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Introduction by the Organisers

The workshop Representations of Finite Groups was organised by Joseph Chuang
(London), Markus Linckelmann (Aberdeen), Gunter Malle (Kaiserslautern) and
Jeremy Rickard (Bristol). It was attended by 46 participants with broad geo-
graphic representation. It covered a wide variety of aspects of the representation
theory of finite groups and related objects like Hecke algebras. A particular fo-
cus was placed on recent developments on fusion systems. This area, which sits
somewhere between group theory, block theory and homotopy theory, has received
a significant amount of attention since the breakthrough papers of Broto, Levi,
Oliver in the last six or seven years.

In twelve longer lectures of 40 minutes each and seventeen shorter contributions
of 30 minutes each, recent progress in representation theory was presented and
interesting new research directions were proposed. Besides the lectures, there was
plenty of time for informal discussion between the participants, either continuing
ongoing research cooperation or starting new projects.
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Several interesting new results were presented related to homological methods
in representation theory.

Symonds sketched his recent proof, using equivariant cohomology, of a five-year
old conjecture of Benson on the commutative algebra of the cohomology ring of
a general finite group: that its Castelnuovo-Mumford regularity is always zero,
a conjecture for which a lot of computational evidence had been accumulating
recently.

Benson and Carlson both spoke on topics related to the Jordan type of modules
for finite groups, a subject that originated with a finer study of the notion of rank
varieties for modules, and which has recently found unexpected connections with
other areas of mathematics. In particular, Benson gave a survey of conjectures and
results on modules of constant Jordan type, including work of him and Pevtsova
relating these to vector bundles on projective spaces.

Xu described his work on the cohomology of categories, including his surpris-
ingly simple construction of a finite-dimensional algebra whose Hochschild coho-
mology is not finitely generated modulo nilpotent elements. This answers in the
negative a question of Snashall, and has implications on extending the theory of
cohomological varieties for representations of finite groups to representations of
more general algebras.

Navarro and Tiep presented their proof of Brauer’s longstanding height zero
conjecture for 2-blocks of maximal defect. Eaton reported on the proof of the fact
that every nilpotent block of a finite simple group must have abelian defect groups.

Geck described his construction of natural labels for modular principal series
representations of finite groups of Lie-type which might point a way towards a proof
of James’ conjecture on decomposition numbers. Bonnafé showed that Lusztig’s
conjectures (P1)-(P15) on Hecke algebras with unequal parameters are compatible
with the parametrizations of simple modules coming from Ariki’s Theorem.

Amongst the talks on fusion systems, one of the highlights was the character-
isation, by Ragnarsson and Stancu, of fusion systems in terms of a reciprocity
property in double Burnside rings. This characterisation bypasses the ususal ax-
iomatic description of fusion systems, and may well open new territory. One of
the fundamental problems in block theory which can be formulated in terms of
fusion systems without reference to blocks - the 2-cocycle gluing problem - was
shown by Park to have more than one solution in certain cases (it remains an
open question whether this problem has always at least one solution). The other
fundamental open problem in this area is the question as to whether every fusion
system has a centric linking system - and a conjecture of Oliver plays this back
to finite p-groups. Mazza presented joint work with D. Green and L. Hethelyi
proving special cases of Oliver’s conjecture, implying in particular the existence of
centric linking systems in those cases.

Bob Oliver reported on joint work with C. Broto and J. Møller, in which ho-
motopy theoretic methods are used in order to obtain a sufficient criterion for two
finite groups of Lie type to have equivalent fusion systems.
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Abstracts

Modules of constant Jordan type

David J. Benson

Let E = 〈g1, . . . , gr〉 ∼= (Z/p)r be an elementary abelian p-group and k be an
algebraically closed field of characteristic p. Let Xi = gi − 1 ∈ kE, so that
kE = k[X1, . . . , Xr]/(X

p
1 , . . . , X

p
r ). If α = (λ1, . . . , λr) ∈ Ar(k), set

Xα = λ1X1 + · · ·+ λrXr.

Following Carlson, Friedlander and Pevtsova, a finitely generated kE-module M
is said to have constant Jordan type [p]ap . . . [1]a1 if this is the Jordan canonical
form of Xα for all non-zero α ∈ Ar(k). If we ignore the projective Jordan blocks
of length p, we say that M has stable constant Jordan type [p − 1]ap−1 . . . [1]a1 .
One fundamental question is this: if r ≥ 2, what stable constant Jordan types
can occur? Last year in MSRI I showed that a single non-projective Jordan block
can only occur if the length is 1 or p− 1. Rickard conjectures that if ai = 0 then∑p

j=i+1 aj ≡ 0 (mod p), and Suslin conjectures that if 2 ≤ i ≤ p − 1 and ai 6= 0
then either ai+1 6= 0 or ai−1 6= 0. Both of these conjectures seem to be out of reach
at the moment. The simplest example which is not known is [3][1] in characteristic
at least 5.

Given a moduleM of constant Jordan type, we produce algebraic vector bundles
on projective space Pr−1 = Projk[Y1, . . . , Yr] as follows. Let O be the structure

sheaf on Pr−1, and set M̃ = M ⊗k O, a trivial bundle whose rank is equal to the
dimension of M . We define θ : M̃(j)→ M̃(j + 1) via θ(m ⊗ f) =

∑
iXim⊗ Yif ,

and

Fi(M) =
Ker θ ∩ Im θi−1

Ker θ ∩ Im θi

as a subquotient of M̃ . This is a vector bundle of rank ai for 1 ≤ i ≤ p if and only
if M has constant Jordan type [p]ap . . . [1]a1 . Intuitively, the vector bundle Fi(M)
picks out the bottoms of the Jordan blocks of length i on M .

Theorem (Benson and Pevtsova, MSRI 2008). Given a rank s vector bundle F
on Pr−1, there exists a module M for (Z/p)r of stable constant Jordan type [1]s

such that:

(i) if p = 2 then F1(M) ∼= F

(ii) if p is odd then F1(M) ∼= F ∗(F)

where F : Pr−1 → Pr−1 is the Frobenius map.

There are obstructions to realising vector bundles in odd characteristic. For
example, if M has stable constant Jordan type [1]s then

for 1 ≤ i ≤ p− 2 we have ci(F1(M)) ≡ 0 (mod p).
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Blocks of characters at different primes

Christine Bessenrodt

Classically, blocks of a finite group are just sets of irreducible complex characters.
In many decades of block theory, usually a prime p was fixed from the beginning
and then the corresponding p-blocks were studied; also, viewing blocks as ideals
in the block algebra in characteristic p does not invite a comparison at differ-
ent primes. In the talk, some recent investigations looking at blocks as sets of
characters and then comparing blocks at different primes were surveyed.

In 1997, G. Navarro and W. Willems took again the classical stand and con-
jectured in [9] that a p-block of irreducible characters of a group G can only be a
q-block of irreducible characters of G when the blocks are of defect 0; they proved
this for p-solvable groups. But it is not true in general as the example G = 6 ·A7

at the primes p = 5, q = 7 shows; in joint work with G. Navarro, J. Olsson, P. H.
Tiep [4] we showed, though, that the Navarro-Willems conjecture holds for prin-
cipal blocks (this required the classification of finite simple groups).
Doing more general comparisons of blocks of characters at different primes just as
sets has proved to be very fruitful. In a joint paper with G. Malle and J. Olsson [1],
the idea of separability of characters by blocks at different primes was introduced;
in [1], we have focussed on the investigation of quasi-simple groups and have shown
that typically, the intersection of the principal blocks at various primes contains
only the trivial character (and the cases where it does not hold are described quite
explicitly). For the symmetric groups and their double covers, such separation
problems and block comparisons are intricately connected with interesting combi-
natorial questions (see e.g. [2], [3], [10], [11]). Results on separation properties by
Navarro, Turull and Wolf [8] and Turull and Wolf [12] show that also for solvable
groups these notions are quite intricate.

In joint work with J. Zhang [5], we have investigated the separation of charac-
ters by principal blocks at different primes and block inclusions for general finite
groups to deduce consequences for the structure of the corresponding groups. In
particular, this has led to new criteria for the nilpotency and p-nilpotency of a
group via separation properties for principal blocks.

In further recent work with J. Zhang [6], we have studied the covering of irre-
ducible characters by principal blocks for finite groups. We have shown that the
covering of all irreducible characters of a group by principal blocks is only possible
when already one principal block suffices or the generalized Fitting subgroup has
a very special structure (it is non-abelian simple or it is a special product of two
non-abelian simple groups). The stronger restriction that any pair of irreducible
characters should belong to some principal block even implies that the Fitting
subgroup is on a finite list of non-abelian simple groups. These results involve a
very detailed study of covering properties for simple groups and their products;
for the simple groups of Lie type, it led to interesting questions on the intersection
and the union of all principal blocks in the non-describing characteristics which
could be answered by Hiss [7] and Tiep, respectively.
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Permutation resolutions for Specht modules

Robert Boltje

(joint work with Robert Hartmann)

We fix a natural number r and a commutative ring k. We denote by Λ = Λ(r)
the set of partitions of r and by Γ = Γ(r) the set of compositions of r. We view Γ
(and also the subset Λ) as a partially ordered set with respect to the dominance
order E.

For λ ∈ Γ we denote the permutation kSr-module Mλ as the free k-module over
the set T (λ) of tableaux of shape λ whose entries along the rows are increasing.
The group Sr acts on T (λ) from the left by applying a permutation to the entries
of a tableau and then ordering the rows. The Specht module Sλ is defined as a
submodule of the permutation module Mλ as usually: Let T st(λ) ⊆ T (λ) denote
the set of standard tableaux (with increasing rows and columns) and for t ∈ T st(λ)
set et :=

∑
σ∈Ct

sgn(σ)σt ∈ Mλ, where Ct denotes the column stabilizer of λ. It

is well-known that the elements et, t ∈ T st(λ), are k-linear independent and span
over k a kSr-submodule of Mλ, the Specht module Sλ. Note that Sλ = 0 if λ is
not a partition.

It is also well-known that, for λ, µ ∈ Γ, the k-module HomkSr (M
µ,Mλ) is free

with basis θT , where T runs through the set T (λ, µ) of generalized tableaux of
shape λ and content µ which have inreasing row entries. We denote by T ∧(λ, µ)
the set of those T ∈ T (λ, µ) whose entries in the i-th row are all greater or equal
to i, for all i ≥ 1. Next we define Hom∧

kSr
(Mµ,Mλ) as the k-span of the basis
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elements θT , T ∈ T ∧(λ, µ). It is easy to verify that these sets of homomorphisms
are stable under composition.

For λ ∈ Γ, we define a chain complex Cλ∗ of kSr-modules as follows. For n ≥ 0
we define Cλn as the direct sum

⊕

λ=λ0⊳λ1⊳···⊳λn∈Γ

Hom∧
kSr

(Mλ0 ,Mλ1)⊗· · ·⊗Hom∧
kSr

(Mλn−1 ,Mλn)⊗Homk(M
λn , k).

Note that the above summand is isomorphic to a direct sum of copies of Mλn . For
i = 0, . . . , n− 1, we define dn,i : C

λ
n → Cλn−1 on the above summand by composing

the i-th and i+1-th homomorphism and viewing the result in the component with
λi+1 omitted from the chain. Next we set dn :=

∑n
i=0 dn,i : C

λ
n → Cλn−1 and obtain

the chain complex Cλ∗ . We extend Cλ∗ by the map Homk(M
λ, k)→ Homk(S

λ, k)
which restricts a homomorphism from Mλ to the submodule Sλ, to obtain a chain

complex C̃λ∗ and we have the following conjecture:

Conjecture The chain chain complex C̃λ∗ is exact for every partition λ of r.

We have the following partial results on C̃λ∗ .

Theorem If λ ∈ Λ has at most two parts or is of the form (λ1, λ2, 1) then C̃λ∗
is exact.

Remark (a) Computations with GAP yielded that C̃λ∗ is exact for all partitions

λ when r ≤ 5. They also show that the Lefschetz character of C̃λ∗ vanishes for
every λ ∈ Λ when r ≤ 9.

(b) The chain complex C̃λ∗ is not exact in general if λ is not a partition.

(c) One can show that C̃λ∗ is exact at n = 0 for all λ ∈ Γ.
(d) The maps in Cλ∗ are directed in the sense that they are sums of maps

Homk(M
µ, k)→ Homk(M

λ, k) with λ E µ in Γ.

(e) The construction of C̃λ∗ is independent of k in the sense that it is purely
combinatorial. The version over the ring k results from the version over Z by
extending scalars. Since all modules are free over the base ring, it suffices to show
the exactness for k = Z.

(f) In ongoing work on his Ph.D. thesis, Filix Maisch from Santa Cruz has
extended many of the above results to the Iwahori Hecke algebra.

Kazhdan-Lusztig theory and Ariki’s Theorem

Cédric Bonnafé

(joint work with Nicolas Jacon)

The modular representation theory of Hecke algebras of type B was first studied by
Dipper-James-Murphy [5]: one of their essential tools was to construct a family of
modules (called Specht modules) playing the same role as Specht modules in type
A. Each of these new Specht modules have a canonical quotient which is zero or
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simple: one of the main problem raised by this construction is to determine which
ones are non-zero. Later, Graham and Lehrer [8] developed the theory of cellular
algebras, which contains, as a particular case, the construction of Dipper-James-
Murphy. The problems of parametrizing the simple modules and computing the
decomposition matrix of Specht modules were then solved by Ariki [1] using the
canonical basis of Fock spaces of higher level. In fact, Ariki’s Theorem provides
different parametrizations of the simple modules of the Hecke algebra: only one of
them (asymptotic case) has an interpretation in the framework of Dipper-James-
Murphy and Graham-Lehrer. Recently, Geck showed that the Kazhdan-Lusztig
theory with unequal parameters should provide a cell datum for each choice of a
weight function on the Weyl group (if Lusztig’s conjectures (P1)-(P15) hold [9,
Conjecture 14.2]). Our main aim in this talk is to explain how Kazhdan-Lusztig
theory with unequal parameters should lead to a unified approach for a better
understanding of the representation theory of Hecke algebras: however, our result
relies on Lusztig’s conjectures. As a by-product, we should get an interpretation
of all Ariki’s parametrizations of simple modules and to an interpretation of the
v-decomposition numbers using a classical idea (Jantzen’s filtration).

More precisely, if Q and q are two indeterminates, if Hn denotes the Hecke
A-algebra with parameters Q and q (here, A = Z[Q,Q−1, q, q−1]) with standard
basis (Tw)w∈Wn , if ξ is a positive irrational number (!) and if r denotes the unique
natural number such that r ≤ ξ < r + 1, then Kazhdan-Lusztig theory should
provide a cell datum Cξ = ((Bip(n), Er ),SBT , C

ξ, ∗) where

• Bip(n) is the set of bipartitions of n and Er is a partial order on Bip(n)
depending on r;
• If l ∈ Bip(n), SBT (λ) denotes the set of standard bitableaux of (bi-)shape
λ (filled with 1,. . . , n);

• If S, T ∈ SBT (λ) for some bipartition λ, CξS,T is an element of Hn coming

from a Kazhdan-Lusztig basis of Hn (it heavily depends on ξ);
• ∗ : Hn → Hn is the A-linear anti-involution of Hn sending Tw to Tw−1 ;

(see [3, Conjecture C]). If this conjecture holds then, by the general theory of
cellular algebras, we can associate to each bipartition λ of n a Specht module

Sξλ endowed with a bilinear form φξλ. If K is the field of fractions of A, then

KSξλ = K ⊗A S
ξ
λ is the simple KHn-module associated to λ. Now, if Q0 and q0

are two elements of C× then, through the specialization Q 7→ Q0, q 7→ q0, we can
construct the CHn-module

Dξ
λ = CSξλ/Rad(Cφξλ).

By the general theory of cellular algebras, it is known that the non-zero Dξ
λ’s give

a set of representatives of simple CHn-modules.
On the other hand, if we assume further that q20 is a primitive e-th root of

unity, if Q2
0 = −q2d0 for some d ∈ Z (which is only well-defined modulo e),

and if s = (s0, s1) ∈ Z2 is such that s0 − s1 ≡ d mod e, then Ariki’s The-
orem provides a bijection between the set of Uglov’s bipartitions Bipse(n) and
the set of simple CHn-modules. Moreover, the decomposition matrix is given by
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(
dsλµ(1)

)
λ∈Bip(n),µ∈Bips

e(n)
, where

(
dsλµ(q)

)
λ,µ∈Bip(n)

is the transition matrix be-

tween the standard basis and Uglov-Kashiwara-Lusztig’s canonical basis of the
Fock space. Our main result is that Lusztig’s conjectures (P1)-(P15) in [9, Con-
jecture 14.2] are “compatible” with Ariki’s Theorem in the following sense:

Theorem. Assume that [9, Conjecture 14.2] holds and assume that s0 − s1 ≡ d

mod e and s0 − s1 ≤ r < s0 − s1 + e. Then Dξ
λ 6= 0 if and only λ ∈ Bipse(n) and,

if λ ∈ Bip(n) and µ ∈ Bipse(n), then [CSξλ : Dξ
µ] = dsλµ(1).

In particular, if [CSξλ : Dξ
µ] 6= 0, then λ Er µ.

This theorem is stated in a slightly different form in [4, Introduction] but we
have obtained some improvements (namely, that we only need Lusztig’s conjec-
tures) since its publication, thanks to [2] and the recent work of Pietraho [10].

Note that, in the asymptotic case (in other words, if ξ > n − 1), then [9,
Conjecture 14.2] holds (see [6]) and the cellular datum Cξ is more or less equivalent
to the one constructed by Dipper, James and Mathas (see the work of Geck, Iancu
and Pallikaros [7]).

References

[1] S. Ariki, On the decomposition numbers of the Hecke algebra of G(m, 1, n), J. Math. Kyoto
Univ. 36 (1996), 789–808.
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Cohomology and complexity of cohomological Mackey functors

Serge Bouc

Let k be a field (of positive characteristic p). When G is a finite group, let M
c
k(G)

denote the category of cohomological Mackey functors for G over k.
A finite group G is called a poco group over k if every finitely generated coho-

mological Mackey functor for G over k has a projective resolution with polynomial
growth.

The main theorem of this talk is the following :
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Theorem 1. Let k be a field of characteristic p > 0, and G be a finite group. The
following conditions are equivalent :

(1) The group G is a poco group over k.
(2) Let S be a Sylow p-subgroup of G. Then :

• If p > 2, the group S is cyclic.
• If p = 2, the group S has sectional rank at most 2, i.e. it is cyclic or

metacyclic.

The proof of this theorem uses the construction of functors between categories
of cohomological Mackey functors for different groups, associated to finite bisets, to
reduce the problem to the case where G is an elementary abelian p-group. In this
case, the algebra of self extensions of the simple functor S1 (defined by S1(1) = k
and S1(H) = {0} for 1 < H ≤ G) can be described completely :

Theorem 2. Let G = (C2)
m, and k be a field of characteristic 2. The algebra

E = Ext∗
Mc

k(G)(S1, S1) has the following presentation :

(1) The generators γx are indexed by the elements of G − {0}. They have
degree 2.

(2) The relations are as follows :
• If H < G with |G : H | = 2, then

∑
x/∈H

γx = 0.

• If x and y are distinct elements of G− {0}, then [γx + γy, γx+y] = 0.

The Poincaré series P (t) =
∑
n∈N

dimk Ext
n
Mc

k(G)(S1, S1) t
n of E is equal to

P (t) =
1

(1− t2)(1 − 3t2)(1− 7t2) · · · (1− (2m−1 − 1)t2)
.

When p > 2, this becomes

Theorem 3. Let G = (Cp)
m, and k be a field of characteristic p > 2.

• The algebra E = Ext∗
Mc

k(G)(S1, S1) is generated by elements γX of degree 2,

for X ≤ G and |X | = p, and by elements τi of degree 1, for 1 ≤ i ≤ m.
• The Poincaré series of E is equal to

1

(1 − t)
(
1− t− (p− 1)t2

)(
1− t− (p2 − 1)t2

)
· · ·

(
1− t− (pm−1 − 1)t2

) .

Theorem 3 was originally a conjecture, that I could only prove for p = 3.
In a very recent joint work with Radu Stancu, we could prove this conjecture
completely. We also obtained a presentation of E in terms of the generators γX
and τi.
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Generic kernels and other constructions

Jon F. Carlson

(joint work with Eric Friedlander, Julia Pevtsova and Andrei Suslin)

In this talk I will discuss the development of some very basic properties of modules
and constructions of submodules. The aim is to give some structure to the category
of modules over p-groups, even though many of the constructions can be applied
to all finite groups. Throughout the lecture k is a field of characteristic p > 0 and
G is a finite group. For the most part G is an elementary abelian p-group of rank
r. In this case we note that the group algebra is a truncated polynomial ring and
use the notation kG = k[x1, . . . , xr]/(x

p
1, . . . , x

p
r). In the case that r = 2 or r = 3,

we denote the group algebra generators x, y or x, y, z as appropriate.
Let’s begin with an example. Let G be elementary abelian with r = 2 and

assume that p ≥ 3. We denote the following module Wn,3:

v1

y
@@

@

  @
@@

@

v2

x~
~~
~

~~~~~
~

y
@@

@

  @
@@

@

v3

x~
~~
~

~~~~~
~

. . . vn−1

y
DD

DD

""D
DD

D

vn

x}
}}
}

~~}}}
}

•

y
AA

A

  A
AA

•

x}
}}

}

~~}}}
}

y
AA

A

  A
AA

. . . •

xy
yy

y

||yy
yy

• • . . . •

The diagram indicates that as a kG-module, Wn,3 is generated by {v1, . . . , vn}
with relations generated by

xv1 = 0 = yvn = x3vn : x3vi = 0 = yvi − xvi+1, for 1 ≤ i < n− 1.

This module has a very interesting property that illustrates why the category
of kG-modules has wild representation type. Suppose that U and V are subspaces
of the socle of M = Wn,3 (which is spanned by x2v3, . . . , x

2vn), then the kG-
modules M/U and M/V are isomorphic if and only if U and V are exactly the
same subspace. Hence there are a great many modules of this type.

The modules Wn,3, are a part of a class of modules that we call W modules.
They satisify a condition which we call the equal images property [3] and they
also have constant Jordan type [1]. The definitions of these term are as follows.
Remember that the isomorphism type of a module over K[t]/(tp) is determined
entirely by the Jordan type of the matrix of the element t on the module, that is,
by the sizes of the Jordan blocks of the matrix of t on M .

Definition 1. A kG-module M has the equal images property if for any extension
K of k and any flat map αK : K[t]/(tp) → KG, we have that αK(t)(K ⊗M) =
Rad(K ⊗M) = K ⊗ Rad(M).

A kG-module M has constant Jordan type if for all extensions K of k and all
flat maps αK : K[t]/(tp) → KG, we have that the Jordan type of the matrix of
αK(t) on K ⊗M is constant.
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The flat maps αK are called π-points in [4]. There is an equivalence relation on
the collection of π-points based on how they measure projectivity of kG-modules.
The set of equivalence classes has the structure of a scheme and is homeomorphic
to the spectrum of the cohomology ring H∗(G, k).

It is a fact that any module with the equal images property has constant Jordan
type. Moreover, any quotient of a module having the equal images property has the
equal images property. The above examples suggest that the category of modules
with constant Jordan type might have wild representation type. This question is
still open.

In the case that r = 2, the W modules play a particularly interesting role. First
we observe that we can define other families of W modules with greater depth.
That is, for any 2 ≤ d ≤ p, define Wn,d by exactly the same relations as above,
except that we replace x3vi by xdvi for all i. Then we can prove that every module
having the equal images property is a homomorphic image of one of the modules
Wn,d, for some n and some d ≤ p.

In the case that r > 2, there seems to be no collection of modules playing this
role. The point is that small changes in the modules can change the isomorphism
type. This can be illustrated by the following family of modules. Let Mζ be
defined by the following diagram.

v1

x
BB

BB

!!B
BB

B

v2

y|
||

}}|||
|

x
BB

BB

!!B
BB

B

v3

y|
||

}}|||
|

• •

v4

z

OO

x
BB

BB

!!B
BB

B

v5

z (ζ)

OO

y|
||

}}|||
|

•

v6

z

OO

Here ζ is any element in k and the arrow marked with ζ is meant to indicate that
the relation should be read as

xv2 = ζzv5

These modules all have the equal image property. If γ 6= ζ then the modules Mγ

and Mζ are not isomorphic. Moreover, every homomorphism of Mγ to Mζ has its
image in the radical of Mζ.
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We can introduce a variation on the equal images property with the following
submodule of Mζ . Let Nζ be defined by the diagram:

v1

y}
}}

~~}}
}

x
AA

A

  A
AA

A

• •

v2

z}}}

>>}}}}

x // • v3

zAAA

(ζ)
``AAAA

yoo

Note that Nζ has constant Jordan type only in the case that ζ = −1. Otherwise,
the nonmaximal support variety [5] of Nζ is the union of the coordinate planes.
These modules have the equal 2-images property, which we define as follows.

Definition 2. A kG-module M has the equal 2-images property if for any ex-
tension K of k and any flat map αK : K[t1, t2]/(t

p
1, t

p
2) → KG, we have that

Rad(Rα)(K ⊗M) = Rad(K ⊗M) = K ⊗ Rad(M) where Rα is the subalgebra
which is the image of αK .

In a similar fashion we can define an equal s-images property for any s <
r. Every module has submodules satisfying the equal s-images property. In the
case that s = 1, and G is an elementary abelian group of rank r = 2, then a
distinguished submodule with this property is the generic kernel which is defined
as follows.

Definition 3. Assume that the field k is infinite. Let M be a kG-module. For
any S ⊂ P1(k) let SM =

∑
[a,b]∈S Ker{ax+ by : M →M}. The generic kernel of

M is the intersection

K(M) =
⋂

S⊆P1(k), cofinite

SM.

When G is elementary abelian of rank 2, the generic kernel of a module M is the
maximal submodule of M having the equal images property. Generic kernels can
be defined for elementary abelian p-groups of rank greater than 2. The difference
is that the intersection in the definition should be taken over open sets in the
scheme of π-points. For general finite groups we can define a generic kernel for
each component of the spectrum of the ring H∗(G, k). We can also define a generic
s-kernel for any 1 ≤ s < r using multiple π-points as, for example, in Definition
2. For an elementary abelian p-group of rank r, the generic s-kernel of a module
always has the equal (r− s)-images property, though it might not be the maximal
submodule with the property.

There are also dual notions of the equal kernels property and the generic image
of a module. The category of modules of constant Jordan type together with the
collection of locally split sequences in the category form an exact category in the
sense of Quillen [2]. Locally split means split on restriction along ever π-point.

We end with one example of the sort of theorem we get from the constructions.
Assume that G is an elementary abelian group of rank 2.
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Theorem 4. [3] Let M be a module of constant rank and let K(M) ⊂ M be its
generic kernel. Then we have an increasing filtration of M ,

xp−1K(M) ⊆ xp−2K(M) ⊆ · · · ⊆ xK(M) ⊆ K(M) ⊆ x−1K(M)

⊆ · · · ⊆ x1−pK(M) ⊆M

with the property that xiK(M), for i ≥ 0 has the equal images property and that
M/xjK(M) for j ≤ 1 has the equal kernels property. Moreover, for any ℓ = ax+by
with [a, b] ∈ P1(k) and for all j, we have that xjK(M) = ℓjK(M). Here, xjK(M)
denotes (xj)−1K(M) for j < 0.
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A survey on algebraic modules

David Craven

In this talk, I survey the theory of algebraic modules. LetM be a finite-dimensional
KG-module, where K is a field of characteristic p and G is a finite group. The
module M is called algebraic if it satisfies a polynomial f(x) with integer coeffi-
cients. In 1979, Feit proved that all simple modules for all p-soluble groups are
algebraic, and Alperin in the same year proved that the simple modules for SL2(2

n)
are algebraic; this was extended to SL2(p

n) in characteristic p by Kovács a few
years later.

More recently, I have proved a number of theorems in this area, some extending
the results above, and some in a different direction. For example, I have extended
Alperin’s result, by proving that if G is a finite group with abelian Sylow 2-
subgroups, then all simple modules are algebraic in characteristic 2.

A block-wise version of this – that all simple modules for 2-blocks with abelian
defect group – is conjectural, but in joint work with Eaton, Kessar, and Linckel-
mann, this statement is shown to hold for the case where the block has Klein four
defect groups.

Moving to indecomposable modules, we can isolate where algebraic modules
are on the Auslander–Reiten quiver in some cases, and in particular prove that
algebraic indecomposable modules of complexity at least 3 lie on the end of their
component. In the case where the group is elementary abelian of order p2, there is
conjecturally a very strong relationship between being algebraic and the homolog-
ical algebra: it seems that (for this group) an absolutely indecomposable module
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of dimension a multiple of p is algebraic if and only if it is periodic. This conjec-
ture is interesting because it relates the tensor structure of the group algebra to
the homological structure in a way that does not appear to have been considered
before.

On vertices of simple modules for symmetric groups

labelled by two part partitions

Susanne Danz

(joint work with Karin Erdmann and Burkhard Külshammer)

In 1958, J.A. Green introduced the notion of vertices and sources of indecompos-
able modules over group algebras. Given a finite group G and an algebraically
closed field F of characteristic p > 0, a vertex of an indecomposble FG-module
M is a group P ≤ G which is minimal with respect to the condition that M |
IndGP (ResGP (M)). Such a vertex is known to be a p-group, and it is unique up to
G-conjugacy.

In this talk, I considered the simple modules for the symmetric group Sn of
degree n ∈ N over the field F . As is well-known, the isomorphism classes of sim-
ple FSn-modules are parametrized by the p-regular partitions of n. The simple
module corresponding to a partition λ of n is denoted by Dλ. However, there are
only very few classes of simple FSn-modules whose structure is generally well-
understood. Amongst these is the class of simple FSn-modules labelled by two
part partitions. Therefore, in this talk, I focused on the following question:

Let p = 2. Given a (2-regular) partition λ := (n −m,m) of n, what are the
vertices of Dλ?

In [3], J. Müller and R. Zimmermann showed that, in the case where m ≤ 1,
the vertices of Dλ are always the defect groups of the block of FSn containing
Dλ, unless n = 4 and m = 1. Namely, D(3,1) has the Sylow 2-subgroup of the
alternating group A4 as its vertex.

I presented two recent results on the vertices of simple FSn-modules of the form
D(n−m,m) which are stated below. If m = ⌊n−1

2 ⌋ then we set D(n) := D(n−m,m)

which is the basic spin FSn-module.

Theorem 1. (S. Danz, B. Külshammer [2]) Let n ≥ 2, let p = 2, and let n =∑s
j=1 2ij be the 2-adic expansion of n, for appropriate s ≥ 1, i1 > . . . > is ≥ 0.

Let further P be a vertex of D(n).

(i) If n ≡ 2 (mod 4) then P is a Sylow 2-subgroup of Sn.
(ii) If n ≡ 0 (mod 4) then P is a Sylow 2-subgroup of An.
(iii) If n is odd then P is conjugate to a Sylow 2-subgroup of A2i1 × · · · ×A2is .
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Theorem 2. (S. Danz, K. Erdmann [1]) Let n ≥ 6, and let P be a vertex of
D := D(n−2,2).

(i) If n ≡ 3 (mod 4) then P =Sn Pn−5 × P2 × P2, and D has trivial source.
(ii) Otherwise, P is a Sylow 2-subgroup of Sn. Moreover, if n is even then

ResSn

P (D) is a source of D.
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Nilpotent blocks of simple groups

Charles Eaton

(joint work with Jianbei An)

Generalising the idea of a p-nilpotent group, a p-block of a finite group is nilpo-
tent if it gives rise to the smallest possible fusion system for its defect groups.
The structure of such blocks is well-understood, but the frequency of their occur-
rence and behaviour with respect to normal subgroups are not. There are also
open problems concerning their recognition, for example the conjecture of Puig
concerning the number of simple modules for each B-subpair.

We study the nilpotent blocks of the finite simple groups. In a sense this extends
the work of many authors determining the existence (or otherwise) of blocks of
defect zero of simple groups.

We give characterisations of the nilpotent blocks of some classical groups, and
use these to deduce that every nilpotent block of a finite simple group must have
abelian defect groups.

The Lie module of the symmetric group

Karin Erdmann

(joint work with Kai Meng Tan)

Let Sn be the symmetric group of degree n and let F be a field of characteristic
p. The Lie module of Sn can be defined as the right ideal Lie(n) := ωnFSn

generated by the Dynkin-Specht-Wever element,

ωn = (1− c2)(1 − c3) . . . (1− cn)

where ck is the k-cycle (1 2 . . . k) This is related to the free Lie algebra L(V )
over an F - vector space V of dimension ≥ n; it is the image of the homogeneous
part of degree n under the Schur functor.
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The motivation of [3] comes from algebraic topology. In [4] certain coalge-
bra decompositions of the tensor algebra T (V ) are related to loop suspensions
of p-torsion suspensions of some topological spaces. In this context one needs to
understand a maximal projective submodule of Lie(n), called Liemax(n) in [4].

Write Lie(n) = Lie(n)pf ⊕ Lie(n)pr, where Lie(n)pr is projective, and Lie(n)pf
does not have any non-zero projective summand. These are unique up to isomor-
phism, and then Liemax(n) ∼= Lie(n)pr. When p does not divide n, the module
Lie(n) is projective. But otherwise, it has non-projective summands and projec-
tive summands, and in general not much is known. In [1], upper bounds for the
dimension of Liemax(n) were found when p = 2 but it is not clear whether their
methods generalize.

When n = pk and p does not divide k, the summands of Lie(n)pf have been
parametrized in [2], via p-permutation modules. We use these results (in [3]) to
find an upper bound for the dimension of Liemax(n). Namely we have

dim(Liemax(n)) ≤ (n− 1)!− dim(Lie(n)pf ↓P )

where P is a Sylow p-subgroup of Sn.
Based on [2], we obtain a recursive formula in terms of orbits of P on the coset

space of a subgroup D isomorphic to Sp ×Sk acting regularly. For example, D
can be taken as D1 ×D2 where D1 is the diagonal of the base group in Sp ≀Sk,
and D2 is the top group.

It was proved in [2] that there is a short exact sequence of FSn-modules

0→ Lie(n)→ eFSn → Sp(Lie(k))→ 0

where e is an idempotent, and where Sp(Lie(k)) = IndSn

D (Λ) with Λ := F ⊗Lie(k),
the external tensor product. We fix a Sylow p-subgroup P of Sn, and we show

Proposition If x ∈ Sn and Dx
1 ∩ P 6= 1 then IndPDx∩P (Λx) has no projective

summands; otherwise it is projective.

Using the short exact sequence above, we get that the projective-free part Lie(n)pf
is isomorphic to IndSn

D (Ω(Λ)) and Ω(Λ) ∼= Ω(F ) ⊗ Lie(k). Furthermore, the Sp-

module Ω(F ) is the Specht module S(p−1,1) of dimension p−1, and one can deduce

dim(Lie(n)P )pf = (p− 1)(k − 1)!
∑

x

|P : Dx ∩ P |

where the sum is taken over double coset representatives x such that Dx
1 ∩P 6= 1.

The problem is then to parametrize these double cosets, and detemine |P :
Dx ∩ P |, our result is a recursive formula.
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Modular Principal Series Representations

Meinolf Geck

Let G be a connected reductive algebraic group over Fq and F : G → G be the
Frobenius map associated with an Fq-rational structure on G. Then G := GF =
G(Fq) is a finite group of Lie type over Fq. For example, the finite groups G =
GLn(Fq), GUn(Fq) or E8(Fq) arise in this way. Let k be an algebraically closed
field of characteristic ℓ where either ℓ = 0 or ℓ > 0 is a prime not dividing q. Let
Irrk(G) be the set of irreducible representations of G over k (up to isomorphism).
We wish to study Irrk(G) for all G of a given “type”, with q varifying. Here, the
“type” of G is given by (W, γ) where W is the Weyl group of G and γ : W →W

is the automorphism induced by F . Let B ⊆ G be a Borel subgroup and set

Irrk(G | B) = {ρ ∈ Irrk(G) | ρ admits non-zero vectors fixed by B}.

(This set is one piece in the partition of Irrk(G) into Harish-Chandra series; see
[4] where this partition and its connection with Hecke algebras is studied without
restriction on ℓ.)

Characteristic 0. If ℓ = 0, then, by classical results due to Bourbaki, Iwahori,
Tits, . . . (∼ 1960’s), there is a natural bijection Irrk(G | B) ↔ Irrk(W

γ), where
Wγ is the group of fixed points of W under γ. (Note that Wγ is a finite Cox-
eter group.) In particular, Irrk(G | B) is “independent of q”. This is part of a
more general picture where the “unipotent” representations of G are seen to be
“independent of q” (Lusztig [9]).

The modular case. Now assume that ℓ > 0. Then, following work of Fong–
Srinivasan, Dipper–James, Broué–Malle–Michel, Hiss, . . ., one expects that (at
least for ℓ >> 0) the “unipotent” ℓ-modular representations should only depend
on e, the multiplicative order of q modulo ℓ. We have recently obtained some
definite results in this direction concerning the set Irrk(G | B).

Theorem. [2], Assume that ℓ does not divide |W|. Then there is a natural
injection Irrk(G | B) →֒ IrrC(Wγ) whose image only depends on e.

This injection is defined using Dipper’s Hom functors [1], the “cellularity” in
the sense of Graham–Lehrer of the associated Hecke algebras (shown in [3]), and
properties of the “unipotent support” of the irreducible representations of G in
characteristic 0; see [10], [5]. The statement that this only depends on e under
the given condition on ℓ essentially relies on a general result about the number of
simple modules of Hecke algebras (see [7]).

General Version of James’ Conjecture. ([8], [6]) Assume that ℓ does not divide
|W| and that k is the residue field of a discrete valuation ring O whose quotient



936 Oberwolfach Report 17

field K is sufficiently large and of characteristic 0. Then the decomposition matrix
(defined using ℓ-modular reduction via O)

D′ =
(
dχ ρ

)
χ∈IrrK(G|B), ρ∈Irrk(G|B)

only depends on e.

Note that, by the previous theorem, we know at least that the sets indexing
the rows and columns of D′ only depend on W and e. Using extensive computer
calculations, the conjecture is now known to be true for G of exceptional type; see
[6] and the references there.
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Zelevinsky involution in affine type A

Nicolas Jacon

(joint work with Cédric Lecouvey)

The Zelevinsky involution is a certain map which has its origins in the representa-

tion theory of p-adic groups. It can also be defined over the affine Hecke algebra Ĥ
of type A over C with parameter q. It has been studied by Moeglin-Waldspurger
[5] and Leclerc-Thibon-Vasserot [4]. This map yields an involution τ on a certain

set of simple Ĥ-modules parametrized by the “aperiodic multisegments”. Hecke
algebras of type A are quotients of affine Hecke algebras of type A and τ induces
a “q-analogue” of the famous Mullineux involution on these finite type Hecke al-
gebras. Hence, the Zelevinsky involution may be seen as a generalization of the
Mullineux involution.
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When q is specialized to an e-th root of 1, Leclerc, Thibon and Vasserot have
shown that τ can be described using the crystal Be(∞) of the negative part of the

quantum algebra Uv(ŝle).
In our recent work [3], we give an alternative and efficient procedure for comput-

ing this involution. The strategy is as follows. Let m be an aperiodic multisegment

labelling a simple module for the affine Hecke algebra Ĥ of type A.

(1) We associate to m a certain multipartition λ which labels a simple module
for an Ariki-Koike algebra H (see [1]).

(2) We then apply an algorithm to compute the analogue of the Zelevinsky
involution on Ariki-Koike algebras. This provides another multipartition
µ labelling a simple H-module (see [2]).

(3) We associate to µ an aperiodic multisegment m′ which labels a simple

Ĥ-module.

The image of m under the Zelevinsky involution is then m′.
All our computations can be made independently of the crystal structure on

Be(∞). Moreover, they do not require the determination of i -induction or i-
restriction operations on simple modules. Finally, these results show a very simple
relation between τ and the Kashiwara involution in affine type A.
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Springer basic sets

Daniel Juteau

This talk was about geometric methods to study modular representations of Weyl
groups. I talked about a modular Springer correspondence that I defined in my
thesis, and explained how this allows to define a basic set geometrically for Weyl
groups. Springer basic sets should be helpful to determine explicitly the modular
Springer correspondence in all types. The link between ordinary characters of
Weyl groups and nilpotent orbits, established by Springer in 1976, led Lusztig to
his theory of character sheaves, which allow to determine character values of finite
reductive groups. Later, I hope to develop a theory of modular character sheaves.
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1. Perverse sheaves

First I explained briefly and roughly what perverse sheaves look like. Let X be
some complex algebraic variety endowed with a “good stratification”X =

⊔
S∈X

S.
The strata are smooth connected, locally closed subvarieties, and the closure of a
stratum is a union of strata. The strata are naturally ordered by S1 ≥ S2 ⇐⇒
S1 ⊃ S2. Let us fix some prime ℓ and an ℓ-modular system (K,O,F), and let
E denote K or F. A constructible complex F of E-sheaves is a complex of E-
sheaves whose cohomology sheavesHnF are constructible. That is, we require that
the restrictions HnF|S be local systems. If we choose some base point xS ∈ S,
the functor “fiber at xS” identifies local systems (with E coefficients) to finite
dimensional representations of the fundamental group π1(S, xS), over E.

If G is a connected algebraic group, and X is a G-variety with finitely many or-
bits, we can use the orbits to stratifyX , and we can considerG-equivariant objects:
in that case, the representations of the fundamental groups have to factor through
the finite quotients π1(S, xS) → AG(xS), where AG(xS) = CG(xS)/CG(xS)0 is
the finite group of components of the centralizer of xS .

There is a Grothendieck-Verdier duality D on the derived category of con-
structible complexes. A constructible complex F is perverse if for all S ∈ X,
we have HnF|S = 0 for all n > − dimS, and a similar condition holds for DF .
Perverse sheaves form an abelian category, which here (E is a field) is noetherian
and artinian.

For S ∈ X, if L is an irreducible local system on S, then there is a unique
perverse sheaf F supported by S, whose restriction to S is L[dimS], and such
that for all T < S, we have HnF|T = 0 for all n ≥ − dimT , and similarly for DF .

Then F is denoted IC(S,L) and is called an intersection cohomology complex.
The IC(S,L) are the simple objects in the category of perverse sheaves.

All of the above makes sense for varieties over a base field of characteristic p
different from ℓ, using the étale topology. There is also a version over O, but there
are some subtleties due to the torsion: one has to consider two perversities (hence
two kinds of perverse sheaves), exchanged by the duality.

2. Springer correspondence

Let G be a connected reductive group over k = Fp, where p is sufficiently large
and different from ℓ. Then G acts on its Lie algebra g by the adjoint action, and
there are only finitely many orbits in the nilpotent cone N ⊂ g. We denote by
xO a representative of O. We can actually assume that G is simple of adjoint
type, in which case the finite groups AG(xO) are either 2-elementary abelian, or
symmetric groups S3, S4 or S5. The set PE = {(x, ρ) | x ∈ N , ρ ∈ IrrEAG(x)}/∼G
parametrizes the simple G-equivariant perverse sheaves with E coefficients on N ,
which we denote by ICE(x, ρ), for (x, ρ) ∈ PE. Note that, if ℓ does not divide the
orders of the finite groups AG(x), then we can identify PK with PF.

Using a Fourier transform, one can define a Springer correspondence

ΨE : IrrEW →֒ PE.
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In characteristic zero, this was done by Springer in [Spr76] (without perverse
sheaves), and then by Hotta-Kashiwara for D-modules in 1984, and by Brylinski
with a Fourier-Deligne transform in 1986. In the modular case, this was done in
[Jut07]. There are many other constructions in characteristic zero, which do not
use a Fourier transform, and which give another parametrization, differing from
this one by the sign character of W (Lusztig, Borho-McPerhson, Slodowy. . .).

In the case G = GLn, the nilpotent orbits are parametrized by partitions (ac-
cording to the sizes of the Jordan blocks), and we have Oλ ≥ Oµ ⇐⇒ λ ≥ µ for
the usual dominance order of partitions. We denote by xλ an element of Oλ. Then
all the AG(xλ) are trivial, and we can identify both PK and PF with the set of
partitions of n (the local systems have to be trivial). With this notation, we have
ΨK(Sλ) = λ′ (Hotta-Springer 1977), and if µ is ℓ-regular, we have ΨF(Dµ) = µ′

too [Jut07], where the dash denotes conjugation of partitions.

3. Decomposition matrices

Recall how we define the decomposition matrix for a finite group (here a Weyl
group) W : for E ∈ IrrEW and F ∈ IrrFW , we define dWE,F by [F⊗OEO : F ], where

EO is an integral form of E, and the decomposition matrix is DW = (dWE,F ).
We can do the same forG-equivariant perverse sheaves on the nilpotent cone: for

(x, ρ) ∈ PK and (y, σ) ∈ PF, we define dN(x,ρ),(y,σ) by [F⊗L
O
ICO(x, ρO) : ICF(y, σ)],

where ρO is some integral form of ρ, and DN = (dN(x,ρ),(y,σ)) [Jut09].

Theorem 3.1. [Jut07] We have

dWE,F = dNΨK(E),ΨF(F ).

Hence DW can be seen as a submatrix of DN . To compute the right-hand
side, it would be enough to determine ΨF (this should be possible in general), and
to determine the IC stalks with Fp coefficients for nilpotent orbit closures (this
should be very difficult in general). The similar problems for characteristic zero
coefficients have been solved a long time ago. I was able to compute, for all types,
the stalk at a subregular element of IC(N ,F), and the stalk at 0 of IC(Omin,F),
where Omin is the minimal non-trivial nilpotent orbit. In both cases, one can
express the corresponding decomposition number in a uniform way, in terms of
root systems [Jut08, Jut09].

For G = GLn, we know that the ordinary and modular Springer correspon-
dences are given by the conjugation of partitions, so that [Sλ : Dµ] = dNλ′,µ′ . It
follows that one can see James’s row and column removal rule as a consequence of
a smooth equivalence of nilpotent singularities obtained by Kraft and Procesi.

The matrix DN is clearly unitriangular:

Proposition 3.2. We have

dN(x,ρ),(y,σ) =

{
0 unless Oy ≤ Ox,

d
AG(x)
ρ,σ if y = x.
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(For small ℓ, we use the fact that the DAG(x) are unitriangular themselves.)
However, this does not imply directly that DW is unitriangular (which was already
known by other methods, for example by Geck-Rouquier). For this, one needs the
additional observation (that I proved at MSRI in 2008; still unpublished):

Proposition 3.3. If (x, ρ) /∈ ImΨK and dN(x,ρ),(y,σ) 6= 0, then (y, σ) /∈ ΨF.

It follows that one can define a basic set using the Springer correspondence (for
small ℓ, we also use the unitriangularity of the DAG(x)). Thus one can complete
the following square (where the bx define basic sets for the AG(x)):

IrrFW
ΨF //

b

��

PF =
⊔
x IrrFAG(x)

F

x bx

��
IrrKW

ΨK

// PK =
⊔
x IrrKAG(x)

and, using the order on IrrKW induced by ΨK (and, for small ℓ, a natural order
on the IrrKAG(x)), we have dWE,F = 0 unless E ≥ b(F ), and dWb(F ),F = 1.

In a project with Karine Sorlin, we aim to use this fact to determine explicitly
the modular Springer correspondence in all types.
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On stable equivalences and blocks with one simple module

Radha Kessar

(joint work with Markus Linckelmann)

Nilpotent blocks form an important example of blocks with one isomorphism class
of simple modules-such blocks are Morita equivalent to the group algebra of a
defect group of the block. However, there exist non-nilpotent blocks with one
simple module, and the understanding of their structure is as yet incomplete.

We denote by O a complete discrete valuation ring with residue field k =
O/J(O) of prime characteristic p and quotient field K of characteristic zero. Given
a finite group G, and a a block algebra B of OG, we denote by ℓ(B) the number
of isomorphism classes of simple k ⊗O B-modules. We prove the following result:

Let G be a finite group and B a block algebra of OG having a defect group of
order at most p2. Denote by C the Brauer correspondent of B and suppose that
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K, k are splitting fields for B, C. If ℓ(C) = 1 then ℓ(B) = 1, the inertial quotient
of B is abelian, the decomposition matrices of B and C are equal and there is a
p-permutation equivalence between B and C inducing an isotypy between B and
C all of whose signs are positive.

The main ingredient for proving the above is Rouquier’s stable equivalence
between B and its Brauer correspondent, obtained from “gluing” together various
derived equivalences at local levels [4]. Since stable equivalences between block
algebras preserve the character group L0(B) of generalised characters which vanish
on p-regular elements, isometry arguments turn out to work particularly well for
blocks with one simple module, because in that case the co-rank of L0(B) in the
Grothendieck group over K of B is 1 and hence this subgroup contains enough
information to reconstruct the number of irreducible characters of any block stably
equivalent to B.

Broué’s Abelian Defect Conjecture predicts more precisely that B and C are
derived equivalent. If true, a result of Roggenkamp and Zimmermann would imply
that B and C are actually Morita equivalent. This is known to hold if the defect
groups of B are cyclic or Klein four because in that case the hypothesis of having
a unique isomorphism class of simple modules implies that B and C are nilpotent,
hence Morita equivalent to OP . In order to prove the above we may therefore
assume that p is odd, that a defect group P of B is elementary abelian of rank 2
and that the inertial quotient of B is non trivial. This forces the inertial quotient
to be abelian, and hence the Brauer correspondent C is a quantum complete in-
tersection [1], [2], [3]. In light of the above Theorem, one is led to ask the following:

Question: Let X be a quantum complete intersection over k and let Y be a finite
dimensional symmetric k-algebra such that there is a stable equivalence of Morita
type between X and Y . Suppose further that Y is local, dimk(Y) = dimk(X) and
Z(X) ∼= Z(Y ) as k-algebras. Are X and Y isomorphic k-algebras?
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Blocks with metacyclic defect groups

Shigeo Koshitani

(joint work with Jürgen Müller, Miles Holloway, Naoko Kunugi)

Here we will present two results, namely, the first one is a joint work with Jürgen

Müller, and the second one is that with Miles Holloway and Naoko Kunugi.
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The results are on modular representation theory. We will use the following nota-
tion.

Let p be a prime and G a finite group. We denote by (K,O, k) a splitting p-
modular system for all subgroups of G. That is, O is a complete discrete valuation
ring and K is the quotient field of O, both of which have characteristic zero, and
k is the residue field of O, namely k := O/rad(O) which has characteristic p.
Moreover, the fields K and k are both splitting fields for all subgroups of G. We
denote by Cn the cyclic group of order n for an integer n ≥ 1.

Theorem 1 (J.Müller–S.Koshitani). Assume that p = 3, G := HN is the Harada-
Norton sporadic simple group, and A is a non-principal block algebra of the group
algebra OG with defect group P = C3 × C3 (actually, A is a unique such block
algebra of OG). Then, Broué’s abelian defect group conjecture for A is true.
Namely, the categories Db(mod-A) and Db(mod-B) are equivalent as triangulated
categories, where B is the Brauer corresponding block algebra in ONG(P ), mod-A
is the category of all finitely generated right OG-modules which are free as O-
modules and which belong to A, and Db(mod-A) is the bounded derived category
of mod-A). In fact we get also that A and the principal 3-block algebra B0(O[HS])
are Morita equivalent, where HS is the Higman-Sims sporadic simple group.

Theorem 2 (M.Holloway–N.Kunugi–S.Koshitani). Suppose that G has a Sylow

p-subgroup P such that P = Mn+1(p) = 〈x, y|xp = yp
n

= 1, x−1yx = yp
n−1+1〉 ∼=

Cpn :Cp, the semi-direct product of Cpn by Cp for an integer n ≥ 2, and that
A := B0(OG) is the principal block algebra of OG. Then, it holds that

k0(A) = pe+ p(pn−1 − 1)/e,

k1(A) = pn−2(p− 1)/e,

k(A) = pe+ (pn + pn−1 − pn−2 − p)/e,

ℓ(A) = e,

where e := |NG(P )/P ·CG(P )| (the inertial index for A), ki(A) is the number of
all irreducible ordinary characters of G belonging to A which have height i, and
k(A) and ℓ(A) are the numbers of all irreducible ordinary and Brauer characters
of G belonging to A, respectively. In addition, it turns out that a conjecture posed
by S. Hendren [1, p.490] holds for the principal blocks.
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On Oliver’s conjecture

Nadia Mazza

(joint work with D. Green and L. Héthelyi)

Bob Oliver’s proof of the Martino-Priddy conjecture uses the classification of finite
simple groups. For odd primes, this can be avoided, provided one shows a gen-
eral vanishing result, which would imply the existence and uniqueness of linking
systems associated to arbitrary saturated fusion systems.

This vanishing result is Oliver’s conjecture and it turns out to be equivalent to
showing that the containment

J(S) ≤ X(S)

holds for any finite p-group S that may arise as a minimal strongly closed subgroup
in a saturated fusion system. Here, p is an odd prime and J(S) is the “elementary
abelian version” of the Thompson subgroup of S; that is, the subgroup of S
generated by all the elementary abelian subgroups of S of maximal order. The
subgroup X(S) is the Oliver subgroup of S, defined as the largest subgroup of S
for which there is a series of normal subgroups Qi of S such that 1 = Q0 ≤ Q1 ≤
· · · ≤ Qn = X(S) and such that they satisfy the commutator relations

[Ω1(CS(Qi−1)) , Qi ; p− 1] = 1 , ∀ 1 ≤ i ≤ n.

In his paper, Oliver reduces the question to finite simple groups and checks in each
case, by hand, that the containment holds.

In a recent article, Green, Héthelyi and Lilienthal recast Oliver’s conjecture in
terms of FpG-modules and they show that J(S) ≤ X(S) if G has nilpotence class
at most 2, where G is the factor group S/X(S). This reformulation appeals to
the study of the F -modules and quadratic offenders, arising in the problem of the
failure of Thompson’s factorisation. Hence, it turns out that Oliver’s conjecture
holds if and only if G has no F -module on which any central element of G of order
p acts with minimal polynomial of degree p.

Since the result by Green, Héthelyi and Lilienthal, the first two authors and
Mazza managed to prove that Oliver’s conjecture holds in a few more cases, which
are summarised as follows.

Theorem. Suppose that p is an odd prime and S is a p-group such that G =
S/X(S) satisfies any of the following conditions

(1) G has nilpotence class at most four;
(2) G is metabelian;
(3) G has p-rank at most p.

Then Oliver’s conjecture J(S) ≤ X(S) holds for S.

As a consequence of this theorem and a compilation of older results from group
theory, we obtain:

Corollary. Suppose that p is an odd prime and S is a p-group such that G =
S/X(S) satisfies any of the following conditions

(1) G has maximal nilpotence class;



944 Oberwolfach Report 17

(2) G is a regular 3-group.

Then Oliver’s conjecture J(S) ≤ X(S) holds for S.

In this talk, we present a brief survey of Oliver’s conjecture and its reformu-
lation, and we discuss the approach and the results of the ongoing collaboration
Green-Héthelyi-Mazza.

Dipper’s hypothesis and self-injective endomorphism rings

Hyohe Miyachi

0.1. Introduction and history. R. Dipper [Dip90] made quite good assumptions
on some endomorphism rings to classify simple modules over finite general linear
groups in non-defining characteristic. Geck, Hiss and Malle [GHM96] followed his
approach towards a classification of simple modules for the other types. But, later
Geck and Hiss [GH97] noticed that the self-injectivity of Iwahori-Hecke algebras is
useful for the classification using Sawada-Green approach [Gre7] instead of using
Dipper’s approach.

In my talk, first I removed a part of Dipper’s assumptions in his paper ”Quotient
Hom functor II” [Dip98], namely, his one hypothesis implies the self-injectivity of
an endomorphism ring in his set up.

Second, I talked about the use of self-injective endomorphism rings. The situ-
ation I have in my mind is different from Dipper and Geck-Hiss-Malle. The main
examples are:

• (Conjectural Correspondences) Tackling De Visscher-Donkin conjec-
ture [DVD05] on polynomial tilting injectives.
• (Simple Specht Modules) Obtaining simple Specht modules. (At March

2008 MSRI, I talked about this assuming something. This time, I removed
this ”something”.)

The argument could be useful for any finite dimensional algebras such as group
algebras, Hecke algebras of type A, Brauer algebras, its q-analogue Birman-Mura-
kami-Wenzl algebras as long as behind the scene we have a “group” such as a Hopf
algebra or more generally a Frobenius category in the sense of D. Happel [Hap88].

0.2. Selfdual Dipper implies self-injectivity. Let A be a finite dimensional
algebra over a field k. The following definition was the key for Dipper’s work in
[Dip90].

Definition 1 (Dipper). Let Y be an A-module, and let β : P → Y → 0 be
the projective cover of Y . We say that the projective cover β satisfies Dipper’s
hypothesis if

HomA(P, Y ) ∼= HomA(Y, Y ).

We introduce a slightly new definition as follows:
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Definition 2. We say that P → Y → 0 satisfies selfdual Dipper’s hypothesis if
0→ Y → I is an injective presentation of Y , I ∼= P and

(1) HomA(P, Y ) ∼= HomA(Y, Y ) and HomA(Y, P ) ∼= HomA(Y, Y )

Remark 3. Note that the first condition in (1) is equivalent to the original Dip-
per’s hypothesis. And, the equation above is satisfied automatically in Dipper’s
main examples such as G = GLn(Fq) in [Dip98] since k[G] is symmetric and all
the unipotent cuspidals are selfdual.

Definition 2 was motivated by the following lemma:

Lemma 4. If β : P → Y satisfies selfdual Dipper’s hypothesis, then EndA(Y ) is
self-injective.

0.3. A ring theoretical characterization of simple top Young modules.

Let S(n, r) be the q-Schur algebra over k associated with the divided power quan-
tum general linear group Uq1/2(gln) with unit parameter q and the r-fold tensor

space V ⊗r of the natural representation V . We denote by Ln(λ), ∇n(λ), In(λ)
and Tn(λ) the simple, the costandard (induced) module, the indecomposable in-
jective polynomial module and the indecomposable tilting module over S(n, r)
corresponding to a highest weight λ. Write S(r) for S(r, r). If r ≤ n, then we
omit the subscript n of Ln(λ),∇n(λ) and In(λ) since S(r) and S(n, r) are Morita
equivalent and we may concentrate only on modules over S(r) by excluding S(n, r).
There exists an idempotent ϕ in S(r) such that H(r) := ϕS(r)ϕ is the Iwahori-
Hecke algebra of type Ar−1. We denote by F the Schur functor associated with φ
from S(r)-modules to H(r)-modules. Y λ := FI(λ) (resp. Sλ := F∇(λ)) is called
the Young (resp. Specht) module corresponding to λ. For a partition λ write l(λ)
for the number of nonzero parts of λ.

Now, we state one of the main use of self-injective endomorphism rings in this
report as follows:

Theorem 5. For a partition λ of r, the following are equivalent:

(1) Top(Y λ) is simple.
(2) EndH(r)(Y

λ) is self-injective.
(3) EndS(n,r)(In(λ)) is self-injective for some n ≥ l(λ).

(4) The projective cover β : P → Y λ → 0 satisfies selfdual Dipper’s hypothesis.

Remark 6. On ((ii)⇔ (iii)): Written in [Gre80] and [Don98]. ((ii)⇒ (i)) follows
from [Gre7] (cf. Cabanes[CE04]). The others I couldn’t find in the literatures.

0.4. De Visscher-Donkin. The main reference of this section is [DVD05]. We
omit the detail, see [DVD05] for the detail. De Visscher and Donkin asked the
question “When do we get an indecomposable projective injective tilting module
Tn(µ) ∼= In(λ)?”. They defined two subsets Λin and Λtn of polynomial dominant
weights of gln such that there exists a bijection d : Λin

∼= Λtn and In(λ) ∼= Tn(d(λ)).
They conjectured that Λin is the largest subset with respect to the selfdual property.

So, the following conjecture seems to be reasonable.



946 Oberwolfach Report 17

Conjecture 7. Top(Y λ) is simple if and only if there exists n such that n ≥ l(λ)
and In(λ) is projective. More strongly, Top(Y λ) is simple if and only if there exists
n such that n ≥ l(λ) and λ ∈ Λin.

Remark 8. If In(λ) is projective, then End(In(λ)) ∼= EndH(r)(Y
λ) is self-injective,

so by theorem 5, Top(Y λ) is simple. The conjecture says that settling De Visscher
Donkin conjecture is equivalent to the classification of simple top Young modules.

0.5. Simple Specht modules. In this subsection, we shall introduce a new
method to find “many” partitions λ such that Sλ is simple. As in the intro-
duction, the main approach here is to import the self-injective endomorphism ring
algebra structure from certain Frobenius categories side such as rational module
categories to the other side such as Hecke algebra module categories. So, the main
argument works for any Uq1/2(g) of finite reductive type. If the reader is interested
in the other types see [Jan03, p.463 E.9& p.528, H.15] for the tilting injective ra-
tional modules over Uq1/2(g). (However, here in quantum groups unfortunately,
we have to assume that the characteristic of k is zero since there is no projective
object in rational module category in positive characteristic cases. So, to use De
Visscher-Donkin has an advantage. )

For a partition λ = (λ1, λ2, . . .), we denote by λ′ = (λ′1, λ
′
2, . . .) the conjugate

partition of λ. I couldn’t find the following theorem in the literatures.

Theorem 9 (Column Removal Epimorphisms). Assume that λ and µ are par-
titions of r and

∑s
i=1 λ

′
i =

∑s
i=1 µ

′
i for some s. For x ∈ {λ, µ} Let (xL)′ :=

(x′1, x
′
2, . . . , x

′
s) and (xR)′ := (x′s+1, x

′
s+2, . . .). Further assume that for X ∈ {L,R}

there exists an epimorphism ∇(λX)→ ∇(µX)→ 0. Then, there exists an epimor-
phism ∇(λ)→ ∇(µ)→ 0.

Remark 10. The announcement of this theorem was given at a seminar, Leeds
organised by R. Rouquier. Actually, similar to this theorem, one can make a
stronger statement including an epimorphism of a direct sum of some costandard
modules, but for the main use of this report the above theorem is good enough. The
proof requires Ringel duality and Hecke algebras. H.H. Andersen suggested to show
the vanishing of Riind(λ) to obtain similar results for the other types and the full
functorial construction. Interestingly the row removal analogue of this theorem is
false (observed by Kai Meng Tan).

Theorem 11. Suppose for simplicity that the characteristic of k is zero. Let λ be

a partition, at most n parts. Put λ̃ := λ+ k(1n) for some k. Suppose that ∇(λ) is

simple and λ̃ ∈ Λin. Then, S
eλ is simple.

Remark 12. The condition that ∇(λ) is simple is very well known as Carter’s

criterion. For the proof we use Theorem 9 (which induces epimorphism Y
eλ →

S
eλ → 0) , De Visscher-Donkin [DVD05] that In(λ̃) is projective (which implies

that End(In(λ)) is self-injective via Nakayama functor) and Theorem 5.
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For the final form, we shall apply Brundan-Kleshchev branching theory and
Kashiwara crystal base theory [Kas93, Lemma 5.1.1]. To describe this, we denote
by Ei (resp. Fi) the i-restriction (resp. i-induction) functor. (See [Kle05],[Gro].)

Theorem 13 (An irreducible criterion). Suppose that λ̃ satisfies the condition in
Theorem 11.

(1) Write F
(k1)
i1

F
(k2)
i2
· · ·F

(km)
im

Sλ̃ 6= 0 where F
(ks+1)
is

F
(ks)
is−1
· · ·F

(km)
im

Sλ̃ = 0 for
s = 1, . . . ,m.

Then, there exists a unique partition µ such that F
(k1)
i1

F
(k2)
i2
· · ·F

(km)
im

Sλ̃ =

Sµ and Sµ is isomorphic to DµR

.

(2) Write E
(l1)
j1

E
(l2)
j2
· · ·E

(lm)
jm

Sλ̃ 6= 0 where E
(ls+1)
js

E
(ls)
js−1
· · ·E

(lm)
jm

Sλ̃ = 0 for

s = 1, . . . ,m. Then, there exists a unique partition ν such that

E
(l1)
j1

E
(l2)
j2
· · ·E

(lm)
jm

Sλ̃ = Sν and Sν is isomorphic to DνR

.

Here, αR is James’s e-regularization of α and e is the quantum characteristic
associated with q. Dα is the simple top of Sα for e-regular α.

Remark 14. For the complete classification of simple Specht modules, M. Fayers
and S. Lyle [FL09] seemed to work in the complement of the condition Theorem 13.
See [FL09] for the detail of the current improvement for the classification of simple
Specht modules.

We may import the result on simple Specht modules to the polynomial (rational)
module categories as follows:

Lemma 15. If Sλ is simple, then L := Top∇(λ) is simple and there is no e-regular
composition factor in ∇(λ) except L where e is the quantum characteristic.

Acknowledgement 16. I’d like to thank the organizers for giving me an op-
portunity of my talk at MFO. I’d like to thank M. Cabanes for his comment on
Lemma 4. I’d like to thank S. Danz for patiently waiting my submission of my
report.
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Involutions, Frobenius-Schur Indicators and Real Subpairs of 2-Blocks

John Murray

Let B be a real 2-block of a finite group G. Then there is a real element g ∈ G
such that g appears with nonzero multiplicity in the block idempotent of B and
the central character of B does not vanish on the sum of the G-conjugates of g.
The extended centralizer C∗

G(g) of g is the stabilizer of the set {g, g−1} under
G-conjugation. The conjugacy class of g is said to be a real defect class of B.

Let E be a Sylow 2-subgroup of C∗
G(g) and let D = E ∩ CG(g). Then the pair

(D,E) is an extended defect couple of B. If B is principal then g = 1G and D = E
is a Sylow 2-subgroup of G. Otherwise [E : D] = 2. Gow (1988) showed that E is
determined up to G-conjugacy.

We are interested in the influence of (D,E) on B. For example, we can show
that (D,E) determines which B-subpairs are real: First, we can choose a Sylow

B-subpair (D, bD) so that b
EC(D)
D is real with defect pair (D,E) (or equivalently

bD = beoD , where e is such that E = D〈e〉). Then a B-subpair (Q, bQ) is real iff it
is conjugate to (R, bR), where R ≤ D and E = DCE(R). This in turn determines
the number of real irreducible characters in B.

The involution module of G arises from the conjugation action of G on its
involutions, over a field of characteristic 2. G. R. Robinson (1988) shows that a
(2-modular) irreducible module occurs with composition multiplicity ν(Φ) in this
module, where Φ is the associated projective character. In particular ν(Φ) ≥ 0,
something that is not true in odd characteristic.

In (M. 2006) we show that the only projective components of the involution
module are real and irreducible, and in particular belong to real 2-blocks of defect
zero. Moreover, each irreducible in such a block occurs with multiplicity 1 in the
involution module. We have a number of results linking (D,E) and the vertices
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of the components of the involution module that belong to B. For example, each
vertex is contained in CD(t), for some involution t such that E = D〈t〉.

Now let x be a 2-element of G, let b be a 2-block of CG(x) such that bG = B, and
let θ be an irreducible Brauer character in b. We use the following ‘global-local’
result of Brauer: ∑

χ∈Irr(B)

ǫ(χ)d
(x)
χ,θ =

∑

ψ∈Irr(b)

ǫ(ψ)d
(x)
ψ,θ.

These methods allow us to enumerate the Frobenius-Schur indicators of the
irreducible characters in B, when B has cyclic, Klein-four or dihedral defect group
(M. 2008). The answer depends both on the Morita equivalence class of B and on
(D,E). We also determine the vertices of the components of the involution module
of B. In many cases we can even give composition multiplicities and Loewy series
for these components. The other tame blocks could be dealt with similarly.
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Brauer Height Zero Conjecture for 2-blocks of Maximal Defect

Gabriel Navarro and Pham Huu Tiep

Suppose that G is a finite group, p is a prime and B is a p-block of G with defect
group D. Richard Brauer’s Height Zero Conjecture, one of the main conjectures
in the Representation Theory of Finite Groups, states that all irreducible complex
characters in B have height zero if and only ifD is abelian. In 1984 Brauer’s Height
Zero Conjecture was proven for p-solvable groups by D. Gluck and T. Wolf [GW1],
[GW2] with the “only if” part being extraordinary complicated. In 1988 the “if”
implication was reduced to a question on quasisimple groups by T. Berger and R.
Knörr [BK]. P. Fong and M. Harris proved the “if” direction of the conjecture for
the principal 2-block in [FH]. (In fact, they proved the Broué Conjecture for those
blocks.) Now, the recent advances on the McKay conjecture in [IMN], together
with the recent and powerful results of M. Broué and J. Michel [BM] on unions
of ℓ-blocks, of C. Bonnafé and R. Rouquier [BR] on Morita equivalences, and of
course the Deligne-Lusztig theory [L], allow us to handle the full Brauer’s Height
Zero Conjecture for the 2-blocks of maximal defect.

Theorem A. Let B be a 2-block of G with defect group P ∈ Syl2(G). Then χ(1)
is odd for all χ ∈ Irr(B) if and only if P is abelian.
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Almost all of this work is devoted to prove the “only if” part of Theorem A, and
we use the Classification of Finite Simple Groups. All of these ideas are relevant
to the case of odd primes on which we are working now. We also stress that the
methods and the ideas used here will definitely help to handle the general Height
Zero Conjecture once the results in [IMN] are improved to general blocks to prove
the Alperin-McKay conjecture, and the blocks of the quasisimple groups have been
classified.
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Equivalences between fusion systems of finite groups of Lie type

Bob Oliver

(joint work with Carles Broto, Jesper M. Møller)

For any prime p and any finite group G, let Fp(G) denote the p-fusion category
of G. This is the category whose objects are the p-subgroups of G, and where
MorFp(G)(P,Q) is the group of all homomorphisms which are induced by conju-
gation in G.

When p is a prime and G1 and G2 are two finite groups, we say that Fp(G1)
and Fp(G2) are isotypically equivalent (written Fp(G1) ≃ Fp(G2)) if there is
an equivalence of categories Fp(G1) → Fp(G2) which commutes up to natural
isomorphism with the forgetful functors from Fp(Gi) to the category of groups.
Equivalently, Fp(G1) ≃ Fp(G2) if and only if there are Sylow p-subgroups Si ∈

Sylp(Gi), and an isomorphism α : S1

∼=
−→ S2 which is fusion preserving. This last

condition means that for all P,Q ≤ S1 and all ϕ ∈ Iso(P,Q), ϕ is conjugation
by an element of G1 if and only if αϕα−1 ∈ Iso(α(P ), α(Q)) is conjugation by an
element of G2.

The following theorem is the main result in [1]:
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Theorem A. Fix a prime p, a connected reductive integral group scheme G, and
a pair of prime powers q and q′ both prime to p. Then the following hold.

(a) If 〈q〉 = 〈q′〉 as closed subgroups of Z×
p , then Fp(G(q)) ≃ Fp(G(q′)).

(b) If G is of type An, Dn, or E6, τ is a graph automorphism of G, and

〈q〉 = 〈q′〉 as closed subgroups of Z×
p , then Fp(τG(q)) ≃ Fp(τG(q′)).

(c) If −Id lies in the Weyl group of G, and 〈−1, q〉 = 〈−1, q′〉 as closed
subgroups of Z×

p , then Fp(G(q)) ≃ Fp(G(q′)) (and similarly for twisted
groups).

(d) If G is of type An, D2m+1, or E6, and 〈−q〉 = 〈q′〉 as closed subgroups of
Z×
p , then Fp(G−(q)) ≃ Fp(G+(q′))

The proof of Theorem A is based on homotopy theory. It seems likely that it
can be shown using more algebraic methods, but as far as we can tell, no other
proof of the result is currently known.

The starting point in the proof is a theorem by Martino and Priddy [3], that
Fp(G1) ≃ Fp(G2) if the p-completed classifying spaces BG1

∧
p and BG2

∧
p are ho-

motopy equivalent. This last condition can also be formulated without defin-
ing p-completion: for any two spaces X and Y with finite fundamental group,
X∧
p and Y ∧

p are homotopy equivalent if and only if there is a third space Z and
maps X −→ Z ←− Y which induce isomorphisms in mod p homology. In fact,
the converse to this result (conjectured by Martino and Priddy) is also true: if
Fp(G1) ≃ Fp(G2), then BG1

∧
p ≃ BG2

∧
p ([4] and [5]). However, the proof of this

last statement uses the classification of finite simple groups.
The proof of Theorem A thus depends on comparing the p-completed classifying

spaces of different finite groups of the same Lie type. This uses a theorem of Eric
Friedlander [2, Theorem 12.2], which describes BG(q)∧p as a “homotopy fixed set”
of a certain self map of BG(C). The final piece of input is a theorem which
says that under certain hypotheses on a space X , if two homotopy equivalences

α, β : X
≃
−→ X generate the same closed subgroup of the group of all homotopy

classes of self equivalences of X , then their homotopy fixed sets are homotopy
equivalent [1, Theorem 2.4].

References

[1] C. Broto, J. Møller, & B. Oliver, Equivalences between fusion systems of finite groups of
Lie type, preprint.

[2] E. Friedlander, Étale homotopy of simplicial schemes, Annals of Mathematics Studies 104,
Princeton University Press (1982).

[3] J. Martino & S. Priddy, Unstable homotopy classification of BG∧

p
, Math. Proc. Cambridge

Philos. Soc. 119 (1996), 119–137.
[4] B. Oliver, Equivalences of classifying spaces completed at odd primes, Math. Proc. Camb.

Phil. Soc. 137 (2004), 321–347.
[5] B. Oliver, Equivalences of classifying spaces completed at the prime two, Amer. Math. Soc.

Memoirs 848 (2006).



952 Oberwolfach Report 17

Control of transfer and gluing problem for fusion systems

Sejong Park

We report two rather separate recent results on fusion systems, obtained during
the author’s stay in Oberwolfach as an Oberwolfach Leibniz Fellow in 2008–2009.

1. Control of transfer

Let F be a saturated fusion system on a finite p-group P . We define two
subgroups of P , the F-focal subgroup

[P,F ] := 〈[Q,AutF (Q)] | Q ≤ P 〉

and the F-hyperfocal subgroup

[P,Op∗(F)] := 〈[Q,Op(AutF(Q))] | Q ≤ P 〉.

A fusion subsystem F0 of F on P0 ≤ P is said to be of p-power index in F if
P0 ≥ [P,Op∗(F)] and AutF0

(Q) ≥ Op(AutF(Q)) for all Q ≤ P0. It is a well-known
fact [1, 4.3][9, 7.4] that for each T ≤ P with T ≥ [P,Op∗(F)], there exists a unique
saturated subsystem FT of F on T which is of p-power index. It follows that F has
a proper subsystem of p-power index if and only if [P,F ] < P . This generalizes
the classical notions of focal and hyperfocal subgroups of finite groups.

The general question of control of transfer is as follows.

Control of Transfer. For a saturated fusion system F on a finite p-group P ,
find 1 6= W (P ) E P such that [P,F ] = [P,NF (W (P ))].

We present two recent results which generalize classical control of transfer theo-
rems for finite groups due to Glauberman and Yoshida to saturated fusion systems.
These are part of an ongoing joint work with A. Dı́az, A. Glesser, N. Mazza, and
R. Stancu.

Theorem 1.1 ([4, 1.2]; cf. [3, 12.4]). Let p ≥ 5 and let F be a saturated fusion
system on a finite p-group P . Then there is a group K∞(P ) such that 1 6= K∞(P )E
P and [P,F ] = [P,NF (K∞(P ))].

Theorem 1.2 (cf. [11, 4.2][5, 10.1]). Let P be a finite p-group with no homomor-
phic image isomorphic to Z/pZ ≀ Z/pZ. For any saturated fusion system F on P ,
we have [P,F ] = [P,NF (P )].

Theorem 1.2 was proved when the author invited Stancu and Dı́az to Oberwol-
fach in 2008. We note that the proof of Theorem 1.2 uses the transfer map of the
saturated fusion system F given by a P -P -biset Ω associated to F .(cf. [2, 5.5])
Write

Ω =
⊔

i∈I

P × P/∆Qi
ϕi

where Qi ≤ P , ϕi ∈ HomF (Qi, P ), and let A be an abelian group with trivial
P -action. Then we define the transfer map

tΩ : H∗(P,A)→ H∗(P,A)
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by

(1) tΩ =
∑

i∈I

trPQi
resϕi

where tr and res denotes the usual transfer and restriction maps in group cohomol-
ogy. The essential observation is that formula (1) can be viewed as a Mackey de-
composition formula over the set of “P -P -double coset representatives” {ϕi | i ∈ I}
of the saturated fusion system F .

2. Gluing problem for blocks of finite groups

We fix notation to be used throughout this section. Let G be a finite group,
k an algebraically closed field of characteristic p | |G|, b a block of kG. Fix a
maximal b-Brauer pair (P, eP ), and for each Q ≤ P , let eQ be the unique block
of kCG(Q) such that (Q, eQ) ≤ (P, eP ). Let F = F(P,eP )(G, b) be the saturated
fusion system on P determined by the block b. Then F is an EI-category and Fc

is a right ideal of F , that is, a full subcategory of F such that whenever Q,R ≤ P ,
HomF(Q,R) 6= ∅, Q ∈ C, we have R ∈ C.

Definition 2.1. Let C be an EI-category. Let [C] be the poset of isomorphism
classes [X ] of objects X of C. Let S(C) be the subdivision of C, that is, the category
whose objects are the chains

σ = (X0
ϕ0

−→ X2
ϕ1

−→ · · ·
ϕn−1

−−−→ Xn)

of nonisomorphisms ϕi in C, and for two chains σ = (X0 → · · · → Xm) and τ =
(Y0 → · · · → Yn), the morphisms µ = (µi) : σ → τ are collections of isomorphisms
µi : Xi → Yα(i) in C which make the obvious diagram commute. Finally, the poset
[S(C)] is called the orbit space of C.

Linckelmann obtained the following five-term exact sequence using the con-
tractibility of [S(Fc)].

Theorem 2.2 ([8, 1.1]). There is an exact sequence of abelian groups

0→ H1([S(Fc)],A1)→ H2(Fc, k×)
d
−→ H0([S(Fc)],A2)

→ H2([S(Fc)],A1)→ H3(Fc, k×)

where Ai : [S(Fc)]→ Mod(Z) is such that Ai([σ]) = Hi(AutS(Fc), k
×).

By the work of Külshammer and Puig [6], each block b determines an element
α0 ∈ H0([S(Fc)],A2). Now we can state

Gluing Problem. Find α ∈ H2(Fc, k×) such that d(α) = α0 in the exact se-
quence of Theorem 2.2.

If the Gluing Problem has a solution for every block, one can reformulate
Alperin’s weight conjecture as follows.

Theorem 2.3 ([7, 4.3]). The following are equivalent.

(1) Alperin’s weight conjecture holds for every block b.
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(2) For every block b, we have

k(b) =
∑

i≥0

(−1)i dimkH
i([S(Fc)],A)

where k(b) denotes the number of ordinary irreducible characters in the
block b and A : [S(Fc)]→ Mod(k) is a covariant functor such that

A([σ]) = Homk(kαAutS(Fc)(σ)/[kαAutS(Fc)(σ), kαAutS(Fc)(σ)], k).

Now we solve the Gluing Problem in some special cases.

Proposition 2.4. Let p = 2, P be either a dihedral 2-group of order ≥ 4, a
semidihedral 2-group of order ≥ 16, or a (generalized) quaternion 2-group of order
≥ 8. For any saturated fusion system F on P , we have

H2(Fc, k×) = H0([S(Fc)],A2
F ) = 0.

Proposition 2.5. Let p be odd, P an extraspecial p-group of order p3 and expo-
nent p, and F a saturated fusion system on P . Then we have H2(S(Fc)],A1) = 0.
Furthermore, if F = FP (PSL3(Fp)), then

H1([S(Fc)],A1) =

{
0, if p 6≡ 1 mod 3

Z/3, if p ≡ 1 mod 3.

In particular, the Gluing Problem for the principal p-block of PSL3(Fp) has a
unique solution if p 6≡ 1 mod 3, and three solutions if p ≡ 1 mod 3.

For Proposition 2.5, we use detailed fusion information which can be found
in [10]. We hope to investigate the meaning of non-unique solutions of the Gluing
Problem further in the future.
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On a Jackowski-McClure’s theorem

Lluis Puig

Most of our research in the last six years is contained in the book “Frobenius ca-
tegories versus Brauer blocks”, just appeared in the collection “Progress in Math-
ematics”, published by Birkhäuser. Some of its main results already have been
announced at Oberwolfach’s meetings in 2003 and 2006.

On the one hand, this book introduces and develops the abstract setting of the
Frobenius categories that we created fifteen years ago for a better understanding
of what was loosely called the local theory of a finite group around a prime number
p or around a Brauer block, and for the purpose of an eventual classification — a
reasonable concept of simple Frobenius category arises.

On the other hand, the book develops in parallel this abstract setting with its
application to the Brauer blocks, providing a framework for a deeper understanding
of one of the central open problems in modular representation theory, namely
Alperin’s Weight Conjecture (AWC). Actually, this new framework suggests a
more general form of AWC, and a significant result of the book is a reduction
theorem of this form of AWC to quasi-simple groups.

The third part of the book deals with the so-called localities associated to a
Frobenius category, giving some insight on the open question about the existence
and the uniqueness of a perfect locality — also called centric linking system in the
literature. A systematic appendix on the cohomology of categories states some
useful and more or less known facts.

Carles Broto, Ran Levi and Bob Oliver consider the topological space B(L)
determined by a perfect locality L — associated with the full subcategory over
the L-selfcentralizing objects of a Frobenius P -category F — and prove that the
cohomology group Hn(B(L), k) of B(L) — with coefficients in the prime field k
of characteristic p — coincide with the inverse limit of the contravariant functor
mapping any F -selfcentralizing object Q on Hn(Q, k) and any F -morphism on the
corresponding restriction.

As a matter of fact, Hn(B(L), k) tautologically coincides with Hn(L, k) — the
cohomology group of the category L over the trivial contravariant functor —
and then a question arises: could the above coincidence be proved without any
topological consideration?

In our talk, we will show that the answer is in the affirmative via the gen-
eral result below, which generalizes the meaningful part of a sixteenth years old
Jackowski-McClure’s statement. In our general situation, C is a small category, C̃

is an exterior quotient of C — the quotient of C by a coherent family of inner au-
tomorphisms for the C-objects — and e : C→ C̃ is the canonical functor; actually,
we consider the category C̃ augmented by a final object + — denoted by C̃+ —
and the corresponding functor e+ : C→ C̃+ . We set e(•) = •̃ .
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Then, we consider the e+-relative regular representation of C̃+ , namely the
functor from C̃+ to the category of small categories CC

e+-rr : C̃+ −→ CC

sending + to C and any C̃-object Ã to the small category CÃ where the objects are

the pairs (h̃, B) formed by a C-object B and a C̃-morphism h̃ : B̃ → Ã , and where

the morphisms from (h̃, B) to a CÃ-object (h̃′, B′) are the C-morphisms g : B → B′

fulfilling h̃′ ◦ g̃ = h̃ ; of course, we consider in CÃ the composition induced by the

composition in C ; moreover, e+-rr maps the unique morphism Ã → + on the
forgetful functor, and any C̃-morphism f̃ : Ã→ Ã′ on the evident functor

Cf̃ : CÃ −→ CÃ′

sending (h̃, B) to (f̃ ◦ h̃, B) .

Similarly, we can define an e+-relative pull-back in C of a pair formed by a
C̃+-morphism f̃ : B̃ → Ã and by a CÃ-object (f̃ ′, B′) in the following way; we
say that a pair formed by a CB̃-object (g̃, C) and by a C-morphism g′ : C → B′

is an e+-relative pull-back of
(
f̃ , (f̃ ′, B′)

)
if it fulfills f̃ ◦ g̃ = f̃ ′ ◦ g̃′ and, for any

pair formed by a CB̃-object (h̃, D) and by a C-morphism h′ : D → B′ fulfilling

f̃ ◦ h̃ = f̃ ′ ◦ h̃′ , there is a unique CB̃-morphism ℓ : (h̃, D) → (g̃, C) such that
g′ ◦ ℓ = h′ or, equivalently, there is a unique C-morphism ℓ : D → C fulfilling the
equalities

g̃ ◦ ℓ̃ = h̃ and g′ ◦ ℓ = h′ .

The point is that, if any pair
(
f̃ , (f̃ ′, B′)

)
as above in C admits an e+-relative

pull-back, then all the functors Cf̃ : CÃ → CÃ′ above and all the forgetful functors

pÃ : CÃ → C have a right adjoint — noted (Cf̃ )
a and (pÃ)a respectively — and

we obtain the following result, where Ab denotes the category of Abelian groups.

Proposition With the notation and the hypothesis above, let Ã be a C̃-object
such that C̃(Ã, B̃) 6= ∅ for any C̃-object B̃ , mÃ : CÃ → Ab a contravariant functor
and m : C → Ab a direct summand of mÃ ◦ (pÃ)a . Then, Hn(C,m) is canonically

isomorphic to the inverse limit of the contravariant functor C̃→ Ab mapping any
C̃-object B̃ on Hn(CB̃ ,m ◦ pB̃) .

Encoding fusion data in the double Burnside ring

Kári Ragnarsson

(joint work with Radu Stancu)

We discuss how fusion theory over a finite p-group can be encoded in its double
Burnside ring via characteristic elements. A characteristic element for a fusion
system F on a finite p-group S is an element in A(S, S) or A(S, S)(p) with certain
properties, formulated by Linckelmann–Webb, that mimic the properties of a finite
group G with Sylow subgroup S when regarded as an (S, S)-biset. The existence
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of a characteristic element for a saturated fusion system was established by Broto–
Levi–Oliver in [2].

Characteristic elements are by no means unique. Indeed, it is easy to show
that a given fusion system has either zero or infinitely many characteristic ele-
ments. However, specializing to characteristic idempotents, that is, idempotents
in A(S, S)(p) with the Linckelmann-Webb properties, I showed in [3] that every
saturated fusion system F has a unique characteristic idempotent ωF . Moreover,
I showed that if Ω is a characteristic element or idempotent for F , then F can be
recovered as the stabilizer fusion system, defined as the largest fusion system on
S that stabilizes Ω. Thus a fusion system is encoded in the double Burnside ring
by its characteristic elements.

In recent work, joint with Radu Stancu, we have proved the converse of the
aforementioned Broto–Levi–Oliver result, obtaining the following theorem.

Theorem. If a fusion system has a characteristic idempotent, then it is saturated.

This shows that the property of saturation can also be detected in the double
Burnside ring. A similar result appears in unpublished work of Puig.

More importantly, while the Linckelmann–Webb properties of a characteristic
element are defined in terms of the fusion system it characterizes, we give an
intrinsic criterion for when an element in A(S, S)(p) is a characteristic idempotent
for some fusion system. This criterion is the Frobenius reciprocity relation

(Ω×∆ Ω) = (Ω×∆ 1) ◦ Ω,

where 1 is the unit in A(S, S)(p), ◦ is the standard composition of Burnside rings,
and for (S, S)-bisets X and Y , X ×∆ Y is the (S, S × S)-biset obtained by letting
S act on X × Y via the diagonal on one side.

Theorem. An element in the (p-localized) double Burnside ring is characteristic
for its stabilizer fusion system if and only if it satisfies Frobenius reciprocity.

Combining this result with the work in [3], we obtain a striking result.

Theorem. For a finite p-group S, saturated fusion systems over S are in bijec-
tive correspondence with nonzero idempotents in A(S, S)(p) that satisfy Frobenius
reciprocity.

The correspondence sends a saturated fusion system to its characteristic idem-
potent, and a Frobenius idempotent to its stabilizer fusion system.

This bijection gives us a completely new way to think of saturated fusion sys-
tems. Moreover it opens up new avenues of research, such as interpreting results
on fusion systems in terms of characteristic idempotents, or classifying saturated
fusion systems via characteristic idempotents. The result also has interesting con-
sequences in algebraic topology, answering questions about stable splittings of
classifying spaces, generalizing a variant of the Adams–Wilkerson theorem [1],
and providing a tool to extend the results in [4] from elementary abelian p-groups
to general p-groups.
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On the graded center of the stable category of a finite p-group

Radu Stancu

(joint work with Markus Linckelmann)

The graded center of a k-linear triangulated category (C; Σ) over a commutative
ring k is the graded k-module Z∗(C) = Z∗(C; Σ) which in degree n ∈ Z consists of
all k-linear natural transformations ϕ : IdC → Σn satisfying Σϕ = (−1)nϕΣ; this
becomes a graded commutative k-algebra with multiplication essentially induced
by composition in C. We refer to [6] for more details. By [2], the stable cate-
gory mod(A) of finitely generated modules over a finite-dimensional self-injective
algebra A is a triangulated category with shift functor the inverse of the Heller
operator. Its graded center has been calculated for Brauer tree algebras [4] and in
particular also uniserial algebras [5]. These calculations suggest that Tate cohom-
logy rings of blocks and the graded centers of their stable module categories are
closely related. Since the Tate cohomology of a block is an invariant of the fusion
system of the block, a good understanding of graded centers might shed some light
on the question to what extent the fusion system of a block is determined by its
stable module category. These calculations also suggest that in order to determine
the graded center of the stable module category of a block one will need to do this
first for a defect group algebra of the block, hence for finite p-group algebras. This
is what motivates the present paper. The following result shows that Z0(mod(A))
need not be finite-dimensional, answering a question raised in [6].

Theorem 1. Let P be a finite 2-group of rank at least 2 and k an algebraically
closed field of characteristic 2. Evaluation at the trivial kP -module induces a
surjective homomorphism of graded k-algebras Z∗(mod(kP )) −→ Ĥ∗(P ; k) whose
kernel I is a nilpotent homogeneous ideal which is infinite-dimensional in each
degree; in particular, Z0(mod(kP )) has infinite dimension.

For odd p we have a slightly weaker statement:

Theorem 2. Let p be an odd prime, P a finite p-group of rank at least 2 and k an
algebraically closed field of characteristic p. Evaluation at the trivial kP -module in-
duces a surjective homomorphism of graded k-algebras Z∗(mod(kP )) −→ Ĥ∗(P ; k)
whose kernel I is a nilpotent homogeneous ideal which is infinite-dimensional in
each odd degree.
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It is easy to see that the canonical map Z∗(mod(kP ))→ Ĥ∗(P ; k) is surjective
with nilpotent kernel I. The point of the above theorem is that this kernel tends
to have infinite dimension in each degree (if p = 2) and at least in each odd
degree if p > 2. Note though that for p odd there is no known example with
Z0(mod(kP )) having infinite dimension. The proof shows more precisely that
these dimensions have as lower bound the cardinality of the field k. Technically,
the proofs of the above theorems are based on the fact that for A a symmetric
algebra, an almost split sequence ending in an indecomposable non projective A-
module U determines an almost vanishing morphism ζU : U → Ω(U) which in turn
provides elements of degree −1 in the graded center of the stable category; see e.g.
[6, Proposition 1.4]. Using modules with appropriate periods, these can then be
“shifted” to all other degrees if the underlying characteristic is 2 and all other
odd degrees if the characteristic is odd. The elements of Z∗(mod(A)) obtained
in this way will be called almost vanishing. For Klein four groups, almost split
sequences turn out to be the only way to obtain elements in the graded center
of its stable module category beyond Tate cohomology. This can be seen using
the classification of indecomposable modules over Klein four groups and leads to
a slightly more precise statement.

Theorem 3. Let P be a Klein four group and let k be an algebraically closed field of
characteristic 2. Then the evaluation at the trivial kP -module induces a surjective
homomorphism of graded k-algebras Z∗(mod(kP )) −→ Ĥ∗(P ; k) whose kernel I
is a homogeneous ideal which is infinite-dimensional in each degree. Moreover, we
have I2 = {0} and all elements in I are almost vanishing.

This raises the question for which finite p-groups P is the graded center
Z∗(mod(kP )) generated by Tate cohomology and almost vanishing elements. An-
other interesting question underlying some of the technical details below is the
following. Given a periodic module U of period n of a symmetric algebra A over
a field k, any isomorphism α : U ∼= Ωn(U) induces an algebra automorphism of
the stable endomorphism algebra EndA(U) sending ϕ to α−1 ◦Ω(ϕ) ◦ α. When is
this an inner automorphism? Equivalently, when can α be chosen in such a way
that this automorphism is the identity? D. J. Benson observed that the answer is
positive if α is induced by an element in Tate cohomology (or the Tate analogue
of Hochschild cohomology) because then α is the evaluation at U of a natural
transformation from the identity functor on mod(A) to the functor Ωn.
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A proof of Benson’s regularity conjecture

Peter Symonds

We present a proof of Dave Benson’s conjecture that the Castelnuovo-Mumford
regularity of the mod-p cohomology of the cohomology of a profinite group is zero.

We start by discussing some consequences, such as a bound on the degrees of
the generators and relations. Then we define regularity and present some of its
basic properties. Finally we outline the proof, which uses equivariant cohomology
of spaces following Quillen and a result of Duflot on p-toral actions.

Bisets stabilizing a simple module

Jacques Thévenaz

(joint work with Serge Bouc)

Let G be a finite group and k a field.
A kG-module L is said to be stabilized by a (G,G)-biset U if kU ⊗kG L ∼= L. If

L is indecomposable, one can assume that U is transitive, hence of the form

U ∼= IndinfGA/B Isoφ DefresGS/T ,

where (A,B) and (S, T ) are sections of G and φ : S/T → A/B is an isomorphism.
Such a biset is minimal if the size of the group A/B is minimal (among stabilizing
bisets for L).

If G is a p-group and k = Q, this phenomenon occurs in Bouc’s theory of genetic
subgroups associated to simple QG-modules (more precisely U has the special form

U = IndinfGS/T DefresGS/T with S = NG(T ) and T is genetic). The present joint
work is a first step towards the goal of generalizing this theory to arbitrary finite
groups, arbitrary fields, and arbitrary indecomposable modules.

If U , as above, is a minimal biset stabilizing an indecomposable kG-module L,
we prove the following :

1. The section (S, T ) is linked to some conjugate ( gA, gB) of (A,B), that is, we
have isomorphisms induced by inclusions

( gA ∩ S)/( gB ∩ T ) ∼= gA/ gB , ( gA ∩ S)/( gB ∩ T ) ∼= S/T .

2. With this property, the double coset SgA defined by g is unique.
3. If U ′ = IndinfGA′/B′ Isoφ′ DefresGS′/T ′ is another minimal biset stabilizing L,

then the section (S′, T ′) is linked to some conjugate ( hA, hB) of (A,B). In par-
ticular the isomorphism type of S/T is unique. Moreover the isomorphism type of

the corresponding k[S/T ]-module DefresGS/T (L) is also unique.

4. If we assume further that L is a simple module, then the group S/T is a
Roquette group, that is, all its normal abelian subgroups are cyclic.
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Module correspondences in Clifford Theory

Alexandre Turull

Clifford Theory is at the heart of many important proofs in the representation
theory of finite groups. Recently the author used it to prove a strengthened version
of the McKay Conjecture for all p-solvable groups [3]. The strengthening involves,
among other things, controlling certain rationality properties of the corresponding
characters of p′-degree, involving fields of values and Schur indices. At the heart
of the proof is the proof that certain Clifford Theories have to be isomorphic. The
present research focuses on the properties of the module correspondences that are
implied by this type of isomorphisms among Clifford Theories.

Let G be a finite group, and let πi : Gi → G be surjective homomorphisms
with ker(πi) = Hi for i = 1, 2. Let θi ∈ Irr(Hi). It is well-known that, if θi
is Gi-invariant, it determines a unique element αi ∈ H2(G,C×). If furthermore
α1 = α2, then the Clifford theories above θ1 and above θ2 are isomorphic. In
this case there is a bijection, with good properties, from the set of irreducible
characters of G1 above θ1 to the set of irreducible characters of G2 above θ2. This
bijection is not unique.

We are interested in module properties over fields in any characteristic which are
not necessarily algebraically closed, and irreducible modules θi which are not neces-
sarily Gi-invariant. For them, a good replacement for the group H2(G,C×) is the
Brauer-Clifford group BrClif(G,Z), which is isomorphic to H2(G,C×) in the clas-
sical case [1, 2]. If θi is an irreducible Hi-module over a field F , then it determines
a commutativeG-algebra Zi over F , and a unique element αi ∈ BrClif(G,Zi). The
Clifford theories above θ1 and above θ2 are isomorphic if there exists a G-algebra
isomorphism β : Z1 → Z2, which naturally induces the isomorphism

β̂ : BrClif(G,Z1)→ BrClif(G,Z2),

and is such that β̂(α1) = α2. When this happens, there exists a bijection between
the isomorphism classes of modules for subgroups of G1 and those for subgroups of
G2 for modules over every extension field of the base field F . While this bijection
has excellent compatibility properties with respect to subgroups and extensions of
fields, it is also not unique.

While the non-uniqueness of these bijections is not a major problem when we
want to study modules over fields all in the same characteristic, it is not desirable
when we try to relate modules across different characteristics. A unique bijection
can be obtained with just the choice of a particular G-algebra isomorphism, and
this unique bijection extends over all field extensions of F . We will discuss how
this can be achieved.

Theorem 1. With the notation and hypotheses as above, there exists a G-algebra
isomorphism β : Z1 → Z2, which naturally induces the isomorphism

β̂ : BrClif(G,Z1)→ BrClif(G,Z2),
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and is such that β̂(α1) = α2 if and only if there exist M1 a θ1-quasi-homogeneous
FG1-module and M2 a θ2-quasi-homogeneous FG2-module, and an isomorphism
of G-algebras over F

ι : EndFH1
(M1)→ EndFH2

(M2).

From each module Mi, we may construct a large category C(Mi) of modules for
certain subgroups of Gi over field extensions of F . These categories are equivalent
to the natural category associated to Mi by Clifford Theory.

Theorem 2. Let Mi be a Gi-module over F such that ResGi

Hi
(Mi) is completely re-

ducible. Then the category C(Mi) is equivalent to the category of all modules N for
subgroups of Gi that contain Hi over field extensions K of F such that ResHi(N) is
completely reducible and each of the irreducible submodules of ResHi(N) is isomor-

phic to an irreducible submodule of ResGi

Hi
(Mi ⊗F K). (However, this equivalence

is not unique).

In view of the previous theorem, we may work, without loss, with the categories
C(Mi). For them ι defines a unique isomorphism of categories.

Theorem 3. For i = 1, 2, let Mi be a Gi-module such that ResGi

Hi
(Mi) is completely

reducible and let

ι : EndFH1
(M1)→ EndFH2

(M2)

be an isomorphism of G-algebras over F . Then we have determined a unique
isomorphism of categories from C(M1) to C(M2).

The above results are, of course, related to Morita equivalences in some cases.
Suppose the field F has characteristic p, and the subgroups H1 and H2 are p′-
groups. Fix K to be some field extension of F . Then the modules in C(Mi) which
areKGi-modules may be thought of as the modules for a certain algebra Λi. When
looking at these modules up to isomorphism, the isomorphism of categories induces
a Morita equivalence from the category of all modules for Λ1 to the category of
all modules for Λ2. More precisely, in this situation, our result implies a family of
Morita equivalences, one for each field extension of F and subgroup of G.
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Cohomology rings of small categories and tensor identities

Fei Xu

Let k be a field and C a small category. In an earlier Oberwolfach report [4], we
studied certain homological properties of the category algebra kC and established
a surjective ring homomorphism from the Hochschild cohomology ring

HH∗(kC) := Ext∗kCe(kC, kC)

to the ordinary cohomology ring

H∗(C; k) := Ext∗kC(k, k) ∼= H∗(BC, k),

where BC is the classifying space of C [3]. Here we give an alternative description
of that map.

We begin with some general set-up and then specialize to functor categories.
Let (T,⊗, e, a, l, r, T, λ, ρ) be a suspended monoidal category in the sense of Suarez-
Alvarez [2], where −⊗− : T× T→ T is a bifunctor, e ∈ ObT is the identity with
respect to −⊗−, T : T→ T is an automorphism and the rest are various functors
imposing all sorts of compatibilities of operations involving ⊗, e, T . For simplicity
we will often abbreviate the notation to be (T,⊗, e). In practice, the category T

will often be a triangulated category and T is the translation. We call e the tensor
identity of the suspended monoidal category.

Given a suspended monoidal category (T,⊗, e), we examine the set of endo-
morphisms of e, EndT(e) :=

⊕
p∈Z

HomT(e, T p(e)), which is defined and shown by
Suarez-Alvarez to be a graded commutative ring. If f : e→ T pe and g : e→ T qe,
then f ·g = T q ◦g : e→ T p+qe. Suppose k is a field. When T is a k-linear category,
EndT(e) is a graded commutative k-algebra.

We are mainly interested in the functor category V ectEk where E is a small
category and V ectk is the category of k-vector spaces. Mitchell [1] showed there
exists a fully faithful functor V ectEk → kE-mod which means functors are modules.
Especially when ObE is finite, the functor provides an equivalence of categories.
It is often convenient to introduce a kE-module as a functor. For instance, the
trivial kE-module k is defined as a constant functor which sends each object in
E to the base field k and each morphism to the identity. Our functor category
carries a natural tensor product among its objects, as described below, where we
give two un-suspended categories equipped with tensor structure:

(1) (V ectCk,⊠, k) where ⊠ is the point-wise tensor product over k of functors;
(2) (Ae-mod,⊗A, A) where ⊗A is the usual tensor product of bimodules.

These categories lead to two suspended monoidal categories, in which the func-
tor T we mentioned before is the suspension Σ:

(1) (D−(V ectCk),⊠, k) is a suspended monoidal category;
(2) (D−(Ae-mod),⊗L

A, A) is a suspended monoidal category, where ⊗L

A is the
left derived functor of ⊗A.

We note that when A = kC for a category C, one may define two tensor struc-
tures on D−((kC)e-mod). The reason is that (kC)e ∼= kCe, where Ce = C × Cop.
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The first tensor structure is given as in (1) with tensor product ⊠ and tensor
identity k ∈ kCe-mod, while the second one is given as in (2) with tensor product
⊗L

kC and tensor identity kC.
The endomorphism ring of the tensor identity in each case is as follows.

(1) EndD−(kC−mod)(k) ∼= Ext∗kC(k, k) ∼= H∗(BC, k), the ordinary cohomology
ring of C;

(2) We have two tensor structures on D−(kCe-mod). With respect to ⊠ and

k we have End⊠

D−(kCe−mod)(k)
∼= Ext∗kCe(k, k) ∼= H∗(BCe, k). However

with respect to the tensor product ⊗L

kC and tensor identity kC we just
get the Hochschild cohomology ring EndD−(kCe−mod)(kC) ∼= HH∗(kC) =
Ext∗kCe(kC, kC). We will examine the second ring structure.

Let A be an algebra. Take M ∈ A-mod. It is well known that there is a
ring homomorphism Ext∗Ae(A,A) → Ext∗A(M,M), induced by − ⊗AM . If we fix
A = kC and M = k, the above map gives rise to a ring homomorphism from the
Hochschild cohomology ring HH∗(kC) to the ordinary cohomology ring H∗(C; k).
We want to describe this map using the language of suspended monoidal categories
(compare with [3, 4]).

Suppose F (C) is the category of factorizations in C [3]. The objects in F (C) are
the morphisms in C, and we have the following commutative diagram

F (C)

t
!!C

CC
CC

CC
C

τ // Ce = C × Cop

pr

yysssssssssss

C ,

where pr is the projection onto the first component, t maps an object in F (C) (that
is, a morphism in C) to its terminal, and τ takes an object in F (C) to the pair of
source and terminal of it as a morphism in C. As we have seen in [3], the functors
readily induce a commutative diagram of functor categories (for simplicity, we
write them in the forms of module categories following Mitchell’s observation)

kF (C)-mod

LKt &&NNNNNNNNNNN

LKτ // kCe-mod

LKprxxrrrrrrrrrrr

kC-mod

where LK∗ are the corresponding left Kan extensions.
Since the left Kan extensions are right exact, we obtain a commutative diagram

of derived categories

D−(kF (C)-mod)

LKt ((QQQQQQQQQQQQQ

LKτ // D−(kCe-mod)

LKprvvnnnnnnnnnnnn

D−(kC-mod) ,
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in which the boldface LK∗ are the derived functors of LK∗. This diagram makes
sense because LKpr ◦ LKτ

∼= LKt and each LK∗, as the left adjoint of an exact
functor, sends every bounded above exact sequence of projectives to a bounded
above exact sequence of projectives. We proved in [3] that LKτ takes a projective
resolution of k ∈ kF (C)-mod to a projective resolution of kC ∈ kCe-mod, that
LKt sends a projective resolution of k ∈ kF (C)-mod to a projective resolution of
k ∈ kC-mod, and that LKpr maps any projective resolution of kC ∈ kCe-mod to
an exact sequence of kC-modules whose rightmost non-zero term is k. Thus we
obtain a commutative diagram

EndD−(kF (C)−mod)(k)

LKt ))TTTTTTTTTTTTTTT

LKτ // EndD−(kCe−mod)(kC)

LKpruujjjjjjjjjjjjjjj

EndD−(kC−mod)(k) .

Since we also showed in [3] that LKt, induced by LKt, is an algebra isomorphism,
LKpr must be a split surjection. In other words, the algebra homomorphism
induced by LKpr (or equivalently by − ⊗kC k), Ext∗kCe(kC, kC) → Ext∗kC(k, k) is
split surjective.
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