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ABSTRACT. The statistical analysis of high dimensional data requires new
techniques, extending results from nonparametric statistics, analysis, prob-
ability, approximation theory, and theoretical computer science. The main
problem is how to unveil, (or to mimic performance of) sparse models for
the data. Sparsity is generally meant in terms of the number of variables
included, but may also be described in terms of smoothness, entropy, or
geometric structures. A key objective is to adapt to unknown sparsity, yet
keeping computational feasibility.
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Introduction by the Organisers

In this workshop, experts from a wide range of mathematics shared their view
on sparsity and presented an interesting blend of talks. The approaches discussed
include exploiting a priori known structures, such as grouping of variables or graph-
ical hierarchies, and the application of algorithms freed from the bodice of convex-
ity. High dimensional problems lead to deep mathematical questions, and answers
from often unexpected angles. The variety of perspectives that came up during
this workshop made it into an truly inspiring experience.
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Abstracts

Universal selection rule in non-parametric estimation and uniform
bounds for norms of sums of independent random functions

OLEG LEPSKI
(joint work with A. Goldenshluger)

The talk consists of two parts.

Part I. This part is devoted to discussion of a new approach to nonparametric
estimation which is based on selection from a given family of linear estimators. Our
methodology is applied in various statistical settings since there is no restrictions
related to the statistical model.

Let (X (”),’B("),ch"),F S ]F) be a family of statistical experiments generated
by an observation X (™. This means that B(") is the o-algebra generated by
the random element X (™) and, the probability law of X (™ belongs to the family
(B, f e F).

Let D be an open interval in R%, d > 1, let F be a set of Borel functions
f D — R, and let m be a o-finite measure on D. Our goal is to estimate the
function f. To avoid discussion of boundary effects we are interested in estimating
f on Dy, where Dy is an open subinterval of D. By an estimator of f we mean any
B(™)-measurable mapping, f : X x D — Fy, where Fy D F is a separable linear
metric space of functions defined on D and acting to R. With any estimator we

associate the risk
1

N n A q\ g
RO 1= (B [af-n])"
where £ : Fy — R, is a semi-norm, and ¢ > 0 is a given real number. The problem

is to estimate f from the observation X (") with small risk Rén) [ f ; f], at least for
large n.

We say that the estimator f(:c) is linear if there exists a function K : RExR? —
R such that

Ef[f(z)] = /DK(t,z)f(t)m(dt), VF €F, VzeD.

Thus, the linear estimator is the estimator whose expectation is a linear functional
of the underlying function f. Let D; be an open interval such that Dy C Dy C D.

Any function K : R4 x R — R satisfying
/ K(t,z)m(dt) = 1, Ve Dy
D

supp(K(~,x)) C Dy, Va € Dy,
will be called the Dy-weight. Let R(D1) be the set of all Dy-weights.
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We endow £(D1) with the operation ”®”: VK, Ky € &(D1)

[Kl ® KQ] ('a ) = > Kl('ay)KQ(yv )m(dy),

and we say that K7 and Ko commutate if
[Kl ® Kg] = [K2 X Kl] .

A subset K C R(Dy) is called the commutative weight system if any pair of its
elements commutate.

Let K be a commutative weight system, and let L = K€ U K, where
K®={L:R'xR'>R: L=K®K', K,K' €K}.

Suppose that (X("), B IP’}”), fe F) is the Lx-experiment, i.e a linear estimator
is defined for any function belonging to Lx.

Let F = {fx, K € K} be the collection of linear estimators generated by K.
We propose an estimator, say f*, for the underlying function f whose construction
is based on the data-driven selection from the family Fi, namely

f*:ff(’ K:KX(TL) e K.

We also establish an explicit upper bound on R [f*; f] for any given f € F and
n € N* in the case of an arbitrary semi-norm /.

The remarkable property of our selection rule is that under rather mild technical
assumptions it can be applied to any commutative weight system.

Construction of our selection rule requires finding uniform bounds on rather
general stochastic processes. Their description and corresponding results are dis-
cussed in the second part of the talk.

Part II. In this part of the talk we present upper bounds for norms of random
functions of special type.

Let (T, %, T) and (X,%, %) be o-finite spaces, X be a Banach space, and let
(Q,2,P) be a complete probability space.

Let X be a X-valued random element defined on (2,2,P) and having the
density f with respect to the measure ». Let also € be a real random variable
defined on the same probability space which is independent of X and has symmetric
distribution.

For any (‘I X %)—measurable function w on 7 x X and for any t € 7, n € N*

we define
n

Cwt) =) [w(t, Xi) —Bw(t,X)], nuw(t) =Y w(t,Xi)e,

i1 i1
where (X;,¢;),i = 1,n, are independent copies of (X,¢).
Put for1 <s < >

1
s

leoll.. = |/ |sw<t>|sr<dt>r, ol = | [ Inator van] "
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and let W be a given set of (3 X %)—measurable functions.
Let W, be either &, or n,,. We are interested in finding a non-random function
on W, say Uy (w), which is the uniform upper bound on H\I/w HS . in the sense that

P {51615/ [H\Iles’T - uC’*(y)U\p(w)] > 0}

is small and tends to zero as n — oo for any fixed y > 0. Here C*(-) is the given
linear function, and u > 1 is the constant that is completely determined by W and
often u = 1.
In fact we want to bound from above the latter probability as well as the
expectation
q
E (sup [H\IIMHé i uC*(y)U\p(w)}) , q>1.
weW ’ +
We provide explicit expressions for Uy which are completely determined by w, f
and s. We also show that in the case of ¥,, = n,, the corresponding uniform bound
depends on the moment conditions on the distribution of e.

Another problem arising in applications of the obtained results in mathematical
statistics is to find a uniform bound independent of the density f. Sometimes the
dependence on f is not crucial because the function f is supposed to be known. The
typical example is the regression model where the random function 7, appears.

There exist, however, problems where the situation is completely different. One
of them is the problem of estimating a unknown multivariate density from i.i.d.
observations, where the process &, appears. In this case &, can be treated as the
stochastic error of the linear estimator associated with the weight function w. A
uniform non-random bound is used in the selection rule, discussed in Part I; it
allows to select the estimator from a given family of linear estimators. It is clear
that the use of a uniform bound depending on the unknown parameter is impossible
for this purpose. To overcome this difficulty we propose a random uniform bound,
say Us(w), whose construction is based only on the sequence Xi,...,X,, and
establish corresponding inequality for

q

E < sup [\pw - 2uc*(y)05(w>D L q>0.

wew +
The obtained result, together with approach developed in Part I is sufficient in
order to establish a general oracle inequality in the context of multivariate density
estimation. In particular, it allows to solve completely the problem of bandwidth
selection for the risks described by Lg-norm. The solution was known only for
s = 1 and it was obtained by means of absolutely different technique. It allows

also to construct an estimator which is adaptive with respect to the anisotropic
Sobolev classes estimator. This problem was solved only for s = 2 and s = cc.
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Stability Selection
NicoLAl MEINSHAUSEN
(joint work with Peter Bithlmann)

Estimation of structure, such as in graphical modeling, cluster analysis or vari-
able selection, is notoriously difficult, especially for high-dimensional data. We
introduce the new method of stability selection. It is based on subsampling in
combination with (high-dimensional) selection algorithms. As such, the method
is extremely general and has a very wide range of applicability. Stability selection
provides finite sample control for some error rates of false discoveries and hence
a transparent principle to choose a proper amount of regularisation for structure
estimation or model selection. Maybe even more importantly, results are typically
remarkably insensitive to the chosen amount of regularisation. Another property
of stability selection is the improvement over a pre-specified selection method.
We prove for randomized Lasso that stability selection will be variable selection
consistent even if the necessary conditions needed for consistency of the original
Lasso method are violated. We demonstrate stability selection for variable se-
lection and Gaussian graphical modeling, using motif regression data and some
simulated examples.

High-dimensional intervention effects and causality
PETER BUHLMANN
(joint work with Marloes H. Maathuis and Markus Kalisch)

Our work is motivated by the following problem in biology. We want to know
which genes play a role in a certain phenotype, say a disease status or, in one of our
cases, a continuous value of riboflavin (vitamin B2) production in the bacterium
Bacillus Subtilis. To be more precise, our goal is to infer which genes have an effect
on the phenotype in terms of an intervention: if we knocked down single genes,
which of them would show a relevant or important effect on the phenotype? The
difficulty is, however, that the available data are only observational. Using such
observational data, we want to infer all (single gene) intervention effects. This
task coincides with inferring causal effects, a well-established area in statistics, cf.
[1] or [2]. We emphasize that in our applications, it is exactly the intervention or
causal effect which is of interest, rather than a regression-type effect of association.

[1], p-285 formulates the distinction between associational and causal concepts
as follows: An associational concept is any relationship that can be defined in terms
of a joint distribution of observed variables, and a causal concept is any relationship
that cannot be defined from the distribution alone. (...) Every claim invoking
causal concepts must be traced to some premises that invoke such concepts; it
cannot be inferred or derived from statistical associations alone. Thus, in order to
obtain causal statements from observational data, one needs to make additional
assumptions. One possibility is to assume that the data were generated by a
directed acyclic graph (DAG) which is known beforehand. DAGs describe causal
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concepts, since they code potential causal relationships between variables: the
existence of a directed edge x — y means that z may have a direct causal effect
on y, and the absence of a directed edge x — y means that x cannot have a direct
causal effect on y.

Given a set of conditional dependencies from observational data and a corre-
sponding DAG model, one can compute causal effects using intervention calculus
[1].

Here, we consider the problem of inferring causal information from observational
data, under the assumption that the data were generated by an unknown DAG.
This is a more realistic assumption, since in many practical problems, one does not
know the DAG. In this scenario, the causal effect is typically not defined uniquely,
and that is not surprising given the description of causality by [1] above.

A DAG is typically not identifiable from observational data, because conditional
dependencies only determine the skeleton and the so-called v-structures of the
graph. The skeleton and v-structures determine an equivalence class of DAGs
that all correspond to the same probability distribution. This equivalence class,
which is identifiable from observational data, can be described by a completed
partially directed acyclic graph (CPDAG).

We describe a new, computationally feasible algorithm, even if the number of
variables (i.e. nodes in the graph) is large, which uses the CPDAG as input for
inferring lower bounds on intervention or causal effects. Furthermore, we show
that in the case of noise and estimation error, we can still asymptotically infer the
CPDAG and the lower bounds for causal effects even if the number of variables p
(number of nodes in the graph) is much larger than sample size n, p > n. Such
a consistency result relies on sparsity of the (causal) DAG and the so-called faith-
fulness assumption for the data-generating probability distribution with respect
to the underlying DAG. Details are given in [4] and some of the results there rely
on [3]. Furthermore, we demonstrate the method to predict the most important
intervention effects in two large-scale biological systems from Bacillus Subtilis and
S.Cerevisiae.

REFERENCES

[1] J. Pearl, Causality: models, reasoning and inference. Cambridge University
Press, 2000.

[2] P. Spirtes, C. Glymour and R. Scheines, Causation, Prediction, and Search
(2nd edition). The MIT Press, 2000.

[3] M. Kalisch and P. Bithlmann, Estimating high-dimensional directed acyclic
graphs with the PC-algorithm. Journal of Machine Learning Research 8 (2007),
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[4] M.H. Maathuis, M. Kalisch and P. Bithlmann, Estimating high-dimensional
intervention effects from observational data. The Annals of Statistics, to ap-
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On verifiable conditions of £;-recovery of sparse signals with sign
restrictions

ANATOLI JUDITSKY
(joint work with F. Kilinc Karzan and A. Nemirovski)

We address the recovery problem as follows: assess a sparse signal w € R™ with
sign restrictions given an observation y € R™:

y=Aw+te, |e]|<e,

where A € R™*™ (in this context m < n) is a given matrix, || - || is a given norm
on R™ e is the observation error and € > 0 is a given upper bound on the error
magnitude, measured in the norm || - ||. A popular solution to the problem is
given by the ¢;-recovery, which amounts to take as estimation of w as an optimal
solution w to the optimization problem

(1) w € argmin {[|z[}y : [[Az—y| <e, 2;>0Vie Py, 2; <0Vie P_}

(here Py, P_ are the subsets of {1,...,n} and Py N P— = 0). Note that when
P, = P_ = (), this problem reduces to the most commonly studied estimator in
the existing Compressive Sensing theory.

Our objective is given a m x n matrix A to answer (efficiently) the question if
the matrix A is such that whenever the true signal w is s-sparse, the ¢1-recovery

W' € argmin{||z|y : Ar = Aw, z; >0Vie Py, x; <0Vie P_}

recovers w exactly? In the case when the answer is positive, we say that A is
s-semigood.

We develop several equivalent necessary and sufficient conditions of s-semigood-
ness of the sensing matrix A in the spirit of [2]. Then we provide the bounds for
the accuracy of inexact ¢1-recovery (case of noisy observation and optimization
problem (1) solved up to approximate optimality) in terms of the quantities which
participate in these conditions.

We use the LP-relaxation technique, introduced in [1], to design new wverifiable
sufficient conditions for s-semigoodness of A and provide an upper bound on max-
imal s such that A is s-semigood. We provide as well a sufficient condition for
s-semigoodness of A based on Semidefinite Relaxation.

The verifiable sufficient condition in question allows us to establish a direct
link between the ¢;-recovery and the linear recovery and develop a new Matching
Pursuit algorithm for iterative improvement of linear recovery for sparse signals.

REFERENCES

[1] A. Juditsky and A. Nemirovski, On  Verifiable  Sufficient
Conditions  for  Sparse  Signal  Recovery wia {1  Minimization,
http://hal.archives-ouvertes.fr/hal-00321775/ . Submitted  to
Mathematical Programming (2008).



Sparse Recovery Problems in High Dimensions 877

[2] Y. Zhang, A simple proof for recoverability of €1-minimization (II): the non-
negative case. Technical report TR05-10, Department of Computational and
Applied Mathematics, Rice University, Houston, TX, 2005.

LOL : Learning Optimal Leaders
DOMINIQUE PICARD
(joint work with Gérard Kerkyacharian, Mathide Mougeot and Karine Tribouley)

In this paper, we are interested in the problem of learning an unknown real valued
function defined a compact domain in R<.

One of our purposes will be to link this problem to a general approach on high
dimensional linear models in statistics and propose some tools resulting from a
combination of inspirations.

We assume to observe an n sample 71, ..., 7, of Z = (X,Y). The distribution
of Z is denoted by p. Our aim is to recover the function f:

f(@) = B,[Y]X = z].
We describe a procedure which is

e Very Simple to implement. (no Argmin...)
e Universal (adaptive)
e Has optimal exponential error bounds
Description of the LOL procedure:
We consider a (finite) dictionary of size p (can also come from a kernel...)

D = {g} C La2(p)

which we normalize : ||g||; = 1, for all g.
e we calculate the coherence of the dictionary

1 n
Twi= sup = g(Xi)g'(X)
9.9'€D, g#g9' '
e this provides us with a quantity : N = [§/7,]. (0 < § < 1 is a fixed real
number associated to the procedure -for instance § = 1/2-)
Notice that each time we consider a set of m < N different vectors of the dictionary
{91, gm}
the m x m matrix %GmGﬁn with entries, [% 1 96(X:)91(Xi)]ki, 1<k,i<m is almost diagonal,
in the sense that : (Restricted Isometry Property)

1
(1) Vo €R™, |lzllf,(1-6) < xt[;Gmen]w < llzllz, (1 +6)

o Fix Al = 7y (1%2)3.

e Find theset A={geD, |17 g(X;)Vi| > A}
o If Card(A) < N we keep the whole set B = A

o If Card(A) > N we take the N largest B C A

e Consider the pseudo-regression model :
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Y= Z ag9(Xi) + €
geB
o Let & = (&4, g € B) be the minimum least square error in this model :

Z(Yi - Z dg9(X;))? minimum
i=1 geB
&= (GBGtB)ilGBY
with Y = (Y1,...,Y,)!
(GB)” = gl(Xi), leB, i€ {1, . ,77,}
e We obtain our estimator using a final thresholding;:

logn

fw) =Y aggl{lay| > T,

geB

n

Theorem 1. In Gaussian regression framework, if :
< e loin

Card(D) <n® Ty > c1(6, M), To > c2(9)

There exist positive constants D and vy, such that

_ 2
e, 2 D,

(2) pf}lgvp®{|\f* flls >n}t <A{ L 0 < Di.
S
2 _ —

V is defined by sparsity conditions on f, depending on S, M.

Classification of sparse high-dimensional vectors
CHRISTOPHE FLORENT POUET
(joint work with Yuri I. Ingster and Alexandre B. Tsybakov)

Let X = (Xq,...,Xp,) and Y = (Y3,...,Y,,) be two i.i.d. samples from two differ-
ent populations with probability distributions Px and Py on R? respectively. Here
Xi=(X},..., X1, Y;=(Y},...,Y) where X} and Y} are the components of
X; and Y;. We assume that

k k k k
(1) Xi =&, Y/ =up + 5,
where u = (u1,...,uq) is a deterministic mean vector and the errors &1, ..., ¢4,
77]1-, . ,77? are jointly i.i.d. zero mean random variables with probability density f
on R.

We consider the problem of discriminant analysis when the dimension of the
observations d is very large (tends to +00). Assume that we observe a random
vector Z = (Z1,..., Z%) independent of (X,Y) and we know that the distribution
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of Z is either Px or Py. Our aim is to classify Z, i.e., to decide whether Z comes
from the population with distribution Px or from that with distribution Py. A
full review of our results is available in [4].

As in [5, 1], we introduce a set of sparse vectors in R? characterized by a number
aqg > 0 and a sparsity index § € (0, 1] to measure the closeness between u and 0 :

d
Ugay = {u = (U1,...,ud) 1 ug = agnr, Nk € {0,1}, ed' P < an < C’dl_ﬁ} ,
k=1

where 0 < ¢ < C' < +00 are two constants.

Let v = ¢(X,Y,Z) € [0, 1] be a decision rule. If ¢ = 0 we allocate Z to
the Px-population, whereas for ¢» = 1 we allocate Z to the Py-population. If

f is known, we do not need the sample X to construct decision rules. Let P}E}f) )
and Pl(iul) denote the joint probability distributions of X,Y,Z when Z ~ Px and

7 ~ Py respectively, and let Ez(‘;o) and Eg,? denote the corresponding expectations.
Consider the maximum risk

Rar () = max (Bl (v), B (1 - ).
The classification boundary is the condition on (3, aq) corresponding to the passage
from the fact that successful classification is possible, i.e., 3 and aq are such that

lim inf sup Ry (¥) =0,
d—+oo ¥ uEUg,ad ( )

to the fact that successful classification is impossiblei.e., 5 and aq are such that

liminfinf sup Ry () =1/2.
d—+oo uGUgyad ( ) /
We assume that there exists 0 < v < 1 such that limg_..(logm)/(logd) = ~.
According to the value of 3, we distinguish between moderately sparse vectors
(0 < B <(1—+)/2) and highly sparse vectors (1 —~)/2 <8 <1—7).
The classification boundary for moderately sparse vectors is of the form

(2) Ry 2 d1/2_5ad = 1.

Moreover, (2) holds under weak assumptions on the density f of the noise.

In the case of highly sparse vectors, we consider Gaussian or approximately
Gaussian noise distributions which leads us to a special dependence of a4 on d and
m of the form ag < +/(logd)/m.

When m > 1 is a fixed integer, and the noise density f is Gaussian N(0,0?)
with known or unknown o > 0, the set of highly sparse vectors corresponds to
B € (1/2,1). We consider aq = so+/logd, where s > 0 is fixed. The classification
boundary is expressed by the following condition on 3, s and m :

svm+1 = ¢(B),
{w/—25—1 if 1/2 <3< 3/4,

where  ¢(5) ﬁ(lfﬂ) if3/4< <1



880 Oberwolfach Report 16

This classification boundary is also extended to the case where s depends on d so
that sv/m + 1 stays bounded.

When m — +o0o as d — +oo, (logm)/(logd) — v € [0,1) and f is Gaussian
N(0,0?%) with known or unknown o > 0 we consider aq = xo\/(logd)/m, where
x > 0 is fixed. Then for § > 1 — ~ successful classification is impossible. For
(1 —9)/2 < B < 1—+ (the highly sparse zone), the classification boundary is of

the form
z/\/1—=v=0(B/(1-7)).

The upper bounds are extended to the case where m — 400 as d — o0,
(logm)/(logd) — v € [0,1), m/logd — 400, and the noise satisfies the Cramér
condition.

In a work parallel to ours, Donoho and Jin [2, 3] and Jin [6] independently have
analysed a setting less general than the present one, without considering a minimax
framework. They demonstrated that the higher criticism (HC) methodology can
be successfully extended to the classification problem.

REFERENCES
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Largest eigenvalues and eigenvectors in multivariate analysis
TAIN JOHNSTONE

The talk has two parts. We first review the role of sample eigenvalues in
some classical methods of multivariate statistics, such as principal components
and canonical correlation analysis. Results from random matrix theory can pro-
vide practically useful approximations when the ratio of the number of variables
(p and ¢) to sample size n is not necessarily small. For concreteness, we focus
on the limiting distribution for the largest principal component variance and the
largest canonical correlation in “null hypothesis” settings when the data matrices
have independent standard Gaussian entries, though we also give a rate of conver-
gence result for the largest eigenvalue of square symmetric Gaussian matrices. We
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also review concentration inequalities for the largest eigenvalue of a white Wishart
matrix and propose a concentration bound for the “double Wishart” setting ex-
emplified by canonical correlation analysis.

In the second part of the talk we turn to estimation of the leading eigenvectors
in a “spiked” covariance model of the form ¥ = o21 + 251:1 A,0,0T. This work is
joint with Debashis Paul, University of California at Davis [4]. The observations
are assumed to be independent Gaussian random vectors, and the dimension in-
creases to infinity as the sample size increases. We establish a lower bound on the
rate of convergence of the minimax risk of the estimators under an L2 loss on the
eigenvectors that describes three different regimes of sparsity. We propose a new
method for estimating the eigenvectors that is based on a two-stage coordinate
selection scheme, assuming a certain degree of sparsity. We prove that under ap-
propriate regularity conditions, the proposed estimator attains the optimal rate of
convergence. We demonstrate the practical performance with a simulation study.

Following is a more detailed statement of one result to be discussed in the
eigenvalue section of the talk. Further details may be found in Johnstone [3]
and an applications oriented paper Johnstone [2]. Let A ~ W,(I,m) follow a
Wishart distribution, independent of B ~ W,,(I,n), where m > p. Then the largest
eigenvalue 6 of (A+ B) ™! B is called the greatest root statistic and a random variate
having this distribution is denoted 61(p,m,n), or 6, for short. Equivalently
01(p, m,n) is the largest root of the determinantal equation

1) det[B — 0(A + B)] = 0.

In general the parameter p refers to dimension, m to the “error” degrees of freedom
and n to the “hypothesis” degrees of freedom. Thus m + n represents the “total”
degrees of freedom.

Assume p is even and that p,m = m(p) and n = n(p) — oo together in such a
way that

(2) i SRER) o g, P
p—00 m-+n p—oo m

A consequence of our main result, stated more completely below, is that with ap-
propriate centering and scaling, the logit transform W, = logit 6, , = log(#: ,/(1—
61,)) is approximately Tracy-Widom distributed:

W _
(3) Tl B g R
Op

The distribution F} was found by [5] as the limiting law of the largest eigenvalue
of a p by p Gaussian symmetric matrix; further information on F} is reviewed, for
example, in [1].
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The centering and scaling parameters are given by

tp = 2logtan (SQTM),

(4) . 16 1

Up:

(m+n—1)2 sin®(¢ + ) sinpsiny’

where the angle parameters -, ¢ are defined by

_ 1
51n2( ):mlnp,) 2
(5) m+n-—1
2( ) max(p, n )f%
sin = .
m+n-—1

Theorem 2. Assume that m(p),n(p) — oo as p — oo through even values of p
according to (2). For each sy € R, there exists C > 0 such that for s > s,

|P{W) < pp + ops} — Fi(s)] < Cp_2/36_5/2-
Here C depends on (v, @) and also on sq if so < 0.

The “correction factors” of —% and —1 yield a second order rate of convergence
that has important consequences for the utility of the approximation in practice.
Indeed, we argue that it is reasonably accurate over the entire range of (non-
asymptotic) values of the parameters. ” Reasonably accurate” means, for example,
less than ten percent relative error in the 95th percentile, even when working with
two variables and any combination of error and hypothesis degrees of freedom.

We present numerical evidence that, for many applied purposes, the Tracy-
Widom approximation presented here can often, if not quite always, substitute
for the elaborate tables and computational procedures that have until now been
needed.
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Sparse inverse covariance estimation by minimizing L1-penalized
log-determinant divergence

BIN YU

(joint work with Pradeep Ravikumar, Martin J. Wainwright, Garvesh Raskutti,
Pradeep Ravikumar, Vince Vu, Yuval Benjamini, Kendrick Kay, Thomas
Naslaries and Jack Gallant)

(The first part of the talk is based on joint work with Pradeep Ravikumar,
Martin J. Wainwright, Garvesh Raskutti in statistics at UC Berkeley; the second
part of the talk is based on joint work with Pradeep Ravikumar, Vince Vu, Yuval
Benjamini in statistics at UC Berkeley and Kendrick Kay, Thomas Naslaries and
Jack Gallant from the Helen Wills Neuroscience Institute at UC Berkeley.)

Extracting useful information from high-dimensional data is the focus of to-
day’s statistical research and practice. After broad success of statistical machine
learning on prediction through regularization, interpretability is gaining attention
and sparsity has been used as its proxy. With the virtues of both regularization
and sparsity, L1 penalized minimization has been very popular recently.

In this talk, I would like to discuss the theory and pratcice of sparse inverse
covariance modeling. The first part is on sparse inverse covariance estimation
based on L1 penalized negative Gaussian log likelihood (or for the general case,
the log determinant Bregman divergence). Given i.i.d. observations of a random
vector in p-dim, we study the problem of estimating both its covariance matrix
and its inverse covariance or concentration matrix. We estimate the inverse cov.
matrix by minimizing an L1-penalized log-determinant Bregman divergence; in
the multivariate Gaussian case, this approach corresponds to L1-penalized maxi-
mum likelihood, and the structure of inverse cov. is specified by the graph of an
associated Gaussian Markov random field. We analyze the performance of this
estimator under high-dimensional scaling, in which the number of nodes in the
graph p, the number of edges s and the maximum node degree d, are allowed to
grow as a function of the sample size n. In addition to the parameters (p,s,d), our
analysis identifies other key parameters values in the true model that control rates.
Our first result establishes consistency of our estimate for the inverse cov. in the
elementwise maximum-norm. This in turn allows us to derive convergence rates in
Frobenius and spectral norms, with improvements upon existing results for graphs
with maximum node degrees. In our second result, we show that with probability
converging to one, the estimated inverse cov. correctly specifies the zero pattern of
the concentration matrix. We illustrate our theoretical results via simulations for
various graphs and problem parameters, showing good correspondences between
the theoretical predictions and behavior in simulations.

The second part is on collaborative research with the Gallant Lab at Berkeley
on building sparse models that describe fMRI responses in primary visual cortex
area V1 to natural images. The goal of the Gallant Lab is to undertand primate vi-
sual pathway. fMRI is an indirect measurement of neural activities and data have
been collected by the Gallant Lab through stimulation of the visual pathway of a
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human subject with iid samaples of natural images from a database of over 11,000
images. Based on accepted biological understanding of primary visual cortex area
V1, Gabor wavelet transforms of 128 by 128 circularly cropped natural images
are obtained and fMRI signals over 1200 voxels in V1 responding to the images
are gathered. When we started analyzing these data, the state-of-the-art method
at the Gallant Lab was epsilon-L2boosting which is closedly related to Lasso (L1
penalized L2 minimization) based on a linear model with predictors as the Gabor
transformed images with dim over p=10,000. We have n=1,750 images used as
stimuli or we have 1,750 samples. The response variable in the linear model is
pre-processed MRI signal and each voxel is fitted a different model. Based on the
nonlinear spase model SpAM of Ravikumar et al (2007), we discovered nonliner
compressive properties of the fMRI signal and this nonlinear model lead to 12%
prediction improvement on a separate 120 sample validation set (measured by cor-
relation) over 1200+ voxels. A further modeling of constraining all the nonlinear
transforms to be the same for each voxel lead to the new iV-SpAM model which
brought a further 5% improvement. This high-power machine learning approach to
discover the nonlinear property inspired later parametric power transforms (square
root or 1/4 root) of the predictors and the prediciton performance improved over
e-L2boosting by 21% with the parametrically transformed predictors. A prelimi-
nary modeling using sparse graphical model based on the fixed power transforms
indicate promising directions to model voxels jointly. These models will be further
validated through decoding of images using fMRI signals.

Inference in high-dimensional settings: Trade-offs between
computational and statistical efficiency

MARTIN WAINWRIGHT

High-dimensional sparse PCA: Computational versus statistical effi-
ciency. Principal component analysis (PCA) is a classical method for dimension-
ality reduction based on extracting the dominant eigenvectors of the sample covari-
ance matrix (e.g., [7, 2]). However, as shown by Johnstone and collaborators [5, 6],
standard PCA is well known to behave poorly in the “large p, small n” setting,
in which the problem dimension p is comparable to or larger than the sample size
n. In the paper [1], we study PCA in this high-dimensional regime, but under the
additional assumption that the maximal eigenvector is sparse, say with at most k
non-zero components. We consider the spiked covariance model [5] in which a base
matrix is perturbed by adding a k-sparse maximal eigenvector, and analyze two
computationally tractable methods for recovering the support set of this maximal
eigenvector: (a) a simple thresholding method, originally used as a pre-processing
step by Johnstone and Lu [6], which transitions from success to failure as a func-
tion of the rescaled sample size O4ia(n,p, k) = n/[k*log(p — k)]; and (b) a more
sophisticated semidefinite programming (SDP) relaxation due to d’Asprémont et
al. [3], which succeeds once the rescaled sample size 0sqp (1, p, k) = n/[klog(p — k)]
is larger than a critical threshold. In addition, we prove that no method, including
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the best method which has exponential-time complexity, can succeed in recovering
the support if the order parameter 054, (1, p, k) is below a threshold.

These results are complementary to the work of Paul and Johnstone [11], which
focuses on recovery of sparse eigenvectors in £ norm, as opposed to model selection
consistency. Our results also highlight some interesting trade-offs between com-
putational and statistical costs in high-dimensional inference. On one hand, the
statistical efficiency of SDP relaxation is substantially greater than the thresh-
olding method, requiring O(1/k) fewer observations to succeed. However, the
computational complexity of SDP is also larger by roughly a factor O(p3): one
implementation due to d’Asprémont et al. has complexity O(np? + p*logp) as op-
posed to the O(np?+plogp) complexity of the thresholding method. Moreover, our
information-theoretic analysis shows that the best possible method—namely, one
based on an exhaustive search over all (i) subsets, with exponential complexity—
does not have substantially greater statistical efficiency than the SDP relaxation.

Structured regularization in multivariate regression: Benefits and dan-
gers. In multivariate regression, a r-dimensional response vector is regressed upon
a common set of p covariates, with a matrix B* € RP*" of regression coeffi-
cients. In various applications, it is natural to expect that the sparsity pattern
matrix of the regression matrix B* is block-structured, which suggests the use
of block-structured regularization, as in a line of past work by various authors
(e.g., [14, 13, 16, 15]). In contrast to the simple quadratic programs that arise with
the Lasso [12], these block-structured regularizers typically lead to more general
conic programs, including second-order cone programs (SOCPs) and semidefinite
programs (SDPs). In this realm, some interesting questions include:

(a) when does the use of structured regularization (with its) higher computa-
tional cost) yield improved statistical efficiency?

(b) conversely, are their settings in which structured regularization and conic
programming can impair statistical efficiency relative to computationally
cheaper approaches?

In a line of recent work [10, 9], we have obtained some precise answers to these
questions in certain settings. In addition, some other participants of the Oberwol-
fach workshop have recently obtained some related results [8, 4], with particular
focus on the ¢1/¢5 case.

In the paper [10], we study the behavior of the block-regularized ¢;/¢2 Lasso
for the problem of union support recovery, meaning recovery of the set of k rows
for which B* is non-zero. Under high-dimensional scaling, we show that the
group Lasso recovers the exact row pattern with high probability over the ran-
dom design and noise for (n,p, k) such that the rescaled sample size given by
O(n,p, k) : =n/[2¢(B*)log(p — k)] exceeds a critical threshold depending on the
signal-to-noise ratio. Here n is the sample size, and (B*) is a sparsity-overlap
function measuring a combination of the sparsities and overlaps of the r-regression
coefficient vectors that constitute the model. This sparsity-overlap function re-
veals that, if the design is uncorrelated on the active rows, ¢1/¢s regularization
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for multivariate regression never harms performance relative to an ordinary Lasso
approach, and can yield substantial improvements in sample complexity (up to a
factor of ) when the regression vectors are suitably orthogonal. For more general
designs, it is possible for the ordinary Lasso to outperform the group Lasso, but
these problems are not typical.

In the paper [9], we analyze the high-dimensional scaling of ¢1 /¢ -regularized
quadratic programming, considering both consistency rates in f.-norm, and also
how the minimal sample size n required for performing variable selection grows
as a function of the model dimension, sparsity, and overlap between the sup-
ports. We begin by establishing bounds on the ¢.-error as well sufficient con-
ditions for exact variable selection for fixed design matrices, as well as designs
drawn randomly from general Gaussian matrices, showing that high-dimensional
scaling of fq/l.-regularization is qualitatively similar to that of ordinary ¢;-
regularization. Our second set of results applies to r = 2 linear regresion problems
whose supports overlap in a fraction a € [0, 1] of their entries and with design
matrices drawn from standard Gaussian ensembles: for this problem class, we
prove that the ¢;/¢-regularized method undergoes a phase transition—that is,
a sharp change from failure to success—characterized by the rescaled sample size
01,00(n, D, s,0) = n/{(4—3a)slog(p— (2 — ) s)}. More precisely, given sequences
of problems specified by (n,p, s, «), for any § > 0, the probability of successfully
recovering both supports converges to 1 if 61 o (n, p, s, ) > 146, and converges to
0 for problem sequences for which 0 o (n,p,s,«a) <1 —4§. An implication of this
threshold is that use of ¢ /¢ -regularization yields improved statistical efficiency
if the overlap parameter is large enough (« > 2/3), but has worse statistical effi-
ciency than a computationally less expensive Lasso-based approach for moderate
to small overlap (o < 2/3), or if the regression vectors are not close in absolute
value on their common support.
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Higher Criticism Thresholding for Optimal Feature Selection
DAvIiD DONOHO
(joint work with Jiashun Jin)

1. WHEN USEFUL FEATURES ARE RARE AND WEAK

Consider a two-class classification setting where we have a set of labeled training
samples (V;, X;), i =1,2,...,n. Each label ¥; = 1 if X; comes from Class 1 and
Y; = —1if X; comes from Class 2, and each feature vector X; € RP. For simplicity,
we suppose that the training set contains equal numbers of samples from each of
the two classes, and that the feature vector obeys X; ~ N(Y;u, I,), i =1,2,...,n,
for an unknown mean contrast vector u € RP. Also, we suppose the feature
covariance matrix is the identity matrix.

Formally our goal is to use the training data to design a classifier for use on
fresh data. If we are given a new unlabelled feature vector X, we must then label
it with a class prediction, i.e. attach a label Y=1lorY =-1. We hope that our
predicted label Y is typically correct.
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Following our papers, we consider the following rare/weak feature model, where
the vector u is nonzero in only a fraction € of coordinates, and the nonzero coordi-
nates of p share a common amplitude pg. For 7 = y/nug, let RW (e, 7;n,p) denote
this model.

1.1. Linking Rarity and Weakness to Number of Features. We now adopt
an asymptotic viewpoint, letting the number of features p be the driving problem
size descriptor and for the purposes of calculation, we let p tend to infinity. Other
problem parameters also depend on p as follows. Fixing parameters (3,7) € (0,1)2,

let
e:ep:pfﬁ, T =1, =+/2rlogp.

As p — o0, the useful features become increasingly rare; an asymptotically negli-
gible fraction of the components in the vector Z. The parameters (3, r) describe
the linkage between rareness and weakness of the entries in the parameter vector.
The domain (3,r) € (0,1)? will be seen to have an interesting two-phase structure;
we call a depiction of this domain and its phases a phase diagram.

1.2. Linking Number of Observations to Number of Features. The phase
diagram depends on the relationship between the number of features p and the
number of study units n. Again, in our work it is convenient to make p the driving
variable, and so n = n,.

We can identify three regimes for the linkage between n and p: n = n,, can have
no growth, slow growth, or reqular growth. Our labels for these regimes and their
definitions go as follows:

Regime Label | Definition

No Growth (N) np = no for some constant ng
Slow Growth (S) np — 00, but np/pe —0,V0>0
Regular Growth | (R) n, = p? for some 0 € (0,1)

1.3. Asymptotic Rare/Weak Model (ARW). Combining the two linkages we
have just discussed gives us the asymptotic rare/weak model ARW (B,r,n,). Our
goal is to determine the underlying phase structure. For each linkage type n,
we seek to identify ranges of (3, r) where successful classification is possible and
impossible, respectively.

2. IMPOSSIBILITY OF CLASSIFICATION

Jin (2009) and, at this workshop, also Ingster, Pouet and Tsybakov (2009) show
that in each of the three growth regimes, there is a curve r = p*(8) (x = N, S, R)
which partitions the 8-r plane into two components: a region of impossibility below
the curve and and region of possibility above it. In detail, define the standard phase
boundary function

0, 0<pB<1/2,
(1) p(B) =4 B—1/2, 1/2 <5 <3/4,
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Define
VB = PN = meB), 0<p<,

p*(B) = p(B), 0<p<L,
pHB) = 1-0p(B/(1-0), 0<B<(1-0).

Jin (2009) and Ingster, Pouet, Tsybakov (2009) suppose that we fix a growth
regime n, and fix a point (5,7) in the region ‘below’ the corresponding graph
(8,p*(B)). Consider the sequence of problems ARW (r,(3,n,) for increasing p
and any sequence of classifier training methods, perhaps also dependent on p.
The misclassification error rate of the resulting trained classifier — 1/2 as p —
oo. In this region, the measurements are effectively non-informative, and random
guessing does almost as well

3. SUCCESS BY HIGHER CRITICISM THRESHOLDING

Donoho and Jin (2008a) introduced a technique for feature selection in the high-
dimensional p > n sparse case. Donoho and Jin (2008b) showed that in the case of
slow growth S, this method obtains is successful throughout the full interior of the
complement of the impossibility region. Moreover, the possibility /impossibility
dichotomy in the phase diagram can be further split into 3 interesting phases,
in which the optimal feature selection threshold and the HC feature selection
threshold have limiting false feature selection rates with some surprising properties.
In particular, in Region I, we are surprised to see that optimal behavior requires
very high false discovery rate (1) which accompanies a misclassification probability
tending to zero!

Definition 3.1. Regions LII, III. The Possibility Region can be split into Re-
gions I-IIT with the following interiors:

I: B—1/2<r<B/3 and 1/2 < < 3/4; r > p*(B).

II.: B/3<r<fandl/2<p<1;r>p"(p).

III.: S<r<landl/2<pB<1;r>p*(0).
See Figure 1.
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FIGURE 1. Phase diagram. The curve r = p*(3) splits the phase
space into the impossibility region and the possibility region, and
the latter further splits into three different regions I, II, ITII. Num-
bers in the brackets show limits of false feature discovery rate and
local false feature discovery rate for both HCT feature selection
and ideal threshold feature selection
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Exact and Robust Matrix Completion
EMMANUEL J. CANDES
(joint work with Benjamin Recht, Terence Tao and Yaniv Plan)

This talk considers a problem of great practical interest: the recovery of a data
matrix from a sampling of its entries. In partially filled out surveys, for instance,
we would like to infer the many missing entries. In the area of recommender
systems, users submit ratings on a subset of entries in a database, and the vendor
provides recommendations based on the user’s preferences. Because users only
rate a few items, we would like to infer their preference for unrated items (this is
the famous Netflix problem). Formally, suppose that we observe m < n? entries
selected uniformly at random from an n X n matrix. Can we complete the matrix
and recover the entries that we have not seen?

We show that perhaps surprisingly, one can recover low-rank matrices exactly
from what appear to be highly incomplete sets of sampled entries; that is, from a
minimally sampled set of entries [4]. Further, perfect recovery is possible by solving
a simple convex optimization program, namely, a convenient semidefinite program.
A surprise is that our methods are optimal and succeed as soon as recovery is
possible by any method whatsoever, no matter how intractable; this result hinges
on powerful techniques in probability theory. Further, this talk introduces novel
results showing that matrix completion is provably accurate even when the few
observed entries are corrupted with a small amount of noise. A typical result is that
one can recover an unknown n x n matrix of low rank r from just about nrlog?n
noisy samples with an error which is proportional to the noise level [1]. We present
numerical results which complement our quantitative analysis and show that, in
practice, nuclear norm minimization accurately fills in the many missing entries
of large low-rank matrices from just a few noisy samples. Some analogies between
matrix completion and compressed sensing are discussed throughout.

A typical result is as follows: suppose one observes m entries of large ny X no
matrix M of rank r whose singular value decomposition is given by

(1) M= Z ORULVE,
kelr]
in which o1, ...,0, > 0 are the singular values, and uy,...,u, € R™, vy,..., v, €

R™ are the singular vectors. We propose recovering the unknowm matrix M by
solving the convex optimization program

@) minimize (| X«
subject to Xij = M;;  (i,7) € Q,

where || X ||« is the nuclear norm of X, i.e. the sum of the singular values of X,
and € is the set of entries (7, ) which are observed. It is well known that (2) is a
semidefinite program.

Now asssume that

3) lubllewe </, okl < Vs /n2,
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for some pup > 1, where the ¢, norm is of course defined by ||z||¢,, = max; |z;|.
We think of pp as being small, e.g. O(1), so that the singular vectors are not too
spiky. In [4], it is proven that nuclear-norm minimization succeeds nearly as soon
as recovery is possible by any method whatsoever.

Theorem 3. [4] Let M € R™*"2 be a fized matriz of rank r = O(1) obeying
(3) and set n := max(ny,ng). Suppose we observe m entries of M with locations
sampled uniformly at random. Then there is a positive numerical constant C' such
that if

(4) m > C g nlog®n,

then M is the unique solution to (2) with probability at least 1 — n=3. In other
words: with high probability, nuclear-norm minimization recovers all the entries of
M with no error.

When (2 is sampled at random, we show that to succeed, any method whatsoever
needs at least on the order O(nlogn) entries to succeed and, hence, (4) misses the
information theoretic limit by at most a logarithmic factor.

We extend this result and show that ny X ng matrices of arbirary rank r with
singular vectors which are sufficiently spread can be recovered exactly via (2)
provided that the number of samples m is on the order of nr log;6 n (where n is
still the maximum between ny and ns).

We also that when perfect noiseless recovery occurs, then matrix completion is
stable vis a vis perturbations [1]. Suppose we observe
(5) Yij = Mij + Zij,  (i,7) € Q,
where {Z;; : (i,j) € 1} is a noise term which may be stochastic or deterministic
(adversarial). All we assume is that }_; . cq Z} < 62 for some ¢ > 0. Then if M
is the solution to the semidefinite program
(©) minimize (| X«

subject to > jyea(Xij — Yij)? < 62,

we have that the error | M — M||p is proportional to the noise level §; when the
noise level is small, the error is small.

Time permitting, we will rapidly discuss a very efficient algorithm based on
iterative singular value thresholding, which can complete matrices with about a
billion entries in a matter of minutes on a personal computer [2].
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Spectral Methods for Surface Clustering
ERY ARIAS-CASTRO
(joint work with Gilad Lerman and Guangliang Chen)

Traditional methods for clustering, such as k-Means or Gaussian Mixture Mod-
els, assume that each cluster is generated by sampling points in the vicinity of a
centroid, that is a point in space. The resulting clusters are ellipsoidal, and in par-
ticular full-dimensional. In a number of modern applications, however, the data
seems to cluster near low-dimensional structures or surfaces. When the underlying
low-dimensional surfaces are assumed to be affine subspaces, the problem of clus-
tering and in general learning those structures is termed Linear Hybrid Modeling,
which was recently featured in the SIAM Review [14], where the editor referred to
it as “a very ‘hot’ area of research”. Indeed, it applies to many real-life situations,
such as motion segmentation in computer vision, hybrid linear representation of
images, classification of face images, and temporal segmentation of video sequences
[25, 14, 6]. Other settings call for modeling each cluster with a multilinear sur-
face, for example, motion segmentation with multiple views using initial feature
vectors [12, 18, 24, 22] and wearable action recognition [27]. In this paper we con-
sider the more general situation where the underlying surfaces are nonparametric,
which we refer to as surface learning as in [10], or to be more specific, surface
clustering. This situation arises in a number of modern applications, e.g., motion
segmentation without feature vectors [8] and the analysis of the galaxy distribution
in Astrophysics, where structures such as filaments, sheets and spherical clusters
are of interest [23, 15].

A number of approaches to surface clustering have been suggested, involving
estimation of local characteristics such as dimensionality and density [7, 13], some-
times combined together in a global energy to be optimized, often with an EM-
type algorithm [11, 10]; sometimes combining different off-the-shelf algorithms,
such as ISOMAP and MDS [21]. Spectral methods seem to be the most pop-
ular. Originally based on pairwise affinities [16], more recent methods are now
based on multi-way affinities, to better capture the actual complexity of the data
2,9, 19, 1, 6].

Though the literature is growing rapidly, few papers rigorously analyze the
performance of these algorithms, even in a simple mathematical model. In their
paper [16], the authors introduce their method and outline a strategy to analyze
it. However, the probabilistic analysis is not addressed. In [26], spectral clustering
is taken to its empirical process limit as the number of points increases. Though
this provides insight on what spectral clustering is estimating, there is no result on
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performance. The same comment applies to [17]. In [4], the number of clusters is
estimated, and conditions are provided under which the estimation is consistent.
Again, there is no result on performance. Our analysis is closer in spirit to the
work [5] in the context of hybrid linear modeling, which is inspired by the strategy
outlined in [16].

Our contribution is two-fold. First, we provide theoretical guaranties for the
pairwise spectral clustering technique in the form described in [16]. We carry out
their program under a fairly general generative model for surface learning. Second,
we introduce a new multi-way spectral clustering method based on local linear (or
higher order) approximations, for which we provide theoretical guaranties as well.
In contrast with the pairwise clustering, this method is able to take advantage
of the smoothness of the underlying surfaces. We discuss the choice of different
parameters, including the scale(s) and the number of clusters. We also address the
issue of outliers and show that with simple modifications, these spectral methods
are highly robust, in fact able to accurately cluster within logarithmic factors of
what is needed in [3] to merely detect the presence of those clusters. We also
discuss the computational aspect of such spectral clustering techniq! ues. Assum-
ing that the ambient dimension is not too large, a direct implementation of the
pairwise algorithm is quadratic in the number of points, since it is based on all
pairwise distances. Effectively, only a small fraction of those pairwise distances
are significantly different from zero, so that for a given point only the pairwise dis-
tances to the closest neighbors need to be computed. We show that implementing
k-nearest-neighbors techniques enables to substantially speed up the computations
while maintaining a comparable clustering performance. The same approach works
in the case of a multi-way affinity. We perform numerical experiments illustrating
the theory.
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ROC curve estimation and optimization
NICOLAS VAYATIS
(joint work with Stéphan Clémencon)

1. INTRODUCTION

Since their introduction in the sixties, Receiver Operating Characteristic (ROC)
curves have been extensively used in signal detection, medical diagnosis and credit
risk screening as a visual tool for performance assessment. Following the statis-
tical learning approach, we propose to use ROC curves as a primary target for
optimization procedures in the context of ranking and scoring applications. We
develop various approaches for the approximation and estimation of the optimal
ROC curve. We explore the statistical properties of estimators based on summaries
of ROC curves and sketch algorithmic schemes for practical implementation.

2. DEFINITIONS AND NOTATIONS

We consider classification data obtained from sampling a random pair (X,Y)
where X € R? is a vector of covariates and Y € {—1,+1} is a binary label.
We denote the regression function by n(z) = P{Y = 1 | X = z}. We aim
at ranking the data rather than just classifying them into positive and negative
labels. That is, we aim at recovering the order induced by the regression function
7 rather than the single level set {z : n(x) > 1/2}. This problem is known as the
bipartite ranking problem. The candidate predictors in this problem are real-valued
functions s : R? — R called scoring rules and their performance can be measured
by monitoring simultaneously two quantities called the false positive rate and the
true positive rate. For a scoring rule s and a threshold ¢ € R, we define the false
positive rate by a(s,t) = P{s(X)>t|Y = —1} and the true positive rate by
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B(s,t) = P{s(X)>1t|Y =+1}. The ROC curve of a particular scoring rule is
the parametric curve obtained in the plane («, 3) when t goes from —oo to +o0.
Interestingly, the ROC curve is invariant by strictly increasing transforms of the
scoring rule s and the optimal ROC curve (the one which, for each «, dominates
all the others) corresponds to the regression function 7 by a simple application of
Neyman-Pearson’s lemma.

3. SUMMARIES OF ROC CURVES

In order to estimate optimal scoring rules, the inference principles proposed
in the literature rely on functionals built from the ROC curve. We call these
functionals summaries.

The AUC criterion. The most popular example is the Area Under an ROC
curve (AUC). For any scoring rule s : R? — R with non-constant parts, the AUC
can easily be interpreted as the following probability:

AUC(s) = P{s(X) > s(X') | (V,Y") = (+1,~1)}

where (X,Y), (X',Y”) are i.i.d.. This expression shows that maximizing the AUC
is equivalent to minimizing a classification error in a classification problem with
input (X, X’) and output Y — Y’. Empirical risk minimization in this case leads
to the analysis of U-processes. Consistency, rates-of-convergence type results and
fast rates of convergence can be derived in this setup ([1]).

The local AUC. However, the AUC criterion does not reflect performance in
restricted parts of the input space since it weights uniformly discordant pairs
of observations. In order to focus on best instances, we propose to localize the
AUC criterion. We need to introduce as a parameter to control the localization
the rate u € (0,1) of "best” X’s. We can then redefine the parametrization
of the ROC curve using the new parameter u. The level of truncation of the
AUC corresponding to a rate u of best instances is specified by the control line
u = pB + (1 — p)a in the ROC space («,3). We show ([2]) that a consistent
criterion for finding the optimal ranking over the set of best instances is provided
by the sum of the truncated AUC at the level defined by u plus the term (1 — «)3.

General summaries. It is interesting to notice that both the AUC, and the
local AUC, as well as other functionals introduced in the machine learning and
information retrieval literature, such as the p-norm push (Rudin - JMLR, 2006),
or the Discounted Cumulative Gain (Cossock and Zhang - COLT 2006), can be
expressed as conditional linear rank statistics of the form:

(o) = S = 1) o (KO0

= n+1

where ® : [0,1] — [0, 1] is called the score-generating function. For maximizers
of such functionals, consistency results can be proved by using Hajek’s projection
and providing a uniform control of the remainder term in the decomposition ([4]).
However, a general theory for R-processes needs to be further developed.
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4. ALGORITHMIC INSIGHTS

Optimizing the ROC curve requires to simultaneously approximate the curve
and estimate its points. This can be carried out along two directions: (i) building
partitions of the input space, (ii) taking partitions of [0, 1] in the a-axis of the ROC
space. The first approach can be illustrated through dedicated versions of decision
trees or histogram rules that we have studied ([5, 6]). The second approach can
be implemented by building on the following observation: optimal scoring rules
can be represented from the collection of level sets of the regression function. For
instance, for the regression function, we have the identity:

n(x) = E[{n(z) > U})

where U is a uniform random variable on [0, 1]. Hence, finding an optimal scoring
rule in the sense of the ROC curve may be viewed as dealing with a ’continuum’ of
classification problems with asymmetric costs where the targets are the level sets.
For practical considerations, discretization of the previous formula is a key point
(fixed vs. adaptive partitions of [0, 1]). Once the level is fixed, we propose to use an
empirical minimum-volume set estimation in order to learn each of these level sets
and we provide rates of convergence with which a point of the optimal ROC curve
can be recovered according to this principle. From the resulting classifiers and
their related empirical errors, we show ([3]) how to build a linear-by-part estimate
of the optimal ROC curve and a quasi-optimal piecewise constant scoring rule.
Rate bounds in terms of sup-norm in the ROC space for these procedures are also
established.
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Sparse Recovery by Aggregation and Langevin Monte-Carlo
ARNAK DALALYAN
(joint work with A.B. Tsybakov)

The aim of the presented work is to put forward the usefulness of the expo-
nentially weighted aggregate in the problem of estimation of a high dimensional
parameter-vector under sparsity scenario. More precisely, we first consider the
model of regression

Y= f(Z)+ &, i=1,...,n,
where (Z1,Y1),...,(Zn,Ys) are observed, f is the unknown regression function and
&, ...,&, are random variables assumed to be independent identically distributed
with zero mean and finite variance o2. The regressors Z; are assumed to be
deterministic. Furthermore, we assume that we have at our disposal a parametric
family Fa of functions fi, A € A € RM, for some M € N, that may be used for
estimating the regression function f.

For every prior distribution 7 over A and for every 8 > 0, the exponentially
weighted aggregate (EWA) is defined by

_ S\ frexp(—=B71RSS(N)) w(dN)
[, exp(—B~1RSS(N)) m(dN)

where the residual sum of squares is RSS(\) = Y7 (Vi — f1(Z;))?. We prove an
oracle inequality for this estimator stating that under mild assumptions, for every
B > 402, it holds

f K(p,
BlI7 - 121 <t ([ 15 12 ptan) + ),

fa

where ||g||2 = 23" | g(Z;)? for every function g, the infimum is taken over all
probability distributions p satisfying [, || fall2p(d)\) < oo and K(p, ) stands for
the Kullback-Leibler divergence between p and the prior distribution 7.

We then apply the obtained inequality to the linear model

Y, =a] N+ + &, i=1,...,n,

where (z;,Y;) are observed, \* € RM is the unknown parameter-vector, §; is a
sequence of deterministic errors while &; is a sequence of random errors satisfying
the same assumptions as above. We place ourselves under the sparsity scenario,
that is we allow M to be of the same order as or even larger than the sample size
n, but we assume that only a small number of coordinates of \* are different from
zero. We choose a prior distribution 7 that is, roughly speaking, the product of
scaled univariate Student distributions with 3 degrees of freedom. The EWA An
based on this prior and a properly chosen scaling parameter is shown to satisfy
the inequality

16113 +48 3252, log(1 + |3 /o|v/n)

)

E[|A, — X&) <

n
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where, by definition, [|v]|% = 2> ,(z/ v)?>. A remarkable point in this result is
that it is obtained under no assumption on the covariates {z;} and that the sum
in the right hand side of the inequality is proportional, up to a logarithmic factor,
to the number of non-zero coordinates of A*, which is expected to be small in view
of the sparsity assumption. The rigorous statements of these results can be found
in [1, 2].

Finally, we introduce a version of Langevin Monte-Carlo procedure, that allows
us to efficiently compute an approximation to the EWA even for large values of
M. We illustrate the quality of estimation of large vectors by the EWA and the
efficiency of the Langevin Monte-Carlo approximation through numerical simula-
tions.
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On an incomplete aggregation of hard thresholding estimates
YURI GOLUBEV

This paper focuses on recovering an unknown vector § € R™ from the noisy
data

}/1:91+O—§1) iil,...,n,

where &; are Gaussian i.i.d. random variables N'(0,1). In order to estimate 6, we
use the hard thresholding method

0;(t,Y) = V;1{[y;| >t}

and our goal is to choose the threshold ¢ based on the data at hand. The motivation
of the hard thresholding technique is based on the hypotheses that the underlying
vector € is sparse. Such vectors typically arise in statistical problems related to
the wavelets technique, see for instance Donoho, D., Johnstone, I., Kerkyacharian,
G., and Picard, D. (1995).

In this paper, the thresholds are chosen with the help of the principle of the
empirical risk minimization, i.e.,

i = argmin{ ||y — (¢, V)12 + Pen[||0(t, Y) o, 1] }.
teT

where 7 is a subset in R, || - || is the usual Eucledian norm, ||z|lo = Y"1 1{|z;] >
0}, and Pen[-, } is a penalty function. Generally speaking, the main goal in the
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empirical risk minimization is to find a universal penalty that minimizes the risk

of é(f, Y)
R(0, Pen) = EZ[@ —0; (fa Y)}Q

uniformly in § € R™. To see how this method works, let us start with the classical
situation, where 7 = R™T. In statistical literature, this case is often called model
selection (see e.g., Birgé, L. and Massart, P. (2007) for its concise history).

In order to bound from above the risk of f(£, V), let us introduce some additional
notations. For a vector z € R"™ we denote by z(.) the decreasing permutation of
its components, i.e. T(1) > T(z) > ... = T(n). Let

2Q.n
2k +1
We begin with a rough result in the spirit of Birgé, L. and Massart, P. (2007).

Theorem 4. Let T = RT and Pen,(x) = (1 + a)o?peny(x), then for any e > 0,
uniformly in 6 € R™

1
peng (k) def (2k + 1) log , where Q, = (1 + —) exp(2 +¢) with e > 0.
o

Co?(1+ a)?
ave
where R(0, Peny) = mink{Z?:kH 9(21-) + Pena(k)} and here and in the sequel

C > 0 stands for a generic positive constant.

1
R(0, Peng) < (1 + —)’R(G, Peng) +
«

This theorem predicts the following properties of the empirical risk minimiza-
tion: it blows up rapidly as a — 0, the nearly optimal penalty corresponds to
a =~ 1, the risk of this method (with the optimal penalty) over the set S, =
{6 : |0]l0 < ynn} is asymptotically fourfold the minimax risk (see Abramovich,
F., Benjamini, Y., Donoho, D. and Johstone, I., (2006)). Unfortunately, these
conclusions are far from statistical practice since they result from the imprecise
upper bound.

The next result shows that the upper bound from Theorem 1 may be improved.
In what follows it is assumed that

o T = {t1,ty,... . ta}, where M = n/[exp(1)y/log(n)] and t;, are defined
by

n

ty =0,/21o
g \/ gl—i—(kz—l) log(n)

e Peny(k,t) = (1 + a)o?peny 2(k) + an(t?/2 + o) exp[—t?/(20?)] with
some a > 0.

Theorem 5. Uniformly in 0 € Q" andt € T

R(0, Pena) <Ro(0,1) +02#{¢ L 16:] > L}
log(n)

Cy/ea’no? —1/4
* Ro(@, t) ’

® CRo(0,1)

a3/2¢1/4 [1 +log
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where Ro(6,1) = Y1, 62P{|Y;| <t} + Peny [ZL P{|vi| > t},t} .

Statistical sense of this theorem is rather transparent. If the underlying vector is
sparse, then R(6,t) < no? for reasonable thresholds ¢. This means that Rq(6,t)
is the main term at the right-side in (1) and its minimum in « is attained at « =~ 0.
Notice also that this upper bound blows up, but in contrast to Theorem 4, this
effect takes place in the second order term. Since there is no blowup in the main
term, one can prove that é(f, Y') is the nearly asymptotically minimax estimator
over S, .
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Asymptotic efficiency of simple decisions for the compound decision
problem and estimating the mean of high value observations

YAACOV RITOV
(joint work with E. Greenstein and J. Park)

Let F = {F, : p € M} be a parameterized family of distributions. Let Y7,Y>. ..
be a sequence of independent random variables, where Y; takes value in some
space YV, and Y; ~ Fy,,, i = 1,2,.... For each n, we suppose that the sequence
U1 is known up to a permutation, where for any sequence z = (z1,z2,...)
we denote the sub-sequence zg,...,x: by zs:. We denote by p = p,, the set
{p1,-- oy tin}, 1€, p iS p1., without any order information. We consider in this
note the problem of estimating 1., by fi1:, under the loss """ | (fi; — p;)?, where
f1:n, = A(Y1.,). We assume that the family F is dominated by a measure v, and
denote the corresponding densities simply by f; = fu,, ¢ =1,...,n. The important
example is, as usual, F,,, = N(p;,1).

Let D% = D be the set of all simple symmetric decision functions A, that is, all
A such that A(Y1.,) = (6(Y1),...,d(Yn)), for some function § : Y — M. In partic-
ular, the best simple symmetric function is denoted by Aﬁ = (55()’1), 0 (Yn)):

S .
A;, =argminE [|A — pan %,
AeDS
and denote
7’5 = E ||A§(Y1n) - /ll;n||2,

where, as usual, [|a1.,||* = Y., a?.
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The class of simple rules may be considered too restrictive. Since the us are
known up to a permutation, the problem seems to be of matching the Y's to the
ps. Thus, if ¥; ~ N(u;,1), and n = 2, a reasonable decision would make fiy
closer to pu1 A pa as Ye gets larger. The simple rule clearly remains inefficient if
the us are well separated, and generally speaking, a bigger class of decision rules
may be needed to obtain efficiency. However, given the natural invariance of the
problem, it makes sense to be restricted to the class D! = DF! of all permutation
invariant decision functions, i.e, functions A that satisfy for any permutation 7
and any (Y1,...,Y,):

A(H,,Yn):(ﬂhyﬂn) Aand A(Yﬂ'(l)a7Y7r(n)):(ﬂ7r(1)aaﬂ7r(n))
Let

Aﬁl =argminE [|A(Y™) — py.n|?
AEDPI

be the optimal permutation invariant rule under p, and denote its risk by
= E”Aﬁl(ylzn) — |

Obviously D° ¢ DP!, and whence r5 > rPT. Still, “folklore’, theorems in
the spirit of De Finetti, and results like Hannan and Robbins (1955), imply that
asymptotically (as n — o0) Af;{ and Aﬁn will have ‘similar’ mean risks: 75 —
rPl = o(n). Our main result establishes conditions that imply the stronger claim,
rd —rPT =0(1).

An asymptotic equivalence as above implies, that when we confine ourselves to
the class of permutation invariant procedures, we may further restrict ourselves
to the class of simple symmetric procedures, as is usually done in the standard
analysis of compound decision problems. The later class is smaller and simpler.

The motivation for this paper stems from the way the notion of oracle is used
in some sparse estimation problems. Consider two oracles, both know the value of
. Oracle I is restricted to use only a procedure from the class D7, while Oracle
IT is further restricted to use procedures from D°. Obviously Oracle I has an
advantage, our results quantify this advantage and show that it is asymptotically
negligible. Furthermore, starting with Robbins (1951) various oracle-inequalities
were obtained showing that one can achieve nearly the risk of Oracle II, by a
‘legitimate’ statistical procedure. See, e.g., the survey Zhang (2003), for oracle-
inequalities regarding the difference in risks. See also Brown and Greenshtein
(2007), and Jiang and Zhang (2007) for oracle inequalities regarding the ratio of
the risks. However, Oracle II is limited, and hence, these claims may seem to be
too weak. Our equivalence results, extend many of those oracle inequalities to be
valid also with respect to Oracle I. We needed a stronger result than the usual
objective that the mean risks are equal up to o(1) difference. Many of the above
mentioned recent applications of the compound decision notion are about sparse
situations when most of the us are in fact 0, the mean risk is o(1), and the only
interest is in total risk.
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As an example of the type of results assume that p can get one of two values
which we denote by {0,1}. To simplify notation we denote the two densities by

fo and fi.
Theorem 6. Suppose that either of the following two conditions holds:

(i) fi—p(Y1)/fu(Y1) has a finite variance under p € {0,1}.
(i1) ZZ L1i/n— 7y €(0,1), and f1-,(Y1)/fu(Y1) has a finite variance under
=0.
Then E,, ||,&S — P12 =0(1).

Suppose now that Y; ~ N (p;,1). We assume that the vector p = (u1,..., )
is sparse, in the sense that most of the u;’s are 0. A few of the Y;s are selected for
a further investigation, and they should correspond to those with relatively large
value of p;. Without any auxiliary information, the natural (and in fact the only
conceivable) selection procedure is selecting those items with large value of Y;. We
want to investigate the total amount of signal in the selected lot. Formally, we

study the estimation of
So =Y _wl(Y; > C),

for some given fixed C. We consider this problem as compound decision problem
wand suggest an estimator.

Theorem 7. Suppose

F(C) < r1p(C),
IF(C)] < kol (O,

where the bounds k; i = 1,2, are uniform in n. Then
Se =1+ 0p(n*[p(C)(|¢" (O))2]) = 0+ Op(Clne(C)]?

3

Sc = Sc + 0,(Clne(C)]5)

On aggregation/selection of estimators
ALEXANDER GOLDENSHLUGER

The subject of this paper is the problem of aggregating estimators from a given
collection.
Consider the Gaussian white noise model

(1) Yo(dt) = f(t)dt + W (dt), t= (t1,...,tq) € Dy = [0,1]%

where f : R — R is an unknown function, ¢ € (0,1), and W is the standard
Wiener process in R?. Let © C RY be a compact set, and assume that we are
given a parameterized family of estimators Fg = {fy, 6 € O} of f. The objective
is, using the observation ). = {Y.(t),t € Do}, to select a single estimator from
Fo with the risk that is as close as possible to the risk of the best estimator in the
family Fo. We refer to the outlined setup as the aggregation problem. Aggregation
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is a common approach to construction of nonparametric adaptive estimators; this
fact motivates consideration of aggregation problems.

Let f be an estimator of f based on the observation .. We measure accuracy
of f by its L,-risk

Rolfs f1 =Ef|f = fllp» 1<p< o0,

where E; is the expectation with respect to the probability measure Py of obser-
vation Y. under model (1), and || - ||, is the standard L,—norm on Dy. We want
to propose a measurable choice, say f = fp, from collection Fg such that the
following I, —risk oracle inequality holds:

(2) Rylf: 11 < C juf Ry fo: ]+ 1

for all f from a ”large” functional class.

Here C is a constant independent of f and e, and r. is a remainder term that
does not depend on f.

We propose a general aggregation scheme that is universal in the following
sense: (i) it applies to families of arbitrary estimators; (ii) it can be easily ex-
tended to different models; (iii) it can be used for a wide variety of global risk
measures. Although the main results of this paper pertain to the MS aggregation
setup, Gaussian white noise model and LL,-risks, similar results can be easily es-
tablished for other models and global risk measures. We illustrate universality of
the suggested procedure by applying it to convex aggregation and to the problem
of estimating a normal mean vector.

Our aggregation method is based on comparison of empirical estimates of certain
regular linear functionals with estimates induced by the family Fg.

A closely related idea that a nonparametric function estimator is ”good” if
its integrals over cubes ”agree” with the corresponding empirical means, belongs
to [5]. We establish general oracle inequalities and specialize them for different
sets of linear functionals. It turns out that universal inequalities of [1] and [4]
can be derived from our general oracle inequalities using a specific choice of the
set of linear functionals. The results indicate that in the Gaussian white noise
model (1) the problem of aggregation of arbitrary estimators in L,, p € (2, ]
can be rather difficult. In this case remainder terms in the oracle inequalities
depend on the family Fg and, in general, can be rather large. We prove a lower
bound and show that dependence of the remainder terms on Fg is, in a sense,
unavoidable. Thus "efficient” aggregation of arbitrary estimators in L, p € (2, 0]
is impossible. We also show that in the Lo—framework a slight modification of
the proposed aggregation procedure satisfies the exact oracle inequality (2) with
C =1 and the remainder r. that cannot be improved in the minimax sense.
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Capturing Functions of Few Variables in High Dimensions
RoNALD DEVORE
(joint work with Guergana Petrova and Przemyslaw Wojtaszczyk)

The numerical solution of many scientific problems can be reformulated as the
approximation of a function f, defined on a domain in RY, with N large. Most
classical numerical methods and the corresponding theory of approximation for
N-variate functions deteriorate severely with the growth of N. This is the so-
called curse of dimensionality. On the other hand, the functions f that arise as
solutions to real world problems are thought to be much better behaved than a
general N-variate function in the sense that they depend on only a few parameters
or variables or they can be well approximated by such functions. This has led to
a concerted effort to develop a theory and algorithms which approximate such
functions well without suffering the effect of the curse of dimensionality. There
are many impressive approaches (see [1, 2, 8, 4, 6, 7, 9] as representative) which
are being developed in a variety of settings. One of the main challenges in this
approach is to identify the significant variables in a compuationally friendly way.
In this talk we shall consider a simple model for the above problem of variable
reduction and show that under thsi model it is possible to capture such functions
with a modest cost from N.

We shall assume that f is a function defined on Q := [0, 1]" but it depends on
just ¢ of the coordinate variables: f(z1,...,2n) = g(@4, ..., 2;,) Where i1,..., ¢
are not known to us. We are given a budget m of questions we can ask about f.
Each question takes the form: What is the value of f at a point of our choosing?
We want then to approximate f from these point values. We are interested in what
are the best questions to ask and to what error can we capture f as we allow the
number m of questions to increase. We shall measure the error of approximation
in the norm

(1) - 1F= 1 e,

where C'(2) is the space of continuous functions on © and the norm is the supre-
mum norm on 2. Similar questions in other norms are of interest but will not be
discussed. The quantitative results we obtain will be made under some smoothness
assumption on g in the form of Lipschitz or higher smoothness.
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We shall primarily be interested in the case where the m points are assigned in
advance. However, we shall also make some remarks on possible gains in reducing
the number of function evaluations by proceeding adaptively. A second problem we
shall consider is when f is not a function of £ variables but it can be approximated
to some tolerance € by such a function. We seek again sets of points where the
knowledge of the values of f at such points will allow us to approximate f well.

If g is in Lipa and the coordinates i1, ...,%; are known to us, then by asking
for the values of f at m = L’ appropriately spaced points, we could recover
f to the accuracy ||g||Lip, L™ in the norm of C(£2). We shall show that we
can obtain similar estimates even when the coordinates i1,...,4, are not known
to us. However, to achieve this performance we shall have to ask slightly more
questions. For example, m = C(¢)L‘*!(log, N)? point values will give the accuracy
l9llLip, L. The additional factor L(logy N)? is the price our algorithm pays for
not knowing the coordinates i1, ..., .

The construction of the favorable set of points where we ask for the values of f
in the general case is based on having a family A of partitions of {1,..., N} into ¢
disjoint sets which have certain separation properties on k-tuples of integers. The
requirements on A are closely related to perfect hashing [3, 5]. This approach has
been used in Computer Science to identify change variables in discrete settings
and the corresponding algorithms are known as JUNTAs.
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Least squares estimation and variable selection under minimax
concave penalty

CuN-HUul ZHANG

1. Summary. Variable selection and estimation of a sparse high-dimensional
signal vector B € RP? is well understood if it is directly observed with white noise.
If most components of 3 are zero, threshold estimators at level Ay, = 0v/2logp
find the exact set of nonzeros with high probability when the minimum absolute
value of the nonzero components of 3 is slightly greater than A,,;,. If 3 belongs to
an £, ball of radius R, threshold estimators at a certain level \,,,, approximately
attain the minimax risk. In linear regression

y=XB+ecR" BeR?, e~ N(0,0°1,),

with either a deterministic X or a random one independent of e, these results
can be extended up to an O(1) factor with a certain concave penalized estimator,
provided that the number of variables to be selected or R" /AT is no greater than
a certain d,. Under certain conditions on the design matrix X, the order of this
d. could be as high as n/log(p/n).

2. Minimax concave penalty. Consider penalized loss

P
La(B.3) = lly = XBI1*/(2n) + Y p(15;1: V),
j=1
with (9/0t)p(t; ) = p(t; A) > 0 for ¢ > 0 and p(0+; A) > 0. All critical points of
the penalized loss must satisfy the estimating equation

x(y — XB)/n=sgn(B3;)p(|B;[; A), B #0
@ (y — XB)/n| < p(0+;N), B; =0

via sub-differentiation. Let 3 be a solution of (1), A={j: Bj # 0} and A° =
A°(B) = {j : B; # 0}. The residual vector of 8 can be written as

y—XB=(I, —P7)(X 3.83. +€) + bias

where bias = X 4( %Xg)_l(sgn(ﬁj)pﬂﬁﬂ;)\))/, X4 = (xzj,j €A) and by =
(bj,j € A)'. Since the bias could be correlated with x;,j € /Alc, it may lead to
false negative (FN) selection in case of j € A°\ A and/or false positive (FP) with
A \ A° # (. The bias may persist and cause significant FN, even in the noiseless
case 0 = (0 as shown in Table 1.

If p(t; A) = 0 for ¢ > v\ [7], the bias of penalized estimators can be alleviated if
| 3J| > A for sufficiently many j. However, such penalty functions are necessarily
non-convex.

The minimax concave penalty (MCP),

(1)

2) Pt N) = A / (1 - 2/(v\) 4 dz,



Sparse Recovery Problems in High Dimensions 909

TABLE 1. Sparse recovery: o = 0, A = 0+

y = X3 with iid N(0, 1) entries in {X, 3;,j € A°}
FN=#{j:8; #0= Ej}, FP allowed for correct recovery

n,p, | A°| 100, 2000, 15 | 100,2000,28 | 200, 10000, 40
n/ log(p/n) 33.38 33.38 51.12
mc+ Lasso | mc+ Lasso | mc+  Lasso
%{B = B} 100 51 73 0 100 0
E[FN|B # 8] 2 19 13 18
El#steps|B=8] | 32 65 | 87 102
E [#steps|B # 8] 144 | 513 153 311

minimizes the maximum concavity maxg<t<~x(—1)(9/9t)?p(t; ) among all penal-
ties satisfying p(¢; A) = 0 V& > A and p(0+; A) = A.
3. Algorithm. Let

~(z ~(0
(3) 2@ 03 A0 68 = | X'y/n)lw @0

be a continuous path of solutions of the estimation equation (1). For a given
penalty level A, we define a penalized estimator

(4) B =B,y —inf{e: A® <AL

Consider a quadratic spline penalty p(t) satisfying (d/dt)p(t) > 0 V¢t > 0 and
(d/dt)p(0+) = 1. Let p(t;\) = A2p(t/)). Since p(t) is a quadratic spline, the
solution path (3) is a linear spline in RP*L. It uniquely exists, ends at a least
squares fit at A = 0+ and changes its “active set” one at a time almost everywhere.
We use a penalized linear unbiased selection (PLUS) algorithm [16] to compute
this path. The PLUS algorithm is an extension of the LARS [10, 11, 6] and costs
nearly the same number of operations per step (Table 1). We call (4) the PLUS
solution of the penalized least squares problem and describe blow properties of
such specific solutions. The PLUS solution is a global minimizer of the penalized
loss if the penalized loss is convex, but we do not seek global minimization in
general. The ¢;, MCP, and SCAD [7] are all quadratic splines, with 1, 2 and 3
knots respectively. The PLUS solution for the MCP is called MC+ as in Table 1.

4. Variable selection. We first state a lower bound for selection consistency.
Define the minimax average probability of incorrect selection

—1
(5) H(n,p,d,€) = inf sup <p) Z Pg{fl# AO(,B)},
A p.>e \d
1Bllo=d

where . = ming, 0 |G5], [Bllo = #{5 : 8; # 0}, A°(8) = {j : §; # 0}, and the
infimum is taken over all Borel maps from (X,y) to A C {1,...,p}.

Theorem 1. Suppose X is either deterministic with ||x;||> = n or random
with E|z;||* = n. Suppose p —d — oo. Then, Z(n,p,d,e) — 0 implies ¢ >

(1/24 o(1))o+/(2/n)log(p — d).

This result [17] is an extension of [15] from standard Gaussian X to general X.
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We consider the following sufficient conditions for selection consistency:
(S1) For all j < p, ||z;||> = n; for all |A| < d* and ||ba| =1,

0 < cw < || Xabal?/n < ¢ < 0.
(S2) For d. = 2d* /{1 + (1 + L=o)c*/e. ),
[Bllo = #{j : B; # 0} < d..
(S3) For Ay = a/(2/n)log(p — [|Bllo) and Xz = a/(2/n)log(p/[|Bll0),
P <A< A3 =1, A3 > A V(2 + €0)VerAs), € > 0.
(S4) With [|Bllo < an — oo,

Bx > U\/max{diag((X;onAo/n)_l)}Qlogan + Y As.

(S5) The MCP (2) is used with v > c;1\/4 + ¢ + */c*.

Theorem 2. Suppose that Conditions S1-S5 hold. Let A° = {j : B; # 0}
and ,B'O = (X'4o X 40) 1 X 40y as an oracle LSE. Let B = B(X—i—) be the MC+
estimator at the estimated level A, where B(X\) is as in (4). Then,

(6) P{sgn(B) =sgn(B), B=08"} — 1.

The interpretation of (6) in the case of ¢ = 0 is 3 = B. Condition S1 is
called the sparse Riesz condition in [18]. Tt is a slightly more general version of the
restricted isometry condition [3] about dg« = (¢* —1) V(1 —c¢,). Condition S2 holds
if 034, < 3/7 for o > 0 or d24, < 1/2 for o = 0. Condition S3 allows the use of
the deterministic \ = Auniv = 04/ (2/n) logp or an upper confidence bound of A;.
For log(||B|lo) = o(1)log(p — ||Bllo), Condition S4 requires B, > v/c*(2 + o(1)) v\
while the lower bound is 3, > (1/2 4 o(1))A; in Theorem 1; For Ay = o(A1) and
1Bllo < p/2, B« > 29A;1 implies Condition S4. Theorem 2 is a sharper version of
the selection consistency theorem in [16]. Selection consistency in linear regression
has been proved under different sets of conditions in [8, 12, 21, 14] for the Lasso
and in [20] for a certain stepwise regression strategy.

5. Estimation. We first state lower bounds for the ¢, loss ||B - BllE =
D 1B — G517 in £, balls 0,0 = {8 18]l < R}.

Theorem 3. Suppose X is deterministic with ||z;||> = n. Let A\pm =
ov/(2/n)log(o"p/(n"/2R")). Then, forrV1<qand0 <e<1
(7) inf sup Eg||B—B[I > (1+o(1)R" N,
B BEO, R
~ 1- 1
(®) it sup Pp{ B Blg > (1 - gy} = L)
B BEO, R 34

as (nX2,,, /0% R" Amm) — (00,00).
The lower bound (7) is an extension of [5] from the case of orthonormal design
xixp/n=I—.
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Consider the following conditions for upper bounds:
(E2) R"/AI . = |B| < d, with the d, in (S2) and a certain B C {1,...,p}.
(E3) Ao = 2V {Amm (1 + v/2¢,) + e10/+/n} with a small ¢; > 0.
(B4) ML = [t[/(vA)+ < ([t A) < A with v > e ' /4 + e /e
Theorem 4. Suppose that Conditions S1 and E2-E4 hold. Let B = B()\) be as
in (4). Then, for 0 <r < q<2,

mf e pJ BBl = MRIALLL 1,
|B|<d. BE® R, B 18]lo < |B|d*/d.

asnA2, /o? — oo, where O, r = {B: ||Bgcllr < R, 1Bgelloc < A} and M, =
20D+ L MI(1/2+c* /) =92 41} with M = 3v/c* Jeu + (3v241)y/c* ca +0(1).

Performance bounds for the Lasso and Dantzig estimators have been obtained
in [1, 2, 4, 9, 13, 18, 19] among others for A > Ay = 04/(2/n) logp.
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