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Introduction by the Organisers

The workshop Enveloping Algebras and Geometric Representation theory, orga-
nized by Shrawan Kumar (Chapel Hill), Peter Littelmann (Köln) and Wolfgang
Soergel (Freiburg) was held March 8th–March 14th, 2009. It continues a series
of conferences on enveloping algebras, with the extension of the title indicating a
direction the whole subject has taken by including with great success more and
more geometric methods.

The meeting was attended by over 50 participants from all over the world,
including quite a few younger researchers. The lectures covered a broad range
of topics from algebraic Lie theory, with strongly interrelated focal points in the
study from a geometrical and cohomological point of algebraic varieties arising in
Lie theory on the one hand and the study of related combinatorial structures on
the other.

We had reserved tuesday and thursday afternoon for four shorter talks each by
younger participants and had one “open problem session” on thursday evening,
which also was quite a success. Apart from that we had usually two talks in the
morning and two in the afternoon, with the reglementary excursion on wednesday
afternoon, leaving ample time for discussion among the participants.
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Particularly exciting seemed to us the new results on decompositions of tensor
products in the case of quantum affine algebras and its relation to cluster algebras;
Bruhat graphs in representation theory and geometry; differential operators and
rational Cherednik algebras; construction of semisimple tensor categories; quiver
varieties and branching; GIT cones and applications; and the brand new solu-
tion of Luna’s longstanding conjecture on the classification of wonderful spherical
varieties.
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Stéphanie Cupit-Foutou
Wonderful varieties and invariant Hilbert schemes . . . . . . . . . . . . . . . . . . . 821

Evgeny Feigin (joint with B. Feigin, M. Jimbo, T. Miwa, E. Mukhin)
Fermionic formulas for eigenfunctions of the difference Toda
Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823

Stephen Griffeth (joint with Charles Dunkl, Emanuel Stoica)
Diagonalizable and unitary representations of rational Cherednik algebras 826

Bernard Leclerc (joint with David Hernandez)
Quantum affine algebras and cluster algebras . . . . . . . . . . . . . . . . . . . . . . . . 828

Hiraku Nakajima
Quiver varieties and Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831

Paolo Papi (joint with Victor G. Kac, Pierluigi Mseneder Frajria)
Dirac operators in the affine setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835

Vera Serganova (joint with Alexei Skorobogatov)
Del Pezzo surfaces and homogeneous spaces . . . . . . . . . . . . . . . . . . . . . . . . . 838



804 Oberwolfach Report 15

Bertram Kostant (joint with Nolan Wallach)
Exotic finite subgroups of E8 and Springer’s regular elements of the Weyl
group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840

Ghislain Fourier (joint with Vyjayanthi Chari, Tanusree Pal)
Weyl modules: A categorical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842

Anne Moreau (joint with Jean-Yves Charbonnel)
The index of centralizers of elements in a reductive Lie algebra . . . . . . . . 844

Catharina Stroppel (joint with Christian Korff)
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Abstracts

Hodge polynomials of complete intersections in homogeneous spaces

Michel Brion

To each complex algebraic variety X , one associates its Hodge polynomial eX , a
polynomial in two variables u, v, uniquely determined by the following properties:

(i) eX(u, v) =
∑

p,q dimHp(X,ΩqX) up vq if X is smooth and projective.

(ii) (additivity) eX = eX1 + · · ·+ eXN
whenever X is the disjoint union of locally

closed subvarieties X1, . . . , XN .

The existence of eX follows from mixed Hodge theory, see e.g. [5]. From (i)
and (ii), we see e.g. that eX is a symmetric polynomial in u and v with integer
coefficients, and satisfies eX(−1,−1) = χ(X) (the topological Euler characteristic).

We address the problem of determining the Hodge polynomials of complete
intersections in homogeneous spaces. Specifically, let X be a homogeneous variety
under a connected linear algebraic group G, and let Y1, . . . , Ym ⊂ X be smooth
hypersurfaces in general position; then Y := Y1 ∩ · · · ∩ Ym is a smooth complete
intersection in X . There are algorithms to compute eY in the cases that X is a
projective space Pn (by work of Hirzebruch, see [4]) or a torus (C∗)n (by work of
Danilov and Khovanskĭı, see [2]). We sketch how to treat the case that X = G/H ,
where [P, P ] ⊂ H ⊂ P for some parabolic subgroup P of G.

We begin with some reduction steps, already implicit in [4].

1) eY is uniquely determined by the data of eX and of the specialization eY (−1, v)
(this follows from a generalization of the Lefschetz hyperplane theorem to “open”
varieties, see [3]). Moreover, eX has been determined in [1], e.g., if X = G/H
where G and H are connected, then

eX(u, v) = (uv)dim(UG)−dim(UH)

∏r
i=1(uv)

di − 1∏s
j=1(uv)

ej − 1

where UG ⊂ G denotes a maximal unipotent subgroup, d1, . . . , dr denote the
degrees of the fundamental invariants of the Weyl group of G, and likewise for H .

2) For any smooth projective variety Z of dimension n, we have

eZ(−1, v) =
∑

q

χ(Z,ΩqZ) vq = (−1)n
∑

q

χ(Z,Ωn−qZ ) vq

by Serre duality. More generally, if Z is smooth of dimension n, and Z̄ is a
compactification with boundaryD := Z̄\Z being a smooth normal crossing divisor,
then

eZ(−1, v) = (−1)n
∑

q

χ
(
Z̄,Ωn−q

Z̄
(logD)

)
vq.

3) If X̄ is a compactification of X as above, such that the Ȳi are still smooth
and in general position, then eY (−1, v) is uniquely determined by the values of
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χ
(
X̄,L ⊗ Ωn−q

X̄
(logD)

)
where L is a monomial in the invertible sheaves Li :=

OX̄(Ȳi), i = 1, . . . ,m.
To give a closed formula for eY (−1, v), it is convenient to set

PX̄,D,F(t) :=
∑

q

(−1)q χ
(
X̄,F ⊗ Ωn−q

X̄
(logD)

)
tq

for any locally free sheaf F on X , so that

eY (−1, v) = PȲ ,D∩Ȳ ,OȲ
(−v).

Also, note that PX̄,D,F(t) only depends on the class of F in the Grothendieck
group K(X), and this defines PX̄,D,ξ(t) for any class ξ ∈ K(X). We may now
state the adjunction formula

PȲ ,D∩Ȳ ,F(t) = PX̄,D,Ft
(t)

where we put

Ft := F

m∏

i=1

1− [Li]

1− t[Li]

(this product is to be expanded into a power series in t; the resulting power series
expansion of PX̄,D,Ft

(t) is in fact a polynomial).

We may now determine the Hodge polynomials of complete intersections in the
full flag variety X = G/B, where G is a connected reductive group and B a Borel
subgroup. Then X is the disjoint union of the Bruhat cells Cw, w ∈ W , so that
eY =

∑
w∈W eY ∩Cw

. Moreover, each Cw has a compactification with boundary
being a smooth normal crossing divisor: the Bott-Samelson-Demazure-Hansen
variety Zw associated with a reduced decomposition w of w, and its boundary
Dw. Specifically, we have a morphism

ϕw : Zw → X

which restricts to an isomorphism

Zw \Dw
∼= Cw.

By the above discussion, it suffices to determine the polynomials

Pw,λ(t) := PZw ,Dw,ϕ∗
wL(λ)

where L(λ) denotes the G-linearized invertible sheaf on G/B associated with an
arbitrary character λ of B. More generally, we may consider the polynomials

Pw,ξ(t) := PZw ,Dw,ϕ∗
wξ

for any ξ ∈ K(G/B).

These polynomials are determined recursively as follows. Write w = (v, s) where
s ∈W is a simple reflection. Then

Pw,ξ(t) = (t− 1)Pv,Ds(ξ)(t) + Pv,σs(ξ)(t)

where Ds : K(G/B) → K(G/B) denotes the Demazure operator associated with
s, and σs : K(G/B)→ K(G/B) denotes the operator induced by s.
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To prove that recursive formula, one uses the structure of Zw as a projective
line bundle over Zv, together with the following geometric fact:

Let X , Y be smooth projective varieties, and f : X → Y a P1-bundle having
a section s : Y → X . Let E be a smooth normal crossing divisor on Y , so that
D := s(Y ) + f∗E is a smooth normal crossing divisor on X . Then

PX,D,ξ(t) = (t− 1)PY,E,f∗(ξ)(t) + PY,E,σ(ξ)(t)

for any ξ ∈ K(X), where f∗ : K(X) → K(Y ) denotes the push-forward in K-
theory, and σ : K(X) → K(Y ) denotes the unique K(Y )-linear map such that
σ[OX(nY )] = [OY ] for any integer n.

The case that X = G/P for an arbitrary parabolic subgroup P ⊃ B reduces to
the former case, by using the decomposition of G/P into Bruhat cells CwP and the
existence of cells Cw ⊂ G/B, isomorphic to CwP via the projection G/B → G/P .

Finally, if X = G/H where [P, P ] ⊂ H ⊂ P , then the projection G/H → G/P
is a principal bundle under P/H , a torus acting on the right on G/H . Thus, X
may be compactified by a toric bundle on G/P with fiber a smooth projective
toric variety, so that the boundary is a simple normal crossing divisor. Then the
following geometric fact allows one to reduce to G/P :

Let X , Y be smooth projective varieties, and f : X → Y a toric bundle with
boundary ∂X . Let E be a smooth normal crossing divisor on Y , so that D :=
∂X + f∗E is a smooth normal crossing divisor on X . Then

PX,D,ξ(t) = (t− 1)r PY,E,f∗(ξ)(t)

for any ξ ∈ K(X), where r := dim(X)− dim(Y ).
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Moment graphs in representation theory and geometry

Peter Fiebig

1. Overview

To an abstract root system one can associate various objects of geometric or
algebraic nature: several algebraic groups over a field k, their Lie algebras, some
quantum groups, or various flag varieties. Each of these objects then gives rise to
certain categories of representations or sheaves.

The main aim of my research is to show that some of these categories can be
most conveniently described using the Bruhat graph associated to the root system
or to its affinization. These descriptions then yield functors (and sometimes even
equivalences) between the categories in question. As an application one can estab-
lish functors the existence of which is anticipated by the local geometric Langlands
philosophy. The following table gives an overview over already established or still
conjectural instances of the above approach.

Categorifications of
the affine Hecke algebra

Categorifications of
the periodic module

Intersection
cohomologies

of Schubert varieties

[BM]

''OOOOOOOOOOOO

Representations
of the small

quantum group

Intersection
sheaves on

Bruhat graphs

[Fie2]

66lllllllllllllll

[Fie2]
//

?

((QQQQQQQQQQQQQQ

?

!!B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B

B

Representations
of modular
Lie algebras

Non-critical
representations

of affine
Kac–Moody algebras

[Fie3]

77ppppppppppp

Critical
representations

of affine
Kac–Moody algebras

Intersection
cohomologies of

semi-infinite
flag manifolds

2. Equivariant topology

The main ideas underlying the relations depicted above are the following. First
we treat the geometric side. Let V be a complex projective algebraic variety acted
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upon by an algebraic torus T . Suppose that this action has only finitely many fixed
points and finitely many one-dimensional orbits. Let F be a T -equivariant sheaf on
V with complex coefficients (by this we mean an object in the T -equivariant derived
category D+

T (V,C)). We are interested in calculating the equivariant cohomology
H∗

T(V, F ) of F .
For an embedding i : W → V of a subvariety we set H∗

T(F )W := H∗
T(W, i∗F ).

Let V T ⊂ V be the set of T -fixed points. A natural adjunction map yields the
localization map

H∗
T(V, F )→

⊕

x∈V T

H∗
T(F )x.

The localization theorem (we mean the Goresky-Kottwitz-MacPherson version)
states that in good situations the above map is injective and that its image is cut
out by relations coming from the one-dimensional orbits in E.

Let E be a one-dimensional T -orbit. Its closure is then homeomorphic to P1

and picks up two T -fixed points, so E = E ∪ {x} ∪ {y}. We get the following
homomorphisms between the local equivariant cohomologies:

H∗
T(F )x

∼
← H∗

T(F )E∪{x} → H∗
T(F )E

(analogously for the fixed point y). The first homomorphism turns out to be an
isomorphism, so by composing the inverse of the first with the second we get a
map ρx,E : H∗

T(F )x → H∗
T(F )E .

Theorem 2.1. [GKM] Suppose that F is equivariantly formal. Then the local-
ization map is injective and its image consists of all (mx) ∈

⊕
x∈V T H∗

T(F )x with
ρx,E(mx) = ρy,E(my) for all one-dimensional orbits E.

An example of an equivariantly formal sheaf is the intersection cohomology
sheaf on V .

3. Sheaves on moment graphs

Let us denote by X = Hom(T,C×) the character lattice of the torus and by
S = SC(X⊗ZC) the associated complex symmetric algebra. Then one has a natural
action of S on H∗

T(V, F ), on H∗
T(F )x and on H∗

T(F )E for each fixed point x and
each one-dimensional orbit E. All homomorphisms above respect this structure.
Moreoever, if T rotates E according to the character λE ∈ X , then H∗

T(F )E is
annihilated by λE . This leads to the following definitions.

To the variety V we associate the following moment graph G. Its set of vertices
is V T and the edges are given by the one-dimensional orbits: We consider E as an
edge connecting the two fixed points in its closure. Moreover, we remember the
action of the torus by labelling E by the corresponding character λE ∈ X .

Now let k be an arbitrary field, and set Sk := S(X ⊗Z k). We consider it as
a graded algebra with X ⊗Z k being the homogeneous component of degree 2. A
k-sheaf F on G is given by an Sk-module Fx for any vertex x, an Sk-module FE for
any edge E with λEFE = 0 and a homomorphism ρx,E : Fx → FE of Sk-modules
for any vertex x lying on the edge E.
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The space of sections Γ(I,F) of a sheaf F on I ⊂ V T is defined as the set of
(mx) in

⊕
x∈I Fx such that ρx,E(mx) = ρy,E(my) for all edges E with x, y ∈ I.

¿From the constructions above we get a C-sheaf F on G for any equivariant sheaf
F on V . By the localization theorem, the equivariant cohomology of F is given
by the global (I = V T ) sections of F, provided F is equivariantly formal.

4. The Braden-MacPherson sheaf

Suppose now that V is endowed with a T -stable stratification. Under certain
assumptions (being a Whitney stratification is one of them), Braden and MacPher-
son constructed in [BM] the sheaf BC on the moment graph that corresponds to
the equivariant intersection cohomology complex on V (with complex coefficients).
The algorithmic construction, however, makes sense for all fields k and yields a
sheaf Bk. Its stalks Bx

k turn out to be graded free Sk-modules of finite rank.
Let us denote by G≤w the graph associated to a finite or affine Schubert va-

riety that corresponds to some w in the associated Weyl group. It can easily
be constructed from the underlying finite or affine root system. Let Bk(w) be its
Braden–MacPherson sheaf over the field k. Suppose that k is such that λE and λE′

are linearly independent in X ⊗Z k for any two edges that share a common vertex
(this is called the GKM-property). In this case we have the following conjecture.

Conjecture 4.1. Let hx,y be the Kazhdan-Lusztig polynomial associated to the
underlying Coxeter system. Then the rank of Bk(w)x is hx,w(1).

In [Fie3] it is shown that this conjecture is equivalent to the Kazhdan–Lusztig
conjecture for complex simple Lie algebras or symmetrizable Kac–Moody algebras.
In [Fie2] it is shown that the conjecture implies the conjecture of Lusztig on the
irreducible characters of reductive algebraic groups for all relevant fields.

The conjecture is true if char k = 0 by [KL] and [BM], and for char k bigger
than a certain explicit, but huge number, by [Fie4]. Moreover, the multiplicity
one case holds in full generality by [Fie1]: If either the rank of Bk(w)x or hx,w(1)
is 1, then so is the other.
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Differential operators and Cherednik algebras

Iain G. Gordon

(joint work with V. Ginzburg, J.T. Stafford)

This is a report on joint work with V.Ginzburg and J.T.Stafford which will be
published as [GGS].

1. Notation. Let Sn denote the nth symmetric group for some n ≥ 2. For a
parameter c ∈ C we write Hc for the Cherednik algebra of type Sn with spherical
subalgebra Uc = eHce, where e = 1

n!

∑
w∈Sn

w ∈ Hc is the trivial idempotent.
Let h = Cn denote the permutation representation of Sn and write hreg =

h \ δ−1(0) where δ =
∏
i<j(xi − xj) ∈ C[h] is the discriminant; thus hreg is the

subvariety of h on which Sn acts freely.
We identify Uc with a subalgebra of D(hreg) ⋊ Sn, the skew group ring of Sn

with coefficients in the ring of differential operators on hreg: this follows from the
Dunkl embedding of Hc into the same ring.

2. Relation to Hilbert schemes. For a ∈ C, set

aPa−1 = eHaδe and a−1Qa = eδ−1Hae.

By induction, for a ∈ b+ Z≥2, define

aPb = (aPa−1) · (a−1Pb) and bQa = (bQb+1) · (b+1Qa).

In these equations, the multiplication is taken inside D(hreg)⋊ Sn and this makes
both aPb and aQb into (Ua,Ub)-bimodules.

We can now construct a Z-algebra Bc =
⊕

i≥j≥0

(
c+iPc+j

)
endowed with a

natural matrix multiplication. The ring Bc has a natural filtration induced from
the differential operator filtration on D(hreg) ⋊ Sn and the main result [GS1]
showed that for most c (and we know exactly which) the associated graded ring
grBc of Bc is the Z-algebra that can be associated to the Hilbert scheme of n
points on the plane, Hilbn C2. This provides a bridge between Cherednik algebras
and Hilbert schemes: Hc- or Uc-modules with good filtrations produce coherent
sheaves on Hilbn C2.

3. Relation to D-modules. There is a second way of passing from Hc to a more
geometric setting using hamiltonian reduction. Write V = Cn, P = P(V ) and
g = gl(V ); set G = g× V and X = g× P. There is an action of GL(V ) on both G

and X which differentiates to produce a Lie algebra homomorphism g −→ Vect(G)
and thus an algebra mapping τ : U(g) −→ D(G). Now [GG] shows that

Uc ∼=

(
D(G)

D(G) · τ(Ic+1)

)GL(V )

where Ic+1 is the ideal of U(g) generated by the elements Y − (c+ 1)tr(Y ) for all
Y ∈ g. One then constructs the functor of quantum hamiltonian reduction

Hc : (Dc+1(X), SL(V ))-mod −→ Uc-mod, F 7→ FSL(V )
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where (Dc+1(X), SL(V ))-mod denotes the category of SL(V )-equivariant modules

for (D(G)/D(G) · τ(Id− n(c+ 1)))
C

×

on which the sl(V )-action obtained by dif-
ferentiating the SL(V )-action agrees with the action induced by τ . This approach
connects the representation theory of Hc or Uc to differential operators on repre-
sentation varieties.

4. Main Theorem. Our results compare these two approaches to the represen-
tation theory of Hc and Uc.

For m ∈ Z, consider the space of semi-invariants

Ddet−m

c+1 = {D ∈ D(G)/D(G)τ(Ic+1) : g ·D = det(g)−mD for all g ∈ GL(V )}.

It is easy to check that Ddet−m

c+1 is a (Uc−m,Uc)-bimodule.

Theorem. Fix c ∈ C and an integer m ≥ 1 (with some explicit mild restriction
on these parameters). Under the differential operator filtration on the two sides
there is a filtered (Uc−m,Uc)-bimodule isomorphism

Θc,m : Ddet−m

c+1
∼−→ c−mQc.

There is also a description of cPc−m in terms of the Ddet−m

d+1 for some d.

To prove this one first shows that, like c−mQc, the (Uc−m,Uc)-bimodule Ddet−m

c+1

is naturally embedded into Ureg = Uc[δ
−2]. Now both of these bimodules are

reflexive on at least one side (which requires the mild restriction on c and m), and
the theorem is then proved by showing that such a bimodule is unique.

5. As a corollary of this theorem, we are able to give a direct and relatively short
proof of one of the main results in [GS1] mentioned above in 2; previously this had
previously relied on many key ingredients of Haiman’s proof of the n! theorem.

6. Characteristic cycles. A useful tool in the study of Cherednik algebras,
just as for Lie algebras, is the concept of the characteristic cycle of a Uc-module.
There are two completely different constructions of characteristic cycles of Uc-
modules on Hilbn C2. The first, ch

GS , uses the Z-algebra approach in 2: one
starts with a Uc-module M with a good filtration and then produces a coherent
sheaf on Hilbn C2. Although this sheaf depends on the choice of filtration on M ,
its cycle, ch

GS(M), does not. The second, ch
GG, is defined using the machinery of

hamiltonian reduction. Starting again with a Uc-module M with a good filtration,
one applies the adjoint functor to Hc to produce an SL(V )-equivariant Dc+1(X)-
module with a good filtration. Taking the characteristic cycle of this module
produces a cycle in T ∗X and applying classical hamiltonian reduction to this then
produces ch

GG(M), a cycle in Hilbn C2.
We prove that these two constructions agree, thereby confirming a conjecture

from [GG, (7.17)].

Theorem. Assume that n > 2 and that c ∈ CrQ<0. Then for any finitely gener-
ated Uc-module M one has an equality of algebraic cycles ch

GS(M) = ch
GG(M).



Enveloping Algebras and Geometric Representation Theory 813

The key ingredient for the proof of this theorem is a comparison of the “shift
functors” for rational Cherednik algebras and the effect on D-modules of tensoring
by the line bundles OP(nm) on X.

7. As a corollary of this theorem, we are able to give a complete description of
the characteristic cycle of any object of the category O for Hc.
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Hilbert schemes of C2 and Elliptic Hall algebras

Olivier Schiffmann

(joint work with E. Vasserot)

We constuct a certain natural action of the spherical Double Affine Hecke alge-
bra SḦ∞ of GL(∞) on the equivariant K-theory of the Hilbert scheme of points
in C2. This can be seen as a generalization, from homology to K-theory, of a
classical result of Nakajima computing the homology of Hilb(C2) by means of

a geometric action of a Heisenberg algebra. We relate the action of SḦ∞ on
KT (Hilbn) with the action of the “virtual classes” of the natural correspondences
Zn,n±k ⊂ Hilbn×Hilbn±k. Finally we explain an interpretation of our isomor-
phism in terms of the geometric Langlands conjecture for an elliptic curve, in the
neighbourhood of the trivil local system.

Yangians and cohomology rings of instanton moduli spaces

Michael Finkelberg

(joint work with Boris Feigin, Andrei Negut, Leonid Rybnikov)

The moduli spaces Qd were introduced by G. Laumon in [6] and [7]. They are
certain partial compactifications of the moduli spaces of degree d based maps from
P1 to the flag variety Bn of GLn. In [2] we have studied the equivariant coho-

mology ring H•
eT×C∗

(Qd) where T̃ is a Cartan torus of GLn acting naturally on

the target Bn, and C∗ acts as “loop rotations” on the source P1. The method
of [2] was to introduce an action of U(gln) on V =

⊕
dH

•
eT×C∗

(Qd) ⊗H•

eT×C∗
(pt)

Frac(H•
eT×C∗

(pt)) by certain natural correspondences, and then to realize the co-

homology ring H•
eT×C∗

(Qd) as a certain quotient of the Gelfand-Tsetlin subalgebra

A ⊂ U(gln).
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In this talk we adopt the following approach to the Gelfand-Tsetlin subalgebra
going back to I. Cherednik. Namely, A is the image of the maximal commuta-
tive subalgebra A of the Yangian Y (gln) (Gelfand-Tsetlin subalgebra) under the
evaluation homomorphism to U(gln) (see [8]). Composing the evaluation homo-
morphism Y (gln) to U(gln) with the action of U(gln) on V we obtain an action of
Y (gln) on V . The main observation of this talk is that the “new Drinfeld gener-
ators” [1] of Y (sln) ⊂ Y (gln) act on V by natural correspondences. In fact they
are very similar to the correspondences used by M. Varagnolo [11] to construct
the action of Yangians in the equivariant cohomology of quiver varieties.

There is an affine version of the Laumon spaces, namely the moduli spaces
Pd of parabolic sheaves on P1 × P1, see [3]. The similar correspondences give

rise to the action of the affine Yangian Ŷ (two-parametric deformation of the
universal enveloping algebra of the universal central extension of sln[s

±1, t], see [5])
on the localized equivariant cohomology M =

⊕
dH

•
eT×C∗×C∗

(Pd) ⊗H•

eT×C∗×C∗
(pt)

Frac(H•
eT×C∗×C∗

(pt)) where the second copy of C∗ acts by the loop rotation on the

second copy of P1. We compute explicitly the action of Drinfeld generators of Ŷ
in the fixed point basis of M .

Since the fixed point basis of V corresponds to the Gelfand-Tsetlin basis of
the universal Verma module over U(gln), we propose to call the fixed point basis
of M the affine Gelfand-Tsetlin basis. In particular, we conjecture that M is

isomorphic to the universal Verma module over U(ĝln). Moreover, we expect that
the specialization of the affine Gelfand-Tsetlin basis gives rise to a basis in the

integrable ĝln-modules (which we also propose to call the affine Gelfand-Tsetlin

basis). The set of affine Gelfand-Tsetlin patterns has a structure of ŝln-crystal of

the integrable ĝln-module, equivalent to that of cylindric plane partitions [9]. We

expect that the action of Ŷ on the integrable ĝln-modules coincides with D. Uglov’s
Yangian action [10].

We prove that the maximal commutative subalgebra of Cartan currents Aaff ⊂
Ŷ (the affine Gelfand-Tsetlin algebra) surjects onto the cohomology ring of Pd.
Furthermore, let Mn,d denote the moduli space of torsion free sheaves of rank
n and second Chern class d, trivialized at infinity. The equivariant cohomology
ring H•

eT×C∗×C∗
(Mn,d) is naturally a subring of H•

eT×C∗×C∗
(Pd,...,d). There is a

natural embedding Y (gln) →֒ Ŷ which realizes the center ZY (gln) as a subalgebra
of Aaff . This subalgebra surjects onto the cohomology ring H•

eT×C∗×C∗
(Mn,d) ⊂

H•
eT×C∗×C∗

(Pd,...,d). In particular, the first Chern class of the determinant line

bundle ∆0 on Mn,d is expressed as a certain noncommutative symmetric function
(a power sum of the second kind, see [4]) Φ ∈ ZY (gln).

Our results are only proved when n > 2; however we expect them to hold for
n = 2 as well, and it is instructive to compare them with the known results for
n = 1. In this case Mn,d is the Hilbert scheme Hilbd(A2). The first Chern class of

the determinant line bundle on Hilbd(A2) was computed by M. Lehn as a certain
infinite cubic expression (Calogero-Sutherland operator) of the generators of the
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Heisenberg algebra acting by correspondences between Hilbert schemes. In our

case the role of the Heisenberg algebra is played by U(ĝln), and we were unable to

express c1(∆0) in terms of U(ĝln), but there is an explicit formula for it in terms
of ZY (gln).

Finally, let us mention a trigonometric version of our note where the (affine)
Yangian is replaced with the (toroidal) affine quantum group, and the equivariant
cohomology is replaced with the equivariant K-theory. This is the subject of the
preprint arXiv math/0903.0917 by A. Tsymbaliuk.
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Quantum cohomology of the Springer resolution

Alexander Braverman

We compute the equivariant quantum D-module of the space T ∗B where B is the
flag variety of a semi-simple group G. The answer turns out to be related to the
Calogero-Moser-Sutherland integrable system for the Langlands dual group G∨.
We then recover the quantum D-module of B itself by a limiting procedure (the
quantum D-module of B ist known to be related to the Toda integrable system,
which is known to be a limit of the Calogero-Moser-Sutherland system).
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On a construction of semisimple categories

Friedrich Knop

In [1], Deligne constructed a tensor category Rep(St) which depends on a free
variable t which interpolates the representation categories of the symmetric groups
Sn in the following sense:

Let t = n ∈ N. Then Rep(Sn) is the quotient of Rep(St)|t=n by its tensor
radical.

Furthermore, for values of t which are not natural numbers, Deligne proved that
Rep(St) itself is a semisimple tensor category. In this case, Rep(St) is an example
of an abelian tensor category which is not Tannakian, i.e., does not come from any
algebraic group.

In the talk, we presented a generalization of Deligne’s construction. More pre-
cisely, in [2] we constructed many more non-Tannakian semisimple tensor cate-
gories, among which is one which interpolates Rep(GL(n,Fq)), for fixed q and all
n ∈ N.

We start with a regular category A. This means that A has all finite limits,
every morphism has an image, and that images commute with pull-backs. Then
one can define the category Rel(A) of relations in A: the objects stay the same but
a morphism from x to y is a subobject of x× y. The composition of two relations
r →֒ x× y and s →֒ y × z is defined as r ◦ s := image(r ×y s→ x× z).

Now we modify this classical construction by using a degree function δ which
assigns to every epimorphism e in A a number δ(e) ∈ C. This function should
satisfy: the degree of an identity morphism is 1, the degree is multiplicative un-
der composition, and the degree is invariant under pull-back. Then we define a
new category T0(A, δ) with the same objects as A, the morphisms are C-linear
combinations of relations and the composition of two relations is modified to

r · s := δ(e) r ◦ s

where e is the epimorphism r ×y s → r ◦ s. Finally, T(A, δ) is obtained from
T0(A, δ) by first formally adjoining all direct sums and then adjoining all direct
summands (the so-called pseudo-abelian closure).

Example: Let A be the category which is opposite to the category of finite sets.
Then all degree functions are of the form δ(A →֒ B) = t|B\A| and T(A, δ) coincides
with Deligne’s category Rep(St).

Our main result is

Theorem 1. Let A be a regular category and δ a degree function on A. Then
T(A, δ) is a semisimple (hence abelian) tensor category provided

• A is subobject finite, exact, and Mal’cev,
• ωe 6= 0 for all indecomposable epimorphisms e of A.

Explanation of terms: 1. The category A is subobject finite, if every object has
only finitely many subobjects. This condition is necessary to make Hom-spaces
finite dimensional. The category is exact if every equivalence relation r →֒ x × x
has a quotient x/r. Moreover, A is Mal’cev if every reflexive relation is already an
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equivalence relation. Examples of such categories are the category {finite sets}op,
the category of finite dimensional Fq-vector spaces, the category of finite groups
and many more.

2. Let e : x → y be an epimorphism. The e is indecomposable if it is not the
composition of two non-invertible epimorphism. Furthermore, ωe is defined as

ωe :=
∑

u

µ(u, x)δ(e|u) ∈ C

where u runs through all subobjects of x such that e|u : u→ y is an epimorphism.
Moreover, µ is the Möbius function of the poset of subobjects of x.

Example: Let A = {finite sets}op. Then the epimorphisms are the injective maps
e : A →֒ B between finite sets. The map e is indecomposable if B = e(A) ∪ {b}
with b 6∈ e(A). The subobject u corresponds to a surjective map p : B → C. The
condition on u means that u|e(A) is injective. Thus either A → C (|A| cases) or
B → C (1 case) is an isomorphism. We conclude ωe = t − |A|. Therefore, the
second condition means t 6∈ N in accordance with Deligne’s result.

The proof of Theorem 1 also yields a description of the simple objects:

Theorem 2. Let A, δ as in Theorem 1. Then the isoclasses of simple objects of
T(A, δ) are classified by isoclasses of pairs (x, π) where x is an object of A and π
is an irreducible representation of AutA(x).

Corollary. There is an isomorphism

K(T(A, δ)) ∼=
⊕

x∈ObA/∼

R(AutA(x)).

where K(·) denotes the Grothendieck group of an abelian category and R(·) is the
representation ring of a group.
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On a conjecture of Mirkovic and Vilonen

Daniel Juteau
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1. The nilpotent cone of sl2

First we explained the notions of constructible k-complexes, perverse sheaves
and intersection cohomology complexes on a complex algebraic variety X , where
k is any noetherian commutative ring of finite global dimension, as C, Z or Fp.

Over Z, there is an additional subtlety due to the presence of torsion, which
does not behave well under duality: the derived dual of the torsion Z-module Z/n
is Z/n[−1]. Consequently, we have two versions of perverse sheaves (which are the
hearts of two t-structures) exchanged by the duality: the classical one, and a “+
version” where we use a truncation τ≤−1+ for which we keep the torsion part of
the following cohomology degree 0 (this is explained at length in [Jut09]).

To illustrate these notions, we computed the intersection cohomology complex
of the nilpotent cone N of g = sl2, which has a simple surface singularity of type
A1. Indeed, we have

g = sl2 ⊃ N =

{(
x y
z −x

)∣∣∣∣x
2 + yz = 0

}
= Oreg ∪ {0} ≃ C2/{±1}

where Oreg denotes the regular nilpotent orbit. The stalks of IC(N,Z), resp.

IC
+(N,Z), are given by

−2 −1 0
Oreg Z 0 0
{0} Z 0 (Z/2)+

where (Z/2)+ means 0 for IC, and Z/2 for IC
+. For k a field of characteristic p,

we deduce that the stalks of IC(N, k) are given by

−2 −1 0
Oreg k 0 0
{0} k (k)2 0

where (k)2 means k if p = 2, and 0 otherwise. This calculation has a representation
theoretic interpretation: using the Fourier-Deligne transform version of Springer
correspondence (both the classical one and a modular version), one can show that
the decomposition matrix of a Weyl group (here S2) is a submatrix of a decompo-
sition matrix for equivariant perverse sheaves on the nilpotent cone [Jut07]. Here
the decomposition matrices are

(12) (2)
(12)
(2)

(
1 0
1 1

)
for PervGL2(N), and

D(2)

S(2)

S(12)

(
1
1

)
for S2.

2. The geometric Satake correspondence

Let G ⊃ B ⊃ T be a split (simple, simply connected and) connected reductive
group scheme over Z, a split Borel subgroup and a split maximal torus, X(T ) ⊃
X(T )+ the weight lattice and the dominant weights, Φ ⊃ Φ+ ⊃ ∆ the root
system, the positive roots and the simple roots. We have canonical morphisms
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∆(λ) → ∇(λ) from standard to costandard representations, for λ ∈ X(T )+. For
k = Fp, the simple Gk-modules are the L(λ) = Im(∆(λ)k → ∇(λ)k) and one wants
to know the multiplicities dGλ,µ = [∆(λ)k : L(µ)]. Lusztig gave a famous conjecture
for p greater than the Coxeter number, which was proved by Andersen-Jantzen-
Soergel for large p (unknown bound depending on the type), and by Fiebig using
moment graphs (see his talk) with an explicit, but still very large bound. It is
trivial that this multiplicity is 1 if λ = µ, and 0 unless λ ≥ µ, that is, λ−µ ∈ N∆.

On the geometric side, we consider the complex affine Grassmannian Gr :=
G∨(K)/G∨(O) of the dual Langlands group G∨, where K = C((t)) and O = C[[t]].
The G∨(O)-orbits are parametrized by X(T )+. We denote them by Grλ, λ ∈
X(T )+. The affine Grassmannian is an ind-scheme, direct limit of the finite di-

mensional projective varieties Grλ. We consider the category PervG∨(O)(Gr, k) of
G∨(O)-equivariant perverse sheaves with k coefficients on Gr. There are canonical
morphisms J!(λ, k) → J∗(λ, k) between standard and costandard objects and if k
is a field, the simple objects are the J!∗(λ, k) = Im(J!(λ, k)→ J∗(λ, k)).

Theorem 2.1 (Mirkovic-Vilonen). We have a equivalence of tensor categories

(Gk-mod,⊗k) ≃ (PervG∨(O)(Gr, k), ∗)

where ∗ is a convolution product. Under this equivalence, the morphisms between
standard and costandard objects correspond.

Besides, we have J!(λ,Z)
∼
→ J!∗(λ,Z) and J∗(λ,Z)

∼
→ J

+
!∗(λ,Z), and the stan-

dard and costandard objects over k are obtained from the standard and costandard
objects over Z by applying the functor k ⊗L

Z
−.

In particular, for k = Fp, we have dGλµ = dGr
λµ := [J!∗(λ,Z) ⊗L

Z
k : J!∗(µ, k)],

so that the modular representation theory of G is encoded in the singularities of
Gr. For example, a Levi lemma for decomposition numbers for reductive groups
follows from an equivalence of singularities proved in [MOV05].

The IC stalks are a refinement of weight multiplicities. They are known for
k = C (Kazhdan-Lusztig polynomials). If we knew them for k = Fp, then we
could solve the big problem. All the information is contained in the stalks and
costalks of J!(λ,Z) = J!∗(λ,Z).

Conjecture 2.2 (Mirkovic-Vilonen). The stalks of J!∗(λ,Z) are torsion-free.

In type A, the singularities of Gr are nilpotent singularities, and they checked
that there is no torsion in IC stalks of nilpotent singularities up to sl6. Bezrukavni-
kov noticed that this conjecture would imply a straightforward extension of his
work on the unramified local geometric Langlands conjecture, from C to Z co-
efficients. However, we will see that the conjecture is not true as stated
[Jut].

3. Minimal degenerations

It is hard to compute IC stalks in general, but the case of minimal degenerations
is more tractable (it reduces to the case of an isolated singularity).
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We say λ > µ is a minimal degeneration if there is no ν ∈ X(T )+ in between,
and we write λ  µ. We denote by α the highest short root. By a theorem of
Stembridge, if λ  µ then b := λ − µ ∈ Φ+, and up to some Levi reduction, we
have (with Bourbaki’s numbering) either (1) b ∈ ∆; (2) b = α and µ = 0, in any
type; (3) b = α and µ = ̟n, in type Bn; (4) b = α1 + α2 and µ = 2̟1, in type
G2; (5) b = α1 + α2 and µ = ̟1, in type G2.

Theorem 3.1 (Malkin-Ostrik-Vybornov). The singularity Sing(Grλ,Grµ) is a
simple surface singularity of type A〈λ,b∨〉−1 in case (1), and a minimal nilpotent
orbit closure singularity of the type of G∨ in case (2), denoted by an, . . . , g2.

The case of a singularity of type Am−1 is similar to the case of a singularity of
type A1, but with Cm instead of C2. There is a torsion stalk Z/m for IC

+, but
for IC there is no torsion.

For minimal singularities, one has to compute the cohomology of the minimal
nilpotent orbit of a simple Lie algebra [Jut08]. This can be expressed in terms
of root combinatorics. The middle cohomology group allows to recover a known
decomposition number, but most importantly there is torsion in other places (in
all types but in type A), so that we have counter-examples to the conjecture of
Mirkovic and Vilonen. However, there is torsion only for bad primes, so one can
still hope it is true if we replace Z coefficients by Zp for p good.

In the other cases, the singularity is called a quasi-minimal singularity and
denoted by acn (resp. ag2, cg2), because it occurs in the affine Grassmannian of
type Cn (resp. G2), and has the same IC stalks as an (resp. a2, c2) over Q.

Theorem 3.2. [Jut] The following singularities are pairwise non-equivalent: an
and acn; a2, ac2 and ag2; c2 and cg2.

Proof. In each case, there is some prime p for which the corresponding decomposi-
tion numbers for G are different, hence these singularities have different IC stalks
with Fp coefficients. �
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[MV07] I. Mirković and K. Vilonen, Geometric Langlands duality and representations of alge-
braic groups over commutative rings, Ann. of Math. 166 (2007), 95–143.



Enveloping Algebras and Geometric Representation Theory 821

Wonderful varieties and invariant Hilbert schemes

Stéphanie Cupit-Foutou

We show how to prove Luna’s conjecture saying that wonderful varieties can be
classified by combinatorial triples: the spherical systems. The proof we discuss
relies on the use of some invariant Hilbert schemes.

Notation. Let G be a connected reductive algebraic group. Fix as usual a Borel
subgroup B and a maximal torus T ⊂ B of G.

1. Wonderful varieties

Definition 1. A wonderfulG-variety of rank r is a smooth and projective algebraic
variety endowed with an action of G such that

(1) X has an open G-orbit whose complement equals a finite union of smooth
prime divisors Di (i = 1, . . . , r) which intersect transversally;

(2) orbit closures are given by the partial intersections ∩i∈IDi, I being a
subset of {1, . . . , r}.

After Luna (see [8]), one can attach three invariants to any wonderful G-variety
X : a set SpX of some simple roots of G, a set ΣX of spherical roots and a Cartan
pairing.

The subset SpX is defined as the subset of simple roots attached to the standard
parabolic corresponding to the (unique) closedG-orbit of X . The set ΣX is defined
as the set of characters of the torus T of TzX/TzY , where TzY stands for the
tangent space at z of the closed G-orbit Y , the point z being the (unique) point
of X fixed y the opposite Borel subgroup B−. Finally, let ∆X be the set of
prime B-stable but not G-stable divisors of X . The set ∆X forms a basis of the
Picard group of X . The pairing c : ∆X × ΣX → Z is defined by the identies
[Dσ] =

∑
D∈∆X

c(D,σ)[D] where Dσ is the prime divisor of X associated to the
spherical root σ.

In case of group compactifications, the spherical roots are given as sum of simple
roots αi + α′

i and the Cartan pairing corresponds to that of the Cartan matrix.
Luna proved that such triples enjoy nice properties: they are spherical sys-

tems. He thus conjectured that there corresponds a unique wonderful variety to
any spherical system. Partially results were obtained previously by case-by-case
considerations; see [8, 5, 2, 3]. The uniqueness part was obtained in full generality
by Losev in [7] using Luna-Vust theory.

We shall follow another approach.

2. Invariant Hilbert schemes

We gather in this section notions and results of [1].
Given a finite set Γ of dominant weights λ1, . . . , λs, consider the finite dimen-

sional G-module
V = V (λ1)⊕ . . .⊕ V (λs)

where V (λi) is the irreducible G-module corresponding to λi.
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Consider the functor which assigns to any scheme S (endowed with the trivial
action of G) the following set of families π : X→ S such that

π∗OX
∼= ⊕λ∈ΓFλ ⊗ V (λ)∗ as OS −G-modules

where Fλ denotes an invertible sheaf.
This functor is representable by a quasiprojective scheme, the invariant Hilbert

scheme HilbGΓ .
Let X0 be the G-orbit closure within V of vλ = vλ1 + . . .+vλs

where vλi
denotes

a highest weightvector of weight λi.
Then X0 can be regarded as a closed point of HilbGΓ . Furthermore, HilbGΓ is

endowed with an action of the adjoint torus Tad of G; under this action it has
finitely many orbits and X0 is its unique fixed point.

To motivate the use of invariant Hilbert schemes to solve Luna’s conjecture, let
us recall the following result obtained in [6].

For an arbitrary wonderful variety X , one may consider its total coordinate ring

R(X) = ⊕(nD)∈Z∆XH
0(X,OX(

∑

D∈∆X

nDD)).

The quotient morphism SpecR(X) → SpecR(X)G is a flat family. Moreover the

(scheme-theoretic) fibers of q are normal varieties; the fiber X̃0 over 0 is the unique

horospherical variety and the fibers of q realize a deformation of X̃0.

3. How to prove Luna’s conjecture

Take a spherical system S = (Sp,Σ,A) of the group G. By [8], it is enough to
consider a peculiar class of spherical systems, that are cuspidal and primitive. We
claim that we can also reduce ourselves to the case where Σ does not contain any
loose spherical root.

Let G = G × TA where TA denotes the torus whose charactergroup is spanned
by the elements of A seen as characters of T . One can naturally associate to
any spherical system a set of dominant weights, say λ1, . . . , λs. These dominant
weights are in particular orthogonal to the given set Sp. Let V be the G-module
whose highest weights are λ1, . . . , λs. We equip it naturally with a G-module
structure. We thus consider the invariant Hilbert scheme attached to such a G
and V ; we denote it for short Hilb(S).

Theorem 2. (i) The tangent space at X0 of Hilb(S) is multiplicity free as a Tad-
module and its set of Tad-weights coincides with the given set Σ.

(ii) The invariant Hilbert scheme Hilb(S) is smooth.

The first assertion of the above theorem is proved by means of a representation
theoretical characterization of the tangent space given in [1]. To get the second
assertion, we prove that the obstruction space of the invariant Hilbert functor is
trivial which implies smoothness by Schlessinger’s criterion. This is achieved by
a nice characterization of this obstruction space which involves first cohomology
groups of the isotropy Lie algebra of vλ.
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As a consequence, we get that Hilb◦(S) is a toric Tad-variety and it is in partic-
ular an affine space. Let X1 ∈ Hilb◦(S) be such that its Tad-orbit is dense within
Hilb◦(S); regard it as a subvariety of V and consider its s-cone C(X1).

Theorem 3. Consider the closure within V of the s-cone C(X1) and its quotient
XS by the algebraic torus (C⋆)s. Then the algebraic variety X is wonderful for the
action of G and its spherical system is the given S.

The above theorem thus proves the existence part of Luna’s conjecture; the
uniqueness part may be obtained also by means of invariant Hilbert schemes.
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Fermionic formulas for eigenfunctions of the difference Toda
Hamiltonian

Evgeny Feigin

(joint work with B. Feigin, M. Jimbo, T. Miwa, E. Mukhin)

1. Central elements and Whittaker vectors. The representation theory of
quantum groups plays a very important role in the study of finite difference Toda
Hamiltonian. In particular, one can construct eigenfunctions of HToda using Whit-
taker vectors in Verma modules (see [Br], [Sev], [Et]). We use pairing of Whittaker
vectors with the dual ones.

Let g be a complex simple Lie algebra of rank l and let Uv(g) and Uv−1(g) be
two quantum groups with parameters v and v−1. Let P , Q (resp. P+, Q+) be the
weight and root lattices of g (resp. their positive parts) and let Vλ =

∑
β∈Q+

(Vλ)β

and V
λ

=
∑
β∈Q+

(V
λ
)β be Verma modules of Uv(g) and Uv−1(g), respectively.

In order to define a Whittaker vector θλ in the completion
∏
β∈Q+

(Vλ)β of the
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Verma module Vλ one fixes elements νi ∈ P and scalars ci (1 ≤ i ≤ l). Then the
Whittaker vector, associated with these data, is defined by the condition

EiKνi
θλ =

ci
1− v2

θλ(0.1)

(for simplicity, we assume that g is simply-laced). Here Ei ∈ Uv(g) are the Cheval-
ley generators (which act as annihilating operators) and Kνi

are certain elements
from the Cartan subalgebra, associated with νi. Similarly, one defines the dual

Whittaker vector θ̄λ in the completion of V
λ

by the formula

ĒiK̄νi
θ̄λ =

c−1
i

1− v−2
θ̄λ(0.2)

The main object for us is the following function

Jλβ = v−(β,β)/2+(λ,β) (θλβ , θ̄
λ
β),

where θλβ ∈ (Vλ)β is the weight λ−β component of the Whittaker vector and ( , )

is the natural non-degenerate pairing between Vλ and V
λ
. It can be shown that

Jλβ is independent of possible choices of νi and ci.
Consider the generating function

F (q, z1, . . . , zl, y1, . . . , yl) =
∑

β

Jλβ

l∏

i=1

y
(β,ωi)
i ,

where zi = q−(λ,αi), q = v2 and ωi (resp. αi) are fundamental weights (resp.
simple roots). Then F is known to be an eigenfunction of the quantum difference
Toda operator ([Sev], [Et]). In order to prove this statement one uses central
elements of the quantum group. Roughly, the procedure works as follows. If u is
a central element, then the scalar product

(uθλβ , θ̄
λ
β)(0.3)

can be written in two ways. On the one hand, one can compute the action of u
on Vλ (the corresponding scalar). On the other hand, if a precise formula for u is
known then one can compute (0.3) using the relation

(Fiw, w̄) = (w, Ēiw̄)

and formulas (0.1), (0.2).
The Toda Hamiltonian appears when one uses the central element written as

the trace of products of R matrices in finite-dimensional Uv(g) modules. Our
key observation is that if the Drinfeld Casimir element is used instead then one
obtains a recursion relation for F which leads to the fermionic formulas. In the
next subsection we describe those formulas in more details.
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2. Fermionic formulas. Fermionic formulas appear in different problems of rep-
resentation theory and mathematical physics (see for example [BM1], [FJMMT],
[HKOTT], [SS]). Let us describe the class of formulas we treat in our paper.

Let [r, s] = {t ∈ Z | r ≤ t ≤ s} be a subset of Z, where r, s are integers or ±∞.
Let V be a vector space with a basis ei,t labeled by pairs 1 ≤ i ≤ l, t ∈ [r, s]. Let
Γ+ = {

∑
(i,t)mi,tei,t|mi,t ∈ Z≥0} be the positive part of the lattice generated by

{ei,t}. We fix a quadratic form 〈·, ·〉 on V and a vector µ ∈ V . Further, define
maps w and d from V to the l-dimensional vector space with a basis p1, . . . , pl via
the formulas

w(
∑

(i,t)

mi,tei,t) =

l∑

i=1

pi
∑

t∈[r,s]

mi,t, d(
∑

(i,t)

mi,tei,t) =

l∑

i=1

pi
∑

t∈[r,s]

tmi,t.

Define functions Im depending on q, z = (z1, . . . , zl) and m = (m1, . . . ,ml) as
follows

Im(q, z) =
∑

w(γ)=m

zd(γ) q
〈γ,γ〉+〈µ,γ〉

(q)γ
,(0.4)

where the summands are labeled by

γ =
∑

(i,t)

mi,tei,t ∈ Γ+ and (q)γ =
∏

(i,t)

(q)mi,t
, d(γ) =

l∏

i=1

z
d(γ)i

i .

We call the right hand side of (0.4) a fermionic formula. The generating function
F (q, z, y) = F (q, z1, . . . , zl, y1, . . . , yl) is given by the formula

F (q, z, y) =
∑

m

ymIm(q, z), ym = ym1
1 . . . yml

l .(0.5)

Let the matrix of the quadratic form 〈·, ·〉 be a tensor product D = C⊗G(r, s),
where C is the Cartan matrix of g (we assume here that C is symmetric) and
G = (Gt,t′)i,j∈[r,s], Gt,t′ = min(t, t′). Such matrices appear in [DS], [S] in the
fermionic formulas for the Kostka polynomials. Let [r, s] = [0,∞). Then functions
Im(q, z) satisfy the following recursion relation:

Im(q, z) =
∑

0≤a≤m

zaqW (a)

(q)m−a
Ia(q, z),(0.6)

where W (a) = 1
2 (Ca · a − diagC · a), · denotes the standard scalar product and

0 ≤ a ≤ m abbreviates the set of inequalities 0 ≤ ai ≤ mi. The relation (0.6)
shows that Im(q, z) are determined by I0(q, z).

Recall the functions Jλβ . Using the Drinfeld Casimir element and the procedure

described in the end of subsection 1, we show that Jλβ satisfy the relation

Jλβ =
∑

β′

1

(q)β−β′

q(β
′,β′)/2−(λ+ρ,β′)Jλβ′ .
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This leads to the following identification

Jλβ = Im(q, z), β =
∑

i

miαi, z = q−(λ,αi).

In particular, this gives a fermionic formula for eigenfunctions of HToda.
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Diagonalizable and unitary representations of rational Cherednik
algebras

Stephen Griffeth

(joint work with Charles Dunkl, Emanuel Stoica)

The goal of this talk is to describe some recent progress in the classification of
unitary representations of rational Cherednik algebras. Part of the talk is based
on the paper [3] by Etingof and Stoica, and its appendix by the author, and part
is based on joint work in progress with Charles Dunkl and Emanuel Stoica.

Let n be a positive integer, let h be an n-dimensional complex vector space,
and let W ⊆ GL(h) be a finite subgroup. Write h∗ for the dual space of h, let
T (h∗ ⊕ h) be the tensor algebra, and let

(0.1) T (h∗ ⊕ h)#W
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be the twisted group ring, isomorphic to T (h∗ ⊕ h)⊗CW as a C-vector space and
with multiplication

(0.2) (f ⊗ v)(g ⊗ w) = f(v.g)⊗ vw

where for g ∈ T (h∗ ⊕ h) and v ∈ W , we write v.g for the action of v on g.
Let

(0.3) T = {s ∈ W | dim(fix(s)) = n− 1}

be the set of reflections in W , and let t ∈ C and cs ∈ C be a collection of complex
numbers such that cwsw−1 = cs for all s ∈ T . The rational Cherednik algebra Ht,c

corresponding to this data is the quotient of T (h∗ ⊕ h)#W by the relations

(0.4) x1x2 = x2x1, for x1, x2 ∈ h∗, y1y2 = y2y1, for y1, y2 ∈ h,

and

(0.5) yx = xy + t〈x, y〉 −
∑

s∈T

cs〈αs, y〉〈x, α
∨
s 〉s for x ∈ h∗ and y ∈ h,

where for each s ∈ T , the elements αs ∈ h∗ and α∨
s ∈ h are fixed subject to

(0.6) s.x = x− 〈x, α∨
s 〉αs for x ∈ h∗.

Motivated by the study of symplectic quotient singularities, in [2] Etingof and
Ginzburg showed that multiplication in Ht,c gives a vector space isomorphism

(0.7) S(h∗)⊗ CW ⊗ S(h) ∼= Ht,c,

where S(h∗) and S(h) are the symmetric algebras. Thanks to this “triangular de-
composition”, many of the usual constructions of Lie theory can be carried out for
the rational Cherednik algebra. The Verma (or “standard”) module corresponding
to an irreducible CW -module Sλ is

(0.8) Mt,c(λ) = Ind
Ht,c

S(h)⊗CWS
λ,

and it carries a contravariant form 〈·, ·〉t,c, determined up to scalars as a Hermitian
form satisfying

(0.9) 〈w.f, w, g〉 = 〈f, g〉 for f, g ∈Mt,c(λ) and w ∈W ,

(0.10) 〈x.f, g〉 = 〈f, x∗.g〉 for f, g ∈Mt,c(λ) and x ∈ h∗,

where x 7→ x∗ is a W -equivariant conjugate linear isomorphism of h∗ onto h.
The radical of the contravariant form is, in case t = 1, the radical of the module
Mt,c(λ). We write

(0.11) Lt,c(λ) = Mt,c(λ)/Rad(〈·, ·〉t,c)

for the irreducible quotient of the Verma module by the radical of its bilinear form.
Cherednik posed the problem of determining those pairs (c, λ) for which the

form 〈·, ·〉 is positive definite on L1,c(λ). In [3], Etingof and Stoica initiated the
study of this problem, and proved the following theorem for the symmetric group:



828 Oberwolfach Report 15

Theorem 1. For each partition λ of n not equal to (n) or (1n), the set of c for
which L1,c(λ) is unitary is contained in the union of the interval [− 1

a(λ) ,
1

a(λ) ] with

the finite set of isolated points 1
k , for b(λt) ≤ k < a(λ) and −a(λ) < k ≤ −b(λ),

where if λ has length l then a(λ) = λ1 + l − 1 and b(λ) = λ1 + l − λl.

In addition to obtaining an exact description of the set of c for which L1,c(λ)
is unitary for those λ not covered by the above theorem, they conjectured that
the set described in the theorem is exactly the set of pairs (c, λ) such that L1,c(λ)
is unitary, and this conjecture was proved by the author in the appendix to [3]
(completely solving the problem for the symmetric group). The key fact used to
prove it is the classification, due to Cherednik [1] and Suzuki [4], of those pairs (c, λ)
for which L1,c(λ) is diagonalizable with respect to the Cherednik-Dunkl operators

(0.12) ǫ∨i = xiyi + c0
∑

1≤i<j

sij .

Cherednik and Suzuki also describe the structure of the diagonalizable modules
L1,c(λ) in terms of “periodic tableaux” on certain infinite skew diagrams. In joint
work with Charles Dunkl and Emanuel Stoica we give a version of these results
that applies to the infinite family G(r, p, n) of complex reflection groups, and we
hope to apply the resulting combinatorial description of the diagonalizable mod-
ules to obtain a classification of the unitary modules L1,c(λ). As a byproduct
of our classification of diagonalizable irreducibles we obtain a number of new ex-
amples of finite dimensional rational Cherednik algebra modules, together with
combinatorial formulas for their dimensions.

References

[1] I. Cherednik, Double affine Hecke algebras, London Mathematical Society Lecture Note
Series, 319. Cambridge University Press, Cambridge, 2005.

[2] P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and
deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243–348.

[3] P. Etingof and E. Stoica, Unitary representations of rational Cherednik algebras,
arXiv:0901.4595.

[4] T. Suzuki, Cylindrical combinatorics and representations of Cherednik algebras of type A,

arXiv:math/0610029.

Quantum affine algebras and cluster algebras

Bernard Leclerc

(joint work with David Hernandez)

My talk was a report on the recent preprint [12].
Let g be a simple Lie algebra of type An, Dn or En, and let Uq(ĝ) denote the

corresponding quantum affine algebra, with parameter q ∈ C∗ not a root of unity.
The monoidal category C of finite-dimensional Uq(ĝ)-modules has been studied by
many authors from different perspectives (see e.g. [1, 2, 6, 10, 18]). In particular
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its simple objects have been classified by Chari and Pressley, and Nakajima has
calculated their character in terms of the cohomology of certain quiver varieties.

In spite of these remarkable results many basic questions remain open, and in
particular little is known about the tensor structure of C. When g = sl2, Chari and
Pressley [3] have shown that every simple object is isomorphic to a tensor product
of simple objects of a special type called Kirillov-Reshetikhin modules. Conversely,
they have shown that a tensor product S1⊗· · ·⊗Sk of Kirillov-Reshetikhin modules
is simple if and only if Si⊗Sj is simple for every i 6= j. Moreover, Si⊗Sj is simple
if and only if Si and Sj are “in general position” (a combinatorial condition on the
roots of the Drinfeld polynomials of Si and Sj). Hence, the Kirillov-Reshetikhin
modules can be regarded as the prime simple objects of C [4], and one knows which
products of primes are simple. For g 6= sl2, the situation is far more complicated.
Thus, already for g = sl3, we do not know a general factorization theorem for
simple objects, neither a tentative list of prime simple objects (see [4]).

Because of these difficulties, we decide to focus on some smaller subcategories.
We introduce a sequence

C0 ⊂ C1 ⊂ · · · ⊂ Cℓ ⊂ · · · , (ℓ ∈ N),

of full monoidal subcategories of C, whose objects are characterized by certain
strong restrictions on the roots of the Drinfeld polynomials of their composition
factors. By construction, the Grothendieck ring Rℓ of Cℓ is a polynomial ring
in n(ℓ + 1) variables, where n is the rank of g. Our starting point is that Rℓ is
naturally equipped with the structure of a cluster algebra.

Cluster algebras were introduced by Fomin and Zelevinsky [7] as a combinatorial
device for studying canonical bases and total positivity. They found immediately
lots of applications, including a proof of a conjecture of Zamolodchikov concerning
certain discrete dynamical systems arising from the thermodynamic Bethe ansatz,
called Y -systems [8]. As observed by Kuniba, Nakanishi and Suzuki [16], Y -
systems are strongly related with the representation theory of Uq(ĝ) via some other
systems of functional relations called T -systems. It was conjectured in [16] that
the characters of the Kirillov-Reshetikhin modules are solutions of a T -system, and
this was later proved by Nakajima [19] in the simply-laced case, and by Hernandez
in the general case [11]. Now it is easy to notice that in the simply-laced case the
equations of a T -system are exactly of the same form as the exchange relations in a
cluster algebra. This led us to introduce a cluster algebra structure on Rℓ by using
an initial seed consisting of a choice of n(ℓ+1) Kirillov-Reshetikhin modules in Cℓ.
The exchange matrix of this seed encodes nℓ equations of the T -system satisfied
by these Kirillov-Reshetikhin modules. (Note that the seed contains n frozen
variables – or coefficients – in the sense of [7].) By definition of a cluster algebra,
one can obtain new seeds by applying sequences of mutations to the initial seed.
Then one of our main conjectures is that all the new cluster variables produced in
this way are classes of simple objects of Cℓ. In general, these simple objects are
no longer Kirillov-Reshetikhin modules.

For ℓ = 0, the cluster structure of R0 is trivial: there is a unique cluster
consisting entirely of frozen variables.
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The case ℓ = 1 is already very interesting, and most of the lecture was devoted
to it. Fomin and Zelevinsky have classified the cluster algebras with finitely many
cluster variables in terms of finite root systems [9]. It turns out that for every g

the ring R1 has finitely many cluster variables, and that its cluster type coincides
with the root system of g. Therefore, one may expect that the tensor structure of
the simple objects of the category C1 can be described in “a finite way”. In fact
we conjecture that for every g the category C1 behaves as nicely as the category
C for sl2, and we prove it for g of type An and D4.

More precisely, we single out a finite set of simple objects of C1 whose Drinfeld
polynomials are naturally labeled by the set of almost positive roots of g (i.e. ,
positive roots and negative simple roots). Recall that the almost positive roots
are in one-to-one correspondence with the cluster variables [9], so we shall call these
objects the cluster simple objects. To these objects we add n distinguished simple
objects which we call frozen simple objects. Our first claim is that the classes of
these objects in R1 coincide with the cluster variables and frozen variables.

Recall also that the cluster variables are grouped into overlapping subsets of
cardinality n called clusters [7]. The number of clusters is a generalized Catalan
number, and they can be identified to the faces of the dual of a generalized asso-
ciahedron [8]. Our second claim is that a tensor product of cluster simple objects
is simple if and only if all the objects belong to a common cluster. Moreover, the
tensor product of a frozen simple object with any simple object is again simple. It
follows that every simple object of C1 is a tensor product of cluster simple objects
and frozen simple objects. To prove this, we first show in a uniform way for all
types that a tensor product S1 ⊗ · · · ⊗ Sk of simple objects of C1 is simple if and
only if Si ⊗ Sj is simple for every i 6= j.

When ℓ > 1 the ring Rℓ has in general infinitely many cluster variables, grouped
into infinitely many clusters. A notable exception is the case g = sl2, for which
Rℓ is a cluster algebra of finite type Aℓ in the classification of [9]. In this special
case it follows from [3] that, again, the classes in Rℓ of the simple objects of Cℓ
are precisely the cluster monomials of Rℓ. We conjecture that for arbitrary g and
ℓ, every cluster monomial of Rℓ is the class of a simple object. We also conjecture
that, conversely, the class of a simple object S in Cℓ is a cluster monomial if
and only if S ⊗ S is simple. In this case, following [17], we call S a real simple
object. We believe that real simple objects form an interesting class of irreducible
Uq(ĝ)-modules, and the meaning of our partial results and conjectures is that their
characters are governed by the combinatorics of cluster algebras.

Kedem [14] and Di Francesco [5] have studied another connection between quan-
tum affine algebras and cluster algebras, based on other types of functional equa-
tions (Q-systems and generalized T -systems). Keller [15] has obtained a proof of
the periodicity conjecture for Y -systems attached to pairs of simply-laced Dynkin
diagrams using 2-Calabi-Yau categorifications of cluster algebras. More recently,
Inoue, Iyama, Kuniba, Nakanishi and Suzuki [13] have also studied the connection
between Y -systems, T -systems, Grothendieck rings of Uq(ĝ) and cluster algebras,
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motivated by periodicity problems. These papers do not study the relations be-
tween cluster monomials and irreducible Uq(ĝ)-modules.
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Quiver varieties and Branching

Hiraku Nakajima

1. Motivation. Braverman-Finkelberg [1] recently proposed the geometric Sa-
take correspondence for the affine Kac-Moody group Gaff . They conjecture that
intersection cohomology sheaves on the Uhlenbeck compactification of the framed
moduli space of Gcpt-instantons on R4/Zr correspond to weight spaces of repre-
sentations of the Langlands dual group G∨

aff at level r. When G = SL(l), the
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Uhlenbeck compactification is the quiver variety of type sl(r)aff , and their conjec-
ture follows from the author’s earlier result [5] and I. Frenkel’s level-rank duality
[4]. They further introduce a convolution diagram which conjecturally gives the
tensor product multiplicity [2]. Since the tensor product multiplicy corresponds
to the branching multiplicity under the level-rank duality, the author develop the
theory for the branching in quiver varieties and check this conjecture for G = SL(l)
in the paper [6].

2. Quiver varieties. Suppose that a finite graph is given. Let I be the set of
vertices and E the set of edges. Suppose that there are no edge loops. Let C
be the Cartan matrix. Let g be the corresponding (symmetric) Kac-Moody Lie
algebra. Let H be the set of oriented edges (hence #H = 2#E), and we choose
an orientation Ω of the graph (I, E).

Suppose that I-graded vector spaces V , W are given. Then we consider the
vector space

M(V,W ) =
⊕

h∈H

Hom(Vo(h), Vi(h))⊕
⊕

i∈I

Hom(Wi, Vi)⊕Hom(Vi,Wi),

where o(h), i(h) are the outgoing and incoming vertices of h. We denote the
corresponding componets of the above decomposition by Bh, ai, bi. Let GV =∏
i∈I GL(Vi). It acts on M(V,W ) by conjugation. The choice of the orientation

gives us the symplectic form invariant under the GV -action. Let µ : M(V,W ) →
(LieGV )∗ be the corresponding moment map vanishing at the origin. It is given
by

µ(Bh, ai, bi) =
∑

h:i(h)=i

ε(h)BhBh + aibi

if we identify (LieGV )∗ with LieGV by the trace. Here ε(h) is 1 if h ∈ Ω and

−1 otherwise, and h is the same edge with h but equipped with the opposite
orientation.

We consider a quotient of µ−1(0) by GV in the sense of the geometric invariant
theory. It depends on the choice, called the stability parameter. Let ζ = (ζi) ∈ ZI .
We define the character χζ of GV given by χζ(g) =

∏
i∈I(det gi)

−ζi , and we con-

sider the semi-invariants A(µ−1(0))G,χ
n
ζ = {f ∈ A(µ−1(0) | f(gx) = χζ(g)

nf(x)}.

Then
⊕∞

n=0A(µ−1(0))G,χ
n
ζ is a graded ring, and we define the quiver variety by

Mζ(V,W ) = Proj(
∞⊕

n=0

A(µ−1(0))G,χ
n
ζ ).

By a general result for the geometric invariant theory, Mζ(V,W ) is the set of
ζ-semistable points modulo the so-called S-equivalences. (See [6] for the precise
statement.) It contains the open subscheme Ms

ζ(V,W ) consisting of GV -orbits of
ζ-stable points. For example, if ζ = 0, all points are ζ-semistable, and two points
are S-equivalent if and only if their closure intersect. In this case, M0(V,W ) is an
affine algebraic variety given by Spec(A(µ−1(0))GV ).
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The quiver variety depends on the choice of the stability parameter ζ, but
its dependence is through the face F containing ζ. Here a face is given by the
decomposition of the set R+(V ) of positive roots with α =

∑
miαi with mi ≤

dimVi into three parts R+(V ) = R+
+(V ) ⊔R−

+(V ) ⊔R0
+(V ) as

F = {ζ ∈ QI |ζ · α > 0, < 0,= 0 for α ∈ R+
+(V ), ∈ R−

+(V ), R0
+(V ) respectively}.

We say a face F is a chamber if R0
+(V ) = ∅. For example, in [5] we use the

parameter ζ+ in the face given by R+
+(V ) = R+(V ). If ζ is in a chamber, we have

Mζ(V,W ) = Ms
ζ(V,W ) and Mζ(V,W ) is nonsingular of dimension

dimMζ(V,W ) = 2(dimV, dimW )− (dimV,C dimV ),

where dimV , dimW are dimension vectors (in ZI) and ( , ) is the natural inner
product on ZI .

If F ′ is in the closure of F , and if we take ζ′ ∈ F ′, ζ ∈ F , we have a projective
morphism

πζ,ζ′ : Mζ(V,W )→Mζ′(V,W ).

In particular, ζ′ = 0 is contained in the closure of any face, we always have
Mζ(V,W )→M0(V,W ).

3. Convolution algebra. For the parameter ζ = 0, we have a closed embedding
M0(V,W ) ⊂ M0(V

′,W ) for V ⊂ V ′ by setting the data 0 on a subspace of
V ′ complementary to V . We denote the direct limit by M0(W ). If ζ is in a
chamber, there is no obvious relation among different Mζ(V,W )’s, and we set
Mζ(W ) =

⊔
V Mζ(V,W ) where V runs all isomorphism classes of I-graded vector

spaces. For a general ζ, we have the closed embedding Mζ(V,W ) ⊂Mζ(V
′,W ) for

V ⊂ V ′, when the data 0 ∈ M(V ′/V, 0) is ζ-semitable. We denote the inductive
limit by Mζ(W ). We consider the fiber product

Zζ,ζ′(W ) = Mζ(W )×Mζ′(W ) Mζ(W ),

when the faces F ′, F containing ζ′, ζ satisfy F ′ ⊂ F for any choice of V . This
is a union Mζ(V

1,W ) ×Mζ′ (V,W ) Mζ(V
2,W ) of various V 1, V 2 and a big vector

space V containing both V 1 and V 2. Any irreducible component has at most
dimMζ(V

1,W )×Mζ(V
2,W )/2.

We assume ζ is in a chamber and consider

Htop(Zζ,ζ′(W )),

where top means the degree dim Mζ(V
1,W ) × Mζ(V

2,W ) for each summand
Mζ(V

1,W ) ×Mζ′ (V,W ) Mζ(V
2,W ). This has a structure of the algebra given by

the convolution product

c ∗ c′ = p13∗(p
∗
12(c) ∩ p

∗
23(c

′)),

where pab is the projection from the triple fiber product to the fiber product of
ath and bth factors.

In [5] the author constructed an algebra homomorphism

(0.1) U(g)→ Htop(Zζ,0(W ))
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for ζ = ζ+ as above. By the general theory of the convolution algebra (see [3]) the
algebra Htop(Mζ(W )) is the endomorphism algebra

EndPerv(M0(W ))(πζ,0∗(CMζ(W )[dimMζ(W )])),

where the shift dimMζ(W ) means that we shift dimMζ(V,W ) for each compo-
nent Mζ(V,W ). One can show that πζ,0∗(CMζ(W )[dimMζ(W )])) is canonically
isomorphic to each other independent of the choice of the chamber (containing ζ)
by using a one parameter deformation of M0(W ) and its similtaneous resolution.
So we have a homomorphism (0.1) for any ζ.

Theorem 1. (1) Choose a subdiagram I◦ ⊂ I. Take ζ′ so that ζ′i = 0 for i ∈ I◦

and ζ′i > 0 for i /∈ I◦. Then we have a commutative diagram

U(gI◦) −−−−→ Htop(Zζ,ζ′(W ))
y

y

U(g) −−−−→ Htop(Zζ,0(W )),

where gI◦ is the Levi subalgebra of g corresponding to I◦ and the bottom horizontal
arrow is (0.1).

(2) Suppose that the graph (I, E) is affine. We choose a subdiagram I◦0 ⊂ I0 of
the corresponding finite type graph I0 = I \ {0}. Take ζ′ so that ζ′i = 0 for i ∈ I◦0
and ζ′i > 0 for i ∈ I0 \ I◦ and ζ′ · δ = 0 for the imaginary root δ. And take ζ from
a chamber containing ζ′ in its closure. Then we have a commutative diagram as
above replacing U(gI◦) by U(ĝI00 ) the enveloping algebra of the affine Lie algebra
of the Levi subalgebra gI00 of the finite dimensional Lie algebra gI0 .
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Birkhäuser, 1997.
[4] I. B. Frenkel, Representations of affine Lie algebras, Hecke modular forms and Korteweg-

de Vries type equations, Lie algebras and related topics (New Brunswick, N.J., 1981), Lec-
ture Notes in Math., vol. 933, Springer, Berlin, 1982, pp. 71–110.

[5] H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), no. 3,
515–560.

[6] , Quiver varieties and branching, SIGMA, 5 (2009), 003, 37 pages.



Enveloping Algebras and Geometric Representation Theory 835

Dirac operators in the affine setting

Paolo Papi

(joint work with Victor G. Kac, Pierluigi Mseneder Frajria)

1. Introduction

Let g = k⊕ p be an infinitesimal symmetric space. The adjoint representation
gives a map k → so(p) and in turn we have a map between the corresponding

affinizations k̂ → ŝo(p). Therefore, given a ŝo(p)-module, it makes sense to ask

for its k̂-decomposition. Kac and Peterson [6] discovered that this decomposition
is finite for level 1 modules. Recall that a subalgebra a ⊂ g is called quadratic if
the restriction to a of a non-degenerate invariant form on g is still non-degenerate.
About 20 years ago there was much activity on the problem of classifying the qua-

dratic subalgebras a such that level 1 ŝo(p)-modules restrict finitely to â and on
that of finding actual decompositions. The first goal was achieved, and the above
subalgebras might be split into three classes: certain equal rank subalgebras, a
list of “exceptional” cases, and the symmetric subalgebras. Decompositions were
known for the first two classes and in some instances of the third. Recently, we
found a connection with the theory of abelian ideals in Borel subalgebras which
allowed us to solve completely the problem (cf. [1]). It turns out that an affine ana-
logue of Kostant’s theory of multiplets [9] is the natural framework for a conceptual
explanation of our formulas. This has been achieved by letting the Kac-Todorov
field [7] play the role of Kostant cubic Dirac operator. We also found an analogue
in affine setting of a theorem of Huang and Pandžić [2] which solves a conjecture
of Vogan on Dirac cohomology. This result (see Theorem 3.2) allows us to prove a
general multiplet theorem (see Theorem 3.1). We plan to investigate the applica-
tions of our methods in the context of finite and affine Lie superalgebras. Though
this project is still at early stage of development, the construction of the Dirac field
can be extended (with careful modifications) to the superalgebra case. We give a
concise outline of this construction in Section 2 and in Section 4 we point out some
of its consequences, notably a uniform proof of Freudenthal strange formula (4.1)
for Lie superalgebras. The main results in the affine setting appear in Section 3.

2. The Dirac field

Let g be a basic classical Lie superalgebra and σ an elliptic automorphism of
g (i.e., diagonalizable with modulus 1 eigenvalues). Let (·, ·) be a non-degenerate
invariant supersymmetric form and assume that it is ⊂ -invariant. Set ḡ = Pg,
where P is the parity reversing functor. Consider the conformal algebra R =
(C[T ]⊗ g)⊕ (C[T ]⊗ ḡ)⊕ CK ⊕ CK ′ with λ-products

[aλb] = [a, b] + λ(a, b)K, [aλb̄] = [a, b], [āλb] = p(b)[a, b], [āλb̄] = (b, a)K ′,

K, K ′ being even central elements. Let V (R) be the corresponding universal vertex
algebra, and denote by V k,1(g) its quotient by the ideal generated by K − k|0〉
and K ′ − |0〉. The relations are the same used in [4] for even variables.
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Choose a homogeneous basis {xi} of g and let {xi} be its dual basis. We assume
that the Casimir operator of g acts on g as 2gIg. The element

Gg =
∑

i

: xixi : −
1

3

∑

i,j

: [xi, xj ]x
jxi :∈ V k+g,1(g)

is called the Kac-Todorov operator. To enlighten how Gg acts on representations,
recall from [4] that the vertex algebra V k+g,1(g) is isomorphic to V k(g) ⊗ F (g),
where the left factor is the universal affine vertex algebra of level k and the right
factor is the universal fermionic vertex algebra. There is a natural notion of (σ-
twisted) Spin-Weil module SW σ(g) for F (g), hence given a σ-twisted module for

V k(g) (i.e., a representation M of the twisted affine superalgebra L̂(g, σ)), we may
produce a σ ⊗ (−σ)-twisted representation

X(M) = M ⊗ SW−σ(g)

of V k+g,1(g). It turns out that (σ ⊗ (−σ))(Gg) = −Gg, so that Y X(M)(Gg, z) =∑
n∈Z

GXn z
−n− 3

2 . Given a quadratic σ-stable subsuperalgebra a ⊂ g, we have an

embedding V k+1,g(a) ⊂ V k+1,g(g), so that we may consider the field Gg − Ga,
which turns out to act on M ⊗ SW−σ(p) where p = a⊥. We introduce the Kac-
Todorov operator as

Dg,a = (Gg −Ga)
M⊗SW−σ(p)
0 .

3. Main Theorems

Throughout this Section, g is a Lie algebra, σ an elliptic automorphism of g

preserving the form and a a quadratic subalgebra.

Write g = ⊕j∈R/Z
gj , a = ⊕j∈R/Z

aj, aj = a ∩ gj .

Assumption.We assume that there exists an elliptic automorphism of g preserv-

ing the form, commuting with σ, and such that a Cartan subalgebra t of the joint

fixed points of σ and µ is a Cartan subalgebra of a0.

Denote by 0 the Cartan subalgebra Centg0(t) of g0 and decompose it as 0 =

t ⊕ p. Let Ŵσ be the Weyl group of L̂(g, σ) and ĥ = 0 ⊕ CK ⊕ Cd the Cartan

subalgebra. Set taff = t⊕ CK ⊕ Cd. We prove that the subgroup Ŵ (µ) = {w ∈

Ŵσ | wµ = µw} is isomorphic to the group generated by the reflections sβ in the
vectors β = α|taff (where we stipulate that sβ = Id if α|taff is isotropic). We
prove that the latter group is a Coxeter group which contains the Weyl group of

L̂(a, σ) as a reflection subgroup. Let Ŵ ′ be the corresponding set of minimal right

coset representatives. Let ρ̂σ, ρ̂a,σ be ρ-vectors for L̂(g, σ), L̂(a, σ) respectively.

Theorem 3.1. [5, Theorem 1.1] In the above setup, assume furthermore that
(Λ+ ρ̂σ)| p

= 0. Then the following decomposition into a direct sum of irreducible

L̂(a, σ)-modules holds:

Ker (D) = 2⌊
rank(g0))−rank(a0)+1

2 ⌋
∑

w∈cW ′

V (w(Λ + ρ̂σ)− ρ̂aσ).
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By taking Λ = 0 and considering a symmetric subalgebra we recover via a
multiplet approach the results obtained in previous papers for both the equal and
non-equal rank cases. The proof proceeds along the lines of the finite-dimensional
case, up to the fact that Parthasarathy’s Dirac inequality is replaced by the follow-
ing theorem, which can be viewed as an affine analogue of the “Vogan conjecture”.

Theorem 3.2. [4, Theorem 8.1] Let g be a semisimple Lie algebra, σ an elliptic
automorphism of g and a a reductive quadratic subalgebra. Assume that the

centralizer in g0 of Cartan subalgebra of a is a Cartan subalgebra 0 of g0. Fix

Λ ∈̂∗ such that Λ+ ρ̂σ is in the Tits cone of L̂(g, σ) and let M be a highest weight

module for L̂(g, σ) with highest weight Λ. Let f be a holomorphic Ŵσ-invariant

function on the Tits cone. Suppose that a twisted highest weight L̂(a, σ)-module
of highest weight µ occurs in the Dirac cohomology of M . Then f(Λ + ρ̂σ) =
f(µ+ ρ̂a,σ).

4. Perspectives on the Lie superalgebra case

One of the key properties of the classical Dirac operator is the existence of a
nice formula for its square. The replacement of the latter formula in our case is a
nice expression for [GgλGg]. Let now g be a basic classical superalgebra, σ = Ig
and M = L(Λ) be a highest module w.r.t. some positive system. If v is an highest
weight vector in M , we compute that GX0 (v ⊗ 1) = v ⊗ (hΛ+ρ) · 1 (here Λ = Λ| 0

and hµ is defined by µ(h) = (h, hµ) for µ ∈ ∗
0). By the above nice expression, v⊗1

is an eigenvector for (GX0 )2, so taking Λ such that Λ = −ρ, we get the Freudenthal
“strange” formula

(4.1) (ρ, ρ) =
g

12
sdimg.

For other (non-uniform) proofs of (4.1) see [8]. We also have a twisted version
of this formula, which is an analogue of the “very strange formula”. By applying
the Zhu functor πZhu to our Dirac operator Dg,a, we obtain a “finite-dimensional”
Dirac operator in superalgebra setting which we are going to study in more detail.
We have verified that πZhu(Dg,g0) is the Dirac operator defined in [3].
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Del Pezzo surfaces and homogeneous spaces

Vera Serganova

(joint work with Alexei Skorobogatov)

Del Pezzo surfaces are smooth projective surfaces of degree d in Pd. It is well
known (see [3])that the Picard group of a del Pezzo surface X of degree d (d ≤ 6)
contains a sublattice of roots of a simple Lie algebra of rank r = 9− d of Dynkin
types A2×A1, A4, D5, E6, E7 and E8 (this is the sublattice orthogonal to canonical
class). Moreover, for d > 1, the number of exceptional divisors coincides with
dimension of some minuscule representation of the corresponding algebraic group
G. In 1990 Batyrev formulated the conjecture that X can be embedded into the
quotient of the algebraic homogeneous space G/P (for a suitable parabolic P ) by
the action of the maximal torus H in G. This conjecture was proven by Popov for
d = 4 and by Derenthal for d = 3, 2. We suggest another unified proof based on
certain results about geometry of homogeneous spaces.

Let K be an algebraic closed field of characteristic zero. Let R be the root
system of an algebraic group G from above list. Note that the previous Dynkin
diagram of the list can be obtained from that of R by removing one simple root
which we denote by α. Let P be the maximal parabolic subgroup corresponding
to this root. The semisimple part of P is the previous algebraic subgroup G′. In
all cases the nilpotent radical of the Lie algebra p is abelian. The coroot α̌ induces
the Z-grading on the Lie algebra g:

g = g−1 ⊕ g0 ⊕ g1

such that p = g0 ⊕ g1, g0. Let V be the simple irreducible G-module with funda-
mental weight corresponding to α and v be a highest vector, so Pv = Kv. Note
that in our case for r ≤ 7V is a minuscule representation. Consider the Z-grading

V = V0 ⊕ V1 ⊕ V2 ⊕ . . .

such that V0 = Kv, gjVi = Vi−j . It is always true that V1 = g−1V0. Moreover, V1

is a simple G′ module with highest vector v′ = rα (v). Recall that the orbit Gv
is isomorphic to the affine cone (G/P )a of G/P . The following Lemma is true for
an arbitrary G and maximal parabolic P .

Lemma 1. (G/P )a ∩ V1 = (G′/P ′)a = G′v′.

Let H be the maximal torus of G and T be the extension of H in GL (V ) by

scalar operators. Let (G/P )
sf
a denote the set stable points in (G/P )a with trivial

stabilizer in T .

Theorem 2. Y = (G/P )
sf
a /T is a smooth quasi-projective variety and the torsor

f : (G/P )sfa → Y is universal i.e. we have an isomorphism between the lattice of

characters Ť and PicY .

The projection V → V1 induces the T -equivariant map π : (G/P )a → V1, we

denote by the same letter its projectivization (G/P )
0 → P (V1), where (G/P )

0
is
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obtained from G/P by removing the preimage of zero. Denote by S one dimen-
sional subgroup in T

S =
{
gt : gt|Vi

= t1−i, t ∈ K×
}
.

It is not difficult to see that for x\in P (V1) \ (G′/P ′) the preimage π−1 (x) is a
free S-orbit. Moreover the following statement is true.

Theorem 3. The natural map π̄ : (G/P )/S → P (V1) is the blow up of G′/P ′ in
P (V1).

Now we formulate the main result.

Theorem 4. Let T be the universal torsor over del Pezzo surface X with torus
T . There exists a T -equivariant embedding φ : T → (G/P )a which induces an

isomorhism Ť ∼= PicX ∼= PicY . The restriction map PicY → PicX maps T -
invariant coordinate hyperplanes in V to exceptional divisors on X .

We prove the main theorem by induction starting with case d = 5 proven by
Skorobogatov (see [6]). We may assume therefore that there exists an embedding
T′ → (G′/P ′)a ⊂ V1 satisfying all requirements of theorem. Note that X is
obtained from X ′ by blowing up a point x ∈ X ′ not lying on any of exceptional
divisors in X ′. Let Z denote the preimage of x in T′. We were able to prove that
there exists an element h in the centralizer of H in GL (V1) such that h (T′) ∩
(G′/P ′) = Z. In addition h should satisfy certain generality conditions which we
do not discuss here (see for details [4]). Then we define T as the set of all stable
point in Zariski closure of the preimage π−1 (hT′).

One can also characterize T in the following way. Let F denote the centralizer
of T in GL (V ). Since V is minuscule, F itself is a torus which can be identified
with open subset of V obtained by removing all coordinate hyperplanes.

Theorem 5. Let k = r − 4. There exists h1, . . . , hk ∈ F such that

T = h1 (G/P )
sf
a ∩ · · · ∩ hk (G/P )

sf
a .

In particular, it implies that the Cox ring of X is a quotient of a polynomial
ring by ideal with quadratic generators (see also [7]).
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Exotic finite subgroups of E8 and Springer’s regular elements of the
Weyl group

Bertram Kostant

(joint work with Nolan Wallach)

Distinguished elements of the Weyl group

1. Let g be a complex simple Lie algebra and let G be a corresponding Lie
group. Let ℓ = rankg and let h be the Coxeter number of g. Let a ⊂ g be a
Cartan subalgebra and let A ⊂ G be the corresponding group. Let W = W (a)
be the Weyl group a so that W = Norm a/A. If w ∈ W , let Aw ⊂ Norm a be
the coset of A defining w. Any element aw ∈ Aw will be called a lift of w. We
will say that w ∈ W is distinguished if 1−w is invertible on a. (This terminology
is motivated by a connection, established in [4], between such elements w and
distinguished nilpotent elements in g.) If w ∈ W , then any two lifts of w are not,
in general, conjugate in G. However, in fact one has

Proposition 1. Let w ∈ W . Then a lift aw of w is unique up to conjugacy in G
if and only if w is distinguished.

A Coxeter element σ ∈W is distinguished. We will write ah for the unique (up
to conjugacy) lift aσ of σ. In the 1959 paper [5] Kostant proved

Theorem 2. The element ah is regular so there exists a unique Cartan subgroup
H such that ah ∈ H. Furthermore, if G is the adjoint group, then ah has order h
and ah is the unique (up to conjugacy) regular element of minimal order.

One knows dim g = ℓ(h+ 1). The following is due to Victor Kac. See [3].

Theorem 3. (Kac) Assume G is the adjoint group. Then there exists, up to
conjugacy, a unique element bh+1 ∈ G of order h + 1 such that as an eigenvalue
of the adjoint action of bh+1 every h+ 1 root of unity occurs with multiplicity ℓ.

2. Let Fq be the finite field of q elements. We assume q is odd and write
q = 2 d + 1. If q ≥ 5, then the finite group L2(q) is simple and is of order
|L2(q)| = 2 (d + 1) d (2d + 1). Moreover L2(q) has an element b, referred to as
elliptic, of order d + 1, an element a, referred to as hyperbolic, of order d, and
an abelian subgroup U2d+1 of order q = 2d+ 1 and normalized by the hyperbolic
element a.

Some time ago Kostant conjectured that if 2h+1 is a power of a prime, then for
the adjoint group G, one has that L2(2h+1) embeds in G where, up to conjugacy,
a = ah and b = bh+1. This conjecture has been established. It is easy to prove
this for a classical group. For the exceptional groups various people contributed
to the proof.
L2(13) in G2; L2(25) in F4 and E6; L2(37) in E7; and the most subtle case (first

proved by Cohen–Griess–Lisser in [1] and later, without the use of a computer by
Serre in [6]) L2(61) in E8. Subsequently Griess–Ryba proved, among other things,
that L2(49) and L2(41) also embeds in E8. See [2].
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The main result of our paper here is to show, using results of T. Springer (see
§9 in [7]), that there is a common pattern in the structure of the three subgroups
L2(41), L2(49), L2(61) of E8. To explain the pattern we first recall certain results
in [5]. Assume g is an arbitrary simple, complex Lie algebra and G is the adjoint
group. There are two Cartan subalgebras associated to a Coxeter element, h and
ah. The regular element ah lies in a unique Cartan subgroup H and h = LieH .
On the other hand ah is the Cartan subalgebra, stabilized by Ad ah, on which ah
induces a Coxeter element. One constructs ah from h in a way, as follows, that
exhibits a connection between the Coxeter element and the principal nilpotent in g.
Let n− ⊕ h⊕ n be a triangular decomposition of g. Let (xh, eh, fh) be a principal
Sl(2) triple where eh ∈ n+ is principal nilpotent and xh ∈ h. Then it is proved
in [5] that zh is a regular semisimple element where we put zh = eh + e−ψ, where
e−ψ ∈ n− is the lowest root vector. Then ah = gzh . Furthermore, if ah ∈ H is an

element of order h in exp Cxh, then Ad ah(zh) = e2 π i/hzh and Ad ah|ah ∈ W (ah)
is a Coxeter element. In addition, if J is a set of ℓ homogeneous generators of
the ring of G-invariant polynomials on g, there exists a unique element Ih ∈ J of
maximal degree h, and the conjugacy class (up to scalar multiplication) of zh is
determined by the fact that Ih(zh) 6= 0, but I(zh) = 0 for all other I ∈ J.

Now assume G = E8. To explain Springer’s generalization of the results above
and its connection with the three finite groups of Cohen–Griess–Lisser–Ryba, let
J = {2, 8, 12, 14, 18, 20, 24, 30} so that we can write J = {Ij}, j ∈ J , where
deg Ij = j. Let K = {20, 24, 30} so that K is the maximum 3-element subset of
J . The finite groups then are L2(2k + 1), k ∈ K. On the other hand, Springer’s
extension of the Coxeter case is to consider also the SL(2) triples (xk, ek, fk)
where for k = 24, ek ∈ n+ is the subregular nilpotent, and for k = 20, ek ∈
n+ is the sub-subregular nilpotent element. He then proves, as in the regular
case, zk = ek + e−ψ is regular semisimple so that for any k ∈ K, gzk = ak
is a Cartan subalgebra. Also up to scalar multiplication the conjugacy class of
zk is characterized by the condition that Ik(zk) 6= 0 but Ij(zk) = 0 for k 6=
j ∈ J . Next, if ak ∈ expCxk has order k, then Ad ak(zk) = e2π i/k zk. Thus
σk ∈ W (ak) is regular (Springer’s definition) where σk = Ad ak|ak. In addition,
σk is distinguished and ak is its unique (up to conjugacy) lift. This establishes
a connection between other nilpotent elements and certain regular, distinguished
elements in the Weyl group. Moreover, as sort of a generalization of Theorem 2,
we can characterize the conjugacy class of ak in G in Theorem 4 below. Note that
240/k takes the values 8, 10, and 12 for k = 30, 24, and 20.

Theorem 4. Let a ∈ G have order k. Then dim ga ≥ 240/k where equality occurs
if and only if a is conjugate to ak.

Now connecting with the finite groups L2(2k + 1) of E8, the following result
relies almost exclusively on information from Alex Ryba.

Theorem 5. The hyberbolic element in L2(2k + 1) ⊂ E8 is conjugate in E8

to ak.
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The Euler number of k is 8 and in fact the characteristic polynomial of σk is
the cyclotomic (degree 8) polynomial Φk. By factoring Φk over field F(d) when
d = 61, 7, and 41 we can find the abelian subgroup, normalized by ak, U2K+1 of
L2(2k + 1) in Ak where LieAk = ak. With respect to the adjoint action of U2k+1

on LieE8 one has

Theorem 6. The identity character of U2k+1 occurs 8 times. For the remaining
2k characters each occurs with multiplicity 120/k.

We deeply thank Alex Ryba for providing us with so much information about
L2(2k + 1).
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Weyl modules: A categorical approach

Ghislain Fourier

(joint work with Vyjayanthi Chari, Tanusree Pal)

Let g be a simple complex Lie algebra and A a commutative, finitely generated
algebra over C with a unit, then g⊗A can be equipped with a Lie structure by

[x⊗ a, y ⊗ b] = [x, y]⊗ ab.

Let I(A) be the category of g⊗A modules, that are locally finite as g modules.
For A = C[t], this category ihas been subject to a lot of research in the last decade,
closely related also to finite dimensional modules for the quantum affine algebras.
It is natural to extend the research to the general case, as it was done by [2] for
example.
It is easy to define projective modules for I(A): Let V be a g module, than
P (V ) := U(g ⊗ A) ⊗g V is a projective left g ⊗ A module. We want to restrict
ourselves to a more suitable class of modules. If µ is a dominant integral weight,
we define P (V )µ to be the maximal quotient of P (V ), such that

Homg(V (τ), P (V )µ) 6= 0⇒ τ ≤ µ
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If λ is dominant integral, we denote by V (λ) the irreducible g module with highest
weight λ and by vλ ∈ V (λ) a generator of the line of weight λ. So we can define
WA(λ) := P (V (λ))λ. Then WA(λ) is a cyclic g⊗A module in the category I(A),
generated by 1⊗ vλ. WA(λ) has a natural structure as a bi-module for h⊗A, the
Heisenberg algebra. Of course WA(λ) is not cylcic for U(h ⊗ A) but its finitely
generated. Define

Aλ := U(h⊗A)/(AnnU(h⊗A)(1 ⊗ vλ)).

An important result is the following:

Irreducible g⊗A modules with highest weight λ are parametrized by points in
MaxSpec(Aλ). These modules are finite dimensional, in fact they are tensor

products of evaluation modules.

So we know the ”smallest” finite dimensional modules with a given highest weight
space. So obtain the ”largest” we introduced the following functor WA from the
categroy of finite dimensional left Aλ-modules to I(A)

F 7→WA(λ) ⊗h⊗A F

we denote this module by WA(F ). It is easy to see, that WA(F ) is finite dimen-
sional and its irreducible quotients are parametrized by the irreducible quotients
of F as an Aλ-module. We have the following theorem

The functor WA is exact

So a Jordan-Hölder serie for F is sent to a filtration of WA(F ) by modules of the
form WA(Cξ), where Cξ denotes the irreducible Aλ-module corresponding to the
point ξ ∈ maxSpec(Aλ).
So to analyze the module WA(F ), for example getting knowledge about the di-
mension or g structure, it is enough to analyze WA(Cξ). We provide a description
of WA(Cξ) for an open dense subset in MaxSpec(Aλ) as a tensor product of the
”smallest” Weyl modules, the modules with highest weight ωi. So it remains to
analyze WA(Cξ), where ξ ∈ MaxSpec(Aωi

).
We provide a complete list for these in the case where A = C[t1, . . . , tn] and g is
of type A,B,C,D.
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The index of centralizers of elements in a reductive Lie algebra

Anne Moreau

(joint work with Jean-Yves Charbonnel)

Let g be a finite dimensional Lie algebra over an algebraically closed field k of
characteristic zero and consider the coadjoint representation ad(g∗). The index of
g is the minimal dimension of stabilizers gx of x ∈ g∗ (cf. [4]): indg = min

x∈g∗
dim gx.

The notion of the index is very important in representation theory and also in
invariant theory; by Rosenlicht’s theorem, if g is an algebraic Lie algebra, indg =
deg tr k(g∗)g, where k(g∗)g is the field of g-invariant rational functions over g∗.
The index of a reductive algebra is equal to its rank. Computing the index of
an arbitrary Lie algebra seems to be a wild problem. However, there is numbers
of interesting results for several classes of nonreductive subalgebras of reductive
Lie algebras. For example, the centralizers of elements form an interesting class
of subalgebras (cf. [5], [7], [10]). This topic is closely related to the theory of
integrable Hamiltonian systems [1]. Let us precise this link:

From now on, g is supposed to be reductive and we denote by G the adjoint
group of g. The symmetric algebra S(g) carries a natural Poisson structure. A
Poisson-commutative subalgebra Fx (x ∈ g∗) of S(g) = k[g∗], called the shift of
argument subalgebra, was defined in [6]. It is generated by the derivatives of all
orders in the direction x ∈ g∗ of all elements of the algebra of g-invariants of S(g).
Moreover, if G.x denotes the coadjoint orbit of x ∈ g∗:

Theorem 1 ([1], Theorem 2.1). There is a Poisson-commutative family of poly-
nomial functions on g∗, constructed by the shift of argument method, such that
its restriction to G.x contains 1

2 dim(G.x) algebraically independent functions if
and only if indgx = indg.

Motivated by the preceding result of Bolsinov, A.G. Elashvili formulated the
conjecture:

Conjecture 2 (Elashvili). Let g be a reductive Lie algebra. Then indgx = rkg

for all x ∈ g∗, where rkg is the rank of g.

Elashvili’s conjecture also appears in the following problem: Is the algebra
S(gx)gx

of invariants in S(gx)gx

under the adjoint action a polynomial algebra?
This question was formulated by A. Premet in [9, Conjecture 0.1]. Under certain
hypothesis, and under the condition that Elashvili’s conjecture holds, the algebra
of invariants S(gx)gx

is polynomial in rkg variables, cf. [9, Theorem 0.3].
During the last decade, Elashvili’s conjecture caught attention of many invariant

theorists (e.g. [7], [2], [10], [3], [9]). The conjecture reduces to the case where g is
simple and where x ∈ g∗ ≃ g is a nilpotent element. Let us review what is known
so far about Elashvili’s conjecture. First, the conjecture is true for certain classes
of nilpotent elements (e.g. regular, subregular, spherical,...); see [7], [8]. More
recently, O. Yakimova proved the conjecture in the classical case [10]. To valid the
conjecture in the exceptional type, W. Degraaf (and independenty J-Y. Charbonnel
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for the types E7 and E8) used the computer programme GAP (cf. [3]). Since there
are many nilpotent orbits in the Lie algebras of exceptional type, it is difficult to
present the results of such computations in a concise way. In 2004, Charbonnel
published a case-free proof of Elashvili’s conjecture applicable to all simple Lie
algebras; see [2]. Unfortunately, the argument in [2] has a gap in the final part of
the proof, which was pointed out by L. Rybnikov. To summarize, so far, there is
no conceptual proof of that conjecture applicable to all finite-dimensional simple
Lie algebras.

In a joint project with J.-Y. Charbonnel, we are currently trying to find such
a conceptual proof. Our goal is almost reached. Our proof is unfortunately not
for the moment totally GAP-free. Our approach is very different than those used
before; we use Bolsinov’s criterion to show that the conjecture reduces to the case
of rigid nilpotent orbits. Our results can be summarized as follows:

• Conjecture 2 is true for all Richardson nilpotent elements, i.e. indge = rkg

when e ∈ g is a Richardson nilpotent element;
• If Conjecture 2 holds for all rigid nilpotent elements of any simple Lie

algebra, then so does for all induced nilpotent elements of g;
• Conjecture 2 holds for “most” rigid nilpotent orbits. Namely, it always

holds in classical type, in types G2, F4 and E6 and for many rigid nilpotent
orbits in types E7 or E8;
• It remains one rigid nilpotent orbit in type E7 and 6 rigid nilpotent orbits

in type E8 to deal with. We handle these cases with the help of GAP.

The proofs of the first two points rely on Bolsinov’s criterion. Our approach
to deal with the rigid case is totally different; we use here properties of Slodowy
slides.
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A combinatorial description of the ŝl(n)k fusion ring

Catharina Stroppel

(joint work with Christian Korff)

This talk presents a combinatorial construction of the fusion ring (or Verlinde al-

gebra) associated with the ŝl(n)k-Wess-Zumino-Novikov-Witten (WZNW) model
in conformal field theory. The aim of the talk is to describe a precise relationship
between this fusion ring and the (small) quantum cohomology of the Grassman-
nian. As a result we get explicit identities between the structure constants of
the two rings. We describe the structure constants of the fusion ring in terms
of cyclic non-commutative Schur functions acting on a space Hk. This allows a
simplified proof of associativity of the fusion product and a simple derivation of
the Verlinde formula. Moreover, we explicitly construct a common eigenbasis for
our Schur functions using the so-called Bethe Ansatz (a standard tool in quantum
integrable models). The eigenvalues are then given by certain Weyl characters
expressed in terms of commutative Schur functions, and one can deduce that the
non-commutative symmetric functions share many nice properties with the usual
commutative symmetric function. This construction directly relates to results of
Rietsch ([12]) on the quantum cohomology side and is motivated by the work of
Postnikov ([10]). Finally these eigenvalues will also be used to show (via the Ver-
linde formula) that our combinatorially defined ring is in fact the fusion ring, the
eigenvalues from above turn up as entries in the modular S-matrix defining the
structure constants of the fusion ring. Details and proofs will appear in [9].

Quantum Cohomology. Let n, k ∈ Z+ and denote by Gr(k, n + k) the Grass-
mannian of k-planes inside Cn+k. Let QH•(Gr(k, n + k)) be its small quantum
cohomology ring. This is a Z[q]-algebra which is isomorphic to Z[q]⊗ZH

•(Gr(k, n+
k)) as a Z[q]-module. In particular, the Schubert classes give a Z[q]-basis {1⊗[Ωλ]}.
Here λ runs through all partitions whose Young diagram fits into a box of size
k times n. This module has a ring structure where the structure constants

Cνλ,µ(q) =
∑
Cν,dλ,µq

d are given by the so-called 3-point Gromov-Witten invari-

ants Cd,ν̌λ,µ which count the number of rational curves of degree d passing through

generic translates of Ωλ, Ωµ, Ων . (In the cases |λ| + |µ| + |ν| 6= kn + d(k + n),

where the number of curves could be infinite, one just puts Cd,νλ,µ = 0.) Siebert

and Tian ([14]) gave an explicit presentation of QH•(Gr(k, n + k)) in terms of
Λ = Z[e1, e2, . . .], the ring of symmetric polynomials:

QH∗(Gr(k, k + n) ∼= Z[q]⊗ Λ/
〈
hn+1, ..., hn+k−1, hn+k + (−1)kq

〉

where the ei’s are the elementary symmetric functions in k variables and the hi’s
are the complete symmetric functions. Mapping a Schur polynomial sλ to the
Schur polynomial sλt of the dual partition defines an isomorphism QH•(Gr(k, n+
k)) ∼= QH•(Gr(n, n+ k)) which we call the duality isomorphism.



Enveloping Algebras and Geometric Representation Theory 847

Fusion ring. Consider the non-twisted affine Lie algebra ŝl(n) = sl(n)⊕C[t, t−1]⊕
Cc ⊕ Cd obtained from the central extension of the loop algebra by adding a

derivation d. Consider the extended Cartan subalgebra ĥ := h⊕Cc⊕Cd and let

δ, ω̂0 ∈ ĥ∗ such that δ(d) = 1, δ(c) = δ(h) = 0 and ω̂0(c) = 1, ω̂0(d) = ω̂0(h) = 0,

for h ∈ h. We denote by Γ the Dynkin diagram of ŝl(n), which we view as a
circle with n equidistant marked points. We name these points 0, 1, . . . , n − 1 in
clockwise direction. Let ωi ∈ h∗ be the fundamental weights for sln, considered as

elements in ĥ∗ and set ω̂i = ωi + ω̂0. Now fix k ∈ Z>0 and γ ∈ C and consider

P+
k =

{
λ̂ =

n−1∑

i=0

miω̂i + γδ

∣∣∣∣∣

n−1∑

i=1

mi = k

}
,(0.1)

the set of integral dominant weights of level k. The mi appearing here are often

called Dynkin labels and will be denoted mi(λ̂) in the following. Since (up to
a grading induced by the action of d) the integrable highest weight modules are
independent of the choice of γ, the particular choice will not be important for us
and we therefore assume from now on γ = 0.

To get a connection with the quantum cohomology ring it is convenient to
encode affine weights in terms of partitions (or equivalently their Young diagrams).
The following is obvious

Lemma 1. With the notation from (0.1), there is a bijection of sets

P : P+
k −→ {Young diagrams with at most n− 1 rows and k columns}

λ̂ 7−→ (µ1, ..., µn−1, 0, ...) with µi − µi+1 = mi.

(The associated Young diagram has then exactly mi columns of length i.)

Given Ωλ, denote by λ′ the preimage under P of the Young diagram obtained
from the one for λ by removing all columns of length n.

The fusion ring F is defined as the free abelian group generated by the λ̂ ∈ P+
k

equipped with the so-called fusion product

λ̂ ⋆ µ̂ =
∑

ν̂

N
(k),ν̂

λ̂,µ̂
ν̂.

The structure constants are given by the so-called Verlinde formula

N
(k),ν̂

λ̂µ̂
=

∑

σ̂∈Pk
+

Sλ̂σ̂Sµ̂σ̂S̄ν̂σ̂

S0σ̂
,(0.2)

where the S is the modular S matrix (see [1]). Its matrix entries are implicitly
defined by sl(n)-characters or the Kac-Peterson formula ([15],[8]).

Our main result is the following

Theorem 1. (1) Sending λ̂ to sλt defines an isomorphism of rings

F ∼= Λ/
〈
hn+1, ..., hn+k−1, hn+k + (−1)kek

〉
,

hence realizes the fusion ring F as a quotient of the quantum cohomology
ring QH∗(Gr(k, k + n) by imposing the extra relation ek = q.
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(2) For classes [Ωλ], [Ωµ], [Ων ], we have Cν,dλ,µ = N
(k),Ad(ν′)
λ′,µ′ , where A is the

Dynkin graph automorphism which sends vertex i to vertex i+1 (modulo
n). The duality morphism translates into the level-rank duality.

(3)
(
N

(k),ν̂

λ̂,µ̂

)

µ̂,ν̂
= sλ(a1, a2, . . . , an), where sλ(a1, a2, . . . , an) denotes the Schur

polynomial for λ in non-commutative variables acting on Hk[z] (see be-
low).

For the case ŝu(n), the connection between the fusion ring and the quantum
cohomology is not new, it was already established by Gepner ([6], see also [16]).
Presentations of F are also well-known. Our new input here is the construction of
a combinatorial fusion ring from which all the results follow.

The combinatorial fusion ring. Let Hk = CP k+ be the vector space spanned

by the set P+
k (or alternatively by the set of partitions given by Lemma 0.2). Let

H = ⊕kHk, and H[z] = ⊕kHk[z] for a formal parameter z.
The phase algebra is the subalgebra of EndC(H) generated by the endomor-

phisms ϕ∗
i , ϕi and Ni, 1 ≤ i ≤ n, where we have for λ ∈ P k+, ϕ∗

i (λ̂) = λ̂ + ω̂i,

ϕi(λ̂) = λ̂− ω̂i if mi(λ̂) > 0, and ϕi(λ̂) = 0 otherwise.

Lemma 2. The phase algebra acts faithfully on H and has a PBW-type basis

{Bb,a,c := ϕ∗
1
b1ϕ∗

2
b2 · · ·ϕ∗

n
bnϕa1

1 ϕ
a2
2 · · ·ϕ

an
n N c1

1 N c2
2 · · ·N

cn
n },(0.3)

where ai, bi, ci ∈ Z≥0, aibici = 0 for 1 ≤ i ≤ n.

The local affine plactic algebra is the algebra A generated by a0, a1, a2 . . . an−1

modulo the relations

aiaj − ajai = 0 if |i− j| > 1 mod n,(0.4)

ai+1a
2
i = aiai+1ai a2

i+1ai = ai+1aiai+1,(0.5)

where in (0.5) all variables are understood as elements in A by taking indices
modulo n. This algebra generalizes the plactic algebra introduced by [7] and its
local version from [4].

Proposition 1. There is an action of A on Hk[z] given by aj 7→ ϕj−1ϕ
∗
j for j 6= 0

and an 7→ zϕj−1ϕ
∗
j giving rise to a faithful representation of A on H[z].

Remark 1. There is a 2-parameter quantization U+
α,β of the positive part of the

universal enveloping algebra of ŝl(n) such that U+
q,q
∼= U+

q is Ringel’s Hall algebra

[13] and U+
0,1
∼= A is the Hall algebra with generic extensions ([11], [3]). The

action of A on Hk[z] gives rise to the crystal of the k-th exterior power of the
vector representation.

For 0 ≤ r ≤ n − 1 define the r-th (noncommutative) elementary symmetric
function

(0.6) er(A) =
∑

|I|=r

	∏

i∈I

ai
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where the sum runs over all subsets of {1, 2, . . . n} of order r and the variables in
the monomials are ordered anti-clockwise, and set an = z1.

We use the phase algebra to define the Yang-Baxter algebra. The construction
resembles the RTT-construction of Yangians, (but the matrix L(0) is singular).
For i ∈ {0, 1, 2, ..., n − 1}, and u ∈ C∗ the i-th Lax matrix Li = Li(u) is the
following endomorphism of C2 ⊗ H

(0.7) Li(u) =

(
1 uϕ∗

i

ϕi u1

)
∈ EndC(C2 ⊗ H) .

The complex variable u ∈ C is called the spectral parameter. The monodromy
matrix is defined as

(0.8) M(u) = Ln−1(u) · · ·L1(u)L0(u) =

(
A(u) B(u)
C(u) D(u)

)
∈ EndC(C2 ⊗ H).

Lemma 3 (cf. [2]). The monodromy matrix is a solution to the RTT-relation

(0.9) R12(u/v)M1(u)M2(v) = M2(v)M1(u)R12(u/v), u, v ∈ C

with

(0.10) R(u) =




u
u−1 0 0 0

0 0 u
u−1 0

0 1
u−1 1 0

0 0 0 u
u−1


 ∈ End C4 ∼= EndC(C2 ⊗ C2) .

For generic u, the algebra generated by the coefficients in the power series A, B,
C, D modulo the (0.9)-relations is called the Yang-Baxter algebra. The transfer
matrix is the endomorphism T (u) = A(u) + zD(u) of Hk[z]. The RTT-relation
directly implies [T (u), T (v)] = 0

Corollary 1 (T is generating function for the e’s).

(1) T (u)k = A(u)k + zD(u)k =
∑n

r=0 er(A)ku
r

(2) The elementary symmetric polynomials er, r = 1, . . . n (as endomorphisms
of H[z]) pairwise commute. In particular it makes sense to define the (non-
commutative) Schur polynomials sλ using the usual determinant formula.

The Bethe Ansatz gives eigenvectors for the action of the elementary symmetric
functions. The Bethe Ansatz equations are equivalent to the equations hn+1 =
0, ..., hn+k−1 = 0, hn+k + (−1)kek = 0. Define the combinatorial fusion ring Fcomb

to be the ring with basis λ̂ ∈ P+
k and multiplication λ̂ ⋆′ µ̂ = sλµ̂.

Theorem 2. The two products (⋆ and ⋆′) coincide, in particular F ∼= Fcomb.
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Equivariant Sheaves on Flag Varieties

Olaf M. Schnürer

The aim of our talk was to give an algebraic description of the Borel-equivariant
derived category of sheaves on the flag variety of a connected reductive algebraic
group.

Let G be a complex algebraic group acting on a complex variety X . We in-
troduced the G-equivariant (bounded, constructible) derived category Db

G,c(X) of

sheaves of real or complex vector spaces on X (see [BL94]). It carries the perverse
t-structure with heart the category of G-equivariant perverse sheaves. If G acts
with finitely many orbits, there are only finitely many simple objects in this heart;
we denote their direct sum by IC. The extension algebra of this object is

Ext(IC) :=
⊕

n∈N

Hom(IC, IC[n]).

We view this graded algebra as a differential graded (dg) algebra with differential
d = 0.

Let A be a dg algebra. We defined the derived category D(A) of A (see
e. g. [Kel98]). The perfect derived category Perf(A) of A is the thick subcate-
gory of D(A) generated by A (i. e. the smallest full triangulated subcategory that
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contains A and is closed under taking direct summands). Its objects are precisely
the compact objects in D(A).

The following conjecture of Soergel and Lunts (cf. [Lun95]) relates the geometric
category Db

G,c(X) and the algebraic category Perf(Ext(IC)): If a complex reductive
group G acts on a projective variety X with finitely many orbits, there is an
equivalence of triangulated categories

Db
G,c(X) ∼= Perf(Ext(IC)).

This conjecture (or a similar statement) is known to be true for a connected
Lie group acting on a point ([BL94, 12.7.2]), for a torus acting on an affine or
projective normal toric variety ([Lun95]), and for a complex semisimple adjoint
group acting on a smooth complete symmetric variety (in the sense of de Concini
and Procesi) ([Gui05]). We recently became aware of a related result for the loop
rotation equivariant derived Satake category of the affine loop Grassmannian in
[BF08]. Our main result is:

Theorem 1 ([Sch08]). Let G be a complex connected reductive affine algebraic
group, B ⊂ G a Borel subgroup, and X = G/B the flag variety. Then there is an
equivalence of triangulated categories

Db
B,c(X) ∼= Perf(Ext(IC)).

We conclude with some remarks:

• Note that Db
B,c(X) is equivalent to Db

G,c(G ×B X) or Db
G,c(X × X) by

the induction equivalence. Hence our result fits into the setting of the
conjecture.
• The perverse t-structure on Db

B,c(X) corresponds to a t-structure on the

perfect derived category Perf(Ext(IC)) that can be described for a more
general class of dg algebras (see [Sch08a]). This yields an algebraic de-
scription of the category of B-equivariant perverse sheaves on X .
• The algebra Ext(IC) is isomorphic to the endomorphism algebra of the
B-equivariant hypercohomology of IC ([Soe01]); this hypercohomology
can be described using Soergel’s bimodules or the moment graph picture
([BM01]). In particular, the category Db

B,c(X) depends only on the cor-
responding combinatorial data.
• The non-equivariant analog of this theorem is also true. In fact, we

prove the theorem as a limit of equivalences that are similar to the non-
equivariant analog. For the proof of the non-equivariant version we need
the formality of a carefully constructed dg algebra; to obtain this formality
we use mixed Hodge modules and purity results on intersection cohomol-
ogy complexes.
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MV-polytopes/cycles and affine buildings

Michael Ehrig

1. Basic Notations and Definitions

We want to give a combinatorial construction of MV-polytopes. This is done
by using the LS-gallery model by Gaussent and Littelmann [1], a discrete and
building-theoretic version of Littelmann’s path model. This gives a construction
of MV-polytopes alternativ to the one given by Kamnitzer in [2] and [3] and
independent of the type of the algebraic group. We start by fixing the basic
notations.

Notation 1.1. By G we denote a complex, simply-connected, semi-simple alge-
braic group. We fix B ⊂ G a Borel subgroup, T ⊂ B a maximal torus, and denote
by W its Weyl group. In addition we denote by B− the Borel subgroup opposite
to B, i.e., the Borel subgroup such that B ∩ B− = T , and by U− its unipotent
radical. Finally we denote by O = C[[t]] the ring of formal power series and by
K = C((t)) its field of fraction, the field of formal Laurent series.

Using these we have a number of associated objects.

Notation 1.2. Let us denote by G = G(K)/G(O) the affine Grassmannian, by
X∨ the coweight lattice of G, and by X∨

+ the dominant coweights.

Let us now look at the basic geometric set-up:.

X∨ �

� i // G
�

�

// P(V )
µ

// X∨ ⊗ R .

The inclusion i is an inclusion as T -fixed points and we denote the image of a
coweight λ by tλ, P(V ) is a projective space over a suitable representation of the

affine Kac-Moody group L̂(G) corresponding to G, and the map µ is its usual
moment map.
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Using the left multiplication of G(K) on the affine Grassmannian the definition
of MV-cycles, which first appeard in [4], is then straight-forward.

Definition 1.3. Let λ ∈ X∨
+ and µ ∈ X∨. An MV-cycle of coweight (λ, µ) is a

non-empty M ∈ Irr(G(O).tλ ∩ U−(K).tµ).

By a theorem of Mirković-Vilonen , MV-cycles for a fixed dominant coweight λ
and arbitrary coweight µ form a natural basis for the irreducible heighest weight
representation with heighest weight λ of G∨ the Langlands dual of G.

Since by definition an MV-cycle is a closed, T -stable subvariety of the affine
Grassmannian, we can use results of Brion or Goresky and MacPherson to know
that their image under the moment map µ will be a convex polytope in X∨ ⊗ R.
This was first done by Anderson in [5] and later investigated further by Kamnitzer.

Definition 1.4. A polytope P in X∨ ⊗ R is called an MV-polytope (of coweight
(λ, µ)) if there exists an MV-cycle (of coweight (λ, µ)), such that

P = µ(M).

2. MV-polytopes/cycles and the Bott-Samelson variety

To give a combinatorial construction of MV-polytopes, we first want to define
a ”good” dense subset of an MV-cycle that allows us to easily read off the fixed
points needed for the corresponding moment polytope, the MV-polytope. For this
we use a result of Gaussent and Littelmann from [1] as our starting point.

Theorem 2.1 (Gaussent, Littelmann). Let λ ∈ X∨
+, µ ∈ X∨, and γλ the type of

a minimal gallery connecting 0 and λ in X∨ ⊗ R. Then there exists a bijection

{LS-galleries of type γλ ending in µ} ↔ {MV-cycles of coweight (λ, µ)}.

This is done by associating to each LS-gallery δ a subset of the affine Grassman-
nian Dδ whose closure is an MV-cycle Mδ. The problem is that this subset only
contains a single fixed point of the cycle and thus is not very useful to construct
the polytope. We want to look at this in a bit more detail.

Γ(γλ)
�

� i // Σ(γλ)
rw //

π

��

Γ(γλ)

G(O).tλ

Here Γ(γλ) denotes the set of all galleries in X∨⊗R of type γλ, the map i is again
an inclusion as T -fixed points, Σ(γλ) is the Bott-Samelson variety for the given
type, the map π is a resolution of singularities, and for each w ∈ W the map rw
is called the retraction at infinity with direction w.

The dense subset of Gaussent and Littelmann is then defined as follows. Take
δ an LS-gallery, then Dδ = π(Cδ) with Cδ = r−1

e (δ), where e denotes the unit
element of W .
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To construct a ”better” dense subset we combine the approach of Gaussent and
Littelmann, with result of Kamnitzer to obtain the following.

Theorem 2.2 (E.). Let M = Mδ be an MV-cycle, then there exists a family of
galleries (δMw )w∈W such that

(1) M =
⋂
w∈W wU−(K)w−1.twt(δ

M
w ),

(2) P = µ(M) = conv({wt(δMw ) | w ∈W}),
(3) and for x ∈ Cδ generic, rw(x) = δMw .

Remark 2.3. By definition δMe = δ. Furthermore a simple calculation shows that
δMw0

, with w0 the longest element of W , is the unique minimal gallery of the same
type as δ that lies in the anti-dominant chamber.

By this result we know which galleries will be needed to construct the polytope,
but we still need a combinatorial way to construct them.

3. Combinatorial construction

For the combinatorial construction we use the fact that the set of LS-galleries
is equipped with a crystal structure, especially that there exist raising operators
eα for each simple root α. We then define

Ξsα
(δ) = sα(emax

α (δ)),

where we first apply eα to δ as often as it is defined and afterwards use the action
of the Weyl group on the coweight lattice and apply the simple reflection sα.

Remark 3.1. By definition of the crystal structure the gallery Ξsα
(δ) is again an

LS-gallery, but for the Borel wBw−1, thus we can iterate the process and define
our galleries inductively.

For w ∈W choose w′ ∈W and α simple, such that w = w′sα and l(w) > l(w′)
and assume that Ξw′(δ) is already defined, then we define

Ξw(δ) = Ξw′sαw′−1(Ξw′(δ)).

This is defined since w′α is a simple root for the positive roots of wBw−1 and by
the above remark Ξw′(δ) is an LS-gallery. Of course one also needs to check that
this is well-defined and independent of the chosen reduced decomposition of w.
This leads to the following.

Theorem 3.2. For δ an LS-gallery and M = Mδ, we have

Ξw(δ) = δMδ
w .

This theorem can be proved in a similar inductive way as the Ξw’s are defined,
but one needs to be careful since one makes iterative coordinate changes in the
Bott-Samelson variety which have to be controlled quite strictly.
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Strange duality and the Hitchin Connection

Prakash Belkale

We will consider duality phenomena for non-abelian theta functions on a com-
pact Riemann surface, in particular Beauville’s symplectic strange duality conjec-
ture. Recently this conjecture was proved for general curves by T. Abe. Using the
Hitchin/WZW/KZB connection, and by studying its properties, we extend Abe’s
results from general curves to all curves.

Let MG(X) denote the moduli-stack of principal G-bundles on X for a simple
simply connected algebraic group G. Let L be a positive generator of the Picard
group of MG(X). We will first outline the construction of a connection over the
moduli space of curves, on “the non-abelian G-theta” functions H0(MG(X),Lk)
(i.e. as X varies in a family). This connection can be obtained in many ways
(through symplectic geometry of the moduli spaces and through conformal field
theory) and interesting properties result from the different ways of looking at this
connections. We will consider and give the answer (following the physicists) to
the following question: If G is a subgroup of H , is the natural map from G-theta
functions to H-theta functions flat for Hitchin’s connection? This question casts a
profound shadow on duality questions. The expectation of the physicists is that a
duality phenomenon accompanies situations where the flatness statement is valid.

We will next move on to the case of symplectic duality. Consider the moduli
stacks MSpin(r)(X) and MSO(r)(X) of principal Spin(r), and SO(r)-bundles, r ≥ 3
on a smooth connected projective curveX of genus g ≥ 2 over C. Let MSO(r)(0) be
the connected component of MSO(r)(X), which contains the trivial SO(r)-bundle.
There is a natural map

p : MSpin(r) →MSO(r)(0).

A line bundle κ on X is said to be a theta characteristic if κ⊗2 is isomorphic to
the canonical bundle KX . The set of theta characteristics θ(X) forms a torsor for
the 2-torsion J2(X) in the Jacobian of X , and hence |θ(X)| = 22g. Recall that a
theta characteristic κ is said to be even (resp. odd) if h0(κ) is even (resp. odd).

For each theta-characteristic κ on X there is a line bundle Pk on MSO(r) with
a canonical section sκ (constructed by Laszlo and Sorger). On MSO(r)(0), sκ = 0
if and only if both κ and r are odd.

For theta characteristics κ and κ′, the line bundle p∗Pκ is isomorphic to p∗Pκ′ .
Set P = p∗Pκ which is well defined upto isomorphism. The line bundle P is the
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positive generator of the Picard group of the stack MSpin(r). It is known that P

does not descend to the moduli-space MSpin(r), (similarly Pκ does not descend
to the moduli-space MSO(r)). Clearly, P comes equipped with sections sκ for

each theta characteristic κ, coming from the identification p∗Pκ
∼
→ P (sκ are well

defined up to scalars).
Let π : X → S be a smooth projective relative curve of genus g. Assume

by passing to an étale cover that the sheaf of theta-characteristics on the fibers
of π is trivialized. For s ∈ S, let Xs = π−1(s). It is known that the spaces
H0(MSpin(r)(Xs),P) form the fibers of a vector bundle on S, which is equipped
with a projectively flat connection (WZW or equivalently Hitchin’s connection as
described above).

Theorem 0.1. For even r, each section sκ ∈ H0(MSpin(r)(Xs),P), for κ ∈ θ(Xs)
is projectively flat.

Theorem 0.2. For odd r, each section sκ ∈ H0(MSpin(r)(Xs),P), for even κ ∈
θ(Xs) is projectively flat.

It is known that the dimension of the space H0(MSpin(r)(Xs),P) is equal to the
number of theta characteristics (if r is odd, the number of even theta character-
istics). It has been proved by Pauly and Ramanan that in Theorems 0.1 and 0.2,
the sections are linearly independent, and hence form a basis. Our methods give
a new proof of this result of Pauly and Ramanan.

We use Theorem 0.1 to show that the symplectic strange duality formulated by
Beauville is, in a suitable sense, projectively flat for Hitchin’s connection: Hence
it is an isomorphism for all curves of a given genus if it is an isomorphism for some
curve of that genus. Takeshi Abe [1, 2] has recently formulated a very interesting
parabolic generalization of Beauville’s conjecture, and has proved this conjecture
for generic curves by using powerful degeneration arguments. His results imply
Beauville’s conjecture for generic curves. Therefore Abe’s results (together with
our work outliend above) imply that the symplectic strange duality conjecture
of Beauville holds for all curves. It should be pointed out that Abe’s parabolic
symplectic duality conjecture has not yet been shown to hold for all curves.
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K-theory Schubert calculus of the affine Grassmannian

Mark Shimozono

(joint work with Thomas Lam, Anne Schilling)

1. Introduction

Let G be a simple simply-connected algebraic group over C and T ⊂ G the
maximal torus. Let GrG denote the affine Grassmannian of G. The T -equivariant
K-cohomology KT (GrG) and K-homology KT (GrG) are Hopf-dual algebras over
KT (pt) and are equipped with distinguished KT (pt)-bases (denoted {[OXI

w
]} and

{ξw}), called Schubert bases. Our first main result is a description of the K-
homology KT (GrG) as a subalgebra L of the affine NilHecke algebra of Kostant
and Kumar [KK90]. This generalizes work of Peterson [Pet] in homology. Our
second main result is the identification, in the case G = SLn(C), of the Schubert
bases of the non-equivariantK-(co)homologyK∗(GrG) and K∗(GrG) with explicit
symmetric functions called K-k-Schur functions and affine stable Grothendieck
polynomials [Lam06]. This generalizes work of Lam [Lam08] in (co)homology.

The full paper containing these results is [LSS].

2. Kostant and Kumar’s NilHecke ring

Let Waf be the affine Weyl group of G, with simple generators {ri | i ∈ I} where
I is the affine Dynkin node set. The 0-Hecke algebra K0 is the ring generated by
elements {Ti | i ∈ I} and relations

T 2
i = −Ti

(TiTj)
mij = (TjTi)

mij whenever i 6= j and (rirj)
mij = (rjri)

mij .

K0 has Z-basis Tw = Ti1Ti2 · · ·Tik for w ∈ Waf where w = ri1 · · · rik is a reduced
decomposition.

Extend the natural action of W on T to the level 0 action of Waf
∼= W ⋉ Q∨

on T by letting Q∨ act trivially. Then K0 acts on R(T ) by

Ti · e
λ = (1− eαi)−1(eri(λ) − eλ).

The (small torus) affine nilHecke ring K is by definition the smash product of
K0 and R(T ). Due to the relation

Ti q = (Ti · q) + (ri · q)Ti for q ∈ R(T ),

we have

K =
⊕

w∈Waf

R(T )Tw.

The ring K is the algebraic model for the equivariant K-homology convolution
ring KT (Xind) where Xind is the affine flag indvariety [Kum].

Note that if Q(T ) is the fraction field of R(T ) then Q(T )⊗R(T ) is isomorphic
to the smash product KQ of the group algebra Q[Waf ] and Q(T ).
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3. Function realization of equivariant K-theory

The idea to realize equivariant K-theory by functions is due to Kostant and
Kumar [KK90]. Let X be the “thick” affine flag manifold of [Kas], which has
finite-codimensional Schubert varieties Xw for w ∈ Waf . Let KT (X) be the
Grothendieck group of T -equivariant coherent sheaves onX (see [KS1] for a precise
definition). Then one has [KS1]

KT (X) ∼=
∏

w∈Waf

R(T )[OXw
].

For w ∈ Waf let iw be the inclusion of a point into X with image w and let
i∗w : KT (X) → KT (pt) ∼= R(T ) be the induced map. Let Fun(Waf , R(T )) be the
R(T )-algebra of functions from Waf to R(T ) with pointwise multiplication. Then
there is an injective map

res : KT (X)→ KT (Waf) ∼= Fun(Waf , R(T ))

which sends c to (w 7→ i∗w(c)). We regard f ∈ Fun(Waf , R(T )) as a function from
KQ → Q(T ) via f(

∑
w aww) =

∑
w awf(w) for aw ∈ Q(T ).

Theorem 1. [LSS] The image Ψ of res consists of the functions f such that:

(3.1) f((1− tα∨)d w) ∈ (1− eα)dR(T )

and

(3.2) f((1− tα∨)d−1(1− rα)w) ∈ (1− eα)dR(T )

for all d ∈ Z>0, w ∈Waf , and affine real roots α.

This is the K-theoretic analogue of the cohomological result of Goresky, Kot-
twitz, and Macpherson [GKM04]. If one uses the maximal torus Taf in the affine
Kac-Moody group then the condition is greatly simplified: one only needs (3.2)
with d = 1 [HHH] [KK90].

4. Perfect pairing

There is an intersection pairing

KT (Xind)×K
T (X)→ R(T ).

Our algebraic replacement is the R(T )-bilinear evaluating pairing

K×Ψ→ R(T )

〈a , f〉 = f(a).

Letting ψw ∈ Ψ be the image of [OXw
] under res, we have the dual bases

〈Tv , ψ
w〉 = δvw for v, w ∈ Waf .
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5. Affine Grassmannian

Let GrG be the thick affine Grassmannian (which is a natural quotient of the

thick affine flag manifold X) and Grind
G
∼= G(C((t)))/G(C[[t]]) the affine Grass-

mannian.

Proposition 2. [LSS] KT (GrG) is isomorphic to the subring ΨGr of Ψ defined
by f ∈ ΨGr if and only if

f(wv) = f(w) for all w ∈Waf and v ∈ W .(5.1)

Let W 0 be the set of minimum length coset representatives for Waf/W .
Our main theorem is the following.

Theorem 3. [LSS] The equivariant K-homology convolution ring KT (Grind
G ) is

isomorphic to the centralizer subalgebra L := ZR(T )(K). The image ξw ∈ L of the

Schubert class in KT (Grind
G ) indexed by w ∈W 0, is the unique element of

L ∩



Tw +
⊕

v∈Waf\W 0

R(T )Tv



 .

For G = SLn we use Theorem 3 to obtain explicit formulae for the nonequiv-
ariant analogues of algebra generators ξw of KT (Grind

G ), and use these to realize

K∗(Grind
G ) and K∗(GrG) and their dual Schubert bases, in terms of symmetric

functions.
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g-commuting Dunkl operators and braided doubles

Arkady Berenstein

(joint work with Yuri Bazlov)

In my talk I shall introduce q-commuting analogues of Dunkl operatores that are
acting on q-symmetric algebras. I shall explain the q-commutation phenomenon
by constructing braided Cherednik algebras, for which the operators form a rep-
resentation.

The classifications of braided Cherednik algebras is achieved in terms of braided
doubles, that Yuri Bazlov an myself introduced earlier besides the ordinary rational
Cherednik algebras and their braided tensor products. We obtained new algebras
with triangular demcomposition attached to an infinite family of subgroups of even
elements in complex refelction groups, so that the corresponding Dunkl operators
pairwise anti-commute.

A Nonconventional Slice in the Coadjoint Space of the Borel and the
Coxeter Element.

Anthony Joseph

Let g be a simple Lie algebra with triangular decomposition g = n+ ⊕ h⊕ n− and
set b = n+ ⊕ h. Let P+ denote the corresponding set of dominant weights. There
is a canonically determined ideal bE of b containing n+ such that the algebra
generated by semi-invariants on b∗ coincides with the algebra Y (bE) of invariants
on b∗E . Moreover the latter algebra is polynomial on rank g generators [2]. By
analogy with the semisimple case one can ask if there exists an affine slice y + V
of b∗E such that the restriction map induces an isomorphism of Y (bE) onto the
algebra R[y + V ] of regular functions on y + V . This holds in type A and even
extends to all biparabolic subalgebras [3]; but fails in general even with respect to
the Borel.

Motivated by an attempt to construct Y (g) we consider the subalgebra

A(g) :=
⊕

λ∈P+

Y (n−)−λY (bE)λ,

of S(g). Here the ultimate goal was to show that ((adU(g))A(g))g = Y (g). We
remark that this is true in types A and C as shown in [1].

The main result we prove here is that there exists y ∈ g and a subspace V of g

of dimension rank g such that the restriction map induces an algebra isomorphism
of A(g) onto R[y + V ]. This may not give a slice in the conventional sense; but it
still reflects the rather intricate structure of A(g) and consequently of Y (bE). A
key point is that y is given by the ”square root” of the unique longest element w0

of the Weyl group acting on the standard regular ad-nilpotent element which is the
sum of simple root vectors, rather than by an ad hoc procedure of writing down
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sums of root vectors. For example when the Coxeter number is divisible by 4, say
equals 4n, this element is the nth power of a carefully chosen Coxeter element and
has square equal to w0. In principle this construction can give a more satisfactory
understanding of slices of biparabolics in type A and in the appropriate cases for
other types. (Such slices generally tend to exist when the Cartan subalgebra of
the truncated biparabolic is sufficiently large). More generally it is hoped that it
may provide nonconventional slices for truncated biparabolics at least when the
invariant algebra is polynomial, which is frequently the case [1, 4].

References

[1] F. Fauquant-Millet and A. Joseph, Semi-centre de l’algbre enveloppante d’une sous-algbre
parabolique d’une algbre de Lie semi-simple, Annales Scientifiques de lcole Normale Su-
prieure, Volume 38 (2) (2005), pp. 155-191.

[2] A. Joseph, A preparation theorem for the prime spectrum of a semisimple Lie algebra,
Journal of Algebra, 48(2) (1977), pp. 241-289.

[3] A. Joseph, Slices for biparabolic coadjoint actions in type A, Journal of Algebra, Volume
319 (12) (2008), pp. 5060-5100.

[4] A. Joseph, On semi-invariants and index for biparabolic (seaweed) algebras II, Journal of
Algebra, Volume 312 (1) (2007), pp. 158-193.

Reporter: An Hoa Nguyen



862 Oberwolfach Report 15

Participants

Prof. Dr. Henning Haahr Andersen

Matematisk Institut
Aarhus Universitetet
Ny Munkegade
DK-8000 Aarhus C

Prof. Dr. Karin Baur

Departement Mathematik
ETH-Zentrum
Rämistr. 101
CH-8092 Zürich
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