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Abstract. The objective of this workshop was to bring together researchers
working in multiscale simulations with emphasis on multigrid methods and
multiscale finite element methods, aiming at chieving of better understanding
and synergy between these methods. The goal of multiscale finite element
methods, as upscaling methods, is to compute coarse scale solutions of the
underlying equations as accurately as possible. On the other hand, multigrid
methods attempt to solve fine-scale equations rapidly using a hierarchy of
coarse spaces. Multigrid methods need “good” coarse scale spaces for their
efficiency. The discussions of this workshop partly focused on approximation
properties of coarse scale spaces and multigrid convergence. Some other pre-
sentations were on upscaling, domain decomposition methods and nonlinear
multiscale methods. Some researchers discussed applications of these meth-
ods to reservoir simulations, as well as to simulations of filtration, insulating
materials, and turbulence
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Introduction by the Organisers

The workshop Numerical Upscaling for Flow Problems: Theory and Applications,
organized by Achi Brandt (Rehovot), Yalchin Efendiev (College Station), and
Oleg Iliev (Kaiserslautern) was held March 1st–March 7th, 2009. This meeting
was attended by 16 participants with broad geographic representation from around
the world. The workshop blended leading scientist whose essential contribution
have shaped the field of numerical upscaling with enthusiastic young researchers.



682 Oberwolfach Report 12

Apart from many fruitful discussions, the workshop succeeded in illuminating the
link between multiscale and multigrid methods, one of its major goals. While it
has long been recognized that there are similarities and these areas can benefit
from each other substantially, the many blackboard discussions and brainstorming
sessions helped the participants understand the emerging problems in the field
from a multifaceted perspective.
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Abstracts

The Mixed Variational Multiscale Method and Aspects of

Convergence for Heterogeneous Porous Media

Todd Arbogast

The Variational Multiscale Method (VMM) [11, 12, 7, 6, 3] is a technique for
separating fine and coarse scales in variational problems. An important application
is to the problem of flow in heterogeneous porous media, in which the permeability

K varies on a small scale ǫ. This system is governed by an elliptic problem written
in variational form as: Find p ∈ W and u ∈ V such that

(K−1u,v) = (p,∇ · v) ∀ v ∈ V (Darcy’s law),(1)

(∇ · u, w) = (f, w) ∀ w ∈W (conservation of mass),(2)

where

W = L2/R and V = H(div) = {v ∈ (L2)3 : ∇ · v ∈ L2, v · ν = 0 on ∂Ω}.

The idea of the VMM is to separate scales through a Hilbert space decomposi-
tion. We define a coarse computational grid on Ω, and let W = W̄ ⊕W ′, where
the coarse pressure space is

W̄ = {w̄ ∈W : w̄ is constant ∀ coarse elements E}

and the fine scales are W ′ = W̄⊥. The space V of velocities is decomposed more
interestingly as V = V̄ ⊕ V′, where

V̄ = {v ∈ V : ∇ · v ∈ W̄},

V′ = {v′ ∈ V : ∇ · v′ ∈ W ′, v′ · ν = 0 on ∂E ∀ E},

so that V′ is localized and conservation is maintained: ∇·V̄ = W̄ and ∇·V′ = W ′.
By separating coarse and fine scales, we see that the full solution is

p = p̄+ p′ and u = ū + u′.

Separating scales in the test functions, we obtain a coupled set of equations that
respect the scales in the problem. In fact, given the coarse solution (ū, p̄)—actually,
only ū is needed for the simple problem considered—we can solve for the fine part
as an affine operator, so we have the relation

(3) p = p̄+ p′(ū) and u = ū + u′(ū),

which is posed entirely on the coarse scale. In this way, we can remove the fine
scales from the coarse equations, which can be solved for (ū, p̄), and (3) gives the
full solution. The modified course problem is an elliptic system, with antidiffusive

fine-scale correction terms.
Finite element approximation proceeds by replacing W̄ × V̄ by the lowest order

Raviart-Thomas (RT0) [14] or BDM1 [8] mixed spaces W̄h × V̄h (and solving the
local problems for (p′(v̄),u′(v̄) in some way—we assume this is done exactly here,
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since there is no scaling issue involved in solving these small local problems). The
space

V̂h = {v̄h + û′(v̄h) : v̄h ∈ V̄h},

where û′ is the linear part of the operator u′, may be viewed as a multiscale
finite element space [10, 9, 5], which uses the original, rather than the fine-scale
modified, variational formulation. That is, we can view the fine scales as modifying
the coarse equations, and solve for the coarse part of the solution, or we can modify
the finite element spaces and solve for the full solution directly.

On a rectangular coarse grid, the multiscale finite elements that result from RT
have one degree of freedom associated with each edge e of the grid. Let Ee be the
two coarse edges containing e; then the basis function ve solves the local problems

ve = −K∇φe in E,(4)

∇ · ve = ±|e|/|E| in E,(5)

ve · ν =

{
0 on ∂E \ e,

1 on e,
(6)

which is solved on the two elements E ⊂ Ee and adjoined. This element is known
to converge optimally [4], and with respect to the heterogeneity scale ǫ [9, 5].

A finite element due to Aarnes et al. [1, 2] is defined by solving on all of the
dual-support domain Ee:

ve = −K∇φe in Ee,(7)

∇ · ve = ±|e|/|E| in E ⊂ Ee,(8)

ve · ν = 0 on ∂Ee.(9)

Even though numerical tests show that this is a useful element in practical cases
of interest, it does not reproduce constants when K exhibits anisotropy, and it so
cannot converge in any reasonable sense.

A simplified proof of convergence with respect to the heterogeneity scale ǫ of the
standard multiscale finite elements was developed. It is based on the microstruc-
ture theory of homogenization [13], which gives a smooth approximation to (u, p)
and a higher order corrector. Using the simplified proof, the place where the
Aarnes element fails was noted. A modified element based on the homogenization
microstructure was used to define a similar dual-support element that does not
have the same convergence problem.
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Principles of Systematic Upscaling

Achi Brandt

General. Systematic upscaling (SU)is a comprehensive methodology for the
accurate derivation of equations (or statistical relations) that govern a given phys-
ical system at increasingly larger scales. Starting at a fine (e.g., atomistic) scale
where first-principle laws (e.g., differential equations) are known, SU advances,
scale after scale, to obtain suitable variables and operational rules for simulating
the system at any large scale of interest. SU combines the complementary advan-
tages of two major multilevel computational paradigms that have emerged over
the last 35 years: multigrid in applied mathematics and renormalization group
in theoretical physics. It includes systematic procedures to iterate back and forth
between all the scales of the physical problem, with a general criterion for choosing
appropriate variables that operate at each level, and general techniques to derive
their operational rules. Indefinitely large systems can in this way be simulated,
with computation at each level being needed only within certain rather small win-
dows, so the computations are also free of the slowdowns usually associated with
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the simulations of very large systems. No scale separation is assumed; unlike con-
ventional ad-hoc multiscale modelling, SU is in principle generally applicable and
bears fully-controlled accuracy.

Classical multigrid. For linear or mildly nonlinear systems, SU can use
the nonlinear multigrid (FAS multigrid) and algebraic multigrid (AMG) methods,
which are based on coarse-to-fine interpolation (including the new adaptive ways
for deriving interpolation, such as Bootstrap AMG [1,§17.2]). This can in partic-
ular serve as a very effective general method for numerical homogenization. This
approach allows for increasingly finer levels to be confined to progressively more
specialized subdomains where they are needed (as in [2,§§7–9]). It also permits
transitions between widely different physical formulations, e.g., from atomistic fine
level to finite elements at the next coarser level (as in the quasi-continuum method
used in materials science, a first version of which had actually appeared already
in [3, §1.1]).

Current SU. For highly nonlinear and discrete-state systems, however, it
turned out that interpolation-based methods can no longer be efficient (see [1,
§13.1]). So instead, the more general SU approach employs the following multi-
scale principles.

(1) The simulation at each level is a sequence of local steps, such as Gauss-
Seidel relaxation in energy-minimization problems, or Monte Carlo simu-
lation in equilibrium calculations, or explicit time steps, etc.

(2) Coarse variables can each represent an average of several neighboring vari-
ables of the next finer level, or a count of the number of (next-finer-level)
particles in a cell of a given lattice, and/or the average kinetic energy of
those particles, etc. The choice of adequate variables is governed by the
criterion below (see #4).

(3) Coarse-to-fine transition is generally based on “compatible simulations”,
i.e., simulations at the fine level such that keep the coarse variables un-
changed. This process (completely missed in classical renormalization
group methods) is very essential for choosing the coarse variables (see #4)
and for coarse-to-fine acceleration (as in multigrid) and/or for confining
the fine simulations to small windows (see #7).

(4) General criterion of adequacy of the set of coarse variables consists of
requiring fast convergence (or equilibration, etc.) of the compatible sim-
ulation. This criterion (already extensively used in AMG [4]) is easy to
apply and very effective in searching for good coarse variables. It ensures
fast coarse-to-fine transitions and the feasibility of the following processes.

(5) Derivation of coarse operational rules (equations, or a governing energy
or Hamiltonian functional) is based on requiring simulations at he coarse
level to yield the same averages as simulations at the next finer level, for a
given set of “observables”. A general fast iterative method to achieve this
has been developed (see [6], or [1, §§14.5–14.7] and [5], for example).

(6) Error estimates are obtained in terms of comparing averages at coarse
and fine simulations, for a new set of observables. If large coarse-vs.-fine
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discrepancy is detected, it directly leads to corrections (e.g., via adding
terms to the governing functional).

(7) Multiscale windows. Each fine level is only simulated in some restricted
”windows” (subdomains of the domains on which the next coarser level
is defined). Around the boundary of each window the fine level is kept
compatible with the coarse (see #3). the fine simulations supply the op-
erational rules to the next coarser level (see #5), while that coarser level
accelerates the simulations and determines where and when new fine-level
windows should be opened. If the scale ratio between each pair of succes-
sive levels is kept suitably bounded, these inter-level iterative interactions
should quickly settle into overall consistency (like the fast convergence of
multigrid cycles). The number and size of windows at each level does not
depend on the overall (macroscopic) size of the studied system.

See [6] for more details.
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Towards Physics-Oriented Algebraic Multigrid for Systems of Partial

Differential Equations

Tanja Clees

(joint work with SAMG Team at SCAI (Klaus Stüben), Herman and Johan
Deconinck, Leonhard Ganzer, Stephan Matthäi, Mary Wheeler)

Classical AMG (for a history and a detailed introduction, see [1]) is known to
provide efficient and robust hierarchical solvers or preconditioners for large classes
of systems of linear equations (matrix problems) Av = b, an important one being
the class of (sparse) linear systems with matrices A which are “close” to being
M-matrices. Problems like this widely occur in connection with discretized scalar
elliptic PDEs. In such cases, classical AMG is very mature and can handle mil-
lions of variables much more efficiently than any one-level method. Since explicit
information on the geometry is not needed, AMG is especially suited for unstruc-
tured grids both in 2D and 3D. The coarsening process is directly based on the



690 Oberwolfach Report 12

connectivity pattern reflected by the matrix (and its weighted and directed graph),
and interpolation is constructed based on the matrix entries. Restriction is simply
defined to be the transpose of interpolation, regardless whether the matrix to be
solved is symmetric or not. The Galerkin coarse-level matrix An+1 for level n+ 1
is computed as

An+1 := In+1
n AnI

n
n+1

with In
n+1 being the interpolation from level n + 1 to n, and In+1

n := In
n+1 the

restriction from level n to n+1, starting from level 1 which represents the original
matrix equation Av = b.

However, more than just straightforward extensions of these “scalar” AMG
methods are required to efficiently solve linear systems stemming from most prac-
tically important systems of PDEs involving two or more scalar functions. For
instance, this is the case for semiconductor device simulation and, even more,
for coupled circuit and device simulation. Clees [2] developed a flexible framework
especially for constructing so-called “point-based” AMG (PAMG) approaches suit-
able for various types of strongly coupled PDE systems. This framework is inte-
grated into the (parallel) linear solver library SAMG [3]. Although a reasonable
choice of components depends on the class of applications at hand, considerable
progress has been made during the last years to develop robust solution strategies.
A brief summary is given below.

Detailed results for industrial applications in semiconductor simulation have
been presented in [4, 2], showing that the usage of PAMG preconditioners can yield
efficient solution processes for three very different types of PDE systems, namely
linear elasticity (stress analysis), reaction-diffusion and drift-diffusion equations. A
first physics-oriented concept for setting up the AMG hierarchy has been developed
there.

Work [5, 6] on automatic and adaptive solver- and parameter-switching strate-
gies (α-SAMG) has considerably extended robustness and efficiency of SAMG, in
particular for mixed hyperbolic-elliptic PDE systems. The smoothing (or hybrid
smoothing and solving) strategy developed in [5] already exploited physical prop-
erties of the systems to some extent (“surfing on characteristics” for convective
parts).

The very recent [7] demonstrates the effectiveness of a new adaptive physics-
oriented smoothing framework (α-smoothing), integrated into α-SAMG, particu-
larly for PD(A)E systems with drift and diffusion terms and network equations.
First benchmarks with α-SAMG integrated into the coupled circuit and device
simulator MECS show the potential of the resulting package. More details shall
be published in [8]. Ongoing investigations deal with extentions of α-smoothing
as well as a strengthened connection with and/or influence on the coarsening and
interpolation strategy.

Regarding comparisons to “standard” linear solvers, employed in industrial en-
vironments, α-SAMG outperforms, for instance, the efficient direct linear solver
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PARDISO [9] as well as standard iterative one-level solvers, as for instance de-
scribed in [10, 11], for many problems of relevant size and physical complexity, not
restricted to the applications mentioned above.

The first part of the talk concentrated on an introduction into classical AMG,
in particular, its coarsening and interpolation strategies for setting up the coarse-
level systems along with transfer operators. The second part introduced and dis-
cussed the PAMG framework, α-SAMG and the very recently developed first α-
smoothing.

A coarse-level system created by means of an AMG method can be seen as an
upscaled linear system of equations, and, hence, AMG as a numerical upscaling
technique. Further research shall concentrate on numerical and “physical” prop-
erties of the resulting coarse-level systems, depending on and/or compared with
goals of a concrete upscaling task.
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Experience with Systematic Upscaling of Two-Dimensional Vortical

Flows

Boris Diskin

(joint work with Achi Brandt)

This abstract summarizes recent experiences with Systematic Upscaling schemes
for simulating vortical flows described by extended 2D Navier-Stokes equations:

(1)

Wt + UWx + VWy − ν∆W − µΨ = 0,
∆Ψ −W = 0,
Ux + Vy = 0,
Uy − Vx −W = 0,

with periodic boundary conditions. Here, W is the vorticity, U and V are the
velocity components, Ψ is the stream function, ν is the physical viscosity coeffi-
cient, and µ is the hypoviscosity coefficient. Hypoviscosity is introduced to take
energy from large (smooth) vortexes and, thus, prevent inverse cascading. In all
tests considered, µ = 0.

The Systematic Upscaling process starts at the viscous scale, at which dis-
cretized Navier-Stokes equations provide an accurate flow description. Increasingly
coarser-scale equations are derived recursively, employing at each scale simulations
in relatively small computational windows. The fine-scale variables and govern-
ing equations are assumed given and accurate. A pair of (not far) separated fine
and coarse scales is considered in a time. Typically, the coarser grid has about
the same number of grid nodes as the finer grid and, with doubled mesh spacing,
covers a larger domain (bigger computational window). Generally in Systematic
Upscaling, the set of coarse variables is a reduced set of quantities (degrees of
freedom) derived from fine-grid solutions. An example of coarse variables is aver-
ages of certain components of the fine-grid solutions. The set of coarse variables
is considered adequate if there is an efficient reconstruction procedure that allows
reconstructing the fine-grid flow from its set of coarse variables over few time steps,
or at least satisfactorily approximating it. The demonstration of the success of
such a procedure is called a compatibility test. Coarse-scale equations are derived
to provide accurate and efficiently solvable laws for adequate coarse-scale variables.

Major advances

Methodology to choose an adequate set of coarse-level variables has been de-
veloped and tested. Specifically, adequate sets of coarse-level variables and corre-
sponding compatibility tests have been shown for vortical flows at different regimes.
In the case of algebraic systems of equations (such as steady-state flow problems),
the fast recovery is achieved by “compatible relaxation”. For the case of time-
dependent problems, we have developed a compatibility test based on several
compatibilization time steps. These tests proved invaluable in identifying ade-
quate variables to compute flows at very coarse scales.
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The desired timestep-to-meshsize scale ratio for efficient compatibilization has
been identified.

Adequate coarse variables for sufficiently smooth flows on the scale of the coarse
grid can be obtained simply in terms of vorticity averages. The developed compat-
ibility tests showed that with these coarse variables the relative difference between
the reference and reconstructed fine-grid solutions is bounded by the interpolation
errors.

Adequate coarse variables for non-smooth flows are more complicated. It was
shown that vorticity averages alone are not adequate to represent flows with strong
small vortexes on coarse scales. On the (coarse) scales, where the velocity vec-
tor (its direction, in particular) changes much per meshsize or per time step, an
adequate set of coarse variables is obtained by separating the flow into a sum of
idealized vortexes and a background flow. An idealized vortex can in principle be
any local solution to the steady-state Euler equations. For two-dimensional (2D)
inviscid calculations, each idealized vortex can be described by a delta-function
vorticity. For 2D viscous (including high-Reynolds) flows, each idealized vortex is
described by a one-dimensional (1D) radial function. The complete set of coarse
variables consists of idealized vortexes and vorticity averages of the background
flow. It was demonstrated that with these coarse variables the reference and recon-
structed fine-grid flows are indistinguishable after many hundreds of time steps.

Equations for separated flows have been derived, including equations for motion
and radial-shape evolution of idealized vortexes and their interactions with the
background flow. The accuracy of the equations has been verified on a sequence of
increasingly larger domains employing progressively coarser grids, by comparing
on each domain two calculations using two different resolutions. As an example,
the (complicated) motion of the vortex centers has been monitored in fine and
coarse-scale simulations. After several hundred time steps, a typical deviation in
the center positions was smaller than the fine-scale resolution.

Improved accuracy of the separated-flow models has been demonstrated. Even
on levels where vortexes are still well resolved, the new discretization that explicitly
separates vortexes at high-vorticity regions is much more accurate than semi-
Lagrangian calculations, suffering much less from numerical viscosity. The reason
is that each idealized vortex is accurately moving (accurately resting) in its own
field of velocities, and is also accurately modified by the viscosity. In addition
(although less important), advecting other vorticity values (and in particular other
idealized vortexes) in the velocity field of an idealized vortex can accurately be
made along its circular streamlines. So the most violently changing velocity vectors
are accurately accounted for, free of numerical viscosity.

Limitations of the obtained results

Only 2D flows were studied. Experimenting on sufficiently large three-dimen-
sional (3D) grids would be too expensive, cumbersome, and time consuming; so
we have decided to work with 2D models as long as we can learn much from them
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concerning basic concepts of flow upscaling. Real 3D flows would of course require
more elaborate shapes of idealized separated vortexes (cylindrical instead of radial,
described by 2D instead of 1D functions).

Artificial vortex generation. While in 3D turbulence vortexes are naturally
generated by the energy cascade, in our 2D models we had to generate them
artificially, e.g., by introducing them in the initial conditions.

Separated vortex distortion. Current models of evolution of idealized separated
vortexes in the background flow do not account for vortex distortion because of
the difference in the background-flow velocity at the center and at the periphery
of a separated vortex.

Only deterministic flows were studied. Our studies remained strictly in the
realm of deterministic flows. Solution bifurcations (typical in 3D turbulence), and
their upscaling in terms of stochastic terms in the vortex interactions, have not
been investigated yet.

Too small scales. Our upscaling procedures have not yet dealt with such large
scales at which the numerical grids no longer resolve the inter-vortical distances. In
particular, we have not reached the very large scales at which there are many mul-
tiscale vortexes per meshsize, so that upscaling equations at those scales should
combine small-vortex statistics with large-vortex resolution. However, the sys-
tematic approach developed for deterministic steady-state and time-dependent
systems, together with our upscaling approaches for equilibrium statistics devel-
oped earlier, surely provide very useful tools for treatment of those larger-scale
challenges.

Multiscale Problems and Upscaling.Simulation of multiscale filtration

processes

Oleg Iliev

(joint work with Z.Lakdawala, J.Willems, V.Starikovicius,P.Popov)

In the first part of the talk, general issues of the multiscale problems and upscaling
are discussed. In particular, an attempt is done to classify the multiscale prob-
lems with respect to the upscaling goals and the upscaling costs. This preliminary
classification looks as follows:
• Approaches for problems with separable scales (fine-to-coarse, coarse solution is
the target):
homogenization+MG (most efficient); renormalization; volume averaging; hetero-
geneous multiscale method (HMM); MsFEM;
Costs to solve: coarse scale (cheap) + 1 cell problem at fine scale (cheap)
• Approaches for problems with unseparable scales (fine scale solution needed):
MG, AMG, Multilevel Domain Decomposition, (also as preconditioners for Krylov
subspace methods)
Costs to solve: fine scale: expensive, but optimal with above methods (O(n))
• Approaches for problems with unseparable scales (coarse scale solution needed
+ approximation to the fine scale one):
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- MsFEM; MSFV, subgrid, grain coarsening and related methods, Numerical up-
scaling (with iterations between scales can recover full fine scale solution)
Costs to solve: intermediate (compared to above, but still O(n))
• Approaches for problems with unseparable scales (coarse scale solution needed,
plus approximation to the fine scale one where necessary)
- Systematic upscaling (with clever choice of variables and/or with windowing),
MSFV with adaptivity, MsFEM with adaptivity,
Costs to solve: intermediate ( less than O(n))
• Approaches for problems with unseparable scales (coarse scale solution needed)
- Formal homogenization plus statistics (if it works)
Costs to solve: intermediate ( cheap + statistics)
- Systematic upscaling (when nothing else works)
Costs to solve: depends on the qualification.
Note: all the above may need to be reconsidered in the case of uncertainty.

In the second part of the talk, certain approaches for solving multiscale filtration
problems are discussed.These are a subgrid approach, and coupling of microscale
and macroscale filtration simulations.

Numerical upscaling for Stokes and Stokes-Brinkman problems, called here a
subgrid approach, is considered. The particular motivation comes from simu-
lating fluid filtration in connection with the automotive industry, however, the
presented algorithms are not limited to this application. Laminar incompressible
flow through a filter element is considered. Stokes-Brinkman system is used to
describe it. Stokes system describes the slow flow in the pure fluid region, while
Brinkman system (sometimes considered as Stokes-type perturbation of Darcy
equation) governs the flow through the porous filter media. The geometries of
the filter media and of the housing of the filter element may be very complicated.
The presented algorithm presented relies on the numerical upscaling approach. A
coarse and a fine grid are considered, with the fine grid being unaffordable on
the existing computers, but resolving the geometry reasonably well. Each coarse
grid cell is a union of fine grid cells. Only those coarse grid blocks are selected,
which contain unresolved geometry details, e.g. the coarse blocks containing a
mixture of fluid, solid, and porous media on the fine grid. For each such blocks,
an auxiliary cell problem is solved and a coarse grid permeability is calculated.
In the homogenization theory, at least two different formulations of the boundary
conditions for the cell problems are known when Stokes equations are upscaled:
these are periodic boundary conditions and constant velocity boundary conditions.
We study these two cases numerically, along with a formulation coming from the
engineering literature. Results from numerical simulations are discussed.

Coupling of microscale and macroscale filtration simulations is a real challenge.
The filtration is an essentially multiscale problem. The particles to be filtrated
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might be of nano- or micron size, the assembled filter elements might be of cen-
timeter or meter size. A team from Fraunhofer ITWM has developed algorithms
and software for solving filtration problems at microscale, i.e., at the level of pores,
fibers, and dirt particles. Stokes problem is solved to determine the velocity at
pore scale, while stochastic ODE is solved to account for particles transport and
capturing at pore level. For more details, see www.geodict.com, and references
therein. At macroscale, Navier-Stokes-Brinkman system of equations, together
with equation for concentration of particles, have to be solved in order to simulate
the flow and particle transport at the level of a filter element. An algorithm for
coupling microscale and macroscale simulations is developed, where the microscale
problem is solved only in selected windows. The capturing of the particles com-
puted at microscale allows to calculate the capturing rate needed in macroscopic
concentration equation, as well as the change of the permeability. The macroscopic
solution, from the other side, provides the inlet velocity in front of the selected
filter media windows, as well as the concentration of the particles there.

Multiscale finite element methods for flows in heterogeneous porous

media

Yalchin Efendiev

(joint work with Lijian Jiang, Joerg Aarnes )

The modeling of multiphase flow in porous formations is important for both
environmental remediation and the management of petroleum reservoirs. Prac-
tical situations involving multiphase flow include the dispersal of a non-aqueous
phase liquid in an aquifer or the displacement of a non-aqueous phase liquid by
water. In the subsurface, these processes are complicated by the effects of perme-
ability heterogeneity on the flow and transport. Simulation models, if they are to
provide realistic predictions, must accurately account for these effects. However,
because permeability heterogeneity occurs at many different length scales, numer-
ical flow models cannot in general resolve all of the scales of variation. Therefore,
approaches are needed for representing the effects of subgrid scale variations on
larger scale flow results.

On the fine (fully resolved) scale, the subsurface flow and transport ofN compo-
nents can be described in terms of an elliptic (for incompressible systems) pressure
equation coupled to a sequence of N − 1 hyperbolic (in the absence of dispersive
and capillary pressure effects) conservation laws. In this abstract we address the
upscaling of both pressure and saturation equations.

Traditional approaches for scale up of pressure equations generally involve the
calculation of effective media properties. In these approaches the fine scale in-
formation is built into the effective media parameters, and then the problem on
the coarse scale is solved. We refer to [3] for more discussion on upscaled model-
ing in multiphase flows. Recently, a number of approaches have been introduced
where the coupling of small scale information is performed through a numerical
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formulation of the global problem by incorporating the fine features of the prob-
lem into basis elements. In the presentation, I discussed multiscale finite element
methods that share similar concept. Because of their conservative features, mixed
finite methods are often preferred in the applications, such as flow in porous me-
dia. Our methodology is similar to the multiscale finite element methods [8]. We
discuss numerical implementation, as well as some applications of our approach.

Though there are a number of technical issues associated with the subgrid mod-
els for the pressure equation, the lack of robustness of existing coarse-scale models
is largely due to the treatment of the hyperbolic transport equations. Previous ap-
proaches for the coarse-scale modeling of transport in heterogeneous oil reservoirs
include the use of pseudo-relative permeabilities, the application of nonuniform or
flow-based coarse grids [2], and the use of volume averaging and higher moments
[4]. Our methodology for subgrid upscaling of the hyperbolic (or convection domi-
nated) equations uses volume averaging techniques and relies on unstructured grid.
The grid is constructed such that the variation of the velocity is minimal. This
yields unstructured grids.

In this talk, we mainly discussed a multiscale finite element approach in which
the basis functions are constructed using the solution of the global fine-scale prob-
lem at the initial time (only). The heterogeneities of the porous media are typically
well represented in the global fine-scale solutions. In particular, the connectivity
of the media is properly embedded into the global fine-scale solution. Thus, for the
porous media with channelized features (where the high/low permeability region
has long-range connectivity), this type of approach is expected to work better.
Indeed, our computations show that our modified approach performs better, for
porous media with channelized structure, than the approaches in which the basis
functions are constructed using only local information. Some analysis is presented
to justify our numerical observations. In our numerical simulations, we have used
cross-sections of recent benchmark permeability fields, such as the SPE compara-
tive solution project, in which the porous media has a channelized structure and
a large aspect ratio. The results are presented in [5].

These methods are also presented in the framework of mixed multiscale finite
element methods. In particular, we present a general framework where multiple
global information can be incorporated into the basis functions. In the talk, we
discuss how to obtain the global information. Moreover, we discuss how one can
approximate the limited global information in order to reduce the computational
cost. Various approaches, such as the use of partial homogenization or the use
MsFEM solutions are discussed.

We also discuss stochastic multiscale finite element methods. In this approach,
the main idea to construct basis functions for the ensemble or a part of the en-
semble. We discuss how the general approach of multiscale finite element methods
using multiple limited global information can be used for this purpose. Numerical
results are presented.
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Mathematical Modelling of Fractured Porous Media

Alfio Grillo

(joint work with Dimitry Logashenko, Gabriel Wittum)

This work deals with the study of transport processes in two-dimensional porous
media interacting with a surrounding three-dimensional continuum. To this end,
we employ an averaging procedure exposed in [1], and we compare our approach
with the theory developed in [2][3]. Our preliminary results refer to the problem
of predicting the diffusive and advective motion of a contaminant in a fractured
porous medium.

In this contribution, we use the average-along-the-vertical technique [1] in order
to describe the macroscopic transport of a solute in a medium that, because of
its shape, can be regarded as a two-dimensional object embedded in a three-
dimensional porous medium. The motivation of our work is given by the necessity
of predicting the behaviour of contaminants in fractured rocks. In this context,
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the two-dimensional object may be identified with a fracture. For simplicity, we
consider the case in which the fracture is delimited by two parallel surfaces and
a band-shaped lateral boundary, and its thickness is negligibly small as compared
to characteristic size of the surrounding porous medium. Under these hypotheses,
and the further assumption that the fracture is at rest, the method illustrated by
Bear [1] leads to a mass balance equation for the solute in the fracture that is very
similar to that found in [2] in modelling transport relations for surface integrals in
the case of evolving fluid interfaces, i.e.

(1) Ċσ + Cσ∇σ · utan = ∇σ · (DσCσ) − JC(u · n + j · n)K,

where Cσ is the surface concentration of the given contaminant, Ċσ denotes the
total time derivative derivative of Cσ (cf. [2]), ∇σ is the surface divergence op-
erator, utan is the tangential of the fluid velocity along the surface, Dσ is the
surface diffusivity coefficient, and the last term on the RHS denotes the jump of
the overall normal mass flux computed on both sides of the surface. We notice
that, if the fracture were moving with normal velocity V (cf. [2]), a term −κCσV
(κ being the total curvature of the surface), and a term JCV K should be added to

the LHS, and the RHS of Eq. (1), respectively, and the total derivatie Ċσ should

be replaced with the migrationally time derivative C̊σ [2].
Under the assumption of neglgible inertial terms and absence of pore-scale mass

exchange terms between the fluid- and the solid-phase, the problem of fluid-flow
and contaminant transport in a fractured porous medium is macroscopically gov-
erned by the mass balance laws for the contaminant and the fluid-phase as a whole.
These equations must be written for both the porous medium and the fracture,
i.e.

∂m(φmρm) + ∇ · (φmρmum) = 0,(2)

∂t(φmCm) + ∇ · (φmCmum + jm) = 0,(3)

and

∂t(φfρf ) + ∇ · (φfρfuf ) = 0,(4)

∂t(φfCf ) + ∇ · (φfCfuf + jf ) = 0,(5)

where φα, ρα, and uα (with α ∈ {f,m}) are the fluid-phase volume fraction
(porosity), mass density, and velocity, respectively, whereas Cα and jα (with α ∈
{f,m}) are the concentration and diffusive flux of contaminant. In order to close
the system of equations, it is assumed that mass density, ρα, is a given constitutive
function of contaminant concentration, i.e. ρα = ρ̂α(Cα), and that fluid-phase
velocity and contaminant diffusive flux are expressed through Darcy’s and Fick’s
Laws, respectively, i.e.

φαuα = −
kα

µ
[∇pα − ρ̂α(Cα)g],(6)

jα = −φαDα[1 − Cαγ̂α(Cα)]∇Cα,(7)
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where kα, µ, pα, g, Dα and γ̂α (α ∈ {f,m}) denote permeability, fluid viscosity,
pressure, gravity acceleration vector, diffusion coefficient, and fluid compressibility,
respectively.

If porosity is constant both in the medium and in the fracture, the constitu-
tive law ρ̂α(Cα) = Aα + BαCα is assumed (α ∈ {f,m}), and Eqs. (4) and (5)
are averaged according to Bear’s procedure [1], the problem of transport can be
reformulated as

∇ · (Amqm −Bmjm) = 0,(8)

φm∂tCm + ∇ · (Cmqm + jm) = 0,(9)

and

b∇σ · [Af 〈qfσ〉 −Bf 〈jfσ〉] + JAf qfn −BαjfnK = 0,(10)

φf b∂t〈Cf 〉 + ∇σ · [b〈Cf 〉〈qfσ〉 + b〈jfσ〉] + JCf qfn + jfnK = 0,(11)

where qαn and jαn denote, respectively, the components of qα and jα normal to
the fracture. In the limit in which the fracture width “shrinks”, excess quantities

[5] should be introduced.
The system of Eqs. (8)–(11) was solved numerically by using the software

packages UG and d3f. Results are shown in Figure 1, where the fluid velocity,
and concentration of the solute both in the fracture and the surrounding porous
medium are shown at a given time step. Figures 1a and 1b show the asymmetry
in fluid velocity and concentration in the medium due to the particularly chosen
orientation of the fracture.

If the identifications Cσ = φf b〈Cf 〉, utan = 〈qfσ〉, u · n = qfz, and j · n =
〈jfz〉 are made, our Eq. (11) resembles Eq. (1) given in [2]. To the best of
our understanding, the main difference between these two models lies in the fact
that the model presented in Eq. (1) is a priori two-dimensional, while our model
obtains the transport equation in a two-dimensional medium through an averaging
procedure. This difference becomes evident in the definition of the Fick’s current
for the fracture. Indeed, due to the constitutive law imposed on the fluid-phase
mass density, the averaging procedure leads to the following averaged tangential
Fickean flux

(12) 〈jfσ〉 = −φfDf

〈
α

α+BCf

∇Cf

〉
,

where the diffusion coefficient, Df , has been assumed to be constant. This result
is due to the fact that Fick’s law and the definition of the fluid mass density as
a function of solute concentration has been introduced before accomplishing the
averaging procedure. Our next step is the comparison of the present results with
those provided by the application of the theory proposed by Gray [6].
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Figure 1. Velocity, concentration in the medium, and concen-
tration of the fracture at time step t = 10.001 year.
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On the Adaptivity of Multiscale Methods for Flow and Transport

Patrick Jenny

(joint work with Giuseppe Bonfigli and Hadi Hajibeygi)

Flow and transport problems arise in many areas of engineering and natural
science, e.g. in hydrology, oil reservoir simulation and CO2 sequestration. In or-
der to perform accurate and efficient calculations, the simulation algorithms and
codes have to cope with the typically large problems, which often involve highly
heterogeneous permeability fields with complex spatial correlation structures. Due
to computational limitations, it is in general not possible to resolve all relevant
scales and therefore, from early on, upscaling techniques have been developed and
are still applied with considerable success [3]. However, in particular if multi-phase
flow is considered, it is difficult to obtain accurate results with upscaled models,
in which the fine scale variability of the solution is disregarded. This shortcoming
has been addressed with multi-scale methods by including a reconstruction step,
i.e. such methods target fine scale solutions of the flow and transport problems.
Several techniques have been developed and most of them can be categorized as
multi-scale finite element methods (MsFEM) [5], multi-scale mixed finite element
methods (MsMFEM) [1], or multi-scale finite-volume (MSFV) methods [6]. All
these methods have in common that they rely on basis functions, which are nu-
merically computed on local domains, where the fine-scale permeability field of
the original problem is employed. Fine scale pressure and/or velocity solutions
are approximated by superpositions of these basis functions and the coefficients
are computed by solving a coarse system. The only approximation compared to
a direct solution of the problem consists in the local boundary conditions, which
are required in order to compute the basis functions on their local domains inde-
pendent of the global solution. Different are the three multi-scale approaches with
respect to the number of degrees of freedom (dof) of the resulting coarse prob-
lems and with respect to the reconstructed fine-scale velocity fields. There exists
one dof in the coarse problems of MsFEM and MSFV methods. In MsMFEM
on the other hand, dof not only include coarse pressure values, but also mean
velocities at all coarse cell faces. A disadvantage of the MsFEM compared to the
other two approaches is their inability to provide a conservative fine-scale velocity
reconstruction, which is important if also transport equations have to be solved.

All these methods have been applied for a large variety of elliptic problems
and in order to reduce the rate of recomputing the basis functions as e.g. the
mobility evolves, an adaptive strategy was introduced, and in order to apply large
time steps, a sequentially implicit solution algorithm based on Schwarz overalp for
transport was devised. Later, the MSFV framework was extended for compress-
ible multi-phase flow [8] and the introduction of correction functions [9] allowed to
include gravity, capillary pressure and complex wells [11, 7]. An important devel-
opment is a recently published iterative MSFV (iMSFV) method, which allows to
use the multi-scale framework as an efficient linear solver [4]. This is achieved by
iteratively improving the localization boundary conditions based on the previous
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MSFV solution. In algebraic form, the iMSFV method can be interpreted as a
particular two level domain decomposition or multi-grid method [10]. This is of in-
terest, since it allows more easily to apply multi-scale methods in combination with
general unstructured grids. An attractive aspect of the iMSFV method is that it
can be applied anywhere between the original MSFV method an a fine-scale linear
solver and that the resulting velocity field is always conservative. Moreover, it was
shown that infrequent updates of the localization conditions is sufficient, thus in
practice the iMSFV method is not significantly more expensive than the original
MSFV method.

A further topic is multi-scale modeling of transport, which becomes more rel-
evant as the cost for the flow computations is significantly reduced. A successful
strategy consists in adaptively switching between coarse and fine transport equa-
tions depending on the local saturation/concetration variation. However, efficient
and accurate treatment of transport in heterogeneous porous media remains a
challenging research topic with many open questions.

Finally, such multi-scale methods have a great potential for multi-physics appli-
cations, e.g. for coupled systems, where different sub-domains are governed either
by the Navier-Stokes equations or Darcy’s law [2].
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Homogenisation and Numerical Simulation of Flow Problems in

Geometries with Textile Microstructures

Margrit Klitz

(joint work with Michael Griebel, Bart Verleye, Dirk Roose and Stepan
Vladimirovitch Lomov)

New materials with textile microstructures are used in an increasing number of
high-performance products such as aerospace components, boat hulls and racing
car bodies, since they combine strength and stiffness with lightness and corrosion-
resistance. In order to manufacture these composite materials, Liquid Composite
Moulding (LCM) processes are used. One of the LCM techniques is Resin Transfer
Moulding (RTM), which is the injection of resin into a closed cavity filled with
fibre preforms. Here, practical experiments aim at the enhancement of resin flow
through the fibre preform to reduce voids, bubbles and injection time. This is
however very costly, since flow in RTM is highly dependent on the tooling geometry
and often requires the building of many sets of expensive prototypes to test the
process. An alternative is offered by the numerical simulation of fluid flow in the
fibre preforms which allows for the virtual testing of different mold designs in the
computer. In this talk we aim at the prediction of textile permeability, since the
existing tools that simulate the injection stage of Resin Transfer Moulding require
the permeability at different positions in the preform model.

Textile reinforcements are hierachically structured materials, which may involve
microstructures on several length scales. Pictures with examples from different
scales are given in Figure 1. On the microscale individual strands of fibres are
bundled and create the fibre tows or yarns. A fibre unit cell consists of an ar-
rangement of fibres which repeated periodically into space gives the yarn. The
yarns are woven or knitted together and create a porous network with inter-yarn
and intra-yarn spaces, which form the mesoscopic length scale. The macroscopic
length scale describes the molded composite part as a whole. In this structural
hierarchy the manufactured composite part is one hundred times larger than the
mesoscale fabric unit cell, which again is one hundred times larger than the mi-
croscale fibre unit cell.

In most cases, the large discrepancy between the involved length scales renders
a direct numerical simulation of flow through textiles by solving the Stokes equa-
tions in the pore microstructure impossible due to computational complexity. The
required resolution of the textile’s microstructure calls for very fine grids, which
draw heavily on the capacities of existing computer architectures. A way to deal
with this problem is to upscale the analytical equations of fluid mechanics that
hold on the microscale to laws on the macroscale by e.g. averaging [3] or analytical
homogenisation methods (cf. [2, 3, 5]).

The so derived macroscopic equations take the microscale only effectively into
account and are thus numerically easier to handle for simulation purposes. For
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Figure 1. A hierarchy of textile structures from left to right: the
composite part (1 m), the fabric (0.01 m), the fibres (0.0001 m).
[Pictures: S. Lomov].

instance the homogenisation of the Stokes equations yields Darcy’s law:

(1)
u =

1

µ
K(f −∇p) in Ω

∇ · u = 0 in Ω

on the macroscale. Here, Ω ⊂ Rn, n = 2, 3 denotes an open, bounded and con-
nected set with a smooth boundary of class C1, u denotes the velocity field, p the
pressure, f denotes volume forces and µ the viscosity. A different scaling of the
volume fraction results in another filtration law which is Brinkman’s equation

(2)
−µ∆u + ∇p+

µ

σ2
M−1u = f in Ω

∇ · u = 0 in Ω

where σ is the limit of a scaling factor responsible for the derivation of the different
equations on the macroscale. In both equations the permeability tensor K or M is
the only property in which information about the complicated microscopic textile
geometry is still kept as a measure of its ability to transmit fluids. Both tensors are
defined by the solution of a different set of unit cell problems in homogenisation
theory.

Two different situations have to be considered on the textile mesoscale. On
the one hand, the textile yarns can be approximated as impermeable. Then, the
homogenisation of the Stokes equations yields Darcy’s law [4]. On the other hand,
if the yarns are permeable, the fabric consists of both fluid parts as well as of the
porous fibre bundles. In this case, the Stokes equations in the fluid domain Ωf

have to be coupled with Darcy’s Law or Brinkman’s equation in the porous part
Ωp with appropriate interface conditions between the porous and fluid medium. In
order to explicitly avoid complicated interface conditions, we employ the so-called
Stokes/Brinkman equations

(3)
−µ̃∆u + ∇p+ µK−1u = f in Ω

∇ · u = 0 in Ω
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with

(4) K =

{
Kf → ∞ in Ωf

Kp in Ωp

in the whole domain Ω = Ωf ∪ Λ ∪ Ωp. Here, µ̃ denotes an effective viscosity. In
these equations the permeability tensor K takes its specific value in the porous part
and goes to infinity in the fluid domain as a penalization of the Stokes equations
[1].

The contribution of this talk is as follows. First, we discuss the application
of homogenisation theory in textile geometries (since most works consider dis-
connected grains as porous media only). Second, for a simple test geometry, we
numerically solve the unit cell problems and the Stokes/Brinkman equations in
three dimensions and compare the results to a direct numerical simulation of the
Stokes equations on the microscale. Third, we present the prediction of textile
permeability and validate our numerical permeability results against experimen-
tal data. Here, the presented method is successfully applied to several classes of
industrial textile reinforcements.

Acknowledgements. The authors gratefully acknowledge the support from the
Deutsche Forschungsgemeinschaft DFG through the Sonderforschungsbereich 611
“Singular Phenomena and Scaling in Mathematical Models”.
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Multiscale Modeling and Simulation of Fluid Flows in Deformable

Porous Media

Peter Popov

(joint work with Yalchin Efendiev, Yulia Gorb and Oleg Iliev)

In this work we consider a Multiscale Finite Element framework for modelling
flows in highly deformable porous media. The physical processes under consider-
ation spans two length-scales. On the macroscopic level, one has fluid, diffusing
through a nonlinear porous solid. At the microscale the solid has a complex pore
geometry and interacts with a Stokes flow. We assume good scale separation,
with the usual small parameter ε being the ratio of the fine to the coarse length
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scales. We denote the fine scale domain by Ω0
ε, which contains two subdomains

- a fluid part F0
ε and solid part S0

ε . The superscript 0 indicates the reference, or
undeformed configuration of the body. The interface between the solid and fluid
domains is denoted by Γ0

ε = ∂F0
ε ∩ ∂S0

ε . The physics is described by the strongly
coupled, stationary fluid structure interaction problem [3]: Find the interface Γε,

velocity v, pressure p and displacements u such that:

(1) Γε =
{
X + uε(X)| ∀ X ∈ Γ0

}
,

the Stokes and Elasticity equations are satisfied:

−∇pε + µ∆vε + f = 0, ∇ · vε = 0 in Fε(2)

−∇ · Sε(E) = f in S0
ε(3)

with the interface condition

det(∇uε + I)(−pI + 2µD(x(X))) (∇uε + I)
−T

n0 = Sε(E)n0 on Γ0.(4)

Here X is the material coordinate, µ is the fluid viscosity, f is the body force.
Further, S is the Piola-Kirchhoff stress tensor in the solid, which may depend
linearly or nonlinearly on the strain E(u) = 1

2

(
∇u(X) + ∇u(X)T

)
, D(v) =

1
2

(
∇v(x) + ∇v(x)T

)
is the stretching tensor, and n0 is the normal to the in-

terface in the reference configuration. The interface condition (4) introduces a
nonlinearity in the problem, regardless of the constitutive form for S.

Multilevel Algorithm. The difficulty in upscaling this problem arises when
the F deforms substantially at the fine-scale, breaking the assumptions underlying
classic homogenized models such as Darcy and Biot [1, 5, 4, 2]. To avoid this we
use a standard asymptotic expansion [6] of the Stokes equation 2 in the deformed

configuration for the velocity and pressure, which is not known apriori:

vε(x) = ε2v0(x,y) + ε3v1(x,y) + ..., pε(x) = p0(x) + εp1(x,y) + ... y ∈ YF .

Then, one is able to recast the FSI problem (1)-(4) as a cell problem in a Rep-
resentative Element of Volume (REV), which connects the fine-scale quantities to
the coarse level pressure p0, displacement u0, and their gradients. Moreover, one
can also justify a general second-order elliptic equations for the averaged flow and
elasticity at the macroscale, which naturally linearized as:

∇ · (Kn(x)∇pn+1
0 ) = f ∇ · (Ln(x)∇un+1

0 ) = g.(5)

One can then consider a general two-scale algorithm with a macroscopic discretiza-
tion much coarser than fine-scale, that is h >> ε. After initializing the macroscopic
variables p0 and u0 one then iterates as follows:

(1) Given p
(n)
0 , u

(n)
0 solve for ṽ

(n)
0 , p̃

(n)
1 and Γ̃

(n)
ε which satisfy the correspond-

ing cell problems in a REV at a particular macroscopic location.

(2) Freeze the fine-scale boundary Γ̃
(n)
Y of the deformed REV at that location

and find the corresponding permeability K(n) and elasticity tensor L(n).

(3) Using Eqn. (5) find new coarse pressure p
(n+1)
0 and displacement u

(n+1)
0 .
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Figure 1. Unit cell (a) and macroscopic domain (b) used in computations.

The key to this algorithm is the ability to solve the fine-scale FSI problem numer-
ically (step 1). The numerical algorithm for that has been presented elsewhere [3].
It is based on successive solutions to fluid and solid subproblems: one starts with
a guess for the fluid domain, solves the stokes equation there, and computes the
fluid stress on the interface. This stress is then used to solve an elasticity problem,
whose solution is then used to deform the fluid domain. The process is repeated
until convergence. Given this scheme, one can further consider a variant of the
above two-level algorithm, where in step 1, the FSI cell problem is not solved
exactly, but only a few iterations are done, the extreme case being a single one.

Numerical Examples Several numerical examples were considered in order
to test the proposed algorithms. The basic fine-scale domain is a 2D periodic
arrangement of elastic obstacles (Figure 1). The unit cell (Figure 1(a)) consists
of circular linear elastic material, surrounded by the fluid. The elastic media is
supported rigidly in the center. The unit cell is arranged periodically to form the
macroscopic domain. A series of macroscopic domains with ε−1 = 4, 8, 16, 32 were
considered. Shown in Figure 1(b) is the fine-scale domain with ε−1 = 16.

First, we demonstrated numerically the convergence of the nonlinear iterative
processes involved in our two-level algorithm. This was done by considering a set
of boundary value problems (BVPs) in which a uniform pressure Pl is applies at
the left side of the macroscopic domain. The pressure at the right side is 0 and
no-flow boundary conditions are considered at the top and bottom sides of the
domain. The two-level algorithms took 6 iterations to converge for Pl = 0.1 and 8
with Pl = 0.2, uniformly with respect to ε or the macroscopic mesh size h. Also, it
proved insensitive to the number of iterations performed on the cell FSI problem in
step 1, including the extreme case of a single one. Secondly, thanks to the simple
geometry and boundary conditions, it was possible to obtain fine-scale solutions
for the same set of BVPs via a direct numerical simulation (DNS). This allowed
to demonstrate convergence with respect to ε of the fine-scale approximations
obtained via our two-scale algorithm and the DNS results (Table 1).

A number of more complicated two-dimensional flows were also computed.
Shown in Figure 2 is an example of corner point flow. The permeability field (Fig-
ure 2(b)) is strongly correlated with the macroscopic pressure. It is highest where
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Table 1. Error in the fine-scale displacements when compared
to DNS results

ǫ Pl = 0.1
Iterations L∞ Error L∞ Rel. Error L2 Error L2 Rel. Error

1/4 6 1.23 × 10−3 0.18 2.48 × 10−4 0.23
1/8 6 3.18 × 10−4 0.10 4.39 × 10−5 0.13
1/16 6 8.07 × 10−5 0.053 7.75 × 10−6 0.069
1/32 6 2.03 × 10−5 0.027 1.37 × 10−6 0.0351

Pl = 0.2
Iterations L∞ Error L∞ Rel. Error L2 Error L2 Rel. Error

1/4 8 2.96 × 10−3 0.22 4.93 × 10−4 0.22
1/8 8 7.94 × 10−4 0.126 8.78 × 10−5 0.127
1/16 8 2.06 × 10−4 0.068 1.56 × 10−5 0.067
1/32 8 5.25 × 10−5 0.035 2.75 × 10−6 0.034

0
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0.8

1
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(a) BCs and discretization (b) K11 (c) Macroscopic pressure p0

Figure 2. This 2D flow is driven by pressure specified at the
bottom left and top right corners of the domain

the pressure is highest (lower left-corner) and lowest, where the pressure is low-
est (upper-left corner). This example demonstrates that the proposed algorithms
can be used for non-trivial problems and the resulting solutions are physically
reasonable.
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Domain Decomposition and Upscaling

Robert Scheichl

(joint work with Ivan Graham, Clemens Pechstein, Eero Vainikko, Jan Van lent)

In this talk we discuss the use of domain decomposition parallel iterative solvers for
highly heterogeneous problems of flow in porous media, in both the deterministic
and (Monte-Carlo simulated) stochastic cases. We are particularly interested in
the case of highly unstructured coefficient variation where standard periodic or
stochastic homogenisation theory is not applicable, and where there is no a priori
scale separation. We will restrict attention to the important model elliptic problem

(1) −∇ · (K∇u) = f ,

in a bounded polygonal or polyhedral domain Ω ⊂ Rd, d = 2, 3, with suitable
boundary data on the boundary ∂Ω. The d× d coefficient tensor K(x) is assumed
symmetric positive definite, but may vary over many orders of magnitude in an
unstructured way on Ω. Many examples arise in groundwater flow and oil reser-
voir modelling, e.g. in the context of the SPE10 benchmark or in Monte Carlo
simulations of stochastic models for strong heteoregeneities (see Figure 1).

Figure 1. Typical coefficients: Society of Petroleum Engineer
benchmark SPE10 (left); lognormal random field (right).

Let T h be a conforming shape-regular simplicial mesh on Ω. The finite element
discretisation of (1) in the space Vh of continuous piecewise linear finite elements
on T h yields a linear system

(2) Au = f .

It is well-known that the size of this system grows like O(h−d), as T h is refined,
and that the condition number κ(A) of A worsens like O(h−2). Moreover the
conditioning of A also depends on the heterogeneity (characterised by the range
and the variability of K) and on the anisotropy (characterised by the maximum
ratio of the largest to the smallest eigenvalue of K(x) at any point x ∈ Ω). It is of
interest to find solvers for (2) which are robust to changes in the mesh width h as
well as to heterogeneity and anisotropy in K. For the remainder we assume that
K is only “mildly” anisotropic, i.e. that the ratio of the largest to the smallest
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eigenvalue of K(x) is uniformly bounded from above by a benign constant of O(1),
and concentrate on spatial heterogeneity in the coefficient tensor K.

When the smallest scale ε, at which the coefficient tensor K(x) varies, is very
small it may not be feasible to solve (1) on a mesh of size h = O(ε) with standard
solvers, and it may be necessary to scale up the equation to a coarser computa-
tional grid of size H ≫ ε. A large number of computational methods have been
suggested over the years in the engineering literature on how to derive such an
upscaled equation numerically (see e.g. the review [13]). More recently this area
has also started to attract the attention of numerical analysts, who have started
to analyse the approximation properties of such upscaling or multiscale techniques
theoretically. Among the methods that have been suggested and analysed are the
Variational Multiscale Method [6], the Multiscale Finite Element Method [5], and
the Multiscale Finite Volume Method [7]. However, the existing theory is restricted
to periodic fine scale variation or to ergodic random variation. No theory is yet
available that gives a comprehensive analysis of the dependency of the accuracy
of the upscaled solution on the coefficient variation in the general case.

Moreover, if the coefficient varies arbitrarily throughout Ω and there is no scale
separation into a fine O(ε)–scale variation and a coarse O(H)–scale variation, then
all these methods require the solution of O(H−d) local ”cell” problems, each of size
O((H/ε)d). Thus, even if we assume that the local problems can be solved with
optimal (linear) complexity, the total computational cost of the method is O(ε−d).
In practice the complexity may actually be worse. A huge advantage is of course
the fact that the cell problems are all completely independent from each other.
This means that they can be solved very efficiently on a modern multiprocessor
machine. This makes this method so attractive to scale up a physical problem,
especially if the upscaled matrix can be used for several right hand sides, within a
two-phase flow simulation, or for several time steps in a time-dependent simulation.

A viable alternative is the use of parallel multilevel iterative solvers, such as
multigrid or domain decomposition, for the original fine scale problem (2) on the
“subgrid” T h where h = O(ε). These are known to lead to a similar overall com-
putational complexity O(ε−d) and, especially in the case of domain decomposition,
are designed to scale optimally on modern multiprocessor machines. That is, at
(asymptotically) the same cost as using any of the above upscaling procedures,
we can obtain the fine-scale solution with guaranteed and quantifiable approxi-
mation properties. However, previously no theory was available that guarantees
the robustness of these multilevel iterative solvers to heterogeneities in the coeffi-
cients, and indeed most of these methods are not robust in their unmodified form
with the number of iterations growing steeply as the heterogeneity worsens. The
most successful, completely robust method for (2) is algebraic multigrid (AMG),
originally introduced in [2]. Many different versions of AMG have emerged since,
but unfortunately no theory exists that proves the (observed) robustness of any of
these methods to arbitrary spatial variation of K(x). The robustness of geometric
multigrid for “layered media” in which discontinuities in K are simple interfaces
that can be resolved by the coarsest mesh has recently been proved in [17]. Some
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ideas towards a theory for more general coefficients can be found in [1]. Matrix-
dependent multigrid coarsening strategies, such as the one in Dendy’s BoxMG
have also been used in the context of numerical upscaling (e.g. [8, 9, 10]).

The situation is different for domain decomposition methods. There are many
papers (with rigorous theory) which solve (2) for “layered media” in which discon-
tinuities in K are simple interfaces resolved by the subdomain partitioning/coarse
mesh (see e.g. [15]). However, until recently there was no rigorously justified
method for general heterogeneous media. In a series of papers [3, 4, 11, 12, 14, 16]
we have started to develop new theoretical tools to analyse domain decomposi-
tion methods for (2) (which have inherent robustness with respect to h). This
analysis indicates explicitly how subdomains and coarse solves should be designed
in order to achieve robustness also with respect to heterogeneities. It does not
require periodicity and does not appeal to homogenisation theory. Although the
analysis in [11, 12] on nonoverlapping FETI-type methods is also of large current
interest, in the talk we will focus on the theory for two-level overlapping Schwarz
methods in [3, 4, 14, 16], since it gives a clearer picture of the synergies between
domain decomposition and numerical upscaling. In particular, we will highlight
the important concept of a certain energy minimising property of the coarse space
which has yet got to be fully understood in the context of numerical upscaling.

To give a brief indication of the kind of results presented in [3, 4, 14, 16] let
us assume that we have a finite overlapping covering of Ω by (open) subdomains
{Ωi : i = 1, . . . , s}. Let us assume that the diameter of a typical subdomain is of
size O(H) and that the overlap with neighbouring subdomains is (uniformly) of
size O(H) as well. Furthermore, let the family of coverings {Ωi} be shape regular
as s → ∞. In addition let {Φj : j = 1, . . . , N} be a set of functions in Vh with
support of diameter O(H), such that ‖Φj‖∞ . 1 and

∑
j Φj(x) = 1 everywhere,

except in a boundary layer of width O(H) near the boundary of Ω. These functions
span a (coarse) subspace of Vh. For simplicity let us assume here that s = N and
that Ωi = supp(Φi). Note however that this is not necessary in general to achieve
results of the kind presented below. Given {Φi} (and its associated supports {Ωi})
an additive two-level overlapping Schwarz preconditioner can be defined as

(3) M =
N∑

i=0

RiA
−1
i RT

i ,

where Ri, for i = 1, . . . , N , denotes the restriction matrix from freedoms in Ω to
freedoms in Ωi. The restriction to the coarse space is defined as (R0)j,k = Φj(xk),
where xk, k = 1, . . . , n, are the interior nodes of the fine mesh T h, and the matrices
Ai are defined via the Galerkin product Ai := RiAR

T
i .

We now state one of the main results in [14] (in the simplified case here):

Theorem.

κ(MA) . γ(K) where γ(K) := H2 N
max
i=1

‖∇ΦT
i K∇Φi‖L∞(Ω)

is an indicator for the coarse space robustness and the hidden constant is indepen-

dent of h, H and K.
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Note that, roughly speaking, γ(K) is well-behaved if the functions Φi have small
gradient wherever K is large. For the classical case, when K ∼ I and {Φi} is
the standard nodal basis for the continuous piecewise linear functions on a coarse
simplicial mesh T H , we have γ(K) = O(1) and we recover the classical theory.
When K varies more rapidly, our framework leaves open the possibility of choosing
the Φi to depend on K in such a way that γ(K) is still well-behaved.

In [3, 4, 14, 16] we then study various possible choices for the coarse basis
{Φi}, such as multiscale finite elements or certain AMG coarsening strategies,
such as explicit energy minimisation or smoothed aggregation, which all aim to
minimise the coarse space robustness indicator and thus the energy of the coarse
space. For certain model problems we are able to rigorously bound the coarse
space robustness indicator, and numerical experiments confirm the sharpness of
our theoretical results.
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Coarse Spaces by Constrained Energy Minimization

Panayot S. Vassilevski

We consider an unified approach of constructing operator-dependent discretiza-
tion spaces (cf. [1]) on relatively coarse computationally feasible meshes. The
approach utilizes natural energy functionals associated with the PDEs of interest.
We construct local basis functions by minimizing the underlined functional sub-
ject to a set of constraints. The constraints are chosen so that the resulting spaces
possess increasingly high order of approximation. We investigate the proposed
approach from an upscaling discretization point of view which we illustrate with
some preliminary numerical examples.

Work performed under the auspices of the U.S. Department of Energy by

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
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A Numerical Subgrid Approach for the Brinkman Problem

Joerg Willems

(joint work with Oleg Iliev and Raytcho Lazarov)

In this talk a numerical subgrid approach for the Brinkman problem is pre-
sented. The method follows the strategy discussed by T. Arbogast in [2, 1] for the
mixed formulation of Darcy’s problem. The discretization used for the Brinkman
problem is based on the discontinuous Galerkin discretization for the Stokes prob-
lem presented in [4]. The performance of the developed method is tested for two
example geometries. The talk is concluded with an outlook aiming at improving
the numerical subgrid method by introducing subsequent iterations, which allow
the treatment of the approach in the framework of alternating Schwarz methods.

More precisely, the equations under considerations are the following:

(1)





−∇ · (µ̃∇u) +
µ

K
u + ∇p = f in Ω ⊂ R2

∇ · u = 0 in Ω
u = 0 on ∂Ω,

where u and p is the velocity and pressure, respectively, f is some forcing term, K
is the permeability, and µ and µ̃ is the viscosity and effective viscosity, respectively.
Typically, the permeability K may vary by several orders of magnitude over the
domain Ω. Since the length-scale on which these variations occur is often much
smaller than the length-scale on which one wants to obtain (a sufficiently accurate
approximation of) u and p one is interested in extracting a reduced or “upscaled”
problem corresponding to (1), which preserves the main features of the solution
but is less costly to solve. Recently, an approach for upscaling (1) was discussed
in [3]. In the procedure in [3] it is, however, assumed that the upscaled equations
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of (1) are given by Darcy’s problem. This seems reasonable whenever there are no
large regions in Ω where K is large, i.e. regions with (almost) free flow. Otherwise,
the assumption that the upscaled problem corresponding to (1) is a Darcy problem
may not be justified, and a Brinkman to Brinkman upscaling seems to be more
reasonable. The latter is the approach discussed in this talk.

The discretization used for the Brinkman problem follows that for the Stokes
problem discussed in [4]. There the finite element space (VH ,WH) is chosen such
that (VH ,WH) ⊂

(
H0(div; Ω), L2

0(Ω)
)
. This means that in general the space may

be nonconforming in the sense that (VH ,WH) *
(
H1

0 (Ω), L2
0(Ω)

)
. The variational

formulation of (1) thus reads

(2)

{
uHvH + b (vH , pH) = F (vH)

b (uH , qH) = 0,

with

• b (vH , pH) :=

∫

Ω

pH∇ · vHdx

• F (vH) :=

∫

Ω

f · vHdx

• a (uH ,vH) :=
∑

T∈TH

∫

T

µ̃∇uH : ∇vH+
µ

K
uH ·vHdx−

∑

e∈EH

∫

e

(
{{uH}} JvHK+

{{vH}} JuHK −
α

|e|
JuHK JvHK

)
ds,

where

• {{v}}|e := 1
2 (n+

e · ∇(v · τ+
e )|e+ + n−

e · ∇(v · τ−
e )|e−) and

• JvK |e := v|e+ · τ+
e + v|e− · τ−

e .

Here, TH is a triangulation and EH is the set of all corresponding edges. For an edge
e ∈ EH shared by two elements T+ and T− n+

e and n−
e are the corresponding unit

outer normal vectors on e. The tangential vectors forming right-hand coordinate
systems with n+

e and n−
e are denoted by τ+

e and τ−
e . α is a penalty parameter,

which needs to be chosen sufficiently large to ensure the coercivity of a (·, ·).
To formulate the subgrid approach a fine triangulation Th which is obtained by

further refining TH is considered. Furthermore, a finite element space
(VH,h,WH,h) = (Vh ⊕ VH ,Wh ⊕ WH) ⊂ (L2

0, H0(div)) satisfying

(1) ∇ · Vh = Wh and ∇ · VH = WH

(2) vh · n = 0 on ∂T, ∀vh ∈ Vh and ∂T ∈ TH

(3) WH ⊥ Wh

is considered. Note that choosing (VH ,WH) Brezzi-Douglas-Marini elements of
order 1 (BDM1) corresponding to TH and choosing (Vh,Wh) the union of BDM1
elements with respect to Th restricted to each coarse cell T ∈ TH with homogeneous
boundary conditions at ∂T satisfies 1.-3.

Considering the variational formulation (2) with respect to the space
(VH,h,WH,h) and utilizing the unique decomposition of elements in (VH,h,WH,h)
into elements of (VH ,WH) and (Vh,Wh) one may follow the derivations in [2] to
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obtain the symmetric upscaled system
{
a (uH + δu(uH),vH + δu(vH)) + b (vH , pH) = F (vH) − a

(
δu,vH

)
,

b (uH , qH) = 0,

where the local responses δu(·) and δu are defined by




{
a (uH + δu(uH),vh) + b (vh, δp(uH)) = 0 ∀vh ∈ Vh

b (δu(uH), qh) = 0 ∀qh ∈ Wh{
a

(
δu,vh

)
+ b

(
vh, δp

)
= F (vh) ∀vh ∈ Vh

b
(
δu, qh

)
= 0 ∀qh ∈ Wh.

The subgrid algorithm can then be formulated as follows:

• Solve for the fine responses (δu, δp) and (δu(ϕH), δp(ϕH)) for coarse basis
functions ϕH and each coarse cell.

• Solve upscaled equation for (uH , pH).
• Piece together the solution (uH,h, pH,h) = (uH , pH)+ (δu(uH), δp(uH))+

(δu, δp).

The error of the presented algorithm compared to a full fine solve comes from
the fact that information across coarse cell boundaries can only be communicated
by functions in (VH ,WH). This can also be seen in the presented numerical results,
which exemplify that the error is caused by an insufficient resolution of solution
features across coarse cell boundaries.

The talk is concluded with a proposal for extending the algorithm aimed at
mitigating the deficiency just described. It is proposed to solve local problems in
“tube” regions around coarse edges with right hand side F and boundary con-
ditions from the previously computed solution. Thus, fine scale solutions are
obtained for all edges, which can then be used as boundary data for the recom-
putation of (δu, δp). This procedure may now be iterated until fine scale features
across coarse cell boundaries are resolved sufficiently well. Note, that the responses
of the basis functions (δu(ϕH), δp(ϕH)) do not have to be recomputed. It is also
important to note that this iterative process is actually an alternating Schwarz
method. Unfortunately, at the time of the talk there were no numerical results
available for this extended algorithm, which is a topic of further research.
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Reservoir Modeling Using Adaptive Gridding with Global Scale-up

Xiao-Hui Wu

An accurate and efficient reservoir modeling process is essential for developing
and producing hydrocarbon reserves, especially from unconventional resources. In
this talk, we address some of the main challenges associated with modeling complex
reservoir geometry and heterogeneous reservoir properties. We present recently
developed techniques for generating adaptive, constrained, 2.5D Voronoi grid and
for generic global flow-based scale-up. We demonstrate that the combination of
the two techniques is effective in constructing accurate coarse reservoir models.

A key challenge in reservoir modeling is accurate representation of the reservoir
geometry of both the structural framework (i.e., horizons/major depositional sur-
faces that are nearly horizontal and fault surfaces that can have arbitrary spatial
size and orientation) and the detailed stratigraphic layering. For typical reser-
voir geometries with a high aspect ratio of horizontal to vertical dimensions, 2.5D
(prismatic) Voronoi grids, constructed by projection or extrusion of a 2D Voronoi
grid in vertical or nearly vertical direction, are a natural choice for reservoir sim-
ulations. Our main contribution is in generating the 2D constrained Voronoi grid
using a new constrained Delaunay triangulation algorithm and a rigorous proce-
dure of constructing a Voronoi grid that conforms to piecewise linear constraints.
More specifically, we construct protection areas around the linear constraints i.e.,
intersecting polylines, using intersecting circles along the polylines and concentric
circles around the intersections. The protection areas are then defined by linking
the intersections between the circles and additional points distributed on the cir-
cles into polygons. Inside the protection areas, unique Voronoi tessellations match
the linear constraints and their intersections exactly; outside the protection areas,
the constrained Voronoi gridding problem is converted into a constrained Delaunay
triangulation problem, which is solved by using our new algorithm that enables
adaptivity of the Voronoi grid to specified density functions. Therefore, we can
generate adaptive Voronoi grids that honor both the faulted structural frameworks
and important reservoir heterogeneities.

In addition to advanced grid generation, we also need an accurate scale-up of
reservoir properties (such as permeability) to the coarse grid. To address this
challenge, we developed a global scale-up method based on generic flow solutions
(i.e., flows calculated from generic boundary conditions) [1]. Numerical examples
are provided to demonstrate the advantages, both in efficiency and accuracy, of
combining adaptive gridding with the global scale-up method in building accurate
coarse reservoir models.
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Energy Minimizing Bases for Efficient Multiscale Modeling and Linear

Solvers

Ludmil Tomov Zikatanov

(joint work with James J. Brannick, Jinchao Xu, Olivier Dubois, Ilya D. Mishev)

This work is on some of the techniques used in algebraic multigrid methods
(AMG) to construct coarse scale models. We will focus on the choice of coarse
spaces and their approximation properties, as well as relation to compatible re-
laxation technique and construction of piece-wise harmonic bases via energy min-
imization. Such idea was probably first introduced in [1, 2]. Proof that energy
minimizing basis is piece-wise a-harmonic as well as optimal algorithms how to
construct this basis is in [3, 4]. Most of the work that we present here is done in
collaboration with Rob Falgout and Panayot S. Vassilevski (LLNL) and also Rob
Scheichl, I. Graham (University of Bath).

The works on AMG methods date from about 30 years ago. Probably the first
paper on AMG is by Brandt, McCormick, and Ruge [5]. An important early work
is also by Ruge and Stüben [6]. Since then much progress has been made both in
algorithmic development and in two-grid theoretical analysis. For recent results
and comprehensive review of many AMG methods, we refer to Vassilevski [7]. In
general the techniques that we use here in both two level [8, 9, 10] and multilevel
analysis are via the method of subspace corrections [11, 12]. Related to the consid-
erations here, and more sophisticated are the adaptive approaches for constructing
coarse spaces via or adaptive smoothed aggregation and AMG [13, 14, 15], and
Bootstrap AMG (A. Brandt, 2000).

Model problem and approximation from coarser space. Consider for
example a positive definite problem in a weak form on a Lipschitz domain Ω in 2
or 3 spatial dimensions: Find u ∈ V (V = H1

0 (Ω) or V = H1(Ω)) such that

a(u, v) :=

∫

Ω

a∇u∇v =

∫

Ω

fv =: f(v), for all v ∈ V.

Set ‖u‖2
a := a(u, u). An interesting problem then is (in upscaling, as well as

discretizations of PDE): Given an integer number nH , find “coarse space” VH ⊂ V
and such that: supu∈V

1
‖u‖2

a

infv∈VH
‖u − v‖2

L2
is at minimum (with respect to

the space VH). Oftentimes, the solution to such problem is the space of the
eigenfunctions corresponding to the lowest nH eigenvalues (whenever the inverse
of our differential operator is compact). Hence we should approximate this space
(lowest eigenmodes). Of course, it could be computationally rather expensive to
find basis in and the space exactly, because such basis will in general be globally
supported. One can also observe that the basis in the “best” VH solves also the
minimization problem:

(1)

nH∑

i=1

‖φi‖
2
a, → min,

nH∑

i=1

φi = e.
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Here, if V = H1 one may take e = 1. In all cases e should be a smooth function
(say the eigenmode corresponding to the minimal eigenvalue of a(., .)). Thus, the
goal is to construct minimize the same functional, by imposing constraint on the
supports of the basis.

Discretizations. Suppose that V = span{φi}
n
i=1 is a finite element (FE) space.

The bilinear form then defines a bounded linear operator on V , by: (Au, v) :=
a(u, v) for all u and all v in V . Here we assume that V corresponding to the finest
scale, the scale on which a continuous linear FE discretization resolves all the oscil-
lations in a(x). Then the we seek VH by constructing a basis in it, whose elements
are linear combinations of {φi}

n
i=1. The coefficients in this linear combinations

give a matrix (a.k.a. prolongation/interpolation matrix P ). Thus, constructing
coarse space and an upscaled (or equivalently a coarse scale) problem then in-
volves two “generic” steps: (1) Selection of coarse “grid” degrees of freedom (a set
of coarse variables C); (2) Sparse interpolation operator P : RnH 7→ V . The first
step, in the simplest case considered here corresponds to picking a set of coarse
variables (C-variables), e.g., indices C = {i1, . . . , inH

}. The remaining indices are
called F -variables. Define VH = span{ψk}

nH

k=1, such that each ψk is supported in
Ωk (for a vector: Ωk ⊂ {1, . . . , n}) and each ψk has the form: ψk = 1 · φik

+ tail,
where tail is also supported in Ωk. The coefficients in the above representation

form the columns of P : IRnH 7→ V and P looks like P =

[
W
I

]
, if we first order

the so-called F -variables and then the C-variables.
Two level methods and their convergence. A two level subspace correction

method is as follows: Given initial approximation to u (say u0): (i) Find uH ∈ VH

such that:a(eH , w) = f(w) − a(u0, w), ∀w ∈ VH ; (ii) Set v0 = u0 + eH ; (iii)
Fine grid smoothing: Find eh ∈ V (V is the “fine” scale), a2(eh, w) = f(w) −
a(v0, w), ∀w ∈ V ; (iv) Set then u1 = v0 + eh. This is one iteration of a two level
method. One may continue such iterations until convergence. The bilinear form
a2(., .) is an approximation to a(., .), and do not need to be good at that. In all
cases a2(., .) defines an operatorM which is called smoother. The convergence rate

of such two level method then is ‖ETG‖
2
A = 1−1/K, where K = supv

‖(I−π
M̃

)v‖2

M̃

‖(I−πA)v‖2
A

.

Suppose that we would like now to pick a coarse space VH ⊂ V of a fixed dimension
nH that minimizes K, or an upper bound of it. For example an explicit formula for

the solution of minimizer of µ(P ) = supv

‖(I−Π)v‖2

M̃

‖(I−πA)v‖2
A

which is such an upper bound

is known. The quantity µ(P ) is known as measure of the quality of the coarse space.
The solution (optimal P ) is the so called “ideal” interpolation P⋆, that minimizes
the trace of the operator A (same solution as given by the lowest eigenmodes
earlier), when restricted to VH . If we split A in 2 × 2 blocks corresponding to
splitting the variables in C-coarse and F -fine, then the upper block in the definition
of P⋆ is W⋆ = −A−1

FFAFC . It can be shown that such choice of P results in an
optimal two level algorithm, for which the so called “weak approximation property
holds”. That is fine, but this is not practical as well, because A−1

FF is usually a
dense matrix. We aim to approximate P⋆ with a sparse P , and as it turns out,
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the P whose columns minimize the energy (the trace of the coarse grid operator)
is the best approximation to P∗ in a suitable norm. It is well known that the i-th
column of the solution to the minimization problem given at the beginning (with
restrictions on the sparsity) is: [P ]i = IiA

−1
i It

iMae, where M−1
a =

∑nH

i=1 IiA
−1
i It

i .
Here Ii ∈ Rn×ni and (Ii)kl = δkl if both k and l are in Ωi and zero otherwise, and
Ai = It

iAIi. We have the following theorem:
Theorem. Let P be the unique solution of the minimization problem (1). Then
|||P⋆ − P |||A = minQ |||P⋆ −Q|||A, where the minimum is taken over all matrices Q
that have the same prescribed sparsity as P , and |||X ||| := trace(XTAX).

The choice of sparsity pattern of P and is done via examining the strength-of-

connections in A (connectivity in the weighted graph defined by A). We construct
the supports Ωi in the following way: we fix the cardinality of each Ωi to be
ni (i.e. the number of non-zeros per column of P ). Then, starting with initial
guess W0 = 0 ∈ Rns×nH , we iterate towards the solution of AFFW = AFC by
computing the polynomial of degree ≤ ℓ, which is the best approximation to 1/x
on an interval defined by estimates on the extreme eigenvalues of AFF . Such
polynomial pℓ(AFF ) is easy to construct if bounds on the spectrum of AFF are
known and is obtained via:

p0(A) =
η(1 + δ)

(1 − δ)2
I, p1(A) = −

(
η

1 − δ

)2

A+
2η

(1 − δ)2
I,

pk+1(A) = [(1 + δ)I − ηA]pk(A) − δpk−1(A) + ηI.

It approximates A−1
FF quite well, if AFF is well-conditioned. The parameters δ

and η depend on the estimates of the extreme eigenvalues of AFF . We note here
that this we only use to define the sparsity of P and not the actual entries, which
are defined via energy minimization procedure. This also tells us that we need to
choose the coarse grid variables in a way that AFF is well-conditioned. This in
turn can be done via compatible relaxation [16, 17]. The following rationale can
be applied then when constructing algorithms for upscaling or AMG methods: (1)
Pick C-variables via compatible relaxation so that AFF is well conditioned; (2)
Construct the supports of coarse grid basis functions using approximate strength
of connections by polynomial approximation to A−1

FF ; and (3) Define the basis and
coarse scale model via energy (trace) minimization.
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