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Introduction by the Organisers

The study of function spaces from an algebraic topological point of view dates
back, at least, to the 1950s. G. Whitehead posed the basic problem of classifying
the path components of a function space up to homotopy type and obtained the
first results on this problem as an early application of the Whitehead product.
Subsequent work of Thom and Federer paved the way for the computation of
algebraic invariants of function spaces.

In the late 1960s, Gottlieb initiated the study of the evaluation map, the eval-
uation subgroups and, in particular, the Gottlieb groups of space. In the 1970s,
Hansen, Möller, Sutherland and others studied the homotopy classification prob-
lem for the components of a function space with many complete results. An early,
famous application of Sullivan’s rational homotopy theory, the Vigué-Sullivan
model for the free loop space of a manifold, led to a solution of the closed ge-
odesic problem and showed the power of Sullivan’s algebraic models for homotopy
theory.
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The 1980s saw steady progress on function spaces, especially in the local set-
tings. Following Sullivan’s sketch, Haefliger described a model for the rational
homotopy type of the space of sections of a nilpotent fibration. Félix, Halperin
and Thomas obtained global results on the vanishing and dimension of rational-
ized Gottlieb groups. Brown, Peterson and L. Smith gave a second rational model
for function spaces in terms of Lannes’s division functor. Finally and notably,
Miller published his celebrated proof of the Sullivan conjecture concerning the
contractibility of certain functions spaces during this period, a major advance in
homotopy theory.

In recent years, the study of function spaces and related topics has expanded
and accelerated. Whitehead’s original classification problem is actively researched
in the context of gauge groups. Gottlieb groups remain a challenging computation
problem in the integral setting and, after rationalization, are the subject of a basic
conjecture in rational homotopy theory. The study of the free loop space of a
manifold has undergone a renaissance with the discovery of Chas-Sullivan string
topology. Meanwhile, the further development of algebraic models for the rational
and p-local homotopy theory of function spaces has opened the field to whole new
types of questions, computations and, significantly, applications of function space
techniques in other areas of homotopy theory.

This workshop included 23 mathematicians with expertise and active research
programs in these various areas. In addition to specialized talks, there were several
invited survey talks on broad topics including Gottlieb groups, gauge groups and
algebraic models for function spaces after localization. There were two extended
problem sessions.
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Méadhbh Boyle
An algebraic model for the homology of pointed mapping spaces out of a
closed surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023

David Chataur
Division functors and mapping spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025

Jean-Baptiste Gatsinzi (joint with Rugare Kwashira)
Rational homotopy groups of function spaces . . . . . . . . . . . . . . . . . . . . . . . . 1026
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Integral loop homology of complete flag manifolds . . . . . . . . . . . . . . . . . . . . 1038

Shuichi Tsukuda (joint with Yasuhiko Kamiyama)
On the configuration spaces of a certain n-arms machine in the Euclidean
space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040

Antonio Viruel
Equivalences of a product and Mal’cev quasirings . . . . . . . . . . . . . . . . . . . . 1041

Christoph Wockel
Non-integral central extensions of loop groups via gerbes . . . . . . . . . . . . . . 1042





Homotopy Theory of Function Spaces and Related Topics 1023

Abstracts

An algebraic model for the homology of pointed mapping spaces out

of a closed surface

Méadhbh Boyle

Let X be a 2-connected pointed topological space which has the homotopy type
of a CW-complex or a simplicial set. Let Sg denote a closed surface of genus g
with a choice of base point. Consider the pointed mapping space from Sg into X ,
denoted Map∗(Sg, X). We construct a model for the homology of Map∗(Sg, X),
under certain conditions.

The mapping space appears in the fibration

Ω2X → Map∗(Sg, X) → (ΩX)2g

and the construction which we give mimics this fibration on an algebraic level.
When X is a H-space then the algebraic structure turns out to be quite straight-
forward. However, when X is not specifically a H-space then the construction
requires using algebraic models for the chains on ΩX and Ω2X .

An Alexander-Whitney coalgebra is a coalgebra, C, whose diagonal is itself a
coalgebra map up to strong homotopy. Alexander-Whitney coalgebras were first
introduced and studied by Hess, Parent, Scott and Tonks in [7] and they occur
naturally in topology by taking the normalized chains on a simplicial set. We take
an Alexander-Whitney coalgebra C as a model for C∗X . The cobar construction,
denoted ΩC, is taken as a model for the chains on ΩX .

When C is an Alexander-Whitney coalgebra, there is a coalgebra structure on
the cobar construction of C ([7]), and so the cobar construction can be applied to
the cobar construction. As the cobar construction is a tensor algebra, applying
the cobar construction to the cobar construction gives a very big space with a
differential which is difficult to deal with. In 2007, Hess and Levi introduced a
model for the chains on the double loop space of an Alexander-Whitney coalge-
bra, denoted L2C ([6]). Roughly speaking, the Hess-Levi model is defined as the
cotensor product of Ω(C ⊕ C) and R over ΩC, where C is the desuspension of C
and R is the ground ring of C. This model has a differential defined on it and is
generally much more manageable. We use the Hess-Levi model L2C as a model
for the chains on Ω2X .

Vital to our main calculation is the use of twisting cochains. Let ∆ denote the
diagonal map on a coalgebra C; µ denote the multiplication map for an algebra
A; and dA and dC denote the differentials on A and C respectively. A twisting
cochain is a degree −1 map t : C → A such that dAt+tdC = µ(t⊗t)∆. The twisted
tensor product of C and A, denoted C ⊗t A, is the graded module C ⊗A with the
differential defined on it being dC ⊗1A +1C ⊗dA− (1C ⊗µ)(1C ⊗ t⊗1A)(∆⊗1A),
[8].
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The twisting cochain required is τ : (ΩC)⊗2g → L2C. We construct a twisting
cochain t : ΩC and τ is deined as the composite t ◦ Γ where Γ: (ΩC)⊗2g → ΩC is
the commutator map.

We also use results of Eilenberg-Moore ([3, p.220, Thm 12.1]) and Gugenheim-
Munkholm ([5, p.15, 2.2*]) for the main result in this paper.

Theorem 1.1. Let X be a 2-connected topological space of the homotopy type of
a CW-complex or a simplicial set. Let R be either an integral domain in which
2 is a unit or a field of characteristic 2. Let C ∼= C∗X be an Alexander-Whitney
coalgebra over R such that ΩC is primitively generated. If C is formal or a double
suspension then

H∗(Map∗(Sg, X)) ∼= H∗(L2C ⊗τ (ΩC)⊗2g),

where τ : (ΩC)⊗2g → L2C is a twisting cochain.

This model provides an explicit way of calculating the homology of the pointed
mapping space under the given conditions. The cobar construction and the Hess-
Levi construction both have explicit and relatively easily calculable differentials
defined on them. The model presented here is therefore preferable to other meth-
ods as it is integral and easier to compute.
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Division functors and mapping spaces

David Chataur

Lannes’s division functors for unstable algebras over the Steenrod algebra Ap

provides us with a left adjoint to the completed tensor product of two unstable
algebras.

In fact as noticed by Bousfield, Peterson and Smith, Division functors can be
defined for algebras over a triple T as soon as the tensor product of two T -algebras
is again a T -algebra. They used this key fact to define a division functor into
the category of commutative differential graded algebras over the field of rational
numbers.

Let APL(−) be the Sullivan’s functor of PL-forms. When X is a connected,
finite simplicial set and when Y is a connected, nilpotent simplicial set of finite
type the division functor

(M(Y ) : APL(X)),

where M(Y ) is a cofibrant CDGA replacement of APL(Y ), is a rational model of
map(X, Y ). This is the derived division functor of

(APL(Y ) : APL(X))

in the sens of Quillen’s homotopical algebra.
In this talk we explain how to build a p-adic model for map(X, Y ). The con-

struction is due to B. Fresse, it relies upon a construction of a division functor
for homotopy commutative algebras. Homotopy commutative algebras or E∞-
algebras are a particular type of algebras over an operad. We will explain how
this multiplicative structure arises for singular cochains, how one can do homotopy
theory and give algebraic models for spaces and then for mapping spaces in terms
of derived division functor.
Finally we will explain some joint work with K. Kuribayashi where we constructed
a spectral sequence for mapping spaces using division funtors.
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Rational homotopy groups of function spaces

Jean-Baptiste Gatsinzi

(joint work with Rugare Kwashira)

Throughout this paper, spaces are assumed to be 1-connected finite CW-com-
plexes. Given a map between spaces f : X → Y , we denote by map(X, Y, f)
(respectively map∗(X, Y, f)) the space of (respectively pointed) mappings from X
into Y that are homotopic to f . We also (abusively) denote by f : L(V ) → L(W )
a Quillen model of f . Lupton and Smith [4] showed that from the Lie bracket of
L(V ) and L(W ), one can extend the notion of derivation of a differential graded
Lie algebra to a derivation with respect to a map of Lie algebras. A f -derivation
of degree n is a linear map θ : L(V ) → L(W ) that increases the degree by n
and satisfies θ([x, y]) = [θ(x), f(y)] + (−1)n|x|[f(x), θ(y)] for x, y ∈ L(V ). Denote
by Dern (L(V ), L(W ); f) the space of all f -derivations of degree n from L(V ) to
L(W ). Define

D : Dern (L(V ), L(W ); f) → Dern−1 (L(V ), L(W ); f)

by D(θ) = δW θ − (−1)|θ|θδV . Then (Der∗(L(V ), L(W ); f), D) is a differential
graded vector space.

The adjoint map associated to f is the derivation

adf : L(W ) → Der(L(V ), L(W ); f)

where adf (w)(x) = [w, f(x)], w ∈ L(W ).
They then proved the following vector space isomorphisms

πn(map∗(X, Y ; f)) ⊗ Q
∼=
→ Hn(Der (L(V ), L(W ); f)),

πn(map(X, Y ; f)) ⊗ Q
∼=
→ Hn(sL(W ) ⊕ Der (L(V ), L(W ); f)).

For a connected differential graded algebra T (V ), there an acyclic differential
T (V )-module of the form (T (V ) ⊗ (Q ⊕ sV ), D) [1],[3]. Gatsinzi [2] proved that
the map

HomTV (TV ⊗ (Q ⊕ sV ), L(V ))
∼=
→ sL(V ) ⊕ Der L(V )

is an isomorphism of graded vector spaces. This can be extended for a map
f : L(V ) → L(W ). The adjoint action of TW on L(W ) combined with Uf
induces a T (V )-module structure on L(W ). We have the following results.

Theorem 1.1. There is a bijective map of differential graded vectors

F : HomTV (TV ⊗ (Q ⊕ sV ), L(W ); f) → sL(W ) ⊕ Der (L(V ), L(W ); f).

Hence π∗(map∗(X, Y, f)) ⊗ Q ∼= ExtTV (Q, L(W )).

Corollary 1.2. If π∗(Y ) ⊗ Q is finite dimensional, then π∗(map(X, Y ; f)) ⊗ Q
and π∗(map∗(X, Y ; f)) are both finite dimensional.
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Consider ω : map(X, Y, f) → Y the evaluation at the base point. The gener-
alized Gottlieb group is defined by Gn(Y, X ; f) = im(π∗(ω)). Following [2] define
an evaluation map

ev : HomTV (TV ⊗ (Q ⊕ sV ), L(W )) → L(W )

by ev(k) = k(1). Consider the induced map in homology

H∗(ev) : ExtTV (Q, L(W )) → H∗(L(W ), δ)

Proposition 1.3.

Gn(Y, X ; f) ⊗ Q ∼= im(H∗(ev)).
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Fox and Gottlieb homotopy groups and Whitehead products

Marek Golasiński

(joint work with Daciberg Lima Gonçalves, Juno Mukai and Peter Wong)

1. Gottlieb groups. Let X be a connected pointed space. Recall that the
k-th Gottlieb group Gk(X) of X has been defined by Gottlieb in [8, 9] as the
subgroup of the k-th homotopy group πk(X) consisting of all elements which can
be represented by a map f : Sk → X such that f ∨ idX : Sk ∨X → X extends (up
to homotopy) to a map F : Sk × X → X .

Given α ∈ πk(Sn) for the nth sphere Sn and k ≥ 1, we deduce that α ∈ Gk(Sn)
if and only if [ιn, α] = 0. In view of [6], we have a table of Gn+k(Sn) for 1 ≤ k ≤ 13
and 2 ≤ n ≤ 26:

Let now FPn be the n-projective space over F = R, C, H and put d = dimR F.
Then, write γn = γn,F : S(n+1)d−1 → FPn for the quotient map. Denote by
ik,n,FP : FP k →֒ FPn for k ≤ n the inclusion map. Then, by [7], we have the
following results.

Theorem 1.1. The equality Gk+n(RPn) = γn∗Gk+n(Sn) holds if k ≤ 7 except
the following pairs: (k, n) = (3, 4), (4, 4), (5, 4), (6, 4), (5, 6), (7, 8), (7, 11), (3, 2i −
3) with i ≥ 4 and (6, 2i − 5) with i ≥ 5.

Furthermore,
(1) G7(RP 4) ⊇ 12π7(RP 4);
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(2) G10(RP 4) ⊇ 3π10(RP 4);
(3) G11(RP 6) ⊇ 30π11(RP 6);
(4) G15(RP 8) ⊇ 2520π15(RP 8);
(5) G18(RP 11) ⊇ 2π18(RP 11);

(6) G2i(RP 2i−3) ⊇ 2π2i(RP 2i−3) for i ≥ 4.

Theorem 1.2. (1) Let k = 1, 2. Then:

Gk+2n+1(CPn) =

{
0, if n is even;
πk+2n+1(CPn) ∼= Z2, if n is odd.

(2)

G2n+4(CPn) ⊇

{
(24, n)π2n+4(CPn) ∼= Z 24

(24,n)
, if n is even;

(24,n+3)
2 π2n+4(CPn) ∼= Z 48

(24,n+3)
, if n ≥ is odd.

In particular, G2n+4(CPn) = 2π2n+4(CPn) if n ≡ 2, 10 (mod 12) ≥ 10
except n = 2i−1 − 2 or n ≡ 1, 17 (mod 24) ≥ 17 and G2n+4(CPn) = π2n+4(CPn)
if n ≡ 7, 11 (mod 12).

(3) G2n+7(CPn) = π2n+7(CPn) if n ≡ 2, 3 (mod 4).

Theorem 1.3. (1) G4n+3(HPn) ⊇ 3+(−1)n+1
2 (2n + 1)!γn∗π4n+3(S

4n+3);

(2) G4n+6(HPn) ⊇ (24, n + 2)γn∗π4n+6(S
4n+3) ∼= Z 24

(24,n+2)
for n ≥ 2;

(3) Gk(HPn) ⊇ (24, n + 2)γnν4n+3 ◦ πk(S4n+6) ∼= Z2.

2. Various evaluation groups. Using the modern language of homotopy
theory, we reintroduce in [3] so-called torus homotopy groups considered in [2].

Let X be a pointed space. For n ≥ 1, the n-th Fox group of X is defined to be

τn(X) = [Σ(Tn−1 ∪ ∗), X ],

where Tk denotes the k-dimensional torus and Σ the reduced suspension.
The obvious projection map Tn−1 ∪ ∗ → Sk−1 leads to imbeddings

πk(X) −→ τn(X)

for 1 ≤ k ≤ n.
Given a space X , we define in [5] the Gottlieb-Fox groups to be the evaluation

subgroups

Gτn := Gτn(X, x0) := Im(ev∗ : τn(Map(X, X), idX) → τn(X, x0))

of the torus homotopy groups τn for n ≥ 1.

Next, let G denote a finite group acting on a compactly generated Hausdorff
path connected space X with a basepoint. F. Rhodes has introduced in [10] the
notion of the fundamental group σ(X, x0, G) of the pair (X, G), where x0 is a
basepoint in X . Then, F. Rhodes has defined in [11] higher groups σn(X, x0, G)
of the pair (X, G) for n ≥ 1 which is an extension of τn(X, x0) by G so that

1 → τn(X, x0) → σn(X, x0, G) → G → 1
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is exact.
The evaluation subgroup

Gσn := Gσn(X, x0, G) := Im(ev∗ : σn(XX , idX , G) → σn(X, x0, G))

of σn is called the n-th Gottlieb-Rhodes group of a G-space X .
To relate the Gottlieb-Rhodes groups with the Gottlieb-Fox groups, we consider

in [4] the homomorphism pn : Gσn → G given by [f ; g] 7→ g for [f ; g] ∈ Gσn.

Theorem 2.1. The following sequence

(1) 1 → Gτn → Gσn
pn
→ G0 → 1

is exact. Here, G0 is the subgroup of G consisting of elements g considered as
homeomorphisms of X which are freely homotopic to idX .

At the end, for any pointed spaces X and V , we define in [3] the generalized
Gottlieb group

G(ΣV, X) = Im (ev∗[ΣV (XX , idX)] → [ΣV, (X, x0)])

and the V -Fox group

τV (X) = [Σ(V ∪ ∗), X ].

Given a space W , the group [ΣV, X ] can be regarded as a subgroup of τV ×W (X)
via the projection V × W → V . Then, we have shown in [4]:

Proposition 2.2. The generalized Gottlieb group G(ΣV, X), regarded as a sub-
group of τV ×W (X) is central in τV ×W (X). In particular, it is central in [ΣV, X ].

Now, given α ∈ [ΣV, X ] and β ∈ [ΣW, X ], consider the generalized Whitehead
product (see [1] for details)

α ◦ β : Σ(V ∧ W ) → X.

Then, the composite

Σ((V × W ∪ ∗) → Σ(V × W ) → Σ(V ∧ W )
α◦β
→ X

determines an element in the V × W -Fox group τV ×W (X).

Theorem 2.3. (1) Given α ∈ [ΣV, X ] and β ∈ [ΣW, X ], the image of the gen-
eralized Whitehead product α ◦ β in τV ×W (X) is the commutator α, β] of α and
β.

(2) If α ∈ G(ΣV, X) then the generalized Whitehead product α ◦ β = 0.

We also point out that in [5] generalized Fox torus groups are used to unify
different approach to generalized Jacobi identities.
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[3] M. Golasiński, D.L. Gonçalves, P. Wong, Generalizations of Fox homotopy groups, White-

head products and Gottlieb groups, Ukrain. Mat. Zh. 57 (2005), no. 3, 320–328; translation
in Ukrainian Math. J. 57 (2005), no. 3, 382–393.

[4] ———————- , Equivariant evaluation subgroups and Rhodes groups, Cah. Topol. Gèom.
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[6] M. Golasiński, J. Mukai, Gottlieb groups of spheres, Topology 47 (2008), no. 6, 399–430.
[7] ————————– , Gottlieb and Whitehead center groups of projective spaces, in prepa-

ration.
[8] D. Gottlieb, A certain subgroup of the fundamental group, Amer. J. of Math. 87 (1965),

840-856.
[9] ——— , Evaluation subgroups of homotopy groups, Amer. J. of Math. 91 (1969), 729-756.

[10] F. Rhodes, On the fundamental group of a transformation group, Proc. London Math. Soc.
(3) 16 (1966) 635–650.

[11] ——— , Homotopy groups of transformation groups, Canad. J. Math. 21 (1969), 1123–1136.

Coincidence numbers and the fundamental group

Daniel Henry Gottlieb

For M and N closed oriented connected smooth manifolds of the same dimen-
sion, we consider the mapping space map(M, N ; f) of continuous maps homotopic
to f : M → N . We will show that the evaluation map from the space of maps
to the manifold N induces a nontrivial homomorphism on the fundamental group
only if the self coincidence number of f , denoted Λf,f , equals zero. Since Λf,f is
equal to the product of the degree of f and the Euler–Poincaré number of N , we
obtain results related to earlier results about the evaluation map and the Euler–
Poincaré number, [1].

This result has already appeared in [2]. It was discovered in response to a
conjecture of Dusa McDuff in [3]. It was proved using the coincidence index
axioms of Chris Staecker in [5]. It generalizes a well known result of [1], for much
more restrictive hypotheses. The result in [5] was generalized by John Stallings in
[6]. This started a chain of increasingly generalized results in group cohomology.
It lead me to conjecture a version of the result in the first paragraph for group
cohomology by generalizing the concept of the degree of a map from manifolds
to topologiical spaces, which was shown to be literally false by T. Shick and A.
Thom in [5]. But then they modified the definition of the degree, and proved the
modified conjecturre. Finally, they observed that the theorem they proved did not
need the generalized concept of degree that was used to make the conjecture.
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Models for function spaces and applications

Katsuhiko Kuribayashi

One might hope a full subcategory of the category of topological spaces is able
to be controlled by a category of appropriate algebraic objects. As for algebraic
models for spaces, in particular, we can mention rational homotopy theory due
to Quillen [19] and Sullivan [20] and p-adic homotopy theory due to Mandell
[17]. Let C be a category with a family of weak equivalences and h(C) denote
the homotopy category obtained by giving formal inverses of weak equivalences.
The correspondences between ”spaces” and ”algebras” are roughly summarized as
follows.
Rational Homotopy Theory, see also [1]. The functor APL(·) of rational poly-
nomial differential forms on a space and the realization functor | · | give an equiv-
alence

h

„

the category of connected nilpotent rational spaces
of finite Q-type

«

∼= AP L(·)
��

h(the category of differential graded algebras of finite type over Q).

|·|

OO

p-adic Homotopy Theory. The normalized singular cochain functor C∗(· ; Fp)

with coefficients in the closure Fp and the realization functor give an equivalence

h

„

the category of connected nilpotent p-complete spaces
of finite p-type

«

∼= C∗(· ;Fp)��

h

 

a full subcategory of the category of algebras

of finite type over an E∞Fp -operad

!

.

|·|

OO

In principle, it seems possible to translate various topological invariants into
algebraic ones. However, we often encounter the problem of how to construct an
explicit model corresponding a given topological object. Therefore in algebraic
model theory, it is very inportant to construct a computable algebraic model for
a geometric object in advance. In my talk such models are introduced within the
framework of rational homotopy theory. Especially, the models for function spaces
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due to Haefliger [7], Brown and Szczarba [2], which are called the HBS models,
and a model for the evaluation map are described with a few examples. Moreover,
we will explain how the models are relevant to investigate a topological invariant
for example, Gottlieb groups [6] and Kedra-McDuff µ-classes [10].

It is expected that ideas in [8], [11] and [3] are applicable when understanding
topological invariants and notions algebraically. Indeed, in ongoing work [12], the
rational visibility of a Lie group in the space of self-homotopy equivalences of a
homogeneous space is investigated by means of tools developed in the previous
papers.

We are convinced that, in adding the results which appear in origins of function
space models [21], [22] and [7], explicit HBS models and derivations on Sullivan
models used in [14], [15], [16] and [4] are useful tools for the study of function
spaces, evaluation subgroups and other topological invariants.

My talk consists of the following subjects 1.

• Construction of the HBS models with Lannes’ division functor.
• An explicit component model for a function space and an rational model

for the evaluation map.
• Applications: Gottlieb groups, Kedra-McDuff µ-classes.

1. Applications

The HBS model for a function space and our explicit model for the evaluation
map are applicable to the computation of a Gottlieb group and to the study of
appropriate characteristic classes. We here describe computational examples.

Consider the S1-bundle S1 → Xf → T n over the n-dimensional torus T n with
the classifying map f which is represented by ρf =

∑
i<j cijtitj in H2(T n; Z) ∼=

[T n, K(Z, 2)]. Here {ti}1≤i≤n is a basis of H1(T n; Z). Define an (n × n)-matrix
Af by Af =

(
c′ij

)
, where c′ij = cij for i < j, c′ij = −cji for i > j and cii = 0.

We regard Af as a matrix with entries in Q. Then the rank of Af is denoted by
rankAf . By analyzing our model for the evaluation map, the following theorem is
established.

Theorem 1.1. [8] G1(Xf ) ∼= Z⊕(1+n−rankAf ).

We next give µ-classes due to Kedra and McDuff [10] a description with the
HBS model. In order to define the characteristic classes we first recall the coupling
class. In what follows, we write H∗(X) for the cohomology with coefficients in the
rational field. Let M be a k-dimensional manifold. Consider the Leray-Serre spec-

tral sequence {Er, dr} for a fibration M
i
→ E

π
→ B for which π1(B) act trivially

on Hk(M) = K. Let {F pH∗}p≥0 denote the filtration of {Er, dr}. Then the inte-
gration along the fibre (the cohomology push forward) π! : Hp+k(E) → Hp(B) is
defined by the composite

Hp+k(E) = F 0Hp+k = F pHp+k → Ep,k
∞ → ·· → Ep,k

2
∼= Hp(B; Hk(M)) ∼= Hp(B).

1We also refer the reader to [5] for an operadic model for a function space which is described
in terms of p-adic homotopy theory while the topic will be not dealt with in the talk.
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Let (M, a) be a 2m-dimensional c-symplectic manifold [13] and G denote the

monoid aut1(M) of self-homotopy equivalences. Let M
i
→ MG

π
→ BG be the

universal M -fibration; see [18, Proposition 7.9].

Proposition 1.2. [9, Proposition 2.4.2] [10, Proposition 3.1] Suppose that
H1(M) = 0, then the element a ∈ H2(M) is extendable to an element a ∈
H2(MG). Moreover, there exists a unique element ã ∈ H2(MG) that restricts
to a ∈ H2(M) and such that π!(ãm+1) = 0. In fact the element ã has the form

ã = a −
1

n + 1
π∗π!(am+1).

The class ã in Proposition 1.2 is called the coupling class.

Definition 1.3. [10, Section 3.1] [9, Section 2.4] We define µk ∈ H2k(BG), which
is called the kth µ-class, by µk := π!(ãm+k), where ã is the coupling class.

Theorem 1.4. [12] Let (M, a) be a nilpotent connected c-symplectic manifold
whose cohomology is isomorphic to K[a]/(am+1). Then, as an algebra,

H∗(Baut1(M)) ∼= K[µ2, ..., µm+1],

where deg µk = 2k.
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Maurer-Cartan moduli spaces and associated characteristic classes

Andrey Lazarev

(joint work with J. Chuang)

1. introduction

1.1. Notation and conventions. We work in the category of Z/2-graded vector
spaces (also known as super-vector spaces) over a field k of characteristic zero.
However all our results (with obvious modifications) continue to hold in the Z-
graded context. The adjective ‘differential graded’ will mean ‘differential Z/2-
graded’ and will be abbreviated as ‘dg’. A (commutative) differential graded
(Lie) algebra will be abbreviated as (c)dg(l)a. All of our unmarked tensors are
understood to be taken over k. For a Z/2-graded vector space V = V0 ⊕ V1

the symbol ΠV will denote the parity reversion of V ; thus (ΠV )0 = V1 while
(ΠV )1 = V0. The graded symmetric algebra on a dg vector space V is denoted by
S(V ).

2. Maurer-Cartan functor and Chevalley-Eilenberg complexes

Definition 2.1. Let g be a dgla and A be a profinite cdga; then an element
ξ ∈ g

1⊗A is Maurer-Cartan if dx+ 1
2 [x, x] = 0. The set of Maurer-Cartan elements

in g
1 ⊗A will be denoted by MC(g, A). The correspondence (g, A) 7→ MC(g, A) is

functorial in both variables.
If A is an arbitrary (not necessarily profinite) cdga then we will write M̃C(g, A)

for the Maurer-Cartan functor. We will often suppress the tilde when the context
makes the notation unambiguous.

Remark 2.2. We will consider MC(g, A) as a functor in the second variable only
although many statements will be symmetric in two variables; one can also consider
associative version of the MC functor or even an MC functor based on a pair of
Koszul dual operads.

Proposition 2.3.
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• The functor MC(g, A) is represented by the profinite cdga CE∗(g) (also
known as the Chevalley-Eilenberg complex of g). The underlying vector

space of CE∗(g) is ŜΠg whereas the differential d is the sum dint + dCE.
Here dint is the differential induced by the internal differential on d whereas
the Chevalley-Eilenberg differential dCE is a derivation whose restriction
onto Πg

∗ is a map Πg
∗ → Πg

∗ ⊗ Πg
∗ induced by the commutator on g.

• The functor M̃C(g, A) is represented by the finite cdga C̃E
∗
(g) (which we

will refer to as the modified Chevalley-Eilenberg complex of g). The un-

derlying vector space of C̃E(g) is SΠg
∗ whereas the differential is defined

precisely as before.

Examples of Maurer-Cartan elements in algebra and geometry abound; a stan-
dard example is a flat connection on a vector bundle. Here is another, more recent
example.

Let V be a dg vector space; consider the dgla L(V ) := Derc(T̂ΠV ∗) of continu-
ous derivations of the completed tensor algebra on Π∗. A Maurer-Cartan element
in L(V ) is the same as an A∞-algebra, [3], [1]. More precisely, an A∞-algebra is a
derivation having no constant term, a more general notion is sometimes referred
to as a weak A∞-algebra. An A∞-algebra is cyclic (or symplectic) if V is sup-
plied with a (super) symplectic structure and ξ preserves it. The interest in cyclic
A∞-algebras stems from Kontsevich’s theorem [3] relating the stable cohomology
of the Lie algebra of symplectic derivations to the homology of moduli spaces of
Riemann surfaces.

Definition 2.4. Let ξ ∈ MC(g, A); we have the corresponding classifying map of

cdga’s C̃E
∗
(g) → A. This gives rise to a map in cohomology H̃CE

∗
(g) → H∗(A)

or an element in H̃CE∗(g)⊗H∗(A). This element is called the characteristic class
of the Maurer-Cartan element ξ.

We will mostly consider the case A = k, the ground field. It is known (cf. for
example [4]) that characteristic classes of cyclic A∞-algebras could be nontrivial,
e.g. they give rise to so-called tautological classes in the moduli spaces of Rie-
mann surfaces. Moreover, classes of weakly equivalent A∞-algebras are the same,
[1]. Our main result concerns with the characteristic classes of Morita equiva-
lent A∞-algebras. Let m be a (cyclic) A∞-structure on a dg vector space V and
End(W ) be the endomorphism algebra of some finite-dimensional dg space W .
Then V ⊗ End(W ) is itself a cyclic A∞-algebra whose characteristic classes are
related in a very simple way to the characteristic class of (V, m). Recall, [2] that
any A∞-algebra which is Morita equivalent to (V, m) is obtained by twisting an
A∞-structure on V ⊗ End(W ). Then:

Theorem 2.5. The characteristic class of a twisted A∞-structure on V ⊗End(W )
does not depend on the twisting (and thus, equals to that of the trivially twisted
A∞-structure).

This result shows that, suitably interpreted, the characteristic class of a cyclic
A∞-algebra only depends on its dg-category of modules.
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Cyclic formality of the framed little discs operad

Paolo Salvatore

In this survey talk I first recalled the definition of operads and their algebras.
In particular I recalled the connection of the little n-discs operad Dn to the theory
of iterated loop spaces. The formality of the little Dn was proved by Kontsevich
[2](and Tamarkin [5] for n = 2). The result has applications to deformation
quantization [2] and to homology computations for spaces of knots (Lambrechts,
Turchin and Volic [3]). The little framed n-discs operad

fDn (Getzler [1]) is also formal for n = 2. I proved this with Giansiracusa
following Kontsevich’s proof, and Severa did it following Tamarkin’s proof [4].
Actually fD2 is equivalent to a cyclic operad M .

This is the operad of moduli spaces of stable complex curves with tangent rays
at the punctures and at the nodes. I proved with Giansiracusa the stronger result
that M is formal in the category of cyclic operads.
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Miller spaces

Jeff Strom

The results of this talk appeared in the article [9].

In the seminal paper [8], Haynes Miller proved that the classifying spaces of
locally finite groups G have a remarkable property: if K is any finite dimensional
CW complex, then map∗(BG, K) is weakly contractible. Our work begins when
we define a space X to be a Miller space if for every finite nilpotent CW complex,
map∗(X, K) ∼ ∗, and ask: how can we recognize a Miller space?



Homotopy Theory of Function Spaces and Related Topics 1037

The definition is easily modified to make sense in the stable category of spectra,
and one easily sees that a spectrum X is a Miller spectrum if and only if the
function spectra F (X, Sn) are weakly contractible for all n (in fact, it is equivalent
to have this for just one value of n). The purpose of the talk is to prove the
following unstabilization of this elementary observation.

Theorem 1.1. The following are equivalent:

(1) X is a Miller space
(2) map∗(X, Sn) ∼ ∗ for all sufficiently large n.

Clearly (1) implies (2), and the converse is where the work must be done.
The proof makes use of the formalism of strong resolving classes. A strong

resolving class is a class R of spaces which is closed under homotopy limits, weak
homotopy equivalence and extensions by fibrations [9]. Resolving classes have a
somewhat counterintuitive desuspension property: if

∨m

i=1 ΣNK ∈ R for some N
and all m, then K ∈ R. [2, 7, 3]

For our purposes, the main example of a strong resolving class is, for a fixed
space X , the class

R = {K |map∗(X, K) ∼ ∗}.

Strong resolving classes of this form have an additional closure property: they are
closed under the formation of wedges

∨
Kα, provided that for each n only finitely

many of the Kα are not n-connected (such wedges are called finite type wedges)
[4].

Together with the desuspension property enjoyed by all resolving classes, this
implies that if A is a collection of spaces with ΣNA = {ΣNA |A ∈ A} ⊆ R, then
A ⊆ R. Taking A to be the collection of all spheres, we see that if X satisfies
condition (2) of the theorem, then Sn ∈ R for all n. Even more, all finite type
wedges of spheres are contained in R.

With these preliminaries in place, the proof proceeds by induction on the cone
length of K with respect to finite type wedges of spheres [1]. If K has cone length
1, then it is a finite type wedge of spheres, and so map∗(X, K) ∼ ∗. For the
inductive step, we find a cofibration sequence

L → K →
∨

Snα ,

where the cone length of L is strictly less than that of K. Next we convert the
map K → Sn to a fibration and form the homotopy fiber F . Since R is closed
under extensions by fibrations and

∨
Snα ∈ R, it suffices to prove that F ∈ R.

But it follows from a result of Ganea (see also Gray) [5, 6] that the spherical
cone length of ΣF is bounded above by that of L; and so the same is true for∨m

i=1 ΣF for all m. Now the desuspension property of resolving classes yields
F ∈ R and hence K ∈ R, completing the inductive step.
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Integral loop homology of complete flag manifolds

Svjetlana Terzić

(joint work with Jelena Grbić)

I presented the recent results (see [1]) related to explicit decription of the inte-
gral Pontrjagin homology of the based loop space on a complete flag manifold G/T .
In my talk I explicitely formulated this result in the case when G = SU(n + 1).
The similar statement are also proved in [1] for the other classical Lie groups and
for the exceptional groups G2, F4 and E6.

1. Rational loop space homology of comlete flag manifolds

The rational homology ring structure of these spaces can be desriebed by making
use of Sullivan’s minimal model theory and Milnor-Moore theorem, see [2]. Denote
by LX the rational homotopy Lie algebra of the simply connected toplogical space
X of finite type. Milnor and Moore theorem states that the algebra H∗(Ω(X); Q)
is isomorphic to the universal enveloping algebra of LX . On the other hand if µ =
(ΛV, d) denotes Sullivan minimal model for X , then LX is, as a Lie algebra, isomor-
phic to the homotopy Lie algebra L of µ. The algebra L is defined as follows. The
underlying vector space L is given with sL = Hom(V ; Q), where s is the usual sus-
pension. In order to introduce the Lie brackets let us denote by d1 : V → Λ2V the
quadratic part of the differential d. One can define a pairing 〈 ; 〉 : V ×sL −→ Q by
〈v; sx〉 = (−1)deg vsx(v) and extend it to ΛkV ×sL×· · ·×sL −→ Q by letting 〈v1∧
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· · · ∧ vk; sxk, . . . , sx1〉 =
∑

σ∈Sk
ǫσ〈vσ(1); sx1〉 · · · 〈vσ(k); sxk〉, where Sk is the sym-

metric group and vσ(1)∧· · ·∧vσ(k) = ǫσv1∧· · ·∧vk. Then L inherits a Lie brackets

from d1 uniquely determined by 〈v; s[x, y]〉 = (−1)deg y+1〈d1v; sx, sy〉 for x, y ∈
L, v ∈ V. It follows that H∗(ΩX ; Q) ∼= UL where UL is the universal enveloping
algebra for L. Further on, UL ∼= T (L)/〈xy − (−1)deg x deg yyx − [x, y]〉.

When X = G/T , where G is a compact connected Lie groups and T its maxi-
mal torus, we have that X is formal and its rational cohomology algebra is given
with H∗(G/T ; Q) ∼= Q[u1, . . . , un]/〈Q[u1, . . . un]WG〉. If G is a simple Lie group
the Weyl invariant polynomials that generate Q[u1, . . . un]WG are established and,
therefore, the descriebed procedure leads to the explicit computation of the ratio-
nal homology of Ω(G/T ).

We provide this computation for X = SU(n + 1)/T n. It is known that the
rational (as well as integral) cohomology of SU(n + 1)/T n is

H∗(SU(n + 1)/T n; Q) ∼= Q[u1, . . . , un+1]/〈S
+(u1, . . . , un+1)〉,

where deg ui = 2, 1 ≤ i ≤ n + 1. As the ideal 〈S+(u1, . . . , un+1)〉 is a Borel ideal,
the minimal model for SU(n + 1)/T n is by [4] given with µ = (ΛV, d), where
V = (u1, . . . , un, v1, . . . , vn) and deg(uk) = 2, deg(vk) = 2k+1 for 1 ≤ k ≤ n. The

differential d is defined by d(uk) = 0, d(vk) =
n∑

i=1

uk+1
i + (−1)k+1

(
n∑

i=1

ui

)k+1

,

what implies that the its quadratic part is only non trivial on v2, i.e. d1(v1) =

2
n∑

i=1

u2
i + 2

∑
i<j

uiuj. If we now apply the given procedure we obtain the following.

Theorem 1.1. The rational homology ring of the loop space on the flag manifold
SU(n + 1)/T n is

(1) H∗(Ω(SU(n + 1)/T n); Q) ∼=
(
T (a1, . . . , an)/

〈
a2

k = apaq + aqap | 1 ≤ k, p, q ≤ n, p 6= q
〉)

⊗ Q[b2, . . . , bn]

where the generators ai are of degree 1 for 1 ≤ i ≤ n, and the generators bk are of
degree 2k for 2 ≤ k ≤ n.

2. Integral loop space homology of complete flag manifolds

We describe the integral Pontrjagin homology ring structure on Ω(G/T ) where
G is a compact simple Lie group by showing that there is a split extension of
algebras

1 // H∗(Ω0G;Z) // H∗(Ω(G/T );Z) // H∗(T ;Z) // 1 .

In order to show this extension we first prove the following [1].

Theorem 2.1. The homology of the based loop space on the complete flag manifold
of a compact connected Lie group is torsion free.

We decide then the extension as follows, by making use of the rational homology
calculations we have done for Ω(G/T ), and the results on integral homology of the
identity component Ω0G of the loop space on G, which is known to be torsion free.
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Note that for any simply connected Lie group G we have that π2(G/T ) ∼=
Z

dim T and π3(G/T ) ∼= Z. If we identify H1(T,Z) with π2(G/T ) and H2(ΩG,Z)
with π3(G/T ) via natural homomorphisms we obtain the extension in the above
splitting to be given with [α, β] = W (α, β) ∈ H2(ΩSU(n + 1);Z), where α, β ∈
H1(T

n;Z) and W : π2(G/T ) ⊗ π2(G/T ) → π3(G/T ) is the pairing given by the
Whitehead product.

In the case when G = SU(n + 1) it is known [3] that the subspace of primitive
elements in H∗(ΩSU(n + 1);Z) is spanned by the elements σ1, . . . , σn which can
be expressed in terms of integral generators y1, . . . , yn of H∗(ΩSU(n+1);Z) using
the Newton formula

(2) σk =

k−1∑

i=1

(−1)i−1σk−iyi + (−1)k−1kyk, 1 ≤ k ≤ n.

These primitive elements σ1, . . . , σn rationalise to b1, . . . , bn from rational homol-
ogy calculations.

In this way we obtain that the above splitting detemines the following integral
Pontrjagin homology of Ω(SU(n + 1)/T n).

Theorem 2.2. The integral Pontrjagin homology ring of the loop space on SU(n+
1)/T n is

H∗ (Ω(SU(n + 1)/T n);Z) ∼=

(T (x1, . . . , xn) ⊗Z[y1, . . . , yn]) /
˙

x2
k = xpxq + xqxp = 2y1 for 1 ≤ k, p, q ≤ n, p 6= q

¸

where the generators x1, . . . , xn are of degree 1, and the generators yi are of degree
2i for 1 ≤ i ≤ n.
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On the configuration spaces of a certain n-arms machine in the

Euclidean space

Shuichi Tsukuda

(joint work with Yasuhiko Kamiyama)

We describe the homotopy type of the configuration space of a certain arachnoid
mechanism – that is, a parallel robot in Rd having n two-joined legs, with all joints
of a fixed length a/2, joined together at a central point q, with the other end of
the i-th leg at the i-th vertex of a regular polyhedron P .
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More precisely, we consider the configuration space M(P, a) defined as follows:
Let P ⊂ R3 ⊂ Rd be a regular convex polyhedron with vertices {v1, . . . , vn}. We
set

M(P, a) :=
{
(p1, . . . , pn, q)

∣∣∣ ‖pi − vi‖ = ‖q − pi‖ =
a

2
, ∀i

}
⊂

(
Rd

)n+1

We say that the machine has short arms if l(P ) < a < L(P ) and long ones if
a > L(P ), where l(P ) and L(P ) are the radius and the diameter of P , respectively.

Theorem 1.1. If the arms are short and d ≥ 4, then

M(P, a) ≃
∨

∅6=I⊂V

S|I|(d−2)+d−3 ∧ S(I∆)

where V is the set of vertices of P , I∆ denotes the union of the faces of the
dual polyhedron P∆ those correspond to vertices in I and S(I∆) stands for the
unreduced suspension of I∆ (with the base point t = 0) . Moreover, the right
hand side is a bouquet of spheres and we can explicitly determine the numbers and
the dimensions of them. If d = 3, the same decomposition holds after a single
suspension.

When d = 3, we can determine the integral homology groups of M(P, a) for the
long arms machines. The proof depends on the description of the moduli space as
a certain homotopy colimit, which is closely related to the recent work of [1].
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Equivalences of a product and Mal’cev quasirings

Antonio Viruel

Let X be a pointed space and let E(X) denote the group of based homotopy classes
of based homotopy equivalences of X into itself. The study of E(X × Y ) is one
of the major problems for people studying self-homotopy equivalences, and it was
attacked by P. Pavešić [3] by introducing two distinguished subsets:

• EX(X×Y ) ⊂ E(X×Y ) is the set of all homotopy equivalences of the form
(pX , f), where pX : X × Y → X is the projection and f : X × Y → Y is a
continuous map.

• Similarly EY (X × Y ) ⊂ E(X × Y ) is defined as all the homotopy equiva-
lences of the form (g, pY ).
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In the list of problems on self-homotopy equivalences compiled by Arkowitz [1],
Pavešić asks if E(X×Y ) is generated by EX(X×Y ) and EY (X×Y ) (Problem 13th.).
The aim of this work is to show that E(X×Y ) is not generated by EX(X×Y ) and
EY (X × Y ) in general. We consider the case when X equals Y , and in order to
avoid confusion, we shall denote E1(X

2) = EX(X × Y ) and E2(X
2) = EY (X × Y )

for X = Y . The we prove:

Theorem 1.1. Let X be a space for which E(X2) is generated by E1(X
2) and

E2(X
2), then any Whitehead bracket in π∗X vanishes.

As there exist spaces X such that the Whitehead brackets in π∗X don’t vanish
(as those whose fundamental group is not abelian), E(X2) is not generated by
E1(X

2) and E2(X
2) in general. This answers P. Pavešić’s question in a negative

way.
In [2], Mal’cev introduced the concept of quasi-ring as a unifying framework in

which results on groups and rings could be proved simultaneously.
In order to prove Theorem 1.1, we consider the similar problem in the category

of quasirings and then we apply the functor that send a space to the quasiring
given by its homotopy groups with Whitehead brackets.
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Non-integral central extensions of loop groups via gerbes

Christoph Wockel

Smooth loop groups Ω∞G := C∞
∗ (S1, G) for G a compact, simple and sim-

ply connected Lie group, have intensively been studied as infinite-dimensional Lie
groups. However, in many situations (e.g., in order to develop a reasonable repre-
sentation theory), it is convenient not to consider Ω∞G, but its universal central
extension

1 → T → Ω̂∞G → Ω∞G

for T = R/Z the one-dimensional torus group. On the Lie algebra L(Ω∞G) =
Ω∞

g, where g is the Lie algebra of G, this central extension is given by the Kac–
Moody cocyle

ω : Ω∞
g × Ω∞

g → R, (f, g) 7→

∫ 1

0

〈f, g′〉dt,

where 〈· , ·〉 ∈ S2
g
∗ is chosen such that the left-invariant extension of 〈· , [· , ·]〉

generates H3(G;Z) ∼= Z. Then ω gives rise to the central extension

R → R⊕ω Ω∞
g → Ω∞

g,
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where the Lie algebra structure on R⊕ω Ω∞
g is given by

[(x, f), (y, g)] := (ω(f, g), [f, g])

(see [PS86], [Nee02] for generalities on central extensions of Lie groups and alge-
bras, [MN03] for generalisations to arbitrary mapping groups and algebras and
[NW09] for generalisations to gauge groups and groups of sections in Lie group
bundles).

The question is for which values of t ∈ R the central extension R ⊕t·ω Ω∞
g of

Lie algebras actually comes from a central extension U(1) → Ω̂∞Gt → Ω∞G of
Lie groups. This was solved by Pressley and Segal in [PS86, Th. 4.4.1], see also
[Mic87], [Mur88], [MS01], [Nee02, Prop. 5.11, Th. 7.9] [MN03, Th. I.6, Th. II.9]
and [NW09, Th. 2.12, Th. 3.14]:

Theorem. The central extension Ω̂∞Gt exists if and only if t ∈ Z. In this case,
the connecting homomorphism

Z ∼= π3(G) ∼= π2(ΩG) ∼= π2(Ω
∞G)

δ2−→ π1(U(1)) ∼= Z

of the fibration U(1) → Ω̂∞Gt → Ω∞G is given by z 7→ tz. In particular, we have

π2(Ω̂∞Gt) ∼= Z/tZ.

Thus Ω̂∞G1 can be viewed as a 2-connected cover of Ω∞G, where cover has to
be interpreted appropriately for we do not extend by a discrete group.

The question what happens for non-integral values of t does not seems to be
appropriate from this point view for the conditions on and implications from 〈· , ·〉
and ω seem to dictate integrality. However, by passing from central extensions of
Lie groups to abelian multiplicative principal 2-bundles and rephrasing the results
from [Woc08b] we can show the following:

Theorem For each t ∈ R there exists a multiplicative principal 2–bundle Ĝt over
Ω∞G, together with a flat (but non-fake-flat) connection such that the induced
2-holonomy is given by the period homomorphism

pertω : π2(Ω
∞G) → R

(cf. [Nee02, Sect. 5] for the construction of pertω, [Woc08a] for principal 2-bundles
and their connection to gerbes, [Wal08] and [MS03] for multiplicative gerbes and
[SW08] and [BM05] for connections on principal 2-bundles and gerbes).
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