocycle conjugacy is equivalent to
that of product systems up to isomorphism.

Product systems, and hence E0-semigroups, are classified into three categories,
type I, type II, and type III, according to abundance of units. Type I E0-
semigroups are completely classified, and they are cocycle conjugate to so called
CCR flows. By definition, type III E0-semigroups have no units, and it is not so
easy to construct them. Indeed, before Tsirelson’s construction of uncountably
many type III product systems [8], Powers’ type III E0-semigroup [7] was the only
example. The main purpose of this talk is to report on the recent development of
type III E0-semigroups.

In [5], we showed that there exist uncountably many mutually non-isomorphic
type III product systems that are not distinguished from type I product systems
by Tsirelson’s invariant. The invariant we employ is the von Neumann algebra
AU associated with an open subset U of [0, 1], which is either a type I factor or a
type III factor in our case.

Inspired by Tsirelson’s construction of infinitely many mutually non-isomorphic
type III product systems [8], Bhat and Srinivasan [2] introduced the notion of a
sum system, which is a sort of “logarithm” of a product system giving rise to a
product system via the Bosonic second quantization procedure. They obtained a
dichotomy result about types, which says that every product system arising from
a divisible sum system is either of type I or of type III.

One of the purposes of this talk is to show that every sum system is indeed
divisible (see [4] for details). The proof goes through the notion of generalized
CCR flows [5], which include the E0-semigroups corresponding to Tsirelson’s type
III product systems [3]. In particular, every generalized CCR flow is either of type
I or type III.

I also announce our recent result [6] showing that Powers’ CAR construction also
produces uncountably mutually non-cocycle conjugate type III E0-semigroups.
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Subproduct Systems and Dilation Theory of CP-Semigroups

Orr Moshe Shalit

(joint work with Baruch Solel)

The classical theory of isometric dilations deals with the following problem: given
a semigroup of contractions T = {Ts}s∈S acting on a Hilbert space H (S is some
semigroup), find a semigroup V = {Vs}s∈S of isometries acting on a Hilbert space
K ⊇ H such that for all s ∈ S,

Ts = PHVs

∣∣
H
.

This theory is highly developed [16] and well known. It is desirable to obtain a
parallel theory for ∗-endomorphic dilations of semigroups of completely positive
maps.

Let S be some sub-semigroup of Rk
+, and let M ⊆ B(H) be a von Neumann

algebra. A CP-semigroup (over S) is a semigroup of CP maps, that is, a family
Θ = {Θs}s∈S of completely positive, contractive and normal maps on M such
that

Θs+t(a) = Θs(Θt(a)) , s, t ∈ S, a ∈ M

and

Θ0(a) = a , a ∈ M.

When S has a topology we also require that the functions s 7→ 〈Θs(a)h, g〉 be
continuous for all a ∈ M, h, g ∈ H . A CP0-semigroup is a semigroup of unital CP
maps. An E-semigroup is a semigroup of ∗-endomorphisms. An E0-semigroup is
a semigroup of unital ∗-endomorphisms.

An E-dilation of Θ is a triple (α,K,R) consisting of a Hilbert space K ⊇ H
(with orthogonal projection PH : K → H), a von Neumann algebra R ⊆ B(K)
that contains M as a corner M = PHRPH , and an E-semigroup α = {αs}s∈S on
R such that for all T ∈ R, s ∈ S,

Θs(PHTPH) = PHαs(T )PH .

The assertion that for every CP-semigroup there exists an E-dilation when
S = N or R+ is called Bhat’s Theorem, and appears in this form in [4] (under the
additional restrictions that the semigroup is unital and that M = B(H)). This
results was reproved in [9, 6, 8, 3] (in greater generality).

In [5] and [15] appeared the result that for every CP-semigroup over the semi-
group S = N2 there exists an E-dilation.

The purpose of my lecture is to report on my (together with Baruch Solel)
contributions to dilation theory of CP-semigroups, and to describe the general
framework by which these results were obtained, and which I believe can underly
a general dilation theory of CP-semigroups.

The reported contributions are these:

(1) For the case S = R2
+: under a technical assumption of strong com-

mutativity, every CP-semigroup on B(H) has an E-dilation, and every
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CP0-semigroup on an arbitrary von Neumann algebra has an E0-dilation
[11, 12].

(2) For the case S = Nk, k > 2: in general there does not have to exist an
E-dilation. We have an example of three commuting CP maps that have
no (commuting) ∗-endomorphic dilation [13].

(3) For the case S = Nk, k > 2: (under the annoying technical assumption
that the CP maps are of finite index and act on B(H)) if the semigroup
is unit preserving, or if the generators are “small enough in norm”, then
there exist an E-dilation [13].

As a framework for obtaining the above results, we used subproduct systems
and their representations (these notions have been formalized in [13], but they
originate from Arveson’s works [1] and [2]).

A subproduct system (over a von Neumann algebra M) is a bundle of M-
correspondences X = {X(s)}s∈S , with X(0) = M, such that there exist coisomet-
ric bimodule maps

Us,t : X(s) ⊗X(t) → X(s+ t)

that compose associatively, i.e.,

Us+t,r

(
Us,t ⊗ IX(r)

)
= Us,t+r

(
IX(s) ⊗ Ut,r

)
.

A representation of a subproduct system X on a Hilbert space G is a family of
completely contractive maps T = {Ts}s∈S , Ts : X(s) → B(G) such that

(1) T0 is a nondegenerate ∗-representation,
(2) For all a, b ∈ M, x ∈ X(s), we have Ts(axb) = T0(a)Ts(x)T0(b).
(3) For all X ∈ X(s), y ∈ X(t), we have Ts+t(Us,t(x⊗ y)) = Ts(x)Tt(y).

We have shown in [13] that there is an essentially 1-1 correspondence between
CP-semigroups and pairs (X,T ) where X is a subproduct system and T is a
representation of T . This correspondence respects the notions of dilations, so the
problem of dilating CP-semigroups to E-semigroups is equivalent to the problem
of constructing “isometric dilations” to subproduct system representations. The
latter problem may be handled using methods from classical isometric dilation
theory, thus providing a foundation for a theory of dilation of CP-semigroups,
which runs parallel to the classical theory of isometric dilations.

References

[1] Wm. B. Arveson, Continuous analogues of Fock space, Mem. Amer. Math. Soc., No. 409,
American Mathematical Society, 1989.

[2] Wm. B. Arveson, The index of a quantum dynamical semigroup, J. Funct. Anal., Vol. 146,

No. 2 (1997), 557588.
[3] Wm.B. Arveson, Non commutative dynamics and E-semigroups, Springer Monographs in

Math., Springer-Verlag, 2003.
[4] B. V. R. Bhat, An index theory for quantum dynamical semigroups, Trans. Amer. Math.

Soc. Vol. 348, No. 2 (1996), 561–583.
[5] B. V. R. Bhat A generalized intertwining lifting theorem, in: Operator Algebras and Appli-

cations, II, Waterloo, ON, 1994-1995, in: Fields Inst. Commun., vol. 20, Amer. Math. Soc.,
Providence, RI, 1998, pp. 1–10.



Mini-Workshop: Product Systems and Independence in Quantum Dynamics 521

[6] B. V. R. Bhat and M. Skeide, Tensor product systems of Hilbert modules and dilations of
completely positive semigroups, Infinite Dimensional Analysis, Quantum Probability and
Related Topics, Vol. 3, (2000), 519–575.

[7] D. Markiewicz, On the product system of a completely positive semigroup, J. Funct. Anal..
Vol. 200, No. 1 (2003), 237–280.

[8] P. Muhly and B. Solel, Quantum Markov Processes (Correspondences and Dilations), In-
ternat. J. Math. Vol. 13, No. 8 (2002), 863–906.

[9] D. SeLegue, Minimal Dilations of CP maps and C∗-Extension of the Szegö Limit Theorem,
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Noncommutative Factorizations

Claus Köstler

Homogeneous measure factorizations (or noises) canonically induce Arveson sys-
tems of Hilbert spaces (see [9, 8, 7, 1]). If the measure factorization comes from
Lévy-Kchinchin processes, the obtained Arveson product system are known to be
of type I. Starting from non-classical noises as models for homogeneous measure
factorizations, B. Tsirelson has established a rich source of Arveson systems of
type II.

This talk reports about ongoing research on a noncommutative analogue of mea-
sure factorizations and their connection to Arveson systems [6]. The formulation
of such an analogue is straightforward, based on noncommutative independence
as it appears in [5, 2] or in [4].

Definition 1. Let A be a von Neumann algebra (with separable predual) equipped
with the faithful normal state ϕ. A noncommutative factorization of the probabil-
ity space (A, ϕ) over a (complete) Boolean algebra B is given by a family (AB)B∈B

of ϕ-conditioned von Neumann subalgebras AB of A satisfying the following con-
ditions:

(i) AB1∧B2
= AB1

∧ AB2
;

(ii) AB1∨B2
= AB1

∨ AB2
;

(iii) AB1
and AB2

are C-independent if B1 ∧B2 = 0B;
(iv) if Bn ր 1B then

∨
n ABn

= A.

Further a continuity (or measureablity) condition is required if B is non-atomic.
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We are especially interested in the following choices of the Boolean algebra B:
Lebesgue measureable sets in R or all subsets of Z (or their restrictions to R0

resp. N0). The noncommutative factorization is said to be homogeneous if there
exists a group of ϕ-preserving automorphisms (αt)t of A such that αt(AB) = AB+t

for all t ∈ R (or Z) and B ∈ B. Note that the setting in Definition 1 is such that
the usual notion of a (homogeneous) measure factorization can be recovered as
soon as the von Neumann algebra A is commutative. In this case C-independence
reduces to stochastic independence in probability theory.

The underlying notion of noncommutative independence is very general and
presently almost nothing is known about noncommutative factorizations in the
sense of Definition 1. First investigations give strong evidence that there exists a
rich theory of noncommutative factorizations waiting to be explored further.

Candidates for homogeneous noncommutative factorizations (over R) are C-
expected white noises in the sense of [4, Definition 6.5.2]. Examples for the latter
are, aside of classical Poisson or Gaussian white noise, CCR white noises, CAR
white noises and q-Gaussian white noises (see Examples 6.6.3 to 6.6.5 in [4]). In
these examples the von Neumann algebra A is generated by unitary (adapted)
cocycles with respect to the time shift; and each of these unitary cocycles provides
a normalized unit in the GNS Hilbert space of these noises.

Conjecture 2. Every C-expected white noise (in the sense of [4]) gives rise to a
noncommutative factorization.

These quantum white noises may be regarded as noncommutative analogues of
Fock factorizations.

Question 3. Suppose A is a type II1 or type III factor. Does there exist a
homogeneous noncommutative factorization of (A, ϕ) (over R) which leads to an
Arveson sytem of type II?

Due to the underlying notion of independence, already the study of noncom-
mutative factorizations over Z or N0 is highly non-trivial.

Very recently we have found the following example in the context of exchange-
ability. Let S∞ be the group of all finite permutations on N0. We consider as
probability space the group von Neumann algebra L(S∞) equipped with the nor-
malized trace tr∞. Let AI = vN{L(0,k) | k ∈ I ⊂ N}, where L(0,k) is the left shift

on the Hilbert space ℓ2(S∞) associated to the transposition (0, k) on N0.

Theorem 4. The family (AI)I⊂N0
is a noncommutative factorization of

(L(S∞), tr∞).

The proof of this result is based on exchangeability in a noncommutative setting
[3]. We expect more generally:

Conjecture 5. Every minimal exchangeable random sequence with trivial tail
algebra (in the sense of [5]) gives rise to a noncommutative factorization over N0.
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Nonequivalent Units

Boris Tsirelson

Theorem 1. There exists an Arveson system of type II1 such that the action of
the group of automorphisms on the set of normalized units is not transitive.

In order to prove the theorem it is sufficient to construct a noise, extending the
white noise and drift sensitive in the following sense: for every λ ∈ R \ {0} the
extension obtained by the drift λ is non-isomorphic to the original extension on
the level of Arveson systems (that is, the corresponding extensions of the type I1
Arveson system are non-isomorphic).

Here is why it is sufficient. In the group of all motions of the complex plane
we consider the subgroup G of motions that correspond to automorphisms of the
type I1 Arveson system (Hwhite

t )t extendable to the type II1 Arveson system (Ht)t.
Real shifts z 7→ z+ λ (for λ ∈ R \ {0}) do not belong to G by the drift sensitivity.

Imaginary shifts z 7→ z + iλ (for λ ∈ R) belong to G, since the operators Θ
shift(iλ)
t

of multiplication by exp(iλBt) act naturally on Ht. It follows that G contains no
rotations (except for the rotation by π) and therefore is not transitive.

The drift sensitive extension is achieved by attaching a random function S :
(τ,∞) → {−1,+1} to each (random) point τ of local minimum of the Brownian
motion. The function S is constant on [τ + 2 · 3−n−1, τ + 2 · 3−n) for each n and
such that

(1)
S(τ + 2 · 3−n)

S(τ + 2 · 3−n−)
= fn

(
B(τ + 2 · 3−n) −B(τ)

)

for all n. Here fn : R → {−1,+1} are nonrandom functions chosen appropriately.
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Definitions and statements given below are not really used in the proof of the
theorem, but probably help to understand the idea. The phenomenon of a non-
extendable isomorphism (as well as nonisomorphic extensions) is demonstrated
here by a toy model, — a kind of product system of Hilbert spaces, simpler than
Arveson system.

Definition 1. A toy product system of Hilbert spaces is a triple (H1, H∞, U),
where H1, H∞ are Hilbert spaces (over C, separable), and U : H1 ⊗H∞ → H∞ is
a unitary operator.

We treat it as a kind of product system, since

H∞ ∼ H1 ⊗H∞ ∼ H1 ⊗H1 ⊗H∞ ∼ . . .

where ‘∼’ means: may be identified naturally (using U).
An evident example: H∞ = (H1, ψ1)

⊗∞ is the infinite tensor product of (an
infinite sequence of) copies of H1 relatively to (the copies of) a given vector ψ1 ∈
H1, ‖ψ1‖ = 1.

A more interesting example: H∞ = (H1, ψ1)
⊗∞ ⊕ (H1, ψ2)

⊗∞ is the direct
sum of two such infinite tensor products, one relative to ψ1, the other relative to
another vector ψ2 ∈ H1, ‖ψ2‖ = 1, ψ2 6= ψ1.

Definition 2. Let (H1, H∞, U) and (H ′
1, H

′
∞, U

′) be toy product systems of
Hilbert spaces. An isomorphism between them is a pair Θ = (Θ1,Θ∞) of uni-
tary operators Θ1 : H1 → H ′

1, Θ∞ : H∞ → H ′
∞ such that the diagram

H1 ⊗H∞

Θ1⊗Θ∞

��

U // H∞

Θ∞

��
H ′

1 ⊗H ′
∞

U ′

// H ′
∞

is commutative.

Thus,

Θ∞ ∼ Θ1 ⊗ Θ∞ ∼ Θ1 ⊗ Θ1 ⊗ Θ∞ ∼ . . .

A unitary operator Θ1 : H1 → H1 leads to an automorphism of (H1, ψ1)
⊗∞

(that is, of the corresponding toy product system) if and only if Θ1ψ1 = ψ1.
Similarly, Θ1 leads to an automorphism of (H1, ψ1)

⊗∞ ⊕ (H1, ψ2)
⊗∞ if and only

if either Θ1ψ1 = ψ1 and Θ1ψ2 = ψ2, or Θ1ψ1 = ψ2 and Θ1ψ2 = ψ1.
Taking Θ1 such that Θ1ψ1 = ψ1 but Θ1ψ2 6= ψ2 we get an automorphism

of (H1, ψ1)
⊗∞ that cannot be extended to an automorphism of (H1, ψ1)

⊗∞ ⊕
(H1, ψ2)

⊗∞.

Definition 3. A toy product system of probability spaces is a triple (Ω1,Ω∞, α),
where Ω1,Ω∞ are probability spaces (standard), and α : Ω1 × Ω∞ → Ω∞ is an
isomorphism mod 0 (that is, an invertible measure preserving map).
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Every toy product system of probability spaces (Ω1,Ω∞, α) leads to a toy prod-
uct system of Hilbert spaces (H1, H∞, U) as follows:

H1 = L2(Ω1) ; H∞ = L2(Ω∞) ;

(Uψ)(·) = ψ(α−1(·)) .

Here we use the canonical identification

L2(Ω1) ⊗ L2(Ω∞) = L2(Ω1 × Ω∞)

and treat a vector ψ ∈ H1 ⊗H∞ as an element of L2(Ω1 × Ω∞).
An evident example: Ω∞ = Ω∞

1 is the product of an infinite sequence of copies
of Ω1. It leads to H∞ = (H1, 1l)

⊗∞ where H1 = L2(Ω1) and 1l ∈ L2(Ω1) is the
constant function, 1l(·) = 1.

Here is a more interesting example. Let X1 : Ω1 → {−1,+1} be a random vari-
able (not a constant). We define Ω∞ as the set of all double sequences ( ω1, ω2, ...

s1, s2, ... )
such that ωk ∈ Ω1, sk ∈ {−1,+1} and sk = sk+1X1(ωk) for all k. Sequences
(ω1, ω2, . . . ) ∈ Ω∞

1 are endowed with the product measure. The conditional dis-
tribution of the sequence (s1, s2, . . . ), given (ω1, ω2, . . . ), must be concentrated on
the two sequences obeying the relation sk = sk+1X1(ωk). We give to these two
sequences equal conditional probabilities, 0.5 to each. Thus, Ω∞ is endowed with
a probability measure. The map α : Ω1 × Ω∞ → Ω∞ is defined by

α

(
ω1,

(
ω2, ω3, . . .
s2, s3, . . .

) )
=

(
ω1, ω2, ω3, . . .

s2X1(ω1), s2, s3, . . .

)
.

Clearly, α is measure preserving.
This system (Ω1,Ω∞, α) leads to a system (H1, H∞, U) of the form

(H1, ψ1)
⊗∞ ⊕ (H1, ψ2)

⊗∞ (up to isomorphism), as explained below. We have

H1 = L2(Ω1) , H∞ = L2(Ω∞) ,

(Uψ)

(
ω1, ω2, ω3, . . .
s1, s2, s3, . . .

)
= ψ

(
ω1,

(
ω2, ω3, . . .
s2, s3, . . .

) )
.

The function S : Ω∞ → {−1,+1} defined by

S

(
ω1, ω2, ω3, . . .
s1, s2, s3, . . .

)
= s1

may be identified with X⊗∞
1 , since

S

(
α

(
ω1,

(
ω2, ω3, . . .
s2, s3, . . .

) ))
= s2X1(ω1) = X1(ω1)S

(
ω2, ω3, . . .
s2, s3, . . .

)
.

See also [2].
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Inclusion Systems and Amalgamated Products of Product Systems

B.V.R. Bhat

Inclusion systems (or subproduct systems) are families of Hilbert spaces {Et : t ≥
0} with an associative family of isometries {βs+t : s, t ≥ 0}:

βs,t : Es+t → Es ⊗ Et.

Every inclusion system gives rise to a product system through an inductive limit
procedure. We show that structures such as units and morphisms of these product
systems can be determined at the level of inclusion systems. We use this idea
to study Powers problem and Skeide product of spatial product systems. We
determine the product system of ’Powers’ sum through arbitrary corners’ of two
CP semigroups. This is a joint work with Mithun Mukherjee.
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Quantum Markov Semigroups and Flows Arising from Form
Generators on B(h)

Franco Fagnola

A form generator £ on B(h) is given by a family £(x) of quadratic forms

£(x)[v, u] = 〈Gv, xu〉 +
∑

ℓ≥1

〈Lℓv, xLℓu〉 + 〈v, xGu〉

where x ∈ B(h), G is the generator of a strongly continuous semigroup (Pt)t≥0 on
h, v, u ∈ Dom(G), the Lℓ are defined on Dom(G) and the algebraic condition for
identity preservation £(11)[v, u] = 0 holds.

This is an extension of the well-known Gorini-Kossakowski-Sudarshan-Lindblad
representation of generators norm-continuous completely positive Markov semi-
groups on B(h) also called quantum dynamical semigroups.

A semigroup (Tt)t≥0 associated with the above quadratic should satisfy

(1) 〈v, Tt(x)u〉 = 〈v, xu〉 +

∫ t

0

£(Ts(x))[v, u]ds
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for all u, v ∈ Dom(G) and x ∈ B(h). Computing the derivative of the function s→
〈Pt−sv, Ts(s)Pt−su〉 it is easy to see that a strongly continuous family (Tt(x))t≥0

in B(h) solves (1) if and only if it satisfies

〈v, Tt(x)u〉 = 〈Ptv, xPtu〉 +

∞∑

ℓ=1

∫ t

0

〈LℓPt−sv, Ts(x)LℓPt−su〉 ds.

This leads naturally to the iteration scheme T
(0)

t (x) = P ∗
t xPt and

〈
v, T

(n+1)
t (x)u

〉
= 〈v, P ∗

t xPtu〉 +

∞∑

ℓ=1

∫ t

0

〈
LℓPt−sv, T

(n)
s (x)LℓPt−su

〉
ds

It can be shown that, for x positive, T
(n+1)

t (x) ↑ Tt(x) and (Tt)t≥0 is a weakly∗-
continuous semigroup on B(h) (see e.g. [5] Sect.3). It is called the minimal semi-
group because, if (T ′

t )t≥0 is another semigroup solving (1), then Tt(x) ≤ T ′
t (x) for

all positive x. As a consequence, a priori we know only that Tt(11) ≤ 11. Indeed,
the semigroup semigroup solving (1) is unique if and only if Tt(11) = 11.

This construction, and its pre-dual version of E.B. Davies in [4], generalises the
minimal solution of Kolmogorov equations for classical time-continuous Markov
chains (see e.g. [3]).

When the minimal semigroup T is identity preserving and the unbounded op-
erators G,Lℓ are well behaved (e.g. the intersection of their domains and the
domains of their adjoints is an essential domain for G and G∗, one can compose
any pair of them on a certain dense domain and similar technical conditions) a
dilation of T to a inner quantum flow of the form jt(X) = U∗

t XUt (X operator on
h⊗F) can be constructed by means of Hudson-Parthasarathy quantum stochastic
calculus. The operators Ut are unitary cocycles with respect to the natural right
shift on the Fock space F over L2(R+; k) and are the unique solution of a quan-
tum stochastic differential equation driven by creation, annihilation and number
processes whose coefficients are partially determined by the operators G,Lℓ.

In this talk we present concrete examples of form generators with “good” or
singular operators G,Lℓ. Singular examples appear in the study of extensions
of simple classical Markov semigroup on an abelian algebra to quantum Markov
semigroups on a B(h) that contains it as a subalgebra (see e.g. [2] for the semigroup
of a Brownian motion on a closed set with some boundary condition). We also
illustrate the analytical obstructions that one can find in the construction of the
unitary cocycle (Ut)t≥0 and distinguish good cases from singular ones.

By their own construction minimal semigroups lead to a product system with
units. One expects that, when the operators G,Lℓ are well behaved, this product
system is type I as it happens when G and the Lℓ are bounded and the Lℓ are
chosen to be linearly independent as proved by Bhat [1]. It would be interesting to
know whether there are type II product system arising in the dilation of minimal
semigroups.
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Free Product Systems

Michael Skeide

For terminology, notations, and references we refer to the introduction, which
starts on Page 497.

Let F(F ) :=
⊕∞

n=0 F
⊙n denote the full Fock module over the Hilbert B–B–bi-

module F . The full Fock module to the direct sum F1 ⊕ F2 factors as

F(F1 ⊕ F2) = F(F1) ⊙
(
ωB ⊕

(
F2 ⊙ F(F1 ⊕ F2)

))
.

Let us define ES := L2(S, F ) for any (measurable) subset S of R+, and E :=
ER+

. For every S and T ⊃ S + t define the second quantized right shift isometry
St : F(ES) → F(ET ). Then the factorization

F(E) = F(E[t,∞)) ⊙
(
ωB ⊕

(
E[0,t) ⊙ F(E)

))

∼= StF(E[t,∞)) ⊙
(
ωB ⊕

(
E[0,t) ⊙ F(E)

))

= F(E) ⊙
(
ωB ⊕

(
E[0,t) ⊙ F(E)

))

induces an E0–semigroup ϑt(a) := a⊙ idt on Ba(E), the free flow of free index
F . We immediately read of from this factorization that the product system of ϑ
is

F(F )⊙ =
(
ωB ⊕

(
E[0,t) ⊙ F(E)

))

t∈R+

.

When F = K is a (separable) Hilbert space, Fowler [Fow95] showed that ϑ is
cocycle conjugate to a CCR flow of index ∞, independently of the dimension of
K. In Skeide [Ske06b] we showed for arbitrary Hilbert B–B–bimodules F that ϑ,
actually, is a CCR-flow of index F ⊙ F(E).

However, in [Ske06b] we also mentioned that the free flow on F(E) can be
suitably interpreted in terms of free product systems. In our talk we give the
first concise definition of free product systems, we discuss their relation with
E0–semigroups (all noises; see the introduction), and we discuss how spatial tensor
product systems can be blown up to obtain free product systems. We raise several
natural questions that have to be answered.
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Let us recall that the free product of two Hilbert B–B–bimodules Ei with
respect to unital central reference vectors ωi ∈ Fi is

E1 ⊛ E2 :=
⊕

n∈N0

⊕

ε∈An({1,2})

Eε =
⊕

n∈N0

⊕

ε∈An({1,2})

ω⊥
ε1

⊙ . . .⊙ ω⊥
εn
, where

An(S) := {ε ∈ Sn : εi 6= εi+1} and E() := ωB with A0(S) := {()}. Note that

E1 ⊛ E2 ⊃ ωB ⊕ ω⊥
i = Ei. Using this, we find

E1 ⊛ E2 = E1 ⊙
(
ωB ⊕

⊕

n∈N

⊕

ε∈An({1,2}),ε1 6=1

Eε

)
,

so that there is a unital embedding of Ba(E1) as Ba(E1) ⊙ id into Ba(E1 ⊛ E2).
Apart from the above mentioned tensor factorization, the full Fock module also

satisfies the factorization

F(F1 ⊕ F2) = F(F1)⊛ F(F2)

with respect to the respective vacua. If we put Ft(F ) := F(E[0,t)), then the family

F
⊛(F ) :=

(
Ft(F )

)
t∈R+

forms a free product system in the sense of the following

definition sketched already in [Ske06b]:

Definition. Algebraically, a free product system is a family of Hilbert B–B–bi-
modules E⊛ =

(
Et

)
t∈S

with a family ω⊛ =
(
ωt

)
t∈S

of central unit vectors ωt ∈ Et

and bilinear unitaries

us,t : (Es, ωs)⊛ (Et, ωt) −→ (Es+t, ωs+t)

that compose associatively, and E0 = ω0B such that u0,t, ut,0 are the canonical
identifications.

Technical conditions (continuity, measurability) on the bundle structure may
be put as in in the tensor product case. Notice that Es ⊙Et ⊂ Es ⊛Et, so that it
makes also sense to require that the product of continuous (measurable) sections
is continuous (measurable) in any version we prefer.

Since Et
∼= ωs ⊛ Et ⊂ Es ⊛ Et

∼= Es+t, we obtain an inductive limit E∞ ∋ ω,
which is a Hilbert B–B–bimodule and has a unital central reference vector ω.

Theorem. The inductive limit comes with a free left dilation

vt : E∞ ⊛ Et −→ E∞

that iterates associatively with the free product system structure. The unital em-
beddings Ba(E∞) → Ba(E∞ ⊛ Et) ∼= Ba(E∞) induce, therfore, an E0–semigroup
ϑ on Ba(E∞).

Since E∞ ⊛ Et = E∞ ⊙
(
ωB ⊕

⊕
n∈N

⊕
ε∈An({∞,t}),ε1 6=∞Eε

)
, the (tensor!)

product system of ϑ is

ωB ⊕
⊕

n∈N

⊕

ε∈An({∞,t})
ε1 6=∞

Eε.
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In the case of the free product system of the free flow on a full Fock module we
get back the free flow we started with.

An open problem is to characterize all E0–semigroups (necessarily noises)
that arise in this way.

Unlike the E0–semigroups described by their tensor product system, the free
flows come along with unital embeddings of Ba(Et) into Ba(E∞) arising from
the identification E∞ = E∞ ⊛ Et = Et ⊛ E∞. (The tensor product system
description E = E⊙Et allows only nonunital embeddings as (ω⊙ id)Ba(Et)(ω

⊛ ⊙
id); see the introduction.) Moreover, these subalgebras generate a filtration that is
conditionally free independent in the vacuum expectation 〈ω, •ω〉. (The filtration
from the nonunital embedding in the tensor case is only conditionally monotone
independent.)

An open problem is to find out what it means for a cocycle to be adapted to
the free filtration. We hope that in the Fock situation a solution of that problem
might enable us to write down adapted unitary cocycles directly from the (well-
known) units of the tensor product system picture.

We mentioned already that in a free product system we have Es ⊙ Et ⊂ Es+t.
(Contrary to what has been considered in Bhat’s talk on Page 526 and in Shalit’s
talk on Page 519, respectively, this would not be an inclusion system and a sub-
product system, respectively, but rather a superproduct system. This is also closely
related to a situation described in Köstler’s talk on Page 521.) Clearly, the inter-
section

⋂
tEtn

⊙ . . . ⊙ Et1 over all t = (tn, . . . , t1) with t1 + . . . + tn = t is the
biggest tensor product subsystem of the free product system. An interesting open
problem is, whether this subsystem generates E⊛ as a free product system. In a
minute we see that in the Fock situation the answer is affirmative. But, it is not to
be excluded that, in the worst case, the intersection consists only of the vacuum
sector ωtB.

Let (E⊙, ω⊙) be a spatial tensor product system, see the introduction . For
each t = (tn, . . . , t1) with t1 + . . .+ tn = t define

Et := Etn
⊛ . . .⊛ Et1

By the inclusion Et = Etn
⊙ . . . ⊙ Et1 ⊂ Et and since free products respect

inclusions, we obtain an inductive limit Et of Et over t.

Theorem. The Et form a free product system E⊛. It contains E⊙ as a tensor
product subsystem and is generated by E⊙ as a free product system.

An open problem is, if we get back E⊙ by the intersection procedure as
described before. In general, we ask when a free product system be obtained in
that way from a spatial tensor product subsystem.
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Isometric Dilations of Representations of Product Systems of
C

∗-Correspondences over Nk

0

Adam Skalski

Classical multi-dimensional dilation theory ([SzF]) for Hilbert space operators is
concerned with dilating tuples of contractions to tuples of isometries or unitaries,
preserving some specific properties of the original family. Celebrated examples
of S. Parrott, N. Varopoulos and others show that commuting isometric dilations
of more than two commuting contractions need not exist. In general we cannot
expect a characterisation of these tuples for which the commuting dilation exists,
however if one requests a specific form of the dilation then precise answers can be
obtained. In particular the existence of so-called regular or ∗-regular dilations (i.e.
dilations satisfying additional conditions with respect to products of the original
contractions and their adjoints, see [Bre], [Tim]) can be detected via simple con-
ditions corresponding to positive-definiteness of certain operator-valued functions
associated with the initial tuple.

In this talk we discuss analogous results for dilations of representations of prod-
uct systems of representations of product systems of C∗-correspondences over Nk

0 .
For us a C∗-correspondence E over a C∗-algebra A is a C∗-Hilbert module (a right
module over A with A-valued scalar product) equipped additionally with the struc-
ture of a left module over A. Formally: there is a nondegenerate ∗-homomorphism
φ : A → L(E).

Definition. A product system of C∗-correspondences over Nk
0 , denoted by E, is

a family of k C∗-correspondences {E1, . . . , Ek} over a C∗-algebra A together with
the unitary isomorphisms ti,j : Ei ⊗ Ej → Ej ⊗ Ei (i > j) satisfying a natural
associativity condition.

For the purpose of this talk we think of each Ei describing the type of the
i-th element of the tuple we intend to dilate (a contraction, a row contraction, a
family of contractions associated to a graph) and of ti,j as means of encoding the
commutation relations between different elements of the tuple.

Definitions of completely contractive representations of E and their isometric
dilations can be found in [Sol] or [Sk]. In [Sol] Solel characterised the existence of
regular isometric dilation of a given representation via Brehmer-type conditions.
Here we focus on ∗-regular dilations. Contrary to the classical context of dilating
commuting tuples of contractions regular dilations cannot be straightforwardly
transformed into ∗-regular ones. We still however have the following result:

Theorem. A minimal isometric dilation
−→
V of a representation

−→
T of E is ∗-regular

if and only if it is doubly commuting.

Under a certain technical condition on the product system E and the assumption

that a given representation
−→
T of E on a Hilbert space H satisfies a so-called Popescu

condition (or condition ‘P’), ∗-regular isometric dilation of
−→
T can be constructed

via so-called generalised Poisson transform. Generalised Poisson transform is a
completely positive map R−→

T
: TE → B(H), where TE is the Toeplitz-type algebra
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associated with E. The map R−→
T

was earlier studied in a simpler context for

example in [Pop]. Sufficient conditions for the construction of R−→
T

are summarised
in the following theorem.

Theorem. Let E have a normal ordering property and let
−→
T be a representation

of E on H satisfying the Popescu condition. Then there exists a unique continuous
linear map R−→

T
: TE → B(H) satisfying

R−→
T

(LeL
∗
f) = T (n)(e)(T (m)(f))∗, n,m ∈ bnk

0 , e ∈ E(n), f ∈ E(m).

The map R−→
T

is completely positive and contractive, unital if TE is unital.

The Stinespring dilation for R−→
T

provides in a natural way an isometric dilation

for
−→
T .

In the second part of the talk we present applications of the above results to
families of contractions associated to a given higher-rank graph Λ ([KuPa], [Rae]).
There is a natural way of associating to Λ a product system E(Λ) ([RaS]) and
it can be showed that E(Λ) has the normal ordering property if and only if Λ is
finitely aligned ([Rae]) and if and only if E(Λ) is compactly aligned ([Fow]). We
have the following result:

Theorem. There is a 1-1 correspondence between (completely contractive) repre-
sentations of E(Λ) on a Hilbert space H and Λ-contractions in B(H). The rep-
resentation is isometric if and only if the corresponding Λ-contraction forms a
Toeplitz family, isometric and doubly commuting if and only if the corresponding
Λ-contraction forms a Toeplitz-Cuntz-Krieger family.

The above correspondence can be used to transform our and Solel’s results
on dilation of representations of product systems to the context of dilating Λ-
contractions. As an example we present the following theorem, first proved in
[SkZ]:

Theorem. Let Λ be finitely aligned and let V be a Λ-contraction on a Hilbert
space H which satisfies the Popescu condition. Then there exists a Hilbert space
K ⊃ H and a Λ-contraction W on K consisting of partial isometries forming a
Toeplitz-Cuntz-Krieger family such that

W ∗
λ |H = V ∗

λ , λ ∈ Λ.

One may assume that K = Lin{WλH : λ ∈ Λ}; under this assumption the family
W is unique up to unitary equivalence.

Most of the results presented in the talk can be found in [Sk].
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An Approach to the Mathematical Theory of Pressure Broadening of
Spectral Lines

Wilhelm von Waldenfels

One of the three “natural” independences of quantum probability is called
“Boolean independence” and the authors cite my old paper [1]. As this paper
is not well known , I was asked to present it at the workshop.

Pressure broadening is a stochastic Stark effect: due to fluctuating electrical
fields a spectral line coming from a plasma appears broadened. One considers an
atom and the transition between two energy levels, which might be degenerate.
The electrical field is generated by the electrons passing by. The electrons are
assumed to be independent, they form a Poisson point process , they move on
straight lines with constant velocity and their directions are uniformly distributed
on the unit sphere. The mathematical problem comes from the fact, that the
interactions with the atom overlap in time. The time of nearest approach to the
atom is called impact time, the vector from the atom to the electron at the nearest
approach is called impact parameter. If the distance between the impact times
is very big, then the interactions are independent and the overlapping can be
neglected. These considerations suggest a cluster expansion.

It is not the point, to present here the main features and the result of the
theory. Instead I want to describe the principle of the cluster expansion and a
typical example.

We consider intervals of the form

A = (k, k + 1, · · · , l − 1, l)

in N. We say that A1, · · · , AK form an interval partition of A and write

A = A1 ◦A2 ◦ · · · ◦AK
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if

A1 = (k, · · · , l1),

A2 = (l1 + 1, · · · , l2),

...

AK = (lK−1 + 1, · · · , lK = l).

We form the free algebra A generated of all the intervals of the form A and define
the cumulants recursively by the formula

A =
∑

A1◦···◦AK=A

[A1] · · · [AK ].

That implies

[A] =
∑

A1◦···◦AK=A

(−1)K+1A1 · · ·AK .

We define the splitting operator

Pm(k, · · · , l) =

{
(k, · · · ,m)(m+ 1, · · · , l) for k ≤ m < l

(k, · · · , l) otherwise

and extend it to an homomorphism A → A.We obtain

Pm[k, · · · , l] =

{
0 for k ≤ m < l

[k, · · · , l] otherwise
.

These equations are special cases of relations holding in partially ordered sets [2],
related to the names ζ-function and Moebius function.

Assume, that the electrical field strength due to an electron with impact time
0 and impact parameter p and direction v is given by ϕ(ζ)(t) with ζ = (p, v). We
truncate and assume, that ϕ(ζ)(t) = 0 for |t| > τ/2, p > ̺. The Hilbert space
is the line space H, the tensor product of the two eigenspaces of the Hamiltonian
between which the transition takes place. The effect of electrons with impact
parameters ζk, · · · , ζl and impact times tk < · · · < tl is at time t

h(ϕ(ζk)(t− tk) + · · · + ϕ(ζl)(t− tl))

where h is a function from R3 into the space of hermitian operators in the finite
dimensional line space H with the property, that h(0) = 0, e.g. a linear function
or a quadratic function. If k ≤ m < l and tm+1 − tm > τ then

h(ϕ(ζk)(t− tk) + · · · + ϕ(ζl)(t− tl)) = h(ϕ(ζk)(t− tk) + · · · + ϕ(ζm)(t− tm))

+ h(ϕ(ζm+1)(t− tm+1)) + · · · + ϕ(ζl)(t− tl)).

Due to the truncation of the impact parameter p there exists a constant c such
that the difference between two impact times is distributed with respect to an
exponential law with parameter c, i.e.

probability{tk+1 − tk ∈ (t, t+ dt)} = ce−ctdt.
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The time differences are independent and the ζk are independent identical dis-
tributed on R3 × S2.

We want now to discuss a part of the problem, which is relevant for the line cen-
ter. Assume a sequence of independent random variables u1, u2, · · · exponentially
distributed with parameter c . Denote by Θ the right shift, so (Θ(s)ϕ(ζ))(s) =
ϕ(ζ)(t − s). Define for A = (k, · · · , l)

U(A) = uk + · · · + ul

Φ(A) = h
(
ϕ(ζk) + Θ(uk)ϕ(ζk+1) + · · · + Θ(uk + · · · + ul−1)ϕ(ζl)

)

S(A) =
∏+∞

−∞
(1 + iΦ(A)(t)dt)

α(A) = δU(A)S(A)

where δU(A) is the point measure in the point U(A) and the product integral
∏

has to be read from the right to the left with increasing time. If um > τ for
k ≤ m < k, denote A1 = (k, · · · ,m), A2 = (m+ 1, · · · , l) and obtain

U(A) = U(A1) + U(A2)

Φ(A) = Φ(A1) + Θ(U(A1))Φ(A2)

S(A) = S(A2)S(A1)

α(A) = α(A2) ∗ α(A1),

where ∗ denotes the usual convolution. Extending α to the algebra A one gets in
this case α[A] = 0. After some straight forward calculations one obtains

E(A(1) +A(1, 2) +A(1, 2, 3) + · · · ) =
α

δ − α
= α ∗ (δ − α)∗−1

α = α1 + α2 + α3 + · · ·

αk = Eα[1, 2, · · · , k].

As α[1, 2, · · · , k] = 0 if ui > τ for any of the ui, i = 1, · · · , k − 1 the L1- norm of
αk is ≤ 2k−1(1 − e−cτ )k−1 and the sum defining α converges for cτ ≤ ln 2.
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Transformation of Quantum Lévy Processes

Michael Schürmann

Let (B,∆, δ) and (C,Λ, λ) be two dual semigroups in the sense of D. Voiculescu
[Voi] with comultiplications ∆,Λ and counits δ, λ. Suppose that there is also given
a *-algebra homomorphism κ : C → B such that

δ ◦ κ = λ.

Then, if ψ is the generator of a quantum Lévy process (QLP) jst on B in the
sense of [BGSch2], ψ ◦ κ is the generator of a QLP kst on C. The QLP kst can be
constructed from the QLP jst by a ‘convolution product integral’.
Applying this construction to the dual semigroups (T(B0),T(∆0),T(0)) and
(T(B0), T(ι1 + ι2), T(0)), it can be seen that jst can be realized on a Fock space
(the type of which depends on the chosen independence) and that the vacuum
vector is cyclic for this realization.
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[BGSch2] Ben Ghorbal, A., Schürmann, M.: Quantum Lévy processes on dual groups. Math. Z.
251, 147-165 (2005)
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Theory of Integration in Izumi-Srinivasan Generalized CCR Flows

Kalyan B. Sinha

(joint work with R. Srinivasan)

This is an account of a preliminary attempt to formulate the concepts of adapted
ness and integration in the context of the theory of generalized CCR flow, con-
structed by Izumi and Srinivasan [1] as examples of a type III product systems.

In this set-up, we shall work in H = L2(R+)R (for our purposes, the multiplicity
space K is not so important) and we are given two Co-semi groups T = (Tt)t≥0,
S = (St)t≥0 in H (of which S is the right shift in L2(R+)R ,i.e (Stf)(x) = f(x− t)
for x > t,= 0 for x <= t) satisfying,

(i) T ∗
t St = I and

(1) (ii)Tt − St ǫ B2(H)forall t ≥ 0.

Then the flow ϕ defined by:

(2) ϕt(W (f)) = W (StfR + iTtfI)

with f = fR + ifI , gives a generalized CCR flow which extends to a Eo-semi
group on B(Γ(HC)).

Thus there are two different “shifts”-one for the real part and the other for
the imaginary part; hence, we can expect that the definition of ‘past’ and ‘fu-
ture’ will be different for real and imaginary parts, unlike the traditional Hudson-
Parthasarathy theory.

Set pt = I − StT
∗
t , t≥0 Then one has .

LEMMA 1: (i) pt is a real idempotent, not necessarily self-adjoint,
(ii) Range(pt) = ker(T ∗

t ) and Range (p∗t ) = ker(S∗
t ),

(iii) pt+s = ps + SsptT
∗
t (and we write ps

t = Sspt−sT
∗
s , for 0≤s < t),

(iv) psp
s
t = ps

tps = 0 for 0≤s < t,
(v) pspt = ptps = ps

V

t,
(vi) pt − p∗t = 2i Im (Tt − St)S

∗
t ǫB2(H) and pt = p∗t if and only if Tt = St.

As has been argued in [1] we can assume without loss of generality that p∞ = I.

We write ft = ptfR + ip∗t fI and f t = ptfR + ipt∗fI

(3) where pt = I − pt = StT
∗
t .

so that f = ft + f t in HC

The Weyl operators behave well with respect to this splitting.

LEMMA 2:(i) W (f) = W (ft)W (f t) = W (f t)W (ft) for fǫHC and every t ≥ 0.

(ii) More generally, if we set fs
t = ps

tfr + ips∗

t fI ,W (fs
t ) and W (fs′

t′ ) commute if

(4) [s, t] ∩ [s′, t′] = ∅.
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If we now set Bs,t= the von Neumann algebra generated by

{
W (fs

t )|fǫL2(R+)C

}
,

then it is clear that B′
t = Bt where we have set Bt = B[o,t] and Bt = B[t,∞].

Because of the structure given above, it seems that the integrators here would
be the “position” and “momentum” operators rather than the annihilation and
creation operators in Γ(HC). We define P (fR) and Q(fI) as

W (λfR) = eiλP (fR) andW (iλfI) = eiλQ(fI ) and note the commutation relation:

(5) [P (fR), Q(gI)] = 2i

〈
fR, gI

〉
,

with the other P-P and Q-Q commutators vanishing .With this definition, it is clear
that both P (ps

tfR) and Q(ps∗

t fI) commute with B[s′, t′] whenever [s, t]∩ [s′, t′] = ∅

We say that a family X≡{Xt, t≥0} of bounded operators in Γ(HC) adapted
with respect to the filtration Bt if XtǫBt ∀t ≥ o and it is said to be regular if
t→Xt is strongly continuous.

With these concepts, one can next define the integrals of an adapted process
with respect to the integrators as above. However, the convenient expressions are
yet to be derived and suitable “quantum Ito formula” has to emerge.
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Some Comments on Product Systems and Markov Processes

Luigi Accardi

Following our suggestion, in the conference talks [1, 2] it has been pointed out how
the product system of Hilbert modules associated with the Markov semigroup of
a classical stationary Markov process over R+ can be obtained directly from the
process.

In this talk, as a motivation, we first describe a version for the nonstationary
case, and then generalize this to Markov fields. The field version requires a concise
definition of a family of admissible subsets of Rd which allows, in some sense, to
resemble that some subsets are “further outside” than others. After giving such a
definition, we obtain a far reaching generalization of product systems indexed by
subsets of Rd with an interior and an exterior boundary which consists of Hilbert
bimodules over the two local algebras related to the two boundaries.

In the end, we make some considerations about time reflection. We suspect a
deep interelation of time reflection with the commutant of von Neumann bimod-
ules, and pose it as an open problem to investigate this connection.
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Open Problems

In this section we reproduce several open problems that were discussed at the
Mini-Workshop.

B.V.R. Bhat: Type of inductive limits of finite-dimensional

inclusion systems

Let {Et : t ∈ R+} be a finite-dimensional inclusion systems, i.e. a family of finite-
dimensional Hilbert spaces with isometries

βs,t : Es+t : Es+t → Es ⊗ Et, , s, t ≥ 0,

satisfying the usual assumptions of associativity, etc. Then {Et : t ∈ R+} can be

embedded into a product system {Êt : t ∈ R+}.
Question: Is it possible to get product systems of type II or III in this way?
It may be noted that finite dimensional inclusion systems of CP semigroups on

Mn give rise to type I product systems. For more information about the context
of the problem and references see the abstract of the Bhat’s talk on page 526.

Claus Köstler: Does spreadibility imply braidability?

In [1, 2], exchangeability, braidability, and spreadibility for sequences of quantum
random variables were introduced. It was shown that they imply tail indepen-
dence. Furthermore, exchangeability implies braidability, and braidability implies
spreadability. We have constructed examples that prove that these notions are
stronger than tail independence and that spreadability does not imply exchange-
ability. In view of these results, it remains still open if spreadability implies already
braidability.
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Volkmar Liebscher: On Quantum Independence

One might argue, that de Finettis Theorem (see talk of Claus Köstler) may serve
as a basis to define independence of algebras under certain states.

To make the idea clear, we propose the following definition for two subalgebras
B, C ⊆ A in an algebraic probability space (A, ϕ).

Note that the state ϕ on A induces a state ϕ ◦ (ıB ⊔ ıC) on the free product
B ⊔1 C of the two subalgebras, as a consequence of the universal property of the
free product.

B
jB //

ıB
""FFF

FFF
FFF

B ⊔1 C

ıB⊔ıC

��

C
jCoo

ıC
||yy

yyy
yy

yy

A

ϕ

��
C

If we embed the subalgebras into two different (“independent”) copies of A inside
A⊔1 A⊔1 · · · , e.g., the first and the second, then any state ϕ∞ on A⊔1 A⊔1 · · ·
induces a state ϕ∞ ◦

(
(j1 ◦ ıB) ⊔ (j2 ◦ ıC)

)
on the free product B ⊔1 C.

B
jB //

ıB

��

B ⊔1 C

(j1◦ıB)⊔(j2◦ıC)

��

C
jCoo

ıC

��
A
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A⊔1N = A⊔1 A ⊔1 · · ·

ϕ∞

��
C

We will call B and C independent, if there exists an extremal exchangeable (i.e.
S∞-invariant) state on A ⊔1 A ⊔1 · · · such that the two states

ϕ ◦ (ıB ⊔ ıC) and ϕ∞ ◦
(
(j1 ◦ ıB) ⊔ (j2 ◦ ıC)

)

coincide. In the classical (i.e. commutative) case, exchangeability and extremality
imply that ϕ∞ is a product state (therefore corresponding to a product measure),
and we recover the usual notion of independence.

This definition leaves several open questions behind:

(1) We break the dependence on the embedding algebra A explicitely. The
reason is that possibly the embedding A →֒ A′ need not map the set of

extremal S∞-invariant (or exchangeable) states on A′⊔1N
onto a superset

of the extremal S∞-invariant states on A⊔1N. Is this caution necessary?
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(2) Is the above definition natural, i.e. associative and invariant under algebra
morphisms?

(3) Do the 5 natural products obey this definition? The tensor product should
do due to [1]. The monotone products are not symmetric, so it seems likely
that they are not covered by the above definition. For the free and boolean
products, extremality is open but expected.

(4) Are there examples besides the 5 natural products?
(5) What changes, if we substitute the condition “extremal S∞-invariant” by

“S∞-invariant with trivial tail field”? In the tensor case, both conditions
are equal.

(6) It is not clear to me, whether something changes in the category of von
Neumann algebras (only there the tail-field makes full sense) and normal
states or C∗-algebras.
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Orr Shalit: Embedding a subproduct system in a product system

Let S be a semigroup. A subproduct system (over S) is a bundle of W∗-correspon-
dences X = {X(s)}s∈S over the W∗-algebra M := X(0), such that there exist
coisometric bimodule maps

Us,t : X(s) ⊗X(t) → X(s+ t)

that compose associatively, i.e.,

Us+t,r

(
Us,t ⊗ IX(r)

)
= Us,t+r

(
IX(s) ⊗ Ut,r

)
.

This notion has been formalized in [8], but it orginates from Arveson’s works [1]
and [2].

A subproduct system is called a product system when each map Us,t is a unitary.
Products systems of Hilbert spaces (over the semigroup R+) have been introduced
in [1] in relation to noncommutative dynamics. See [3] for a detailed account of
the theory of product systems of Hilbert spaces, or [9] for a survey of product
systems of Hilbert C∗-correspondences (over the semigroup R+). Product systems
over other semigroups were probably first studied by Fowler, see [5].

Definition 1. Let X and Y be subproduct systems of M correspondences (M a
W∗-algebra) over the same semigroup S. Denote by UX

s,t and UY
s,t the coisometric

maps that make X and Y , respectively, into subproduct systems. X is said to be
a subproduct subsystem of Y (or simply a subsystem of Y for short) if for all s ∈ S
the space X(s) is a closed subspace of Y (s), and if the orthogonal projections
ps : Y (s) → X(s) are bimodule maps that satisfy

(1) ps+t ◦ U
Y
s,t = UX

s,t ◦ (ps ⊗ pt) , s, t ∈ S.
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Embedding a subproduct system as a subsystem of a product system plays an
essential role in the dilation theory of CP-semigroups [8]. It is easy to see that
every subproduct system X over N is a subproduct subsystem of the product
system {X(1)⊗n}n∈N. It is harder to show that every subproduct system over R+

is a subsystem of a product system - this has been done in [4, 6, 7]. It seems that
the same result for N2 follows from [10]. In [8] we showed that every subproduct
system of finite dimensional Hilbert spaces over Nk is a subproduct subsystem of
a product system over Nk. Can this always be done?

Explicitly, let S be either Nk or Rk
+. Is every subproduct system over S a

subproduct subsystem of a product system? A positive solution will immediately
lead to new dilation theorems for CP-semigroups over Nk and Rk

+. A negative
answer will be fantastically interesting.
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Michael Skeide: Some Problems

On the Universality of the Module Approach. Let T be a Markov semigroup
on a unital C∗ or von Neumann algebra B. Suppose we have a general dilation of
T to an E0 or automorphism semigroup ϑ on a C∗ or von Neumann algebra A. In
the introduction we proposed to pass, via GNS-construction for the expectation
p : B → A, to a dilation where the semigroup ϑ acts on a Ba(E) and where
p = 〈ξ, •ξ〉 for some unit vector ξ ∈ E.
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B
Tt //

i

��

B

A
ϑt

// A

p

OO

 

B
Tt //

i

��

B

Ba(E)
ϑt

// Ba(E)

〈ξ,•ξ〉

OO

To do so, it is necessary and sufficient that: Firstly, ϑ respects the kernel of the
GNS-representation of A on E, so that it gives rise to an E0–semigroup on the
image of A in Ba(E). Secondly, the E0–semigroup on the subset of Ba(E) extends
to all of Ba(E).

We conjecture that this is always possible, at least if the algebra A is not too
big. By this we mean, for instance, that A is generated by the image of B and its
time shifts. (If A has parts that are essentially unrelated to the dilation, then it
should be possible to violate our requirements.) Our conjecture is supported by
the observation, formulated very carefully, that there is not a single example of a
dilation where it was explicitly known that our conjecture is false.

Our first open problem is: Prove the conjecture or, otherwise, give a counter
example. For that is is indispensable to find a “good” formulation for that A is
not “too big”.

Suppose we have an automorphic dilation ϑ (after the first part, acting on
Ba(E)). In all existing cases, the automorphism semigroup ϑ will be inner, that
is, will be implemented by a unitary semigroup in Ba(E). Unfortunately, the
product system of an inner automorphism semigroup is the trivial one.

Our second open problem asks if every such inner automorphic dilation (fulfill-
ing suitable minimality conditions) may be restricted to a proper E0–semigroup
on the “future part” of the algebra Ba(E). More precisely, suppose that E+ =
spanϑR+

◦i(B)ξ ⊂ E, so that ϑ gives rise to an E0–semigroup ϑ′ on algϑR+
◦i(B) ⊂

Ba(E+). Does this E0–semigroup extend to all of Ba(E+)? Moreover, does there
exist a unital embedding of Ba(E+) into Ba(E) such that the extension of ϑ′ may
be identified with the restriction of ϑ to Ba(E+) ⊂ Ba(E)? Note that by the
representation theory [MSS06], this means that E factors as E = E+ ⊙F for some
multiplicity bimodule F . As a case study, we propose to investigate the two-sided
time shift on the q–Fock space over the whole axis R.

A positive answer to the first question will show that all dilations maybe dis-
cussed conveniently in the language of Hilbert modules. A positive answer to the
second question shows that even if we start with an automorphic dilation, then we
always find a proper E0–semigroup on a subalgebra Ba(E+). Both together would
show that our approach proposed as the main theme of the workshop — discuss
dilations in terms of Hilbert modules and classify them by product systems — is
universal.

Problems around Spatial Markov Semigroups. A Markov semigroup is spa-
tial , if it dominates and elementary CP-semigroup, that is, if there is a (suffi-
ciently continuous) semigroup c =

(
ct

)
t∈R+

of elements in B such that the differ-

ence Tt − c∗t • ct is CP for all t. Spatial Markov semigroup on a C∗–algebra are
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always uniformly continuous with a Christensen-Evans generator

L(b) = 〈ζ, bζ〉 + bβ + β∗b,

where ζ is an element in a Hilbert bimodule F and β ∈ B. Their product systems
always embed into a time ordered product system of Fock modules (which is
even completely spatial), but they need not coincide; see [BLS08]. Spatial Markov
semigroups on von Neumann algebras have a richer structure. Their product
systems are always spatial. But only if the semigroup is uniformly continuous we
can show that it embeds into and, therefore, coincides with a time ordered product
system; see [BBLS04]. There is a huge literature on spatial Markov semigroups
on B(H).

We collect some open questions. Are there nontrivial nonspatial Markov semi-
groups on B(H)? (By nontrivial we mean that they are not nonspatial E0–semi-
groups or just tensor products of such with a spatial Markov semigroup.) Are
there spatial Markov semigroups on B(H) whose product system is non-Fock (un-
like quantum Ornstein-Uhlenbeck)? Which nonspatial Markov semigroups on a
von Neumann algebra B ⊂ B(H) admit spatial extensions to B(H)? (Recall that
the product system of the Markov semigroups on L∞(R) of classical Brownian
motion and classical Ornstein-Uhlenbeck processes are all nonspatial, but their
quantum extensions to B(L2(R)) are even type I.) More generally, if a Markov
semigroup T on B admits an extension to C ⊃ B, then the product system of T
sits inside the product system of its extension. In how far such an embedding does
change the basic classification of the product system?

There is the theory of form generators for Markov semigroups on B(H); see
[CF98]. They are all spatial. Are these all spatial Markov semigroups, or are
there other spatial ones? Some of them could be dilated to a symmetric Fock space,
others not. Are the latter possibly candidates for Markov semigroups that are not
type I? Form generators of Markov semigroups on B(H) resemble the Lindblad
form of the uniformly continuous case. Do generators of spatial Markov semigroups
on general von Neumann algebras resemble the Christensen-Evans form [CE79] of
bounded generators? Is it possible to adapt the theory of [CF98] to general von
Neumann algebras?

n-Dimensional Free Flows and Their Units. We mentioned already several
open problems about free flows and their free and tensor product systems in our
talk; see Page 528. Here we wish to propose a generalization to n–parameter free
flows. This is closely related to the talks of Shalit (Page 519) and Skalski (Page
531).

The idea is the following: Once we have an n–parameter E0–semigroup ϑ on
Ba(E), one may try to find all (unital) units of its product system. Such a unit
gives, then, necessarily rise to an n–parameter Markov semigroup. Question: Are
these semigroups products of strongly commuting (see Shalit’s talk) one-parameter
semigroups or not?
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To follow this idea it is, therefore, necessary to construct n–parameter E0–semi-
groups as candidates. We propose a general procedure starting from free product
systems, and pose the open problem to put the above program into practise.

Suppose, we have n one-parameter free product systems Ei∗. (We described in
our talk, how to obtain them starting with n spatial product systems.) Then the
free products

E(t1,...,tn) := E1 ∗ . . . ∗ En

form an n–parameter free product system. Doing the inductive limit over the
reference vector (as discussed for the one-parameter case in our talk), we obtain
an E0–semigroup (a noise, actually). In the case of the full Fock module over
E = L2(Rn

+, F ), we obtain the E0–semigroup induced by the n–dimensional right
shift. We know all the units in the one-dimensional case (see [Ske06b]), and it
appears natural to adapt the same methods to more parameters. We do not
exclude the possibility that (due to the high degree of noncommutativity in free
products) there are no units but the trivial one (consisting of the reference vectors).
We simply do not know. That is why we pose it as an open problem.

Boris Tsirelson: Can we get type II Arveson systems from Lévy

processes?

The Arveson system of a Lévy process on R is always of type I, i.e. the units
are total. The same holds for Lévy processes with values in Lie groups, since
they can be constructed from an equivalent noise in the tangent space, i.e. Lie
algebra. A similar result was shown for Brownian motions in the unitary group
U(H) of an infinite-dimensional separable Hilbert H , which is continuous in the
strong topology, cf. [1]. Lévy processes with values in diffeomorphisms groups also
give always rise to type I Arveson systems. On the other hand, it is possible to
construct Lévy processes with values in semigroups, which give type II Arveson
systems, cf. [2], Sections 2c, 2d, 4d.

It is unknown if this can happen for Lévy processes with values in groups. E.g.,
do there exist Lévy processes with values in a group of homeomorphisms (e.g. of
the circle) whose Arveson system is of type II? This question was asked in 1998,
see Conjecture 1.11 in [1], and is still open, see Sect. 8a in [2].
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