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Introduction by the Organisers

In its origin, optimal transportation is a variational problem where one mini-
mizes a transportation cost when transporting one density into another (Monge).
Via its relaxed version (Kantorovich), the solution of this problem (Brenier) con-
nects with convex analysis. Entire classes of inequalities in analysis can be easily
proven with this tool. Even for the simplest transportation cost, i. e. the square of
the Euclidean distance, the regularity theory for the minimizers is subtle (Caffarelli
and others): Its Euler-Lagrange equation is the role model for a fully nonlinear
elliptic equation in non-divergence form, the Monge-Ampère equation. The ex-
istence and the elements of a theory for more subtle transportation costs, like
the Euclidean distance itself or the square of a Riemannian distance, are areas of
current research.

Optimal transportation can be used to introduce a metric (distance function) on
the space of probability measures which metrizes the weak topology. If the trans-
portation cost is the square of a Euclidean or Riemannian distance, this metric
can be seen as induced from a formal, infinite-dimensional Riemannian structure
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on the space of probability measures (Otto). Loosely speaking this geometry is
the “complement” (in the sense of polar decomposition of vector fields) of the one
of the space of volume-preserving diffeomorphisms (Arnold), which is motivated
from fluid mechanics. Like for the space of volume-preserving diffeomorphisms,
the space of probability measures has interesting geometrical properties itself. For
instance, in the Aleksandrov sense, this space has non-positive sectional curvature,
if the underlying space has this property.

Certain entropy functionals (including the usual entropy) turn out to be convex
with respect to this geometry (McCann). Moreover, the convexity properties of
these functionals can be used to characterize lower bounds on the Ricci curvature
and the dimension of the underlying space — and can be used to define Ricci
curvature bounds in the absence of a smooth structure (Sturm, Lott-Villani).
This relation between geodesic convexity and Ricci curvature can be assimilated to
the longer-known relation between the logarithmic Sobolev inequality and Ricci
curvature (Bakry-Emery). Closely related to this property is the fact that the
gradient flow (steepest descent) of the entropy functional is a contraction if the
Ricci curvature is non-negative. In fact it is always a contraction if the underlying
geometry evolves by Ricci flow (McCann-Topping).

This brief tour d’horizon shows that over the past 15 years, many connections
between optimal transportation and seemingly unrelated fields have been discov-
ered. Three monographs [1, 2, 3] and several lecture notes address these recent
developments.

The Arbeitsgemeinschaft “Optimal transport and geometry”, being held from
March 29th to April 4th 2009, attracted more than 30 participants from vari-
ous mathematical fields like partial differential equations, probability theory or
geometry, who shared their different views about the topics presented in the 17
well-prepared talks in lively discussions. We would like to thank the staff of Ober-
wolfach for providing such perfect and pleasant working conditions, resulting in a
stimulating atmosphere that gave the highly motivated participants extraordinary
possibilities for learning and exchanging ideas.
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Abstracts

Kantorovich Duality

Marzena Franek

The optimal transport problem was first formulated by the mathematician Gas-
pard Monge in the year 1781 and then reformulated by Kantorovich in 1942 [1, 2, 3].
In a simple way it can be interpreted as transporting a pile of sand to a hole, with
the aim to minimize the transport costs.
Assume that µ and ν are two probability measures defined on two measure spaces
X and Y . We model the transportation plan by probability measure π on a prod-
uct space X × Y .

(1) Π(µ, ν) = {π ∈ P (X × Y ) | π[A× Y ] = µ[A], π[X ×B] = µ[B]}
is the set of all probability measures with measurable subsets A of X and B of
Y . With the measurable cost function c : X × Y → R+ ∪ {+∞} we introduce the
Kantorovich problem in the following way:

(2) min I[π] =

∫

X×Y

c(x, y)dπ(x, y) for π ∈ Π(µ, ν).

If Tc(µ, ν) = infπ∈Π(µ,ν) I[π] exist, we name Tc(µ, ν) the optimal transporta-
tion cost. The difference between Monge‘s optimal transport problem and Kan-
torovich‘s formulation is the fact that Monge‘s formulation does not allow the
splitting of mass. The difficult nonlinear Monge problem was thereby replaced by
a linear optimization problem over an abstract convex set, for which existence of
a minimizer can be proved [2, 3].
In the year 1942 Kantorovich introduced the dual problem for (2). Let c be lower
semicontinuous, so we can formulate the dual problem in the following way:

(3) sup
ϕ,ψ

J(ϕ, ψ) = sup
ϕ,ψ

(
∫

X

ϕ(x)dµ +

∫

Y

ψ(y)dν

)

with measurable functions (ϕ, ψ) ∈ L1(dµ)×L1(dν) under the assumptions ϕ(x)+
ψ(y) ≤ c(x, y). We conclude that

(4) inf
π
I[π] = sup

(ϕ,ψ)

J(ϕ, ψ).

For the proof we refer to [2].
If the cost function is a metric c(x, y) = d(x, y) the Kantorovich problem admits
a well-known dual formulation, introduced by Kantorovich and Rubinstein. With
d a lower semi-continuous metric on X we can formulate

Td(µ, ν) = inf
π∈Π(µ,ν)

∫

X×X

d(x, y)dπ(x, y).

Let Lip(X) denote the space of all Lipschitz functions on X , and

‖ϕ‖Lip ≡ supx 6=y
|ϕ(x) − ϕ(y)|

d(x, y)
.
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Then

Td(µ, ν) = sup

{
∫

X

ϕd(µ− ν);ϕ ∈ L1(d|µ− ν|), ‖ϕ‖Lip ≤ 1

}

.
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[1] S. T. Rachev, L. Rüschendorf, Mass Transportation Problems, Vol. 1: Theory, Springer
(1998).

[2] C. Villani, Topics in Mass Transportation , Graduate Studies in Mathematics, American
Mathematical Society (2003).

[3] C. Villani, Optimal Transport - Old and new , Grundlehren, Springer, Berlin (1998).

Optimal transports and c−convex functions

Krzysztof  Latuszyński

The setting is as follows. Let (X , µ) and (Y, ν) be Polish probability spaces. Let
functions a : X → R ∪ {−∞} and b : Y → R ∪ {−∞} be upper semicontinuous
s.t. a ∈ L1(µ), b ∈ L1(ν). Let the cost function c : X × Y → (−∞,∞] be lower
semicontinuous and s.t. c(x, y) ≥ a(x) + b(y). By Π(µ, ν) denote the family joint
probability measures on X × Y with marginals µ and ν respectively. An element
of Π will be denoted as π. From the first talk we know there exists π ∈ Π(µ, ν)
that minimizes Ec(X,Y ). Now we will discuss properties of an optimal plan π and
in particular its support. The talk is based on [3], [2] and [1]. We start with
definitions.
Definition 0.1.

• A set Γ ⊂ X × Y is c−cyclically monotone if for any N ∈ N and for any
(x1, y1), . . . , (xN , yN ) ∈ Γ holds

N
∑

i=1

c(xi, yi) ≤
N

∑

i=1

c(xi, yi+1) with yN+1
def
= y1.

• We say that ψ : X → R ∪ {+∞} is c−convex if it is ψ 6≡ +∞ and there
exists ξ : Y → R ∪ {±∞} such that for every x ∈ X ,

ψ(x) = sup
y∈Y

(ξ(y) − c(x, y)).

• The c−transform of ψ is defined as

ψc(y) = inf
x∈X

(ψ(x) + c(x, y)).

• The c−subdifferential of ψ is a c−cyclically monotone set defined by

∂cψ := {(x, y) ∈ X × Y : ψc(y) − ψ(x) = c(x, y)},
and consequently the c−subdifferential of ψ at point x is

∂cψ(x) :=
{

y ∈ Y; (x, y) ∈ ∂cψ
}

=
{

y ∈ Y; ∀z∈X , ψ(x)−ψ(z) ≤ c(z, y)− c(x, y)
}

.
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The c−transform can be seen as a general version of the Legendre transform.
In particular if X = Y = Rn, then c−convexity is equivalent to convexity of
ψ(x)+|x|2/2.The following result provides an alternative, and often more tractable
characterization of c−convexity.

Proposition 0.2. Function ψ is c−convex if and only if ψcc = ψ, where

ψcc(x) := (ψc)c(x) = sup
y∈Y

inf
x̃∈X

(ψ(x̃) + c(x̃, y) − c(x, y)).

Sketch of a proof. First observe that for any φ : Y → R ∪ {∞} one can write φccc

as sup inf sup and conclude that φccc = φc. (c.f. [3] Proposition 5.8). Since ψ is
c−convex, ψ = ξc for some ξ. Thus ψcc = ξccc = ξc = ψ. For the converse, it
is enough to notice, that if ψcc = ψ, then ψ is c−convex as the c−transform of
ψc. �

Next we show the Rüschendorf’s theorem, namely that every c−cyclically mono-
tone set can be included in a c−subdifferential of a c−convex function.

Theorem 0.3 (Rüschendorf’s Theorem). A set Γ ⊂ X ×Y is c−cyclically mono-
tone ⇔ there exists a c−convex function ψ on X such that Γ ⊂ ∂cψ.

Proof. ⇐ . Take (xi, yi) ∈ Γ ⊂ ∂cψ, 1 ≤ i ≤ n. Then the definition of ∂cψ(xi)
implies

n
∑

i=1

(

c(xi+1, yi) − c(xi, yi)
)

≥
n

∑

i=1

(ψ(xi) − ψ(xi+1)) = 0,

so Γ is c−cyclically monotone.
⇒ . First note that c−convexity of ψ, is equivalent to ψ(x) = supi∈I(ai− c(x, yi)),
where I is an index set. Indeed, for i ∈ I one can take ξ(yi) := ai and ξ(y) = −∞
otherwise. Conversely, if ψ is c−convex, then one can take I := Y, yy = y and
ay = ξ(y). Now assuming that Γ is c−cyclically monotone and (x0, y0) ∈ Γ, define
ψ : X → R ∪ {±∞} as

ψ(x) := sup
(xi,yi)∈Γ
1≤i≤n∈N

“

−c(x, yn)+c(xn, yn)−c(xn, yn−1)+c(xn−1, yn−1)∓· · ·−c(x1, y0)+c(x0, y0)
”

.

Then ψ is c−convex and ψ(x0) ≤ 0 as Γ is c−cyclically monotone. In fact, taking
n = 1, x1 = x0, y1 = y0 gives ψ(x0) = 0. Next we take (x′, y′) ∈ Γ and show
that y′ ∈ ∂cψ(x′) and as a consequence Γ ⊂ ∂cψ. To this end take λ < ψ(x′), then
there exist (xi, yi) ∈ Γ, 1 ≤ i ≤ m ∈ N such that

λ < −c(x′, ym)+c(xm, ym)−c(xm, ym−1)+c(xm−1, ym−1)∓· · ·−c(x1, y0)+c(x0, y0).

Define xm+1 := x′ and ym+1 := y′. Then for x ∈ X ,
ψ(x) ≥ −c(x, ym+1) + c(xm+1, ym+1) − c(xm+1, ym) + c(xm, ym) ∓ · · · − c(x1, y0) + c(x0, y0)

≥ −c(x, ym+1) + c(xm+1, ym+1) + λ.

Thus ψ(x) − λ ≥ −c(x, ym+1) + c(xm+1, ym+1) and by letting λ → ψ(x′) we
obtain ψ(x) − ψ(x′) ≥ −c(x, y′) + c(x′, y′) as required. Moreover ψ(x′) <∞ since
ψ(x0) = 0. �
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It is intuitively clear and also not very hard to prove formally that optimal
plans have c−cyclically monotone supports under some regularity conditions for
the cost function. So in view of the Rüschendorf’s Theorem, optimal plans are
supported in c−subdifferentials of c−convex functions. It is also intuitive, but
much less obvious, that c−cyclically monotone plans are optimal. This property
is stated precisely in the next Theorem (Theorem 5.10 of [3]). Here the function
ψ(x) can be interpreted as the price for buying goods at x and φ(y) as the price
for selling the goods at y.

Theorem 0.4. Let (X , µ), (Y, ν), c, a, b be as before. Then

(1) It c is real-valued and the optimal cost C(µ, ν) = infπ∈Π(µ,ν)

∫

cdπ is finite,
then there is a measurable c−cyclically monotone set Γ ⊂ X × Y (closed
if a, b, c are continuous) s.t. for any π ∈ Π(µ, ν) the following statements
are equivalent.
(a) π is optimal;
(b) The support of π is c−cyclically monotone;
(c) There is a c−convex ψ s.t., π−a.s. ψc(y) − ψ(x) = c(x, y);
(d) There exists ψ : X → R ∪ {+∞} and φ : Y → R ∪ {−∞}, s.t.

φ(y) − ψ(x) ≤ c(x, y) for all (x, y), with equality π−a.s.
(e) π is concentrated on Γ.

(2) If c is real-valued, C(µ, ν) < ∞, and c(x, y) ≤ cX (x) + cY(y), with
(cX , cX ) ∈ L1(µ) × L1(ν), then both the primal and the dual Kantorovich
problems have solutions, so

min
π∈Π(µ,ν)

∫

X×Y

c(x, y)dπ(x, y)

= max
(ψ,φ)∈L1(µ)×L1(ν);φ−ψ≤c

(
∫

Y

φ(y)dν(y) −
∫

X

ψ(x)dµ(x)

)

= max
ψ∈L1(µ)

(
∫

Y

ψc(y)dν(y) −
∫

X

ψ(x)dµ(x)

)

,

and in the latter expressions one might as well impose that ψ be c−convex
and φ = ψc. If a, b, c are continuous, then there exists a closed c−cyclically
monotone set Γ ⊂ X ×Y, s.t. for any π ∈ Π(µ, ν) and for any ψ ∈ L1(µ),
we have
(a) π is optimal in the Kantorovich problem iff π[Γ] = 1,
(b) ψ is optimal in the dual Kantorovich problem iff Γ ⊂ ∂cψ.
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Brenier’s solution to the optimal transport problem in the Euclidean
case, Polar factorization of vector-valued maps

Christian Selinger

For given probability measures µ and ν on R
d with finite second moment and

the cost function c : R
d × R

d ∋ (x, y) 7→ ||x−y||2

2 ∈ R we know via Kantorovich’s
duality (see for instance [2]) that there exists a unique solution to the associated
primal and dual optimal transport problem

inf
π

∫

Rd×Rd

c dπ = sup
(φ,ψ)

{
∫

Rd

φdµ+

∫

Rd

ψ dν

}

,

where the infimum is taken over all product probability measures with given
marginals µ and ν and the supremum is taken over all µ- resp. ν-integrable func-

tions satisfying
{

||x||2

2 − φ(x)
}

+
{

||y||2

2 − ψ(y)
}

≤ c(x, y). Provided the above

conditions Brenier showed in [1] the following

Theorem 1 If µ does not give mass to small sets then there exists a unique
optimal transport plan π minimizing the transport cost, actually this plan turns
out to be a map:

dπ(y, z) = δ(z −∇φ(y))µ(dy),

where ∇φ is the µ-almost everywhere unique gradient of a convex function with
∇φ#µ = ν. Reciprocally if ν does not give mass to small sets neither the optimal
transport problem from ν to µ is solved by the dπ(y, z) = δ(y −∇φ∗(z))ν(dz).

Proof. To prove this, two elementary lemmata come into play: Firstly, let us
denote the Legendre transform of an integrable function f by f∗(y) := supx{x.y−
f(x)}. It is an easy calculation to show that f(x) + f∗(y) = x.y if and only if
x ∈ ∂f∗(y) := {z : f∗(y′) − f∗(y) ≥ z.(y′ − y)∀y′ ∈ R

d} and y ∈ ∂f(x). Secondly,
Rademacher’s theorem guarantees almost everywhere differentiability of Lipschitz
continuous functions.
Now we can give a sketch of the proof: First we show that the solution to the dual
problem is given by the pair (φ, φ∗): By definition ψ∗ ≤ ψ and ψ∗ is Lipschitz
and respective equations hold for (ψ∗)∗. The existence of a solution to the dual
Monge-Kantorovich problem let us conclude that φ = ψ∗ µ-a.e. and that ψ∗(y) +
(ψ∗)∗(z) = y.z. Furthermore ψ = (ψ∗)∗ a.e., the right-hand side being continuous
and Lipschitz and the left hand side being convex by definition. By Rademacher
∇ψ is well-defined up to Lebesgue negligible sets and ∂ψ(z) = {∇ψ(z)} a.e. From
the first lemma mentioned at the beginning of the proof we obtain finally dp(y, z) =
δ(z − ∇φ(y))µ(dy). The reciprocal statement follows by the same reasoning in
terms of the optimal pair (ψ∗, ψ). �

Proposition 1 (Stability) Given a lower semi-continuous cost function on
R
d and probability measures µ and {νk; kN} such that νk converges weakly to ν.

Asumme furthermore that for each k there exists an optimal transport map Tk
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from µ to νk and that there exists as well an optimal transport map T from µ to
ν. Then Tk converges to T in probability, i.e. for any ǫ > 0:

µ
(

{x ∈ R
d : |Tk(x) − T (x)|2 ≥ ǫ}

)

−→ 0

Proof. With Tk and T we can build the unique optimal transport plans pk :=
(id, Tk)#µ and p := (id, T )#µ. Let ǫ > 0, δ > 0. By Lusin’s theorem there exists
a closed K ⊂ R

d such that µ(Rd \K) ≤ δ and T |K is continuous. It follows that

Aǫ :=
{

(x, y) ∈ K × R
d : |T (x) − y|2 ≥ ǫ

}

⊂ K × R
d

is closed and

0 = p(Aǫ) ≥ lim sup
k

pk(Aǫ) ≥ lim sup
k

µ({x ∈ R
d : |T (x) − Tk(x)|2 ≥ ǫ}) − δ.

Letting δ tend to zero achieves the proof. �

As an application of Brenier’s characterization of optimal transport plans we
state
Theorem 2 (Polar factorization of vector-valued maps) Given two prob-
ability measures µ and ν satisfying the assumptions of Theorem 1, a Polish
probability space (X, ξ) ≃ ([0, 1], |.|), the Hilbert space H = L2((X, ξ); R

d) and
S = {s : X → R

d; s#ξ = µ} then, up to a negligible set N = {u ∈ H : u#ξ(E) 6=
0 for all E with |E| = 0}, there exists the unique factorization

H ∋ u = ∇ψ ◦ s,
where ψ is a convex function.

Proof. By Theorem 1 the optimal transport from µ to ν is given by the almost
everywhere unique gradient of a convex function ψ. For the reciprocal transport
the map ∇ψ∗ is optimal and defining s := ∇ψ∗ ◦ u yields the factorization. �

Remark (Recovering the Helmholtz decomposition of vector fields)
Let z be smooth vector field on R

d we define a smooth perturbation of the identity
map for sufficiently small ǫ: u(x) := x + ǫz(x). By Theorem 2 we know that
u = ∇ψ ◦ s and for small ǫ we can choose ψ(x) = |x|2/2 + ǫp(x) + o(ǫ2) resp.
s(x) = x+ ǫd(x)+o(ǫ2) for a smooth function p and a vector field d. Now we have
u(x) = ∇ψ(s(x)) = x + ǫ(d(x) + ∇p(x)) + o(ǫ) wich entails z = d + ∇p. Since s
is measure preserving it holds for any bounded measurable f that

∫

f(s(x))dx =
∫

f(x+ ǫd(x) + o(ǫ))dx =
∫

f(x)dx consequently the divergence of d is zero.
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The Monge-Ampère equation

Christian Seis

The Monge-Ampère equation is a nonlinear partial differential equation, which
appears in different mathematical contexts. In optimal transportation, its special
form

(1) g(∇ϕ(x)) detD2ϕ(x) = f(x)

arises naturally from Brenier’s solution ∇ϕ, ϕ convex, to the Monge problem in
the case of absolutely continuous measures dµ = f dx, dν = g dy: At least formally
(assuming ϕ strictly convex, smooth), (1) is a reformulation of ∇ϕ#µ = ν.

However, in general ϕ is only convex, and thus continuous and locally Lipschitz,
but not necessarily twice differentiable. Therefore, detD2ϕ is not well-defined. It
turns out, that ϕ solves the Monge-Ampère equation (1) pointwise almost every-
where [3, Theorem 4.8 (iii)], if the Hessian D2ϕ is interpreted in the sense of
Alexandrov’s second derivative of convex functions, this is the absolutely contin-
uous part of the distributional Hessian.

The proof makes use of the Hessian measure detH D
2[E] = |∂ϕ(E)|. A crucial

observation is the identification of the absolutely contiuous part of the Hessian
measure with detD2ϕ(x) dx by using the Radon-Nikodym theorem. It is con-
venient to restrict the analysis to a nice set M of points, where D2ϕ(x) exists
and is invertible. Thanks to the above identification, the Hessian measure is con-
centrated on M . Applying once more the Radon-Nikodym theorem, a change of
variable formula follows for ∇ϕ.

Together with (1), McCann’s change of variable formula [3, Theorem 4.8 (iv)]
∫

U(g(y)) dy =

∫

U

(

f(x)

detD2ϕ(x)

)

detD2ϕ(x) dx,

for nonnegative functions U with U(0) = 0 is derived. See also [2, Theorem 4.4].

As an application an elemantary proof of the Sobolev inequality [1, Theorem 2]

‖f‖Lp∗ ≤ Cn,p‖∇f‖Lp,

with optimal constant Cn,p is presented. Starting point is (1) for appropriate
probability densities. The determinant can be estimated against the Laplacian
using the arithmetic-geometric inequality.
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Caffarelli’s regularity theory

Bernd Kirchheim, Thomas Viehmann

In the previous talk we have seen that the convex potentials ϕ of Brenier’s solutions
satisfy a partial differential equation, the Monge-Ampère equation, but only in a
very weak sense. Also, Brenier’s solutions yield a transport plan T as the gradient
of the (Lipschitz) transportation potential. This talk discusses the question of C1-
regularity of the potential or, equivalently, continutity of T . These are the first
steps of Caffarelli’s regularity theory.

A simple example transporting mass from a ball to two separated half-balls
shows that the transport map cannot in general expected to be continuous. How-
ever, this example can be refined to one in which the target measure has connected
support. The example suggests that convexity of the support is the crucial prop-
erty. We thus assume that source and target measure have convex supports and
densities w.r.t. the Lebesgue measure that are bounded from above and below on
their respective support.

In order to use the regularity theory for nonlinear elliptic partial differential
equations we motivate that under these assumptions Alexandrov solutions enjoy
comparison principles in the class of convex functions. In the language of PDEs
they are viscosity solutions to the elliptic equation

(1) 0 < λ1 ≤ detD2ϕ ≤ λ2.

The first step is to construct suitable barriers (i.e comparison functions) in a
very special geometry of regions comparable with balls. A crucial observation is
now, that the existence of F.John’s ellipsoid allows us to transform these estimates
to general convex domains, obtaining a result of the following kind
Theorem There is a µ0 = µ0(λ1, λ2, n) > 0 such that the following holds. Let
ϕ be a convex function on a convex (bounded) body Ω ⊂ R

n such that ϕ|∂Ω ≡ 0
and ϕ a viscosity solution of (1). If x, y ∈ ∂Ω and z = µx + (1 − µ)y ∈ Ω with
ϕ(z) < 1

2 minΩ ϕ then µ0 ≤ µ ≤ 1 − µ0.
Since the class of convex solutions of (1) is invariant under tilting, one obtains

from this result that such functions must have a unique supporting plane, i.e. be
differentiable and hence in C1.

Similarly, using the Theorem one can show that for such a convex solution of
(1) the (convex) set where ϕ attains its minimum can not have an extreme point
inside Ω. From this we could similarly derive that the canonical globally lipschitz
extension of ϕ to all of R

n would have to vanish on an entire line. But then ϕ has
to constant along any parallel line and can not solve (1). Therefore, all solutions
of (1) have to be strictly convex.
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Optimal transport on Riemannian manifolds

Martin Huesmann

The talk and therefore this report are basically summaries of the very well writ-
ten paper [1].

Throughout this report we consider a compact, connected, C3-smooth (meaning
that the metric tensor is twice continuously differentiable) Riemannian manifold
(M, g) without boundary together with the cost function c(x, y) = 1

2d
2(x, y), one

half times geodesic distance squared. Let µ and ν be two probability measures on
M . S(µ, ν) is the set of all Borel maps which push µ forward to ν. For s ∈ S(µ, ν)
we write C(s) =

∫

M c(x, s(x))dµ(x). For the same probability measures, we set

Lipc = {u, v : M → R continuous;u(x)+v(y) ≤ c(x, y)} and J(u, v) =
∫

M
udµ+

∫

M
vdν. Then the Kantorovich duality reads

sup
(u,v)∈Lipc

J(u, v) ≤ inf
s∈S(µ,ν)

C(s).

Given a pair (u, v) ∈ Lipc one can improve this pair by infimal convolution, i.e.
J(u, v) ≤ J(u, uc) and also J(u, v) ≤ J(vc, v), where the infimal convolution is
defined as wc(y) := infx∈M c(x, y)−w(x). We say a function u on M is c-concave
iff ucc = (uc)c = u. We have the following lemma

Lemma 0.5. Let (M,d) be a metric space with finite diameter. Then any c-

concave (c = d2

2 ) function u is either identically infinite, u ≡ ±∞, or Lipschitz
continuous throughout.

By Rademacher‘s theorem this directly implies that c-concave functions having
values in the reals are differentiable almost everywhere and their gradient is Borel
measurable on the set where it is defined. However, this statement is not strong
enough to characterise the direction and distance of optimal transportation. For
this, we need the notion of superdifferentiability.
We say a function u : M → R is superdifferentiable in x with supergradient p if
for v ∈ TxM

u(expx v) ≤ u(x)+ < p, v >x +o(|v|x).

Then one can prove using a Taylor expansion of the exponential map

Lemma 0.6. Let (M, g) be as above and let σ : [0, 1] → M be a minimizing

geodesic from y to x parametrized with constant speed. Then u(·) = d2

2 (·, y) is
superdifferentiable with supergradient σ̇(1) at x.

This enables us to prove the following uniqueness result.
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Theorem 0.7 (uniqueness). Let (M, g) be as above, µ << vol (the normalised
Riemannian volume measure), u : M → R c-concave. Then, t(x) = expx(−∇u(x))
is the minimizer for infs∈S(µ,t#µ) C(s). Moreover, any other map s ∈ S(µ, t#µ)
must coincide with t µ a.e..

The key ingredient to the proof of this theorem is the following tangency lemma.
Together with the Kantorovich duality it directly gives the result. Furthermore, it
also shows that in the Kantorovich duality we actually have an equality not just
an inequality.

Lemma 0.8 (tangency). (M, g) as above, u : M → R c-concave. Then, c(x, y) −
u(x) − uc(y) ≥ 0 for all x, y ∈ M . If u is differentiable in x, then equality holds
iff y = expx(−∇u(x)).

The first part is obvious from the definition of infimal convolutions. The other
part is not. Here one has to use the superdifferentiability of the cost function and
the compactness of M together with the continuity of u. As u is c-concave, it is
differentiable almost everywhere. Thus, we have almost everywhere equality for
the pairs (x, t(x)) proving the first part of the theorem. The uniqueness state-
ment also follows from this lemma as any other optimal map also has to satisfy
the Kantorovich duality and therefore the equality in the tangency lemma which
characterizes the map s almost everywhere.
For a given potential function we have found an optimal map between a given
measure µ and a certain pushforward of this measure. That for any Borel measure
such a potential function can be found, is the content of the next theorem.

Theorem 0.9. Let (M, g) be as above, µ << vol and ν be an arbitrary Borel
measure. Then, there is a c-concave function u : M → R such that t(x) =
expx(−∇u(x)) ∈ S(µ, ν) is optimal and unique a.e..

By the first theorem uniqueness is clear as soon as one has found a suitable
potential function. As this function has to maximize J(u, uc) (wlog we can take
v = uc as J(u, v) ≤ J(u, uc)), the maximizer is the natural candidate. That this
maximizer exists is a consequence of the compactness of the manifold. Then, one
checks that the pushforward of µ by the exponential of the negative gradient of
the maximizer coincides with ν.
If one additionally assumes that ν << vol as well, then one can use the symmetry
of the problem to derive

Corollary 0.10. Let (M, g), u, t be as above, µ, ν << vol. Then t∗(y) =
expy(−∇uc(y)) ∈ S(ν, µ) is optimal and satisfies t∗(t(x)) = x µ a.e. and t(t∗(y)) =
y ν a.e..

This symmetry and these porperties are exactly those needed to generalise Bre-
nier‘s polar factorization presented in talk number 3 to the setting of compact
connected Riemannian manifolds.

The techniques used in this talk are not restricted to the case of the quadratic
cost function. The key ingredients which are used are:
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• compactness of M
• existence of minimizing geodesics between any two points
• superdifferentiability of the cost function

The first two points can be replaced by the same properties for the support of the
two measures one considers. The last point is crucial because it characterizes the
distance and direction of the optimal transport. However, there are many cost
functions which are superdifferentiable, e.g.

c(x, y) =

∫ d(x,y)

0

f(τ)dτ

where f is continuously increasing. Of course, this yields another transport map.
By mimicking the tangency lemma one easily finds the correct map, e.g. the
map for the cost above would be -if everything else is left the same- t(x) =

expx[− f−1(|∇u|x)
|∇u|x

∇u(x)].
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The solution to the original Monge problem

Clément Hongler

The original Monge problem, formulated in 1781 is the following: given two prob-
ability measures µ1 and µ2 supported on a convex compact set X ⊂ R

n with µ0

absolutely continuous with respect to the Lebesgue measure, does there exist a
map ϕ : X → X with ϕ# (µ1) = µ2 that minimizes the linear transport cost
∫

X
|ϕ(x) − x| dµ1 (x)?
In one dimension such a map exists and one can give an explicit expression for

it (although this map is not unique in general).
This existence problem was solved affirmatively in 1972 by Sudakov (see [2]); a

gap in proof was found later and addressed by Ambrosio in 1992. We sketch here
the explicit construction presented by Sudakov. By general techniques, there exists
an optimal transport plan, or transport coupling, γ for µ1 and µ2, i.e. a probability
measure on X ×X with π1 (γ) = µ1 and π2 (γ) = µ2 (where π1, π2 : X ×X → X
denote the projections on the first and second coordinates respectively) such that
∫

X×X |x− y| dγ (x, y) is minimal in the set of all couplings of µ1 and µ2. We will
construct a map with a transport cost reaching this minimum.

We can assume without loss of generality that for each x ∈ X there exists y 6= x
such that (x, y) ∈ Supp (γ): the optimal transport map on the set of points where
this condition is not satisfied is simply the identity map, and we are left with the
problem of transporting the rest of the measure. Consider a Kantorovich potential
u, i.e. a 1−Lipschitz function u such that for any optimal transport plan γ̃ one
has

u(y) − u(x) = ‖y − x‖Rn ∀ (x, y) ∈ Supp (γ̃) .
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.
We define a transport ray as a maximal open segment ]x, y[⊂ X such that

u(y) − u(x) (this notion is well-defined since u is 1-Lipschitz). By our initial
assmuption on γ we have that µ1-almost every x ∈ X is contained in a unique
transport ray, whose direction is given by the gradient of the potential u (which
is well-defined on the transport ray).

The idea is to decompose X into transport rays, along which the measure is
going to be transported and to reduce on each of these lines to the one-dimensional
case. In order to do so, we need to desintegrate the optimal transport plan γ into
a set of conditional measures (γC)C∈C obtained in the following way. To each
(x, y) ∈ Supp (γ) one associates the closure of the transport ray containing the
segment [x, y]; this defines a map ψ. Then by general measure-theoretic results,
one can factorize the measure γ as the product γC ⊗ (ψ# (γ)) (C) where each γC
is a probability measure on X supported on C. It is not very difficult to check
that the measures γC are actually optimal transport plans between the measures
π1# (γC) and π2# (γC) and to see that the cost of the optimal transport plan γ
factorizes as the integral against ψ# (γ) of the costs of the optimal transport plans
γC .

Using results due to Ambrosio (see Theorem 7.1 in [1]), one can show that
for ψ# (γ)-almost every C the desintegrated measure γC is actually absolutely
continuous with respect to the one-dimensional Hausdorff measure restricted C
(this follows from the fact that the segments C are gradient lines of a Lipschitz
function). We then find for each C in the support of ψ# (γ) an optimal transport
map ϕC between π1# (γC) and π2# (γC) by monotone reparametrization (which
exists in one dimension under the assumption that π1# (γC) has no atom, this
latter fact following from the absolute continuity of γC with respect to the one-
dimensional Hausdorff measure restricted to C). Gluing all the transport maps
ϕC we eventually obtain an optimal transport map.
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The Wasserstein space as a metric space, Benamou and Brenier’s
interpretation of the Wasserstein distance, and Arnold’s geometry of

the diffeomorphism group

Robert Philipowski

1. The Wasserstein space as a metric space

If the cost function in the Monge-Kantorovich problem is the p-th power of the
distance function of a metric space X , one can use the optimal transportation
cost between two probability measures to construct a distance on P(X). To be
precise, let X be a complete and separable metric space, and p ∈ [1,∞). Then the
Wasserstein distance of order p between two probability measures µ and ν on X
is defined as

Wp(µ, ν) :=

(

inf
π∈Π(µ,ν)

∫

X×X

d(x, y)pπ(dx, dy)

)1/p

,

where as usual the infimum is over all couplings π of µ and ν.
Wp has all properties of a distance, except that it can be infinite. One therefore

defines the Wasserstein space of order p over X as the set Pp(X) of those proba-
bility measures µ on X for which

∫

X
d(x0, x)pµ(dx) < ∞ for some (and then all)

x0 ∈ X . Then (Pp(X),Wp) is indeed a metric space (Theorem 7.3 in [7]).
Convergence with respect to Wp is equivalent to weak convergence together

with convergence of p-th moments:

Theorem 1.1 (Theorem 7.12 in [7], Theorem 6.9 in [8]). Let (µk)k∈N be a sequence
in Pp(X), and µ ∈ Pp(X). Then the following are equivalent:

(1) Wp(µk, µ) → 0 as k → ∞.
(2) µk → µ weakly, and

∫

X
d(x0, x)pµk(dx) →

∫

X
d(x0, x)pµ(dx) for some

(and then all) x0 ∈ X.

The Wasserstein space inherits nice topological properties from the underlying
space:

Theorem 1.2 (Theorem 6.18 in [8]). If X is complete and separable, then so is
(Pp(X),Wp).

2. The Benamou-Brenier formula

Benamou and Brenier [4] observed that on R
n the square of the quadratic

Wasserstein distance can be interpreted as the least action needed to transport
one mass distribution to another one:

Theorem 2.1 (Proposition 1.1 in [4], Theorem 8.1 in [7]). Let ρ0 and ρ1 be
compactly supported probability densities on R

n, and let C(ρ0, ρ1) be the set of
all pairs (ρ, v) consisting of a continuous curve ρ = (ρ(t, ·))0≤t≤1 in the space
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of probability densities and a family v = (v(t, ·))0≤t≤1 of vector fields satisfying
∫ 1

0

∫

Rn |v(t, x)|2ρ(t, x)dx <∞ such that

∂ρ

∂t
+ div(ρv) = 0

and
ρ(0, ·) = ρ0, ρ(1, ·) = ρ1.

Then

W2(ρ0, ρ1)2 = inf
(ρ,v)∈C(ρ0,ρ1)

∫ 1

0

∫

Rn

|v(t, x)|2ρ(t, x)dxdt.

A similar result holds on Riemannian manifolds M , see Remark 8.3 in [7] or
Proposition 4.3 in [6].

Otto [5] (see also Chapter 8 in [7] and Chapter 15 in [8]) used the Benamou-
Brenier formula to equip P2(M) with the structure of a Riemannian manifold.

3. The geometry of the group of volume-preserving diffeomorphisms

Arnold [1] (see also [3] and Chapter 3.2 in [7]) observed that the Euler equation
for an incompressible inviscid fluid (without external forces) in a domain Ω can be
interpreted as geodesic motion on the group of volume-preserving diffeomorphisms
of Ω. From a physical point of view this is very natural. Indeed, since the fluid
is inviscid and incompressible, we are dealing with a mechanical system without
friction subject to a constraint, so that in the absence of external forces the least
action principle implies that the dynamics of the fluid is geodesic motion on an
appropriate Riemannian manifold M (see e.g. Chapter 4 of [2]). Since the fluid
is incompressible, the natural choice for M is the infinite-dimensional “manifold”
SDiff(Ω) of volume-preserving diffeomorphisms of Ω. From differential geometry
it is well-known that the stability of geodesic flow on a Riemannian manifold is
crucially influenced by its curvature: if the curvature is positive, geodesics tend to
converge; if it is negative they tend to diverge. It is therefore natural to compute
the curvature of SDiff(Ω). In the case of the two-dimensional torus, Ω = T 2,
Arnold [1] found out that in “many” directions the curvature is negative (see
Lemma 11 in [1] or Theorem 3.4 in [3] for the precise statement). This fact can
be seen as a mathematical explanation for the unreliability of long-term weather
forecasts, see Chapter IV.4.B in [3].

Arnold’s result was later generalized to other manifolds, see Chapter IV.4.A in
[3].
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[1] V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses
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Formal Riemannian structure for space of probability measures, its
sectional curvature

Shiping Liu

In the previous talk, we saw that optimal transportation could be used to
introduce a metric on the space of probability measures. In this talk we will show
that this metric can be considered as induced from a formal Riemannian structure
on that space. We also introduce an interesting geometrical property of the space
itself.

1. Formal Riemannian Structure

We explain the formal Riemannian structure on

M = {positive functions ρ on RN with

∫

ρ = 1}

introduced by Otto [3]. Thinking of the tangent space as

TρM = {functions s on RN with

∫

s = 0},

we impose the metric

gρ(s1, s2) =

∫

ρ∇p1 · ∇p2,

where si ∈ TρM, pi satisfies the elliptic equation si = −div(ρ∇pi).
The idea to explore the geometrical properties of M is to see it as a ”subman-

ifold” of
M∗ = {diffeomorphisms Φ of RN},

to which we impose the flat metric. Explicitly, we prove that for fixed ρ0 ∈ M the
map

∏

: M∗ → M, Φ 7→ ρ = Φ∗ρ0,

is an isometric submersion. Based on this observation, the distance function d
induced by g should be the Wasserstein distance, that is,

d2(ρ0, ρ) = inf
Φ∗ρ0=ρ

∫

| x− Φ(x) | ρ0dx, ∀ρ ∈ M.

For the rigorous result about induced distance see [4], which is based on another
heuristic argument in [5].
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2. Sectional Curvature

O’Neill’s formula describes a simple relation between the sectional curvatures
of two manifolds linked by an isometric submersion. Therefore we can see formally
that M should have nonnegative sectional curvature. This can be made rigorous
in metric setting (see section 7.2 and 7.3 in [1]).

Theorem : Wasserstein space P2(RN ) has nonnegative sectional curvature.
The definition of ”nonnegative sectional curvature” in metric setting is to sup-

pose some degree of concavity for distance functions.
The geodesics in P2(RN ) connecting µ1, µ2 is just the displacement interpola-

tion of an optimal transportation between µ1 and µ2.
With the above properties in hand, we can reduce the proof of the theorem

eventually to the proof of the following lemma:
Gluing Lemma : Let Xi, i = 1, 2 be Polish spaces and µi ∈ P (Xi). Assume

µ12 ∈ P (X1 ×X2) with marginals µ1, µ2, and µ23 ∈ P (X2 ×X3) with marginals
µ2, µ3, then there exists a µ ∈ P (X1 ×X2 ×X3) with marginals µ12 on X1 ×X2

and µ23 on X2 ×X3.
This is an easy corollary of the disintegration theorem of measures (see section

5.3 in [1]).
Lott [2] extends the formal observation on sectional curvature to space of prob-

ability measures on Riemannian manifolds. Sturm [6] proves more general rigorous
results about the sectional curvature.
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McCann’s displacement convexity

Tomonari Sei

The entropy functional on a Riemannian manifold is deeply related to the Rie-
mannian structure of the underlying manifold. Here we briefly describe this rela-
tion in terms of McCann’s displacement convexity. We begin with the Euclidean
case to clarify the idea.

Let Pac(R
n) be the set of all absolutely continuous probability measures on

Rn. Let ρ and ρ′ be two measures in Pac(R
n). Then from Brenier’s result [1]
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there exists a unique monotone gradient map ∇ψ : Rn → Rn such that ρ′ =
(∇ψ)♯ρ, where for any measurable map T , T♯ρ denotes the push-forward measure:
(T♯ρ)(A) = ρ(T−1(A)) for any measurable sets A. Obviously, we have ρ = Id♯ρ,
where Id denotes the identity map. Now we consider a one-parameter set of maps
Ft = (1 − t)Id + t∇ψ for t ∈ [0, 1] and their push-forward measures

ρt = (Ft)♯ρ = {(1 − t)Id + t∇ψ}♯ρ.

One can show that the measure ρt is absolutely continuous by using Lipschitz
continuity of (Ft)

−1 for t ∈ [0, 1). We call the set (ρt)t∈[0,1] the displacement in-
terpolation of ρ and ρ′, following McCann [3]. If ρ and ρ′ has finite second moment,
the displacement interpolation is considered as the ‘geodesic’ connecting ρ and ρ′

with respect to the Wasserstein metric W (ρ, ρ′) = min{[
∫

|x− x′|2Γ(dx, dx′)]1/2 |
Γ(·,Rn) = ρ,Γ(Rn, ·) = ρ′}.

A function E from Pac(R
n) to R is called displacement convex if for any t ∈ [0, 1]

E(ρt) ≤ (1 − t)E(ρ0) + tE(ρ1)(1)

holds (see [3]). For example, the entropy functional E(ρ) =
∫

ρ log ρ dx is displace-
ment convex for any dimension n. In fact, from the change-of-variables formula
due to [3], we have

E[ρt] =

∫

ρ(x) log

(

ρ(x)

det((1 − t)I + t∇2ψ(x))

)

dx,

where I and ∇2ψ denote the identity matrix and the Alexandrov Hessian, re-
spectively. Since log det((1 − t)X + tY ) is concave for any positive-definite ma-
trices X and Y , we obtain the convexity of E. More generally, a functional
E[ρ] =

∫

A(ρ(x))dx is displacement convex if A(0) = 0 and the function λnA(λ−n)
of λ is convex and non-increasing. The proof is based on the geometric-arithmetic

mean inequality: det1/n((1 − t)X + tY ) ≥ (1 − t) det1/nX + t det1/n Y .
We go on to the Riemannian case. Let (M, g) be an n-dimensional complete

connected Riemannian manifold with the metric tensor g. The set of probability
measures absolutely continuous to the volume measure dVol is denoted by Pac(M).
For any two points x, y in M , the geodesic distance between them is d(x, y). The
exponential map determined by a point x ∈ M and a tangent vector v ∈ TxM
is expx(v). In order to define the displacement convexity on M , we first describe
McCann’s theorem [4] on existence and uniqueness of optimal transport. The
cost function is c(x, y) = d(x, y)2/2. We call a function φ : M → R c-concave
if there exists a function ξ on M such that φ(x) = infy∈M (c(x, y) − ξ(y)). Then
McCann showed that for any ρ, ρ′ ∈ Pac(M) there exists a c-concave function
φ up to an arbitrary constant such that the map x 7→ expx(−∇φ(x)) pushes ρ
forward to ρ′. Now the displacement interpolation and displacement convexity
for Riemannian manifolds are defined in the same manner as the Euclidean case.
Namely, the displacement interpolation between ρ and ρ′ is defined by ρt = (Ft)♯µ
with Ft(x) = expx(−t∇φ(x)). Remark that ρ0 = ρ and ρ1 = ρ′. The displacement
convexity of a functional E on Pac(M) is defined by (1).
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Otto and Villani [5] observed that, by using formal calculus, the entropy func-
tional E[ρ] =

∫

M
ρ log ρ dVol has its second-derivative

d2E[ρt]

dt2
=

∫

M

{

tr[(∇2φ)(∇2φ)] + Ric(∇φ,∇φ)
}

ρt dVol.

Hence E is displacement convex if M has non-negative Ricci curvature. Cordero-
Erausquin et al. [2] refined this result as follows. Assume that M has non-negative
Ricci curvature. Then, if a function A : R → R satisfies the conditions A(0) = 0
and λnA(λ−n) convex non-increasing, then E[ρ] =

∫

M
A(ρ)dVol is displacement

convex. The proof is based on the Riemannian version of the geometric-arithmetic
mean inequality

J
1/n
t (x) ≥ (1 − t)[v1−t(F1(x), x)]1/n + t[vt(x, F1(x))]1/nJ

1/n
1 (x),

where Jt(x) is the Jacobian determinant of the map Ft, and vt(x, y) is the volume
distortion coefficient (see [2] for the definition). The volume distortion coefficient
is greater than or equal to 1 if M has the non-negative Ricci curvature.

Lastly, von Renesse and Sturm [6] showed that the Ricci curvature of M is
non-negative (resp. bounded below from K) if and only if the entropy functional
is displacement convex (resp. displacement K-convex) on P2(M), where P2(M)
is the set of probability measures with finite second moment. Therefore the lower
bound of the Ricci curvature is characterized by displacement convexity of the
entropy functional.
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Ricci bounds for metric measure spaces

Ulrich Bunke

On the class of Riemannian manifolds we have the concept curv ≥ K of sec-
tional curvature bounded below by K. Riemannian manifolds can be embedded
into the larger class of metric spaces. The concept of a lower curvature bound in
the sense of Alexandrov extends the lower sectional curvature bound. The lower
curvature bound is stable in the sense that if a sequence of metric spaces (Mi, di)
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with curv(Mi, di) ≥ K converges in the Gromov-Hausdorff sense to (M,d), then
curv(M,d) ≥ K.

For the class of Riemannian manifolds we have a similar concept of lower Ricci
curvature bound Ricci ≥ K. It turned out that an extension to metric spaces
should take the volume measure into account. In this talk we report on the results
of [1] and [2] on the extension of the concept of lower Ricci curvature bounds to
the class of metric measure spaces and its stabilty.

We consider separable, complete metric spaces and locally finite Borel measures.
A metric measure space is a triple (M,d, µ), where (M,d) is a metric space and
µ is a measure. A Riemannian manifold (M, g) gives rise to the metric measure
space (M,dg, µg), where dg is the Riemannian distance and µg is the Riemannian
volume measure.

To a metric space (M,d) we can associate the metric space P2(M,W2) of all
probability measures with the Wasserstein distance W2 which is given by

W2(µ, ν)2 := inf
π

∫

M×M

d2 dπ ,

where the infimum is taken over all measures π on M ×M with pr1∗π = µ and
pr2∗π = ν.

By P2(M,d, µ) ⊆ P2(M,d) we denote the subset of absolute continuous mea-
sures. We define the entropy

Ent(. . . |µ) : P2(M,d) → [−∞,∞]

by

Ent(ν|µ) :=

{

limǫ↓0

∫

ρ>ǫ ρ log ρ dµ ν ∈ P (M,d, µ) , ν = ρµ

∞ else

We let P ∗(M,d, µ) := {Ent < ∞} ⊆ P2(M,d, µ). For a geodesic c : [0, 1] →
P ∗(M,d, µ) we consider the condition (CK):

Ent(c(t)|µ) ≤ (1−t)Ent(c(0)|µ)+tEnt(c(1))−Kt(1 − t)

2
W2(c(0), c(1)) , ∀t ∈ [0, 1] .

Definition 0.1. A metric measure space (M,d, µ) has has Ricci curvature bounded
below by K (we write Ricci ≥ K) if every pair ν0, ν1 ∈ P ∗(M,d, µ) is connected
by a geodesic which satisfies (CK).

This is indeed an extension of the Riemannian concept in view of the following
theorem [1, Thm. 7.3], [2, Thm 4.9].

Theorem 0.2. Let (M, g) be a complete Riemannian manifold. Then it has Ricci
curvature bounded below by K if and only if the associated metric measure space
(M,dg, µg) has Ricci curvature bounded below by K.

An ǫ-Gromov-Hausdorff approximation (ǫ-GHA) between two metric spaces
(M,d) and (M ′, d′) is a map φ : M →M ′ such that M ′ ⊆ Bǫ(φ(M)) and

|d(x, y) − d′(φ(x), φ(y))| ≤ ǫ , ∀x, y ∈M .
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A sequence (Mi, di) converges in the Gromov-Hausdorff (GH) sense to (M,d) if
there exists a sequence (ǫi) with ǫi ↓ 0 and ǫi-GHA’s φi : Mi → M . Further-
more, a sequence of metric measure spaces (Mi, di, µi) converges to (M,d, µ) in
the measured GH-sense, if there exists a sequence (ǫi) with ǫi ↓ 0 and ǫi-GHA’s

φi : Mi → M such that φi,∗µi
w→ µ.

For example, the association (M,d) 7→ P2(M,d) is GH-continuous. More pre-
cisely [1, Prop. 4.1]

Proposition 0.1. If φ : (M,d) → (M ′, d′) is an ǫ-GHA, then φ∗ : P2(M,d) →
P2(M ′, d′) is an ǫ̃-GHA, where ǫ̃ = ǫ̃(ǫ, diam(M′)) tends to zero as ǫ ↓ 0.

The main theorem of this talk is [1, Thm. 4.15], [2, Thm 4.20] (the theorems
in both references are more general)

Theorem 0.3. Let (Mi, di, µi) be a sequence of compact metric measure spaces
which converges in the measured GH-sense to (M,d, µ). Then Ricci(Mi, di, µi) ≥
K for all i implies Ricci(M,d, µ) ≥ K.

Let us sketch the main steps of the proof. We consider µ0, µ1 ∈ P ∗
2 (M,d, µ).

Then we must find a geodesic from µ0 to µ1 which satisfies (CK). By an approx-
imation argument we can assume that µi = ρiµ with ρi ∈ C(M). We consider
the sequence (φn : Mn → M) of ǫn-GHA’s. We define for n >> 0, i = 0, 1, the
measure

µn,i :=
φ∗nρi

∫

M ρidφn∗(µn)

on Mn We then choose geodesics cn in P2(Mn, dn) from µn,0 to µn,1 which satisfy
(CK). After taking a subsequence (φn,∗cn) converges uniformly to a curve c in
P2(M,d,m). We check that c is a geodesic from µ0 to µ1. We then show that
c satisfies CK . The main ingredients of this step (and also of the approximation
argument above) are Proposition 0.1, the contraction property [1, Thm. B33]

Ent(f∗µ|f∗µ) ≤ Ent(ν|µ) ,

and the lower semicontinuity

Ent(ν|µ) ≤ lim inf Ent(νn|µn) , if (νn, µn)
w→ (ν, µ)

of the entropy.
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The curvature-dimension condition CD(K, N)

Shin-ichi Ohta

We consider the curvature-dimension condition CD(K,N) introduced by Sturm,
Lott and Villani. A metric measure space (X, d,m) is said to satisfy CD(0, N)
for N ∈ (1,∞) if the Rényi entropy SN(ρm) = N −N

∫

X
ρ1−1/N dm is convex in

the Wasserstein space (P2(X), dW2 ). Passing to the limit, CD(0,∞) is defined as
the convexity of the relative entropy S∞(ρm) =

∫

X ρ log ρ dm. General CD(K,N)
for K 6= 0 is defined through a similar, but more complicated convexity condition
involving sin (if K > 0) or sinh (if K < 0).

It is not difficult to see that the Euclidean space (Rn, L) with the Lebesgue
measure L satisfies CD(0, n). Key ingredients are Brenier’s convex function f that
induces optimal transport Φt = (1−t)IdRn +t∇f between ρ0L and ρ1L, the Monge-
Ampère equation |DΦt| = ρ0/(ρt ◦Φt) (with ρtL = (Φt)♯(ρ0L)), and the inequality
of arithmetic and geometric means

(1) |DΦt|1/n ≥ (1 − t) + t|DΦ1|1/n.
Here we denote by |DΦ| the Jacobian of a linear operator Φ. Similar, but more
careful calculation shows that a weighted Euclidean space (Rn, e−ψL) satisfies

(2) ‖DΦt‖1/N ≥ (1 − t) + t‖DΦ1‖1/N

and CD(0, N) if (and only if) ψ satisfies

Hessψ(v, v) − 〈∇ψ, v〉2
N − n

≥ 0,

where ‖DΦ‖(x) := eψ(x)−ψ(Φ(x))|DΦ|(x) is the Jacobian taking the weight into ac-
count. In the infinite dimensional case N = ∞, there appear log concave measures

(e.g., Gaussian spaces (Rn, e−|x|2/2L(dx))).
In order to obtain concavity similar to (1) or (2) in a weighted Riemann-

ian manifold (M, g, e−ψmg) (mg is the volume measure), besides Hessψ(v, v) −
〈∇ψ, v〉2/(N − n), we naturally need the Ricci curvature. This is because the op-
timal transport is performed along geodesics, say γ : [0, 1] −→M . Then its varia-
tional vector fields are Jacobi fields J solving the Jacobi equationD2

γ̇J+R(J, γ̇)γ̇ =

0. Now the concavity of the density det(〈Ji, Jj〉) (choosing orthonormal {Ji(0)}ni=1

with J1(0) = γ̇(0)/|γ̇(0)|) is controlled by Trace(〈R(·, γ̇)γ̇, ·〉) = Ric(γ̇). It might
be also helpful to recall the Bishop-Gromov volume comparison which asserts that
the n-th root of the volume of concentric balls mg(B(x, r))1/n is concave in r ≥ 0
if Ric ≥ 0.

It indeed has been established by von Renesse, Sturm, Lott and Villani ([vRS],
[St1], [St2], [LV1], [LV2]) that CD(K,N) is equivalent to the lower weighted Ricci
curvature bound

Ric(v) + Hessψ(v, v) − 〈∇ψ, v〉2
N − n

≥ K.

Thus the curvature-dimension condition gives a successful generalization of the
lower Ricci curvature bound (along with the upper dimension bound) to general
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metric measure spaces without differentiable structure. CD(K,N) is stable under
measured Gromov-Hausdorff convergence, and has a number of applications such
as Brunn-Minkowski inequality (which was new even in the Riemannian setting),
logarithmic Sobolev inequality and Lichnerowicz inequality.

Note that this kind of synthetic characterization had been known for lower sec-
tional curvature bounds. Such spaces are called Alexandrov spaces, and deeply
investigated in the last two decades. However, Ricci curvature bounds are in a
sense a more natural condition, not only for its analytic implications, but also be-
cause such spaces form a precompact family with respect to the Gromov-Hausdorff
convergence. Spaces appearing in the limit of the convergence had been studied
in Cheeger and Colding’s celebrated work [CC].

The equivalence between the curvature-dimension condition and lower Ricci
curvature bounds is extended to general Finsler manifolds by introducing an ap-
propriate notion of weighted Ricci curvature ([Oh]). For instance, (Rn, ‖ · ‖, e−ψL)
with convex weight ψ satisfies CD(0,∞) for any Minkowski norm ‖ · ‖. On the one
hand, this result leads to a slightly disappointing fact (for Riemannian geometers)
that the curvature-dimension condition can not characterize Riemannian spaces.
On the other, the curvature-dimension condition turns out extremely useful also
in Finsler geometry.

References

[CC] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature bounded
below. I, II, III, J. Differential Geom. 46 (1997), 406–480; ibid. 54 (2000), 13–35; ibid. 54

(2000), 37–74.
[LV1] J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport,

Ann. of Math. 169 (2009), 903–991.
[LV2] J. Lott and C. Villani, Weak curvature conditions and functional inequalities, J. Funct.

Anal. 245 (2007), 311–333.
[Oh] S. Ohta, Finsler interpolation inequalities, to appear in Calc. Var. Partial Differential

Equations.
[vRS] M.-K. von Renesse and K.-T. Sturm, Transport inequalities, gradient estimates, entropy

and Ricci curvature, Comm. Pure Appl. Math. 58 (2005), 1–18.
[St1] K.-T. Sturm, On the geometry of metric measure spaces, Acta Math. 196 (2006), 65–131.
[St2] K.-T. Sturm, On the geometry of metric measure spaces. II, Acta Math. 196 (2006),

133–177.

Diffusions are gradient flows of entropy w. r. t. Wasserstein metric

Nicola Gigli

Mainly thank to the works [1] and [2], it has become clear the link between
certain diffusion equations and the geometry of optimal transportation. The link
being that such equations may be seen as gradient flow of appropriate energies
w.r.t. the Wasserstein distance. The aim of this talk is to investigate this topic by:
presenting the so called ‘Otto calculus’, and giving an overview on the techinques
which allow a rigorous study of gradient flows in the Wasserstein space.
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By Otto calculus, we mean the formal description of the Wasserstein space as
Riemannian manifold, and the subsequent characterization of gradient flows. A
way to see the Riemannian structure of (P2(Rd),W2) is to verify that an absolutely
continuous curve t 7→ ρt ∈ P2(Rd) is a distributional solution of the continuity
equation

(1)
d

dt
ρt + ∇ · (∇ϕtρt) = 0,

where the vector fields ∇ϕt are uniquely identified by the above equation. It turns
out that the metric length of the curve L(ρt) can be recovered by the formula

L(ρt) =

∫ 1

0

√

∫

|∇ϕt|2dρtdt.

Therefore it is natural to think that the tangent space at a measure ρ is the ‘space
of gradients endowed with the scalar product w.r.t. ρ itself’. In this setting, to
perturb a measure ρ along the direction ∇ϕ consists in defining

(2) ρt :=
(

Id+ t∇ϕ
)

#
ρ,

which satisfies
d

dt
ρt|t=0

+ ∇ · (∇ϕρ) = 0.

With this interpretation, it is possible to compute the gradient of a functional: we
run explicit calculation for the case of the energy E : P2(Rd) → R∪{+∞} defined
by

E(ρ) :=
1

m− 1

∫

ρm.

It is just a matter of algebraic manipulations to see that with ρt defined as in (2)
it holds

d

dt
E(ρt)|t=0

= −
∫

ρm∆ϕ =

∫
〈

∇
(

m

m− 1
ρm−1

)

,∇ϕ
〉

ρ,

which indentifies the gradient ∇WE of the energy E as

∇WE = ∇
( m

m− 1
ρm−1

)

Therefore, taking into account (1) the gradient flow equation of E is

d

dt
ρt = ∆(ρmt ),

which is the porous medium equation.

In the second part of the talk, we present the key ingredients needed to apply the
theory of minimizing movements to functionals like the one described. The main
idea here is that in order to replicate the well known results concerning gradient
flows of convex functionals in Hilbert spaces (like, e.g., exponential convergence to
equilibrium), what is needed is some sort of convexity property of both the func-
tional and the squared distance. A complication which arises in the Wasserstein
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setting is that, being this space positively curved, the squared distance calculated
along geodesics exhibits concavity properties, rather than convexity ones. In or-
der to tackle this problem, in [3] it was proposed to work under the following
Assumption. Consider a metric space (X, d) and a lower semicontinuous func-
tional E : X → R ∪ {+∞} such that the following is true: for any x, y0, y1 ∈ X
there exists a curve γ : [0, 1] → X (not necessarly a geodesic) such that γ(0) = y0,
γ(1) = y1 and:

i) t 7→ E
(

γ(t)
)

is convex,

ii) t 7→ 1
2d

2
(

x, γ(t)
)

is 1-convex.

If this Assumption is satisfied, it is possible to show that:

(A) For any x ∈ X and any τ > 0 there exists one and only one minimizer xτ
of

y 7→ E(y) +
d2(x, y)

2τ
.

(B) For any x ∈ D(E) and any y ∈ D(E) it holds the discrete variational
inequality

E(xτ ) +
1

2τ
d2(x, xτ ) +

1

2τ
d2(xτ , y) − 1

2τ
d2(x, y) ≤ E(y),

where xτ is the minimizer given by (A).

The validity of (A) and (B) are the main bricks on which the theory of minimizing
movements (in this setting) is built. Indeed (A) tells that there always exists a
unique discrete solution of the minimizing movement scheme for any choice of
the parameter τ , while (B) is the property which ensures the convergence of the
scheme, by also giving information on the rate of convergence.

For our purpouses, the interest of this Assumption relies on its applicability to
the study of functionals on (P2(Rd),W2), indeed:

• for any given ρ, ν0, ν1 ∈ P2(Rd) there is a natural choice of a curve t 7→ νt
such that the function t 7→ 1

2W
2
2 (ρ, νt) is 1-convex: it is sufficient to define

νt :=
(

(1 − t)T ν0ρ + tT ν1ρ

)

#
ρ,

where T νi
ρ are the optimal transport maps from ρ to νi, i = 0, 1,

• all the ‘classical’ energy functionals arising in this setting (i.e. the poten-
tial energy, the internal energy and the interaction energy functionals) are
convex not only along geodesics, but also along this more general interpo-
lating curves.
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Contraction properties of Wasserstein metric under diffusions

Kazumasa Kuwada

The purpose of this talk is to derive a contraction property of solutions to a (non-
linear) diffusion equation from the convexity property of a corresponding entropy
functional with the aid of the theory of optimal transports. In the last talk, we
have observed that a solution ρ(t) to a diffusion equation is regarded as a gradient
flow of an entropy functional E(ρ) on L2-Wasserstein space P2(X). Let ρ0(t) and
ρ1(t) are gradient flows of E and dW2 the L2-Wasserstein distance. As a general
principle, our goal is expressed as follows:

If E is K-displacement convex on P2(X) for some K ∈ R,
then dW2 (ρ0(t), ρ1(t)) ≤ e−KtdW2 (ρ0(0), ρ1(0)) holds.

Note that the same problem for gradient flows ξ0(t), ξ1(t) of a function f on a finite
dimensional Riemannian manifold can be solved by a basic differential calculus.
It follows from a combination of these two estimates:

(1) A calculation of
d

dt
d(ξ0(t), ξ1(t)) by the first variational formula.

(2) The Taylor expansion of f ◦ γ(s) − f ◦ γ(1 − s) up to second order, where
{γ(s)}s∈[0,1] is a minimal geodesic joining ξ0(t) and ξ1(t).

When X is a complete Riemannian manifold, we can expect that the same strategy
works on P2(X) since P2(X) possesses a formal Riemannian structure.

In this talk, we concentrate on introducing a result by Otto [1] where the formal
argument is applied first rigorously. He shows a quantitative time asymptotic for
solutions ρ(t) to the porous medium equation

∂

∂t
ρ(t) = ∆(ρ(t)m)

on R
N satisfying m ≥ 1 − N−1 and m > N(N + 2)−1. It is known that ρ(t)

approaches to a self-similar solution ρ∗(t) as t → ∞ in an appropriate sense.
Under a suitable re-scaling using an exponent α = {N(m − 1) + 2}−1 of self-
similarity, we obtain a new equation. Then the solution ρ̂(t) corresponding to ρ(t)
converges to a stationary solution ρ̂∗ corresponding to ρ∗(t). In this framework,
we show the following estimate on the rate of convergence:

dW2 (ρ̂(t), ρ̂∗) ≤ e−αtdW2 (ρ̂(0), ρ̂∗).

Indeed, ρ̂(t) is regarded as a gradient flow of a functional F and F is α-displacement
convex. The proof is based on two key estimates corresponding to (1) and (2).
After an approximation of the solution ensuring regularity, these two estimates
follow by using the theory of optimal transport. For (1), a dynamical expression
of gradient flows enables us to realize a variation of Wasserstein distances. For
(2), a characterization of geodesics on P2(RN ) together with the change of variable
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formula plays a significant role. Note that ρ(t) is also regarded as a gradient flow of
an entropy functional E. But E is 0-displacement convex and has no information
on the rate of convergence.

The contraction property can be obtained from the convexity of an entropy
functional even when the underlying space X is a complete Riemannian manifold.
We refer to [2] and Chapter 23 of [3] for developments in this direction.
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Sobolev inequality, Talagrand inequality and applications

Jan Maas

Many inequalities with geometric content, such as Sobolev and Gagliardo-Nirenberg
inequalities, can be elegantly proved using optimal transport methods [2], often
with sharp constants. In this talk we focus on logarithmic Sobolev and Talagrand
inequalities.

Logarithmic Sobolev inequalities. Let γ be a Borel probability measure on R
n hav-

ing a smooth density dγ
dx = e−V (x). The measure γ is said to satisfy a logarithmic

Sobolev inequality LSI(λ) with parameter λ > 0 if for any probability measure µ
on R

n having a smooth density ρ with respect to γ, one has

Hγ(µ) ≤ 1

λ
Iγ(µ).

In this inequality,

Hγ(µ) :=

∫

Rn

ρ(x) log ρ(x) dγ(x)

denotes the relative entropy of µ with respect to γ, and

Iγ(µ) :=

∫

Rn

|∇ log ρ(x)|2 dµ(x)

is the Fisher information.
Since the pioneering work of Gross in the seventies [3], logarithmic Sobolev

inequalities play a prominent role in the analysis of Fokker-Planck equations as-
sociated with stochastic drift-diffusion equations

(1) dXt = −∇V (Xt) dt+
√

2dBt,

where (Bt)t≥0 is a standard Brownian motion on R
n. In particular, LSI(λ) implies

exponential decay of the entropy along the transition semigroup (Pt)t≥0 associated
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with (1). Moreover, if γ satisfies LSI(λ), then γ satisfies the Poincaré inequality

∫

Rn

f2 dγ ≤ 1

λ

∫

Rn

|∇f |2 dγ

for all smooth functions f with
∫

Rn f dγ = 0. This inequality expresses a spectral
gap for the generator of the semigroup (Pt)t≥0. Furthermore, LSI(λ) is equivalent
to the hypercontractivity estimate

‖Ptf‖Lq(γ) ≤ ‖f‖Lp(γ)

for 1 < p < q <∞ and e2λt ≥ q−1
p−1 .

Logarithmic Sobolev inequalities are stable under tensorisation: if µ and ν
satisfy LSI(λ), then the product measure µ ⊗ ν satisfies LSI(λ) as well. This
property makes logarithmic Sobolev inequalities very useful in high or infinite
dimensional situations.

The most famous criterion for LSI(λ) is due to Bakry and Emery [1]. These
authors proved (in a more general Riemannian setting) that µ satisfies LSI(λ) if

D2V (x) ≥ λ

in the sense of positive quadratic forms. The proof of Bakry and Emery can be
naturally interpreted using Otto’s Riemannian structure on the Wasserstein space
P2(Rn) and the gradient flow formulation of the Fokker-Planck equation [5]. In
fact, the proof is based on a comparison of the first and second derivatives of the
entropy along the transition semigroup, and these quantities can be computed very
efficiently using the gradient flow formulation.

Talagrand inequalities. We say that γ satisfies Talagrand’s inequality T (λ) if

W2(µ, γ) ≤
√

Hγ(µ)

2λ

for every Borel probability measure µ on R
n. In this inequality, W2 denotes the

Wasserstein metric associated with the quadratic cost. This inequality has first
been established for the Gaussian measure [6].

Otto and Villani [5] discovered that LSI(λ) implies Talagrand’s inequality T (λ).
Their proof is based on the gradient flow formulation of the Fokker-Planck equa-
tion. Talagrand’s inequality is important in probability theory and geometry,
especially in high dimensions, as it implies the following concentration inequality,
which expresses the fact that the measure of a set increases rapidly if the set is
slightly expanded: there exists C > 0 such that for any Borel set A ⊆ R

n satisfying
γ(A) ≥ 1

2 , one has

γ(Ar) ≥ 1 − e−Cr
2

,

where Ar := {x ∈ R
n : dist(x,A) ≤ r}.
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Applications to spin systems. Logarithmic Sobolev inequalities are difficult to es-
tablish for spin systems with a non-convex Hamiltonian. We present an efficient
criterion due to Otto and Reznikoff [4], which can be applied to spin systems with
strong and weak interactions. A crucial ingredient in the proof is a covariance
estimate related to Talagrand’s inequality.
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Optimal Transport and Ricci Flow

Oliver C. Schnürer

Let g(τ) solve reverse Ricci flow ∂
∂τ g(τ) = 2Ric (g(τ)) on a closed manifold M .

For a curve γ : [τ1, τ2] →M , 0 < τ1 < τ2, the L-length is

L(γ) =

τ2
∫

τ1

√
τ

(

R(γ(τ), τ) + |γ′(τ)|2g(τ)
)

dτ.

The L-Wasserstein distance of two probability measures ν1 and ν2 is

V (ν1, τ1; ν2, τ2) := inf
π∈Γ(ν1,ν2)

∫

M×M

inf
γ=γ(x,y)

L(γ) dπ(x, y),

where π has marginals νi and γ : [τ1, τ2] →M connects x and y. If νi, i = 1, 2, are

backwards diffusions, νi = ui(τ) dµ(τ), and hence ∂ui

∂τ = ∆ui − Rui, P. Topping
[1] has shown that

s 7→ 2 (
√
τ2 −

√
τ1) es/2V (ν1 (τ1e

s) , τ1e
s; ν2 (τ2e

s) , τ2e
s) − 2n (

√
τ2 −

√
τ1)

2
es

is weakly decreasing. This implies in particular that the Wasserstein distance
W2(ν1(τ), ν2(τ), τ) and Perelman’s W-functional are also weakly decreasing in τ .
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