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Introduction by the Organisers

A substitution is a non-erasing morphism of the free monoid. Subshifts gener-
ated by fixed points of substitutions are natural symbolic models for deterministic
self-similar dynamical systems. The Pisot conjecture relates number theoretic
properties of the substitution matrix to dynamical properties of the generated
subshift. Explicitly, it states that the symbolic dynamical system of a unimodular
Pisot substitution has pure point spectrum.

This conjecture has attracted a fair amount of attention. In fact, Pisot substitu-
tions systems and the Pisot conjecture have numerous applications, for example to
Diophantine approximation, equidistribution properties of toral translations and
low discrepancy sequences, beta-shifts, multidimensional continued fraction ex-
pansions, generation or recognition of arithmetic discrete planes, or else effective
construction of Markov partitions for toral automorphisms, the main eigenvalue of
which is a Pisot number. Furthermore, the conjecture is supported by numerical
evidence since it can be reformulated in effective terms. Still, so far it has only
been proved in the case of two symbols.
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Primitive substitutions can not only be studied in the framework of symbolic
dynamics but also in a higher dimensional geometric setting. There, one is inter-
ested in substitution-generated tilings and Delone sets. In this situation, there is
an analogous version of the Pisot conjecture.

There exist several necessary and/or sufficient conditions for pure point spec-
trum for substitution dynamical systems. In fact, three related approaches to pure
point spectrum have been developed in the last twenty years:

One approach is based on the notion of coincidence, introduced by Dekking,
then by Host, in an unpublished paper, and lastly in greater generality by Arnoux
and Ito and Hollander and Solomyak. This correspondence is especially apparent
in the recent work of Barge and Kwapisz who showed that pure point spectrum is
equivalent to what they call the geometric coincidence condition. This condition
is algorithmically decidable.

A different approach relies on the geometric representation of substitution dy-
namical systems with pure point spectrum as translations on compact metric
groups such as shown by the pioneering work of Rauzy in the 80’s on the so-
called Rauzy fractal. The Pisot conjecture can then be translated in tiling terms.
The geometric coincidence can also be stated in this framework.

Finally, there is an approach connecting pure point spectrum with cut and
project schemes and so-called Meyer sets. In a very recent work dealing with the
higher dimensional case, Lee has shown that a primitive substitution Delone set has
pure point spectrum if and only if it comes from a cut and project scheme. Thus,
Lee’s characterization links pure point spectrum and cut and project schemes
within the framework of primitive substitutions. A crucial ingredient in her proof
is a new coincidence condition for Delone sets generalizing all earlier conditions of
this kind in the geometric setting. Another important ingredient is her recent work
with Solomyak showing that pure point diffraction implies the Meyer property for
primitive substitution systems, thereby answering a question of Lagarias. This is
then combined with a new understanding of cut and project schemes in terms of
topologies brought forward in recent work of Baake and Moody.
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Rauzy Tilings and Generalized Substitutions . . . . . . . . . . . . . . . . . . . . . . . . 735

Bernd Sing
Pisot Substitutions and Algebraic Number Theory . . . . . . . . . . . . . . . . . . . . 737

Daniel Lenz (joint with Michael Baake, Robert V. Moody)
Pure Point Spectrum, Diffraction Spectrum and Higher Order
Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741

Jeong-Yup Lee
Pure Point Diffraction and Coincidence on Substitution Point Sets . . . . 744

Dirk Frettlöh
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Abstracts

The Silver Mean Chain is a Regular Model Set

Michael Baake

The connection between substitution dynamical systems and model sets is at the
heart of the Pisot substitution conjecture. One version of the latter says that the
geometric point set realization of a primitive substitution on a finite alphabet,
with a Pisot-Vijayaraghavan (PV) number as inflation multiplier and some mild
additional irreducibility assumptions, gives rise to a continuous dynamical system
(under the action of R) with a pure point dynamical spectrum. One way to prove
this claim is by showing the point set to be a regular model set. Here, we sketch
the simplest case of this method, followed by some general comments.

The silver mean substitution ̺ on the binary alphabet {a, b} is conveniently
defined by a 7→ aba and b 7→ a. The corresponding substitution matrix M = ( 2 1

1 0 )

is primitive and has leading eigenvalue s = 1 +
√

2. The latter is a PV unit,
with algebraic conjugate s′ = 1 −

√
2. The Perron-Frobenius (PF) left and right

eigenvectors are (s, 1) and its transpose. Starting from the legal seed aa (which
occurs in ̺2(a) as a subword) and using | as the central marker, one iterates as

a|a ̺−→ aba|aba ̺−→ abaaaba|abaaaba ̺−→ . . .
̺−→ w = ̺(w),

converging towards a reflection symmetric (or palindromic) bi-infinite fixed point
w in the product topology. In this topology, the discrete hull is the compact set

X(w) := {Sj | j ∈ Z}, where S denotes the shift. Now, (X(w),Z) is a discrete
dynamical system, which is known to be strictly ergodic by standard arguments
[9]. In particular, it is repetitive (equivalent to minimal) and has uniform subword
frequencies (equivalent to unique ergodicity).

To turn this into a geometric setting, let a and b denote intervals of lengths
s and 1, respectively, which correspond to the entries of the PF eigenvector. An
expanded version (by a factor of s) of the intervals can then precisely be dissected
into the correct number of the original intervals. This way, the sequence w becomes
a tiling of R, and the left endpoints of the tiles (intervals) form a point set Λ =
Λa∪̇Λb, where a and b refer to the tile types. By construction, we then have
〈Λ − Λ〉Z = Z[

√
2 ], which is the ring of integers in the quadratic field Q(

√
2 ),

where the algebraic conjugation map ′ is defined by
√

2 7→ −
√

2.
If we now define a natural R-action by translation, we obtain the continuous hull

as X(Λ) := {t+ Λ | t ∈ R}, where the closure is now in the local topology. Here,
two locally finite point sets are close when, after a translation of at most ε, they
agree on the centered (at 0) interval of length 2/ε. The space X(Λ) is compact,
and (X(Λ),R) is a continuous dynamical system that is once again strictly ergodic;
compare [7] for a general exposition. One consequence for later is that Λ is a
repetitive point set of density 1

2 , the latter following from a simple calculation with
the frequencies and the lengths of the tiles (as obtained from the PF eigenvectors).
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The geometric counterpart of the fixed point condition for w consists of the two
set valued equations

Λa = sΛa ∪̇
(
sΛa + (s+ 1)

)
∪̇ sΛb,

Λb = sΛa + s.

Unfortunately, these equations have no nice structure concerning uniqueness of
solutions. Under algebraic conjugation and taking closures, they turn into

Wa = s′Wa ∪
(
s′Wa + (s′ + 1)

)
∪ s′Wb,

Wb = s′Wa + s′,

where Wa := Λ′
a, and analogously for Wb. Note that we lost disjointness of the

unions on the right hand side due to taking closures. In return, since |s′| < 1, we
now have a contractive iterative function systems (IFS), acting on pairs of compact
subsets of R. By Hutchinson’s theorem [4], the IFS has a unique solution, which
is simply given by the closed intervals

Wa =
[√

2−2
2 ,

√
2

2

]
and Wb =

[
−

√
2

2 ,
√

2−2
2

]
.

Using the shorthand L = Z[
√

2 ] from now on, we so far have the inclusions

Λa ⊂ {x ∈ L | x′ ∈ Wa} and Λb ⊂ {x ∈ L | x′ ∈ Wb},
which also imply Λ = Λa ∪̇Λb ∈ {x ∈ L | x′ ∈W}, where we set W = Wa ∪Wb =[
−

√
2

2 ,
√

2
2

]
. Observing L′ = L and noticing that the endpoints of Wa and Wb are

not in L, we actually get the slightly stronger relations

Λa ⊂ {x ∈ L | x′ ∈ W ◦
a } and Λb ⊂ {x ∈ L | x′ ∈W ◦

b },
where A◦ denotes the interior of a set A.

The dense point set L ⊂ R gives rise to a planar lattice via its Minkowski
embedding, which is L = {(x, x′) | x ∈ L}. This lattice is spanned by the vectors

(1, 1) and (
√

2,−
√

2 ), which form an orthogonal basis. The density of the lattice

is now easily calculated as dens(L) = 1
4

√
2. At this point, we have identified the

cut and project scheme (CPS) of the silver mean chain as the diagram

R
π←−−− R× R

πint−−−→ R
dense ∪ ∪ ∪ dense

Z[
√

2 ]
1−1←−−− L 1−1−−−→ Z[

√
2 ]

‖ ‖
L

′

−−−−−−−−−−−−−−−−→ L′

which is a central part in the model set construction [5]. Note that algebraic con-
jugation ′ plays the role of the ⋆-map, which is also discussed in the contributions
of Frettlöh and Sing. A model set for this CPS is now of the form

f(A) := {x ∈ L | x′ ∈ A},
where A is any relatively compact set with non-empty interior, such as our sets
Wa, Wb or W above. These sets are called windows for the CPS. A model set is
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called regular when the boundary of its window has measure 0. This is clearly the
case for Wa and Wb, hence also for W .

Due to the uniform distribution property of
(
f(W )

)′
in W , compare [6], we

can calculate the existing density of the projection set f(W ◦) as

dens
(
f(W ◦)

)
= dens(L) vol(W ) = 1

2 = dens(Λ).

We thus have shown that Λ is a subset of f(W ◦), with f(W ◦) \ Λ being a
set of density 0. Although this would already be enough to establish the Pisot
substitution conjecture in this specific example, we can actually show more, namely
f(W ◦) = Λ, via the following observation: Assume that f(W ◦) contains a point
in the complement of Λ, which then introduces a new distance, and hence a local
patch that does not exist in Λ. However, by construction, f(W ◦) is repetitive, so
that this patch must reoccur with bounded gaps. As this implies dens

(
f(W ◦)

)
>

dens(Λ), we get a contradiction, hence the extra point cannot exist.

In general, the above approach can be used as well, also beyond the unimodular
case, see [8] for a systematic account. One always finds that Λ is a subset of
a regular model set, but there is (so far) no general method to determine the
volume of the window. In [3], this was possible by another lattice argument (the
total window tiled internal space periodically). More generally, one needs some
independent argument to control the windows (which are usually fractally shaped),
which is still missing.

Most papers so far have concentrated on the unimodular case of the conjecture.
Examples from constant length substitutions (such as the period doubling chain,
or the chair tiling of the plane) show that the model set description is completely
natural [2]. Further examples are given in Sing’s contribution, or can be found
in his thesis [8]. All equivalent formulations known for the unimodular conjecture
possess counterparts in the general setting.
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Quasi-periodic tilings from non-Pisot unimodular matrices

Shunji Ito

Let σ : A = {1, 2, . . . , d} → A∗ be a substitution and Lσ be the matrix of σ.
Assumption

We assume the following conditions:

(1): ∃N : LN
σ > 0 (primitive condition);

(2): detLσ = ±1 (unimodular condition);
(3): eigenvalues of Lσ satisfies λ = λ1 > 1 > | λ2 | , . . . , | λd | (Pisot condi-

tion);
(4): the characteristic polynomial Φσ (x) of Lσ is irreducible.

The above substitution is called the unimodular Pisot substitution.

Example The subsitution σ : 1 7→ 12, 2 7→ 13, 3 7→ 1 is the unimodular Pisot
substitution.

Under Assumption, let us denote the contractive (resp. expanding) Lσ-invariant
plane by Pc (resp. Pe) and let us define the projection πc : Rd = Pc ⊕ Pe → Pc.

For (x, i∗) ∈ Zd × {1∗, . . . , d∗} , we give the geometrical meaning as

πc (x, i∗) :=






πc

∑

j = 1, . . . , d,
j 6= i

(x + µej)

∣∣∣∣∣∣∣∣∣∣∣

0 ≤ µ ≤ 1






Using the notation σ (i) = W
(i)
1 W

(i)
2 . . .W

(i)
li

, let us define the tiling substitution
σ∗ by

σ∗ (πc (x, i∗)) = L−1
σ (πcx) +

d∑

j=1

∑

(j

k):W
(j)
k

=i

πc

(
L−1

σ f
(
P

(j)
k

)
, j∗
)

where P
(i)
k = W

(i)
1 W

(i)
2 . . .W

(i)
k−1 and f : A∗ → Zd is the homomorphism given by

f (i) = ei, i = 1, 2, 3.

On Example, σ∗ (πc (0, i∗)) is given by

σ∗ (πc (0, 1∗)) =
∑

i=1,2,3

πc (0, i∗)

σ∗ (πc (0, 2∗)) = πc (e3, 1
∗)

σ∗ (πc (0, 3∗)) = πc (e3, 2
∗)

(see Figure 1).

Then we have the following theorem:
Theorem ([A-I], [I-R]) Let U =

∑
i=1,2,...,d πc (0, i∗) , then

(1): σ∗ (U) ≻ (U);
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Figure 1: The tiling substitution σ∗ on Example.
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Figure 2: σ∗n (U), n = 0, 1, . . . , 6 on Example.

(2): if d (∂ (σ∗n (U)) ,0)→∞ (n→∞), then

τ ′ := {πc (x, j∗) | πc (x, j∗) ∈ σ∗nπc (0, i∗) for some n and i∗ }
is a quasi-periodic polygonal tiling;

(3): let S be the stepped surface of Pc, that is,

S := {(x, j∗) | 〈x,v1〉 ≥ 0, 〈x− ej∗ ,v1〉 < 0} ,
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Figure 3: {Xi}i=1,2,3 and
{
L−1

σ Xi

}
i=1,2,3

on Example.

then

{πc (x, j∗) | (x, j∗) ∈ S } = τ ′;

(4): let Xi := limn→∞ Lσ
nσ∗n (πc (0, i∗)) , then

τ := {πcx +Xj | πc (x, j∗) ∈ τ ′ }
is also a quasi-periodic tiling. Moreover, the following set equation holds:

L−1
σ Xi =

d⋃

j=1

⋃

(j

k):W
(j)
k

=i

πc

(
L−1

σ f
(
P

(j)
k

)
+Xj

)
(disjoint).

-5 5

-5

5

τ ′

-5 5

-5

5

τ

-5 5

-5

5

τ ′ ∪ τ

Figure 4: τ ′, τ , and τ ′ ∪ τ on Example.

Moreover, I have spent the time to discuss how we obtain the analogous quasi-
periodic tilings under the unimodular non-Pisot assumption. The details can be
found in the references.
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Rauzy Tilings and Generalized Substitutions

Valérie Berthé

Rauzy fractals were first introduced in [14] in the case of the Tribonacci substitu-
tion 1 7→ 12, 2 7→ 13, 3 7→ 1, and then in [16], in the case of the β-numeration
associated with the Tribonacci number (which is the Pisot root ofX3−X2−X−1).
One motivation for Rauzy’s construction was to exhibit explicit factors of Pisot
substitutive dynamical systems as rotations on compact abelian groups, and to
deduce explicit bounded remainder sets and discrepancy estimates for Kronecker
sequences.

Rauzy fractals can more generally be associated with Pisot substitutions (see the
surveys [4, 7, 13]), as well as with Pisot β-shifts under the name of central tiles (see
e.g. [1]). More precisely, Rauzy fractals are defined in the Pisot substitutive case
as the closure of the projection π on the contracting plane of the incidence matrix
Mσ of a Pisot substitution σ along its expanding direction of the images by the
abelianization map of prefixes of a σ-periodic point, where the abelianization map
is defined as l : A∗ → Nn, l(W ) 7→ (|W |k)k=1,...,n ∈ Nn. A different approach via
graph-directed iterated function systems and generalized substitutions has been
developed in [2, 3]: Rauzy fractals can be described as attractors of some graph-
directed iterated function system. Generalized substitutions provide an algebraic
way to describe this equation with respect to the substitution σ. This is on this
last approach that we focus in the present introductory lecture.

Let us recall that a substitution is a non-erasing morphism of the free monoid.
Generalized substitutions can be considered as multidimensional substitutions of
non-constant length acting on multidimensional words (see e.g. [2, 3, 9]). This
formalism due to Arnoux and Ito [2] was inspired by the geometrical formalism of
[12], whose aim was to provide explicit Markov partitions for hyperbolic automor-
phisms of the torus associated with particular morphisms of the free group. They
have already proved their efficiency for the construction of explicit Markov parti-
tions, as well as for Diophantine approximation [11], and in the spectral study of
Pisot substitutive dynamical systems [5, 13]. With any usual unimodular substi-
tution σ can be associated a generalized substitution E∗

1 (σ) (a substitution is said
unimodular if the determinant of its incidence matrix equals ±1). The generalized
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substitution E∗
1 (σ) is defined as the dual map of a natural geometric realization

of σ. It maps facets of unit cubes onto unions of facets of unit cubes.
One of the key properties of generalized substitutions is that they map arith-

metic discrete planes onto arithmetic discrete planes. Arithmetic discrete planes
are basic objects in discrete geometry: the arithmetic discrete plane Pα,ρ of nor-

mal vector α ∈ Rd
+\{~0} and intercept ρ ∈ R is defined as the union of facets of

unit cubes whose vertices belong to the set {x ∈ Zd | 0 ≤ 〈x|α〉 + ρ < |α|1}. More
precisely, E∗

1 (σ)(Pα,ρ) = PtMσα,ρ.
Let U denote the upper unit cube. It belongs to any discrete plane with in-

tercept ρ = 0. Let σ be a Pisot unimodular substitution. The sets E∗
1 (σ)n(U)

provide larger and larger patches of the arithmetic discrete plane associated with
the contracting space of Mσ. For more details, see [2]. The fact that these patches
cover the whole arithmetic discrete plane can be considered as an analogue of the
so-called finiteness property for β-numerations: a Pisot number β is said to have
the finiteness property if every x ∈ Z[1/β] ∩ [0, 1) has a finite β-expansion. For
more details, see [7].

Furthermore, by renormalizing by Mn
σ the projection π of the sets E∗

1 (σ)n(U)
and by taking the limit with respect to the Hausdorff metric, one recovers the
Rauzy fractal associated with σ. Note also that the Rauzy fractal is conjectured
to tile the contracting plane of Mσ according to a self-replicating tiling which
is given by the projection π of the arithmetic discrete plane. This is one of the
equivalent statements of the Pisot conjecture.

Generalized substitutions thus provide a generation method for arithmetic dis-
crete planes with parameter ρ = 0 for some algebraic parameters α. To gen-
erate nonalgebraic discrete planes, one can expand a given α with respect to a
unimodular continued fraction algorithm. Brun’s algorithm (also called modified
Jacobi-Perron algorithm) is one of the most classical unimodular multi-dimensional
continued fraction algorithms (see e.g. [15]). We then can translate the expansion
produced by Brun’s algorithm as a product of matrices in the formalism of gen-
eralized substitutions. A geometric version of Brun multidimensional continued
fraction algorithm acting on discrete planes is thus given in [6] in terms of gen-
eralized substitutions. If one wants to describe an arithmetic discrete plane Pα,ρ

with nonzero ρ, we then need to involve a skew product of Brun’s algorithm in
order to also expand ρ: such a skew product will play the role of Ostrowski’s skew
product in the Sturmian case.

This geometric extension of the Brun algorithm is motivated by the discrete
plane recognition problem: given a set of points in Zd, is there a naive arithmetic
discrete plane that contains it? A strategy based on multidimensional continued
fractions inspired by the one-dimensional Sturmian case is thus given in [6, 10].

Let us conclude with the following open question: how to associate a Rauzy
fractal with a Brun expansion? If we know that the a.e. exponential convergence
of Brun’s algorithm gives us convergence toward a Rauzy fractal, can we use a
generalized Perron Frobenius theorem to prove that its subtiles will be disjoint in
measure? What about the tiling properties?
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[6] V. Berthé, Th. Fernique, Brun expansions of stepped surfaces, preprint.
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Pisot Substitutions and Algebraic Number Theory

Bernd Sing

1. Philosophy. For us, Pisot substitutions yield geometrical objects, namely, ape-
riodic tilings and/or aperiodic point sets, that live in an algebraic number field.
Everything else – like dynamical systems, diffraction etc. – comes later.

2. Point and Tile Substitutions. We consider the following examples:
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• Silver mean substitution (see Michael Baake’s presentation):

σ :
a → aba
b → a

a b0,s+1 3;

0

gg

s

''

M =

(
2 1
1 0

) eingenvalues: s = 1 +
√

2, s′ = 1−
√

2

eigenvectors:

(
s
1

)
,

(
s′

1

)

• a non-unimodular example (see [1, Section 6.10.2]):

σ :
a → aaba
b → aa

a b0, λ
2 ,λ+1

o
2>

0, λ
2

ck

λ

''

M =

(
3 2
1 0

) eingenvalues: λ = 3+
√

17
2 , λ′ = 3−

√
17

2

eigenvector:

(
λ/2
1

)
,

(
λ′/2

1

)

We recall silver mean here (also see Michael’s Baake talk):
The “incoming arrows” in the substitution graph (variant of the prefix graph) tell
us how we get left endpoints of the intervals in the tiling:

(1)
Λa = s · Λa ∪ s · Λa + s+ 1 ∪ s · Λb

Λb = s · Λa + s

The “outgoing arrows” tell us what we get from an interval/prototile (multiplying
this with the inflation factor s yields the usual tile substitutions):

(2)
Aa = 1

s
·Aa ∪ 1

s
· (Aa + s+ 1) ∪ 1

s
· (Ab + s)

Ab = 1
s
·Aa

We use the matrix function system notation (also compare Jeong-Yup Lee’s talk)

to summarise these two equations as Λ = Θ(Λ) and A = Θ#(A). Note that all

maps in Θ# are of the form x 7→ 1
s
(x + t) (where s > 1 is the inflation factor, t

is some translation), and thus contractions with contraction factor 1
s
. But then1

Θ# itself is a contraction (again with factor 1
s
) on (KR, dH), where KR denotes

the metric space of (nonempty) compact subsets of R equipped with the Hausdorff

metric2. One calls Θ# a (graph-directed) iterated function system (IFS) and has by
Hutchinson’s argument (i.e., applying Banach’s Fixed Point Theorem) that there
is unique fixed point. This unique fixed “point” is actually a collection of compact
sets A = (Aa, Ab) and (trivially) given by Aa = [0, s] and Ab = [0, 1].

In fact more is true, and we have the following Theorem3:
Assume the setting as before; in particular,

1Also compare [1, Chapter 4] and references therein on iterated function systems.
2More precisely, Θ# is actually a contraction on the product space (KR)n.
3Exact but somewhat technical formulations can be found in [1, Proposition 4.99 & Corollary

5.63, resp. Corollary 6.66]
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• all maps in Θ# are of the form f(x) = 1
λ
x+ t with some translation t,

• for the Lebesgue measure µ on R we have µ(f(S)) = 1
|λ| · µ(S) where

S ⊂ R,
• and λ = |λ| is the PF-eigenvalue of the substitution matrix M .

Then, if one Ak has nonzero measure,

(1) all Ai have nonzero measure (by the primitivity of the IFS),
(2) unions on the right-hand side of the IFS in Eq. (2) are disjoint in measure

(since the above factors of |λ| cancel each other),
(3) the boundaries ∂Ai have zero measure, the sets Ai are perfect sets and are

regularly closed. �

For the intervals Ai this is all trivial; however, if we replace s in Eq. (1) by its
algebraic conjugate s′, we get:

(3)
Wa = s′ ·Wa ∪ s′ ·Wa + s′ + 1 ∪ s′ ·Wb

Wb = s′ ·Wa + s′

Since |s′| = 1
s
, it is again an IFS and the previous theorem applies4.

In the non-unimodular example, the intervals Aa = [0, λ
2 ] and Ab = [0, 1] are

the solution of a corresponding IFS Θ#, and replacing λ by its algebraic conjugate
λ′ in the substitution Θ yields an IFS. However, we have |λ′| = 2 · 1

λ
– there is an

additional factor of 2 (which comes from the minimal polynomial x2 − 3x− 2 for
λ) and we cannot apply the stated theorem in the same way as for silver mean.

3. Local Fields. We observe that everything (i.e., all numbers in Θ, Θ#, etc.)
“lives” in an algebraic number field K = Q(λ). Recall that the (non-trivial)
completions of an algebraic number field K are called local fields. Ostrowski’s
Theorem tells us that a local field is either R or C (Archimedean case) or a p-adic
field Qp or Qp (non-Archimedean/ultrametric case).

The field of p-adic numbers, i.e., the p-adic completion5 of Q, is given by Qp =
{
∑∞

n=m sn · pn |m ∈ Z, sn ∈ {0, 1, . . . , p− 1}} . We write a p-adic number either
as smsm+1 . . . s−1.s0s1s2 . . . (if m < 0) or as .0 . . . 0smsm+1 . . . (if m ≥ 0); if
sm 6= 0, then the absolute value is given by p−m.

We return to the non-unimodular example: 2-adically, the minimal polynomial
of λ splits as follows: x2 − 3 x− 2 = (x − .10110 . . .) · (x − .01101 . . .). Thus, we
can complete Q(λ) 2-adically (and obtain Q2 in either case) either by identifying
λ with .10110 . . . (with |.10110 . . . |2 = 1) or by identifying λ with .01101 . . . (with
|.01101 . . . |2 = 1

2 ).
We now obtain an iterated function system that satisfies our theorem by di-

agonally embedding the substitution Λ = Θ(Λ) into R × Q2 where in the first
coordinate λ is interpreted as (the real number) −0.56 . . . (i.e., λ′) while in the

4The solution of the IFS in Eq. (3) is given by Wa =
h√

2−2
2

,
√

2
2

i

and Wb =
h

−
√

2
2

,
√

2−2
2

i

.
5Note that if we consider an algebraic number field Q(λ) (an extension of Q), we might get

as its completion some extension of Qp. Thus, we use the notation Qp where p is a prime ideal

containing p in the following. For more on local fields, see [1, Chapter 3] and references therein.
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second coordinate it is (the 2-adic number) .01101 . . .. This yields an iterated
function system W = Θ⋆(W ) on K(R×Q2) where for a set S ⊂ R×Q2 we have6

µ(f(s)) = |λ′| · |.01101 . . . |2 · µ(S) = 1
|λ| · µ(S). Then, we can apply our theorem

and get “well-behaved” sets Wi.

4. Cut and Project Scheme. For a general7 Pisot substitution with Pisot num-
ber λ > 1 of degree n the situation is as follows:

• there are r−1 real Galois conjugates of λ that are less than 1 in modulus,
• there are s pairs of complex conjugate Galois conjugates, also less than 1

in modulus (and n = r + 2s),
• there are8

p-adic fields with |λ|p < 1 only if p| detM (where p is contained
in the prime ideal p).

We get a cut and project scheme with direct space G = R (the only local field
where λ acts as an expansion), internal spaceH = Rr−1×Cs×∏

p:|λ|p<1 Qp (where

the diagonal embedding of λ acts as contraction) and a lattice L̃ in R×H that is
the diagonal embedding of9 L =

⋃∞
m=0

1
λm 〈ℓ1, . . . , ℓn〉Z, where ℓi denotes the ith

interval length and 〈S〉Z the group generated by S.

All this yields a symmetric cut and project scheme (R, H, L̃) (πR, πH denote
the canonical projections from R×H onto R respectively H):

R
πR←− R×H πH−→ H = Rr−1 × Cs × ∏

p:|λ|p<1

Qp

dense ∪ ∪ ∪ dense

L 1−1←→ L̃ 1−1←→ L⋆

Thus, the star-map (·)⋆ denotes the diagonal embedding into the “contracting”
internal space H , and similarly ·̃ the diagonal embedding into the product space
R×H .

We also find a symmetric situation by looking at the IFSes (oval boxes) and
substitutions (rectangular boxes) on “direct space” R and “internal space” H :

On R: Λ = Θ(Λ)
�

�

�

�
A = Θ#(A) On H:

�

�

�

�
W = Θ⋆(W ) Υ = Θ#⋆(Υ )

So, an IFS in one space corresponds to a substitution in the other space and vice
versa; the unique compact solutions of the IFSes are the intervals Ai and the
possible windows/“Rauzy fractals” Wi.

6Note that the product over all absolute values of a nonzero number x in some number field
equals 1.

7For this section compare [1, Chapter 6] and references therein.
8We only have to consider finitely many p-adic local fields of Q(λ) here: If p does not divide the

constant term of the minimal polynomial of λ, which is also given ±det M , then the corresponding
p- respectively p-adic value is 1, otherwise it is less than or equal to 1.

9In the unimodular case, where λ is an algebraic unit, this reduces to L = 〈ℓ1, . . . , ℓn〉Z.
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5. Pisot Conjectures. Before stating various equivalent formulations10 of the
Pisot Substitution Conjecture, we need to introduce the notion of a model set. Let
(G,H, L̃) be a cut and project scheme and assume that S ⊂ H has nonempty
interior and is relatively compact; then the following Delone subset of G is called
a model set with window S: Λ(S) = {πG(x) | x ∈ L̃, πH(x) ∈ S}. Since the cut
and project scheme above is symmetric, we will write ΛG(S) to emphasise that
this model set is a subset of G. If additionally the Haar measure of the boundary
∂S vanishes, we call the model set regular.

Pisot Substitution Conjecture I. Λ is a regular model set with windows W
(up to boundary points of the sets Wi) – meaning that Λi = ΛG(Wi) for all i, up
to points arising from the boundary of Wi.

By construction, Λ+A = {Ai + t | t ∈ Λi, 1 ≤ i ≤ n} is a tiling of R, and some
reflection shows that we reformulate our conjecture as follows:

Pisot Substitution Conjecture II. The Pisot Substitution Conjecture holds iff
ΛR(W ) +A is a tiling (again, up to boundary points of the sets Wis).

We note that ΛR(W ) + A is always a multi-covering of a.e.-constant covering
degree. Using the symmetric structure of the cut and project scheme, we get:

Pisot Substitution Conjecture III. The Pisot Substitution Conjecture holds
iff ΛH(A) + W is a tiling, where Ai = [0, ℓi[ denotes the half-open interval (this
makes the model set in H in question repetitive).

The final formulation makes (direct) use of the unique solutions of the IFSes
involved:

Pisot Substitution Conjecture IV. The Pisot Substitution Conjecture holds
iff
⋃n

i=1(−Ai)×Wi (and then also
⋃n

i=1 Ai × (−Wi)) is a fundamental domain of

the lattice L̃ ⊂ R×H .

This, of course, is a nice way to write the torus that plays such an important
role for the dynamical systems associated with these tilings. But we stop here.

References
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Pure Point Spectrum, Diffraction Spectrum and Higher Order
Correlations

Daniel Lenz

(joint work with Michael Baake, Robert V. Moody)

Here we shortly review some elements presented in a talk and a problem ses-
sion. We refer to the books [3, 16] and the survey [13] for further discussion and
references concerning diffraction and aperiodic order.

10These equivalent formulations of the Pisot Substitution Conjecture are amongst those stated
in [1, Theorem 6.116]. See there for further references.
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The setting: Ergodic measures on point sets. Let Ed denote the d-
dimensional Euclidean space. We denote by D the set of all uniformly discrete
subsets of Ed whose points have distance 1 or bigger. (Of course, 1 could be
replaced by any other positive number.) The set of all continuous compactly
supported functions on Ed is denoted by Cc(E

d). Each ϕ ∈ Cc(E
d) induces a

function

Nϕ : D −→ Complex numbers, Nϕ(Λ) :=
∑

x∈Λ

ϕ(x).

These functions induce a topology on D viz the smallest topology making all of
them continuous. In this topology, the space D is a compact topological space. It
allows for a continuous action via translations given by

α : Ed ×D −→ D, (t, Λ) 7→ t+ Λ.

We are interested in the ergodic probability measures on D. Each such measure
specifies a subset of D viz its support.

Correlations. Let µ be an ergodic probability measure on D. Then, for each
natural number n, there exists an measure γ(n) on Ed × . . .×Ed (n-factors) such
that

γ(n+1)(Φ) = lim
R→∞

1

|BR|
∑

x,y1,...,yn∈Λ

Φ(−x+ y1, . . . ,−x+ yn)

for µ-almost every Λ ∈ D and every continuous function Φ with compact support
on Ed × . . .× Ed. Here, |BR| denotes the Lebesgue measure of a ball with radius
R in Ed.

Diffraction spectrum and dynamical spectrum. A particular role is
played by γ := γ(2). It is called autocorrelation. Its Fourier transform γ̂ is called
the diffraction measure. This measure can be determined in a diffraction experi-
ment. The set S of Bragg peaks is defined by

S := {k ∈ Ed : γ̂({k}) > 0}.
The group of eigenvalues of (D, α, µ) is denoted by E(µ). It turns out that γ̂ is
stronlgy linked to the spectrum of the dynamical system (D, α, µ). More precisely,
the following holds.

Theorem. γ̂ is a pure point measure if and only if (D, α, µ) has pure point
dynamical spectrum. In this case the group E(µ) of eigenvalues of the dynamical
systems is generated by the set S.

Remarks. (a) The theorem has a long history. In the symbolic dynamics case
it can be found in [17]. Starting with the work of Dworkin [6] the ’if’ direction
was shown in [9, 18] (see [7, 19] for related material as well). The equivalence was
first shown in [11] (for point sets with further regularity properties) and then in
increasing generality including our setting in the works [2, 8, 15]. The statement
on the eigenvalues is implicit in [11]. It can be found explicitely in [2].
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(b) In the non-pure point case, the diffraction spectrum is still contained in the
dynamical spectrum.

The higher order correlations. The previous section has been concerned
with the autocorrelation γ = γ(2). A systematic study of higher order correlations
in our context seems to have only started recently in the work [4]. As discussed
there (see [14] as well) the measure µ is determined by the γ(n), n = 1, 2, . . ..
In fact, it turns out that the measure µ is already determined by finitely many
moments in the pure point case under a certain further assumption:

Theorem. If E(µ) = S + . . . + S (N -terms) then µ is already determined by
its first 2N +1 correlation functions. In particular, if the set of eigenvalues equals
S, then µ is determined by its first three correlation.

Remarks. (a) The theorem is proven in [14].
(b) The autocorrelation alone does not determine the measure in general as

discussed e.g. in [1].
(c) A particular interesting case concerns measures µ coming from so called

regular model sets. This has been studied in [5]. As shown there the measure is
determined by its first three correlations if the internal space is Euclidean.

Connection to Pisot Conjecture and some open problems. The above
results are formulated in the context of point sets. However, they also hold in
the case of symbolic dynamics. In particular, pure point dynamical spectrum is
equivalent to pure point diffraction. This means that the conclusion of the Pisot
conjecture (viz pure point spectrum) can also be formulated as result on diffraction
(viz pure point diffraction).

One version of the Pisot conjecture says that a Pisot substitution gives rise to a
regular model set (with real internal space). By the results of [4] such model sets
seem to be determined by their first three correlations. This suggests the following
question:

Question. Is a Pisot substitution determined by its first three correlations?

Note that this question does not refer to point spectrum. The work [14] suggests
that this may be related to the structure of a cycle associated to the eigenfunctions
(see [5] as well).

More generally we may ask whether any primitive substitution is already de-
termined by finitely many correlations.
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Pure Point Diffraction and Coincidence on Substitution Point Sets

Jeong-Yup Lee

We first discuss how to construct substitution tilings keeping the same substitution
rules from substitution point sets. We introduce the notion of representability in
substitution point sets and give an equivalent condition for a substitution point
set to be representable for a substitution tiling. This connection was first shown
in [4] with a sufficient condition and improved with an equivalent condition in [7].
Under this equivalent condition, we can easily switch from substitution point sets
to substitution tilings.

Throughout the talk, we assume that primitive substitution point sets are in
Rd and representable for substitution tilings.

We show a circle of equivalences relating pure point diffraction spectrum, over-
lap coincidence, algebraic coincidence, and inter model sets for a substitution point
set whose union is a Meyer set. As it has been discussed in Lenz’s talk, pure point
diffraction spectrum and pure point dynamical spectrum are equivalent in quite a
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general setting(see [6, 2, 3]). The equivalence between pure point dynamical spec-
trum and overlap coincidence has been shown in [9, 7]. The equivalence between
overlap coincidence and algebraic coincidence is proved in [5].

Furthermore it was proved in [8] that pure point diffractive substitution point
sets are always Meyer sets. So we show that the assumption of a Meyer set in the
above assumption is not necessary.

Finally, using the notions of overlap coincidence and matrix function system,
we provide a computable algorithm to check pure point diffraction in substitution
point sets. We show this algorithm with an explicit example(see [1]).
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Duals of Pisot Substitutions

Dirk Frettlöh

The nature of this talk is twofold: Distinct concepts of the dual substitution of a
Pisot substitution are explained and shown to be equivalent, at least in the simplest
cases; and it is shown how to apply one of these concepts to obtain partial results
for the Pisot conjecture.

A symbolic substitution on words, like

σ : 0→ 010, 1→ 01010

gives rise to a self-similar tiling of the line in a canonical way: just replace each
letter in the biinfinite word by an interval (tile) of appropriate length. If the
substitution matrix S = (Sij), where Sij counts the number of is in σ(j), is
primitive (that is, there is k ≥ 1 such that Sk > 0), then the appropriate lengths
are given by the left Perron-Frobenius eigenvector v of S. We will always require
primitivity from here on. Scaling v such that v = (1, v2, . . . , vn) ensures that each
tile length is element of the number field Q(λ), where λ is the Perron-Frobenius
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eigenvector of S. Thus the vertex set of any tiling by these tiles is a discrete
subset of Q(λ), whenever 0 is a vertex. The symbolic substitution σ yields a tile
substitution s, which maps tiles to finite tilings, and tilings of the line to tilings
of the line. In particular, if we start with a biinfinite word fixed by σ (take for
instance . . . ababaaba|abaababa . . . for the example above), we obtain a tiling of the
line which is fixed under s, a so called self-similar tiling.

Let Galois-dual denote the map from Q(λ) → Rd−1, where d is the algebraic
degree of λ, which is obtained by replacing λ by the vector of its d − 1 algebraic
conjugates. Taking the Galois-dual of the vertex set of a self-similar tiling as above,
where λ is a Pisot number, yields a bounded set in Rd−1. The closure of this set is
known as the Rauzy fractal (in the theory of discrete dynamical systems), or the
window (in the theory of aperiodic order), of σ.

As Thurston noted in 1989, the expanding self-similarity of the tiling in the
direct space R yields a dual substitution in the internal space Rd−1. To be precise,
the Galois dual of the substitution is a contracting IFS (iterated function system)
with the window as its solution. (Hutchinson theorem shows that each IFS has
a unique compact nonempty solution.) This IFS can be blown up and yields a
substitution for tilings in the internal space Rd−1 [5], see also [6].

This concept has been made precise in several ways: One possibility is the star-
dual σ⋆ of a substitution. This is a generalisation of the Galois dual described
above, see [3] for details. If λ is an algebraic unit, the star-dual is the same as the
Galois dual. An advantage of the star dual is that it is easily described in terms of
digit set matrices: If D is the digit set matrix encoding the tile substitution, then
(DT )⋆ encodes the dual IFS, thus the dual substitution.

Another way to formalise the dual substitution is the dual map E∗
d(σ) acting

on ‘stepped surfaces’, i.e., approximations of hyperplanes by unit cube faces, see
[1]. Moreover, in the case where λ is a quadratic algebraic unit, one might regard
σ as an endomorphism of the free group F2 = 〈a, b〉. If σ is invertible, then σ−1

(or its square) yields a substitution on the alphabet {a, b−1}.
Theorem 1 [2] Let σ a primitive unimodular (invertible) substitution on two
letters. Then E∗

1 (σ) and σ⋆ (and σ−1) yield equivalent sequences.

The term equivalent sequences, rather than equal sequences, is due to the fact
that we compare combinatorial sequences (words) with geometric ones (tilings).
The relation is obtained as discussed above, by identifying letters with intervals.
Moreover, the dual tiling might use a different alphabet, so we might want to
rename letters. For the case of more than two letters we refer to future work.

The following result is a simple consequence of the fact that any tiling which
dual is in fact a proper tiling (rather than a multiple covering) fulfils the Pisot
conjecture (cp. [4]).

Theorem 2 [3] A tile substitution with digit set matrix D, where

(DT )⋆ = cP−1DP + t

for some c > 0, t ∈ Rn, P a permutation matrix, fulfils the Pisot conjecture.
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The proof is based on the fact that the tilings which digit set matrices fulfil the
equation above are self-dual, i.e., they are equivalent to themselves. Hence the
dual tilings are proper tilings and no multiple coverings. Unfortunately, whereas
this theorem applies to a large class of 2-letter substitutions, there is no single
example known beyond this case. For instance, the author is not aware of any
self-dual tile substitution in dimension d ≥ 2.
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Diophantine Properties of Interval Exchange Transformations

Michael Boshernitzan

(joint work with Jon Chaika)

Let J = [0, 1) = R/Z stand for the unit interval and R,Z denote the sets of real
numbers and of the integers, respectively. We present shrinking targets results for
minimal IETs (interval exchange transformations) (J, T ), J = [0, 1).

Denote by 〈a〉 = min
k∈Z
|a− k| the distance from a ∈ R to the nearest integer.

For a map T : J → J, consider two family of functions φα : J2 → [0,∞] and
φα : J2 → [0,∞], α ∈ R, defined by the formulae

φα(x, y) = lim inf
n→∞

nα〈T n(x)− y〉

and

ψα(x, y) = lim inf
n→∞

nα〈T n(x)− T n(y)〉.

The main result of our talk is that, for a minimal IET (J, T ) which is ergodic
relative to a Borel probability measure µ, the equality

(1) φ1(x, y) = lim inf
n→∞

n〈T n(x)− y〉 = 0,

holds for µ× µ almost all pairs (x, y) ∈ J2.
A special case of this result, for minimal 2-IETs (irrational rotations) is already

known ([1] and [2]). (In this case, µ = λ, the Lebesgue measure).
We show that the result in (1) is the best possible already for 2-IETs in so that

the factor n in it cannot be replaced by a factor approaching infinity faster.
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We also show that (1) fails for µ = λ for an explicitly constructed 4-IET which
is minimal but not ergodic relative the the Lebesgue measure λ. The example
is based on the work of the second author [3]. In this example we show that
φ1(x, y) can be infinite on a set of positive Lebesgue measure in J2, even though
it vanishes on a set of measure 1/2 (at least). In general, for a minimal (not
necessarily ergodic) r-IET, φ1(x, y) must vanish on a set of positive measure.

The result (1) is constructed with the following one. For a “random” 3-IET we
show that for all α > 0 and Lebesgue almost all x, y ∈ J the equality

(2) ψα(x, y) = lim inf
n→∞

nα〈T n(x) − T n(y)〉 =∞

holds, even though ψ0(x, y) = lim inf
n→∞

〈T n(x) − T n(y)〉 = 0 (for Lebesgue almost

all x, y ∈ J) because a “random” IET is weakly mixing (see [4]) and hence T × T
is ergodic.

We conclude the lecture with the following two open questions:

1. If an IET (J, T ) is uniquely ergodic, does the inequality φ1(x, y) <∞ need
to hold for all x, y ∈ J (versus almost all as we prove)? (Note that the
answer is affirmative if T is an r-IET with r ≤ 3).

2. Is it possible (for a minimal IET (J, T )) to have φ1(x, y) = 0, for all x, y ∈ J
(versus almost all as we prove)? (Note that the answer is “no” if T is an
r-IET with r ≤ 3; the proof of this fact we currently have is not short).
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MLD Relations of Pisot Substitution Tilings

Franz Gähler

We consider substitutions σ on an alphabet of three letters, whose abelianisa-
tion matrix (substitution matrix) M is primitive and unimodular, has irreducible
characteristic polynomial, and a leading (Perron-Frobenius, PF) eigenvalue which
is a Pisot number. The words generated by such a substitution can be regarded
as elements of a free group with three generators, and automorphisms of the free
group give rise to transformations of words. Alternatively, we can work with a
geometric realisation of the substitution, by letting it act on three intervals, whose
lengths are chosen proportional to the components of the left eigenvector associ-
ated with the leading PF-eigenvalue λ of M . Each tile is then substituted with
a sequence of tiles, whose total length is equal to λ times the original length.
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Such a geometric realisation generates a tiling of the line, instead of a sequence of
symbols, or a word in a free group.

The matrix M represents a linear mapping A of R3, expressed with respect
to some basis {bi}. As M is unimodular, this mapping is an automorphism of
the lattice L generated by {bi}. We choose the geometry of L such that the
expanding and contracting eigenspaces of A are perpendicular to each other, so
that A commutes with the orthogonal projections on these eigenspaces. This
can be realised as follows. After appropriate rescaling, the tile lengths, being
components of the PF-eigenvector, are contained in the algebraic field Q(λ), and
so are all coordinates of lattice points in the expanding eigenspace of V of A. The
corresponding coordinates in the contracting eigenspace W can be chosen as the
d − 1 Galois conjugates of the coordinate in V . We then have a cut-and-project
scheme defined by the lattice L, and the eigenspaces V and W of A:

(1)
V ∼= R

π1←− R3 π2−→ W ∼= R2

∪ ∪ ∪
Λ L Ω

One of the formulations of the Pisot conjecture states that the vertex set Λ of a
Pisot substitution tiling always is a model set, which means that there exists a
window set Ω ⊂ W which is the closure of its interior, and which has boundary
of measure zero, such that Λ = {π1(x) |x ∈ L, π2(x) ∈ Ω}. Similarly, the subsets
of the left end points of all tiles of a given type in a Pisot substitution tiling are
model sets, too, with appropriate subwindows Ωi. For all examples considered
below, the Pisot conjecture can be shown to hold, even though a proof for the
general case is still missing. For a more detailed description of Pisot substitution
tilings and their associated cut-and-project schemes, we refer to [1].

The cut-and-project scheme (1) does not specify the window Ω yet. Substitu-
tions having the same abelianisation matrixM (but differ in the order of the letters
within a substituted word) give rise to the same cut-and-project scheme, but will
have different windows in general. As we shall see below, even substitutions with
different abelianisation matrices may belong to a common cut-and-project scheme.

In the following, we shall study relations between certain substitution tilings
belonging to a common cut-and-project scheme. For this, besides the geometric
realisation of a substitution tiling it is also useful to consider the substitution
action as an automorphism of the free group with three generators. If for two
substitutions σ1 and σ2 there exists a fixed word w in the group, such that σ1(g) =
w−1σ2(g)w for every generator g of the group, then the two substitutions produce
tilings wich are locally isomorphic (LI), meaning that all their finite subpatterns
are the same. This can be seen as follows. One first observes that there exists
some power of σ1, such that σk

1 has a bi-infinite fixed point, and that σk
1 and σk

2

are still conjugate in the same way, with a (longer) word w′. In a second step, one
can then show that the fixed point of σk

1 is also a fixed point of σk
2 , which implies

that the two substitutions generate the same tilings.
A more delicate relation is mutual local derivability (MLD) [2]. Two tilings are

MLD, if one can be reconstructed from the other in a local way, and vice versa.
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For this to work, the two tilings must first be brought to the appropriate relative
scale and position. A good starting point is to consider two tilings belonging to a
common cut-and-project scheme. In fact, two (model set) tilings are MLD if and
only if the window of one can be constructed by finite unions and intersections
of lattice translates of the window of the other, and vice versa. Looking at the
windows can suggest an MLD relation, but for proving such a relation it is very
helpful if one substitution can be written as a conjugate of the other, σ1 = ρ−1 ◦
σ2◦ρ, where ρ is an outer automorphism of the free group (an inner automorphism
would lead to an LI relation). Such an automorphism will make the transformation
of one tiling into the other explicit. In the following, different phenomena arising in
this context are illustrated with a number of examples. As a short-hand notation,
we write the action of a substitution σ on a free group as the list of images of the
generators, in our case a triple [σ(a), σ(b), σ(c)].

As a first example, we consider the substitutions σ1 = [cb, c, cab] and σ′
1 =

[bc, c, cba], which have the same abelianisation matrix. These two substitutions
are conjugate by the free group automorphism ρ1 = [bab−1, b, c], with inverse
ρ−1
1 = [b−1ab, b, c]. It is easily checked that indeed we have σ1 = ρ−1

1 ◦ σ′
1 ◦ ρ1. In

a word generated by σ1, there is always a b to the right of an a. ρ1 eats up that
b, and adds a b to the left of the a instead, effectively replacing ab pairs by ba
pairs. ρ−1

1 performs the opposite operation. This is obviously a local operation,
no matter whether one works with words in a free group, with symbolic sequences,
or with tilings. The LI classes of tilings generated by the two substitutions are
MLD.

In the second example, we consider two substitutions with different abelianisa-
tion matrices, σ2 = [c, a, cab] and σ′

2 = [c, ca, cb]. Again, there is a conjugating au-
tomorphism ρ2 = [a, a−1b, c], with inverse ρ−1

2 = [a, ab, c], so that σ2 = ρ−1
2 ◦σ′

2◦ρ2.
Here, in words produced by σ2, all b are to the right of an a. ρ2 eats up the a
to the left of a b, effectively replacing all ab pairs by just one b. Other a (not
to the left of a b) and all c are left as they are. Conversely, ρ−1

2 splits all b in a
σ′

2-word into ab pairs. On the tiling level, this operation is local if and only if the
length of an ab pair of tiles in the σ2-tiling is the same as the length of a b tile in
the σ′

2-tiling, whereas a and c tiles have the same length for both tilings. With
appropriate global scalings, this is indeed the case. σ2 = ρ−1

2 ◦σ′
2 ◦ ρ2 implies that

the two abelianisation matrices are conjugate in GL3(Z). In fact, the two substi-
tutions have the same cut-and-project scheme, with the same lattice L. The only
difference is, that the linear mapping A is expressed with respect to two different
lattice bases, yielding two different matrix representations of A, and different tile
lengths (which are the lengths of the projected basis vectors). It is therefore not
surprising, that the length of tile b in the σ′

2-tiling is the sum of the lengths of
the two tiles a and b of the σ2-tiling. MLD relations can therefore arise also if the
two abelianisation matrices are not equal, but conjugate in GL3(Z), because the
two substitutions then share a common cut-and-project scheme. We emphasise,
however, that this relation is local only for the tilings with properly sized tiles.



Mini-Workshop: The Pisot Conjecture 751

This pair of examples had been discussed in detail already in [3]. σ′
2 is LI to the

Rauzy or Tribonacci substitution.
Finally, as a third example, we consider a quartet of substitutions, all with

the same abelianisation matrix M . These substitutions are σA = [ca, ab, cab],
σB = [ac, ab, abc], σC = [ca, ba, bac], and σD = [ac, ab, bac]. σA and σD are
conjugate in a way already seen in the first example: σD = ρ−1

3 ◦ σA ◦ ρ3, where
ρ3 = [a, b, a−1ca] simply replaces ac pairs by ca pairs. In order to discuss the
relations to the other substitutions, we introduce the automorphisms w1 = [c, a, ab]
and w2 = [c, a, ba]. We then have σA = w1 ◦ w1 ◦ w2, σB = w1 ◦ w2 ◦ w1, and
σC = w2 ◦ w1 ◦ w1, so that σA = w1 ◦ σB ◦ w−1

1 and σC = w−1
1 ◦ σB ◦ w1. The

conjugating automorphism w1 has an abelianisation matrix W which commutes
with the common abelianisation matrix M of the substitutions, even though W is
non-trivial. This is possible becauseM is equal to the third power ofW . Therefore,
M is conjugate to itself by some non-trivial mapping, which acts non-trivially on
the lattice L, changing the scale of the tiling by the cubic root of the inflation
factor λ of the substitution (or its inverse). Consequently, in order to be MLD,

the tilings produced by σA, σB and σC must be at relative scales λ−
1
3 , 1, and λ

1
3 ,

respectively. The situtation is in fact similar to the second example, where the
substitutions share a common cut-and-project scheme, but different lattice bases of
L are used. Here, these different lattice bases still lead to the same abelianisation
matrix M , but produce tiles of different sizes.

Acknowledgements. The author would like to thank Pierre Arnoux, Dirk Frett-
löh, and Edmund Harriss for fruitful discussions.
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Schrödinger Operators Associated with Substitution Dynamical
Systems

David Damanik

Let σ : A → A∗ be a primitive substitution and let u ∈ AN be a fixed point of
some power of σ. Consider the associated hull

Ω = {ω ∈ AZ : Fω = Fu},
where Fs denotes the set of finite subwords of a one-sided or two-sided infinite
sequence. It is known that there is a unique shift invariant probability measure ν
on Ω.
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We can define the associated Schrödinger operators as follows. Given a one-to-
one function f : A→ R, we let

Vω(n) = f(ωn), ω ∈ Ω, n ∈ Z.

This gives rise to a bounded self-adjoint operator Hω on ℓ2(Z),

[Hωψ](n) = ψ(n+ 1) + ψ(n− 1) + Vω(n)ψ(n).

We focus here on the problem of existence of eigenvalues and consider the set

Ωc = {ω ∈ Ω : Hω has no eigenvalues}.
There is the following relative of the Pisot conjecture:

Does σ Pisot imply that Ωc = Ω?

One could also ask whether pure point dynamical spectrum implies Ωc = Ω. There
are only few results in this direction. The statement Ωc = Ω is known for all
Sturmian substitutions [3] and the period doubling substitution [2].

There are combinatorial methods that enable one to prove that Ωc is large in
a certain sense. For example, if u contains arbitrarily long palindromes, then Ωc

is a dense Gδ set [5]; and if u contains a fractional power greater than three, then
ν(Ωc) = 1 [1]. On the other hand, the methods from [5] and [1] can never prove the
full statement Ωc = Ω as there are always exceptional ω’s that are not accessible
[1, 4].

References

[1] D. Damanik, Singular continuous spectrum for a class of substitution Hamiltonians II., Lett.
Math. Phys. 54 (2000), 25–31.

[2] D. Damanik, Uniform singular continuous spectrum for the period doubling Hamiltonian,
Ann. Henri Poincaré 2 (2001), 101–108.
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Spectral Theory of Bijective Substitution Sequences

Natalie Priebe Frank

1. Introduction

The dynamical systems of bijective substitution sequences in Zd have a mixed
dynamical spectrum, while many of their factors may only have a discrete part.
Using as examples the well-known Thue-Morse and period-doubling substitutions,
we will show what happens to the continuous part of the dynamical spectra through
the factoring process.
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2. Constant-length substitutions in Zd

When defining a constant-length substitution in Zd, the first order of business
is to decide on the size of the rectangular blocks that the substitution will use. So
we choose positive integers l1, l2, ..., ld and define

B = B(l1, ..., ld) = 0, 1, ..., l1 − 1× ...× 0, 1, ..., ld − 1 ⊂ Zd

The block B defines an empty set of spaces for the substitution to fill in, sort
of a “wire frame” structure waiting to be decorated (or colored in) by letters from
some finite alphabet A. To decide how to color in each space ~ ∈ B, we next
choose a map p~ : A → A. This gives a substitution S = (p~)~∈B, which assigns to
each a ∈ A a block of letters of size B. The substitution may be iterated; we call
a level-n block a letter which has been substituted n times.

Example 1. Let B = B(2) = {0, 1} and let A = {a, b}. The period-doubling
substitution takes a → a b and b → a a. In our notation, we see that the map p0

takes both a and b to a, where p1 is the map taking a to b and b to a.

Example 2. Again let B = B(2) = {0, 1} and let A = {a, b}. The Thue-Morse
substitution takes a→ a b and b→ b a. In our notation, we see that the map p0 is
the identity and p1 is again the map taking a to b and b to a.

For details, examples, and a spectral analysis of multidimensional constant-
length substitution sequences, see [2].

A substitution is said to be bijective if for each ~ ∈ B, pj is a bijection on A.
Notice that if a substitution is bijective, then there can never be coincidences in
the sense of Dekking [1], and therefore will have a mixed dynamical spectrum.

2.1. Substitution dynamical systems. Once a substitution is decided upon,

we define the hull X of the substitution as the space of all sequences in AZd

,
all of whose subblocks appear somewhere in a level-n block. Translation by ele-
ments of Zd give a multidimensional action that is known, when the substitution
is primitive, to be uniquely ergodic with probability measure we will call µ.

The Thue-Morse and period-doubling substitution dynamical systems, denoted
(XTM ,Z, µTM ) and (XPD,Z, µPD) respectively, are our main examples. It is
known that the Thue-Morse system factors onto the period-doubling system. It is
also known that the Thue-Morse system has a mixed dynamical spectrum while
the period-doubling system has pure point spectrum. We will show what becomes
of the continuous part of the Thue-Morse spectrum during the factoring process.

3. Spectral theory of substitution sequences in Zd

Consider the unitary Zd-action on a Hilbert space given by U~ : L2(X,µ) →
L2(X,µ) with U~(f(T )) = f(T −~) for all ~ ∈ Zd. We can analyze the action of Zd

on X by consideration of the action of U~ on L2(X,µ). The spectral coefficients
of an L2(X,µ) function are given, for each ~ ∈ Zd, by

f̂(~) = 〈U~f, f〉 =
∫

X

U~f(T )f(T )dµ(T ).(1)



754 Oberwolfach Report 13

It is known that these coefficients form a positive definite sequence and that there-
fore there is a unique measure σf on the d-torus [3] with:

f̂(~) =

∫

Td

z~dσf (z),(2)

where z~ = zj1
1 · ... · zjd

d .
It is hard to visualize these measures, but we know that they must decompose

relative to Lebesgue measure into pieces that are atomic (discrete), singular con-
tinuous, and absolutely continuous. It is much easier to consider functions in L2

and draw conclusions based on their spectral coefficients only, as we do in the case
of eigenfunctions below.

An eigenvalue of U is an ~α ∈ Rd such that there is an f ∈ L2(X,µ) for which
U~(f) = exp(2πi~α ·~)f for all ~ ∈ Zd. (Equivalently, f(T −~) = exp(2πi~α ·~)f(T )
for all T ∈ X . It is not hard to check that the spectral measure of an eigenfunction
is an atomic measure. Thus we call the closure of the linear span of eigenfunctions
HD ⊆ L2(X,µ) the discrete spectrum of U . A substitution is said to have pure
point spectrum if HD = L2(X,µ).

3.1. Odometer structure and eigenfunctions. The underlying box
B = B(l1, ..., ld) provides a wire-frame structure of the level-n blocks of any se-
quence in the hull X as follows (see [2] for details). For each n = 1, 2, ... we define
a map On : X → Zd by On(T ) = the position of the level-(n − 1)-block of T
containing the origin inside its level-n block. Each T ∈ X has a coding by level-n
blocks given by the sequence {On(T )}. The action of translation by elements of
Zd acts as an odometer on the space of level-n codings.

Odometer actions are know to have pure point spectrum, and the substitution
dynamical system factors onto the odometer action, thus inheriting its eigenfunc-
tions. Under the (relatively mild) condition of “trivial height”, the odometer
system forms the maximal equicontinuous factor of the substitution system and so
gives all the the eigenfunctions. In fact the eigenvalues must then take the form

~α =
(

m1

l
n1
1

, ..., md

l
nd
d

)
, where the li’s remain the lengths of the substitution that define

the block B.

Example 3. Consider either the PD or the TM substitution, so that l1 = 2, and
let ~α = 1/2. We have the eigenfunction given by

g(T ) =

(

1 if O1(T ) = 0

−1 if O1(T ) = 1

(i.e. it is 1 if the origin is in the left-hand side of its level-1 block and it is -1 if
it is in the right-hand side.) The reader should check that g is an eigenfunction
with eigenvalue 1/2.

An important thing to notice is that the eigenfunctions only “see” the odometer
structure given by B, not the labellings the substitution has decided to include.
Thus if a substitution is pure point spectrum, the odometers must “see” everything
there is to know about the hull X .
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3.2. Continuous spectrum in bijective substitutions. Given a bijective sub-
stitution of trivial height, it is easy to write down functions in the orthocomplement
of HD. Let F : A → {1, 2, ..., |A|}, and define

f(T ) = exp

(
2πi

F (T (~0))

|A|

)

Obviously f only cares about the symbol at the origin in any sequence.
The fact that this is orthogonal to each eigenfunction is proved in [2], but it

is instructive to consider the specific case of the Thue-Morse substitution and the
eigenfunction defined in our previous example.

Example 4. For each T ∈ XTM , define

f(T ) =

(

1 if T (0) = a

−1 if T (0) = b

We can show that this function is orthogonal to the eigenfunction g constructed
in Example 3. To do this, we write XTM as the union of four sets, X0,a, X1,a, X0,b,
and X1,b, where T ∈ Xi,e if O(T ) = i and T (0) = e. It is not difficult to show
these sets have equal measure; moreover the product g(T )f(T ) is constant on each
set. Thus we compute

< g, f > =

Z

XT M

g(T )f(T )dµ

=

Z

X0,a

g(T )f(T )dµ +

Z

X1,a

g(T )f(T )dµ +

Z

X0,b

g(T )f(T )dµ

+

Z

X1,b

g(T )f(T )dµ

=

Z

X0,a

1 · 1dµ +

Z

X1,a

−1 · 1dµ +

Z

X0,b

1 · −1dµ +

Z

X1,b

−1 · −1dµ

= .25 − .25 − .25 + .25 = 0

Because f is in fact orthogonal to all of the eigenfunctions, this means the
eigenfunctions in L2(XTM ) cannot “see” the color at the origin. Moreover we get

a spectral decomposition L2(XTM ) = HD ⊕ Span(f).

4. Conclusion

We know that the Thue-Morse system factors onto that of the period-doubling,
so why does f have a continuous spectral measure for the Thue-Morse system and
an atomic one for the period-doubling substitution? The answer is simply that
for the period-doubling substitution, the odometer coding can tell you whether a
sequence has a a or a b at the origin. To see this, notice that if O(T ) = 0, meaning
that the level-0 block containing the origin is in the left of its level-1 block, then
T (0) must equal a and thus f(T ) = 1. If the coding of T begins by 1 0 then
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T (0) = b and so f(T ) = −1. Indeed, the reader can check that if the coding
begins with n 1’s and then a 0, then f(T ) = −1n.

In this way we see that the period-doubling substitution has not really altered
the odometer at all, but the Thue-Morse substitution has.
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On the Boundary of Rauzy Fractals

Jörg M. Thuswaldner

Let σ be a unimodular Pisot substitution over the alphabet A = {1, . . . , d}, i.e., a
substitution whose incidence matrix M has an irreducible characteristic polyno-
mial whose dominant root is a Pisot unit. It is well-known (cf. e.g. [1]) that one
can attach a tile with fractal boundary to each of these substitutions. One way to
define this tile – which we will sketch below – runs via a graph directed iterated
function system.

The prefix suffix graph associated to σ is defined as follows. Let

P := {(p, i, s) ∈ A∗ ×A×A∗; ∃ j ∈ A, σ(j) = pis}.
The prefix-suffix graph of σ is the graph Γσ with nodes in A and such that there
is an edge labelled by (p, i, s) ∈ P from i to j if and only if pis = σ(j).

Let π be the projection of Rd to the contractive hyperplane P of M (note that
each conjugate of a Pisot number has modulus less than one) along the expanding
eigenvector of M. Moreover, denote by l : A∗ → Rd the abelianization map. Then
the Rauzy fractal X = X1 ∪ . . . ∪ Xd associated to σ is defined as the unique
compact non-empty solution of the graph directed iterated function system

(1) Xi =
⋃

i
(p,i,s)−−−−→j

MXj + πl(p) (i ∈ A)

where the union is extended over all edges in Γσ leading away from i.
The Pisot conjecture asserts that the collection I := {Xi + γ | (γ, i) ∈ S} forms

a tiling of the contractive hyperplane P . Here S ⊂ P is a certain self-replicating
and repetitive Delone set which can be defined in terms of σ. It is not hard to see
that this conjecture is true if the intersections of the shape

(2) (Xi + γ) ∩ (Xj + δ)

have measure zero provided that (γ, i), (δ, j) ∈ S are distinct. Indeed, in this case
we even have that

∂Xi =
⋃

(γ,j) 6=(0,i)

(Xi ∩ (Xj + γ))
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where the union is taken over all non-zero elements of S. Thus it is of interest to
study the intersections in (2) (see [2]). Using (1) we get

Xi ∩ (Xj + γ) =
⋃

σ(i1)=p1is1

σ(j1)=p2js2

(MXi1 + πl(p1)) ∩ (MXj1 + πl(p2) + γ).

We express each element of this decomposition as the image by M of a translated
intersection of tiles

Xi∩(Xj+γ) =
[

σ(i1)=p1is1
σ(j1)=p2js2

M

0

B

@
Xi1 ∩ (Xj1 + M

−1
πl(p2) − M

−1
πl(p1) + M

−1
γ

| {z }

=γ1

)

1

C

A
+πl(p1).

Thus the intersection between two tiles can be expressed as the union of intersec-
tions between other tiles. Set B(i, γ, j) := Xi ∩ (Xj + γ). Then we have

B(i, γ, j) =
⋃

σ(i1)=p1is1,σ(j1)=p2js2

γ1=M
−1πl(p2)−M

−1πl(p1)+M
−1γ

MB(i1, γ1, j1) + πl(p1).

It can be shown that it suffices to consider only finitely many constellations
(i, γ, j). This enables one to define the intersections B(i, γ, j) as the solutions of a
graph directed iterated function system. The finite graph involved here is called
the boundary graph of σ (cf. [2]).

This graph can be used to determine algorithmically whether a given unimod-
ular Pisot substitution gives rise to a tiling or not. In other words, it permits
to check the validity of the Pisot conjecture for any given example. Moreover, in
[2] the boundary graph and related graphs have been used in order to describe
topological properties of Rauzy fractals, like connectivity, homeomorphy to a disk
or the fundamental group.

Acknowledgements. The author was supported by the Austrian Science Foun-
dation (FWF), project S9610, which is part of the national research network FWF-
S96 “Analytic combinatorics and probabilistic number theory”.
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Constructing Substitution Rules

Edmund Harriss

(joint work with Jeroen Lamb, Pierre Arnoux, Shunji Ito, Maki Furukado)

In one dimension it is easy to construct a large family of substitution rules. One
simply considers combinatorial substitution rules. With the assumption that the
tiles are connected and the substitution rule is vertex hierarchic this gives all
possible substitution rules on the line [Ken90]. However in two dimensions we
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must consider geometry in order to construct substitution rules. We will consider
two methods of constructing substitution rules in dimension greater than one. The
first takes the set of canonical projection tilings and characterises those that have a
substitution rule [HL, Har04]. The second is to return to combinatorial structures
to define the one dimensional (edge) structure of the tiling [AHIF, Ken96]. In
certain cases the boundary produced by these one dimensional structures can be
filled with two dimensional tiles to give a substitution rule [FIR06]. In this talk
we give specific examples of these constructions, the general theory can be found
in the papers cited.

Figure 1: Window for the Penrose tiling.

1. The Penrose Tilng

A canonical projection tiling is constructed from a slice of lattice. Take the
lattice Zn, a subspace V of Rn and a unit hypercube H. Let ΠV , be a projection
onto V andW the kernel of ΠV . We can consider the set of points ΠV ((V +H)∩Z).
This gives a discrete set of points. By considering the facets of the hypercube tiling
of Rn of equal dimension to V we can project to obtain a tiling.

In the case of the Penrose tiling we begin with a matrix:

M1 =





1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1





This has three eigenspaces, a plane V1 on which it acts as multiplication by

φ = 1+
√

5
2 , a second plane W1 on which it acts as multiplication by −φ−1 and
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a line R on which it acts as multiplication by 3. We now consider the canonical
projection defined by V and W + R, as subspaces of R5, containing Z5. The
projection ΠV1 commutes with the action of the matrix M1. Similarly we have a
projection to W + R, with V as kernel that commutes with M1. The Z-module
ΠW1 +R(Z5) gives densely filled planes parallel to W , arranged on a lattice in
R. The intersection of these planes with the projection of the unit hypercube is
shown in Figure 1.

Figure 2: The windows for the Penrose tiling, the windows under the action of M1

and the windows after applying the substitution rule.

In what follows we want to consider points in Z5, the projection of Z5 to (W1+R)
is a bijection, so we can consider this set without seeing five dimensions. However
the projection of Z5 to V1 is not a bijection. Furthermore, we are primarily in-
terested in the tiling in V , thus we may consider points in Z5 that project to the
same point in V1 to be the same. This induces a cycle of order 5 in the direction
of R. The action of M1 on R can therefore be considered as multiplication by 3
mod 5. We now need to consider five densely filled planes in W + R, so we can
just look at the four pentagons on which ΠW1+R(H) intersects them rather than
the three dimensional shape. In the fifth plane the intersection is simply a point.
There are some finer considerations of what happens on the boundary that we will
gloss over here.

As the projections commute with M1 applying this to the whole system just
gives an expanded tiling in V1, but this tiling can be generated by considering
ΠV ((M1H+ V ) ∩Z5). Similarly we can consider the projection of this to W +R.
When we apply M1 to the four pentagons therefore they are shrunk and permuted
round as shown in Figure 2.
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We now want to relate what happens on the window to what happens in the
tiling in V . We have a Z-module of points in W1 +R and in V1 with a bijection B
between them given by lifting to Z (mod 5 in the direction of R). This bijection
B is closely related to algebraic conjugation. We can partition the windows in
W1 +R to give information about the patches around the corresponding point (by
B) in V1. The partition shown in Figure 2 allows us to consider tiles rather than
points. We chose a direction in V and this partition gives the tile in this direction
from the vertex (note that, as the tiles are rhombs, this defines a bijection between
vertices and tiles). We now apply the matrix to get the set of subwindows. Each
of the larger tiles is replaced by a patch of the original tiles. Consider the set
of vertices T for a particular tile. The addition points will be T + ti for some ti
in ΠV1(5). In the window the points B(T ) fill one of the partition regions. The
points B(T + ti) therefore fill a translation of this region. To consider the image of
this tiling under the Penrose substitution rule, therefore we simply apply the rule
and consider the effect on the window. This is shown in Figure 2. As you can see
the window shapes are taken back to themselves. The Penrose substitution rule
therefore takes a Penrose tiling to a Penrose tiling.

Remarkably the existence of a substitu-

Figure 3: The substitutions gener-
ated by the morphisms σ1 and σ2 on
their boundaries

tion rule for a canonical projection tiling
depends only on the existence of a suit-
able matrix to play the role of M1. The
suitable matrices and the proof that they
characterise all canonical projection tilings
with substitution rule is shown in [HL].

2. The Nautilus and Conch tilings

Consider the morphisms σ1 := a→ b→ c→ d→ da−1 and σ2 := d→ c→ b→
a → d−1c, that are an inverse pair of automorphisms of the free group with four
generators [MKS66]. We can consider the substitution matrix for σ1:

M2 =





0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 1





This has an expanding planar eigenspace V2 and a contracting planar eigenspace
W2. Let ΠW2 be the projection to W2 such that ΠW2(V2) = 0 and ΠV2 the
projection to V2 such that ΠV2(W2) = 0. We can now take the lattice generators
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) and project to V2 and W2. By labelling
the vectors in V2 and W2, a, b, c and d we can now play combinatorial games in V2

and W2. In addition to the set of translations the Z-modules generated by these
vectors in V2 and W2 is invariant under the linear map induced by M2 on V2 and
W2. Moreover this linear map on V2 take a to b, b to c, c to d and d to d− a.

We can therefore apply the linear map, that is expanding on V2 and replace the
new vectors using σ1. We can now consider six parallelogram tiles in V2 whose
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Figure 4: Nautilus and Conch tiles, and substitution. These shapes form windows
for the substitution tilings generated by the rule in Figure 3.

boundaries are given by the words aba−1b−1, bcb−1c−1, and so on. Applying σ1

to these words gives new words for example σ1(bdb
−1d−1) = cda−1c−1ad−1. This

gives a new set of tiles with more complex boundaries. If we take a patch of
tiling with the original boundaries, first apply the linear map induced by M2 and
then replace the edges we obtain a new tiling with these new tiles. In good cases,
such as this one the new tiles can be filled by a union of the original tiles. The
morphisms σ1 and σ2 therefore give the substitution rules on the plane shown in
Figure 3.

By iterating these substitution rules we obtain tilings of the plane by parallelo-
grams. These tilings can be lifted to a broken plane of squares in four dimensions.
The set of vertices of this broken plane can then be projected to W2. As M2 is
contracting 0n W2 this projection lies in a bounded region and in fact the closure
of these points gives a window for the tiling. The windows for the two tilings are
shown in Figure 4.
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Endomorphisms related to the boundaries of Rauzy fractals

Hiromi Ei

For the substitution on 3 letters:

σ :






1→ 12
2→ 13
3→ 1

,

the domain Xσ with fractal boundary, so called the Rauzy fractal, such that
the substitution dynamical system related to σ is measurably conjugate to the
domain exchange transformation on it was found in [5]. The construction of the
Rauzy fractal Xσ is as follows. Let w = w1w2 · · · = 1213121 · · · be the fixed
point of σ, Mσ be the incidence matrix, P be the contractive plane for Mσ and
π : R3 → P be the projection along the eigenvector corresponding to the maximum
eigenvalue which is Pisot number. Then the Rauzy fractal Xσ is given by the
closure {π

∑n
i=1 ewi

| n = 1, 2, · · · }, where the ei (i = 1, 2, 3) is the canonical basis
of R3.

Another way to construct the Rauzy fractal was introduced in [1] by using the
tiling substitution E∗

1 (σ) with three prototiles which are parallelograms spanned
by {πei, πej} (i, j = 1, 2, 3, i 6= j). On this framework, [6] gives the formulation
of E∗

2 (σ) corresponding to the tiling substitution to construct the boundary ∂Xσ

of the Rauzy fractal (See Figure 1.).
On the other hand, as we see in [4], by the generating fractal curve method of

Dekking the automorphism θ on the free group of rank 3 provides the boundary
∂Xσ as follows:
Let θ be

θ :






1→ 3
2→ 3−11
3→ 3−12

,

Bn be the closed broken curve on P through the points

{π
n∑

i=1

ebi
| n = 1, 2, · · · , ln} ∪ {o},

where b(n) = b1b2 · · · bln = θn(1−132−113−12). The limit set limn→∞Mn
σBn in the

sense of Hausdorff metric gives the boundary ∂Xσ.
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the boundary of xσ

Renormalization

Figure 1: The Rauzy fractal Xσ and its boundary

For a substitution σ on d letters with Pisot, unimodular, primitive and irre-
ducible conditions, we can define a generalized Rauzy fractal Xσ of σ in the same
manner; and the aim of my talk is to show the following theorem describing the
automorphisms θ generating the boundary:

Theorem. ([2]) If a substitution σ is invertible as an endomorphism on the free
group, the boundary ∂Xσ is given by the automorphism θ = σ−1.

Remark.
- In some reducible case, the theorem holds ([3]).
- On the example, cancellations occur in the word b(n). In fact θ(1−132−113−12) =
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3−13−121−1332−133−11. In such a case, we need the blocking method to control
the cancellation ([4]).
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