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Introduction by the Organisers

Let K be a field of characteristic p and G a finite group. Quillen gave a description
of the cohomology ring H∗(G, K) modulo nilpotent elements as an inverse limit
of cohomology rings of elementary abelian p-subgroups of G. This has led to the
work of Benson, Carlson and others on the theory of varieties for KG-modules,
and in general to deep structural information about modular representations of fi-
nite groups. Inspired by this success similar theories have been developed in other
contexts. This includes p-Lie algebras, finite group schemes, and complete inter-
section rings in commutative algebra. More recently, support varieties have been
constructed for Lie superalgebras. Going in a different direction, Snashall and
Solberg initiated the construction of support varieties for modules of more gen-
eral finite dimensional algebras, via the Hochschild cohomology, with appropriate
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finite generation properties. Furthermore, generalising Jon Carlson’s construction
for group algebras in several contexts, rank varieties have been introduced and
shown to be isomorphic to support varieties. Some work towards a unified ap-
proach has been done, in particular by Balmer, and then by Buan, Krause and
Solberg. This workshop has brought together experts working on the various as-
pects of support in different areas, to review what is known, and to clarify unified
concepts. The focus was on the following three aspects: the theory, computations
and applications. Introductory surveys were given by Petter Bergh (support via
central ring actions), Ivo Dell’Ambrogio (tensor triangular geometry) and Dan
Nakano (applications of support varieties). Then there were 9 talks presenting
recent developments in the subject. Three additional evening sessions completed
the picture: Ralf Kroemer (one of the organisers of a parallel workshop on the his-
tory of category theory) presented a portrait of Samuel Eilenberg, who contributed
towards the homological foundations for today’s work on support varieties, Dan
Nakano explained techniques for calculating support varieties, and a third evening
was used for a problem session. The mix of participants from different areas and
the relatively small size of the workshop provided an ideal atmosphere for fruitful
interaction and exchange of ideas. It is a pleasure to thank the administration and
the staff of the Oberwolfach Institute for their efficient support and hospitality.
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Abstracts

Support via central ring actions

Petter Andreas Bergh

The notions of central ring actions and support in triangulated categories have
proved quite fruitful recently, cf. [1], [2], [3], [4]. They unify ideas and techniques
from group cohomology, commutative ring theory (complete intersections) and
Hochschild cohomology. This brief survey is an introduction to the basic concepts.

Let T be a triangulated category with suspension functor Σ. A subcategory of
T is thick if it is a full triangulated subcategory closed under direct summands.
Given an object X ∈ T , we denote by thickT (X) the smallest thick subcategory
of T containing X ; this is the intersection of all thick subcategories containing X .

The graded center Z∗(T ) of T is a graded ring, whose degree n component

Zn(T ) (for n ∈ Z) consists of the natural transformations Id
f−→ Σn satisfying

fΣ X = (−1)n Σ fX on the level of objects. For such a central element f and objects

X, Y ∈ T , consider the graded group Hom∗
T (X, Y ) = ⊕i∈Z HomT (X, Σi Y ). The

element f acts from the right on this graded group via the morphism X
fX−−→ Σn X ,

and from the left via the morphism Y
fY−−→ Σn Y . Namely, given a morphism

g ∈ HomT (X, Σm Y ), the scalar product gf is the composition X
fX−−→ Σn X

Σn g−−−→
Σm+n Y , whereas fg is the composition X

g−→ Σm Y
Σm fY−−−−→ Σm+n Y . However,

since Id
f−→ Σn is a natural transformation, the diagram

X
g //

fX

��

Σm Y

fΣm Y

��
Σn X

Σn g // Σm+n Y

commutes, and so since fΣm Y equals (−1)mn Σm fY we see that gf = (−1)mnfg.
Thus Z∗(T ) acts graded-commutatively on Hom∗

T (X, Y ) for all objects X and Y
in T . For further details on the graded center and its action on the cohomology
groups, see [5].

Now let R = ⊕∞
n=0Rn be a positively graded ring which is graded-commutative,

i.e. rs = (−1)|r||s|sr for all homogeneous elements r, s ∈ R. Then R acts centrally
on T if there exists a homomorphism R → Z∗(T ) of graded rings. Thus, for

every object X ∈ T , there is a homomorphism R
ϕX−−→ Hom∗

T (X, X) satisfying
the following: for every object Y and all homogeneous elements r ∈ R and g ∈
Hom∗

T (X, Y ), the equality

g · ϕX(r) = (−1)|r||g|ϕY (r) · g
holds. In other words, the left and right R-module structures on Hom∗

T (X, Y )
coincide up to sign.
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Example. Let k be a commutative ring, and let Λ, Γ, ∆ be k-algebras which are
projective as k-modules. Furthermore, let ΛB∆, ΛB′

∆, ∆MΓ, ∆NΓ be bimodules with
B and B′ both ∆-projective. Let η ∈ ExtnΛ⊗k∆op(B, B′) and θ ∈ Extm

∆⊗kΓop(M, N)
be homogeneous elements. Then B ⊗∆ θ and B′ ⊗∆ θ are exact since B and B′

are ∆-projective, whereas η ⊗∆ M and η ⊗∆ N are exact since the short exact
sequences comprising η split as sequences of ∆-modules. It was proved in [6] that
the equality

(η ⊗∆ N) ◦ (B ⊗∆ θ) = (−1)mn(B′ ⊗∆ θ) ◦ (η ⊗∆ M)

holds, where both sides are elements of Extm+n
Λ⊗kΓop(B ⊗∆ M, B′ ⊗∆ N)

Specializing to the case Λ = Γ = ∆ = B = B′ = M = N , we see that the
Hochschild cohomology ring HH∗(Λ) = ⊕∞

n=0 ExtnΛ⊗kΛop(Λ, Λ) of Λ is graded com-
mutative. Moreover, if Λ = ∆ = B = B′, Γ = k and M, N are left Λ-modules,
then for homogeneous elements η ∈ HH∗(Λ) and θ ∈ Ext∗Λ(M, N) we see that the
equality

(η ⊗Λ N) ◦ θ = (−1)|η||θ|θ ◦ (η ⊗Λ M)

holds. Consequently, given a k-algebra Λ which is k-projective, for every left Λ-
module M there is a graded ring homomorphism

HH∗(Λ)
ϕM=−⊗ΛM−−−−−−−−→ Ext∗Λ(M, M)

satisfying the following: for every left Λ-module N and all homogeneous elements
η ∈ HH∗(Λ), θ ∈ Ext∗Λ(M, N), the equality

ϕN (η) · θ = (−1)|η||θ|θ · ϕM (η)

holds. Extending to the derived category D(Λ) of Λ-modules via stalk complexes,
we see that HH∗(Λ) acts centrally on D(Λ).

Returning to our triangulated category T and the graded-commutative ring R
acting centrally, let X and Y be objects of T . Then the R-module Hom∗

T (X, Y ) is
eventually Noetherian, denoted Hom∗

T (X, Y ) ∈ Noeth R, if there exists an integer

n0 such that the R-module Hom≥n0

T (X, Y ) = ⊕∞
n=n0

HomT (X, Σn Y ) is Noether-
ian. If, in addition, the R0-module HomT (X, Σn Y ) has finite length for n ≫ 0,
then we write Hom∗

T (X, Y ) ∈ Noethfl R and say that the R-module Hom∗
T (X, Y )

is eventually Noetherian of finite length.
It is not difficult to see that if Hom∗

T (X, Y ) belongs to Noeth R, then it also
belongs to Noeth Rev, where Rev is the commutative even subring ⊕∞

n=0R2n of R.
Similarly, if Hom∗

T (X, Y ) belongs to Noethfl R, then it also belongs to Noethfl Rev.
In the latter case, the rate of growth of the sequence (ℓR0 HomT (X, Σn Y )) is finite
and coincides with the Krull dimension of Hom∗

T (X, Y ) as an Rev-module (cf. [4,
Proposition 2.6].

The support of a pair of objects (with respect to R) is defined in terms of the
homogeneous prime spectrum of Rev. Denote by ProjRev the set of homogeneous
prime ideals of Rev not containing ⊕∞

n=1R2n. Given two objects X and Y of T ,
we define the support of the ordered pair (X, Y ) as

Supp+
R(X, Y )

def
= {p ∈ ProjRev | Hom∗

T (X, Y )p 6= 0}.
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In the following theorem, we summarize some of the standard elementary proper-
ties of support sets (cf. [1]).

Theorem 1 (Properties of support).

(1) Supp+
R(X, Y ) = Supp+

R Hom≥n
T (X, Y ) for all n ∈ Z.

(2) If Hom≥n
T (X, Y ) is a finitely generated R-module for some n, then

Supp+
R(X, Y ) = {p ∈ ProjRev | AnnRev

(
Hom≥n

T (X, Y )
)
⊆ p}.

In particular, if Hom∗
T (X, Y ) ∈ Noeth R, then Supp+

R(X, Y ) is a closed
set in ProjRev.

(3) If Hom∗
T (X, Y ) ∈ Noeth R, then Supp+

R(X, Y ) is empty if and only if
Hom∗

T (X, Y ) is eventually zero.
(4) Given a triangle

Z ′ → Z → Z ′′ → Σ Z ′

in T , there are inclusions

Supp+
R(X, Z) ⊆ Supp+

R(X, Z ′) ∪ Supp+
R(X, Z ′′),

Supp+
R(Z, Y ) ⊆ Supp+

R(Z ′, Y ) ∪ Supp+
R(Z ′′, Y ).

(5) If G is an object in T with thickT (G) = T , then

Supp+
R(X, G) = Supp+

R(X, X) = Supp+
R(G, X).

Properties (3) and (5) provide a criterion for a finite dimensional algebra to be
Gorenstein. For such an algebra Λ with radical r, the thick subcategory of Db(Λ)
generated by the stalk complex Λ/r is the whole of Db(Λ).

Corollary 2. Let Λ be a finite dimensional algebra with radical r. Suppose that
Ext∗Λ(Λ/r, Λ/r) ∈ Noeth R for some graded-commutative ring R acting centrally
on Db(Λ) (for example R = HH∗(Λ)). Then for every finitely generated Λ-module
M , the implications

pdM <∞ ⇔ Extn
Λ(M, M) = 0 for n≫ 0 ⇔ idM <∞

hold. In particular, Λ is Gorenstein.
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Support and rank varieties for quantum complete intersections

Petter Andreas Bergh

(joint work with Karin Erdmann)

Support varieties for modules over finite dimensional algebras were introduced
in [6], using Hochschild cohomology. As shown in [5], when certain finiteness
conditions hold, the theory is very similar to the theory of cohomological support
varieties for modules over group algebras and commutative complete intersections.

Fix a field k. Let Λ be a finite dimensional k-algebra with radical r. The
Hochschild cohomology ring HH∗(Λ) is graded commutative, and for every left
Λ-module M there is a homomorphism

HH∗(Λ)
ϕM=−⊗ΛM−−−−−−−−→ Ext∗Λ(M, M)

of graded rings. The Hochschild cohomology ring acts graded-commutatively on
cohomology groups; for any Λ-module N and homogeneous elements η ∈ HH∗(Λ)
and θ ∈ Ext∗Λ(M, N), the equality

ϕN (η) · θ = (−1)|η||θ|θ · ϕM (η)

holds.

Definition. Given a commutative graded subalgebra H ⊆ HH∗(Λ), the support
variety of an ordered pair (M, N) of Λ-modules, with respect to H , is

VH(M, N)
def
= {m ∈MaxSpec H | AnnH (Ext∗Λ(M, N)) ⊆ m}.

The support variety VH(M) of a module is defined to be VH(M, M); it is not
difficult to show that VH(M) equals both VH(M, Λ/r) and VH(Λ/r, M). The
following theorem summarizes the most important properties. Recall that the
complexity cxM of M is the rate of growth of its minimal projective resolution,
whereas the plexity px M is the rate of growth of its minimal injective resolution.

Theorem 1 ([5]). Suppose H is Noetherian and Ext∗Λ(Λ/r, Λ/r) is a finitely gen-
erated H-module.

(1) For all Λ-modules M, N the H-module Ext∗Λ(M, N) is finitely generated.
(2) Λ is Gorenstein.
(3) The equalities dimVH(M) = cxM = pxM hold. In particular, a module

has finite projective (injective) dimension if and only if its support variety
is trivial.

(4) dimVH(M) = 1 if and only if M is eventually periodic.
(5) If V is a homogeneous subvariety of MaxSpec H, then there exists a Λ-

module M with VH(M) = V .
(6) Suppose Λ is selfinjective and VH(M) = V1 ∪ V2 with V1, V2 homoge-

neous subvarieties such that V1 ∩ V2 is trivial. Then M = M1 ⊕M2 with
VH(Mi) = Vi.
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Suppose now that k is algebraically closed, and fix integers c ≥ 1 and a ≥ 2.
Define an integer b by

b
def
=

{
a/ gcd(a, char k) if char k > 0
a if char k = 0,

and let q ∈ k be a primitive bth root of unity. Denote by A the quantum complete
intersection defined by these data, that is, the algebra

A
def
= k〈x1, . . . , xc〉/({xa

i }ci=1, {xixj − qxjxi}i<j).

This local algebra is selfinjective of dimension ac. Note that when a = 2 and
q = −1, then A is the exterior algebra on a c-dimensional k-vector space.

It follows from [3] that there exists a polynomial subalgebra H = k[η1, . . . , ηc]
of HH∗(A), with each ηi in degree two, such that the H-module Ext∗A(k, k) is
finitely generated. Thus the finiteness condition from Theorem 1 is satisfied, and
so the support varieties with respect to H encode homological information on
the A-modules. However, the algebra also has rank varieties. Given a c-tuple
λ = (λ1, . . . , λc) ∈ kc, denote the element λ1x1 + · · ·+ λcxc ∈ A by uλ.

Definition. The rank variety of an A-module M is

Vr
A(M)

def
= {0} ∪ {0 6= λ ∈ kc |M is not a projective k[uλ]-module}.

The terminology reflects the fact that since ua
λ = 0, the algebra k[uλ] is isomor-

phic to k[x]/(xa). Hence the condition that M is not k[uλ]-projective is equiv-

alent to the condition that the rank of the map M
·uλ−−→ M be strictly less than

[(a− 1)/a] dimM .
Thus there are two types of varieties for A-modules. Since we may identify the

maximal ideals of H with points in kc, a natural question arises: is the support
variety of a module related to its rank variety? Indeed, for group algebras of
elementary abelian p-groups it was conjectured by Carlson (cf. [4]) that the support
variety of a module is isomorphic to its rank variety. This was subsequently proved
by Avrunin and Scott in [1]. As shown in [2, Theorem 3.6], a similar result holds
for our quantum complete intersection A.

Theorem 2. Let kc F−→ kc be the map of affine spaces given by (λ1, . . . , λc) 7→
(λa

1 , . . . , λa
c ). Then F (Vr

A(M)) = VH(M) for every A-module M .

Corollary 3. For every A-module M , the dimension of the rank variety Vr
A(M)

equals the complexity of M . Moreover, the module is periodic if and only if
dimVr

A(M) = 1.
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Hochschild Cohomology and the Centre of the Derived Category

Ragnar-Olaf Buchweitz

1. It seems by now folklore that for any K–algebra A there is a natural homo-
morphism of graded commutative K–algebras

χ : HH•(A)→ Z•(D(A))

from the Hochschild cohomology HH•(A) = HH•(A/K, A) of A over K to the
graded centre of the derived category of A. See e.g. [2] for the general construction
of this characteristic homomorphism in the broader context of analytic spaces.

2. Indeed, if A is projective over K, this homomorphism is already implicit in [3,
p.346(5)] as we now explain. Namely, given a (right) A–module M , adding a copy
of the free module A if necessary, we may assume that M is an A–generator . With
B = EndA(M) its endomorphism ring, the (left) B–module M is then projective
and satisfies A ∼= EndBop(M).

Accordingly, the spectral sequence from (loc.cit.),

HHp(A/K, ExtqBop(M, M)) =⇒ Extp+q
Bop⊗KA(M, M)

degenerates, identifying HH•(A) ∼= Ext•Bop⊗KA(M, M).
Exchanging the roles of A and B results thus in a spectral sequence

HHp(B/K, ExtqA(M, M)) =⇒ HHp+q(A)

and the edge homomorphism

HH•(A)→ HH0(B/K, Ext•A(M, M)) = Ext•A(M, M)B ⊆ Ext•A(M, M)

is the composition of χ followed by the evaluation evM : Z •(D(A))→ Ext•A(M, M),
which homomorphism we denote χM = evM ◦χ. It can thus as well be interpreted
as the map induced on extension algebras by the forgetful functor along the algebra
homomorphism A→ Bop ⊗K A.

3. While the theory of (homological) support varieties, as developed, say, for group
rings, some further self-injective algebras, or commutative complete intersections,
essentially uses the (radical) of the kernel of χM in some suitable (subring of)
Hochschild cohomology, the spectral sequence above shows that there is much
more to be considered: the spectral sequence is one of graded algebras, thus,
Ext•A(M, M) already “knows about” Hochschild cohomology, at least a graded
version of it that arises from the natural filtration on the limit of said spectral
sequence. Geometrically, this endows the classical support varieties with infinites-
imal structure, akin to the normal cone of a subvariety in its ambient space.
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4. Not much is known about χ in general, but simple examples show already that
the homomorphism is generally neither injective nor surjective.

If we take the principal ideal domains A = K[x], the polynomial ring over a
field K, or A = K[x](x), its localisation at the origin, then χ is easy to describe, as
the module categories are hereditary and every complex in the derived category is
formal.

Both Hochschild cohomology and the graded centre of the derived category of
finitely generated modules are concentrated in degrees 0, 1, with the degree zero
component χ0 : HH0(A) ∼= A→ Z0(Db(mod A)) an isomorphism.

The first Hochschild cohomology group is given by HH1(A) = DerK(A) ∼= A ∂
∂x ,

the K–linear derivations of A, while Z1(Db(mod A)) ∼=
∏

m k(m)N, the product
indexed by all maximal ideals of A. The component labeled (m, n) maps under
evA/mn+1 isomorphically onto the socle of Ext1A(A/mn+1, A/mn+1) ∼= A/mn+1.

Just comparing cardinalities, it follows that χ1 cannot be surjective.
If f(x) ∈ A is any element, and D = g(x) ∂

∂x any derivation, then χA/(f)(D) ∈
Ext1A(A/(f), A/(f)) is represented, up to sign, by the morphism of complexes

0 //

��

A
f //

g·f ′

��

A //

��

0

0 // A
−f // A // 0

that is, χA/(f)(D) ≡ g · f ′ (mod f) ∈ A/(f) ∼= Ext1A(A/(f), A/(f)).

If m = (π) ⊂ A is a maximal ideal, thus π 6= 0 irreducible, then M = A/(πn+1)
is indecomposable and χM (D) = (n + 1)g · π′ · πn (mod πn+1) ∼= (n + 1)gπ′

(mod π) ∈ k(m) is the component of χ1(D) in Z1(Db(mod A)) at (m, n).
It thus follows that χ is injective in case A = K[x], as for every g 6= 0 we

may find a separable irreducible polynomial π not dividing g. By contrast, for
A = K[x](x) there is a large kernel, kerχ = kerχ1 = m DerK(A) ∼= (x) ∂

∂x .

5. Inspecting more closely the argument for A = K[x], one proves as well that
χ is injective for any polynomial ring over a field. In that case, HH•(A) =
HomA(Ω•

A/K , A), and for each polyvectorfield D ∈ HH•(A) one finds a prime ideal

p such that χA/p(D) 6= 0 in Ext•A(A/p, A/p). To verify non-vanishing of χA/p(D),
it suffices to find a suitable differential form ω ∈ Ω•

A/K so that the Grothendieck

residue of χA/p(D) on ω is non-zero. This approach is inspired by [5].

6. Turning to a more conceptual perspective, we follow a suggestion by Dwyer,
as related to the author by Iyengar: If A is any K–linear abelian category and
E the category of K–linear endofunctors on A, then E is again K–linear abelian
and the Yoneda Ext-algebra Ext•E(idA, idA) might be considered the Hochschild
cohomology of A. We offer the following results supporting this suggestion.

Theorem 4. With notations as just introduced, we have

(1) The Yoneda Ext-algebra Ext•E(idA, idA) is graded commutative.
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(2) There is a natural homomorphism of graded commutative K–algebras

χ : Ext•E(idA, idA)→ Z•(D(A))

so that the composition evX ◦χ : Ext•E(idA, idA)→ Ext•A(X, X) is the nat-
ural evaluation map for any X ∈ A.

(3) In case A is the category of (right) modules over a K–algebra A, then the
characteristic homomorphism factors naturally as

χ : HH•(A)
α // Ext•E(idA, idA)

β // Ext•Aop⊗KA(A, A)
γ //Z•(D(A))

with β an isomorphism if A is flat over K, and both α, β isomorphisms
when A is projective over K.

The proof of these results uses ideas from [6, 7] for (1), while (2) is essentially
elementary. Part (3) follows from a derived version of the classical Eilenberg-Watts
Theorem, see [1, 4, 8].

7. This raises some natural questions:

(1) If A is the heart of a t-structure in the (K–linear) triangulated category
T , is there then already a characteristic homorphism from the Hochschild
cohomology of the heart to the graded centre of T ?

(2) If so, is that homomorphism independent of the heart?
(3) Is the counterpart of (3) true in the geometric context for an analytic

space or scheme X , with D(A) replaced by D(X), the abelian category
A = (Q−)Coh(X) that of (quasi-)coherent sheaves, and HH•(X) as defined
in [2]?

8. The second question has the following positive partial answer. Over a field K,
if T is a (TR 5)–category, thus, closed under arbitrary direct sums, and T ∈ T is a
classical tilting object , thus, a compact generator without (higher) self-extensions,
then it is known that T ∼= D(EndT (T )), and the characteristic homomorphism
from the Hochschild cohomology of A = EndT (T ) to the graded centre of T
is, up to an isomorphism of homomorphisms of graded commutative algebras to
that centre, independent of the tilting object. In that sense, the derived category
of an algebra encodes already both the Hochschild cohomology as well as the
characteristic homomorphism.
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Endotrivial module for groups and group schemes

Jon F. Carlson

As this lecture is presented at a workshop on “Support Varieties”, it seems
appropriate to survey one of the major applications of the theory of support vari-
eties, namely, the proof of the classification of endotrivial modules for p-groups. I
will also make some remarks on the efforts by me and Dan Nakano to classify the
endotrivial modules for some finite group schemes. Throughout we assume some
familiarity with the definitions and properties of support varieties. See [10] for a
general reference.

We assume that k is a field of characteristic p > 0 and unless otherwise indi-
cated, that G is a finite group whose order is divisible by p. Endotrivial modules
were defined by Dade [11]. Originally, the definition was meant only to apply to
the case that G is a p-group. The definition goes as follows.

Definition 1. A kG-module is endotrivial if Homk(M, M) ∼= k ⊕ (proj), as kG-
modules.

Here⊕ (proj) means the direct sum with some projective module. The definition
says that M is endotrivial if and only if its endomorphism ring is trivial in the stable
category of kG-modules modulo projectives. Note that Homk(M, M) ∼= M∗ ⊗M .
Consequently, we can form a group of endotrivial modules T (G). The group
has elements equivalence classes [M ] of endotrivial modules. The relation is that
[M ] = [N ] if M⊕P ∼= N⊕Q for some projective modules P and Q. The opreation
in the group is give by [M ] + [N ] = [M ⊗N ].

The endotrivial modules are the building blocks of the endopermutation mod-
ules, modules whose stable k-endomorphism rings are permutation modules. Dade
showed that in the case that G is a p-nilpotent group, the endopermutation mod-
ules are the sources (in the sense of J. A. Green’s theory of vertices and sources)
of the simple modules.

Two facts get us started. (1.) (See Dade [11]) If G is an abelian p-group, then
T (G) ∼= Z is generated by Ω(k), the shift of the trivial module. In other words,
any indecomposable endotrivial module has the form Ωn(k) for some n. (2.) A
kG-module is endotrivial if and only if its restriction to every elementary abelian
p-subgroup is endotrivial.

Dade’s result suggested that it might be possible to classifiy the endotrivial
modules over p-groups. After a period of approximately 25 years, the classification
was completed by the writer and Jacques Thévenaz [7, 8, 9] drawing on the work
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of several people, notably [1]. The result was a theorem which says that except in
a few circumstances, any endotrivial module is the direct sum of Ωn(k) for some n
and a projective module. One of the keys to the construction of the proof was the
realization that some known exceptional endotrivial modules could be created by
carving up syzygies of the trivial module. Specifically, if G is a quaternion group,
then Dade had found some exotic endotrivial modules, but the reason for their
existence remained something of a mystery. These modules can be created and
analyzed using the theory of support varieties.

Suppose that G = 〈x, y|x4 = 1, x2 = y2 = (xy)2〉 is a quaternion group of order
8. Let k be a field of characteristic 2 which contains a primitive third root of 1.
It is straightforward to calculate that the first two steps in a minimal projective
kG-resolution of k have the form

0 // Ω2(k) // (kG)2 // kG
ε // k // 0,

and hence the dimension of M = Ω2(k) is 9. Let z = x2. Then 〈z〉 is the only
nontrivial elementary abelian subgroup of G, and the restriction of M to 〈z〉 has
the form M〈z〉 = k⊕ (k〈z〉)4. The restriction of M to 〈x〉 or to either of the other
two cyclic groups of order 4 is the direct sum of a trivial module and two copies
of the free module.

Let G = 〈x, y〉 = G/〈z〉. Let Z = z−1 be be the generator of the radical of k〈z〉
so that kG = kG/Z(kG). The modules ZM and M0 = M/{m ∈ M |ZM = 0}
are naturally kG-modules. Moreover, multiplication by Z induces an isomorphism
M0 → ZM . Let V ⊆ VG(k) = k2 be the support variety of ZM as a kG-module.
There are two important things to notice about V .

(1) V is an F2-rational variety, meaning that it is defined by polynomials over
F2, because M = Ω2(k) is defined over F2.

(2) V does not contain any F2-rational points, because the F2-rational points
correspond to the subgroups 〈x〉 = 〈x〉/〈z〉, 〈y〉 and 〈xy〉 all of which act
freely on ZM .

Now ZM is not a cyclic module as otherwise it would be free as a kG-module.
Because ZM has dimension 4, its radical has dimension 2, and the variety V is
the zero set of a polynomial f of degree 2. By condition (1), we can assume that f
has coefficients in F2, while condition (2) tells us that f is irreducible over F2. The
only possibility is that f has the form f(t) = t2 + t + 1 = (t− α)(t − β) where α
and β are primitive cube roots of unity. All of this means that the variety of ZM
is the union of two lines through the points (1, α) and (1, β), which intersect in
the zero point. Consequencly, the module ZM also decomposes as ZM = L1⊕L2

where the variety of L1 is one of the lines and the variety of L2 is the other line.
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We now know that M has the form in the diagram:

L1

AA
AA
⊕ L2

}}
}}

k

}}
}} AA

AA

L1 ⊕ L2

Moreover multiplication by Z takes the L1 ⊕ L2 in the top isomorphically to the
bottom of the diagram. To finish the construction, we simply take U to be the
submodule generated by L1 so that M/U ∼= L2, and let N = U/L2. So N has
a filtration with factors L1 at the top, k in the middle and L1 at the bottom.
Moreover multiplication by Z takes the L1 at the top isomorphically to the L1

at the bottom. So the restriction of N to 〈z〉 is the direct sum of a copy of k
and two copies of k〈z〉. Hence it is an endotrivial module and N is an endotrivial
kG-module. Note that we could do the same thing taking the submodule of M
generated by L2 and factoring L1 from the bottom.

It turns out that a complete set of generators for the group of endotrivial mod-
ules can be constructed in this way. Moreover, we use this to prove that except
when p = 2 and G is a quaternion or semi-dihedral group, T (G) is torsion free.
The steps in such a proof are basically the following.

1. First reduce to the case that G is an extra special p-group or an almost ex-
traspecial p-group [7]. This means that the commutator subgroup and Frattini
subgroup are a cyclic subgroup 〈z〉 of order p and the center of G is cyclic of order
at most p2. This allows us to use a method similar to the above analysis in the
quaternion case.

2. By a similar method as above show that if there is a nontrivial torsion en-
dotrivial module M then there is one such that (z−1)p−1M has a support variety
over G/〈z〉 which is a single line. Now show that if we tensor two of these with
nonintersecting sets of lines, then the resulting module N has the property that its
G/〈z〉 support variety is the union of the sets of lines. So applying the automor-
phism group of G (which is something like a symplectic group), then we can get
many different lines and by tensoring we get a very large indecomposable torsion
endotrivial module.

3. Apply a theorem that shows that there is a bound on the dimension of any
torsion endotrivial module [10]. A careful analysis of the bounds shows that the
module constructed in (2) has dimension exceeding this bound [8]. Thus we have
a contradiction.

Alperin [1] constructed a set of generators for a subgroup of finite index for the
torsion free part of T (G) and in [9] it is shown that these module generate the
entire torsion free part. The method of the quaternion example can also be used
to construct a complete set of generators for the torsion free part of T (G) as well
as the torsion part when G is a p-group. The details of the this analysis can be
found in [3].
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For groups other than p-groups, some work has been done for general situations
[12, 13] and for simple groups [4, 5, 6]. Balmer [2] has made connections with the
Picard group of the spectrum of the stable category. Nakano and the author have
had some success extending the results to more general finite group schemes. For
example, in the case of a p-restricted Lie algebra whose cohomology ring satisfies
some mild conditions on dimension, it can be shown that the group of endotrivial
modules is isomorphic to Z and generated by the class of Ω(k). It is interesting to
note that one of the open problems in this case is whether the group of endotrivial
modules is finitely generated. That is, for general group schemes it is not know if
an indecomposable torsion endotrivial module must have bounded dimension as
was true and essential in the above step 3 for finite groups.
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Notes from a problem session on support varieties

Xiao-Wu Chen

I. Known Results:

The following tables summarize our present knowledge about the support/rank
varieties of certain classes of algebras. The first table collects results about (super)
Hopf algebras; the second table treats the remaining classes of algebras.
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(super) Hopf alge-
bras

support
variety V (M)

rank variety Vr(M)
known for which
M?

kG, G a finite
group

√ √
for G = E ele-

mentary abelian

the case G = Σd

the symmetric
group: M = Young
modules, signed
Young modules,
some Specht mod-
ules and some
simple modules

restricted envelop-
ing algebra u(g):
the interesting case
is g = Lie(G), G an
algebraic group

√ √

known for H0(λ);
for tilting modules,
conjectured by
Humphreys; for
GLn, conjectured
by Cooper, proven
for p = 2 and other
cases; for L(λ),
still open

finite group scheme
√ rank varieties =

compute with “p-
points”

for sporadic mod-
ules

small quan-
tum groups
uξ(g) ⊆ Uξ(g)
for ξ root of
unity and g a
complex semisim-
ple Lie algebra:
in most cases
H2∗(uξ, k) ≃ k[N1]

the existence of
Vr(M) is still open

H0(λ) and some
tilting modules
(l > h)

Lie super algebra g

over C: g classical
or g = W (n) or
S(n)

√ √ simple mod-
ules for g =
gl(m|n), W (n), S(n)

Note: “
√

” means that the corresponding notion is well-defined and well-behaved.
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(non-Hopf) alge-
bras

support variety
V (M)

rank variety
Vr(M)

known for which
M?

commutative
complete in-
tersection
A := k[x1,··· ,xc]

(f1,··· ,fs)

√

Vr(M) ⊆ ks

such that
(λ1, · · · , λs) ∈
Vr(M) iff
the restriction
M | k[x1,··· ,xc]

(
Ps

i=1
λifi)

is

not of finite pro-
jective dimension;
V (M) ≃ Vr(M)

M = k, existence

quantum com-
plete intersec-
tion An

q
:=

k〈x1,··· ,xc〉
(xn

i ,xixj−qijxjxi)
,

where q = (qij)
satisfies qii = 1
and qijqji = 1;
special case: all
qij=1, the trun-
cated polynomial
algebra

√
iff all qij are

roots of unity

defined by usual
formula when all
qij = q; other-
wise, slightly dif-
ferent

only known
for Λuλ

where
uλ =

∑c
i=1 λixi;

any other inter-
esting modules M
for An

q
?

Λ weakly sym-
metric J3 = 0, Λ
indecomposable

√
iff Λ is tame or

of finite represen-
tation type; oth-
erwise, no hope at
all, since all inde-
composables have
projective resolu-
tions of exponen-
tial growth

reduced en-
veloping al-
gebra uχ(g) :=

U(g)
(xp−x[p]−χ(x), x∈g)

,

where g is a
restricted Lie al-
gebra, χ : g −→ k
is a nonzero
character

√ simple modules
for g = sl2 and
g = W (1, 1)
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(non-Hopf) algebras support variety V (M)

Hecke algebra Hq(n)

√
for tame and finite representation

type; in general still open

finite-dimensional preprojective alge-
bras

√

Λ = E(R), where R is a Koszul Artin-
Schelter regular algebra which is a
finitely generated module over its cen-
ter

Λ is a finite-dimensional self-injective
algebra satisfying (Fg), thus

√

Λ self-injective of finite representation
type, which is finite-dimensional over
k = k̄

Λ satisfies (Fg), thus
√

Λ Gorenstein and Nakayama Λ satisfies (Fg), thus
√

II. Open Problems:

(1) Find a good definition of “rank varieties”.

Counter example: Take Λ := k[x1,x2]
(x2

1,x2
2)

, chark 6= 2, and define Ṽr(M) := {0} ∪ {λ ∈
k2 |M |k[uλ] is not projective}. Then there exists a non-projective module M such

that Ṽr(M) = {0}.

(2) Given a path algebra kQ, find a reasonable notion of “support” for objects
in Db(modkQ). Hope to have: supp(X) ⊆ supp(Y ) iff Thick(X) ⊆ Thick(Y ).

Example: Take Q to be the Kronecker quiver and recall that Db(modkQ) ≃
Db(coh(P1)). Thus the “support variety” of kQ should be P1 (replacing “Thick”
by certain “⊗-Thick”).

In general, given a derived equivalence Db(modΛ) ≃ Db(coh(X)) between a finite-
dimensional algebra Λ and a (graded) scheme X, one may expect that certain
“support variety” of Λ is X; the key point might be to understand the meaning of
the tensor structure on Db(modΛ) inherited from Db(coh(X)).

(3) Find an algebra Λ such that there is “no hope” to classify the thick triangu-
lated subcategories of Db(modΛ).

(4) Find a self-injective algebra which has a simple module of complexity ≥ 3
but which is tame.

(5) Given a triangulated category T , are there any distinguished objects which
control the support/classification of thick subcategories? Compare this with the
role of the injective objects in the classification of localizing subcategories of
Grothendieck categories in the work of Gabriel.
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A survey of tensor triangular geometry and applications

Ivo Dell’Ambrogio

We gave a mini-survey of Paul Balmer’s geometric theory of tensor triangulated
categories, or tensor triangular geometry, and applications. In the following, K =
(K,⊗, 1) will denote a tensor triangulated category, i.e., a triangulated category K
equipped with a tensor product (a symmetric monoidal structure) ⊗ : K×K → K
with unit object 1, such that a⊗− and −⊗ a are exact functors K → K for every
object a ∈ K. The main tool of tensor triangular geometry is the spectrum of a
tensor triangulated category:

Definition 1 ([Ba05]). Let K be an essentially small ⊗-triangulated category. A
prime ideal P of K is a proper (i.e., P 6= K) full triangulated subcategory P ⊂ K
which is: thick (i.e., a⊕ b ∈ P ⇒ a, b ∈ P), ⊗-ideal (a ∈ P , x ∈ K ⇒ a⊗ x ∈ K)
and prime (a ⊗ b ∈ P ⇒ a ∈ P or b ∈ P). The spectrum of K is the set of its
prime ideals:

Spc(K) := {P ⊂ K | P is a prime ideal of K}.
We give Spc(K) the topology determined by the following basis of closed subsets:

supp(a) := {P | a 6∈ P} = {P | a 6≃ 0 in K/P} ⊆ Spc(K) (for a ∈ K).

Remarks 2. (a) The space Spc(K) is always non-empty (if K 6≃ 0) and spectral, in
the sense of Hochster [Ho69]: it is quasi-compact, it has an open basis of quasi-
compact opens, and every irreducible closed subset has a unique generic point.

(b) Spc(K) is naturally equipped with a sheaf of rings OK. The ringed space

Spec(K) := (Spc(K),OK)

is always a locally ringed space ([Ba09b]) and sometimes a scheme (cf. Ex. 5.a-c).
(c) Every monoidal exact functor F : K → L induces a continuous map

Spc(L) → Spc(K) by P 7→ F−1P . This defines a functor Spec from the cate-
gory of ⊗-triangulated categories to that of locally ringed (spectral) spaces.

Universal property and classification. The support assignment

supp : Ob(K)→ Closed(Spc(K)), a 7→ supp(a)

is compatible with the ⊗-triangulated structure, and is the finest such:

Proposition 3 (Universal property of (Spc(K), supp)). We have the following:

(1) supp(0) = ∅ and supp(1) = Spc(K)
(2) supp(a⊕ b) = supp(a) ∪ supp(b)

(3) supp(T (a)) = supp(a), where T : K ∼→ K is the translation of K
(4) supp(b) ⊆ supp(a) ∪ supp(c) for every exact triangle a→ b→ c→ T (a)
(5) supp(a⊗ b) = supp(a) ∩ supp(b).

Moreover, if (X, σ) is a pair where X is a topological space and σ is an assignment
from objects of K to closed subsets of X satisfying (1)-(5) above (we say that (X, σ)
is a support datum), then there exists a unique continuous map f : X → Spc(K)
such that σ(a) = f−1(supp(a)) for all objects a ∈ K.
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Theorem 4 (Classification [Ba05] [BKS07]). There is a bijection

{radical thick ⊗-ideals of K} ≃ {Thomason subsets of Spc(K)}
J 7→ supp(J ) := ∪a∈J supp(a)

{a ∈ K | supp(a) ⊆ Y } =: KY ←[ Y

(a ⊗-ideal J is radical if a⊗n ∈ J for some n ≥ 1 implies a ∈ J , and a subset Y
of the spectrum is Thomason if it is a union of closed subsets, each with quasi-
compact open complement). Moreover, if (X, σ) is a support datum inducing the
above bijection, then the canonical map f : X → Spc(K) is a homeomorphism.

By exploiting existing classifications of ⊗-ideals, the Classification theorem can
be used to provide concrete descriptions of the spectrum Spc(K) in examples
ranging over the most disparate branches of mathematics.

Examples 5. (a) (Algebraic geometry). Let X be a quasi-compact and quasi-
separated scheme, and let K := Dperf(X) be its derived category of perfect com-
plexes with ⊗ = ⊗L

X and 1 = OX . From Thomason’s classification of thick tensor
ideals [Th97] we deduce a natural isomorphism Spec(Dperf(X)) ≃ X of schemes.
Thus tensor triangular geometry generalizes algebraic geometry ([Ba02] [Ba05]).

(b) (Commutative algebra) As a special case of (a), if R is any commutative
ring and K := Kb(R − proj) its bounded derived category of finitely generated
projective modules, then Spec(Kb(R− proj)) ≃ Spec(R) is the Zariski spectrum.

(c) (Modular representation theory). Let G be a finite group (or a finite
group scheme), and let k be a field with char(k) > 0. From the classification
in [BCR97] (resp., in [FP07]) of the thick ⊗-ideals in the stable category K :=
kG− stab of finite dimensional modules, with ⊗ = ⊗k and 1 = k, one deduces an
isomorphism Spec(kG− stab) ≃ Proj(H∗(G, k)) of projective varieties. Similarly,
Spec(Db(kG−mod)) ≃ Spech(H∗(G, k)), the spectrum of homogeneous primes.

(d) (Stable homotopy). Let K := SHfin be the homotopy category of fi-
nite spectra (of topology), i.e., the stable homotopy category of finite based CW-
complexes. The famous Thick Subcategory theorem of Hopkins and Smith [HS98]
translates neatly into a description of Spc(SHfin) in terms of the chromatic towers
at all prime numbers ([Ba09b]). Note that the ringed space Spec(SHfin) is not a
scheme.

Remark 6. Other concrete classifications known so far are: The category of perfect
complexes over a Deligne-Mumford stack [Kr08]; The category K = Bootc of
compact objects in the Bootstrap category of separable C*-algebras (the latter
simply yields Spec(Bootc) ≃ Spec(Z) [De09]).

Hypothesis 7. From now on, we assume that our tensor triangulated category
K is rigid, i.e., that there is an equivalence D : Kop ∼→ K with Hom(a ⊗ b, c) ≃
Hom(a, D(b) ⊗ c). Moreover, we assume that K is idempotent complete: if e =
e2 : a → a is an idempotent morphism in K, then a ≃ Ker(e) ⊕ Im(e). Both are
light hypotheses; e.g., they are satisfied by all categories in Example 5.
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Decomposition of objects. The support supp(a) can be used to decompose the
object a in K, or to test its indecomposability:

Theorem 8 ([Ba07]). Let K be a ⊗-triangulated category (see Hypothesis 7).
Let a ∈ K be an object such that supp(a) = Y1 ∪ Y2, where Y1 and Y2 are disjoint
Thomason subsets of Spc(K) (as in Thm. 4). Then there is a decomposition
a ≃ a1 ⊕ a2 in K with supp(ai) = Yi (for i = 1, 2).

In modular representation theory (Example 5.c), for instance, the latter result
generalizes to finite group schemes a celebrated theorem of Carlson [Ca84], saying
that the projective support variety of a finitely generated indecomposable module
is connected. The corresponding statement, of course, is now available in all
examples.

Topological filtrations and local-to-global spectral sequences. Given a
reasonable notion of “dimension” for the closed subsets of Spc(K) (such as the
usual Krull dimension, or minus the Krull codimension in Spc(K)), one can pro-
duce filtrations of the category K of the form

0 ⊆ K(−∞) ⊆ · · · ⊆ K(n−1) ⊆ K(n) ⊆ K(n+1) ⊆ · · · ⊆ K(+∞) = K
where K(n) ⊆ K is the subcategory of those objects whose support has dimension
at most n (n ∈ Z ∪ {±∞}). Every term in the filtration is a thick triangulated
subcategory of the next one up, so the subquotients K(n)/K(n−1) are again trian-
gulated. Each has a decomposition into a sum of local terms. More precisely:

Theorem 9 ([Ba07]). Assume that the space Spc(K) is noetherian (i.e., every
open subset is quasi-compact). Then the quotient functors qP : K → K/P induce
a fully faithful triangulated functor

K(n)/K(n−1) −→
∐

P∈Spc(K) s.t. dim({P})=n

(K/P)(0)

which moreover is cofinal (that is, essentially surjective up to direct summands).

In algebraic geometry, the above decomposition is well known for regular schemes
and hides behind various local-to-global spectral sequences. Indeed, Theorem 9
becomes an essential ingredient in the following generalization to singular schemes
of Quillen’s [Qu73] classical construction of a local-to-global spectral sequence for
the algebraic K-theory of regular schemes:

Theorem 10 ([Ba09a]). Let X be any (topologically) noetherian scheme of finite
Krull dimension. Then there exists a cohomological spectral sequence

Ep,q
1 =

⊕

x∈X(p)

K−p−q(OX,x on {x}) n=p+q
=⇒ K−n(X)

converging to the algebraic K-theory of X ; the E1-page contains Thomason’s non-
connective K-theory of the local ring OX,x with support on the closed point x.
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Gluing of morphisms and objects. To each quasi-compact open set U ⊆
Spc(K) we associate the (again, rigid and idempotent complete) ⊗-triangulated

category K(U) := K̃/KY obtained by idempotent completing (see [BS01]) the
quotient of K by all objects supported on the complement Y := Spc(K) r U .
Given a covering Spc(K) = U1 ∪ U2, it is natural to ask if and how it is possible
to glue information in K(Ui) (i = 1, 2), compatible over K(U1 ∩ U2), in order to
provide information in K. The “gluing technique” of Balmer-Favi [BF07] provides
some general answers:

Theorem 11 (Mayer-Vietoris for morphisms). There is a long exact sequence

· · ·Hom12(a, T−1b)
∂→ Hom(a, b)→ Hom1(a, b)⊕Hom2(a, b)→ Hom12(a, b)

∂→ · · ·
of Hom groups for every two objects a, b ∈ K (here we use the short-hand notation
Hom = HomK, Homi = HomK(Ui) and Hom12 = HomK(U1∩U2), and we keep
writing a and b for the canonical images of a and b in the appropriate categories).

Theorem 12 (Gluing of two objects). Given two objects ai ∈ K(Ui) (i = 1, 2)

and an isomorphism σ : a1
∼→ a2 over U1 ∩ U2, i.e., in K(U1 ∩ U2), there exists an

(up to isomorphism, unique) object a ∈ K mapping to ai in K(Ui) (i = 1, 2).

The Picard group. For any ⊗-triangulated category K, define its Picard group
Pic(K) to be the abelian group of ⊗-invertible objects (i.e., those a ∈ K such that
there exists b ∈ K and an isomorphism a⊗ b ≃ 1), with ⊗ as group operation.

Examples 13. (a) For a scheme X , we have Pic(Dperf(X)) ≃ Pic(X)⊕ Zℓ, where
ℓ is the number of connected components of X .

(b) For a finite group G and a field k, we recognise Pic(kG− stab) as the group
of endotrivial kG-modules, usually denoted T (G).

Theorem 12 supplies the connecting map δ used in the next result.

Theorem 14 (Mayer-Vietoris for Picard [BF07]). Let Spc(K) = U1∪U2 as above.
There is a long exact sequence (extending to the left as in Theorem 11)

· · · → HomK(U1∩U2)(1, T−11)
1+∂→

Gm(K)→ Gm(K(U1))⊕Gm(K(U2))→ Gm(K(U1 ∩ U2))
δ→

Pic(K)→ Pic(K(U1))⊕ Pic(K(U2))→ Pic(K(U1 ∩ U2)).

Here Gm(L) := EndL(1)× denotes the automorphism group of the tensor unit 1
in a ⊗-triangulated category L.

Applications of gluing to modular representation theory. The authors
of [BBC08] compare the above gluing techniques with similar-minded uses of
Rickard’s idempotent modules ([Ri97]) in modular representation theory. Among
other things, they provide a new proof for Alperin’s computation ([Al01] [Ca06])
of the rank of the group T (G) in terms of the number of conjugacy classes of
maximal elementary abelian subgroups of G. They also show that the above glu-
ing technique provides a subgroup of finite index inside T (G). Further enquiry
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along these lines brings to light the following deep connection between algebraic
geometry and modular representation theory:

Theorem 15 ([Ba08]). Let G be a finite group and k a field of positive charac-
teristic. Then the gluing construction induces an isomorphism

Pic
(
Proj(H∗(G, k))

)
⊗Z Q ∼−→ T (G)⊗Z Q.

which rationally identifies the Picard group of line bundles on the projective variety
of G with the group of endotrivial kG-modules.
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The complexity and support varieties for some Specht modules of the
symmetric group

David J. Hemmer

During the 2004-2005 academic year the VIGRE Algebra Research Group at
the University of Georgia (UGA VIGRE) computed the complexities of certain
Specht modules Sλ for the symmetric group Σd, using the computer algebra pro-
gram Magma. The complexity of an indecomposable module does not exceed the
p-rank of the defect group of its block. The UGA VIGRE Algebra Group conjec-
tured that, generically, the complexity of a Specht module attains this maximal
value; that it is smaller precisely when the Young diagram of λ is built out of
p × p blocks. In our talk, we presented our recent proof of one direction of this
conjecture. We prove that these Specht modules do indeed have less than maxi-
mal complexity. It remains open to show that the remaining Specht modules have
maximal complexity.

It turns out that this class of partitions, which has not previously appeared in
the literature, arises naturally as the solution to a question about the p-weight of
partitions and branching. We first define this class precisely:

Definition A partition λ ⊢ d is p × p if λ = (λa1
1 , λa2

2 , . . . , λas
s ) where p | λi and

p | ai for all i.

Such λ can exist only if p2 | d. Equivalently, λ is p×p if both λ and its transpose
λ′ are of the form pτ . Also equivalently, the Young diagram of λ is built from p×p
blocks.

Now suppose Sλ is in a block B(λ) of weight w corresponding to a p-core

λ̃ ⊢ d − pw. Then the defect group of B(λ) is isomorphic to a Sylow p-subgroup
of Σpw and has p-rank w. In particular, the maximum complexity of any module
in the block B(λ) is w. The UGA VIGRE Algebra Group made the following
conjecture:

Conjecture 1 (UGA VIGRE 1.). Let Sλ be in a block B of weight w. Then the
complexity of Sλ is w if and only if λ is not p× p .

This conjecture was verified in [3] for the partition λ = (pp) ⊢ p2 and in [2] for
λ a hook partition, i.e. of the form (a, 1b). Conjecture 1 implies that almost every
Specht module has maximal complexity among modules in its block. Indeed it
would imply that if p2 ∤ d, then all the Specht modules for Σd have this property.

1This conjecture and some discussion can be found at
http://www.math.uga.edu/∼nakano/vigre/vigre.html
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As far as we know the condition we call p × p has not appeared anywhere in
the literature, and it seems quite mysterious. However we demonstrated that it
arises very naturally from considering the weights of Σd blocks and the branching
theorems. Specifically we proved:

Theorem 2. Suppose λ ⊢ d has p-weight w. Then λ is p × p if and only if
w(λA) ≤ w − 2 for each removable node A of λ. In this case, w(λA) is always
equal to w − 2.

Theorem 2 gives one direction of Conjecture 1 as a fairly immediate corollary.

Corollary 3. Suppose λ ⊢ p2d is p × p , and hence of weight w = pd. Then the
complexity of Sλ is less than w.

The proof of Theorem 2 is purely combinatorial, and uses the abacus combina-
torics of James.

There are several obvious problems left unsolved.

Problem 4. Resolve the other direction of Conjecture 1.

Problem 5. Suppose λ is p × p of weight w. Is the complexity of Sλ equal to
w − 1, or can it be less than w − 1?

Problem 6. One can generalize the definition of p × p . For example the first
obvious generalization would be to require λ be p2 × p2. Can one say anything
interesting about these situations? Perhaps the complexity drops by even more in
this case?
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Stratifying modular representations of finite groups

Srikanth B. Iyengar

(joint work with Dave Benson, Henning Krause)

The work presented below arises from a study of homological properties of
complexes over a noetherian (or even, Artinian) A. Let me explain by way of an
example. Recall that a complex of A-modules is perfect if it is isomorphic in the
derived category of A to a complex of the form 0→ P s → · · · → P t → 0, with each
P i a finitely generated projective A-module. Let P(A) denote the full subcategory
of the derived category consisting of perfect complexes; it is even a subcategory
of Df(A), the complexes of A-modules with finitely generated cohomology. The
subcategory P(A) has two salient properties:

(a) If M
⊕

N is in P(A), then both M and N are in P(A);
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(b) In any exact triangle L → M → N → in Df(A), if any two of {L, M, N}
are in P(A), then all three are in P(A).

In other words, P(A) is a thick subcategory of Df(A). Most homological conditions
(e.g. finite Gorenstein dimension, in the sense of Auslander and Bridger), and
some not-obviously-homological ones (e.g. finiteness of length of the homology
module), define thick subcategories of Df(A). Another reason to care about thick
subcategories is that they are precisely the kernels of exact functors on Df(A); see
[10]. These considerations suggest that the following

Problem. Classify the thick subcategories of Df(A).

While I have tried to argue that this is a natural problem to consider, the in-
vestigation of such global questions in derived categories was pioneered by Mike
Hopkins through his work on stable homotopy theory. Motivated by this, Hop-
kins [6], see also Neeman [9], proved that when A is a commutative noetherian
ring, the thick subcategories P(A) are in bijection with specialization closed sub-
sets of Spec A. This ‘thick subcategory’ theorem solves the classification problem
stated above for regular rings, for then P(A) = Df(A).

Hopkins’ proof of the thick subcategory is via a nilpotence theorem for mor-
phisms of perfect complexes. In [9] Neeman gave a different proof, based on a clas-
sification of the localizing subcategories—these are thick subcategory also closed
under arbitrary direct sums—of D(A), the full derived category of A. There is
also a third proof of the thick subcategory theorem, based on an idea of Dwyer
and Greenlees from [5]; see [7] for details.

The crucial point in Neeman’s deduction of the thick subcategory theorem for
P(A) from the localizing subcategory theorem for D(A) is that the perfect com-
plexes are precisely the compact objects in the derived category. Much of the
proof for the result about D(A) can be carried over to a setting of triangulated
categories with ring actions; see [3]. This suggests the possibility of classifying
thick subcategories of other triangulated categories (for example, Df(A)) by real-
izing it as the subcategory of compact objects in a suitable triangulated category,
and classifying the localizing subcategories of the larger triangulated category.

In [1] Avramov, Buchweitz, Christensen, Piepmeyer and I use this approach to
classify the thick categories of ‘perfect’ differential modules over a commutative
noetherian ring, by classifying the localizing subcategories of the derived category
of all differential modules.

Returning to the classification of thick subcategories of Df(A): Krause [8] has
proved that for any noetherian ring A, the map which associates to a complex
its injective resolution identifies Df(A) with the compact objects in K(Inj A), the
homotopy category of complexes of injective A-modules. Thus one is lead to:

Problem. Classify the localizing subcategories of K(Inj A).

Benson, Krause, and I [4] solved this problem for the case where A = kG, the
group algebra of a finite p-group G, over a field k of characteristic p. In my talk,
I described the structure of our proof, and some of the key ideas in it. Among
its many corollaries is a new proof of the classification of the thick subcategories
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of the stable module category of finite dimensional kG-modules, due to Benson,
Carlson, and Rickard [2].
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Some explicit rank varieties for Specht modules

Kay Jin Lim

Some explicit rank varieties for Specht modules
Let k be an algebraically closed field of characteristic p > 0, G be a finite group

and M be an indecomposable kG-module. Suppose that Q is a vertex of M and
N is a kQ-source of M . Then we have both M |N↑G and N |M↓Q. So the support
variety VG(M) of M is res∗G,Q VQ(N). The complexity cG(M) = dimVG(M) of
the module M is bounded above by the p-rank of the vertex Q and hence bounded
above by the p-rank of a defect group of the block containing M . However, in
practice, it is difficult to calculate vertices and sources.

Let E be an elementary abelian p-group of rank n with generators g1, . . . , gn.
For any point ω = (ω1, . . . , ωn) ∈ kn−{0}, we write uω = 1+

∑n
i=1 ωi(gi−1) ∈ kE.

The rank variety V ♯
E(M) of a kE-module M is the set

{0} ∪ {0 6= ω ∈ kn |M↓〈uω〉 is not k〈uω〉-free}.
It is well-known that VE(M) ∼= V ♯

E(M). If ω ∈ kn is a generic point, then the
Jordan type [ω](M) of M↓〈uω〉 is called the generic Jordan type of the module M
[5]. If N is another kE-module, then [ω](M ⊕ N) ∼= [ω](M) ⊕ [ω](N) (see 4.7 of
[1]). The stable generic Jordan type of M is its generic Jordan type modulo all
projective summands.

A partition µ = (µ1
n1 , . . . , µs

ns) is p × p if for each 1 ≤ i ≤ s both µi, ni are
divisible by p. We write D

eµ for a defect group of the block containing the Specht
module Sµ corresponding to a partition µ. We are concerned with the VIGRE
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conjecture; namely, that the complexity of Sµ is the p-weight of µ if and only if µ
is not p× p.

Let Es be the elementary abelian p-subgroup of the symmetric group Sn gener-
ated by the p-cycles ((i−1)p+1, . . . , ip) with 1 ≤ i ≤ s ≤ n/p. For any partition µ,
we write mµ for the p-weight of µ. For some cases where µ are not p× p, we show
that Sµ↓Emµ

is not generically free. The key tool is the following proposition.

Proposition 1. A kE-module M is not generically free if and only if V ♯
E(M) =

V ♯
E(k).

Theorem 2 (Abelian defect case). If D
eµ is abelian, i.e., mµ < p, then VSn

(Sµ) =
res∗Sn,D

eµ
VD

eµ
(k). In particular, the complexity of the Specht module Sµ is the p-

weight of the partition µ.

This result implies that if D
eµ is abelian, then a vertex of the Specht module Sµ

is precisely the defect group D
eµ; namely, the elementary abelian p-group of rank

mµ.

Remark 3. It is not true that the variety of the Specht module VSn
(Sµ) is

res∗Sn,D
eµ
VD

eµ
(k) if and only if µ is p× p.

Using Mackey’s decomposition formula, we determine the stable generic Jordan
type of signed permutation modules M(α|β) restricted to elementary abelian p-
subgroups [4]. We specialize to the partitions α = (a) and β = (b) with a, b
non-negative integers. In the case where a + b 6≡ 0(mod p), we have a direct sum

decomposition M((a)|(b)) ∼= S(a,1b) ⊕ S(a+1,1b−1). In the case where a + b = dp,
we show that the short exact sequence

0→ S(a−1,1b+1)↓Ed
→ S(a,1b+1)↓Ed

→ S(a,1b)↓Ed
→ 0

generically splits, i.e., S(a,1b+1)↓〈uω〉
∼= S(a,1b)↓〈uω〉 ⊕ S(a−1,1b+1)↓〈uω〉 for a generic

point ω ∈ kd. Using induction, we prove the following.

Theorem 4 (Hook partitions case). Let µ = (a, 1b). Suppose that a + b = dp + r
and b = sp + b0 with 0 ≤ r, b0 ≤ p− 1. The stable generic Jordan type of Sµ↓Emµ

is given as follows.

(i) 1N(µ;d−1) if 0 6= r ≤ b0 with N(µ; d− 1) =
(
d−1
s−1

)(
p+r−1
p+b0

)
+

(
d−1

s

)(
p+r−1

b0

)
.

(ii) 1N(µ;d) if b0 < r with N(µ; d) =
(
d
s

)(
r−1
b0

)
.

(iii) 1(d−1
s ) if r = 0 and b0 is even.

(iv) (p− 1)(
d−1

s ) if r = 0 and b0 is odd.

In all cases, the complexity of the Specht module Sµ is the p-weight of µ.

Let Γ(dp) be the set of all partitions of dp with no more than p-parts with
empty p-cores. In §5.2 of [3], we define a map Φ : Γ(dp) → Γ(dp) with the
following properties.

(i) Every part of Φ(µ) is a multiple of p.
(ii) The map Φ(µ) = µ if and only if every part of µ is a multiple of p.
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(iii) The stable generic Jordan types of SΦ(µ)↓Ed
and Sµ↓Ed

are either the
same or complement to each other.

Theorem 5. If µ ∈ Γ(dp) and the prime p satisfy one of the following conditions
listed below, then the Specht module Sµ has complexity the p-weight of µ.

(a) The prime p is odd, d = p and Φ(µ) is a 2-part partition (p2−mp, mp) of
p2 for some 1 ≤ m < p/2.

(b) The prime p is odd and Φ(µ) is a 2-part partition (dp − εp, εp) such that
n 6≡ 2(mod p) and ε ∈ {1, 2}.

(c) Φ(µ) = (dp).
(d) p = 2 and Φ(µ) is the partition (2d− 2, 2) 6= (2, 2) or (2d− 4, 4) 6= (4, 4).

Let λ = (pp). This is the smallest p× p partition that one can construct. One
can verify the conjecture easily for the case p = 2. Suppose that p is odd. The
complexity of the Specht module Sλ is p − 1. Note that there are two types of
non-conjugate maximal elementary abelian p-subgroups Ep, F of Sp2 which F has

p-rank 2. One can see easily that p− 1 = dimV ♯
Ep

(Sλ).

Theorem 6. Suppose that p is an odd prime and λ = (pp). Let W be the union of

all components of V ♯
Ep

(Sλ) of dimension dim VS
p2 (Sλ) = p− 1. The radical ideal

corresponding to the variety W ⊆ kp is (f) where

f(x1, . . . , xp) = (x1 . . . xp)
p−1f̃ +

p∑

i=1

x1
n(p−1) . . . ̂xi

n(p−1) . . . xp
n(p−1)

for some homogeneous polynomial f̃ ∈ k[x1, . . . , xp]
(F×

p )p
⋊Sp and positive integer

n where x1
n(p−1) . . . ̂xi

n(p−1) . . . xp
n(p−1) is the product of all xj

n(p−1)’s with 1 ≤
j 6= i ≤ p. In particular, the degree of the projectivized rank variety V ♯

Ep
(Sλ) is

non-zero and divisible by (p− 1)2.

Remark 7. Carlson gave a degree bound for an arbitrary kE-module M where

E is an elementary abelian p-group of rank n; namely if r = dim V ♯
E(M), then

deg (V ♯
E(M)) ≤ dimk M/pn−r. In the case p = 3, indeed V ♯

E(S(33)) = (x1
2x2

2 +
x2

2x3
2 + x1

2x3
2) as computed by Carlson using MAGMA. In this case, we have

f̃ = 0 and n = 1.

Hemmer proved one direction of the VIGRE conjecture; namely, if a partition
µ is p × p, then the complexity of the Specht module Sµ is strictly less than the
p-weight of µ [2]. The other direction of the conjecture is still wide open. We
collect some questions and suggestions as follows.

Question 8. For all partitions in Γ(dp), the map Φ suggests that one can only
work with partitions such that each part is a multiple of p. Can one say something
about Specht modules corresponding to these types of partitions?

Question 9. In Theorem 6, is the radical ideal corresponding to V ♯
Ep

(Sλ) the ideal

(f)? If so, is f̃ an “error term”? Is n always 1? Can one give a better upper bound
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for the degree of the projectivized rank variety V ♯
Ep

(Sλ)? Say deg (V ♯
Ep

(Sλ) <

(dimk Sλ)/p2?

Suggestion 10 (David Benson). Let E be an elementary abelian p-group of rank
d, M be an kE-module and ω ∈ kd be a generic point. If there is an element
m ∈M such that m ∈ ker(uω − 1) and m 6∈ im (uω − 1)p−1, then M has a generic
Jordan block of size j with 0 < j < p, i.e., M is not generically free. Find such an
element in Sµ↓Emµ

in the case where µ is not p× p. Once one has done so, then
one can conclude that the complexity of the Specht module Sµ is bounded below
by mµ. So the complexity is precisely mµ.
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Complexity and Support Varieties: Lie Algebras and Lie
Superalgebras

Daniel K. Nakano

Support varieties were first developed 30 years ago to study representation the-
ory from a geometric viewpoint via the cohomology of an algebra. Through the
cohomology one can reintroduce underlying geometry even though the algebra one
starts with is a finite-dimensional vector space. Support varieties encode essen-
tial information about the general representation theory of an algebra and “have
proved to be an indispensable tool in the arsenal of a modern representation the-
orist.”1 The purpose of my three talks were to (1) provide a historical perspective
on support varieties, (2) survey important results in the development of the theory
and (3) demonstrate how support varieties can be computed in concrete examples
such as Lie algebras and Lie superalgebras.

Given a module M for an algebraic structure A (i.e., a group, quantum group,
or Lie algebra), one can construct using cohomology operations a variety VA(M)
called the support variety of M that is contained in the spectrum of the cohomology
ring. For example, let k be an algebraically closed field of characteristic p > 0.
If A = u(gln(k)) (the restricted enveloping algebra of the Lie algebra of n × n
matrices) and M is an A-module, then VA(M) will be a conical subvariety of
the set of n × n nilpotent matrices N (nullcone). The nullcone is a well-studied
geometric object with beautiful combinatorial properties related to the associated
root system and Weyl group. If M is a rational G = GLn(k)-module then the

1Mathematical Review: MR:2003b:20063, by Dmitry Rumynin
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support variety of M will be G-invariant. This fact allows one to employ a host
of techniques from the theory of nilpotent orbits for semisimple Lie algebras to
compute support varieties for rational G-modules (cf. [FP]).

In 1987, Jantzen [Jan] conjectured that for a reductive algebraic group, G, the
support varieties of the induced modules H0(λ) over the (restricted) Lie algebra
g = Lie G are given by the closure of certain Richardson orbits in the nullcone
when the characteristic, p, of the underlying field is good. For GLn(k), the Jantzen
conjecture can be made quite concrete. In this case the nullconeN is the set of n×n
nilpotent matrices. The induced modules H0(λ) are parametrized by dominant
weights λ. For each dominant weight, the p-stabilizer Φλ,p is a subroot system of
the root system of type An−1. The size of this subroot system naturally yields
a partition σ(λ) of n. Let σ(λ)t be the transposed partition and xσ(λ)t be the

nilpotent matrix having Jordan blocks of size corresponding to the parts of σ(λ)t.
Then

Vgln(k)(H
0(λ)) = GLn(k) · xσ(λ)t

where the “·” is the action by conjugation and the closure is taken in the Zariski
topology of N . Parshall, Vella and the author [NPV] discovered a strong connec-
tion between the support varieties of the induced modules and the infinitesimal
induced modules. This relationship allowed us to prove the Jantzen conjecture
in its full generality. Later the University of Georgia VIGRE Algebra Research
Group [UGA1, UGA2, UGA3] in a series of papers computed the restricted null-
cone for all Lie algebras arising from reductive algebraic groups and extended the
computation of support varieties of H0(λ) for fields of bad characteristic. Other
recent developments that were surveyed included the computation of support va-
rieties for tilting modules. This included recent work of Cooper [C] who extended
an earlier conjecture of Humphreys [H] for G = GLn(k) to include all primes and
all dominant weights. Cooper has verified the conjecture in the case when p = 2
which proved a conjecture made by Donkin [D].

Let g = g0̄ ⊕ g1̄ be a classical Lie superalgebra over the complex numbers. The
classical Lie superalgebras are the simple Lie superalgebras whose g0̄-component
is a reductive Lie algebra. Let G0̄ be the reductive algebraic group such that
Lie G0̄ = g0̄. Consider the category F of finite-dimensional g-modules which are
completely reducible as g0̄-module. The category F is self-injective and behaves
like a module category for a finite dimensional cocommutative Hopf algebra.

In [BKN1], Boe, Kujawa and the author constructed “detecting” subalgebras
of g and showed that these subalgebras arise naturally using the invariant theory
of reductive groups. Let R = H•(g, g0̄, C) be the relative cohomology for the
Lie superalgebra g relative to g0̄. We proved there exists a sub Lie superalgebra
e = e0̄ ⊕ e1̄ such that

R ∼= S•(g∗1̄)
G0̄ ∼= S•(e∗1̄)

W ∼= H•(e, e0̄, C)W

where W is a finite reflection group. This demonstrates that R is a finitely gener-
ated algebra. The finite generation of R allowed us to develop a theory of support
varieties for modules over the Lie superalgebra.
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Given a g-module M , we considered the support varieties V(e,e0̄)(M) (which can
be identified via a “rank variety” description) and V(g,g0̄)(M). For basic simple
classical Lie algebras, the “atypicality” of a block and a simple module (due to
Kac and Serganova) are combinatorial invariants used to give a rough measure
of the complications involved in the block structure. We conjectured in [BKN1]
that for a simple g-module L(λ) (of highest weight λ) that the atypicality equals
dimV(e,e0̄)(L(λ)). Using results of Serganova involving translation functors, we
proved the conjecture when g = gl(m|n) in [BKN2].

For arbitrary classical g, we recently proved in [BKN3] that the complexity
of modules in F is always bounded by dim g1̄. The relative cohomology ring is
not large enough to detect the complexity. For example, the Krull dimension of
the relative cohomology ring for gl(1|1) is one while the complexity of the trivial
module is two. An elusive problem has been to develop a theory of module varieties
in this context which measures the rate of growth of projective resolutions.

My talks at this conference and this abstract are dedicated to the memory of my
father Akira Nakano (1931-2009).
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Weakly symmetric algebras with radical cube zero and support
varieties

Øyvind Solberg

(joint work with Karin Erdmann)

Throughout let Λ be a finite dimensional algebra over an algebraically closed field
k with Jacobson radical r. The algebra Λ has a good theory of cohomological
support varieties via the Hochschild cohomology ring HH∗(Λ) of Λ, if HH∗(Λ)
is Noetherian and Ext∗Λ(Λ/r, Λ/r) is a finitely generated HH∗(Λ)-module (see [4].
Denote this condition by (Fg). The aim of this talk was to characterize when a
weakly symmetric algebra Λ with r3 = (0) satisfies (Fg).

For the algebras Λ we consider, it is well-known that Λ ≃ kQ/I for some finite
quiver Q and some ideal I in kQ, up to Morita equivalence. Furthermore there is
a homomorphism of graded rings

ϕM : HH∗(Λ)→ Ext∗Λ(M, M) = ⊕i≥0 Exti
Λ(M, M)

for all Λ-modules M , with ImϕM ⊆ Zgr(Ext∗Λ(M, M)) (see [7, 8]). Here
Zgr(Ext∗Λ(M, M)) denotes the graded centre of Ext∗Λ(M, M).

Weakly symmetric algebras are selfinjective algebras where all indecomposable
projective modules P have the property that P/rP ≃ Soc(P ). All selfinjective
algebras Λ of finite representation type are shown to be periodic algebras [3],
meaning that Ωn

Λ⊗kΛop(Λ) ≃ Λ for some n ≥ 1. It is easy to see that all periodic
algebras Λ satisfy (Fg). Furthermore, for selfinjective algebras Λ with radical
r3 = (0) we have the following result.

Theorem 1 ([5, 6]). Let Λ be a selfinjective algebra with radical cube zero. Then
Λ is Koszul if and only if Λ is of infinite representation type.

Hence in our study of weakly symmetric algebras Λ with r3 = (0), we can
concentrate on infinite representation type and consequently Koszul algebras. For
Koszul algebras Λ the homomorphism of graded rings from HH∗(Λ) to the Ext-
algebra of the simple modules has an even nicer property than general algebras as
the following result shows.

Theorem 2 ([2]). Let Λ = kQ/I be a Koszul algebra with degree zero part of the

graded algebra Λ given by Λ0. Let E(Λ) = ⊕i≥0 ExtiΛ(Λ0, Λ0). Then

Im ϕΛ0 = Zgr(E(Λ)).

This enables us to characterize when (Fg) holds for a finite dimensional Koszul
algebra Λ over an algebraically closed field as follows.

Theorem 3. Let Λ = kQ/I be a finite dimensional algebra over an algebraically
closed field k, and let E(Λ) = Ext∗Λ(Λ/r, Λ/r).

(a) If Λ satisfies (Fg), then Zgr(E(Λ)) is Noetherian and E(Λ) is a finitely
generated Zgr(E(Λ)).
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(b) When Λ is Koszul, then the converse implication also holds, that is, if
Zgr(E(Λ)) is Noetherian and E(Λ) is a finitely generated Zgr(E(Λ)), then
Λ satisfies (Fg).

Again let Λ be a symmetric algebra with r3 = (0). Denote by {S1, . . . , Sn} all
the non-isomorphic simple Λ-modules, and let EΛ be the n × n-matrix given by
(dimk Ext1Λ(Si, Sj))i,j . These algebras are classified in [1], and among other things
the following is proved there.

Theorem 4 ([1]). Let Λ be a finite dimensional indecomposable basic weakly sym-
metric algebra over an algebraically closed field k with r3 = (0). Then the matrix
EΛ is a symmetric matrix, and the eigenvalue λ of EΛ with largest absolute value
is positive.

(a) If λ > 2, then the dimensions of the modules in a minimal projective
resolution of any finitely generated Λ-module has exponential growth.

(b) If λ = 2, then the dimensions of the modules in a minimal projective
resolution of any finitely generated Λ-module are either bounded or grow
linearly. The matrix EΛ is the adjacency matrix of a Euclidean diagram

Ãn, D̃n for n ≥ 4, Ẽ6, Ẽ7, Ẽ8, or

Z̃n : 1 2 n− 1 n

or

D̃Zn : 0
QQQQQQ

2 3 · · · n− 1 n

1

nnnnnn

(c) If λ < 2, then the dimensions of the modules in a minimal projective
resolution of any finitely generated Λ-module is bounded.

The trichotomy in Theorem 4 corresponds to the division in wild, tame and finite
representation type as pointed out in [1]. By [4, Theorem 2.5] the complexity of
any finitely generated module over an algebra satisfying (Fg) is bounded above
by the Krull dimension of the Hochschild cohomology ring, hence finite. It follows
from this that a weakly symmetric algebra with radical cube zero only can satisfy
(Fg) in case (b) and (c) in the above theorem. The above result gives the quiver
of the algebra Λ, but since Λ is supposed to be weakly symmetric with r3 = (0), it
is easy to write down the possible relations. In these relations one can introduce
scalars from the field. Most of the times the results are independent of these

scalars, except in the Ãn case, where it suffices to introduce one scalar q in one
commutativity relation. In particular, we have the following.

Theorem 5. Let Λ be a finite dimensional symmetric algebra over an algebraically
closed field with radical cube zero. Then Λ satisfies (Fg) if and only if Λ is of

finite representation type, Λ is of type D̃n for n ≥ 4, Z̃n, D̃Zn, Ẽ6, Ẽ7, Ẽ8, or Λ

is of type Ãn when q is a root of unity.
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Support varieties – an axiomatic approach

Øyvind Solberg

(joint work with Aslak B. Buan, Henning Krause, Nicole Snashall)

The talk of Petter A. Bergh on “Support via central ring actions” underlined that
there is a theory of support varieties obtained from a homomorphism of graded
rings R → Z∗(A) for a triangulated category A = (A, Σ), where R is a graded
commutative ring and Z∗(A) is the graded centre of A. Such ring actions have
been considered in [1, 2, 3, 4]. The aim of this talk was threefold: (1) show
that a tensor triangulated category acting on a triangulated category A provides a
categorification of a central ring action of a graded ring onA, (2) to show that some
of the support varieties for triangulated categories studied in the literature come
from a central ring action obtained from a tensor triangulated category acting,
and thirdly, (3) under some additional assumptions we point out that this puts
restrictions on what one can expect to classify through support varieties. For a
discussion on the graded centre of a triangulated category A and its action on the
graded Hom-sets in A see [5].

Let C = (C,⊗, e, T ) be a tensor triangulated category with tensor product −⊗
− : C × C → C, tensor identity e and suspension T . The starting point of a theory
of support varieties in this setting is the following result. Note that there is no
assumption on the tensor product being exact in either variable.

Theorem 1 ([7]). Let C = (C,⊗, e, T ) be a tensor triangulated category. Then the
graded endomorphism ring

End∗
C(e) = ⊕i≥0 Homi

C(e, T i(e))

is a graded commutative ring.

We give two examples illustrating this construction.
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Example 1. For a finite group (or a finite group scheme) G and a field k, the
derived category Db(kG) of finitely generated left kG-modules under the tensor
product − ⊗k − is a tensor triangulated category with tensor product identity
e = k. Furthermore, the graded endomorphism ring of k in Db(kG) is given
by End∗

Db(kG)(k) ≃ H∗(G, k), the group cohomology ring.

Example 2. Let Λ be a finite dimensional algebra over a field k. Let B be the
full triangulated subcategory of D−(Λ ⊗k Λop) generated by all finitely generated
bimodules which are projective as a left and as a right Λ-module. Then B is a
tensor triangulated category with tensor product induced from − ⊗Λ − and with
tensor identity given by Λ. The graded endomorphism ring End∗

B(Λ) is given by
the Hochschild cohomology ring HH∗(Λ) of Λ.

It is well-known that in these two settings the graded endomorphism rings of
the tensor identity gives rise to a notion of support variety in both cases. Next we
explain how this comes about as a consequence of one and the same construction.

Let A = (A, Σ) be a triangulated category endowed with an action from C given
by an additive bifunctor −∗− : C ×A → A (see [6] for definition of an action, and
make the additional adjustments for respecting the triangulated structure similar
as in [7]).

For any h : e→ T q(e) in End∗
C(e), define ϕ(h) : 1A → Σq as the composition

1A ≃ e ∗ − h∗1−−→ T p(e) ∗ − ≃ Σp(e ∗ −) ≃ Σq(−).

Then we can prove the following result.

Proposition 5. Assigning to h : e→ T q(e) in End∗
C(e) the composition

1A ≃ e ∗ − h∗1−−→ T p(e) ∗ − ≃ Σp(e ∗ −) ≃ Σq(−)

gives rise to a homormophism of graded rings

ϕ : End∗
C(e)→ Z∗(A).

The homomorphism of graded rings ϕ : End∗
C(e) → Z∗(A) induces a theory of

support varieties by letting

V (a, b) = Supp(Hom∗
A(a, b)) ⊆ Spec(R),

where Spec(R) is the spectrum of graded prime ideals in R for a positively graded
subalgebra R of End∗

C(e). It is then easy to see that the support varieties usually
studied in the two above examples are induced through the general setup we have
described.

There are often further structures floating around in an action of a tensor tri-
angulated category on a triangulated category. Such a structure is the notion of
a left function object for the action. One instance of such an object occurs in the
following well-known isomorphism for group rings kG,

HomkG(B ⊗k A, C) ≃ HomkG(A, Homk(B, C)),

where A, B and C are finite dimensional kG-modules. Namely the function object
is Homk(−,−). In general, an additive bifunctor F : Cop ×A → A such that
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(i) F (x,−) : A → A is a covariant functor for all x in C,
(ii) F (−, a) : C → A is a contravariant functor for all a in A,
(iii) there is a natural isomorphism

HomA(x ∗ a, b) ≃ HomA(a, F (x, b))

for all x in C and all a and b in A,

is a left function object for the action of C on A.
Having this additional structure on the action of C on A forces the following

stability condition of the support varieties defined above.

Proposition 6. Assume that C, A and F are as above. Then for x in C and a in
A we have that

V (x ∗ a) ⊆ V (a)

and

V (F (x, a)) ⊆ V (a).

In studying all the localizations in a triangulated category A, it is of interest to
classify all thick subcategories of A. Such a classification is possible using support
varieties in some settings, however if the support varieties comes from a tensor
triangulated category C acting on a triangulated category A with a left function
object F , we see from the above that one only can except to classify thick tensor
subcategories. By thick tensor subcategories U of A we mean thick subcategories
U such that C ∗ U ⊆ U .

Finally we point out that the above can be viewed as a categorification of a
central ring action of a graded ring on the triangulated category A.

This work started through two Research in Pairs stays at MFO, in 2002 and
2004. The authors are very grateful for the unique opportunity and the support
provided by the Mathematisches Forschungsinstitut Oberwolfach.
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Hochschild and ordinary cohomology rings of small categories

Fei Xu

These notes report some recent progress on the homological properties of category
algebras. Let C be a small category and k a field. We define the category algebra kC
to be a vector space with base elements the morphisms in C and the multiplication
is given by composition of the base elements (if two morphisms are not composable
then we ask their product to be zero). Since every group or poset can be regarded
as a category, the notion of a category algebra generalizes that of a group algebra
or an incidence algebra. We denote by V ectk the category of k-vector spaces. A
representation of C is defined to be a covariant functor from C to V ectk. All the
representations of C form a category, namely the functor category V ectCk . Let kC-
mod be the category of left kC-modules. Mitchell [12] showed there exists a fully
faithful functor

V ectCk → kC−mod.

This means that there are certain kC-modules carrying extra underlying functor
structure. In our case, the modules we need to define and compute the Hochschild
and ordinary cohomology rings are functors, as we shall see shortly. We comment
that when ObC is a finite set, the above functor becomes an equivalence, whence
we can identify modules with functors.

A concept very similar to the category algebra was introduced by Gabriel in
his thesis [2], but Gabriel only considered additive categories, and functors which
are additive, so that his definition is a little different. The category algebra does
appear in the work of Mitchell [4], but Mitchell did not give it this name. The
notions which underlie the category algebra have been widely used since the 1960s,
especially with questions to do with homological algebra, and more recently with
the development of the theory of p-local finite groups [1]. The term “category
algebra” was introduced by Webb (see e.g. [3, 8]).

As we mentioned above, we are interested in the kC-modules which are functors.
The underlying functor structure of such a module provides a new angle to describe
the module structure. For instance, the trivial kC-module k is defined as a constant
functor which takes value k at each object in C and sends every morphism in C to
the identity map on k. Let Ce = C × Cop. One can easily see that the category
algebra kCe is isomorphic to (kC)e, the enveloping algebra of kC. The (kC)e-
module (or equivalently the kC-kC-bimodule) kC thus becomes a kCe-module and
moreover one can show it is a functor in V ectC

e

k .
The Hochschild cohomology ring of C is defined as

HH∗(kC) = HH∗(kC, kC) := Ext∗kCe(kC, kC),

and the ordinary cohomology ring of C is defined by

H∗(C; k) := Ext∗kC(k, k).
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We note that the ordinary cohomology ring is isomorphic to H∗(BC, k), where
BC is the classifying space of the small category C. These two rings are graded
commutative and when C is a group or a poset, they are the usual Hochschild and
ordinary cohomology rings of a group or a poset in the literature. Motivated by
well known results on groups and posets, we prove the following statement.

Theorem [9] There exists a split surjective algebra homomorphism

HH∗(kC)→ H∗(C; k).

Moreover, we have HH∗(kC, k) ∼= H∗(C; k).

The proof is based mainly on functor cohomology theory, and Quillen’s results
on classifying spaces of small categories [5]. In fact, we first build one projective
resolution of each of the kCe-module kC and the kC-module k as a sequence of
functors. Then using Quillen’s results we may establish a connection between the
resolutions, from which we deduce the above theorem.

Now we turn to the structure and computation of the two cohomology rings.
By their definitions, both the Hochschild and ordinary cohomology ring can be
computed by using projective resolutions. Alternatively, topological methods may
be used and we want to emphasize that the isomorphism H∗(C; k) ∼= H∗(BC, k)
can dramatically simplify the calculations. Understanding the homotopy type
of BC can be of great help to the computation of H∗(C; k), as we shall see in
our example. Given the structure of H∗(C; k), along with our theorem, one can
continue to describe the structure of HH∗(kC). However, in the latter case, the
representation theory of small categories is often needed since H∗(C; k) is only a
summand of HH∗(kC) and so purely topological method will not be enough. The
following example [9] illustrates our method and furthermore is of great interest
in its own right. Suppose chark = 2. We consider the category E0

x

1x



g

MM

h

--

gh

mm
α //
β

// y {1y}dd ,

where g2 = h2 = 1x, gh = hg, αh = βg = α, and αg = βh = β. The classify-
ing space BE0 is homotopy equivalent to (RP∞ × RP∞)/RP∞ (where RP∞ ≃
BZ2). Using the long exact sequence for computing the relative cohomology
H∗(RP∞×RP∞, RP∞), we can obtain the structure of H∗((RP∞×RP∞)/RP∞, k).
Consequently the mod-2 ordinary cohomology ring H∗(E0; k), as computed by
Aurélien Djament, Laurent Piriou and the author, is isomorphic to a subring
of the polynomial ring H∗(RP∞ × RP∞, k) ∼= H∗(Z2 × Z2, k) ∼= k[u, v], by remov-
ing all un, n ≥ 1, and their scalar multiples. More explicitly H0(E0; k) ∼= k and
H∗>0(E0; k) ∼= k[u, v]v. This ring H∗(E0; k) has no nilpotents and is not finitely gen-
erated. By our theorem, it implies that the Hochschild cohomology ring HH∗(kE0)
modulo nilpotents is not finitely generated either, which gives a counterexample
to the finite generation conjecture in [7]. In fact one can explicitly calculate the
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structure of HH∗(kE0) and show HH∗(kE0)/Nil ∼= H∗(E0; k), where Nil is the ideal
of nilpotents in HH∗(kE0).

The category E0 can be modified to obtain infinitely generated cohomology rings
of algebras over fields of odd characteristics. Fix a prime p. One can replace the
automorphism group of x by Zp×Zp and set Hom(x, y) to be a set of p morphisms
such that one of the Zp’s acts transitively and the other acts trivially on it. The
same topological method as for the case p = 2 can be used to calculate the ordinary
cohomology ring, which is not finitely generated modulo nilpotents. (Note that if
p > 2, then the ordinary cohomology ring does have non-trivial nilpotents.) As
a consequence, the Hochschild cohomology ring modulo nilpotents is not finitely
generated either.
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