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Introduction by the Organisers

Much of the progress in multivariable spectral theory during the last decades was
made possible by the use of methods from several complex variables, complex
analytic and algebraic geometry. The language of Hilbert modules has become an
effective tool and a unifying framework for the systematic development of this side
of operator theory. The purpose of the meeting was to bring together researchers
from these areas to assess the current state of the field and to identify crucial
problems whose solution will be of central importance for future progress.

The main topics included Hilbert modules of analytic functions on different
types of domains in Cn, spectral properties of the associated Toeplitz and Hankel
operators, in particular Schatten - von Neumann properties of cross commutators
and trace formulas in the spirit of Helton and Howe, classification of homogeneous
vector bundles and homogeneous operators in the Cowen-Douglas class, appli-
cations of commutative algebra and complex analytic geometry to multivariable
Fredholm theory, coherent and quasi-coherent sheaves as a tool to solve global
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problems by localization, non-commutative spectral theory and geometry for Ba-
nach algebras and the non-commutative disc algebra, homogeneous vector bundles
over Cartan domains and group representations.

M. Putinar discussed the solvability of division problems of the form Fu = f
in Bergman spaces over domains G in Cn with smooth strictly convex boundary,
where F is a matrix-valued analytic function defined in a neighbourhood of G.
Basic tools are the theory of Toeplitz operators and quasi-coherent localizations of
the Bergman space. J. McCarthy studied pairs of commuting isometries that are
algebraic in the sense that they are annihilated by a non-trivial polynomial. One
of the main results shows that two cyclic algebraic pairs of commuting isometries
with the same minimal annihilating polynomial are almost unitarily equivalent. G.
Zhang studied Schatten - von Neumann, in particular trace and weak trace-class
properties, of quotient modules of Hardy or Bergman spaces on the bidisc and
indicated trace-class formulas for suitable self-commutators.

Let Z be an irreducible hermitian Jordan triple of rank r with associated sym-
metric domain B. H. Upmeier indicated how suitable boundary measures can be
used to construct Aut(B)-invariant Hilbert space bundles (Hz)z∈B on B having a
canonical connexion which is projectively flat. K.-H. Neeb described some recent
results on semi-bounded representations of infinite-dimensional Lie groups. Rep-
resentations on spaces of holomorphic vector bundles provide natural examples.

F.-H. Vasilescu gave a new definition of a Cayley transform, using the algebra
of quaternions, and used this quaternionic Cayley transform to characterize 2× 2-
operator matrices which admit unbounded normal extensions. St. Richter showed
that the extremals (in the sense of Agler) for the families of spherical contractions
are given by a direct sum of a backward shift on a Drury-Arveson space and a
spherical unitary. This and partial results on the extremals of the family of d-
contractions is based on joint work with C. Sundberg. B. Wick explained recent
results, obtained with S. Treil, on the connection between the operator-valued
corona problem and the existence of bounded analytic projection-valued maps.

Let B be a finite Blaschke product with n zeros counting multiplicity and let
MB be the induced multiplication operator on the Bergman space L2

a(D). R. G.
Douglas reported on recent joint work with S. Sun and D. Zheng on the reducing
subspaces of MB. The largest C∗-algebra in the commutant of MB is finite di-
mensional and its dimension equals the number of connected components of the
”Riemann surface” of the function B−1 ◦B over D. For n ≤ 8, this number coin-
cides with the number of non-trivial minimal reducing subspaces for MB. Whether
the same is true in general remains open. R. Yang proposed a new notion of joint
spectrum for (non-commuting) elements in a Banach algebra and discussed the
complex analytic and topological properties of the associated resolvent set.

M. Andersson discussed an analytic proof of a uniform Briançon-Skoda theo-
rem for an analytic variety Z ⊂ Ω ⊂ Cn obtained with H. Samuelsson and J.
Sznajdman. A sharper result holds for ideals with few generators. The basic tool
is a residue current associated with Z that is obtained from a free resolution of
the structure sheaf OZ = O/IZ . X. Fang illustrated the applicability of methods
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from commutative algebra to multivariable operator theory in a few illuminating
examples. J. Eschmeier showed how a base change and comparison theorem from
commutative algebra can be used to deduce a limit formula for the generic val-
ues of the cohomology dimensions of the Koszul complex of a commuting tuple
T ∈ L(X)n on its Fredholm domain. This limit formula calculates at the same
time the Samuel multiplicity of the stalks of the cohomology sheaves of the induced
complex of analytic sheaves and allows to estimate the growth of the cohomology
groups Hp(T k, X) of the powers of T .

J. Arazy considered analytic continuations of Toeplitz operators and forms on
Besov-type spaces over Cartan domains. In the case of the unit ball the analytic
continuation is obtained via an integration by parts in the radial direction. M.
Englis presented recent results on the Dixmier trace of Hankel operators on Hardy
and Bergman spaces over strictly pseudoconvex domains. The resulting trace
formulas are reminiscent of classical results of Helton and Howe. The ball case is
due to joint work with R. Rochberg, the general case was studied by M.Englis,
K. Guo and G. Zhang. R. Rochberg indicated a decomposition of the space of
bilinear forms on the Hardy space over the unit disc into Hankel forms, obtained
with S. Ferguson, and its connection with a variant of the Rankin Cohen Bracket
operations.

K. R. Davidson discussed the classification and representation theory of semi-
crossed products of the non-commutative disc algebra by an automorphism. Among
other things one can show that two semi-crossed products given by automorphisms
φ and ψ of the n-ball Bn are algebraically isomorphic if and only if φ and ψ are
biholomorphically conjugate. M. T. Jury presented an operator space approach
to Schur-Agler norms on convex balanced domains in Cn. Examples include the
Agler norm on the polydisc, the Drury-Arveson multiplier norm and many new
cases.

C. Sundberg explained methods which allow the construction of rank-one per-
turbations of self-adjoint operators whose spectral measures possess prescribed
properties. G. Misra reported on joint results with S. Biswas on localizations of
analytic Hilbert modules over suitable domains Ω in Cn. The aim is to replace the
given Hilbert module M by a coherent subsheaf of OΩ which gives new information
on the properties of M . A. Koranyi discussed a recent joint result with G. Misra
which gives a complete list of all homogeneous operators in the Cowen-Douglas
class Bn(D). The classification is obtained via an explicit realization of all homo-
geneous Hermitian holomorphic vector bundles on the unit disc under the action
of the universal covering group of the biholomorphic automorphism group of the
unit disc. The workshop ended with a problem session organized by R. G. Douglas.

The varied background of the 23 participants from about ten different countries
lead to a number of new joint projects started in Oberwolfach. The unique at-
mosphere of the research institute and a wonderful week of beautiful early spring
contributed to the success of the meeting.
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Abstracts

Division in Bergman space of a convex domain

Mihai Putinar

Let Ω be a strictly convex domain, domain of Cd, d ≥ 1, with smooth boundary.
Let L2

a(Ω) denote the Bergman space of analytic functions in Ω which are square
summable with respect to the 2d-dimensional Lebesgue measure on Ω. Fix two
positive integers m,n and consider a given vector f ∈ L2

a(Ω) ⊗C Cn and a matrix
A of analytic functions defined in a neighborhood of Ω: A ∈ Mm,n(O(Ω)). We
study in this note the solvability of the linear equation

Au = f, u ∈ L2
a(Ω) ⊗C Cm,

in conjunction with an earlier work [11] dealing with the disk algebra instead of
the Bergman space, and within the general concept of ”privilege” introduced by
Douday more than forty years ago [4, 5].

To fix notation, for an open set G ⊂ Cd we denote by O(G) the space of
complex analytic functions in G and analogously for a closed set F ⊂ Cd the space
of germs of analytic functions defined in a neighborhood of F is denoted by O(F ).
The sheaf of analytic functions is denoted by O. The commutative Banach algebra
O(Ω) ∩ C(Ω) of analytic functions in Ω, which are continuous on the closure is
denoted by A(Ω). By a widely accepted abuse of terminology, we call A(Ω) the
disk algebra associated to the domain Ω.

Two independent steps are necessary to understand the nature of the above
equation: first, the solution u may not be unique, simply due to the non-trivial re-
lations among the columns of the matrix A. This difficulty is clarified by homologi-
cal algebra: at the level of coherent analytic sheaves, F = coker(A : O|m

Ω
−→ O|n

Ω
)

admits a finite free resolution:

(1) 0 → O|
np

Ω

dp

−→ · · · → O|n1

Ω

d1−→ O|n0

Ω
→ F → 0,

where n1 = m,n0 = n and d1 = A. The existence of such a resolution is assured by
the analogue of Hilbert syzygies theorem in the analytic context, see for instance
[8].

The second step, of circumventing the non-existence of boundary values for
Bergman space functions, is resolved by a canonical quantization method, that is
by passing to the algebra of Toeplitz operators with continuous symbol on L2

a(Ω).
We import below from the well understood theory of Toeplitz operators on domains
of Cd is a crucial criterion for a matrix of Toepliz operators to be Fredholm , cf.
[12, 8].

Following Douady [4, 5], the A(Ω)-module F = coker(A : L2
a(Ω)m −→ L2

a(Ω)n)
is called privileged with respect to the Bergman space if it is a Hilbert module in
the quotient metric and there exists a resolution

(2) 0 → L2
a(Ω)np

dp

−→ · · · → L2
a(Ω)n1

d1−→ L2
a(Ω)n0 → F → 0,
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where dq ∈M(nq+1, nq; A(Ω)). Note that implicitly in the statement is assumed
that the range of the operator A is closed at the level of Bergman space.

Assume that the analytic matrix A(z) is defined on a neighborhood of Ω. One
proves by standard homological techniques that every free, finite type resolution
of the analytic coherent sheaf F = coker(A : O|m

Ω
−→ O|n

Ω
) induces at the level of

the Bergman space L2
a(Ω) an exact complex, see [4]. The similarity between the

two resolutions above is not accidental, as it will be revealed in the sequel.
The interest for Hilbert space privilege arose from the recent work on analytic

Hilbert modules of R. G. Douglas and G. Misra. The author thanks them both
for many illuminating discussions.

1. Main result

After understanding the disk-algebra privilege on a strictly convex domain [11],
the main result of this note, stated below, is not surprising.

Theorem. Let Ω ⊂ Cd be a strictly convex domain with smooth boundary, let
m,n be positive integers and let A ∈Mm,n(A(Ω)) be a matrix of analytic functions
belonging to the disk algebra of Ω. The following assertions are equivalent:

a). The analytic module coker(A : L2
a(Ω)m −→ L2

a(Ω)n) is privileged with
respect to the Bergman space;

b). The function

ζ 7→ rank A(ζ), ζ ∈ ∂Ω,

is constant;
c). Let f ∈ L2

a(Ω)n. The equation

Au = f

has a solution u ∈ L2
a(Ω)m if and only if it has a solution u ∈ O(Ω)m.

Sketch of proof. Assume that the resolution 2 exists and that the last arrow
has closed range. The exactness at each degree of the resolution is equivalent to
the invertibility of the Hodge operator:

d∗kdk + dk+1d
∗
k+1 : L2

a(Ω)nk −→ L2
a(Ω)nk , 1 ≤ k ≤ p,

where we put dp+1 = 0. To be more specific: the condition ker[d∗kdk+dk+1d
∗
k+1] =

0 is equivalent to the exactness of the complex at stage k, implying hence that
ran(dk+1) is closed. In addition, if the range of dk is closed, then, and only then,
the self-adjoint operator d∗kdk + dk+1d

∗
k+1 is invertible.

Since the boundary of Ω is smooth, the commutator [Tf , Tg] of two Toeplitz

operators acting on the Bergman space and with continuous symbols f, g ∈ C(Ω)
is compact, see for details and terminology [2, 12, 13]. Consequently for every
k, d∗kdk + dk+1d

∗
k+1 is, modulo compact operators, a nk × nk matrix of Toeplitz

operators with symbol

dk(x)
∗dk(x) + dk+1(x)dk+1(x)

∗, x ∈ Ω,
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where the adjoint is now taken with respect to the canonical inner product in
Cnk . According to the main result of [13], or [12], if the Toeplitz operator d∗kdk +
dk+1d

∗
k+1 is Fredholm, then its matrix symbol is invertible. Hence

ker[dk(x)
∗dk(x) + dk+1(x)dk+1(x)

∗] = 0, 1 ≤ k ≤ p.

Thus, for every x ∈ ∂Ω,

rankA(x) = dim coker(d1(x)) = n0 − n1 + n2 − ...+ (−1)pnp.

To prove the other implication, we rely on the disk algebra privilege criterion
obtained in the note [11]. Namely, in view of Theorem 2.2 of [11], if the rank
of the matrix A(x) does not jump for x belonging to the boundary of Ω, then
there exists a resolution of E = coker A : A(Ω)m −→ A(Ω)n with free, finite type
A(Ω)-modules:

(3) 0 → A(Ω)np
dp

−→ · · · → A(Ω)n1
d1−→ A(Ω)n0 → E → 0.

As before, we denote d1 = A. We have to prove that the induced complex (2), ob-
tained after applying (3) the functor ⊗A(Ω)L

2
a(Ω), remains exact and the boundary

operator d1 has closed range.
To this aim, we ”glue” local resolutions of cokerA with the aid of Cartan’s lemma

of invertible matrices, as explained in [11]. For points close to the boundary of
Ω such a resoltuion exists by the local freeness assumption, while in the interior,
in neighborhoods of the points where the rank of the matrix A may jump, they
exist by Douady’s privilege on polydisks. this will prove that the Hilbert analytic
module CokerA : L2

a(Ω)m −→ L2
a(Ω)n is privileged with respect to the Bergman

space.
As for assertion c), we simply remark that it is equivalent to the injectivity of

the restriction map

coker(A : L2
a(Ω)m −→ L2

a(Ω)n) −→ coker(A : O(Ω)m −→ O(Ω)n).

The last co-kernel is always Hausdorff in the natural quotient topology as the
global section space of a coherent analytic sheaf.

It is worth mentioning that for non-smooth domains Ω in Cd the above result is
not true. For instance A(Π)-privilege for a poly-domain Π was fully characterized
by Douady [5]. On the other hand, even for smooth boundaries, the privilege
with respect to the Fréchet algebra O(Ω)∩C∞(Ω) seems to be quite intricate and
definitely different than the Bergman space or disk algebra privileges, as indicated
by an observation of Amar [1].

Besides the expected relaxations of the main result above, for instance from
convex to pseudoconvex domains, a natural problem to consider at this stage is the
classification of the analytic Hilbert modules F = coker(A : L2

a(Ω)m −→ L2
a(Ω)n)

appearing in the Theorem above. This question fits into the framework of quasi-
free Hilbert modules introduced in [7]. That the resulting parameter space is
wild, there is no doubt, as all Artinian modules M (over the polynomial algebra)
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supported by a fix point a ∈ Ω enter into discussion. Specifically, we can take

M = coker((f1, ..., fn) : L2
a(Ω)n −→ L2(Ω)),

where f1, ..., fn are polynomials with the only common zero {a}. Then in virtue
of Theorem 2.1, the analytic module M is finite dimensional and privileged with
respect to the Bergman space L2

a(Ω). An algebraic reduction of the classification
of all finite co-dimension analytic Hilbert modules of the Bergman space associated
of a smooth, strictly convex domain can be found in [9, 10].
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Algebraic pairs of isometries

John E. McCarthy

(joint work with Jim Agler)

The purpose of the talk is to discuss a restricted class of pairs of commuting
isometries V = (V1, V2), namely ones that satisfy an algebraic relation: q(V ) = 0
for some polynomial q of two variables. We shall call such a pair an algebraic
isopair, and we shall say that an isopair is pure if both isometries are pure. Pure
algebraic isopairs turn out to have a rich structure.

It is easy to find an algebraic isopair annihilated by the polynomial z2 − w2,
but a moment’s thought shows that none can be annihilated by z2 − 2w2. The
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polynomial 1 − zw can annihilate an isopair, but only if this is a pair of unitaries
whose joint spectrum is contained in

T2 ∩ {(z, w) : 1 − zw = 0}.

(We shall use the notation that D is the open unit disk {z : |z| < 1}, T is the unit
circle {z : |z| = 1}, and Eλ is the exterior of the closed disk {z : |z| > 1}.) No
pure isopair is annihilated by 1 − zw.

What polynomials q can be the minimal annihilating polynomial for some pure
isopair?

Theorem 1: Let V = (V1, V2) be a pure algebraic isopair on a Hilbert space
H. Then there exists a square-free inner toral polynomial q that annihilates V .
Moreover, if p is any polynomial that annihilates V , then q divides p.

A polynomial q is called an inner toral polynomial if its zero set lies in D2 ∪
T2 ∪E2

λ; the zero set of an inner toral polynomial is called a distinguished variety.
Theorem 1 gives a way to construct algebraic isopairs. Start with an inner toral

polynomial q; put a nice measure µ on Zq ∩T2; construct the Hardy space H2(µ)
that is the closure in L2(µ) of the polynomials; and look at the pair of operators on
H2(µ) given by multiplication by the coordinate functions. In a way that can be
made precise, this construction in some sense gives you all cyclic algebraic isopairs.

However, they also arise in another setting. In [1, 2], it is shown that on every
finitely connected planar domain R there is a pair of inner functions (u1, u2) that
map the domain conformally onto some distinguished variety intersected with the
bidisk. If ν is a measure on ∂R that is a log-integrable weight times harmonic
measure, one can form a Hardy space H2(ν) (provided every component in the
complement of R has interior, this is just the closure in L2(ν) of all functions
analytic in a neighborhood of R). Multiplication by u1 and u2 on H2(ν) then give
a pure cyclic algebraic isopair.

A q-isopair (an isopair annihilated by q ∈ C[z, w]) can almost be broken up
into a direct sum of isopairs corresponding to each of the irreducible factors of q.
Specifically, we have:

Theorem 2: Let V = (V1, V2) be a pure algebraic isopair with minimal polyno-
mial q, and let q1, q2, . . . , qN be the (distinct) irreducible factors of q. If both V1 and
V2 have finite dimensional cokernels, then V has a finite codimension invariant
subspace K on which

V |K= W1 ⊕W2 ⊕ · · · ⊕WN

where Wj is a qj-isopair, j = 1, . . . , N .
The restriction to K is essential. Our main result says that any two pure cyclic

algebraic isopairs are nearly unitarily equivalent if and only if they have the same
minimal polynomial. “Nearly” means after restricting to a finite codimensional
invariant subspace. So we say that two pairs are nearly unitarily equivalent if
and only if each one is unitarily equivalent to the other restricted to a finite
codimensional invariant subspace. We say a pair is nearly cyclic if, when restricted
to a finite codimensional invariant subspace, it becomes cyclic. We have:



1058 Oberwolfach Report 20

Theorem 3: Any two nearly cyclic pure isopairs are nearly unitarily equivalent
if and only if they have the same minimal polynomial.

There is a function-theoretic consequence of the operator theory. Given a poly-
nomial q, one can ask when Y = Zq ∩ T2 is polynomially convex. Apart from the
trivial case of when q has factors of (z − eiθ) or (w − eiθ), the answer is that Y
fails to be polynomially convex if and only if q has an inner toral factor.

Theorem 4: Let q be a polynomial in two variables with no linear factors.
Then Y = Zq ∩ T2 is polynomially convex if and only if q has no inner toral
factor.
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Trace formulas for quotient modules on the bidisk

Genkai Zhang

(joint work with Kunyu Guo, Kai Wang)

There is a rich theory of Schatten - von Neumann Lp-properties of Toeplitz and
Hankel operators on the unit ball in Cn. On the qualitative side there is the char-
acterization of the membership in Lp of Hankel operators with anti-holomorphic
symbols f (studied by e.g. Arazy-Fisher-Janson-Peetre, Rochberg, Zhu.) On the
quantitative side the Hilton-Howe formula computes the anti-commutator of the
Toeplitz operators {Tf1 , T

∗
f1
, . . . , Tfn

, T ∗
fn
} as an integration of the product of dif-

ferentials dfj ; in one variable case it is the Dirichlet norm of f , which is a prototype
of the Berger-Shaw inequality. The Hankel operators (defined similarly as for the
ball) with anti-holomorphic symbols on the polydisks are never compact and there
is thus no such trace formula. However the quotient modules of the Hardy space
H2 = H2(D2) on the bidisk D2 behave in certain cases as Bergman spaces on the
unit disk. It is therefore a natural question to classify those quotient modules with
trace class properties.

Let M be an invariant subspace generated by homogeneous polynomials of H2

of the multiplication operators Mz and Mw. We denote by Sf the compression
on M⊥ of the Toeplitz operator Mf . We call M⊥, p-essentially normal if all the
cross commutators among the operators {S∗

z , S
∗
w, Sz, Sw} are in the Schatten - von

Neumann class Lp. For quotient modules on the unit ball this property has been
studied by, among others, Averson and Guo-Wang. One may refine the definition
above by using the Macaev class Lp,∞, or the weak Lp class instead of Lp. There
arises then also the question of computing the Dixmier trace of the (power of) the
commutators [S∗

f , Sf ].
It has been proved by R. Yang that up to a finite dimensional subspace, M is

of the form M = [p] for a single homogeneous polynomial p with p = p1p2, where
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the zero sets Z(p1) and Z(p2) have the properties that

(1) Z(p1) ∩ ∂D
2 = Z(p1) ∩ T

2

and respectively

(2) Z(p2) ∩ ∂D
2 = Z(p2) ∩ (∂D2 \ T 2),

where ∂D2 is the topological boundary ofD2, so that ∂D2\T 2 = (T×D)∪(D×T ).
The compact property has been studied by Guo-Wang. They proved that the
quotient [p]⊥ is compact if and only if p = p1p2, with p2 being one of the following
polynomials:

1, (z − αw), (z − αw)(w − βz), for |α| < 1, |β| < 1.

In the present work we prove

Theorem 1. (1) The quotient module [p]⊥ is trace class if and only if p is
one of the following polynomials:

(z − α1w)n+1, z − αw, (z − αw)(w − βz),

where |α1| = 1, |α| < 1, |β| < 1.
(2) The quotient module is in the weak trace class if and only if p is one of

the following polynomials:

k
∏

j=1

(z − αjw)nk+1, z − αw, (z − αw)(w − βz),

where |αj | = 1, ∀j, and |α| < 1, |β| < 1.

To prove the theorem we study first the quotient module [(z−αw)n]⊥. For |α| =
1 it has a decomposition in terms of vanishing degrees and Ferguson-Rochberg
computed the matrix entries of the operator Sz under the decomposition. When
there are more than one factors we prove certain p-orthogonal property (defined
in terms of the product of the corresponding projections) of the quotient modules,
and we estimate the eigenvalues of related operators between different subspaces.

Theorem 2. Let F (z, w) be a polynomial.

(1) If p = (z − αw)N+1 for some |α| = 1, then

Tr[S∗
F , SF ] = (N + 1)

∫

D

|f ′(w)|2dm(w), f(w) = F (αw,w).

(2) If p = z − αw for some |α| < 1, then

Tr[S∗
F , SF ] =

∫

D

|f ′(w)|2dm(w), f(w) = F (αw,w).

(3) If p = (z − αw)(w − βz) for some |α| < 1, |β| < 1, then

Tr[S∗
F , SF ] =

∫

D

|f ′
1(w)|2dm(w) +

∫

D

|f ′
2(z)|

2dm(z),

where f1(w) = F (αw,w), f2(z) = F (z, βz).
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We consider also the Dixmier trace of Hankel type operators and obtain similar
equality as above.
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Hilbert bundles and flat connexions on Jordan varieties

Harald Upmeier

Let Z be an irreducible hermitian Jordan triple of rank r. Its open unit ball B
is a Cartan domain (bounded symmetric domain), realized as B = G/K, where
G = Aut(B) is the holomorphic automorphism group of B and K ⊂ GL(Z) is the
maximal compact subgroup. The Jordan determinant varieties

Zℓ := {z ∈ Z|rank(z) = ℓ}

are the KC-orbits corresponding to the boundary G-orbits ∂ℓB of B (1 ≤ ℓ ≤ r)
under the well-known Matsuki duality.

The polynomial algebra over Z has a Peter-Weyl decomposition

P(Z) =
∑

m

Pm(Z)

under the natural K-action, where m = (m1 ≥ . . . ≥ mr ≥ 0) runs over all integer
partitions of length r. The restricted sum

Pℓ(Z) =
∑

mℓ+1=0

Pm(Z)

for partitions of length ℓ admits Zℓ as a set of uniqueness. We construct a measure
µ on Zℓ and a G-action on Zℓ with the following properties:
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(i) The completion Hℓ of Pℓ(Z) under the measure µ has an orthogonal pro-
jection given by the Jordan theoretic Bessel function [1] for parameter
ℓa/2, where a is the characteristic multiplicity.

(ii) The G-invariant Hilbert space bundle (Hz)z∈B over B, constructed via
the G-action on Zℓ and the fibre Hℓ at the origin 0 ∈ B, has a canonical
connexion which is projectively flat [2].

(iii) The corresponding parallel transport (generalized Bogolyubov transfor-
mations) can be expressed in Jordan theoretic terms, via the Bergman
operator and the Jordan-Bessel function.
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Convexity and Complex Geometry in Unitary Representation Theory

Karl-Hermann Neeb

We are interested in a systematic approach to unitary representations of infinite-
dimensional Lie groups in terms of boundedness conditions on spectra in the de-
rived representation.

Let G be a Lie group (modeled on a locally convex space) with Lie algebra
L(G) = g and a smooth exponential function expG : g → G. See [Ne06] for details
on infinite dimensional Lie theory. For any unitary representation π : G → U(H)
which is smooth in the sense that the subspace

H∞ := {v ∈ H : πv ∈ C∞(G,H)}, πv(g) := π(g)v,

of smooth vectors in H is dense (which is automatic for continuous unitary repre-
sentations of finite-dimensional groups), we consider on the projective space

P(H∞) := {[v] = Cv : 0 6= v ∈ H∞}

the momentum map

Φπ : P(H∞) → g′, Φπ([v])(x) :=
−〈idπ(x)v, v〉

〈v, v〉
,

where

dπ(x)v :=
d

dt t=0
π(exp tx)v, v ∈ H∞, x ∈ g

denotes the derived representation of the Lie algebra g on H∞ and g′ is the topo-
logical dual of the locally convex space g. We now define the momentum set of
the representation by

Iπ := conv(im(Φπ)),

where the closure is taken in the weak-∗-topology on g′. Since the momentum map
Φπ is equivariant with respect to the G-action on P(H∞) by g[v] := [π(g)v] and
the coadjoint action on g′, given by Ad∗(g)f := f ◦ Ad(g)−1, the momentum set
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is a convex weak-∗-closed subset invariant under the coadjoint action. From the
invariance of H∞ under π(G) one derives that the operators idπ(x) on H∞ are
essentially selfadjoint, and this in turn leads to the relation

sup〈Iπ , x〉 = − inf Spec(idπ(x)) ∈ R ∪ {∞}

for x ∈ g, which shows that the information encoded in Iπ is precisely the lower
bounds of the spectra of the operators idπ(x).

We call π bounded if Iπ is equicontinuous and semi-bounded if Iπ has a weaker
property which we call semi-equicontinuity, i.e., its semipolar set

Ĩπ := {x ∈ g : inf〈Iπ , x〉 ≥ −1}

has interior points. The semiboundedness condition implies in particular that the
convex cone of all elements in g for which the spectrum of idπ(x) is bounded from
below has interior points. This leads to an invariant open convex cone in the Lie
algebra g.

The following characterization of bounded representations makes this condition
more accessible.

Theorem 1. ([Ne09]) For a smooth representation (π,H) of G the following are
equivalent:

(a) π is bounded.
(b) H∞ = H and dπ : g → B(H) is a continuous morphism of topological Lie

algebras.
(c) π : G→ U(H) is smooth as a map from the Lie group G to the Banach–Lie

group U(H).

One can show that each semi-equicontinuous set is in particular locally compact
with respect to the weak-∗-topology. For abelian groups, this leads to the following
spectral theorem ([Ne09]):

Theorem 2. If G = (E,+) is the additive group of a locally convex space E
and (π,H) is a semibounded unitary representation of G, then there exists a Borel
spectral measure P on the locally compact space Iπ with

π(v) =

∫

Iπ

eiα(v) dP (α).

If, conversely, C ⊆ E′ is a convex closed semi-equicontinuous subset and P is
a B(H)-valued Borel spectral measure on C, then

π(v) :=

∫

C

eiα(v) dP (α)

defines a semibounded unitary representation of G with Iπ ⊆ C.

In general it is hard to determine the momentum set Iπ in concrete terms.
However, if the representation (π,H) can be realized in a space of holomorphic
functions on a complex manifold or, more generally, a space of holomorphic sections
of a line bundle, then we have the following variant of [Ne09, Thm. 2.7].
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Theorem 3. Let G be a Fréchet–Lie group acting smoothly by holomorphic maps
on the complex manifold M and (π,H) be a semibounded representation of G for
which there exists a G-equivariant holomorphic map η : M → P(H∞) whose image

spans a dense subspace of H. If, for each x ∈ Ĩ0
π, the action (t,m) 7→ expG(tx)m

of R on M extends to a holomorphic action of the upper half plane C+, then

Iπ = conv(Φπ(η(M))).

The preceding theorem is of particular interest for the case where G acts tran-
sitively on M because in this case Oπ := Φπ(η(M)) is a coadjoint orbit in g′.

For finite-dimensional groups, the semi-bounded representations are precisely
the unitary highest weight representations and only groups with compact Lie al-
gebras have bounded representations (cf. [Ne00]).

For infinite-dimensional groups, the picture is much more colorful. There are
many interesting bounded representations, in particular all those coming from
representations of C∗-algebras, and most of the unitary representations appearing
in physics are semibounded (cf. [PS86] for the case of affine Kac–Moody groups,
where semiboundedness is equivalent to the positive energy condition).

Representations of a C∗-algebra A are called physically equivalent if they lead
to the same momentum set of the unitary group U(A). This property is equivalent
to having the same kernel.

Complex analysis, resp., geometry shows up in this theory in many ways. First
of all, representations in spaces of holomorphic vector bundles provide natural
sources of semibounded representations for which the momentum set can often be
described as the closed convex hull of a single coadjoint orbit, carrying a compatible
Kähler structure (cf. Theorem 3; [Ne00b]). This is in particular the case for all
irreducible representations of C∗-algebras (cf. [Ne02]). Furthermore, the spectral
bounds permit us to use holomorphic extensions of one-parameter groups, which in
many cases combine to holomorphic representations of complex semigroups, such
as the compression semigroups of symmetric Hilbert domains ([Ne01]). Presently,
we are interested in convexity properties of the coadjoint representation of a Lie
group G on the dual space g′ which are necessary to understand the geometry
of the momentum sets of unitary representations (cf. [Ne98] for applications of
similar methods to some classes of bounded representations).
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Normal Extensions via Quaternionic Cayley Transforms

Florian-Horia Vasilescu

The classical Cayley transform κ(t) = (t − i)(t + i)−1, t ∈ R, can be extended
to more general situations, as for instance that of (not necessarily bounded) sym-
metric operators in Hilbert spaces, which yields a homonymic transform due to
von Neumann (see, for instance, [3]). A Cayley type transform may be actually
defined for larger classes of operators, which are no longer symmetric, as well as
for other objects, in particular for some linear relations (see, for example, [2]).

In order to find a formula of this type, valid for (generally unbounded) normal
operators, one is leaded to consider a quaternionic framework, as made in [6]. If we
slightly modify the basic definitions from [6], we get (in a simpler way) the prop-
erties of the quaternionic Cayley transform directly from those of von Neumann’s
Cayley transform, and refine some results from the quoted work. Moreover, this
new construction does not require densely defined operators, and it applies to
larger classes of operators.

Characterizations of those Hilbert space (bounded) operators having normal
extensions are well known (results going back to Halmos and Bram). The corre-
sponding problem, stated for unbounded operators (see, for instance, [4]), is more
intricate (see [1], [5], [6], etc.). In fact, the main motivation of the introduction of
the quaternionic Cayley transform in [6] was precisely to try to give an answer to
this extension problem, with applications to some moment problems. Unlike in [1]
and [5], we use the quaternionic Cayley transform to obtain normal extensions in
a given Hilbert space. Moreover, we do not require the invariance of the domain
of definition under the given operator, and get results for both densely defined
operators and not necessarily densely defined ones.

Let H be a complex Hilbert space and let D(T ), N(T ), R(T ) be the domain,
the null-space and the range of a linear operator T in H, respectively

If I is the identity on H, we set on H2 = H⊕H the operator matrices

I =

(

I 0
0 I

)

, J =

(

I 0
0 −I

)

, K =

(

0 I
−I 0

)

, L =

(

0 I
I 0

)

,

and E = iJ,F = iL. We have the relations
J∗ = J, K∗ = −K, L∗ = L, J2 = −K2 = L2 = I,JK = L = −KJ, KL = J =

−LK, JL = K = −LJ,E∗ = −E, E2 = −I, F∗ = −F, F2 = −I.
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Let S : D(S) ⊂ H2 7→ H2 be such that JS is symmetric. We may correctly
define the operator V : R(S+E) 7→ R(S−E), V (S+E)x = (S−E)x, x ∈ D(S),
which is a partial isometry. In other words, V = (S − E)(S + E)−1, defined on
D(V ) = R(S + E).

The operator V will be called the E–Cayley transform of S.
Similarly, we may define an F–Cayley transform of S.
Because the two Cayley transforms are alike, we mainly deal with the E–Cayley

transform.

Let V : D(V ) ⊂ H2 7→ H2 be a partial isometry. Then the inverse V −1

is defined on the subspace D(V −1) = R(V ). Now, suppose that the operator
I − V is injective. Then the operator S : R(E(V − I)) 7→ H2, given by S(E(V −
I)x) = (V + I)x, x ∈ D(V ), is well defined and will be called the inverse E–Cayley
transform of the partial isometry V . In other words, S = (I + V )(I − V )−1E on
D(S) = ER(I− V ).

We may define, in a similar way, the inverse F–Cayley transform, having similar
properties.

Let SIC(H2) the set of those operators T : D(T ) ⊂ H2 7→ H2 with the proper-
ties (i) JD(T ) ⊂ D(T ) and KD(T ) ⊂ D(T ); (ii) JT is symmetric; (iii) TK = KT ;
(iv) ‖TJx‖2 = ‖Tx‖2 for all x ∈ D(T ).

Let also PC(H2) be the set of those partial isometries V : D(V ) ⊂ H2 7→ H2

such that (a) V −1 = −KVK; (b) I − V is injective; (c) ER(I − V ) = R(I − V )
and (I − V )−1E(I− V ) is an isometry on D(V ).

It can be shown that the E–Cayley transform is a bijective map from SIC(H2)
onto PC(H2).

If U(H2) is the set of all unitaries in H2, we put UC(H2) = {U ∈ U(H2);U∗ =
−KUK, N(I−U) = {0}, (U+U∗)E = E(U+U∗)}, that is, those unitary operators
whose inverse E–Cayley transform is a normal operator. Therefore, if NIC(H2) =
{S : D(S) ⊂ H2 → H)2;S normal, (JS)∗ = JS, KS = SK}, then the map
NIC(H2) ∋ S 7→ (S − E)(S + E)−1 ∈ UC(H2) is bijective.

The question concerning the existence of an extension S ∈ NIC(H2) of an
operator T ∈ SIC(H2) is equivalent to the description of those partial isometries
in PC(H2) having extensions in the family UC(H2).

Theorem. Let T ∈ SIC(H2) be densely defined. The operator T has an ex-
tension in NIC(H2) if and only if there exists a W ∈ PC(H2), with D(W ) =
R(T + E)⊥.

For not necessarily densely defined operators we have:

Corolary. Let T ∈ SIC(H2) be closed and let V be the E–Cayley transform of
T . The operator T has an extension in NIC(H2) if and only if there exists a W ∈
PC(H2), with the properties D(W ) = R(T +E)⊥ and R(I−V )∩R(I−W ) = {0}.
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Let us finally remark that if A,B is a pair of symmetric operators having a joint

domain of definition in H, setting T =

(

A B
−B A

)

, we can explicitly describe the

membership T ∈ SIC(H2), which leads to a characterization of the existence of a
normal extension of A+ iB, via the previous results.
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Extremals for the families of commuting spherical contractions and
their adjoints.

Stefan Richter

(joint work with Carl Sundberg)

It is fair to say that the Sz. Nagy dilation theorem is of central importance for
the theory of contraction operators on Hilbert spaces. One version of this theorem
states that every contraction on a Hilbert space can be extended to a co-isometric
operator acting on a larger Hilbert space. Because of the known structure of the
co-isometric operators, this means that one can use the function theory of the
Hardy space of the unit disc to study arbitrary contractions.

Partial extensions of Sz. Nagy’s theorem are available for the study of tuples of
operators. The best known result is Ando’s theorem which says that for any pair of
commuting contraction operators S and T acting on a Hilbert space H, there is a
pair U, V of commuting co-isometric operators acting on a larger space K ⊇ H such
that U extends S and V extends T , [2]. It is also known that a direct analogue of
Ando’s theorem fails for three or more commuting contractions. Ando’s theorem
relates the study of commuting contractions to function theory on the bidisc, while
it remains an open problem to find an effective model for three or more commuting
contractions. The spherical contractions and the row contractions are collections
of operator tuples which have been studied recently and which can be associated
with function theory in the unit ball of Cd. A convenient way to approach many
such theorems is through J. Agler’s model theory (see [1]). In this note we will
present some examples of this model theory for the multivariable context.

The following definition is from [1]. We will assume that all our Hilbert spaces
are separable.
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Definition 1. Let d ≥ 1. A family F is a collection of d-tuples T = (T1, .., Td) of
Hilbert space operators, Ti ∈ B(H), such that:

(a) F is bounded, i.e. there exists c > 0 such that for all T = (T1, .., Td) ∈ F
we have ‖Ti‖ ≤ c for all i = 1, ..., d,

(b) F is preserved under restrictions to invariant subspaces, i.e. whenever T ∈ F
and M ⊆ H such that TiM ⊆ M for all i, then T |M ∈ F ,

(c) F is preserved under direct sums, i.e. whenever Tn ∈ F is a sequence of
tuples, then ⊕nTn ∈ F ,

(d) F is preserved under unital * -representations, i.e. if π : B(H) → B(K)
is a *-homomorphism with π(I) = I and if T = (T1, .., Td) ∈ F , then π(T ) =
(π(T1), .., π(Td)) ∈ F .

For d = 1 some examples are given by the families of contractions, isometries,
subnormal contractions, and hyponormal contractions. For d > 1 we will be
interested only in families which consist of commuting tuples of operators. The
family of commuting contractions has already been mentioned. The spherical
contractions F are those commuting d-tuples T = (T1, .., Td) of Hilbert space

operators satisfying
∑d

j=1 T
∗
j Tj ≤ I. The collection of adjoint tuples F∗ consists

of the row contractions. They satisfy ‖
∑d
j=1 Tjxj‖

2 ≤
∑d

j=1 ‖xj‖
2 for all x1, ..., xd

in the Hilbert space. It is easy to check that both F and F∗ form a family. An
example of a row contraction is the d-shift Mz = (Mz1 , ...,Mzd

) acting on the
Drury-Arveson space H2

d . A tuple U = (U1, ..., Ud) of commuting operators is

called a spherical unitary, if
∑d

i=1 U
∗
i Ui = I, and if each Ui is a normal operator.

Suppose T is an operator tuple acting on a Hilbert space H and R is a tuple
acting on K. We will write R ≥ T , if R is an extension of T , i.e. if H ⊆ K is a
subspace which is invariant for each Ri, and if Ti = Ri|H for all i.

Definition 2. Let G be a family. An operator tuple T ∈ G acting on H is called
an extremal for G, if and only if whenever R ∈ G satisfies R ≥ T , then H reduces
R, i.e. if and only if the only way to extend T to a tuple R ∈ G is by taking direct
sums.

We shall write ext G for the extremals of the family G. It is a theorem of J.
Agler that every operator tuple in a family can be extended to an extremal [1]
(also see [4]).

Thus it is an important question to identify the extremals of families of interest.
We note that it is easy to see that the extremals for the family of contractions
are the co-isometric operators, the extremals for the isometric operators are the
unitary operators, and the extremals for the subnormal contractions are the normal
contractions. It is unknown what the extremals for the hyponormal contractions
are.

Next we discuss some examples for d > 1. Ando’s theorem can be used to
show that the pairs of two commuting co-isometric operators are extremal for
the pairs of commuting contractions, and it is an open problem to identify the
extremals for the d-tuples of commuting contractions if d > 2. On the other hand
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the extremals for the family of commuting isometries are easily identified as the
tuples of commuting unitary operators.

Theorem 1. Let F be the family of commuting spherical contractions, and let
T = (T1, .., Td) be a commuting operator tuple.

Then the following are equivalent:

(1) T ∈ ext F
(2) T = S∗⊕U , where U is spherical unitary and S is a direct sum of d-shifts,

(3) (a)
∑d

i=1 T
∗
i Ti = P = a projection,

(b)
∑d

i=1 TiT
∗
i ≥ I,

(c) If x1, .., xd ∈ H with Tixj = Tjxi, then there is an x ∈ H with
xi = Tix for all i.

Note that (3c) says that the Koszul complex for T is exact at the second stage.
The resulting extension theorem (i.e. that any R ∈ F has an extension T of the
type as in (2)) had been known and is due to Müller-Vasilescu [5] and to Arveson
[3].

For the family of row contractions we have partial results.

Theorem 2. Let F∗ be the family of commuting row contractions. Let T ∈ F∗

and write D∗ = (I −
∑d

i=1 TiT
∗
i )1/2.

(1) If D∗ = 0, then T ∈ ext F∗.
(2) If D∗ is onto, then T /∈ ext F∗.
(3) If D∗ is a projection, then T /∈ ext F∗ if and only if there are x1, .., xd ∈

ran D∗ with
∑d

i=1 ‖xi‖
2 > 0 and Tixj = Tjxi for all i, j.

(4) If D∗ has rank one, i.e. if D∗ = u ⊗ u for some u 6= 0, then T ∈ ext F∗ if
and only if dim span {u, T1u, .., Tdu} ≥ 3.

If d = 1, then part (1) of Theorem 2 describes all extremals (the co-isometric
operators). For d > 1 the d-shift is an example of an extremal with D∗ 6= 0. For
the d-shift one verifies that D∗ is a projection of rank 1, so its extremality can be
derived either from part (3) or part (4) of Theorem 2.

If S = (Mz, H
2
d) is the d-shift, and if M $ H2

d is invariant for S, then T =
PM⊥S|M⊥ ∈ F∗ and D∗ has rank 1. Because of this one can use Theorem 2 to
verify the following Corollary.

Corollary 3. If M 6= H2
d is an invariant subspace for the d-shift S = (Mz, H

2
d),

and if L = {a+
∑d

i=1 bizi : a, b1, .., bd ∈ C} denotes the collection of polynomials
of degree less than or equal to one, then T = PM⊥S|M⊥ ∈ ext F∗ if and only if
dim M∩L < d− 1.

Corollary 3 implies that there are extremals T for F∗ whose defect operators
are not projections. In light of Theorem 1 one might consider this fact a little
surprising. In any case, it follows that part (3) of Theorem 2 does not cover all
extremals.
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Bounded Analytic Projections and the Corona Problem

Brett D. Wick

(joint work with Sergei Treil)

The main results in this talk originally appeared in the paper [7] by the authors.
The Operator Corona Problem is to find a (preferably local) necessary and

sufficient condition for a bounded operator-valued function F ∈ H∞
E∗→E to have a

left inverse in H∞
E∗→E , i.e., a function G ∈ H∞

E→E∗
such that

(B) G(z)F (z) ≡ I ∀z ∈ D.

In the literature, such equations are sometimes called Bezout equations, and “B”
here is for Bezout. The simplest necessary condition for (B) is

(C) F ∗(z)F (z) ≥ δ2I, ∀z ∈ D (δ > 0)

(the tag “C” is for Carleson). If condition (C) implies (B), we say that the
Operator Corona Theorem holds. In the particular case when F is a column
F = (f1, f2, . . . , fn)

T the Operator Corona Theorem is just the classical Carleson
Corona Theorem.

The Operator Corona Theorem plays an important role in different areas of
analysis; in particular, in Operator Theory (angles between invariant subspaces,
unconditionally convergent spectral decompositions, see [1, 2, 5]) as well as in
Control Theory and other applications.

The main motivation is that in the matrix case, all the information about the
Corona Problem is encoded in the analytic family of subspaces (a holomorphic
vector bundle) RanF (z), z ∈ D. So, a natural question arises: Is it possible to
characterize condition (C) (or (B)) in purely geometric terms, i.e., in terms of the
family of subspaces RanF (z), z ∈ D? It turns out that the answer is “yes”, and
such a characterization is given below.

The following surprising lemma of N. Nikolski provides the connection between
the Corona Problem for F and the family of subspaces RanF (z). Let Ω be a
domain in Cn (in fact we can let Ω be a manifold).

Lemma 4 (Nikolski’s Lemma). Let F ∈ H∞
E∗→E(Ω) satisfy

F ∗(z)F (z) ≥ δ2I, ∀z ∈ Ω.
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Then F is left invertible in H∞
E∗→E(Ω) (i.e., there exists G ∈ H∞

E→E∗
(Ω) such that

GF ≡ I) if and only if there exists a function P ∈ H∞
E→E(Ω) whose values are

projections (not necessarily orthogonal) onto F (z)E for all z ∈ Ω.
Moreover, if such an analytic projection P exists, one can find a left inverse

G ∈ H∞
E→E∗

(Ω) satisfying ‖G‖∞ ≤ δ−1‖P‖∞.

Instead of considering families of subspaces, we consider more “analytic” ob-
jects; namely, the families of orthogonal projections Π(z) onto these subspaces.
The function Π(z) is not analytic, except in the trivial case of a constant function.
The fact the family of subspaces Ran Π(z) is an analytic family (a holomorphic
vector bundle) is expressed by the identity Π∂Π = 0.

Let us now list the main results. Here ∆ is the “normalized” Laplacian, ∆ :=

∂∂ = 1
4

(

∂2

∂x2 + ∂2

∂y2

)

.

Theorem 5 (Main Result). Let Π : D → B(E) be a C2 function whose values
are orthogonal projections in E satisfying Π∂Π = 0. Assume that there exists a
bounded non-negative subharmonic function ϕ such that

(1) ∆ϕ(z) ≥ |∂Π(z)|2 ∀z ∈ D.

Then there exists a bounded analytic projection onto Ran Π(z), i.e., a function
P ∈ H∞

E→E such that P(z) is a projection onto RanΠ(z) for all z ∈ D.
Moreover, if 0 ≤ ϕ(z) ≤ K for all z ∈ D, then one can find P satisfying

‖P‖∞ ≤ 1 + 2
√

(KeK+1 + 1)KeK+1.

We note that, if there is a bounded analytic projection, both dimRan Π(z) and
codimRanΠ(z) are constant for all z ∈ D. One of the main corollaries of the
above results is the following theorem.

Theorem 6 (Operator Corona Theorem). Let F ∈ H∞
E∗→E satisfy the Corona

Condition F ∗F ≥ δ2I. Assume also that the orthogonal projections Π(z) onto
RanF (z) satisfy assumption (1) of Theorem 5. Then F has a holomorphic left
inverse G ∈ H∞

E→E∗
.

Moreover, if the function ϕ from condition (1) satisfies

0 ≤ ϕ(z) ≤ K ∀z ∈ D,

then one can find the left inverse G satisfying

‖G‖∞ ≤ δ̃−1

(

1 + 2
√

(KeK+1 + 1)KeK+1

)

,

where δ̃ := essinf{|F (z)e| : z ∈ T, e ∈ E∗, |e| = 1}.

Theorem 6 with δ instead of δ̃ in the estimate of ‖G‖∞ is an immediate corollary

of Lemma 4 and Theorem 5. The estimate with δ̃ requires slightly more analysis.
If F ∈ H∞

E∗→E satisfies F ∗F ≥ δ2I and dimE∗ < ∞, an easy computation
shows that the orthogonal projection Π(z) satisfies condition (1). Therefore, the
Operator Corona Theorem in the case dimE∗ < ∞ follows immediately from
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Theorem 6. However, this result has been known for a long time as the Fuhrmann–
Vasyunin Theorem, see [3]; see also [4] or [6] for the modern treatment with better
estimates.

More genreally, the following proposition shows that in the case of finite dimen-
sion, or finite codimension, the above condition (1) of Theorem 5 is necessary, and
so this presents no real restriction.

Proposition 7. Suppose there exists a bounded analytic projection P(z) onto
Ran Π(z), z ∈ D. Assume also that either dimRan Π(z) < ∞ or
codimRanΠ(z) <∞. Then condition (1) of Theorem 5 holds.

Probably the most important new and non-trivial corollary in this direction is
the following theorem, solving the operator Corona Problem in the case of finite
codimension.

Theorem 8 (Finite Codimension Operator Corona Problem). Let F ∈ H∞
E∗→E

satisfy the Corona Condition F ∗F ≥ δ2I, and let codimRanF (z) < ∞. Then F
has a bounded analytic left inverse if and only if the orthogonal projections Π(z)
onto RanF (z) satisfy assumption (1) of Theorem 5.
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Complex geometry and reducing subspace

Ronald G. Douglas

Specific questions about concrete operators often reveal unexpected connections
between operator theory and other parts of mathematics. Such is the case in
studying the reducing subspaces for the Toeplitz-like operator MB defined to be
multiplicative by B on the Bergman space L2

a(D) for a finite Blaschke product B.
In joint work with S. Sun and D. Zheng, the structure of the reducing subspaces is
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shown to be intimately connected with that of the “Riemann surface” RB for the
rational function B(z)−B(w) or for the factorization of the numerator P (z, w) of
B(z) −B(w) after the denominators are cleared.

If one considers the Toeplitz operator TB on the Hardy space H2(D) instead,
one knows it is unitarily equivalent to Tz ⊗ ICN , where N is the number of zeros
of B(z) counting multiplicity. The analogous result is not valid for MB although
it is now known that MB and Mz ⊗ ICN are similar.

A straightforward argument shows that M∗
B is in the BN(D) class, introduced by

M. Cowen and this researcher about thirty years ago, and hence defines a hermitian
holomorphic, rank N vector bundle EB over D. (Here we use the dual bundle
which is holomorphic.) As a result one knows that operators in the commutant
of MB can be expressed in terms of bundle maps. Equivalently, if one specifies a
holomorphic frame for EB over some open subset U of D, an operator X in the
commutant is determined by an N × N matrix of holomorphic functions on U .
One way to obtain such a local frame is in terms of the local inverses introduced
in this area by J. Thomson for the Riemann surface RB.

Operators that doubly commute with MB have a simpler structure and, in
particular, unitaries that commute with MB are determined by a unit vector in
CN , where components corresponding to “disks in the stack” describing RB, which
can be connected by analytic continuation, are equal. As a result one shows that
the dimension of the algebra AB of operators on L2

a(D) that doubly commute with
MB has dimension less than or equal to q, the number of connected components
of RB. The argument involving the unit vectors shows that the dimension of AB
is no greater than q. One also defines a set of q operators in AB which are linearly
independent to complete the proof of this main result.

A much stronger relation between MB and RB is suggested by the proofs. In
particular, the local inverses define a metric on RB which enables one to define a
Bergman space on RB, which we’ll call L2

a(RB). Bounded holomorphic functions
of B can be seen to act on this space. One would like to show that MB on
L2
a(RB) and MB on L2

a(D) are unitarily equivalent but the natural proof doesn’t
quite work. A more specific unresolved question concerns the structure of AB. In
particular, is AB commutative and what is the multiplicities of its representation
on L2

a(D). Finally, how does the action of the Galois group for the polynomial
P (z, w) determined by B(z) − B(w) relate to the covering group of AB and the
algebra AB?
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Projective spectrum in Banach algebras

Rongwei Yang

For a collection of n elements in a unital algebra B over C, how they interact
with each other is an important subject of multivariable operator theory. If the
n elements are commutative, then joint spectrum is a well-established good mea-
surement and has been an important topic in multivariable operator theory (Curto
[Cu], Hörmander [Hö] Ch3, Taylor [Ta], Vasilescu [Va]). Study of non-commuting
cases, on the other hand, is relatively insufficient. In this talk we introduce a
simple spectrum, namely projective spectrum, for tuples of elements (commuting
or non-commuting), and report on some of its properties.

The classical spectrum σ(A) of an element A in B is defined through the invert-
ibility of A− λI. In a certain sense σ(A) can be viewed as a measurement of how
A = (A1, A2, ..., An) interacts with the unit I. The idea of projective spectrum
is to set I free, and consider the invertibility of z1A1 +z2A2, or more generally, the
invertibility of A(z) := z1A1+z2A2+ · · ·+znAn. This is a measurement of how the
elements interact with each other. In literature, A(z) is called a multiparameter
pencil for the tuple A. The invertibility of A(z) has been studied in various fields,
most notably in Differential Equations (cf. [At]). Unlike classical notions of joint
spectra, projective spectrum is valid for all tuples, not just commutative ones.
This talk will report on some general properties of projective spectrum. Results
reported in this paper are preliminary, but they serve the purpose of establishing
connections with some other branches of mathematics.

Geometric properties of projective spectrum. When B is the matrix algebra
Mk(C), projective spectrums are degree k projective hypersurfaces. When A is
a commutative tuple, its projective spectrum is a union of hyperplanes. The
main result in this direction is regarding the complement of projective spectrum
Cn \ P (A)(which we shall call projective resolvent set) — when B is of certain
type, for instance C∗, the complement is made of domains of holomorphy.

Topology of P c(A). Since the tuple A in general is of infinite dimensional na-
ture, its projective resolvent can be very complicated. Nonetheless, with the aid of
the Maurer-Cartan type form A−1(z)dA(z) and multilinear functionals on B, we
can establish a Chern-Weil type homomorphism (cf. [Ch]) from the algebra of in-
variant multilinear functionals to the de Rham cohomology algebraH∗

d (P
c(A), C).

Many example will be given in this talk.
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Residue currents with prescribed annihilator ideals and applications
to algebraic geometry

Mats Andersson

Let O be the sheaf of holomorphic functions (on a complex manifold) and let
J be a coherent ideal sheaf. Together with E Wulcan we introduced a couple
of years ago in [2] a residue current RJ with the property that its annihilator
sheaf is precisely J . The current is obtained from a free resolution of O/J and
it is essentially unique. One can consider R as an analytic representation of the
ideal J , and it is explicit enough to admit a transformation of various geometric
and algebraic questions into analytic considerations. To exemplify the utility we
present an analytic proof, see [1], of (a partly sharpened version of) a Briançon-
Skoda type theorem due to Huneke -92.

Let now O = O0 be the local ring of holomorphic functions at 0 ∈ Cd and
let (a) = (a1, . . . , am) be an ideal in O. Notice that |a| =

∑

|aj | essentially only
depends on the ideal. The classical Briançon-Skoda theorem, [4], is:

If |φ| ≤ C|a|µ+ℓ−1, then φ ∈ (a)ℓ, where µ = min(m, d).

It can be reformulated algebraically as the inclusion (a)µ+ℓ−1 ⊂ (a)ℓ where
the bar means integral closure. This theorem was first proved by L2 methods
-74, and only after several years algebraic proofs were obtained, [7] and [6]. In
-94, in [3], a proof based on multivariable residue calculus appeared. Such a
proof can be described in the following way: Given the ideal (a) one forms a
certain residue current Ra of Bochner-Martinelli type. It turns out that if the
holomorphic function φ annihilates Ra, i.e., φRa = 0, then φ ∈ (a). This can be
done by solving a sequence of ∂̄-equations or by an explicit integral representation
of the membership. One then verifies that the hypothesis in the theorem indeed
implies that φRa = 0.

If instead O = OZ,x is the local ring at a (non-regular) point x on an analytic
space Z, then the Briançon-Skoda theorem is not true with µ = min(m,n) in
general even if m = 1. However, Huneke, [5], proved in -92 algebraically that
there is a number µ such that the statement holds uniformly in (a) and ℓ. Assume
that Z is embedded in Cn and let J be the radical ideal associated to Z so
that OZ = O/J . If then RJ is the current mentioned above, one can form the
“product” Ra∧RJ and prove that φ ∈ (a)+J , i.e., φ ∈ (a) in OZ , if φRa∧RJ = 0.
Finally one confirms that if µ is large enough the hypothesis implies that indeed
φRa∧RJ = 0. The number µ so obtained is directly related to the complexity of
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the free resolution and thus an invariant of the ring O. We also prove that if (a)
has “few” generators in relation to the complexity of the singularities of Z in a
certain way, then the statement holds with the same µ as in the regular case, see
[1].
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Noetherian modules of Hilbert modules

Xiang Fang

0. Introduction

For a tuple of a commuting operators T = (T1, · · · , Tn) acting on a separable
Hilbert space H , there is an immediate algebraic framework of Douglas-Paulsen
[2] to put the study of commuting operator tuples in a ring-module setting. There
they consider general rings of function algebras. The simplest case is probably to
let A = C[z1, · · · , zn] be the polynomial ring in n complex variables. Then H is
endowed with an A-module structure by

(p(z1, · · · , zn), h) ∈ A×H → p(T1, · · · , Tn)h ∈ H.

A difficulty in the study of Hilbert modules is that the module H is essentially
never Noetherian, that is, not finitely generated as a module over A, hence hard
to apply fruitful machineries in commutative algebra.

The purpose of this note is to summarize a few ways to define Noetherian
modules related to a Hilbert module. In particular, for any point λ ∈ ρF (T ) in
the Fredholm domain of the tuple T , one can define (2n + 3) finitely generated
modules over Noetherian rings.

For the rest of this note we assume λ = 0 ∈ ρF (T ) = σ(T ) \ σe(T ).
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1. The graded module

The first one we present here is the graded module first considered by Douglas-
Yan [3]. We consider the polynomial ring A as a graded ring, graded naturally
according to the degrees of homogeneous polynomials. Let I = (z1, · · · , zn) be the
maximal ideal at the origin. Then one define a graded module gr(H) by

gr(H) = (H/IH) ⊕ (IH/I2H) ⊕ · · · ⊕ (Ik−1H/IkH) ⊕ · · · .

Note that the above direct sum is taken in an algebraic sense, so for each element
only finite many components are non-zero.

Since the ring A, regarded as a graded ring, is the coordinate ring of the tangent
space at the origin, we can consider the module gr(H) is, in a sense, representing
the tangent space of the Hilbert module at the origin.

2. At the sheaf level

The second module H we will talk about is indeed the stalk of the sheaf model
H̃ of the tuple T at the origin. The sheaf model is thoroughly explored in the
monograph of Eschmeier-Putinar. The sheaf H̃ under consideration is a coherent
analytic sheaf on the Fredholm domain of T . According to a result of Markoe, H
is finitely generated over the Noetherian ring O0.

Recall that the sheaf model is defined as

O(H)/(z − T )O(H).

We observe that it can be regarded as the nth homology group of the Koszul
complex of (z − T ) on O(H), hence it is reasonable to define homological version
of the sheaf model.

Definition We call the ith homology sheaf H̃i of the Koszul complex of (z − T )

on O(H) to be the ith homological sheaf model of T . In particular, H = H̃n,0.

Then we have (n + 1) many Noetherian modules H̃i,0 by looking at the stalks of

the sheaves H̃i, i = 0, 1, · · · , n.

3. I-adic modules

Inspired by the Grothendieck’s local cohomology theory we also define

Ĥi = inj limHi(T
k
1 , · · · , T

k
n ),

the injective limit of Koszul homology of powers of T . Then Ĥi is a finitely
generated module over the Noetherian ring of power series C[[z1, · · · , zn]] for each
i = 0, 1, · · · , n.

In general it is easier for things to be equal when taking I-adic completion. For
instance, one can look at the theorem of formal schemes in algebraic geometry.
We conjecture that



Hilbert Modules and Complex Geometry 1077

Conjecture: The I-adic completion of H̃i,0 is equal to Ĥi for each i.

This conjecture has recently been affirmatively verified by J. Eschmeier.

4. Hilbert polynomials and neighborhoods

Lastly we observe that H̃0 represent a neighborhood of the Hilbert module in a
small neighborhood of the origin and Ĥ0 in an even smaller neighborhood of the
origin. When considering their tangent spaces by the graded module construction
as considered by Douglas-Yan in [3], one should end up with the same object.

This suggests that the Hilbert polynomials of H , H̃0, and Ĥ0 should be the same,
which is indeed true.
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Samuel multiplicity and Fredholm theory

Jörg Eschmeier

A commuting tuple T = (T1, . . . , Tn) ∈ L(X)n of bounded operators on a complex
Banach space X is Fredholm if all the cohomology groups Hp(T,X) (p = 0, . . . , n)
of its Koszul complex K•(T,X) are finite dimensional. The Fredholm index of T
is defined as the Euler characteristic

ind(T ) =
n

∑

p=0

(−1)p dimHp(T,X).

It is well known that the essential resolvent set ρe(T ), that is, the set of all points
z ∈ Cn such that z − T is Fredholm, is open and that the index of z − T is
locally constant on ρe(T ), while the individual dimensions of the cohomology
groups Hp(z − T,X) are only upper semicontinuous as functions in z. The dis-
continuity points of these functions form proper analytic subsets of ρe(T ) (see
[3]). The observation that T is Fredholm if and only if all cohomology sheaves
Hp = Hp(z − T,OX

Cn) of the induced Koszul complex of Banach-free analytic
sheaves are coherent near 0 ∈ Cn allows the application of methods from complex
analytic geometry. For instance, the Fredholm spectrum σ(T ) ∩ ρe(T ) of T is an
analytic subset of the essential resolvent set, since it is the support of the direct
sum of the coherent sheaves Hp|ρe(T ).

Suppose that T is Fredholm. Then the stalks of the cohomology sheaves Hp

at z = 0 are finitely generated modules over the Noetherian local ring O0 of all
convergent power series at the origin. Hence there are rational polyomials qp in
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one variable of degree ≤ n, the Hilbert-Samuel polynomials of Hp
0 with respect to

the maximal ideal m = (z1, . . . , zn) ⊂ O0, such that

dim(Hp
0/m

kHp
0) = qp(k)

for sufficiently large k. The limits

e(z,Hp
0) = n! lim

k→∞
dim(Hp

0/m
kHp

0)/k
n

define natural numbers which are called the multiplicities of z on Hp
0 (see Chapter

7 in [6]).
Using the fact that the Koszul complex K•(z − T,X) is quasi-isomorphic to

an analytically parametrized complex L• = (up(z), Lp)np=0 of finite-dimensional
vector spaces on a small zero neighbourhood, and by applying a suitable base
change theorem, one obtains vector-space isomorphisms

Hp(T k, X) ∼= Hp(z − T,OX
0 /(z

k)OX
0 ) ∼= Hp(u•,OL•

0 /(zk)OL•

0 )

for p = 0, . . . , n and k ≥ 1 (Corollary 1.3 and Lemma 2.1 in [1]).
By Lech’s limit formula the multiplicities e(z,Hp

0) can also be computed as

e(z,Hp
0) = lim

k→∞
dim

(

Hp(u•,OL•

0 )/(zk)Hp(u•,OL•

0 )
)

/kn.

A variant of a comparison theorem due to Grothendieck (Theorem 2.2 in [1] and
Theorem 1.2 in [2]) and the observation that the multiplicities e(z,Hp

0) calculate
the rank of the coherent sheaves Hp at z = 0, allow one to deduce that, for each
connected open neighbourhood U ⊂ ρe(T ) of 0 ∈ Cn and each p = 0, . . . , n, there
is a proper analytic subset Sp ⊂ U such that the limit formula

dimHp(z − T,X) = lim
k→∞

dimHp(T k, X)

kn
< dimHp(w − T,X)

holds for z ∈ U \Sp and w ∈ Sp (Theorem 2.4 in [1]). In this sense the above limits
calculate the generic values of the cohomology dimensions of the Koszul complex
of z − T near the origin z = 0.

A well-known result in commutative algebra says that, for an arbitrary Noe-
therian module E over a unital commutative ring R and an arbitrary n-tuple
x = (x1, . . . , xn) ∈ Rn, the vanishing conditions

lim
←−

k

Hp(xk, E) = 0 for p = 0, . . . , n− 1

hold. Here the inverse limit is formed over the cohomology modules of the Koszul
complexes K•(xk, E) of the powers xk = (xk1 , . . . , x

k
n). Suppose that, in addition,

the tuple x ∈ Rn is a multiplicity system on E, that is, the quotient module
E/Σni=1xiE has finite length. Then by a result of Kirby the cohomology modules
of xk satisfy the growth conditions

LR
(

Hp(xk, E)
)

= O(kp) as k → ∞

for p = 0, . . . , n.
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We use the above mentioned comparison theorem to show that, for a Fredholm
tuple T = (T1, . . . , Tn) ∈ L(X)n of commuting bounded operators on a complex
Banach space X , there are vector-space isomorphisms

lim
←−

k

Hp(T k, X) ∼= lim
←−

k

Hp(z − T,OX
0 )/(zk)Hp(z − T,OX

0 )

for p = 0, . . . , n. This answers a question posed by X. Fang in [5]. By Krull’s
intersection theorem and a suitable closed range theorem obtained in [4], for a
Fredholm tuple T ∈ L(X)n, the vanishing conditions

lim
←−

k

Hp(T k, X) = 0 for p = 0, . . . , n− 1

hold if and only if the tuple T satisfies a spectral property known as Bishop’s
property (β) locally at the origin z = 0. We show that, for a graded Fredholm tuple
T = (T1, . . . , Tn) ∈ L(H)n on a complex Hilbert space H , there exists a finitely
generated graded C[z]-module M such that the coordinate tuple z = (z1, . . . , zn)
is a multiplicity system on M and such that there are cohomology isomorphisms

Hp(zk,M) ∼= Hp(T k, H) (p = 0, . . . , n, k ≥ 1).

By applying the above mentioned results from commutative algebra, we obtain
that graded Fredholm tuples T ∈ L(H)n on Hilbert spaces possess Bishop’s prop-
erty (β) at z = 0 and that their powers T k satisfy the growth conditions

dimC H
p(T k, H) = O(kp) as k → ∞

for p = 0, . . . , n. If T ∈ L(H)n is graded with respect to the orthogonal decom-
position H = ⊕∞

k=0Hk (but not necessarily Fredholm), then by a classical result
of Hilbert, there is a polynomial q ∈ Q[x] of degree at most n − 1 such that
dimHk = q(k) for sufficiently large k. We show that deg(q) + 1 is the dimension
of the inessential right spectrum of T at z = 0.
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Analytic continuation of Toeplitz operators

Jonathan Arazy

Let D be a Cartan domain of genus p in Cd. For any Wallach point ν ∈ W (D)
let Hν be the associated quasi-invariant Hilbert space of holomorphic functions on
D. If ν > p − 1 then Hν coincides with the weighted Bergman space L2

a(D,µν),
where µν is the associated quasi-invariant weighted probability measure on D. In
this case, one can define and study the Toeplitz operator with symbol ϕ ∈ L∞(D)

on L2
a(D,µν) in the usual way: T

(ν)
ϕ (f) := Pν(ϕf), where Pν : L2(D,µν) →

L2
a(D,µν) is the orthogonal projection.

We discuss the analytic continuation of the map ν 7→ T
(ν)
ϕ and present some

partial results. Generally speaking, for ν ≤ p − 1 the space Hν need not be
a Bergman space, and in most cases it is a Besov-type space. Hence, in order

that the operator T
(ν)
ϕ (obtained by analytic continuation) be bounded on Hν

one needs the boundedness of certain derivatives of the symbol ϕ in addition to
its boundedness. In the case where D is the open Euclidean unit ball in Cd the
analytic continuation is very explicit, since it is obtained by integration by parts
in the radial parameter.

Hankel operators and the Dixmier trace

Miroslav Englǐs

(joint work with K. Guo, R. Rochberg, G. Zhang)

Let A2(Ω) denote the Bergman space of all holomorphic functions in L2(Ω), where
Ω is a domain in Cn. The Toeplitz and the Hankel operator with symbol φ,
φ ∈ L∞(Ω), are defined by

Tf : A2(Ω) → A2(Ω), u 7→ P (fu);

Hf : A2(Ω) → L2(Ω) ⊖A2(Ω), u 7→ (I − P )(fu),

where P : L2(Ω) → A2(Ω) is the orthogonal (Bergman) projection.
For Ω = D, the unit disc in C, and f holomorphic, it was shown by Arazy,

Fisher, Janson and Peetre [1] that Hf belongs to the Schatten class Sp, 1 < p <∞,
if and only if f is in the diagonal Besov space Bp; while for 0 < p ≤ 1, Hf ∈ Sp only

if Hf = 0. Thus there is a cut-off at p = 1. Similarly, for Ω = Bn, the unit ball
of Cn, n ≥ 2, and f holomorphic, Hf ∈ Sp if and only if f ∈ Bp if 2n < p < ∞,
and Hf ∈ Sp if and only if Hf = 0 for 0 < p ≤ 2n; thus there is a cut-off cut-off
at p = 2n. The same result, with the cut-off again at p = 2n, turns out to hold
for any smoothly bounded strictly pseudoconvex domain Ω ⊂ Cn, n ≥ 2 (Li and
Luecking [8]).

The aim of this talk is to present a supplement to these results involving the
Dixmier ideal and the Dixmier trace.

Recall that a compact operator T on a Hilbert space belongs to the Schatten
class Sp if and only if

∑

j sj(T )p < ∞, where {sj(T )}∞j=0 are the eigenvalues of
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(T ∗T )1/2 (counting multiplicities) arranged in decreasing order. The Dixmier ideal
SDixm consists of all T such that

N
∑

j=1

sj(T ) = O(logN).

Equipped with the norm ‖T ‖Dixm := supN≥1
1

1+logN

∑N
j=1 sj(T ), SDixm becomes

a Banach space, lying strictly between S1 and any Sp, p > 1. Let ω : l∞ → C
be a Banach limit, i.e. a bounded linear functional on l∞ of norm 1 extending the
usual limit on the subspace c ⊂ l∞ of all convergent sequences. For any positive
operator A ∈ SDixm, the Dixmier trace of A ∈ SDixm is then defined as

Trω(A) := ω
( 1

1 + logn

n
∑

j=1

sj(A)
)

.

If ω satisfies a certain technical condition, then Trω(A+B) = Trω(A)+Trω(B), and
Trω can thus be unambiguously extended by linearity from the positive operators
to all of SDixm. The value of Trω(A) in general depends on the choice of ω; the
operator A is called measurable if Trω(A) is in fact the same for all ω. A good
source for further information on the Dixmier trace is the book of Connes [3].

Our first main result is the following.

Theorem 4. If f ∈ C∞(D), then

Trω(|Hf |) =

∫

T

|∂f | dσ,

where ∂ = 1
2 ( ∂
∂x + i ∂∂y ) for z = x + yi ∈ C, and dσ is the normalized arc-length

measure on the unit circle T. In particular, Hf is measurable.

To state the analogue of Theorem 4 for domains in higher dimension, we need to
review some notions from analysis of several complex variables. Recall that a real-
valued function Φ defined on a domain in Cn is called strictly-plurisubharmonic
(strictly-PSH for short) if for any z, v ∈ Cn, the function of one complex variable
t 7→ Φ(z + tv), t ∈ C, is strictly subharmonic where defined. A bounded domain
Ω ⊂ Cn with smooth boundary is called strictly pseudoconvex 1 if there exists a
function r, strictly-PSH in a neighbourhood of the closure of Ω, such that

r < 0 on Ω, and r = 0, ‖∇r‖ > 0 on ∂Ω.

(One calls r a strictly-PSH defining function for Ω.)
Consider the anti-holomorphic complex tangent space T ′′ to ∂Ω; its fiber T ′′

x at
a point x ∈ ∂Ω thus consists of all vectors X of the form X =

∑n
j=1Xj

∂
∂zj

, where

Xj ∈ C and
∑

j Xj
∂r
∂zj

(x) = 0. The Levi form is the Hermitian form L′′ on T ′′

defined by

L′′(X,Y ) :=

n
∑

j,k=1

∂2r

∂zk∂zj
XjY k.

1This is not the usual definition, but it will do for our purposes.
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It is a consequence of the strict pseudoconvexity that L′′ is positive definite (inde-
pendently of the choice of the defining function r). The boundary d-bar operator
∂b from C∞(Ω) into the space C∞(∂Ω, T ′′∗) of smoothly varying linear functionals
(forms) on T ′′ is defined by2

∂bf(X) := Xf.

(That is, ∂bf is the restriction of the differential df to T ′′.)
Recall finally that given any positive definite Hermitian form B on a vector

space V , there is a canonically defined dual form B∗ on the dual V ∗ of V . Namely,
for any φ ∈ V ∗, there exists unique vφ ∈ V (the predual of φ under B) such that

φ(·) = B(·, vφ).

The dual form is then defined as

B∗(φ, ψ) := B(vψ , vφ) = φ(vψ) = ψ(vφ).

In particular, applying this construction to the Levi form L′′ on T ′′, we have the
dual Levi form L on T ′′∗. For any functions f, g smooth on the closure Ω of Ω,
the expression L(∂bf, ∂bg) is thus a smooth function on the boundary ∂Ω.

Our second main result is as follows.

Theorem 5. Let Ω ⊂ Cn be smoothly bounded and strictly pseudoconvex. Then
for any 2n functions f1, g1, . . . , fn, gn ∈ C∞(Ω), the product of the corresponding
Hankel operators

H∗
f1Hg1 . . . H

∗
fn
Hgn

=: H

belongs to the Dixmier class, is measurable, and

Trω(H) =
1

n!(2π)n

∫

∂Ω

n
∏

j=1

L(∂bgj, ∂bfj) dµ,

where dµ := 1
2in (∂r − ∂r) ∧ (∂∂r)n−1.

For the special case of the unit ball Bn, this result was originally proved by the
speaker with K. Guo and G. Zhang in [4], using the so-called pseudo-Toeplitz op-
erators of Howe [7]. For the disc and the strictly pseudoconvex domains, however,
a different method was used in [5] and [6], respectively, based on the reduction
to the boundary and application of the theory, due to Boutet de Monvel and
Guillemin, of Toeplitz operators with pseudodifferential symbols [2]. For the disc,
the full power of the Boutet de Monvel-Guillemin machinery can in fact be avoided
by using the calculus of discrete or (periodic) pseudodifferential operators on the
circle, developed by several authors (see e.g. [9]).

2Again, ∂bf in fact depends only on the restriction of f to ∂Ω, so that ∂b can be defined as
an operator from C∞(∂Ω) into C∞(∂Ω,T ′′∗); but we will not need this refinement.
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Higher Order Hankel Forms

Richard Rochberg

For γ > −1 let A2
γ be the weighted Bergman space, the spaces of holomorphic

functions in L2(D, (1 − |z|2)γdxdy), and let H2 be the Hardy space, formally
the limiting case A2

−1. These are Hilbert spaces with reproducing kernels, the

reproducing kernel for A2
γ is kα(z, w) = (1 − w̄z)

−α
with α = γ + 2. (Here and

throughout we will ignore normalizing numerical factors.) A Hankel form on one
of these spaces is a bilinear form B with the property that B(f, g) is a linear
function of the pointwise product fg; for example B(f, g) = f(0)g(0).

In a 1987 paper Janson and Peetre [JaPe] introduced a generalization of Hankel
forms on the spaces A2

γ , γ = −1, 0, 1, .. . They viewed Hγ , the space of Hilbert

Schmidt bilinear forms on A2
γ as elements of the Hilbert space tensor product

A2
γ ⊗ A2

γ . The irreducible action of the Mobius group on A2
γ induces an action

on the tensor product. That action is not irreducible and when it is decomposed
we obtain (1.1) below and an irreducible action of the Mobius group on each
summand. The first summand corresponds in a natural way to the Hankel forms.
Janson and Peetre named the forms associated with the other summands Hankel
forms of higher weight, here referred to as higher order. Using Fourier theory
and representation theory they obtained explicit descriptions of these classes of
forms. Associated to b ∈ A2

2γ+2k is the bilinear form Hγ,k(b) acting on A2
γ given

by Hγ,k(b) = 〈Bγ,k(f, g), b〉A2
2γ+2k

with

(0.1) Bγ,k(f, g) =
∑

r+s=k

(−1)
r
k!

r!s!(γ + 2)r(γ + 2)s
f (r)(z)g(s)(z)
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where (α)β = α(α+1)....(α+β−1).There are similar but slightly more complicated
formulas for bilinear forms on A2

γ1 ⊗A2
γ2 ; again involving bidifferential operators,

now Bγ1,γ2,k. It was pointed out in [JaPe] that the operatorsBγ1,γ2,k are essentially
the transvectant operators of classical invariant theory.

1. Higher Order Hankel Forms Without Representation Theory

The papers [PeRo], [Ro], and [FR] include attempts to reformulate these ideas
in ways that did not require an underlying group action.

Here is one approach. For B in Hγ define the bilinear form ∆B by ∆B(f, g) =
B(zf, g) − B(f, zg). Classical Hankel forms are the B for which ∆B = 0. With
this as a starting point we say that B is a Hankel1 form of order n if ∆n+1B = 0.
We call such a form special if it is also orthogonal in Hγ to the Hankel1 forms of
order n− 1.

Here is a second approach. Using the identification of f ⊗ g ∈ A2
γ ⊗A

2
γ with the

holomrphic function f(z1)g(z2) we can identify A2
γ ⊗ A2

γ with A2
γ,γ = A2

γ,γ

(

D2
)

;
the Hilbert space of holomorphic functions on the bidisk with reproducing kernel
kα(z1, w1)kα(z2, w2). Hence we can identify Hγ with A2

γ,γ . With this identification
the classical Hankel forms correspond to functions which are orthogonal to VD, the
subspace of A2

γ,γ consisting of functions that vanish on the diagonalD = {(ζ, ζ)} ⊂

D2. We have a splitting A2
γ,γ = V ⊥

D ⊕ VD and we continue this decomposition as

follows. Let V nD ⊖ V n+1
D be the orthocomplement of V n+1

D in V nD . We then have
the decomposition in (1.2)

Hγ ≈ A2
γ ⊗A2

γ ≈
∞

⊕

k=0

A2
2γ+2k(1.1)

≈ A2
γ,γ ≈ V ⊥

D ⊕
(

V 1
D ⊖ V 2

D

)

⊕ ...⊕
(

V nD ⊖ V n+1
D

)

⊕ ....(1.2)

We define special Hankel2 forms of order n to be those whose ”symbol functions”
are in the summand V nD ⊖ V n+1

D of the decomposition (1.2).
Using tools from the theory of Hilbert spaces with reproducing kernel and spe-

cific formulas for the reproducing kernels it was shown in [FR] that these ap-
proaches agree; the special Hankel1 forms of order n, the special Hankel2 forms of
order n, and the Hankel forms of order n introduced by Janson and Peetre are the
same.

There is also an explicit description of the map of A2
γ,γ to

∞
⊕

k=0

A2
2γ+2k which sets

up this equivalence. Up to normalizing numerical factor the map of functions on
the bidisk to functions on the disk given by

(1.3) F (z, w) →
∑

r+s=k

(−1)r k!

r!s!(γ + 2)r(γ + 2)s
∂rz∂

s
wF |z=w=ζ

is zero on
(

V nD ⊖ V n+1
D

)⊥
and takes V nD ⊖ V n+1

D isometrically onto A2
2γ+2n.
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2. Transvectants and Rankin Cohen Brackets

The transvectant operators of (0.1) and the intimately allied bidifferential op-
erators, the Rankin Cohen bracket operators introduced in the theory of modular
forms, have been an active area of research in recent years; the papers [OS], [EG]
and [BTY] give some indication. One of the reasons for this activity is the insight
of Zagier that these operators satisfy algebraic identities which allow them to be

used to define a product on

∞
⊕

k=0

A2
2γ+2k making that sum into a graded associative

algebra [CMZ].

3. Questions

My continuing interest in these questions is driven in part by wanting to find
satisfying answers to two questions.

First, how do these ideas play out for general Hilbert spaces of holomorphic
functions. Both of the approaches in the second section generalize. However in
those approaches the explicit formulas such as (0.1) and (1.3) are derived from
the combinatorics of the Taylor coefficients of the kernel functions. Hence the
nature, in fact the existence, of similarly explicit formulas for more general space
is unclear. The theory of quotient Hilbert modules [DMV] may be an appropriate
framework for analysis of those more general cases.

Second, the associativity of the multiplication induced by the Rankin Cohen
brackets has been ”explained” by viewing the product as induced by a symbol
calculus for operators, with the associativity of the product being a consequence
of associativity of operator composition. A recent version and earlier references are
in [Pe]. However such considerations seem unnatural in discussions of the space
Hγ of bilinear forms or the space or the space A2

γ,γ of holomorphic functions on
the bidisk. So far it seems unclear how to view this new product structure in those
contexts.
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Semicrossed products of the non-commutative disc algebra

Kenneth R. Davidson

The results mentioned are contained in [2, 3], joint work with Elias Katsoulis.
The non-commutative disk algebra An is the norm closed nonself-adjoint oper-

ator algebra generated by n isometries s1, . . . , sn with pairwise orthogonal ranges.
In particular, we can consider An as an algebra on the Fock space ℓ2(F+

n ) generated
by the left creation operators, which are defined by Liξw = ξiw . A character α
is determined by λ = (α(s1), . . . , α(sn)), which is an arbitrary point in the closed

ball Bn of Cn. The Gelfand map carries A ∈ An to a function Â in the algebra
generated by ŝi = zi, and thus is analytic on Bn [4].

If ϕ is an automorphism of An, it induces a map ϕ̂ of Bn which is readily seen
to be a biholomorphic automorphism. Conversely, given any conformal automor-
phism ϕ̂ ∈ Aut(Bn) of the ball, Voiculescu [8] constructed a unitary Uϕ on Fock
space so that ϕ(A) = U∗

ϕAUϕ. These are precisely the isometric automorphisms
of An, so we have the identification Aut(An) ≃ Aut(Bn) [4].

Given an automorphism ϕ of An, we consider all covariant representations con-
sisting of a completely contractive representation π of An and a contraction K
such that

π(A)K = Kπ(ϕ(A)) for all A ∈ An.

The universal algebra for such representations is called the semicrossed product,
An ×ϕ Z+. This is an operator algebra generated by An and an element u with
the norm

∥

∥

∑

n

unAn
∥

∥ = sup
(π,K)

∥

∥

∑

n

Knπ(An)
∥

∥.

To understand the structure of this algebra, one needs to consider dilations
of covariant representations. We show that one can always simultaneously dilate
π(L) to a row isometry and dilate K to a unitary. With some special techniques,
we can further dilate so that the row isometry has Cuntz type (ranges summing
to the identity). The automorphism ϕ extends to a ∗-automorphism of the Cuntz
algebra On. This yields structure theory for the maximal dilations.

Theorem 9. If (π,K) is a covariant representation of (An, ϕ) on a Hilbert space
H, there is a Hilbert space K containing H, n isometries S, . . . , Sn on K such
that

∑n
i=1 SiS

∗
i = I and a unitary operator U so that σ(si) = Si determines a

∗-representation of On and σ(A)U = Uσ(ϕ(A)) for all A ∈ On such that π(A) =
PHσ(A)|H for A ∈ A and Kn = PHU

n|H for n ≥ 0.
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Arveson [1] defined the C*-envelope of an operator algebra A as the C*-algebra
generated by a completely isometrically isomorphic copy of A with the property
that any other such C*-algebra has a canonical homomorphism onto C∗

env(A). The
existence of this envelope was established by Hamana [6]. Recently, Dritschel and
McCullough [5] characterized the C*-envelope in terms of the maximal dilations
of A, which always extend uniquely to a ∗-representation of C∗

env(A).
This allow us to prove:

Theorem 10. C∗
env

(An ×ϕ Z+) ≃ On ×ϕ Z.

In addition, the unique extension of the automorphism ϕ to On is always outer
(except ϕ = id). It then follows from a result of Kishimoto [7] that On ×ϕ Z is
simple whenever ϕ is aperiodic. In this case, there is an explicit representation of
the crossed product as C∗(En, Uϕ)/K.

Two automorphisms ϕ̂ and ψ̂ in Aut Bn are biholomorphically conjugate if there

is an element ρ̂ ∈ Aut Bn such that ϕ̂ρ̂ = ρ̂ψ̂. Since ρ̂ induces the automorphism ρ
of An which is completely isometric, it is easy to see that An ×ϕ Z+

n ≃ An ×ϕ Z+
n

is a completely isometric isomorphism.
To establish a strong form of the converse, we wish to determine ϕ from the

algebraic structure of An ×ϕ Z+
n , up to conjugacy. The first step is to identify the

character space of An ×ϕ Z+
n . One defines an analytic subset O of the character

space MA of a Banach algebra A as the image of a non-constant map h : Ω → O,
where Ω is a domain in Ck, such that Â ◦ h is analytic for every A ∈ A. Also let
Fix(ϕ̂) denote the set of fixed points of ϕ̂, and set F0(ϕ) = Fix(ϕ) ∩ Bn and let
F1(ϕ) = Fix(ϕ) ∩ ∂Bn.

Lemma 11. MAn×ϕZ+ = (Bn × {0}) ∪ (Fix(ϕ) × D). The maximal analytic sets
in MAn×ϕZ+ are Bn × {0}, F0(ϕ) × D, F0(ϕ) × {λ} for λ ∈ T, and {x} × D for
x ∈ F1(ϕ).

The key technical step is to establish that the ideal Jϕ = u(An ×ϕ Z+) is
intrinsically defined within An×ϕZ+. We study representations of the semicrossed
product onto the k×k upper triangular matrices Tk, known as nest representations.
The main issue is that An itself has many nest representations, and they interfere
with the analysis of representations of the semicrossed product. The reason for
considering a nest representation ρ is that the diagonal entries are characters, and
thus restrict on An to evaluation at points in Bn. If these points lie in the open
ball, say z1, . . . , zk, then the ij entry of ρ(u) must be 0 if ϕ̂(zj) 6= zi. Combining
this with explicitly constructed representations, one is able to filter out the ‘noise’
from representations of An and ‘see’ the ideal J. This leads to our second main
result.

Theorem 12. Let ϕ and ψ be automorphisms of the non-commutative disc algebra
An for n ≥ 2. Then the following are equivalent:

(1) An ×ϕ Z+ and An ×ψ Z+ are isomorphic as algebras;
(2) An ×ϕ Z+ and An ×ψ Z+ are completely isometrically isomorphic;
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(3) ϕ̂ and ψ̂ are biholomorphically conjugate;
(4) ϕ and ψ are conjugate via an automorphism of An.
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An operator space approach to Schur-Agler norms on convex balanced
domains

Michael T. Jury

To each convex balanced domain in Cn (i.e., each open ball for a norm on Cn) we
associate a family of operator algebra norms on the space of n-variable polynomials.
These norms are in one-to-one correspondence with operator space structures over
the underlying n-dimensional Banach space. Examples include the Agler norm
on the polydisk, the Drury-Arveson multiplier norm on the ball, but many other
apparently new examples as well (even on the ball and polydisk). As is the case for
the well-known examples, each norm is characterized by a Nevanlinna factorization
and a transfer function realization.

More precisely: let V = (Cn, ‖ · ‖) be a finite-dimensional Banach space and fix
an isometric embedding ϕ : V → B(H). Let E be the resulting operator space
structure over V .

Theorem 13. Let E be a finite dimensional operator space (with underlying Ba-
nach space V ) and q an analytic MN -valued polynomial. Then the following are
equivalent:

1) Agler-Nevanlinna factorization. There exists a Hilbert space K, a
completely contractive map ψ : V → B(K), and an analytic function
F : Ω → B(K,CN ) such that

(0.1) 1 − q(z)q(w)∗ = F (z) [IK − ρ(z)ρ(w)∗]F (w)∗
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2) Transfer function realization. There exists a Hilbert space K ′, a uni-
tary transformation U : K ′ ⊕ CN → K ′ ⊕ CN of the form

(0.2)
K ′ CN

K ′

CN

(

A B
C D

)

and a completely contractive map ρ : V → B(K ′) so that

(0.3) q(z) = D + C(I − ρ(z)A)−1ρ(z)B.

3) von Neumann inequality. For every commuting, completely contractive
map S of E∗ on a Hilbert space K,

(0.4) ‖q(S)‖MN⊗B(K) ≤ 1.

To clarify the von Neumann inequality 3), the operators S are n-tuples of
commuting operators (S1, . . . Sn) with the property that the map

(z1, . . . zn) →
n

∑

j=1

zjSj

is completely contractive for the dual operator space E∗.
The case E = Rn (n-dimensional row space) corresponds to the Drury-Arveson

multiplier algebra over the unit ball in Cn. In this case the operators S are all
commuting n-tuples with the property that

I −
n

∑

j=1

SjS
∗
j ≥ 0.

and the above theorem is proved by [1]. When E = MIN(ℓ∞n ), the operators S
run over all commuting contractions, and the resulting norm is the Agler norm on
the polydisk. The theorem essentially reduces to a result of Agler [2]. However
even over these classical domains the above theorem provides many new exam-
ples of operator algebra norms on the space of polynomials. In particular there is
always a “minimal Schur-Agler operator algebra” which corresponds to choosing
E = MAX(V ) above (here MAX(V ) denotes the maximal operator space over
V ) so that E∗ = MIN(V ∗). This point of view sheds some new light on the coun-
terexample to von Neumann’s inequality due to Varopoulos [3]. It can be checked
that the triple of commuting contractions produced by Kaijser and Varopoulos are
in fact completely contractive forMIN(ℓ1n), so that the minimal Schur-Agler norm
on the polydisk strictly dominates the supremum norm; the classical understand-
ing of this example shows only that the maximal Schur-Agler norm dominates the
supremum norm.
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Clark measures with prescribed behavior and rank-one perturbations
of self-adjoint and unitary operators

Carl Sundberg

Let ϕ be an analytic map of the unit disc D ⊂ C to itself for which ϕ(0) = 0. For
each α ∈ ∂D the function

α+ ϕ(z)

α− ϕ(z)

has positive real part and hence a Herglotz integral representation

α+ ϕ(z)

α− ϕ(z)
=

∫

ζ + z

ζ − z
dµα(ζ)

for a uniquely determined probability measure µα on ∂D. The measures {µα}α∈∂D

are called the Clark measures associated to ϕ after the paper [1] by D. N. Clark,
though other names are common in the literature.

If we define the unitary operators {Uα}α∈∂D to be multiplication by the coor-
dinate function z on L2(µα) then a calculation shows

Uαf(z) = Uf(z) + (α − 1)

∫

fdµ

where U = U1. Thus {Uα}α∈∂D is a family of unitary rank-one perturbations of
the unitary operator U ; with spectral measures µα. Such families and analogous
families of rank-one perturbations of self-adjoint operators have been much-studied
in the mathematical physics community, see e.g [6]. A question of interest is the
extent to which properties of the spectral measures µα can vary with α. A standard
calculation shows that the absolutely continuous parts of the µα’s are all mutually
absolutely continuous, so we focus on the singular parts σα. In this context we
note that if ϕ is inner then all µα’s are singular.

It came as a bit of a surprise that properties of the singular measures σα can
be very sensitive to changes in α. The first result along this line was due to W.
Donoghue [3]. Translated into our language his result says:

Theorem 14. There exists an inner function ϕ whose Clark measures {µα} satisfy

µ = µ1 is purely atomic
but

µα is continuous singular for α ∈ ∂D \ {1}

The measure µ in Donoghue’s example has all of ∂D for its support. The
following result of R. Del Rio, N. Makarov, and B. Simon and, independently, A.
Ya. Gordon, shows that the “largeness” of the set of α’s for which µα is singular
continuous is to be expected (we translate their result into our language):
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Theorem 15 ([2], [4], [5]). Let ϕ, {µα} be as above and let I ⊂ ∂D be a closed
interval, not a singleton, such that I ⊂ sptµ and µ|I is singular. Then for all α in
a dense Gδ-subset of ∂D µα|I is singular continuos.

We prove the following converse:

Theorem 16. Let I be a closed subinterval of ∂D, not a singleton, and let G be
a Gδ-subset of ∂D. Then there exists an inner function ϕ whose associated Clark
measures µα satisfy:

sptµ ⊂ I
µα|I is singular if α ∈ G
µα is purely atomic if α ∈ ∂D \G

If G is dense, then of necessity sptµ = 1.

The function ϕ is produced by constructing a Riemann surface R lying over D
with projection π : R → D, then setting ϕ = π ◦Φ, where Φ : D → R is a covering
map.
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A sheaf theoretic model for analytic Hilbert modules

Gadadhar Misra

(joint work with Shibananda Biswas)

Let Ω be a bounded open connected set in Cm and M be a Hilbert module
over the function algebra A(Ω) (see [6]). The study of the natural class Bn(Ω),
discussed below, was initiated in [1, 2]. A different approach was given in [3]. Let
DT : M → M ⊕ · · · ⊕ M be the operator f 7→

(

T1f, . . . , Tmf
)

, where Ti is the
operator determined by the adjoint of the module action (zi, f) 7→ zi ·f , 1 ≤ i ≤ m,
f ∈ M. Let Bn(Ω) be the set of those Hilbert modules M for which ranDT−w is
closed, spanw∈Ω kerDT−w is dense and dim kerDT−w = n for all w ∈ Ω. A Hilbert
module M in Bn(Ω) determines a holomorphic Hermitian vector bundle on Ω. It
is then proved that isomorphic Hilbert modules correspond to equivalent vector
bundles and vice-versa (see [1, 2]). Also, these papers provide a model for the
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Hilbert modules in Bn(Ω) by showing that they can be realized as a Hilbert space
consisting of holomorphic functions on Ω possessing a reproducing kernel. The
module action is then simply the pointwise multiplication. Examples are Hardy
and the Bergman modules over the ball and the poly-disc in Cm. However, many
natural examples of Hilbert modules fail to be in the class Bn(Ω). For instance,
H2

0 (D2) := {f ∈ H2(D2) : f(0) = 0} is not in Bn(D2). The problem is that the
dimension of the joint kernel K(w) := kerDT−w is no longer a constant (cf. [4]):

dimH2
0 (D2) ⊗A(D2) Cw =

{

1 if w 6= (0, 0)

2 if w = (0, 0).

Here Cw is the one dimensional module over the algebra A(D2), where the module
action is given by the map (f, w) 7→ f(w) for f ∈ A(D2) and w ∈ C. We outline an
attempt to systematically study examples like the one given above using methods
of complex analytic geometry.

For a Hilbert module M over a function algebra A(Ω), not necessarily in the
class B1(Ω), motivated by the correspondence of vector bundles with locally free
sheaf, we construct a sheaf of modules SM(Ω) over O(Ω) corresponding to M. We
assume that M possesses all the properties for it to be in the class B1(Ω) except
that the dimension of the joint kernel K(w) need not be constant. We note that
sheaf models have occured, as a very useful tool, in the study of analytic Hilbert
modules (cf. [7]). Although, the model we describe below is somewhat different.

Let SM(Ω) be the subsheaf of the sheaf of holomorphic functions O(Ω) whose
stalk at w ∈ Ω is

{

(f1)wOw + · · · + (fn)wOw : f1, . . . , fn ∈ M
}

, or equivalently,

SM(U) =
{

∑n
i=1

(

fi|U
)

gi : fi ∈ M, gi ∈ O(U)
}

for U open in Ω.

Proposition 1. The sheaf SM(Ω) is coherent.

Proof. The sheaf SM(Ω) is generated by the set of functions {f : f ∈ M}. Let
SM
J (Ω) be the subsheaf generated by the set of functions J = {f1, . . . , fℓ} ⊆ M ⊆

O(Ω). Thus SM
J (Ω) is coherent. An application of Noether’s Lemma [8] then

guarantees that SM(Ω) = ∪J finiteS
M
J (Ω) is coherent. �

We note that the coherence of the sheaf implies, in particular, that the stalk
(SM)w at w ∈ Ω is generated by a finite number of elements g1, . . . , gn from O(Ω).

If K is the reproducing kernel for M and w0 ∈ Ω is a fixed but arbitrary point,
then for w in a small neighborhood U of w0, we obtain the following decomposition
theorem.

Theorem 1. Suppose g0
i , 1 ≤ i ≤ n, be a minimal set of generators for the stalk

(SM)0 := (SM)w0
. Then we have

K(·, w) := Kw = g0
1(w)K(1)

w + · · · + g0
n(w)K(n)

w ,

where K(p) : U → M, 1 ≤ k ≤ n, is anti-holomorphic. Moreover, the elements

K
(p)
w0
, 1 ≤ p ≤ n are linearly independent in M, they are eigenvectors for the

adjoint of the action of A(Ω) on the Hilbert module M at w0 and are uniquely
determined by these generators.
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We also point out that the Grammian G(w) = ((〈K
(p)
w ,K

(q)
w 〉))np,q=1 is invertible

in a small neighborhood of w0 and is independent of the generators g1, . . . , gn.

Thus t : w 7→ (K
(1)
w , . . . ,K

(n)
w ) defines a holomorphic map into the Grassmannian

G(H, n) on the open set U . The pull-back E0 of the canonical bundle on G(H, n)
under this map then define a holomorphic Hermitian bundle on U . Clearly, the
decomposition of K given in our Theorem is not canonical in anyway. So, we
can’t expect the corresponding vector bundle E0 to reflect the properties of the
Hilbert module M. However, it is possible to obtain a canonical decomposition
following the construction in [3]. It then turns out that the equivalence class of
the corresponding vector bundle E0 obtained from this canonical decomposition is
an invariant for the isomorphism class of the Hilbert module M. These invariants
are by no means easy to compute. At the end of this note, we indicate, how to
construct invariants which are more easily computable.

For now, the following Corollary to the decomposition theorem is immediate.

Corollary 1. The dimension of the joint kernel K(w) is greater or equal to the
number of minimal generators of the stalk (SM)w at w ∈ Ω.

Now is the appropriate time to raise a basic question. Let mw ⊆ A(Ω) be the
maximal ideal of functions vanishing at w. Since we have assumed mwM is closed,
it follows that the dimension of the joint kernel K(w) equals the dimension of the
quotient module M/(mwM). However it is not clear if one may impose natural
hypothesis on M to ensure

M/(mwM) = dim K(w) = (SM)w/(m(Ow)(SM)w),

where m(Ow) is the maximal ideal in Ow, as well.
More generally, suppose p1, . . . , pn generate M. Then dim K(w) ≤ n for all

w ∈ Ω. If the common zero set V of these is {0} then (p1)0, . . . , (pn)0 need not
be a minimal set of generators for (SM)0. However, we show that they do if we
assume p1, . . . , pn are homogeneous of degree k, say. Further more, basis for K(0)
is the set of vectors:

{

p1(∂̄)}K(·, w)|w=0, . . . , pn(∂̄)}K(·, w)|w=0

}

,

where ∂̄ = (∂̄1, . . . , ∂̄m).
Going back to the example of H2

0 (D2), we see that it has two generators, namely
z1 and z2. Clearly, the joint kernel K(w) := kerD(M∗

1
−w̄1,M∗2 −w̄2) at w = (w1, w2)

is spanned by {z1 ⊗A(D2) 1w, z2 ⊗A(D2) 1w} = {w1KH2
0
(D2)(z, w), w2KH2

0
(D2)(z, w)}

which consists of two vectors that are linearly dependent except when w = (0, 0).
We also easily verify that

(

SH
2
0 (D2)

)

w
∼=

{

Ow w 6= (0, 0)

m (O0) w = (0, 0).

Since the reproducing kernel

KH2
0
(D2)(z, w) = KH2(D2)(z, w) − 1 =

z1w̄1 + z2w̄2 − z1z2w̄1w̄2

(1 − z1w̄1)(1 − z2w̄2)
,
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we find there are several choices for K
(1)
w and K

(2)
w , w ∈ U . However, all of these

choices disappear if we set w̄1θ1 = w̄2 for w1 6= 0, and take the limit:

lim
(w1,w2)→0

KH2
0
(D2)(z, w)

w̄1
= K

(1)
0 (z) + θ1K

(2)
0 (z) = z1 + θ1z2

because K
(1)
0 and K

(2)
0 are uniquely deteremined by Theorem 1. Similarly, for

w̄2θ2 = w̄1 for w2 6= 0, we have

lim
(w1,w2)→0

KH2
0
(D2)(z, w)

w̄2
= K

(2)
0 (z) + θ2K

(1)
0 (z) = z2 + θ2z1.

Thus we have a Hermitian line bundle on the complex projective space P1 given
by the frame θ1 7→ z1 + θ1z2 and θ2 7→ z2 + θ2z1. The curvature of this line bundle
is then an invariant for the Hilbert module H2

0 (D2) as shown in [5]. This curvature
is easily calculated and is given by the formula K(θ) = (1 + |θ|2)−2.

The decomposition theorem yields similar results in many other examples.
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A classification of homogeneous operators in the Cowen-Douglas class

Adam Korányi

(joint work with Gadadhar Misra)

A bounded linear operator T on a complex separable Hilbert space H is said to
be homogeneous if its spectrum is contained in the closed unit disc and for every
Möbius transformation g of the unit disc D, the operator g(T ) defined via the
usual holomorphic functional calculus, is unitarily equivalent to T . This class
of operators originally appeared in the work of G. Misra and was studied in the
articles [1],[3], [4] and [5], among others.
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A Fredholm operator T on a Hilbert space H is said to be in the Cowen -
Douglas class of the domain Ω ⊆ C if its eigenspaces Ew, w ∈ Ω are of constant
finite dimension. In the paper [2], Cowen and Douglas show that

(a) E ⊆ Ω × H with fiber Ew at w ∈ Ω is a holomorphic Hermitian vector
bundle over Ω, where the Hermitian structure is given by

‖sw‖w = ‖ιwsw‖H, sw ∈ Ew,

and ιw : Ew → H is the inclusion map;

(b) isomorphism classes of E correspond to unitary equivalence classes of T ;

(c) the holomorphic Hermitian vector bundle E is irreducible if and only if
the operator T is irreducible.

Our first non-trivial result is that a Cowen-Douglas operator is homogeneous if
and only if the corresponding bundle is homogeneous under G̃, the universal cov-
ering group of the Möbius group. We describe below all irreducible homogeneous
holomorphic Hermitian vector bundles over the unit disc and determine which
ones of these correspond to homogeneous operators (necessarily irreducible) in the
Cowen-Douglas class.

Let t ⊆ gC = sl(2,C) be the Lie algebra Ch+ Cy, where

h =
1

2

(1 0
0 −1

)

, y =
(0 0
1 0

)

.

By holomorphic induction, linear representations (̺, V ) of the algebra t ⊆ gC =
sl(2,C), that is, pairs ̺(h), ̺(y) of linear transformations satisfying [̺(h), ̺(y)] =
−̺(y) provide a para-metrization of the homogeneous holomorphic vector bundles.

The G̃ - invariant Hermitian structures on the homogeneous holomorphic vector
bundle E (making it into a homogeneous holomorphic Hermitian vector bundle),

if they exist, are given by ̺(K̃) - invariant inner products on the representation

space. Here K̃ is the stabilizer of 0 in G̃.
An inner product can be ̺(K̃) - invariant if and only if ̺(h) is diagonal with real

diagonal elements in an appropriate basis. We are interested only in Hermitizable
bundles, that is, those that admit a Hermitian structure. So, we will assume
without restricting generality, that the representation space of ̺ is Cn and that
̺(h) is a real diagonal matrix.

Since [̺(h), ̺(y)] = −̺(y), we have ̺(y)Vλ ⊆ Vλ−1, where Vλ = {ξ ∈ Cn :

̺(h)ξ = λξ}. Hence (̺,Cn) is a direct sum, orthogonal for every ̺(K̃) - invariant
inner product of “elementary” representations, that is, such that

̺(h) =







−ηI0
. . .

−(η +m)Im






with Ij = I on V−(η+j) = Cdj
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and

Y := ̺(y) =















0
Y1 0

Y2 0
. . .

. . .

Ym 0















, Yj : V−(η+j−1) → V−(η+j).

We denote the corresponding elementary Hermitizable bundle by E(η,Y ).
The invariant Hermitian structures on it are given by positive definite block

diagonal matricesH . E(η,Y ) is irreducible if and only if Y is not the H - orthogonal
direct sum of two operators with the same sub-diagonal structure as Y .

We note that (E(η,Y ), H) ∼= (E(η,AY A−1), A∗−1HA) for any block diagonal in-
vertible A. Therefore every homogeneous holomorphic Hermitian vector bundle is
isomorphic with one of the form (E(η,Y ), I).

Now we proceed to a construction. Let η > 0 and let Y be as above. For
λ > 0, let A(λ) be the Hilbert space of holomorphic functions on the unit disc
with reproducing kernel (1 − zw̄)−2λ. G̃ acts on it with the multiplier gλ(z). Let
A(η) = ⊕mj=0A(η+j) ⊗Cdj . The elements of A(η) are just the sections of E(η,0) in a

natural trivialization. For f in A(η), we denote by fj , the part of f in A(η+j)⊗Cdj .

We define Γ(η,Y )f as the Cn - valued holomorphic function whose part in Cdℓ is
given by

(

Γ(η,Y )f
)

ℓ
=

ℓ
∑

j=0

1

(ℓ − j)!

1

(2η + 2j)ℓ−j
Yℓ · · ·Yj+1f

(ℓ−j)
j

for ℓ ≥ j. For invertible block diagonalN on Cn, we also define Γ
(η,Y )
N := Γ(η,Y )◦N .

It can be verified that Γ
(η,Y )
N is a G̃ - equivariant isomorphism of A(η,0) as a

homogeneous holomorphic vector bundle onto E(η,Y ). The image K
(η,Y )
N of the

reproducing kernel of A(η) is then a reproducing kernel for E(η,Y ). A computation

gives that K
(η,Y )
N (0, 0) is a block diagonal matrix such that its ℓ’th block is

K
(η,Y )
N (0, 0)ℓ,ℓ =

ℓ
∑

j=0

1

(ℓ− j)!

1

(2η + 2j)ℓ−j
Yℓ · · ·Yj+1NjN

∗
j Y

∗
j+1 · · ·Y

∗
ℓ .

We setH
(η,Y )
N = K

(η,Y )
N (0, 0)

−1
. We have now constructed a family (E(η,Y ), H

(η,Y )
N )

of elementary homogeneous holomorphic Hermitian vector bundles with a repro-
ducing kernel (η > 0, Y as before, N invertible block diagonal).

Our main result is the following.

Theorem 2. Every elementary homogeneous holomorphic vector bundle E with a
reproducing kernel arises from the construction given above. These vector bundles
are exactly the ones that correspond to irreducible homogeneous Cowen-Douglas
operators.

By one of our previous remarks, every homogeneous holomorphic Hermitian
vector bundle can be put in the form (E(η,Y ), I). We can then write down a system
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of inequalties that characterize the pairs (η, Y ) such that (E(η,Y ), I) corresponds
to a Cowen-Douglas operator.
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