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Introduction by the Organisers

The workshop on Commutative Algebra was very well attended by important
senior researchers in the field and by many promising young mathematicians. Of
particular help for the invitation of young participants was the support from the
Leibniz Association within the grant ”Oberwolfach Leibniz Graduate Students”
(OWLG), from the National Science Foundation (NSF) and the Japan Association
for Mathematical Sciences (JAMS).

The conference had a very lively atmosphere, made possible by the excellent
facilities of the institute. There were 51 participants, and 24 talks. A considerable
number of the lectures were given by young researchers. The program left plenty
of time for cooperation and discussion among the participants. We highlight the
areas in which new results were presented by the lecturers:

(a) Combinatorial commutative algebra The spectacular applications of com-
mutative algebra to enumerative combinatorics two decades ago have developed
into a subfield of commutative algebra that is very active now. This connection
was one of the main topics of this conference. The basic objects are algebraic struc-
tures defined by monomials, in particular face rings of simplicial complexes and



1158 Oberwolfach Report 22

affine monoid algebras. The talks were devoted to depth properties and Hilbert
functions. Also connections with game theory was one of the topics of the talks.

(b) Homological methods and invariants This area started from the fundamen-
tal theorems of Auslander, Buchsbaum and Serre on regular rings. Homological
properties are used in the major classification of commutative rings and their mod-
ules. One the mysteries in this field is the structure of free resolutions of modules
over local or graded rings. In this conference Eisenbud and Schreyer presented
their proof of the Boij-Sderberg conjectures which is a major breakthrough in the
field. Other major topics were the structure of Koszul algebras and resolutions
over complete intersections and Gorenstein rings. Furthermore the derived cate-
gory of coherent sheaves on algebraic varieties (in particular hypersurfaces) turned
out to be an important object of study.

(c) Characteristic p-methods Characteristic p methods have had an extremely
strong influence on the development of commutative algebra. They were crys-
talized by Hochster and Huneke in the notion of tight closure, and have led to
remarkable results in ideal and module theory. Moreover there are strong connec-
tions to singularity theory and algebraic geometry. After the counterexample to
the localization conjecture by Brenner and Monsky, Hochster is developing a vari-
ant of the notion of tight closure that satisfies localization. Of particular interest
was also the action of Frobenius on (local) cohomology and applications thereof.

(e) General commutative algebra and algebraic geometry Commutative algebra
is one of the main tools in algebraic geometry. Therefore the interactions of these
two fields was also present in many lectures. Among the topics covered were log
canonical threshholds which have a strong similarity to the jumping numbers in
the theory of test ideals. Another interesting line of research was to find equations
describing projective varieties.
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Shokurov’s ACC Conjecture for log canonical thresholds on smooth
varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1182

Shunsuke Takagi (joint with Manuel Bickle, Karl Schwede and Wenliang
Zhang)
Rationality of F-jumping exponents on singular varieties . . . . . . . . . . . . . 1185

Melvin Hochster (joint with Neil A. Epstein)
A tight closure theory in equal characteristic that commutes with
localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187

Satoshi Murai (joint with Naoki Terai)
H-vectors of simplicial complexes and Serre’s conditions . . . . . . . . . . . . . . 1189

Marc Chardin (joint with Laurent Buse, Jean-Pierre Jouanolou and Aron
Simis)
Torsion in the symmetric algebra and implicitization. . . . . . . . . . . . . . . . . 1191



1160 Oberwolfach Report 22

Ragnar-Olaf Buchweitz
The Classification of Graded Maximal Cohen-Macaulay Modules over a
Graded Gorenstein Ring after Dmitri Orlov . . . . . . . . . . . . . . . . . . . . . . . . . 1193

Srikanth B. Iyengar
Stratifying the derived category of a complete intersection . . . . . . . . . . . . . 1197

Anurag K. Singh (joint with Uli Walther)
Bockstein homomorphisms in local cohomology . . . . . . . . . . . . . . . . . . . . . . 1199

Aldo Conca (joint with Winfried Bruns and Tim Römer)
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Abstracts

Overview of Boij-Söderberg Theory, Part I

David Eisenbud

(joint work with Frank-Olaf Schreyer)

This talk and the one by Frank Schreyer presented a summary of recent develop-
ments stemming from a conjecture of Boij and Söderberg about free resolutions
of graded modules over a polynomial ring, and now including information about
cohomology tables of vector bundles and a sort of duality between the two subjects.

Since the fundamental papers of David Hilbert at the end of the 19th century,
the Hilbert function of a graded module over a polynomial ring has played a fun-
damental role in commutative algebra and, more recently, in algebraic geometry.
Hilbert himself calculated this invariant in terms of a finer invariant, the graded
Betti numbers of the module. Determining which sets of graded Betti numbers
actually come from modules is a problem that seems quite out of reach, but in late
2006 Mats Boij and Jonas Söderberg, motivated by the “multiplicity conjectures”
of Herzog, Huneke and Srinivasan, made a remarkable conjecture specifying the
possibilities up to a rational multiple [1]. In [6], Frank Schreyer and I showed that
these conjectures were related to a group of (nearly) dual conjectures about vector
bundles, and we proved these two conjectures together. A flurry of other papers
and preprints including [2], [4], [7], [8], [9] and [10] have added to the basic picture
and its applications. Schreyer and I were invited to present an overview of these
developments in two lectures at this meeting, and this is a report of the first of
these two lectures.

Let S = k[x1, . . . , xn] be a polynomial ring over a field k, graded with each xi of
degree 1, and let M be a finitely generated graded S-module. As usual, we write
S(−j) for the graded free module of rank 1 with generator in degree j. By the
Hilbert Syzygy theorem there exist finite free resolutions of M ; that is, sequences
of graded free modules and degree 0 homomorphisms

F : F0
�

φ1 · · · �

φm
Fm

� 0

that are exact at Fi for i > 0, while coker φ1
∼= M . Such a resolution is said to

be minimal if no proper summand of Fi maps onto the kernel of φi−1. Minimal
resolutions are unique up to isomorphism, and have length m ≤ n. In particular, if
F is a minimal free resolution, and we write Fi = ⊕jS(−j)βi,j(M), then the graded
Betti numbers βi,j(M) = dim((Fi ⊗S k)j) are invariants of M alone. We define
the Betti table of M to be this collection of numbers {βi,j(M)}.

We may regard the Betti table of M as an element of an (infinite-dimensional)
rational vector space,

B :=

∞⊕

−∞
Qn+1
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with coordinates βi,j(M). Since βi,j(M ⊕N) = βi,j(M)+βi,j(N) the Betti tables
of finitely generated modules form a sub-semigroup of this vector space. The fol-
lowing Theorem, conjectured by Boij and Söderberg, specifies the cone of positive
rational linear combinations of Betti tables of finitely generated modules precisely.

One way of specifying a cone is to give it’s extremal rays—the half-lines in the
cone that are not in the convex hull of the remaining elements of the cone. In the
case of the cone of Betti tables, the extremal rays will turn out to be the pure
modules:

Definition 1. A finitely generated graded S-module M is called pure of type
d := (d0, . . . , dm) if

(1) In a minimal free resolution of M as above, the free module Fi generated
by elements of degree di; that is, βi,j = 0 when j 6= di.

(2) M is Cohen-Macaulay of codimension m; that is, Fi = 0 for i > m and
the annihilator of M is an ideal of codimension m.

It is easy to see that if there is a pure module of type d, then d0 < · · · < dm.
Much more is true: if M is a pure module, then a result of Herzog and Kühl [13]
shows that the Betti table of M is determined by d up to a rational multiple: that
is, there is a constant r = r(M) depending on M such that

βi,di
(M) =

r∏
t6=i |dt − di|

.

Thus the pure modules of type d define a single ray in the cone of Betti tables.
One more preparation is necessary: we order the strictly increasing sequences

d: we say that

d = (d0, . . . , dm) ≤ d′ = (d′0, . . . , d
′
m′)

if m ≥ m′ and di ≤ d′i for i = 1, . . . , m′. (One can think of this as the termwise
order if one simply extends each sequence d = (d0, . . . , dm) to
d = (d0, . . . , dm,∞,∞, . . . ).)

We can now state the main result of the theory concerning the cone of Betti
tables:

Theorem 2. Let S = k[x1, . . . , xn] be as above.

(1) For every strictly increasing sequence of integers d = (d0, . . . , dm) with
m ≤ n, there exist pure finitely generated graded S-modules of type d.

(2) The Betti table of any finitely generated graded S-module may be written
uniquely as a positive rational linear combination of the Betti tables of a
set of pure finitely generated modules whose types form a totally ordered
sequence.

The second statement of the Theorem has two nice interpretations, which may
help clarify its meaning. First, geometrically, it really says that the cone of Betti
tables is a simplicial fan, that is, it is the union of simplicial cones, meeting along
facets, with each simplicial cone spanned by the rays corresponding to a set of pure
Betti tables whose types form a totally ordered set. These simplices and cones are
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of course infinite dimensional; but one can easily reduce to the finite-dimensional
case by specifying that one wants to work with resolutions where the free modules
are generated in a given bounded range of degrees.

Second, algorithmically, the Theorem implies that there is a greedy algorithm
that gives the decomposition. Rather than trying to specify this formally, we give
an Example. For this purpose, we write the Betti table of a module M as an array
whose entries in the i-th column are the βi,j—that is, the i-th column corresponds
to the free module Fi for reasons of efficiency and tradition, we put βi,j in the
(j − i)-th row.

For our example we take n = 3, and let M = S/(x2, xy, xz2). The minimal free
resolution of M has the form

S � S(−2)2 ⊕ S(−3) � S(−3)⊕ S(−4)2 � S(−5) � 0

and is represented by an array

β(M) =




1

2 1
1 2 1





where all the entries not shown are equal to zero.
To write this as a positive rational linear combination of pure diagrams, we first

consider the “top row”, corresponding to the generators of lowest degree in the
free modules of the resolution. These are in positions



∗
∗ ∗

∗




corresponding to the degree sequence (0, 2, 3, 5). There is in fact a pure module
M1 = S/I1 with resolution

β(M1) =




1
5 5

1


 .

The greedy algorithm now instructs us to subtract the largest possible multiple q1 of
β(M1) that will leave the resulting table β(M)−q1β(M1) having only non-negative
terms. We see at once that q1 = 1/5.

We now repeat this process starting from β(M)− q1β(M1); the Theorem guar-
antees that there will always be a pure resolution whose degree sequence matches
the top row of the successive remainders. In this case we arrive at the expression
β(M) =
0

@

1

2 1

1 2 1

1

A =
1

5

0

@

1

5 5

1

1

A+
1

10

0

@

3

10

15 8

1

A+
1

6

0

@

1

4 3

1

A+
1

3

0

@

1

1

1

A .

All the fractions and diagrams that occur are of course invariants—apparently new
invariants—of M .
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On the lex-plus-powers conjecture

Jeff Mermin

Let S = k[x1, . . . , xn], and let F = (f1, . . . , fr) ⊂ S be a regular sequence of
homogeneous elements in degrees deg fi = ei for an increasing sequence of degrees
2 ≤ e1 ≤ · · · ≤ er. Put P = (xe1

1 , . . . , xer
r ), the ideal of pure powers in the

same degrees. In what follows, a lex-plus-P ideal means an ideal L of the form
L = L̂ + P , where L̂ is a lexicographic ideal.

The Lex-plus-powers conjecture makes two claims:

Conjecture 1. Let I be any homogeneous ideal of S containing F . Then:

(i) There exists a unique lex-plus-P ideal L having the same Hilbert function
as I.

(ii) The graded Betti numbers of L are greater than or equal to those of I, i.e.,
bi,j(S/L) ≥ bi,j(S/I) for all i, j.

Part (i) of the conjecture is due to Eisenbud, Green, and Harris [4, 5], and part
(ii) is generally credited to Graham Evans [6].

The special case in which F = 0 is essentially classical:

Theorem 2. Let I be any homogeneous ideal of S.
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(i) (Macaulay [9]) There exists a unique lex ideal L having the same Hilbert
function as I.

(ii) (Bigatti [1], Hulett [8], Pardue [14]) The graded Betti numbers of L are
greater than or equal to those of I.

All known proofs of Theorem 2 begin by replacing the ideal I with an initial
ideal. This results in an monomial ideal with the same Hilbert function as, and
larger Betti numbers than, the original ideal I; combinatorial techniques can then
be used to exploit the multigraded structure of the monomial ideal.

In general, however, taking an initial ideal does not preserve the property that
I contains a regular sequence in the given degrees (e1, . . . , er). Thus, it is natural
to consider the case that F is unchanged by passage to an initial ideal, i.e., F = P .
In this case, part (ii) of the Lex-Plus-Powers conjecture was proved by the recent
series of papers [11, 12, 10]:

Theorem 3. Let I be a homogeneous ideal containing P .

(i) (Clements, Lindström [3]) There exists a unique lex-plus-P ideal L having
the same Hilbert function as I.

(ii) (–, Murai) The graded Betti numbers of L are greater than or equal to
those of I.

Some new insight will likely be needed to establish the truth of the conjecture
in general. The largest known case is due to Caviglia and Maclagan [2], who show
that part (i) holds when the degrees of the regular sequence grow quickly enough:

Theorem 4 (Caviglia, Maclagan). Suppose that ei >
∑i−1

j=1 ej for all i. If I is
any homogeneous ideal containing F , then there is a lex-plus-P ideal L having the
same Hilbert function as I.

Several other, harder-to-state special cases are known as well; these are cata-
logued in [6].
In the meantime, it is interesting to consider what other properties of lex ideals

continue to hold in the setting of ideals containing a regular sequence.
A common method of proving Theorem 2 involves showing that the Hilbert

scheme parametrizing all ideals with a fixed Hilbert function is connected. (The
Hilbert scheme is usually defined to parametrize the ideals with a fixed Hilbert
polynomial, but it is possible, and more interesting in our setting, to define it for
a fixed Hilbert function instead.)

These proofs usually establish, along the way, that, when L is the lex ideal
with the same Hilbert function as I, the Betti numbers of L differ from those of
I by consecutive cancellations : that is, there exist nonnegative integers ci,j such
that bi,j(I) = bi,j(L) − ci,j − ci−1,j for all i and j. This is not a corollary of the
connectedness of Hilbert scheme, but a feature of the arguments used to study the
lex ideal as a point inside the Hilbert scheme; see [15] for details.

Thus we have the following results in the case of theorem 2:

Theorem 5. Let H be the Hilbert scheme parametrizing all ideals having the same
Hilbert function as I, and let L be the lex ideal on H. Then:
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(i) (Hartshorne [7]) H is connected.
(ii) (Peeva [15]) The Betti numbers of I differ from those of L by consecutive

cancellations.

If we restrict our attention to those ideals containing a regular sequence, we get
new questions which seem related to the lex-plus-powers conjecture:

Question 6. Let I ⊃ F be given, let H be the Hilbert scheme parametrizing
all ideals having the same Hilbert function as I, and let G be the subset of H
parametrizing those ideals which contain a regular sequence in the degrees of F .
Then:

(i) Is G connected?
(ii) If G contains a lex-plus-P ideal L, do the Betti numbers of I differ from

those of L by consecutive cancellations?

Question 6 has an affirmative answer if we restrict further to require that F = P :

Theorem 7. Let I ⊃ P be given, let H be the Hilbert scheme parametrizing all
ideals having the same Hilbert function as I, and let G′ be the subscheme of H
parametrizing those ideals which contain P . Then:

(i) (Murai, Peeva [13]) If the field k has characteristic zero, then G′ is con-
nected.

(ii) (–, Murai [10]) The Betti numbers of I differ from those of the lex-plus-P
ideal L by consecutive cancellations.

The subscheme G′ is naturally isomorphic to the Hilbert scheme parametrizing
all ideals of the quotient ring S/P having the same Hilbert function as the image
of I in this ring. Thus it is natural to ask whether the Betti numbers of I and L,
viewed as ideals in the quotient ring, are comparable:

Question 8. Let F , P , I, and L be as in Conjecture 1. Does one have b
S/P
i,j (L) ≥

b
S/F
i,j (I) for all i, j?

Note that this is a statement about infinite resolutions. While Question 8 is
open in general, there is again a positive answer in the case F = P .

Theorem 9 (Murai, Peeva [13]). Suppose that I contains P and L is the lex
ideal having the same Hilbert function. If the field k has characteristic zero, then

b
S/P
i,j (L) ≥ b

S/P
i,j (I) for all i, j.
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Exceptional sequences of invertible sheaves on rational surfaces

Markus Perling

(joint work with Lutz Hille)

In this talk I reported about joint work with Lutz Hille on the bounded derived
category Db(X) of rational surfaces [6], [7]. In general, it is an open problem
whether on an algebraic variety X so-called full exceptional, or strongly excep-
tional, sequences exist.

Definition: A coherent sheaf E on a smooth complete variety X is called
exceptional if it simple and Exti

OX
(E , E) = 0 for every i 6= 0. A sequence E1, . . . , En

of exceptional sheaves is called an exceptional sequence if ExtkOX
(Ei, Ej) = 0 for

all k and for all i > j. If an exceptional sequence generates Db(X), then it is
called full. A strongly exceptional sequence is an exceptional sequence such that
Extk

OX
(Ei, Ej) = 0 for all k > 0 and all i, j.

These definitions go back to work of Drezet and Le Potier [5] and the Seminaire
Rudakov [8]. An important aspect is that strongly exceptional sequences provide
a bridge to noncommutative geometry via tilting correspondence. Due to results
of Bondal [3] (see also [1]), every full strongly exceptional sequences gives rise to
an equivalence of categories

RHom(T , . ) : Db(X) −→ Db(End(T )−mod),
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where T :=
⊕n

i=1 Ei, which is sometimes called a tilting sheaf. This way the
algebra End(T ), at least in the derived sense, represents a non-commutative co-
ordinization of X .

In our work we consider the special situation where X is a smooth complete
rational surface and (strongly) exceptional sequences which consist only of invert-
ible sheaves. Exceptional sequences of this type do exist in general, but in [6]
we gave the first example of a toric surface which does not admit a strongly ex-
ceptional sequence of invertible sheaves. In [7] we managed to obtain an almost
complete picture for all rational surfaces. The most important structural insight
is the following result:

Theorem: Let X be a smooth complete rational surface, OX(E1), . . . ,OX(En)
be a full exceptional sequence of invertible sheaves on X , and set En+1 := E1−KX .
Then to this sequence there is associated in a canonical way a smooth complete
toric surface with torus invariant prime divisors D1, . . . , Dn such that D2

i + 2 =
χ
(
OX(Ei+1 − Ei)

)
for all 1 ≤ i ≤ n.

Note that, if we denote Y the toric surface associated to an exceptional sequence
of invertible sheaves, the theorem yields a canonical isometry Pic(X) → Pic(Y )
with respect to the intersection product.

From this we can derive various results concerning strongly exceptional se-
quences, among the most important ones are:

Theorem: Any smooth complete rational surface which can be obtained by
blowing up a Hirzebruch surface two times (in possibly several points in each step)
has a full strongly exceptional sequence of invertible sheaves.

Note that the case of P2 (and Pn in general) is well-known [2]. In the toric case,
we can show that the converse is also true:

Theorem: Let P2 6= X be a smooth complete toric surface. Then there exists
a full strongly exceptional sequence of invertible sheaves on X if and only if X can
be obtained from a Hirzebruch surface in at most two steps by blowing up torus
fixed points.

Conjecturally, the converse is also true for rational surfaces in general, though
we were not yet able to prove this. It is well known that toric varieties have
certain universal properties with respect to invertible sheaves (see [4]) and it is an
interesting question whether analogous structural results as presented above also
hold for the case of higher-dimensional rational varieties.
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Free resolutions over Koszul algebras

Luchezar L. Avramov

(joint work with Aldo Conca and Srikanth Iyengar)

Let K be a field and Q a commutative N-graded K-algebra with Q0 = K,
Every graded Q-module M with Mj = 0 for j ≪ 0 has a unique up to isomorphism
minimal graded free resolution, FM . The module FM

i has a basis element in degree

j if and only if TorQ
i (k, M)j 6= 0 holds, where k = Q/Q+ for Q+ =

⊕
j>1 Qj, so

important structural information on FM is encoded in the sequence of numbers

tQi (M) = sup{j ∈ Z | TorQ
i (k, M)j 6= 0} .

It is distilled through the notion of Castelnuovo-Mumford regularity, defined by

regQ M = sup
i>0
{tQi (M)− i} .

One has regQ k ≥ 0, and equality means that Q is Koszul ; see, for instance, [8].
When the K-algebra Q is finitely generated, regQ M <∞ holds for each finitely

generated graded module M if and only if Q is a polynomial ring over some Koszul
algebra, see [4]. As an alternative, we turn to the slope of M over Q, defined by

slopeQ M = sup
i>1

{
tQi (M)− tQ0 (M)

i

}
.

We are interested in relations between the numbers slopeQ M , slopeQ R, and
slopeR M for R = Q/J , when J is a homogeneous ideal and M a non-zero graded
R-module. Initial information can be obtained by invoking only general techniques
of homological algebra. Studying the convergence at the base and on the fiber of
a classical change-of-rings spectral sequences of Cartan and Eilenberg [6], we get:

Theorem 1. When J 6= QJ1 holds there are inequalities

slopeR M ≤ max

{
slopeQ M , sup

i>1

{
tQi (R)− 1

i

}}
≤ max{slopeQ M, slopeQ R} .
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If the induced map TorQ
i (k, M)→ TorR

i (k, M) is injective for each i, then

slopeQ R ≤ 1 + sup
i>2

{
tRi (M)− tR0 (M)− 1

i− 1

}
.

When M is finitely generated and R is standard graded, a variant of the upper
bound for slopeQ M was obtained by Aramova, Bărcănescu, and Herzog [1].

As an easy consequence of the theorem, one obtains:

Corollary 2. If R is finitely generated over K, then for every finitely generated
R-module M one has slopeR M <∞.

Theorem 1 can be strengthened when R admits a simple resolution over Q:

Proposition 3. If R = Q/(f) for a non-zero divisor f ∈ Q+, then one has:

slopeQ M ≤ max{slopeR M, deg(f)} with equality for f /∈ (Q+)2 .(1)

slopeR M ≤ max{slopeQ M, deg(f)/2} with equality for f ∈ Q+ AnnQ M .(2)

Following Backelin [5], we set RateQ = slopeQ Q+; thus, one has RateQ ≥ 1,
with equality if and only if Q is Koszul. The statement of the next result refers to
the classical homological products in TorQ(k, R). Its proof depends on the use of
DG algebra resolutions, and draws on results of [3].

Theorem 4. Let Q be a standard graded K-algebra, J a non-zero homogeneous

ideal such that TorQ
i (k, k)→ TorR

i (k, k) is injective for each i, and set c = Rate R.
For every integer i ≥ 1 there are then inequalities

tQi (R) ≤ slopeQ R · i ≤ (c + 1) · i ,

and the following conditions are equivalent:

(i) tQi (R) = (c + 1) · i.
(ii) tQh (R) = (c + 1) · h for 1 ≤ h ≤ i.

(iii) tQ1 (R) = c + 1 and TorQ
i (k, R)i(c+1) = (TorQ

1 (k, R)c+1)
i 6= 0.

The hypothesis on the induced map TorQ
i (k, k)→ TorR

i (k, k) implies that J is
contained in (Q+)2. When Q is Koszul the converse holds as well, so the first two
conditions of the following theorem follow directly from Theorem 4. The other
two involve, in addition, applications of results of Bruns and Wiebe.

Theorem 5. If Q is a finitely generated Koszul K-algebra and J a homogeneous
ideal with 0 6= J ⊆ (Q+)2, then for R = Q/J and c = RateR one has

(1) max{c, 2} ≤ slopeQ R ≤ c + 1, with c < slopeQ R when pdQ R is finite.

(2) tQi (R) = (c + 1) · i for some i ≥ 1 implies the following conditions:

tQh (R) = (c + 1) · h for 1 ≤ h ≤ i and i ≤ rankk(J/Q+J)c+1.

(3) tQi (R) < (c + 1) · i holds for all i > dimQ− dimR when pdQ R is finite.
(4) regQ R ≤ c · pdQ R; when Q is a standard graded polynomial ring, equality

holds if and only if J is generated by a Q-regular sequence of degree c + 1.
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The result is new even in the case of a polynomial ring Q. Its conclusions were
initially observed in case LG-quadratic, that is, R ∼= P/(I+L) for some polynomial
ring P , ideal I with a quadratic Gröbner basis, and ideal L generated by linear
forms that map to a regular sequence in P/I; see [7]. Such algebras are Koszul,
and the work presented above was partly motivated by the following:

Question 6. Is every Koszul algebra LG-quadratic?

The Betti numbers β
eR
i (R) =

∑
j∈Z

rankk Tor
eR
i (k, R)j , where R̃ denotes the

symmetric algebra on R1, might help separate the two notions. Indeed, when R

is LG-quadratic one has R ∼= Q/L and Q = Q̃/IQ, where Q is a standard graded
K-algebra, L is an ideal generated by a Q-regular sequence of linear forms, and the
initial ideal inτ (IQ) for some τ ∈ T (Q) is generated by quadrics. As a consequence,

one has β
eQ
1 (Q) = β

eQ
1 (Q̃/ inτ (IQ)), so one gets

β
eR
i (R) ≤ β

eQ
i (Q̃/ inτ (IQ)) ≤

(
β

eQ
1 (Q̃/ inτ (IQ))

i

)
=

(
β

eR
1 (R)

i

)
,

from a standard deformation argument and the Taylor resolution. Thus, we ask:

Question 7. If R is a Koszul algebra, does β
eR
i (R) ≤

(
β

eR
1 (R)

i

)
hold for every i?

The results reported here are obtained jointly with Aldo Conca and Srikanth
Iyengar. Additional information and complete proofs may be found in [2].
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Frobenius maps on injective hulls and their applications

Mordechai Katzman

The talk focused on a technique which has been applied successfully to the solution
of various characteristic p problems. I illustrate this technique by producing an
explicit description of the parameter test ideal of Cohen-Macaulay rings suitable
for algorithmic implementation. The full account of this construction can be found
in [4].

Henceforth let S denote a commutative local ring of prime characteristic p. A
pe-weak parameter test element is an element c ∈ S not in any minimal prime
such that for all ideals A ⊆ S generated by a system of parameters, s is in the

tight-closure A∗ of A in S if and only if cspe′

is in the Frobenius power A[pe′ ] for
all e′ ≥ e. The above-mentioned pe-weak parameter test ideal is defined to be
the ideal generated by all pe-weak parameter test elements. (See [1] or [2] for an
introduction to tight closure and its properties.)

Given an S-module M , an eth Frobenius map on M is an additive function
φ : M → M with the property that φ(sm) = spe

φ(m) for all s ∈ S and m ∈ M .
Consider the skew-polynomial ring S[T ; fe] := ⊕i≥0ST i with multiplication Ts =

spe

T for s ∈ S. To give an eth Frobenius map φ : M → M amounts to giving M
the structure of a left-S[T ; fe] module with Tm = φ(m) for all m ∈M . Consider
ST e ⊆ S[T ; f ]; it is an S-bimodule with s(aT e) = saT e and (aT e)s = spe

aT e. We
define the Frobenius functor on S-modules to be F e

S(M) = ST e ⊗S M where S
acts on the left.

Henceforth, we fix (R, m) to be complete regular local ring over a field of charac-
teristic p > 0, we fix an ideal I ⊂ R and let S = R/I. We write ER and ES for the
injective hulls of the residue fields of R and S, respectively. We denote the Matlis
dual functor (−)∨ = Hom(−, ER). Given any S[T ; f ]-module M we can define an
R-linear map αM : F e

R(M) → M given by α(rT e ⊗m) = rTm for all r ∈ R and
m ∈ M . Taking Matlis duals gives a map α∨

M : M∨ → F e
R(M)∨. If we further

assume that M is Artinian, we have a functorial isomorphism γM : F e
R(M)∨ →

F e
R(M∨) and we obtain an R-linear map M∨ γM◦α∨

M−−−−−→ F e
R(M∨). (Compare this to

the construction of Gennady Lyubeznik’s H functor in section 4 of [5].)
Let Ce be the category of Artinian S[T ; fe]-modules and let De be the category

of R-linear maps M → F e
R(M) where M is a finitely generated S-module. The

construction above gives an exact contravariant functor ∆e : Ce → De. We can
also retrace our steps and obtain an exact contravariant functor Ψe : De → Ce

such that Ψe ◦∆e(−) and ∆e ◦ Ψe(−) are canonically isomorphic to the identity
functor (cf. [3] for details).

The technique mentioned in the first paragraph consists of translating a given
problem into one involving the properties of a certain S[T ; f ]-module structure on
ES , and applying the functor ∆e above to translate the problem into one phrased
in terms of ideals of the power series ring R.

For example, the pe-weak parameter test ideal of S has the following description
in terms of the canonical S[T ; f ]-module structure of Hd

m(S).
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Theorem 1. Assume that S is Cohen-Macaulay and has a parameter-test-element.
For all e ≥ 0, the pe-weak parameter test ideal of S is the image in S of

∩
{
(0 :R ST eM) |M ⊆ Hd

m(S) is a S[T ; f ]-submodule, ht(0 :R ST eM)S > 0
}

.

When S has canonical module ω ⊆ S the short exact sequence of S[T ; f ]-
modules 0→ ω → S → S/ω yields a surjection of S[T ; f ]-modules

ES = Hdim S
mS (ω)→ Hdim S

mS (S).

Let the kernel of this surjection be AnnES
J ; J can be given explicitly as the

image of the canonical module Extdim R−dim S
R (S, R) in Extdim R−dim S

R (ω, R) ∼= S.
An application of ∆1 to ES with the S[T ; f ]-module module structure induced

from that of Hdim S
m (S) yields a map R/I → R/I [p] given by multiplication by

some u ∈ (I [p] : I).
We can now lift the description of the parameter test ideal to one involving

S[T ; f ]-submodules of ES and we can apply then the functor ∆ to obtain the
following.

Theorem 2. Assume that S is Cohen-Macaulay and that the image of c ∈ R in S
is a test element. For all e ≥ 0, the pe-weak parameter test ideal τ e of S is given
by

((
(cJ + I)

⋆u)[pe]
:R u1+p+···+pe−1

J
)

S

where for any ideal A ⊆ R, (A)⋆u denotes the smallest ideal L containing A such
that uL ⊆ L[p].

All the ingredients in the theorem above are readily computed in any given con-
crete problem and hence we obtain an algorithm for computing pe-weak parameter
test ideals.
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Boij-Söderberg Theory, Part II

Frank-Olaf Schreyer

(joint work with David Eisenbud)

This talk is a continuation of David Eisenbud talks on Boij-Söderberg theory
about free resolutions of graded modules over a polynomial ring. We focus on the
information coming from cohomology tables of vector bundles and a sort of duality
between the two subjects.

In David’s talk the cone of Betti tables was described in terms of its extremal
rays. In this talk we focus on the facets of the cone. According to the simplicial
structure of the cone [2], an outer facet corresponds to a sequence of three degree
sequences which differ in at most two consecutive positions. For example the
degree sequences to the following Betti tables form such a chain.

(
3 8 6

1

)
<

(
2 4

4 2

)
<

(
1

6 8 3

)

The facet equation is defined by the vanishing on the smaller Betti table and all
below and on the larger Betti table and all above. This allows to compute the
coefficients of the facet equation recursively using zero coefficients on the support
of the right hand table as start values.




...
...

...
...

21 −12 5 0
12 −5 0 3
5 0 −3 4
0 3 −4 3
0 0 0 0
0 0 0 0
...

...
...

...




What we have to prove is, that this linear form is non-negative on the Betti table
of any minimal free resolution. Our key observation is that the numbers appearing
are dimensions of cohomology groups of what we call supernatural vector bundles.

Definition 1. A vector bundle E on Pm has natural cohomology [9], if for each k
at most one of the groups

Hi(E(k)) 6= 0.

It has supernatural cohomology, if in addition the Hilbert polynomial

χ(E(k)) =
rank E

m!
=

m∏

j=1

(k − zj)

has m distinct integral roots z1 < z2 < . . . < zm.
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For a coherent sheaf E on Pm we denote by

γ(E) = (γj,k) ∈
∞∏

k=−∞
Qm+1 with γj,k = hj(E(k))

its cohomology table. Analogous to the Theorem on free resolutions we have

Theorem 2. The extremal rays of the rational cone of cohomology tables of vector
bundles are generated by cohomology tables of supernatural vector bundles.

The crucial new concept is the following pairing between Betti tables of modules
and cohomology table of coherent sheaves. We define 〈β, γ〉 for a Betti table
β = (βi,k) and a cohomology table γ = (γj,k) by

〈β, γ〉 =
∑

i≥j

(−1)i−j
∑

k

βi,kγj,−k

Theorem 3 (Positivity 1). For F any free resolution of a finitely generated graded
K[x0, . . . , xm]-module and E any coherent sheaf on Pm we have

〈β(F ), γ(E)〉 ≥ 0.

For example the facet equation above, is obtained from the vector bundles E on
P2, which is the kernel of a general map O5(−1) → O3. The coefficients of the
functional 〈−, γ(E)〉 are




...
...

...
...

21 −12 5 0
12 −5 0 3
5 0 −3 4
0 3 −4 3
0 4 −3 0
0 3 0 −5
0 0 5 −12
0 0 12 −21
...

...
...

...




This is not quite what we wanted. We define truncate functionals 〈−, γ〉τ,c by
putting zero coefficients in the appropriated spots.

Theorem 4 (Positivity 2). For F any minimal free resolution of a finitely gener-
ated graded K[x0, . . . , xm]-module and E any coherent sheaf on Pm we have

〈β(F ), γ(E)〉τ,c ≥ 0.

To prove the positivity theorems we considering the tensor product of F with the
Čech resolution

C : . . .→ Cp(E) =
∑

0≤i0<i1<...<ip≤m

E[(xi0 · . . . · xip
)−1]→ . . .

of E , where E denotes any graded module whose associated sheaf is E .
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...
...

...
↑ ↑ ↑

F0 ⊗ C2 ← F1 ⊗ C2 ← F2 ⊗ C2 ← . . .
↑ ↑ ↑

F0 ⊗ C1 ← F1 ⊗ C1 ← F2 ⊗ C1 ← . . .
↑ ↑ ↑

F0 ⊗ C0 ← F1 ⊗ C0 ← F2 ⊗ C0 ← . . .

Since we want to prove a purely numerical statement, we can replace E with its
translate under a general element of PGL(m + 1, K) to achieve that E and F are
cohomologically transverse [11, 12]. The horizontal homology is then concentrated
in the first column and the total complex has cohomology only in positive degrees.
On the other hand the lower diagonal part of the vertical cohomology of internal
degree zero is

H2(F2 ⊗ E) . . .

H1(F1 ⊗ E) H1(F2 ⊗ E) . . .

H0(F0 ⊗ E) H0(F1 ⊗ E) H0(F2 ⊗ E) . . .

and the Euler characteristic of this diagram is the desired value 〈β(F ), γ(E)〉. We
can split the spectral sequence which starts with the vertical cohomology and
converge to the total cohomology as a sequence of K-vector spaces. The part
displayed above has then no cohomology except the cokernel in total cohomological
degree 0. So 〈β(F ), γ(E)〉 is the dimension of a vector space. Using the minimality
one sees that the truncated functionals are even more positive.
The main remaining part of the proof of both Boij-Söderberg decompositions is
now to establish the existence of supernatural vector bundles and pure resolution
for arbitrary zero or degree sequences. There are two methods for both cases
known. For equivariant resolution or homogeneous vector bundles one can use
appropriate explicit Schur functors [4, 5, 8] in characteristic 0. For arbitrary fields,
one can use a push down method [6]. For bundles this is a simple application of
the Künneth formula applied to E = π∗O(a1, . . . , am), where π is a finite linear
projection π : P1 × . . .× P1 → Pm and O(a1, . . . , am) is a suitable line bundle on
the product. For resolutions this consists of an iteration of the Lascoux method
[10] to get the Buchsbaum-Eisenbud family of complexes associated to generic
matrices [1]: We start with K, a Koszul complex on Pm × Pm1 × . . . × Pms of
1 + m +

∑s
i=1 mi forms of multidegree (1, . . . , 1) tensored with O(d0, a1, . . . , as).

Here s is the number of desired non linear maps and mj + 1 their degrees. The
spectral sequence for Rπ∗K of the projection π : Pm×Pm1 × . . .×Pms → Pm give
rise to the desired complex, if we choose a1, . . . , as suitably.
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[2] M. Boij and J. Söderberg, Graded betti numbers of Cohen-Macaulay modules and the mul-
tiplicity conjecture, math.AC/0611081.
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l’École Normale Sup. (1982), 365–390.
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Frobenius Actions

Manuel Blickle

In his groundbreaking work [Lyu97] Lyubeznik studies Frobenius actions on
local cohomology modules of a regular ring of positive characteristic p to obtain
strong finiteness results, extending earlier work of Huneke and Sharp [HS93]. The
key idea is that the a priori infinitely generated R-modules Hi

I(R) where I is an
ideal in R, arise as direct limits of the type

M
γ−−→ F ∗M

F∗γ−−−−→ F 2∗M −→ . . .

where M is a finitely generated R-module and F is the Frobenius map. In this
case we say that Hi

I(R) is generated by M . Thus he relocates the study of local
cohomology modules (or more generally: finitely generated unit R[F ]-modules, i.e.
R-modulesM together with an isomorphism F ∗M−→M) to the study of finitely

generated R-modules M with a map M
γ−−→ F ∗M . The question I want to address

is the following:

Can one choose a canonical representative (M, γ) which generates
M?

This can be answered by introducing the concept of minimality in the category of
γ-modules (i.e. coherent R modules with a map γ : M −→ F ∗M). We call (M, γ)
minimal, if M does not have nil-potent γ submodules nor nilpotent γ-quotient
modules. Here we call a γ-module N nilpotent if γi(N) = 0 for some i, where
γi = F ∗(γi−1) ◦ γ. Clearly, if N is nilpotent, then the above limit limi F i∗N = 0.



1178 Oberwolfach Report 22

This implies that two γ-modules N and M generate the same unit R[F ]–module
if N and M are nil-isomorphic, which roughly means that there is a map N −→M
of γ-modules such that kernel and cokernel are nilpotent. We have the following
statement.

Theorem 1 ([Bli08]). Let R be regular and F -finite and M a finitely generated
unit R[F ]–module. Then there is a unique minimal γ-module M which generates
M.

Already in [Lyu97] this was shown in the case that R is complete. In [Bli01]
the local F -finite case was proven. Pick any M that generates M. It is easy to
see by passing from M to M/K where K =

⋃
kerγi that we may assume that γ

is injective, such that M does not have nilpotent submodules (satisfies the first
part in the definition of minimality). This property clearly passes to submodules,
hence the goal is to find the smallest γ-submodule N such that the quotient M/N
is nilpotent. The key point in showing that such smallest submodule exists, is an
iterative procedure which leads to its construction. We define iteratively (with
M0 = M) the γ submodule Mi+1 as the smallest γ-submodule of Mi such that
γ(Mi) ⊆ F ∗Mi+1. The key observations are

(1) Mi = Mi+1 if and only if Mi is minimal iff and only if Mi = Mj for all
j > i.

(2) The chain is functorial and commutes with localization.
(3) The chain stabilizes locally (known local case of the theorem)

Let Ui be the open subset of x ∈ Spec R such that the (Mi)x = (Mi+1)x. By
the functoriality, the open sets Ui are an increasing sequence whose union is all
of Spec R, by the local result. Since Spec R is noetherian, it is compact, hence
Ui = Spec R for some i. But this implies that Mi = Mi+1 such that Mi is minimal.

This result allows one to pick for every finitely generated unit R[F ]-module a
unique minimal γ-module that generates it, i.e. the category of finitely generated
unit R[F ]-modules is equivalent to the category of minimal γ-modules.

Example 1. Let M be the γ module with structural map γ : R
r 7→farq

−−−−−−→ R ∼=
F ∗R where f ∈ R, a ∈ N, and q = pe are fixed. Then the unique minimal
representative Mmin of M is equal to the generalized test ideal τ(R, f

a
q−1

−ǫ) for all
small enough ǫ > 0. In fact, the above construction of Mmin shows also that the
rational number a

q−1 is not an accumulation point of jumping number for the test

ideals of (R, f). This yields an alternative proof of the discreteness and rationality
result for F -thresholds in [BMS08].

Another application of these results, or rather a dual version of them, is to the
cohomology of constructible sheaves of Fp-vectorspace on the étale site. Let C
be a smooth projective curve and N a constructible sheaf of Fp-vectorspaces on
Cet. The aim is to describe a bound for the Euler characteristic χ(Cet, N), similar
to the Grothendieck-Ogg-Shafarevich formula in the characteristic zero case. An
observation of Pink [Pin00] is that if N is the fixed points of the Frobenius acting
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on a locally free coherent OC -module M , then

χ(Cet, N) ≥ χ(C, M)

where the right hand side is the coherent Euler characteristic which may be com-
puted via Riemann-Roch to be (1 − g) rankM + deg M . The question is now if
one can choose M canonically? This is answered by Miller [Mil07] who observes
that if M∨ is minimal (in the above sense), then deg M is maximal possible, hence
the minimal M∨ yields to best possible such bound for the Euler characteristic.
Interestingly, one can use this observation to attach new coherent invariants to
constructible sheaves of Fp vectorspaces, by using the unique minimal γ-sheaf
associated to them.
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Potential applications of commutative algebra to combinatorial game
theory

Ezra Miller

(joint work with Alan Guo and Michael Weimerskirch)

Finite combinatorial games involving two players taking turns on the same game
board are much more complex when the last player to move loses (misère play,
as in Dawson’s chess) instead of winning (normal play, as in Nim). The goal
of Combinatorial Game Theory, in this setting, is to describe—abstractly and
algorithmically—the set of winning positions for any given game, or any given
class of games.

Recent developments by Plambeck [5], and later also with Siegel [6], have intro-
duced certain commutative monoids, called misère quotients, as contexts in which
to classify winning positions in misère play; see [7] for a gentle introduction. Our
aim is to develop lattice games, played on affine semigroups, to place arbitrary
impartial combinatorial games—but particularly the historically popular notion
of octal game—in a general context where commutative algebra might be brought
to bear on periodicity questions. In this note, we state a precise conjecture to the
effect that sets of winning positions in lattice games are finite unions of translates
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of affine semigroups, drawing analogies and connections to the combinatorics of
monomial local cohomology and binomial primary decomposition.

In what follows, C is a fixed affine semigroup in Zd; thus C is a finitely generated
submonoid of Zd. We additionally require that C be pointed : its identity is its
only unit (i.e., invertible element). The games are basically played on C, with
allowed lattice moves taken from a fixed set Γ.

Definition 1. A finite subset Γ ⊂ Zd r {0} is a rule set if

1. NΓ is pointed, and
2. NΓ ⊇ C.

A game board G is the complement in C of a finite Γ-order ideal in C called the set
of defeated positions. Elements in G are called positions. A move proceeds from a
position p ∈ G to a point p− γ for some γ ∈ Γ; the move is legal if p− γ ∈ G.

Normal play corresponds to the choice of D = ∅; in that case, the goal is to be
the player whose move lands at the origin. Misère play corresponds to the choice
of D = {0}; in that case, the goal is not to be the player whose move lands at the
origin. In this sense, misère play is “normal play in which one tries to lose”.

It is implicit in the definition that Γ induces a partial order on C; the elementary
proof is omitted. Conjecture 3 will make sense with the above notion of rule set Γ,
but one or more of the following stronger conditions on Γ might be required.

3. Γ is the minimal generating set for NΓ.
4. For each ray ρ of C, there exists γi ∈ Γ lying in the negative tangent cone
−TρC = −⋂

H⊃ρ H+ of C along ρ, where H+ ⊃ C is the positive closed
half space defined by a supporting hyperplane H for C.

5. Every p ∈ C has a Γ-path to 0 contained in C; that is, given p, there exists
a sequence 0 = p0, p1, . . . , pr = p in C with pk − pk−1 ∈ Γ for all k > 0.

Condition 4 is precisely what is necessary to guarantee that from every position
there is a Γ-path ending in a neighborhood of the origin. Thus condition 5 implies
condition 4, though we omit the proof.

Definition 2. Fix a game board G with rule set Γ. Then W ⊆ G is the set of
winning positions, and L ⊆ G is the set of losing positions, if

1. W and L partition G,
2. (W + Γ) ∩G = L, and
3. (W − Γ) ∩W = ∅.

The last player to make a legal move wins; this holds both for normal play and
misère play, as well as the generalizations for larger D. A position is winning if the
player who just moved there can force a win. Condition 1 says that every position
is either winning or losing. Condition 2 says that the losing positions are precisely
those positions possessing legal moves to W : if your opponent lands on a losing
position, then you can always move to W to force a win. Condition 3 says that it
is impossible to move directly from one winning position to another.

Conjecture 3. If W is the set of winning positions for a lattice game, then W is
a finite union of translates of affine semigroups.
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The conjecture, if true, would furnish a finite data structure in which to encode
the set of winning positions. This would be the first step toward effectively com-
puting the winning positions. Note that the misère octal game Dawson’s chess [1]
remains open; that game initiated and still motivates much of the research on
misère games, and one hope would be to use lattice games, along with whatever
computational commutative algebra might arise, to crack it.

According to the theory invented by Sprague and Grundy in the 1930s [3, 8], all
normal play impartial games are equivalent to the particularly simple game Nim
under a certain equivalence relation. For misère games, the analogous equivalence
relation is too weak (i.e., too many equivalence classes: not enough games are
equivalent to one another). That is why Plambeck invented misère quotients [5].
In the setting of lattice games, the equivalence relation is as follows.

Definition 4. Fix a game board G = C r D with winning positions W . Two
lattice points p and q ∈ C are congruent if (p + C) ∩W = p − q + (q + C) ∩W .
The misère quotient of C is the set Q of congruence classes.

Thus p and q are congruent if the winning positions in the “cones” above them
are translates of one another. It is elementary to verify that the quotient map
C → Q is a morphism of monoids. Plambeck and Siegel have studied misère
quotients in quite a bit of algebraic detail [6]; as this is the proceedings for a
conference on commutative algebra, it is strongly recommended that the reader
have a look at their work, as it is filled with commutative algebra of finitely
generated monoids.

Theorem 5. Conjecture 3 holds when the misère quotient is finite.

Proof. Follows by properly interpreting the combinatorial description of primary
decomposition [2] of the binomial presentation ideal of the semigroup ring for Q
inside of the semigroup ring for C. �

From discussions with Plambeck, Siegel, and others, as well as from examples,
it seems likely that binomial primary decomposition has a further role to play in
open questions about misère quotients. Such questions include when finiteness
occurs, and more complex “algebraic periodicity” questions, which have yet to be
formulated precisely [7].

There is another analogy with commutative algebra that is worth bearing in
mind. When I is a monomial ideal in an affine semigroup ring, and M is a
finitely generated finely graded (i.e., Zd-graded) module, then the local cohomology
Hi

I(M) is supported on a finite union of translates of affine semigroups [4]. If
Conjecture 3 is true, then perhaps one could develop a homological theory for
winning positions in combinatorial games that explains why.
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Shokurov’s ACC Conjecture for log canonical thresholds on smooth
varieties

Lawrence Ein

(joint work with Tommaso de Fernex and Mircea Mustaţă)

Shokurov’s ACC Conjecture [Sho] says that the set of all log canonical thresh-
olds on complex varieties of any fixed dimension satisfies the ascending chain
condition, that is, it contains no infinite strictly increasing sequences. This con-
jecture attracted considerable interest due to its implications to the Termination
of Flips Conjecture (see [Bir] for a result in this direction). The first unconditional
results on sequences of log canonical thresholds on smooth varieties of arbitrary
dimension have been obtained in [dFM], and they were subsequently reproved and
strengthened in [Kol2]. In a recent paper, we prove the conjecture is true for
smooth varieties.

Theorem 0.1. For every n, the set

T sm
n := {lct(a) | X is smooth, dimX = n, a ( OX}

of log canonical thresholds on smooth varieties of dimension n satisfies the ascend-
ing chain condition.

In this talk we discuss various techniques that went into the proof of the above
theorem.

Generic Limits

We review the construction from [Kol2], extending it from sequences of power
series to sequences of ideals.

Let R = k[[x1, . . . , xn]] be the ring of formal power series in n variables with
coefficients in an algebraically closed field k, and let m be its maximal ideal. If
k ⊂ L is a field extension, then we put RL := L[[x1, . . . , xn]] and mL := m ·RL.

For every d ≥ 1, we consider the quotient homomorphism R → R/md. We
identify the ideals in R/md with the ideals in R containing md. Let Hd be the
Hilbert scheme parametrizing the ideals in R/md, with the reduced structure.
Since dimk(R/md) < ∞, this is an algebraic variety. Mapping an ideal in R/md
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to its image in R/md−1 gives a surjective map td : Hd → Hd−1. This is not
a morphism. However, by Generic Flatness we can cover Hd by disjoint locally
closed subsets such that the restriction of td to each of these subsets is a morphism.
In particular, for every irreducible closed subset Z ⊆ Hd, the map td induces a
rational map Z 99K Hd−1.

Suppose now that (ai)i∈I0 is a sequence of ideals ai ⊆ R indexed by the set
I0 = Z+. We consider sequences of irreducible closed subsets Zd ⊆ Hd for d ≥ 1
such that

(⋆) For every d ≥ 1, the projection td+1 induces a dominant rational map
φd+1 : Zd+1 99K Zd.

(⋆⋆) For every d ≥ 1, there are infinitely many i with ai + md ∈ Zd, and the
set of such ai + md is dense in Zd.

Given such a sequence (Zd), we define inductively nonempty open subsets Z◦
d ⊆ Zd,

and a nested sequence of infinite subsets

I0 ⊇ I1 ⊇ I2 ⊇ · · · ,

as follows. We put Z◦
1 = Z1 and I1 = {i ∈ I0 | ai + m ∈ Z1}. For d ≥ 2, let

Z◦
d = φ−1

d (Z◦
d−1) ⊆ Domain(φd) and Id = {i ∈ I0 | ai + md ∈ Z◦

d}. It follows by
induction on d that Z◦

d is open in Zd, and condition (⋆⋆) implies that each Id is
infinite. Furthermore, it is clear that Id ⊇ Id+1.

Sequences (Zd) satisfying (⋆) and (⋆⋆) can be constructed as follows. We first
choose a minimal irreducible closed subset Z1 ⊆ H1 with the property that con-
tains ai + m for infinitely many indices i ∈ I0. We set J1 = {i ∈ I0 | ai + m ∈ Z1}.
By construction, J1 is an infinite set and Z1 is the closure of {ai + m | i ∈ I1}.
Next, we choose a minimal closed subset Z2 ⊆ H2 that contains ai + m2 for in-
finitely many i in J1. As we have seen, t2 induces a rational map φ2 : Z2 99K Z1

and this has the property that the set J2 = {i ∈ J1 | ai + m2 ∈ Z2} is infinite, and
that Z2 is the closure of {ai + m2 | i ∈ J2}. Note that by the minimality in the
choice of Z1, the rational map φ2 is dominant. Repeating this process we select a
sequence (Zd) that satisfies (⋆) and (⋆⋆) above.

Suppose now that we have a sequence (Zd) with these two properties. The
rational maps φd induce a nested sequence of function fields k(Zd). Let K :=⋃

d≥1 k(Zd). Each morphism Spec(K) → Zd ⊆ Hd corresponds to an ideal a′d in

RK/md
K , and the compatibility between these morphisms implies that there is a

(unique) ideal a in RK such that a′d = a + md
K for all d.

Definition 0.2. With the above notation, we say that the ideal a is a generic
limit of the sequence of ideals (ai)i≥1. More generally, for every field extension
L ⊇ K, we say that a ·RL is a generic limit of the sequence (ai)i≥1.

Proposition 0.3. Let a ⊆ RK be a generic limit of a sequence (ai)i≥1 of ideals of
R. Assume that ai 6= R for every i. For every d there is an infinite subset I◦d ⊆ Id

such that

lct(a + md
K) = lct(ai + md) for every i ∈ I◦d .
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Moreover, if E is a divisor over Spec(RK) computing lct(a+md
K), then there is an

integer dE such that for every d ≥ dE the following holds: there is an infinite subset
IE
d ⊆ I◦d , and for every i ∈ IE

d a divisor Ei over Spec(R) computing lct(ai + md),
such that ordE(a + md

K) = ordEi
(ai + md).

Effective m-adic semicontinuity of log canonical thresholds

Another key technical tool to our proof is the following m-adic semicontinuity
theorem for log canonical thresholds.

Theorem 0.4. Let X be a log canonical variety, and let a ( OX be a proper ideal.
Suppose that E is a prime divisor over X computing lct(a), and consider the ideal
sheaf q := {h ∈ OX | ordE(h) > ordE(a)}. If b ⊆ OX is an ideal such that
b+q = a+q, then after possibly restricting to an open neighborhood of the center
of E we have lct(b) = lct(a).

A version of this result was first proven by Kollár in [Kol2] in the setting of for-
mal power series using deep results in the Minimal Model Program from [BCHM]
and a theorem on Inversion of Adjunction due from [Kaw] (the original formulation
for power series assumes that the ideals are principal and the center of E is the
origin). By restricting to the algebraic setting, we give an elementary proof of this
result which only uses the Connectedness Theorem of Shokurov and Kollár (see
Theorem 7.4 in [Kol1]). It turns out that this geometric version of the result is
enough for our purposes. On the other hand, our proof would extend to the setting
of formal power series, provided the Connectedness Theorem could be extended
to that setting.
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Rationality of F-jumping exponents on singular varieties

Shunsuke Takagi

(joint work with Manuel Bickle, Karl Schwede and Wenliang Zhang)

In this note, we will discuss the rationality of F-jumping exponents on singular
varieties. First we recall the situation in characteristic zero.

Let X be a Q-Gorenstein normal algebraic variety over a field of characteristic
zero, a ⊆ OX be an ideal sheaf of X . Let π : Y → X be a log resolution of the

pair (X, a), that is, a proper birational morphism with X̃ a nonsingular variety
such that aOY = OY (−F ) is an invertible sheaf and that Exc(π) ∪ Supp(F ) is a
simple normal crossing divisor. Fix a real number t > 0. Then the multiplier ideal
J (at) of a with exponent t is

J (at) = J (X, at) = π∗OY (⌈KY/X − tF ⌉) ⊆ OX ,

where KY/X is the relative canonical divisor of π. This definition is independent
of the choice of the log resolution π.

By the definition of multiplier ideals, it is easy to see that the family of multiplier
ideals J (at) of a fixed ideal a is right continuous in t: for each t > 0, there exists

ǫ > 0 such that J (at) = J (at′) for all t′ ∈ [t, t + ǫ).

Definition 1. A real number t > 0 is called a jumping exponent of a if J (at−ǫ) )

J (at) for all ǫ > 0.

Lemma 2. All jumping exponents of a form a discrete set of rational numbers.

Proof. Write

F =

r∑

i=1

aiEi, KY/X =

r∑

i=1

kiEi.

If t is a jumping exponent of a, then ki−tai should be an integer for some 1 ≤ i ≤ r.
Since ai and ki are rational numbers, t is also a rational number. �

Now we turn to the situation in positive characteristic.
Let R be a Noetherian reduced ring of characteristic p > 0. We denote by R◦

the set of elements of R which are not in any minimal prime ideal. Also, for each
integer e ≥ 1, denote by F e

∗R the ring R viewed as an R-module via the e-times
iterated Frobenius map F e : R → R which sends x to xpe

. The ring R is called
F-finite if F 1

∗ R is a finitely generated R-module.
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Let a be an ideal of R such that a∩R◦ 6= ∅. Let E :=
⊕

m
ER(R/m) be the direct

sum of the injective hulls of the residue fields R/m of R, where m runs through

all maximal ideals of R. Fix a real number t > 0. Then the at-tight closure 0∗a
t

E

of the zero submodule in E is defined to be the submodule of E consisting of all
elements z ∈ E for which there exists c ∈ R◦ such that ca⌈tq⌉⊗z = 0 in F e

∗R⊗R E
for all large q = pe. The generalized test ideal τ̃(at) is

τ̃(at) = τ̃ (R, at) = AnnR(0∗a
t

E ) ⊆ R.

The reader is referred to [4] and [3] for basic properties of generalized test ideals.
Thanks to Hara and Yoshida’s result, we can think of generalized test ideals as

a characteristic p analogue of multiplier ideals.

Theorem 3 ([4]). Let (R, m) be a Q-Gorenstein normal local ring essentially
of finite type over a perfect field of characteristic p > 0, and let a ⊆ R be a
nonzero ideal and t > 0 be a fixed real number. Assume that (R, a) is reduced
from characteristic zero to characteristic p ≫ 0, together with a log resolution
π : Y → Spec R of (Spec R, a) giving the multiplier ideal J (Spec R, at). Then

J (Spec R, at) = τ̃(R, at).

Lemma 4. If R is F-finite, then the following holds.

(1) The formation of τ̃ (at) commutes with localization and completion.

(2) For each t > 0, there exists ǫ > 0 such that τ̃ (at) = τ̃ (at′) for all t′ ∈
[t, t + ǫ).

Definition 5. A real number t > 0 is called an F-jumping exponent of a if
τ̃ (at−ǫ) ) τ̃ (at) for all ǫ > 0.

Blickle-Mustaţǎ-Smith proved that all F-jumping exponents are rational num-
bers if the ring is regular.

Theorem 6 ([1, 2]). Let R be an F-finite regular ring of characteristic p > 0
and a be an ideal of R such that a ∩ R◦ 6= ∅. Suppose that one of the following
conditions is satisfied:

(1) a is a principal ideal,
(2) R is essentially of finite type over a field.

Then all F-jumping exponents of a form a discrete set of rational numbers.

Remark 7. Katzman–Lyubeznik–Zhang also proved a similar result in [5]: if R
is an excellent (not necessarily F-finite) local ring of characteristic p > 0 and a is
a principal ideal, then all F-jumping exponents of a form a discrete set of rational
numbers.

We generalize Blickle-Mustaţǎ-Smith’s result to the case of singular varieties.

Theorem 8. Let R be an F-finite Q-Gorenstein normal ring of characteristic
p > 0 and a be an ideal of R such that a ∩ R◦ 6= ∅. Assume that the order of the
canonical module ωR in the class group Cl(R) is not divisible by the characteristic
p. In addition, suppose that one of the following conditions is satisfied:
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(1) a is a principal ideal,
(2) R is essentially of finite type over a field.

Then all F-jumping exponents of a form a discrete set of rational numbers.

Question 9. If the ring is not Q-Gorenstein, does there exist a irrational F-
jumping exponent?
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[2] M. Blickle, M. Mustaţǎ and K. Smith, F-thresholds of hypersurfaces, arXiv:0705.1210, to
appear in Trans. Amer. Math. Soc.

[3] N. Hara and S. Takagi, On a generalization of test ideals, Nagoya Math. J. 175 (2004),
59–74.

[4] N. Hara and K. Yoshida, A generalization of tight closure and multiplier ideals, Trans. Amer.
Math. Soc. 355 (2003), 3143–3174.

[5] M. Katzman, G. Lyubeznik and W. Zhang, On the discreteness and rationality of F-jumping
coefficients, arXiv:0706.3028, to appear in J. Algebra.

A tight closure theory in equal characteristic that commutes with
localization

Melvin Hochster

(joint work with Neil A. Epstein)

We discuss recent joint work with Neil Epstein that provides a modification of
tight closure theory, both in equal characteristic p > 0 and in equal characteristic
0, that commutes with localization.

It was recently shown by H. Brenner and P. Monsky that tight closure in char-
acteristic p does not, in general, commute with localization, although many special
cases of the localization question remain open.

We focus on the case of closure operations on ideals in a family of Λ-algebras,
where Λ is some base ring. The most important choices for Λ are the integers,
the rational numbers, and the integers modulo a prime p. The theory extends
readily to modules for those closures, like tight closure, with the property that the
question of whether u ∈ M is in the closure of N is equivalent to the question of
whether the image of u is in the closure of 0 in M/N . In such instances, M can
be replaced by a free module G that maps onto it, N by its inverse image in G,
and u by an element of G that maps to u.

Suppose that the closure of I is denoted I∗. We assume that the closures we are
studying have the property that I∗ is an ideal containing I such that I∗ = (I∗)∗.

Suppose that we fix a family of systems Σ of polynomial equations over Λ: each
such system Σ involves variables X1, . . . , Xn, Y , and U1, . . . , Uh where n and h
may vary with Σ. A closure is called equational over Λ if for y ∈ R and I an ideal
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of R, y is in the closure of I precisely if at least one system Σ in the family has a
solution in which the Xi are in I, Y = y, and the Uj are in R.

Equational closures are persistent, that is if u is in the closure of I in R and we
have a homomorphism R→ S, then the image of u is in the closure of IS in S.

An equational closure is called homogeneous if for each element Σ of the family
that determines it, the variables Xi, Y, Uj may be assigned positive integer degrees
in such a way that every equation is (weighted) homogeneous with respect to this
assignment of degrees.

Taking the radical is a homogeneous equational closure for the family in which
a typical system is the single equation Y n − X = 0 for some positive integer n.
One may give X weight 1 and Y weight n. Integral closure, Frobenius closure,
and plus closure of ideals all turn out to be homogeneous equational closures.

A persistent closure is equational if and only if all instances of the closure arise
by base change from instances in a finitely generated Λ-algebra. That is, whenever
u is in the closure of I in S, there is a finitely generated Λ-algebra R, an element u0

in R, an ideal I0 in R such that u0 is in the closure of I0, and a Λ-homomorphism
R→ S such that u0 7→ u and I0S is contained in I.

A closure is homogeneous equational if and only if (†) the corresponding con-
ditions are satisfied with the additional restrictions that R be a finitely generated
nonnegatively graded Λ-algebra with R0 = Λ, that I0 be graded with generators
of positive degree, and that u0 be homogeneous of positive degree.

All homogeneous closures commute with localization because if homogeneous
equations have a solution in the localized ring W−1R, call it (r1/w, . . . , rn/w),
where the variable in the i th spot has degree di, the equations also have a solution
of the form (wNb1−1r1, . . . , wNbn−1rn) for large N : here it may be necessary to
adjust the choice of the denominator w so that certain W -torsion is killed.

We now define homogeneous equational tight closure by allowing only those
instances of tight closure that arise by base change from a graded instance as
described in the condition labeled (†) two paragraphs above.

This gives new notions of tight closure both in prime characteristic p > 0 and in
equal characteristic 0 that are persistent, captures colon (and, more generally, still
give phantom homology for finite projective complexes when the original notion
does), capture contracted expansions from integral extensions, yield a Briançon-
Skoda theorem, have the property that every submodule of every module is closed
over a regular ring, and may be tested modulo nilpotents, modulo minimal primes,
or by maps to completions at maximal ideals, assuming that the ring is locally
excellent. This closure may also be tested by all maps to complete local domains.
It agrees with tight closure in a finitely generated graded algebra over any of the
prime fields in the case of graded modules and their submodules. Beyond all that,
the calculation of this closure commutes with localization.
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One has for the new closure that in equal characteristic 0 it has the colon-
capturing property and that, more generally, if one has a finite complex of modules
each of which is locally free of constant rank that satisfies the standard conditons
on rank and height (the height condition must hold modulo all minimal primes),
then the cycles are in the homogeneous tight closure of the boundaries. Moreover,
the tight closure of 0 in the augmentation module is the same as its homogeneous
tight closure. The proofs depend on careful application of the Artin-Rotthaus the-
orem, properties of homogenization of affine algebras (corresponding to embedding
in a weighted projective space), as well as proving new results in characteristic p
that show that tight closure commutes with localization at an element t in certain
cases (e.g., for parameter ideals) in a constructive sense: if I is a parameter ideal
in R one can give an explicit bound B > 0 such that if r ∈ R and r/1 ∈ (IRt)

∗ in
Rt, then tBr ∈ I∗.

In characteristic p, homogeneous tight closure lies between the plus closure
and the usual tight closure, and while it might agree with the the former it is
definitely, in general, smaller than the latter. It is particularly surprising that
one gets a notion of tight closure in equal characteristic 0 that commutes with
localization.

The new notion leads to a new class of rings: those for which every ideal is
tightly closed in the sense of homogeneous tight closure. In characteristic p, this
class contains all weakly F-regular rings and is closed under localization at any
multiplicative system.

H-vectors of simplicial complexes and Serre’s conditions

Satoshi Murai

(joint work with Naoki Terai)

The study of h-vectors of simplicial complexes is an interesting research area in
combinatorics as well as in combinatorial commutative algebra. On h-vectors
of simplicial complexes, one of fundamental problems is their non-negativity. For
example, a classical result of Stanley guarantees that h-vectors of Cohen–Macaulay
complexes are non-negative. We study the non-negativity of h-vectors in terms of
Serre’s condition (Sr).

Let S = K[x1, . . . , xn] be a standard graded polynomial ring over an infinite
field K. Let I ⊂ S be a graded ideal and R = S/I. The Hilbert series of R
is the formal power series F (R, λ) =

∑∞
q=0(dimK Rq)λ

q , where Rq is the graded

component of degree q of R. It is known that F (R, λ) is a rational function of the
form (h0 + h1λ + · · · + hsλ

s)/(1 − λ)d, where each hi is an integer with hs 6= 0
and where d = dimR. The vector (h0(R), h1(R), . . . , hs(R)) = (h0, h1, . . . , hs) is
called the h-vector of R. We say that R = S/I satisfies Serre’s condition (Sr) if

depthRP ≥ min{r, dimRP }
for all graded prime ideals P ⊃ I of S.
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Let ∆ be a simplicial complex on [n] = {1, 2, . . . , n}. Thus ∆ is a collection
of subsets of [n] satisfying that (i) {i} ∈ ∆ for all i ∈ [n] and (ii) if F ∈ ∆
and G ⊂ F then G ∈ ∆. The squarefree monomial ideal I∆ ⊂ S generated by all
squarefree monomials xF =

∏
i∈F xi ∈ S with F 6∈ ∆ is called the Stanley–Reisner

ideal of ∆. The ring K[∆] = S/I∆ is the Stanley–Reisner ring of ∆. The vector
h(∆) = h(K[∆]) is called the h-vector of ∆.

We say that ∆ satisfies Serre’s condition (Sr) if K[∆] satisfies Serre’s condition
(Sr). It is not hard to see that ∆ satisfies (Sr) if and only if, for every F ∈
∆, H̃i(lk∆(F ); K) = 0 for i < min{r − 1, dim lk∆(F )}, where H̃i(∆; K) is the
reduced homology groups of ∆ over a field K and where lk∆(F ) = {G ⊂ [n] \
F : G ∪ F ∈ ∆} is the link of ∆ with respect to a face F ∈ ∆ (see [3, p.
454]). A homological characterization of (Sr) is also known. It is know that a
(d − 1)-dimensional simplicial complex ∆ satisfies (Sr) with r ≥ 2 if and only if

dim(Extn−i
S (K[∆], ωS)) ≤ i − r for i = 0, 1, . . . , d − 1, where ωS is the canonical

module of S (see [1, Lemma 3.2.1]).
We remark some basic facts. Every simplicial complex satisfies (S1). On the

other hand, for r ≥ 2, simplicial complexes satisfying (Sr) are pure and strongly
connected. (S2) states that ∆ is pure and lk∆(F ) is connected for all faces F ∈ ∆
with |F | < dim∆. (Sd) is equivalent to the famous Cohen–Macaulay property of
simplicial complexes.

A classical result of Stanley [2] guarantees that if ∆ is Cohen–Macaulay (that
is, if it satisfies (Sd)) then hk(∆) is non-negative for all k. We generalize this
classical result in the following way.

Theorem 1. If a simplicial complex ∆ satisfies (Sr) then hk(∆) ≥ 0 for k =
0, 1, . . . , r.

We also study what happens if hk = 0 for some 1 ≤ k ≤ r. We get the next
result.

Theorem 2. Let ∆ be a simplicial complex which satisfies (Sr). If ht(∆) = 0 for
some 1 ≤ t ≤ r then hk(∆) = 0 for all k ≥ t and ∆ is Cohen–Macaulay.

It is known that, for all integers 2 ≤ r < d, there exists a (d − 1)-dimensional
simplicial complex ∆ which satisfies Serre’s condition (Sr) but hr+1(∆) < 0 ([4,
Example 3.5]). Thus we cannot expect that all the hk are non-negative. However,
we proved the following weak non-negative property for hk(∆) with k ≥ r.

Theorem 3. If a simplicial complex ∆ satisfies (Sr) then
∑

k≥r hk(∆) ≥ 0.

To prove the above theorems, we prove the following algebraic result which
might be itself of interest. For a finitely generated graded S-module M , let

reg M = max{j : Tori(M, K)i+j 6= 0 for some i}
be the (Castelnuovo-Mumford) regularity of M .

Theorem 4. Let r ≥ 1 be an integer. Let I ⊂ S be a graded ideal and d the
Krull dimension of R = S/I. Suppose that reg(Extn−i

S (R, ωS)) ≤ i − r for i =
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0, 1, . . . , d−1. There exists a linear system of parameters Θ = θ1, . . . , θd of R such
that

hk(R) = dimK(R/ΘR)k for k ≤ r.

Theorem 1 follows from Theorem 4 as follows: If R is a Stanley–Reisner ring,
then it is known that Extn−i

S (R, ωS) is a squarefree module (see [5]). The regularity
of a squarefree module is always bounded by its dimension. Thus the homological
characterization of (Sr) shows reg(Extn−i

S (R, ωS)) ≤ i − r for i = 0, 1, . . . , d − 1,
where d = dimR. Then apply Theorem 4.

It would be natural to ask whether Theorems 1, 2 and 3 hold for all graded
ideals I ⊂ S. While we do not have a complete answer, we know that they
are true for monomial ideals since polarization preserves Serre’s conditions. We
expect that there are other nice classes of graded ideals for which Theorems 1,
2 and 3 hold. Since a key point in the proof of Theorem 1 is the fact that
reg(Extn−i

S (K[∆], ωS)) ≤ dim(Extn−i
S (K[∆], ωS)), the following question might

be of interest.

Question 5. When reg(Extn−i
S (S/I, ωS)) ≤ dim(Extn−i

S (S/I, ωS)) holds? Which

graded ideals I satisfy reg(Extn−i
S (S/I, ωS)) ≤ i − r for i = 0, 1, . . . , dimS/I − 1

when S/I satisfies (Sr)?

We do not know whether the above question is true even for monomial ideals
(while we know that Theorems 1, 2 and 3 are true for monomial ideals).
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Torsion in the symmetric algebra and implicitization.

Marc Chardin

(joint work with Laurent Buse, Jean-Pierre Jouanolou and Aron Simis)

The problem we considered is to determine the image of a rational map from a
projective space to another of dimension one more, in terms of the homogeneous
polynomials (of same positive degree) defining the map. We only described precise
results in the case where the map has finitely many base points and the image is
a hypersurface.
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There are two key ideas in this approach, both detailed in the work of Laurent
Busé and Jean-Pierre Jouanolou. One is to remark that the equation of the image is
the annihilator of the graded component of the Rees algebra of the ideal generated
by the polynomials defining the map, in any non negative degree. (Recall that
it is, almost by definition, the annihilator of the degree 0 component of the Rees
algebra). A second key idea is to control the torsion in the symmetric algebra
using the approximation complexes constructed by Juergen Herzog, Aron Simis
and Wolmer Vasconcelos. In particular in cases where this torsion vanishes in high
degrees, one derives an upper bound on the degree from which it is always zero,
in terms of some basic invariants of the map.

In this talk, I reported on recent results and on work in progress concerning the
understanding of the torsion in the symmetric algebra, and on its consequences
for the implicitization problem. As mentioned above, only the case of maps with
finitely many base points was treated. In a joint work with Laurent Buse and Jean-
Pierre Jouanolou, we provided optimal bounds for the degree where the torsion of
the symmetric algebra vanishes. We also analyzed the irreducible components of
the symmetric algebra and their multiplicities, in order to describe the difference
between the the cycles defined by the Rees algebra and the symmetric algebra
in the biprojective space the naturally live in. This is of importance, since the
algorithms developped for the implicitization problem actually computes the direct
image of the cycle defined by the symmetric algebra, under the projection to the
projective space corresponding to the target of the map.

Denoting by A and B the polynomial rings (over the same field) corresponding
respectively to the origin and the target projective spaces, in respectively n and
n + 1 variables, by I the ideal generated by the n + 1 forms in A of same degree
d > 0 defining the rational map λ, and by m the graded maximal ideal of A, the
following statement contains several results mentioned above.

Theorem 1. Let Z be the closed image of λ, X := Proj(A/I) be the base locus
and IX := I :A m∞. If X ⊂ Pn−1 is empty or zero dimensional and locally defined
by at most n equations then,

div(SymA(I)ν) = deg(λ).[Z] +
∑

x∈X

(ex − dx)[Hx],

if and only if ν ≥ (n− 1)(d− 1)− indeg(IX); where the brackets denote the corre-
sponding divisor, ex is the Hilbert-Samuel multiplicity of the (not always reduced)
point x, dx its degree, and Hx a hyperplane defined by a linear form obtained by
evaluation at x of any syzygy of the n + 1 given generators of I.

For such a ν, this divisor can be computed as the determinant of the correspond-
ing graded part of the approximation complex.

Recall that ex = dx if and only if x is a locally complete intersection base
point. The main consequences in applications to geometric modeling is the precise
optimal value for ν where SymA(I)ν is torsion and gives the divisor associated to
the direct image, and its computation as an alternated product of determinants.
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Next I reported on joint work in progress with Laurent Busé and Aron Simis
concerning the structure of the torsion of the symmetric algebra. It turns out
that in a range of degrees that may be fairly big, the torsion is not zero but has
a simple structure that can be completely described in terms of the syzygies of
the polynomials defining the map. The knowledge of this simple structure can
be used to compute the equation of the image of the map using determinants of
much smaller sizes, which is of importance in practice. Particular cases of this
method were studied first by David Cox, Ron Goldmann, and Zhang. In the case
of a map given by ”general polynomials” of some degree, this simple description
is valid for half of the degrees where the torsion is not zero. We hope that the
good understanding of the minimal free resolution of more graded components of
the Rees algebra, given in our work, will have further applications.

With the notations as in Theorem 1, in the case where there is no base point,
our result gives :

Theorem 2. Let k be the base field and J ⊂ A ⊗k B be the kernel of the
bigraded natural map A⊗k B → ReesA(I). Let J [ℓ] be the subideal of J generated
by its elements of bidegree (a, b) with b ≤ ℓ and J [ℓ]µ be the B-module of elements
of bidegree (µ, ∗) in J [ℓ].

If I is m-primary, then for all integer µ ≥ reg(I)− d,

(i) Hi
m(SymR(I))µ = 0 for i > 0, and

(ii) for all integers ℓ ≥ 2 the B-module (J [ℓ]/J [ℓ − 1])µ is free of rank
dimk(H1)µ+ℓd, where H1 is the first Koszul homology module of the n + 1 gen-
erators of I in A.
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The Classification of Graded Maximal Cohen-Macaulay Modules over
a Graded Gorenstein Ring after Dmitri Orlov

Ragnar-Olaf Buchweitz

1. The aim of this talk was to present Dmitri Orlov’s [5] fundamental results al-
luded to in the title. We emphasized in particular their significance in the classical
context of Commutative Algebra and Algebraic Geometry.

2. Let A = ⊕i≥0Ai be a positively graded, not necessarily commutative, algebra
over a field K = A0, such that



1194 Oberwolfach Report 22

(a) The ring A is noetherian on either side,
(b) As module on either side, A is of (the same) finite injective dimension d,
(c) For the (left or right) A–module K = A/A>0, one has Ext•A(K, A) ∼= K(a)[−d]

for some integer1 a.

Such rings are called (Artin-Schelter or simply AS ) Gorenstein of virtual dimen-
sion d with Gorenstein invariant a. If a > 0, the algebra is called Fano, if a = 0,
it is Calabi-Yau, while for a < 0 it is of general type.

3. Just assuming (a) and (b) above, and A not necessarily graded, a finitely

generated A–module M is Maximal Cohen-Macaulay (MCM) if ExtiA(M, A) = 0
for i 6= 0. The stable category MCM(A), of such modules modulo projective
modules, is naturally triangulated, with Ω, the syzygy functor , as inverse of the
translation functor. By [3], this category has the following equivalent incarnations:

(i) (modA)[Ω−1], the category obtained from the stable category of all finitely
generated (graded) A–modules by inverting the syzyzgy functor. The equiv-
alence assigns to (the stable class of a) finitely generated (graded) A–module
N its maximal Cohen-Macaulay approximation M(N), see [2].

(ii) K∞,∅(projA), the homotopy category of acyclic complexes of finite projective
(graded) A–modules. The equivalence assigns to a maximal Cohen-Macaulay
module M a (graded) complete resolution CR(M), and taking the zeroth

syzygy module in such a complex provides the inverse.
(iii) Db(A)/Db

perf(A), the Verdier quotient of the bounded derived category of

finitely generated (graded) A–modules modulo its thick subcategory of per-
fect complexes. The natural inclusion modA ⊆ Db(A) induces the equiva-
lence from (modA)[Ω−1] in (i). Orlov sets Dsg(A) = Db(A)/Db

perf(A) and
calls it the “triangulated category of singularities” of A.

(iv) MF(f), the homotopy category of (homogeneous) matrix factorisations of f ,
in case A = K[x]/(f) is the ring of a (homogeneous) hypersurface f ∈ K[x].

Either of the naturally present triangulated structures in (ii), (iii), or (iv) induces
the mentioned triangulated structure on MCM(A).

4. We now restrict to the graded context. The category ModgrA of all graded
A–modules, with degree preserving homomorphisms HomgrA( , ) as Hom–sets,
contains modgrA, its full subcategory of all finitely generated such modules, which
in turn contains the full subcategory projgrA of finite projective graded modules.
With −(i), for i ∈ Z, the degree-shift functors, and F a functor defined on graded
modules, set F∗(?) = ⊕i∈ZF (?(i)) with homogeneous components Fi, so that
F0 = F . We write though HomA instead of HomgrA( , )∗.

Given an integer c, notation such as F≥c, F<c should be self-explanatory, as
should be modgr≥c, modgr<c etc. We denote further projgr<c A the category of

finite projectives that are generated in degrees less than c, while projgr≥c A =
projgr≥c A denotes those generated/concentrated in degrees at least c.

1Goto and Watanabe introduced this “a–invariant” in [6], however, with the opposite sign.
We follow here Orlov’s convention in (loc.cit.)
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5. For a complex of graded finite projectives, its terms in projgr<c A form a sub-
complex, while the corresponding quotient complex has its terms in projgr≥c A.
Applied to complete resolutions, this provides for every integer c a functor

b≥c : MCMgr(A) ∼= K∞,∅(projgr A)→ K−,b(projgr≥c A) ∼= Db(modgr≥c A)

This functor is fully faithful and left adjoint to the, necessarily dense, functor

M≥c : Db(modgr≥c A) ⊆ Db(modgr A)→ Db(modgrA)

Db
perf(modgr A)

∼= MCMgr(A)

that assigns to a complex of graded A–modules, with finitely generated total ho-
mology concentrated in degrees not less than c, its (graded) maximal Cohen-
Macaulay approximation.

6. On the geometric side, Serre’s characterisation of (quasi-)coherent sheaves on
projective schemes generalises by Artin-Zhang [1] to the situation here as follows.

With m = A>0 the irrelevant maximal ideal of A, and M a (graded) A–module,
the (graded) submodule of local sections of M at m is given by

ΓmM = {m ∈M | mA>i = 0 for i≫ 0} ∼= lim−→i
HomA(A/A≥i, M) ⊆M

The module is (m)–torsion if ΓmM = M . Torsion modules form a Serre subcate-
gory TorsA of ModgrA. The projection functor a : ModgrA→ QCoh(ProjK A) :=
ModgrA/ TorsA serves as “sheafification”, and the triple (QCoh(ProjK A),O,−(1))
represents the quasi-coherent sheaves on the “projective scheme” underlying A,
with structure sheaf O = a(A), and “twists”M = aM 7→ M(i) = a(M(i)), i ∈ Z.
The exact sheafification functor a admits the fully faithful right adjoint

Γ∗ : QCoh(ProjK A)→ Modgr A , Γ∗M = ⊕i∈Zlim−→j
Homgr(A≥j , M(i))

7. With Coh(A) := a(modgr A) ∼= modgr A/(torsA = TorsA ∩ modgr A) the
full subcategory of “coherent” sheaves, fixing a “cut-off” c ∈ Z, the functor
Γ≥c maps Coh(A) back into modgr≥c A, and represents a right adjoint to the
restriction a≥c of sheafification to modgr≥c A. The exact functor a≥c passes
trivially to the corresponding derived categories, while the right derived functor
RΓ≥c = ⊕i≥clim−→j

R HomgrA(A≥j , M(i)) : Db(Coh(A)) → Db(modgr≥c A) repre-

sents again a fully faithful right adjoint.
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8. The situation so far is summarised in the following diagram of exact functors
between triangulated categories, with left adjoints written above right adjoints,

Db(modgr A)

a

��

M

��

Db(modgr≥c A)
?�

OO

a≥c

uujjjjjjjjjjjjjjj

M≥c
))TTTTTTTTTTTTTTT

Db(Coh(A))

RΓ≥c

55jjjjjjjjjjjjjjj

Ψ≥c=M≥c·RΓ≥c

// MCMgr(A)
Φ≥c=a≥c·b≥c

oo

b
≥c

iiTTTTTTTTTTTTTTT

Orlov’s key result [5, Thm.2.5.] can then be stated thus:

9. Theorem. The functor Φ≥c = a≥c ◦ b≥c is left adjoint to Ψ≥c = M≥c ◦RΓ≥c.

(1) If a ≥ 0, then Φ≥c is fully faithful and the thick subcategory KerΨ≥c is gener-
ated by the (strongly exceptional) sequence O(−c−a+1), ...,O(−c) and equiv-
alent to Db(mod(⊕a−1

i,j=0Aj−i)), the bounded derived category over an (upper)
triangular “matrix” algebra of finite global dimension at most a.

(2) If a ≤ 0, then Ψ≥c is fully faithful and the thick subcategory KerΦ≥c is
equivalent to Db(mod(⊕0

i,j=a+1Aj−i)), the bounded derived category over a

(lower) triangular “matrix” algebra of finite global dimension at most −a.
(3) If a = 0, the functors Φ≥c, Ψ≥c are thus inverse equivalences. �

10. This theorem has far-reaching consequences, certainly many yet to be explored.
For instance, restricting to a = 0, it implies the remarkable fact that a complex
C in Db(modgr≥c A) is saturated , in that the natural morphism C → RΓ≥ca≥cC
is an isomorphism, if and only if the natural morphism b≥cM≥cC → C is an
isomorphism, a property that can be checked on the “graded Betti tables” of C
and R HomA(C, A). Moreover, compositions Φ≥cΨ≥c′, for different integers c, c′,
can produce nontrivial autoequivalences on Db(Coh(A)). We finally mention that
the theorem has recently been greatly extended in [4] for toric Calabi-Yau algebras,
producing equivalent triangulated categories parametrised by the moment map.
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Stratifying the derived category of a complete intersection

Srikanth B. Iyengar

Let A be a commutative noetherian ring and D the bounded derived category of
finitely generated A-modules; its objects are complexes M of A-modules such that
A-module Hi(M) is finitely generated for each i and zero when |i| ≫ 0. There is
a natural triangulated category structure on D, with exact triangles arising from
mapping cone sequences of morphisms of complexes. A non-empty full subcategory
of D is thick if it is a triangulated subcategory and closed under retracts; see [15].

An intersection of thick subcategories is again thick so each M in D is con-
tained in a smallest, with respect to inclusion, thick subcategory, which I denote
thickA(M). The objects of thickA(M) are exactly those complexes which can
be built out of M using suspensions, finite direct sums, exact triangles, and re-
tracts; in fact, the last two operations suffice. Thus, for example, a complex is in
thickA(A) if and only if it is perfect, i.e. isomorphic in Df(R) to a finite complex
of finitely generated projective modules.

My talk was concerned with the following problem: Classify the thick subcate-
gories of D. I started by trying to explain why thick subcategories of Df(A) are
interesting from the point of view of homological algebra; this is discussed also in
[11]. Such investigations concerning derived categories started with a remarkable
result of Hopkins [10] and Neeman [13]:

If M, N are perfect complexes with suppA M ⊆ suppA N , then M ∈ thickA(N).

Here suppA M is the set {p ∈ Spec(A) | H(M)
p
6= 0}, the support of M . Various

proofs of this theorem are discussed in [12]; for applications, see [8]. Given this
theorem, it is easy to prove, see [13], that there is a bijection of sets:

{
Thick subcategories

of thickA(A)

}
σ

//

τ
oo

{
Specialization closed

subsets of Spec A

}

where a subset of Spec A is specialization closed if it is a (possibly infinite) union
of closed subsets. The maps in question are

σ(C) =
⋃

M∈C

suppR M and τ(V) = {M | suppR M ⊆ V}

This ‘thick subcategory’ theorem solves the classification problem stated when A is
regular, for then thickA(A) = D. Similar results have since been established for the
derived category of perfect complexes of coherent sheaves on a noetherian scheme,
by Thomason [14]; the stable module category of finite dimensional modules over
the group algebra of a finite group, by Benson, Carlson, and Rickard [5]; and the
category of perfect differential modules over a commutative noetherian ring, by
Avramov, Buchweitz, Christensen, Piepmeyer and myself [2].

Let now A be a complete intersection; for simplicity assume A = k[x1, . . . , xn]/I,
where k is a field, x1, . . . , xn are indeterminates, and I is generated by a regular
sequence. Set c = n − dimA and let A[χ1, . . . , χc] be the ring of cohomology
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operators constructed by Avramov and Sun [4]. Thus, χ1, . . . , χc are indetermi-
nates over A of cohomological degree 2, and for each pair of complexes M, N of
A-modules, Ext∗A(M, N) is a graded R-module, which is finitely generated when
M, N are in D; see [4, §§2,5], and also Gulliksen [9], for details. Set

VA(M) = suppR Ext∗A(M, M) ⊆ Spec A[χ1, . . . , χc] .

This construction is akin to the support variety of M in the sense of Avramov and
Buchweitz [1]; only, it takes into account also the support of M as a complex of
A-modules; see [7, §11]. A positive answer to the conjecture below takes us a long
way towards a classification of thick subcategories of D for complete intersections.

Conjecture: For any M, N in D, if VA(M) ⊆ VA(N), then M ∈ thickA(N).

There are two points of view concerning homological algebra over complete
intersections which lead one to such a statement: it is akin to that over regular
rings, once we take into account the action of the cohomology operators; it is
akin to that of group algebras of finite groups. Indeed, a result from [5] settles
the conjecture above for the case when k is of positive characteristic p and I =
(xp

1, . . . , x
p
n), for then A is the group algebra of (Z/pZ)n.

The simplest ring not covered by [5] is A = k[x]/(xd) with d ≥ 3. The inde-
composable A-modules are precisely Mi = k[x]/(xi), for 1 ≤ i ≤ d. It is easy to
verify that

VA(Mi) =

{
{(x)} for i 6= d

{(x), (x, χ)} for i = d

Since M1 = k and Md = A, the conjecture postulates that for 1 ≤ i ≤ d − 1 the
subcategory thickA(Mi) contains both A and k. In my talk, I demonstrated that
this is indeed the case. This example is atypical for a general complete intersection
is not of finite representation type, and one cannot expect to settle the conjecture
with such direct computations.

Recently Benson, Krause, and I [6] gave a rather different proof of the result in
[2]. It builds on the work in [3], which develops new tools for studying modules
and complexes over complete intersections, and in [7], which develops a theory of
local cohomology for the action of the ring of cohomology operators A[χ1, . . . , χc]
on complexes of A-modules. The technique in [6] can be adapted to settle the
conjecture above for all Artin complete intersection rings. The general case remains
open, but I am optimistic that it will be settled in the near future.
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categories, Ann. Sci. École Norm. Sup. 41 (2008), 1–47.
8. W. G. Dwyer, J. P. C. Greenlees, S. Iyengar, Finiteness in derived categories of local rings,

Comment. Math. Helvetici, 81 (2006), 383–432.
9. T. H. Gulliksen, A change of ring theorem with applications to Poincaré series and inter-
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Bockstein homomorphisms in local cohomology

Anurag K. Singh

(joint work with Uli Walther)

Let R be a polynomial ring in finitely many variables over the ring of integers.
Let a be an ideal of R, and let p be a prime integer. Taking local cohomology
H•

a (−), the exact sequence

0 −−−−→ R
p−−−−→ R −−−−→ R/pR −−−−→ 0

induces an exact sequence

Hk
a (R/pR)

δ−−−−→ Hk+1
a (R)

p−−−−→ Hk+1
a (R)

π−−−−→ Hk+1
a (R/pR) .

The Bockstein homomorphism βk
p is the composition

π ◦ δ : Hk
a (R/pR) −→ Hk+1

a (R/pR) .

Fix a ⊆ R; we prove that for all but finitely many prime integers p, the Bockstein
homomorphisms βk

p are zero. More precisely:

Theorem 1. Let R be a polynomial ring in finitely many variables over the ring
of integers. Let a = (f1, . . . , ft) be an ideal of R, and let p be a prime integer.

If p is a nonzerodivisor on the Koszul cohomology module Hk+1(f ; R), then the
Bockstein homomorphism βk

p : Hk
a (R/pR) −→ Hk+1

a (R/pR) is zero.

This is motivated by Lyubeznik’s conjecture [3, Remark 3.7] that for regular
rings R, each local cohomology module Hk

a (R) has finitely many associated prime
ideals. This conjecture has been verified for regular rings of positive characteristic
by Huneke and Sharp [2], and for regular local rings of characteristic zero as well
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as unramified regular local rings of mixed characteristic by Lyubeznik [3, 4]. It
remains unresolved for polynomial rings over Z, where it implies that for fixed
a ⊆ R, the Bockstein homomorphisms βk

p are zero for almost all prime integers p;
the above theorem thus provides supporting evidence for Lyubeznik’s conjecture.

The situation is different for hypersurfaces, as compared with regular rings:

Example 2. Consider the hypersurface

R = Z[u, v, w, x, y, z]/(ux + vy + wz)

and ideal a = (x, y, z)R. A variation of the argument given in [5] shows that

β2
p : H2

a(R/pR) −→ H3
a(R/pR)

is nonzero for each prime integer p.
Huneke [1, Problem 4] asked whether local cohomology modules of Noetherian

rings have finitely many associated prime ideals. The answer to this is negative
since H3

a(R) in the hypersurface example has p-torsion elements for each prime
integer p, and hence has infinitely many associated primes; see [5]. Indeed, the
issue of p-torsion appears to be central in studying Lyubeznik’s conjecture for
finitely generated Z-algebras.

We outline the proof of Theorem 1. One first verifies that if f = f1, . . . , ft and
g = g1, . . . , gt are elements of R with fi ≡ gi mod p for each i, then there exists
a commutative diagram

· · · −−−−→ Hk
(f)(R/pR) −−−−→ Hk+1

(f) (R/pR) −−−−→ · · ·
y

y

· · · −−−−→ Hk
(g)(R/pR) −−−−→ Hk+1

(g) (R/pR) −−−−→ · · ·

where the horizontal maps are the respective Bockstein homomorphisms, and the
vertical maps are natural isomorphisms.

Another ingredient is the existence of endomorphisms of the polynomial ring
R = Z[x1, . . . , xn]. For p a nonzerodivisor on Hk+1(f ; R), consider the endomor-
phism ϕ of R with ϕ(xi) = xp

i for each i. Since ϕ is flat, it follows that

Hk+1(ϕe(f); R)
p−−−−→ Hk+1(ϕe(f ); R)

is injective for each e ≥ 0. Thus, the Bockstein map on Koszul cohomology

Hk(ϕe(f ); R/pR) −−−−→ Hk+1(ϕe(f); R/pR) .

must be the zero map.
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Suppose η ∈ Hk
a (R/pR). Then η has a lift in Hk(ϕe(f ); R/pR) for large e. But

then the commutativity of the diagram

Hk(ϕe(f); R/pR) −−−−→ Hk+1(ϕe(f ); R/pR)
y

y

Hk
(ϕe(f))(R/pR) −−−−→ Hk+1

(ϕe(f))(R/pR)
y

y

Hk
(f)(R/pR) −−−−→ Hk+1

(f) (R/pR) ,

where each horizontal map is a Bockstein homomorphism, implies that η maps to
zero in Hk+1

a (R/pR).

Stanley-Reisner ideals. For a the Stanley-Reisner ideal of a simplicial complex,
the following theorem connects Bockstein homomorphisms on reduced simplicial
cohomology groups with those on local cohomology modules.

Let ∆ be a simplicial complex, and τ a subset of its vertex set. The link of τ is

link∆(τ) = {σ ∈ ∆ | σ ∩ τ = ∅ and σ ∪ τ ∈ ∆} .

Theorem 3. Let ∆ be a simplicial complex with vertices 1, . . . , n. Set R to be the
polynomial ring Z[x1, . . . , xn], and let a ⊆ R be the Stanley-Reisner ideal of ∆.

For each prime integer p, the following are equivalent:

(1) the Bockstein homomorphism Hk
a (R/pR) −→ Hk+1

a (R/pR) is zero;
(2) the Bockstein homomorphism

H̃n−k−2−|eu|(link∆(ũ); Z/pZ) −→ H̃n−k−1−|eu|(link∆(ũ); Z/pZ)

is zero for each u ∈ Zn with u ≤ 0.

Example 4. Let Λm be the m-fold dunce cap, i.e., the quotient of the unit disk
obtained by identifying each point on the boundary circle with its translates under
rotation by 2π/m; the 2-fold dunce cap Λ2 is the real projective plane.

Suppose m is the product of distinct primes p1, . . . , pr. It is readily computed
that the Bockstein homomorphisms

H̃1(Λm; Z/pi) −→ H̃2(Λm; Z/pi)

are nonzero. Let ∆ be the simplicial complex corresponding to a triangulation of
Λm, and let a in R = Z[x1, . . . , xn] be the corresponding Stanley-Reisner ideal.
The theorem then implies that the Bockstein homomorphisms

Hn−3
a (R/piR) −→ Hn−2

a (R/piR)

are nonzero for each pi. It follows that the local cohomology module Hn−2
a (R) has

a pi-torsion element for each i = 1, . . . , r.
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Syzygies of Veronese algebras

Aldo Conca

(joint work with Winfried Bruns and Tim Römer)

Let S = K[x1, . . . , xn] be a polynomial ring over a field and R = S/I =
⊕∞

i=0 Ri

a graded quotient of it. Let mR denote the maximal homogeneous ideal of R. For
every c ∈ N we consider the c-th Veronese algebra R(c) of R defined as R(c) =⊕∞

i=0 Ric. The question we want to address is how the degrees of the syzygies of

R(c) vary with c. Normalizing the degrees, we consider R(c) as a standard graded
algebra and have a surjective K-algebra map T → R(c) where T is the symmetric
algebra of the vector space Rc. So T is itself a polynomial ring over K whose Krull
dimension equals the vector space dimension of Rc. We want to understand the
degrees of the syzygies of R(c) as a T -module.

Several invariants can be used to measure the degrees of the syzygies. We recall
those that play a role in our discussion. Given a graded and finitely generated R-
module M we denote the (i, j)-th Betti number of M as an R-module by βR

ij(M).

We set tRi (M) = sup{j : βR
ij(M) 6= 0},

regR(M) = sup{tRi (M)− i : i ≥ 0},

slopeR(M) = sup{ t
R
i (M)− tR0 (M)

i
: i > 0}

and Rate(R) = slopeR(mR). While regR(M) can be infinite, slopeR(M) is finite for
every finitely generated graded R-module M , see [2]. By definition, R is Koszul if
and only if Rate(R) = 1. The Castelnuovo-Mumford regularity reg(M) of M is, by
definition, regS(M); it is finite and does not depend on S. The Green-Lazarsfeld
index of R, denoted by index(R), is defined as:

index(R) = sup{p : tSi (R) ≤ i + 1 for every i ≤ p}.
Only a few facts about the syzygies of the Veronese algebras are classical and

well-known: S(c) is defined by quadrics, i.e. index(S(c)) ≥ 1, and has Castelnuovo-
Mumford regularity reg(S(c)) equal to n−⌈n/c⌉. Also, if R is defined by equations
of degree a and smaller then R(c) is defined by equations of degree≤ max(2, ⌈a/c⌉).
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Let K(mc
R, R) denote the Koszul complex over R associated to the c-th power

of mR, by H•(mc
R, R) its homology, by Z•(mc

R, R) its cycles and by B•(mc
R, R) its

boundaries. One notices that

βT
ij(R

(c)) = dimK Hi(m
c
R, R)jc.

Hence the study of the syzygies of R(c) is essentially equivalent to the study of the
Koszul homology modules Hi(m

c
R, R). Taking into account that mc

RHi(m
c
R, R) = 0

one can set up an inductive procedure leading to bounds for the regularity of
Z•(mc

R, R). It follows that:

Theorem 1. Hi(m
c
R, R)j = 0 for j ≥ (i + 1)c + min(i Rate(R), i + reg(R)). In

particular, index(R(c)) ≥ c− reg(R) and index(R(c)) ≥ c if R is Koszul.

Theorem 1 has been proved by Green for Veronese subrings S(c) of polynomial
rings S in characteristic 0, see [4]. For n = 2 or c = 2 the ring S(c) has a determi-
nantal presentation and (at least in characteristic 0) the value of index(S(c)) can
be deduced from the known resolutions of it. One has:

index(S(c)) =

{
∞ if n = 2 or (n = 3 and c = 2)
5 if n > 3 and c = 2.

Note however that Andersen [1] has showed that index(S(2)) = 4 in character-
istic 5 if n ≥ 7. In characteristic 0 and for n > 2 and c > 2 Ottaviani and Paoletti
[5] have proved that

index(S(c)) ≤ 3c− 3

with equality if n = 3. They conjectured that equality holds for every n ≥ 3.
We prove that the bound and the equality for n = 3 hold independently of the
characteristic. In the proof an important role is played by the duality:

dimK Hi(m
c
S , S)j = dimK HN−n−i(m

c
S , S)Nc−n−j

where N = dim Sc and the fact that for n = 3 the regularity of S(c) is ≤ 2. The
duality above can be seen as a special instance of a duality of Avramov-Golod
type, which is the algebraic counterpart of Serre duality. Our main contribution
to the problem of finding index(S(c)) is the following improvement of Green’s lower
bound:

Theorem 2. If K has characteristic 0 or > c + 1 then index(S(c)) ≥ c + 1 for
every n.

For c = 3 and K of characteristic 0 Theorem 2 has been proved by Rubei in
[6]. Set Zt = Zt(m

c
S , S) and Bt = Bt(m

c
S , S) and let Zt

1 denote the image of ∧tZ1

in Zt. The proof of Theorem 2 is based on three facts:

1) Zt/Z
t
1 is generated in degree < (c + 1)i,

2) for every a ∈ N with 1 ≥ a < c, and for polynomials f1, . . . , ft+1 ∈ Sa and
g1, . . . , gt+1 ∈ Sc−a one has

∑

σ∈St+1

(−1)σfσ(t+1) ⊗ fσ(1)g1 ∧ fσ(2)g2 ∧ · · · ∧ fσ(t)gt ∈ Zt
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where St+1 is the symmetric group.

3) (c + 1)!mc−1
S Zc

1 ⊂ Bc

Indeed, the cycles in 2) are used together with a symmetrization argument to
prove 3). Combining 1) and 3) one shows that Hi(m

c
S)ic+j = 0 for j ≥ i + c − 1

and i ≥ c which, in turn, implies that index(S(c)) ≥ c+1. The cycles described in
2) can be “explained” in terms of multilinear algebra and diagonal maps between
symmetric and exterior powers of vector spaces. There are some indications that
those cycles might generate Z(mc

S , S) as an S-algebra. For general R we prove the
following:

Theorem 3. One has index(R(c)) ≥ index(S(c)) for every c ≥ slopeS(R).

As shown in [2], slopeS(R) = 2 if R is Koszul. In particular, if R is Koszul then
index(R(c)) ≥ index(S(c)) for every c ≥ 2.
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Nagata conjecture and symbolic Rees rings of space monomial curves

Kazuhiko Kurano

The aim of this note is to give a relation between finite generation of symbolic
Rees rings of space monomial curves and Nagata conjecture.

1. Symbolic Rees rings of space monomial curves

Let k be a field. Assume that a, b, c are pairwise coprime positive integers, that
is, (a, b) = (b, c) = (c, a) = 1. We denote the defining ideal of a space monomial
curve (ta, tb, tc) by P (a, b, c), that is,

P (a, b, c) = Ker(k[x, y, z]
φ→ k[t]),

where φ is the k-algebra homomorphism defined by φ(x) = ta, φ(y) = tb, φ(z) = tc.
Herzog [3] proved that the ideal P (a, b, c) was generated by at most 3 elements.
We set Rs(P (a, b, c)) = ⊕m≥0P (a, b, c)(m).
If the ideal P (a, b, c) is generated by two elements, then Rs(P (a, b, c)) coincides

with the ordinary Rees ring of P (a, b, c). In particular, it is Noetherian.
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However, in many cases, P (a, b, c) is not generated by two elements.
Many people study finite generation of Rs(P (a, b, c)) (e.g. Cutkosky, Goto, Her-

zog, Huneke, Nishida, Reed, Shimoda, Ulrich, Vasconcelos, Watanabe, etc.).
Even if P (a, b, c) is not generated by two elements, there are many examples of

Noetherian Rs(P (a, b, c))’s. For example, if a + b + c >
√

abc, then Rs(P (a, b, c))
is Noetherian by Cutkosky [1].

However, if ch(K) = 0 and if (a, b, c) = (25, 29, 72), . . ., then Rs(P (a, b, c)) is
not Noetherian by Goto-Nishida-Watanabe [2].

Finite generation of such rings are deeply relatred to certain geometric phenom-
ena on a rational surface.

Let S = k[x, y, z] be the weighted polynomial ring with deg(x) = a, deg(y) = b
and deg(z) = c. Let Proj(S) be the weighted projective space. Let π : X →
Proj(S) be the blow-up at a smooth point V+(P (a, b, c)). Set E = π−1(P (a, b, c)).

Since X is Q-factorial, X has a Q-valued intersection pairing.

Definition 1 We say that a curve C on X is a negative curve if C 6= E and
C2 < 0.

Remark 2 (1) A negative curve exists if there exsit positive integers m0 and d0

such that d0/m0 <
√

abc and [P (a, b, c)(m0)]d0
6= 0.

Existence of a negative curve depend on a, b, c and the characteristic of k.
(2) If a negative curve exists for (a, b, c) over some k with ch(k) > 0, then
Rs(P (a, b, c)) is Noetheran for (a, b, c) over this k (by Cutkosky [1]).
(3) If a negative curve exists for (a, b, c) over some k with ch(k) = 0, then a
negative curve exists for (a, b, c) over any field (by mod p reduction).
(4) We immediately obtain the following assertion by (2) and (3). If a negative
curve exists for (a, b, c) over C (or Q), then Rs(P (a, b, c)) is Noetheran for (a, b, c)
over any field k of positive characteristic.
(5) Assume that abc ≥ 10. If there is no negative curve for (a, b, c) over C, Nagata
conjecture is true for r = abc. We shall see this in the next section.
(6) We immediately obtain the following assertion by (4) and (5). If Rs(P (a, b, c))
is not Noetheran for (a, b, c) over some field k of positive characteristic, then Nagata
conjecture is true for r = abc.

By (4) and (5) as above, existence of negative curves is very much important
problem.

Remark 4 The cardinary of the set

A = {(a, b, c) ∈ N3 | a ≤ b ≤ c ≤ 300, (a, b) = (b, c) = (c, a) = 1}
is 1, 291, 739. More than 90% of A satisfy the following condition:

(1) There exist m0 and d0 such that m0

d0
<
√

abc and dimk Sd0
> m0(m0+1)

2 .

If d > −a− b− c, then we have

dimk[P (a, b, c)(m)]d = dimk Sd −
m(m + 1)

2
+ dimk H2

(x,y,z)(P (a, b, c)(m))d.

Therefore, once the condition (1) is satisfied, then there exists a negative curve.
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Unfortunately, there exist examples that do not satisfy the condition (1).

2. Rings of Nagata-type

For s = (α : β : γ) ∈ P2
C
, we set

Is = I2

(
u v w
α β γ

)
⊂ B = C[u, v, w].

For a finite set of closed points H = {s1, . . . , sr} in P2
C
, we set

RH =
⊕

m1,...,mr∈Z

[Im1

s1
∩ · · · ∩ Imr

sr
] and ∆H =

⊕

m≥0

[Im
s1
∩ · · · ∩ Im

sr
].

Conjecture 5 (Nagata) Let s1, . . . , sr be general closed points in P2
C
. If r ≥ 10

and d
m ≤

√
r, then [Im

s1
∩ · · · ∩ Im

sr
]d = 0.

Remark 6 (1) If Nagata conjecture is true for r, then ∆H is not Noetherian.
(2) If RH is Noetherian, then so is ∆H . However, the converse is not true. Totaro’s
example [6] satisfies that RH is not Noetherian, but ∆H is Noetherian.
(3) If r = 42, 52, 62, . . ., then Nagata [5] solved the conjecture affirmatively. In
the other cases, the conjecture is still open.
(4) The ring RH is an invariant subring of a polynomial ring with a linear action.
Nagata [5] obtained a counterexample to Hilbert’s 14th problem by (1), (2), (3)
and (4).

We define a ring homomorphism S = C[x, y, z] −→ B = C[u, v, w] by x 7→ ua,
y 7→ vb, z 7→ wc. We put ζn = e2πi/n and

Fa,b,c =

{
(ζn1

a : ζn2

b : ζn3

c )

∣∣∣∣
n1 = 0, 1, . . . , a− 1 : n2 = 0, 1, . . . , b− 1
n3 = 0, 1, . . . , c− 1

}
⊂ P2

C.

Then it is easy to prove the following lemma:

Lemma 7 For each m > 0, P (a, b, c)(m)B =
⋂

s∈Fa,b,c
Im
s holds.

It immediately follows from the above lemma that

Rs(P (a, b, c))⊗S B = ∆Fa,b,c
.

Therefore, Rs(P (a, b, c)) is Noetherian if and only if ∆Fa,b,c
is Noetherian.

In the rest of this note, we give an outline of a proof of Remark 2 (5).
Let a, b, c be pairwise coprime positive integers such that abc ≥ 10.
Suppose that there exists a counterexample to Nagata conjecture for r = abc.

That is, there exist positive integers m0 and d0 such that

d0

m0
≤
√

abc and

[
⋂

s∈H

Im0

s

]

d0

6= 0,

where H is a set of general abc points.
By Remark 6 (3), we may assume that

√
abc is irrational. Therefore, m0 and

d0 satisfy
d0

m0
<
√

abc.
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Considering the specialization H  Fa,b,c, we know that [P (a, b, c)(m0)]d1
6= 0 for

some d1 ≤ d0. Therefore, there exists a negative curve in this case.
Acknowledgements In the conference, I said that if all of a, b and c are at

most 300, then there exists a negative curve in characteristic 0, and therefore,
the symbolic Rees ring is finitely generated in the case of positive charactieristic.
However, there was a mistake in my proof. I would like to thank Prof. Kei-ichi
Watanabe for pointing out the mistake.
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Interactive Visualization of Algebraic Surfaces — RealSurf

Peter Schenzel

1. Introduction

In most of the mathematical institutes of ”traditional” german universities there
is a collection of mathematical models. In recent times there is a strong effort in
order to visualize mathematical models (e.g. (implicit) algebraic surfaces) on a
computer by the aid of methods from computer graphics. The basic algorithm for
implicitly given algebraic surfaces is the so-called ray tracing. One of the programs
of this kind is Surf, developed by a group around Stephan Endraß, see [1].

Movies for the exploration of certain surfaces were built by a group of Herwig
Hauser based on the free renderer POV-Ray, see Herwig Hauser’s homepage [3].
During 2008, the year of Mathematics in Germany, the Oberwolfach Research
Institute of Mathematics provides an exhibition Imaginary with a homepage
[2]. For an interactive presentation the program Surfer (based on S. Endraß‘s
program Surf) is used. It works in the background for a high-resolution image
that occur after a certain rendering time depending on the complexity of the
surface.

The aim of this talk is to present Christian Stussak’s program RealSurf for
an interactive visualization of algebraic surfaces in realtime, see [4]. The program
is based on a recent technique of programming on the graphics programming unit
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(GPU) with shader languages. It works well for computers with recent nVidia

graphics cards.

2. Real Time and Singularities

A popular technique for the visualization of surfaces is based on polygonal
meshes. It does not work correctly for singularities. Some times a singularity is
not exhibited in a polygonal mesh, and hence does not occur for the visualization.

A typical example is the tangent surface F of the affine twisted cubic C given
parametrically by x = t, y = t2, z = t3. It is easily seen that F = 3x2y2 − 4x3z −
4y3 + 6xyz − z2 = 0. The curve C is a singular curve on its tangent variety F.
There are numerical instabilities for drawing the singular locus correctly.

In Computer Graphics ray tracing is an appropriate technique in order to visu-
alize scenes with complex details like singularities. It requires a ray for each pixel
into a mathematically described scene and its interaction with further objects in
order to compute the illumination. For obtaining fine details (like singularities)
this iteration requires minutes resp. hours of computing time.

In recent times there is a new hardware development with computations and
programming on the graphics processing unit (GPU). During the execution of the
program the driver of the graphics card translates the program code into machine
instructions for the graphics card. Because of the multiprocessor concepts of recent
graphics cards this procedure ensures an essential increasing of the computing
speed.

3. RealSurf

Christian Stussak’s RealSurf is a program for the interactive visualization of
(implicit) algebraic surfaces. It is based on the hardware development as men-
tioned above and uses the OpenGL Shading Language (GLSL). Figure 1 shows a
screen shot of the program for the exploration of Barth’s surface of degree 10.

Besides of the programming with the shader languages the implementation of
the program requires several numerical considerations for the computation of zeros
of algebraic equations. Because of numerical instabilities in the neighborhood of
singularities Christian Stussak investigated methods in order to separate zeros of
polynomial equations and implemented them.

The program RealSurf allows several features:

• Scaling, rotation and translation of the surface in real time is implemented
by mouse actions.
• A list of classical surfaces is prepared, visible in the side bar. New surfaces

can be added.
• The input of a surface is in the form F ∈ R[x, y, z]. It works well for

”sparse” F up to degree 13.
• The constants in F can be parameters. This allows deformations of given

surfaces, also with several parameters.
• The change of light of the scene, the change of the material and the clipping

against a cube or a sphere are available.
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Figure 1. RealSurf

Figure 2. The cubic for α = 1.8, 2.0, 2.8

• For further use a screen shot of a scene as a PNG file is possible. An
appropriate background color might be chosen.

As an example we investigate the cubic surface

F (x, y, z) = x2 + y2 + z2 − αxyz − 1 = 0

with the parameter α, see Figure 2.
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The program allows an interactive visualization of the surface by a continuous
change of the parameter. In particular for α = 2 it yields the Cayley cubic.

4. Concluding Remarks

The program RealSurf allows the interactive exploration of implicit given
algebraic surfaces with singularities in real time. It is based on programming with
the GLSL shading language. Presently it works well for surfaces up to degree 13
with ”sparse” equations.

At the moment it is available for Windows XP and Windows Vista. It requires
nVidia graphics hardware of the GeForce 7000 series or higher resp. corresponding
Quadro cards. Upon request it is freely available via [4].

References

[1] S. Endraß a.o., Surf, http://surf.sourceforge.net, 2001.
[2] G.-M. Greuel a.o., Imaginary, http://www.imaginary2008.de, 2008.
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Infinite matrices and the conjectural transcendence of some
Hilbert-Kunz multiplicities

Paul Monsky

F is a finite field of characteristic p, and h is in F [x0, . . . , xr], h 6= 0, h(0) = 0. en(h)
is the colength of the ideal generated by h and the qth powers of the variables where
q = pn. The “Hilbert-Kunz series”,

∑
h, and the Hilbert-Kunz multiplicity, µ(h),

are the formal power series
∑

enwn, and the limit as n → ∞ of en/qr. In all
cases where

∑
and µ have so far been provably calculated,

∑
is in Q(w) and µ is

rational. My talk presented evidence that quite different things happen in general.
A result from [1] and [2] states that

∑
is in Q(w) and µ is rational when h is

a “disjoint” sum of 2-variable hi (that is to say that the variables appearing in
the various hi are distinct). The proof involves the introduction of the space X

of functions [0, 1]∩Z
[

1
p

]
→ Q, magnification operators T0 . . . , Tp−1 on X , and an

element φh of X which encodes all the integers en(hk). Teixeira and I say that h
is “strongly rational” when there is a finite dimensional subspace M of X stable
under the Ti and containing φh. We have shown that 2-variable h are strongly
rational, that the disjoint sum of strongly rationals is strongly rational, and that∑

is in Q(w) and µ in Q for strongly rational h; this last (easy) step involves the
study of iterates of a linear operator on M .

However 3-variable h are unlikely to be strongly rational in general. In [3] I
made a precise conjecture as to the value of en(hk) when p = 2, r = 2 and h defines
a nodal cubic. The conjecture gives an infinite basis for the smallest subspace M
of X that contains φh and is stable under T0 and T1, and describes the action of
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T0 and T1 on the basis elements. Granting the conjecture, I showed in [3] that

the
∑

attached to f = uv + x3 + y3 + xyz lies in Q(w,
√

1− 4w2), and that
µ(f) = 4

3 + 5
14

√
7
.

In my talk I spoke about two further results that follow from the conjecture; as
above we take p = 2.

I. If f is a disjoint sum of x3+y3+xyz and 2-variable hi, then
∑

f is algebraic

over Q(w) and µ(f) is algebraic over Q.
II. The Q-vector space spanned by the characteristic 2 Hilbert-Kunz multi-

plicities contains
∑ (

2n
n

)2
/(65, 536)n. (This is interesting for the following

reason. The sum is the quotient by π of a period of a Q-rational 1-form
without zeros or poles on an elliptic curve defined over Q. Schneider long
ago showed that such numbers are transcendental. So under my conjec-
ture, transcendental Hilbert-Kunz multiplicities exist.)

The proof of I follows ideas from [1] and [2]. But now M is infinite dimensional,
and to study the iterates of the linear operator, infinite matrices and walks on
the half-line come into play. The proof of II starts with my calculation of the
(conjectural)

∑
attached to uv + x3 + y3 + xyz and uses the following surprising

fact. Suppose hi are disjoint polynomials in ri variables. Set Φi = (1−2ri+1w)·∑i

where
∑

i is the
∑

attached to uv + hi. Then the Hilbert-Kunz multiplicity of

uv+
∑

hi is the Hadamard product of the Φi evaluated at 1/2k, where k =
∑

ri+1.
This allows us to pass from the realm of algebraic power series to the realm of
transcendental series via the Hadamard product.
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Generic bounds for tight closure

Helena Fischbacher-Weitz

(joint work with Holger Brenner)

Let P = k[x1, . . . , xd] be a standard-graded polynomial ring over a field k
and let a1, . . . , an be natural numbers. For a family f1, . . . , fn of homogeneous
polynomials of degree deg(fi) = ai we look at the ideal I = (f1, . . . , fn). The
Fröberg conjecture, which has been proved in dimension d ≤ 3, claims that the
Hilbert function

m 7→ H(m) = dimk Pm/(f1, . . . , fn)

has an easy description given by the coefficients of a certain power series defined
by the degrees a1, . . . , an, provided that the fi are choosen generically. In par-
ticular, this conjecture gives for n ≥ d an implicitly defined degree bound m0 for
ideal membership (depending only on the degrees a1, . . . , an), by which we mean
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that P≥m0
⊆ (f1, . . . , fn). This degree bound is the smallest number where the

predicted generic Hilbert function vanishes.
Now let R be any standard-graded k-algebra of dimension d. Does there exist a
similar generic degree bound for ideal membership? Instead of asking,

When is Rm0
⊆ I? (1)

we may replace the ideal by its tight closure:
When is Rm0

⊆ I∗? (2)
The answer to (2) is nicer than the answer to (1). Indeed, as we can already see
from the example of a parameter ideal in a hypersurface ring, the degree bound for
(1) must depend on the structure of R. In contrast, there exists a generic degree
bound for (2) which only depends on the dimension of R and the degrees ai.

If m0 is the generic degree bound in the polynomial ring, then m0 + d − 1 is
a generic tight closure bound for all standard-graded k-algebras of this dimension
over a field of positive characteristic. This means that the containment in the tight
closure behaves more uniformily than the containment in the ideal.

We recall the definitions of tight closure and Frobenius closure in positive char-
acteristic.

Definition. Let R be a Noetherian ring containing a field of characteristic p > 0,
and let I = (f1, . . . , fn) ⊆ R be an ideal. Let

I [q] := (f q
1 , . . . , f q

n) ⊆ R for q = pe, e ∈ N

IF := {x ∈ R : xq ∈ I [q] for some q = pe}
I∗ := {x ∈ R : ∃z /∈ min. prime : zxq ∈ I [q] for almost all q = pe}

IF is called the Frobenius closure of I and I∗ is called the tight closure of I.

In a regular ring, such as a polynomial ring, every ideal is tightly closed (i.e.
I = I∗), so both (1) and (2) generalize ideal membership in polynomial rings.
It is an important feature of tight closure theory that we can often generalize
statements about ideal membership in regular rings to non-regular rings if we
replace the ideal by its tight closure, a typical example being the tight closure
version of the Briançon-Skoda theorem. In our case, the general tight closure
result follows from the regular ideal result by semicontinuity and by cohomological
vanishing conditions.

We state our main result.

Theorem. Fix a degree type (a1, . . . , an), n ≥ d. Suppose that there exist
g1, . . . , gn ∈ P = K[x1, . . . , xd], deg(gi) = ai, such that Pm ⊆ (g1, . . . , gn). Then
for any d-dimensional standard-graded k-algebra R and n elements f1, . . . , fn ∈ R
of this degree type the containment

Rm+d−1 ⊆ (f1, . . . , fn)∗

holds “generically” in an intersection of countably many open sets in the parameter
space. In particular, this is true in the generic point of the parameter space, i.e.
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for the ”indetermined” ideal generators

Gi =
∑

|ν|=ai

ανXν ∈ R⊗ k[αν ].

If R is normal, then we have

Rm+d ⊆ (f1, . . . , fn)F

for generic elements f1, . . . , fn, i.e. in an open subset of the parameter space.
If R is Cohen-Macaulay with a-invariant a(R) and of dimension ≥ 2, then

Rm+d+a(R) ⊆ (f1, . . . , fn)

for generic elements, i.e. in an open subset of the parameter space.

The “proof strategy” is as follows (for the tight closure result in dimension
d ≥ 2).

(1) We choose a homogeneous Noether normalization P ⊆ R and choose
g1, . . . , gn ∈ P for which the degree bound m0 holds. This is directly
related to the shape of a minimal resolution of the ideal (g1, . . . , gn) over
P , and in particular to the Betti numbers in the last free module of this
(finite) resolution.

(2) The pull-back of this resolution to R is still exact on the punctured spec-
trum and on Y = ProjR. Under the condition that m ≥ m0 + d − 1,
the twists in the last (splitting) syzygy bundle Syzd−1(m) on Y are all
non-negative.

(3) This means that a certain “tight closure”-cohomology condition is true
for Hd−1(Y, Syzd−1(m)). This is an instance of the philosophy that top-
dimensional cohomology classes of non-negative degree are “tightly zero”.
By “cohomology hopping” this implies the same cohomological property
for Syz1(m).

(4) In order to “deform away” from g1, . . . , gn ∈ P to more general elements
f1, . . . , fn ∈ R (of the same degree type) we consider the whole situta-
tion over a parametrizing space whose points determine the coefficients
of the elements. One can apply semicontinuity for cohomology of a flat
sheaf (namely the first syzygy sheaf) over a projective morphism to our
cohomological property. Therefore this property holds for generic choice.

(5) Finally, the cohomological property implies that all elements of degree m
belong to the tight closure.

Acknowledgements. We would like to thank Almar Kaid and Thomas Fisch-
bacher for their help with the computer algebra involved in this research (Co-
CoA, Lisp). This research was supported by an EPSRC First Grant held at the
University of Sheffield and at the Universität Osnabrück. The author’s visit to
Oberwolfach was funded by an Oberwolfach Leibniz Graduates grant.
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Determinantal Equations

Gregory G. Smith

(joint work with Jessica Sidman)

The qualitative study of systems of polynomial equations lies at the heart of com-
mutative algebra. One important facet of this study relates geometric properties
of a projective subscheme to structural features of its homogeneous ideal, such
as being determinantal or having a free resolution with some simple form. For
example, the homogeneous ideal of a rational normal curve, a Segre variety, or a
quadratic Veronese embedding of projective space is given by the (2×2)-minors
of a generic Hankel matrix, a generic matrix, or a generic symmetric matrix re-
spectively. For these classic examples, the determinantal presentation leads to an
explicit description of the minimal graded free resolution of the homogeneous ideal,
and equations for their higher secant varieties. Mumford’s “somewhat startling
observation” [3] shows that a suitable multiple of every projective embedding is
defined by the (2×2)-minors of a matrix of linear forms. Eisenbud [1, page 107]
rephrases this observation as a “(vague) principle that embeddings of varieties by
sufficiently positive bundles are often defined by ideals of (2×2)-minors”. The aim
of this work is to remove the ambiguity from this principle.

To achieve this, we need a source of appropriate matrices. Composition of linear
series or equivalently multiplication in the Cox ring of the variety traditionally
supply such matrices. To be more explicit, observe that, if X ⊂ Pr is a scheme
embedded by the complete linear series |L| for L ∈ Pic(X), then H0(X, L) is the
space of linear forms on Pr. Factoring L as L = L1⊗L2 for some L1, L2 ∈ Pic(X)
yields a natural multiplication map

µ : H0(X, L1)⊗H0(X, L2)→ H0(X, L1 ⊗ L2) = H0(X, L) .

By choosing ordered bases y1, . . . , ym ∈ H0(X, L1) and z1, . . . , zn ∈ H0(X, L2),
one obtains the associated (m×n)-matrix A := [µ(yi ⊗ zj)] of linear forms on Pr.
Since the structure sheaf OX is a sheaf of commutative rings, it follows that the
(2×2)-minors of A vanish on X (see Proposition 6.10 in Eisenbud [1]). Moreover,
we note that the homogeneous ideal I2(A) of (2×2)-minors of A is independent
of the choice of bases for H0(X, L1) and H0(X, L2). Numerous classic examples
of this construction, including the three given above, can be found in Room [4].
With this notation, the goal is to find conditions on the line bundles L1 and L2

to guarantee that the homogeneous ideal of X in Pr is I2(A).
We accomplish this goal by placing restrictions on certain modules arising from

the line bundles L, L1, and L2. More precisely, if L = L1 ⊗ L2 is very ample and
the following three conditions hold:
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• the module
⊕

d≥0 H0(X, L⊗Ld) has a linear presentation with respect to

the polynomial ring Sym
(
H0(X, L)

)
,

• the module
⊕

d≥0 H0(X, Li ⊗ Ld
j ) has a linear presentation with respect

to the polynomial ring Sym
(
H0(X, Lj)

)
for i 6= j,

• the module
⊕

d≥0 H0(X, L2
1 ⊗ Ld

2) has a linear presentation with respect

to the polynomial ring Sym
(
H0(X, L2)

)
,

then the saturated homogeneous ideal of X in Pr is I2(A). By combining this with
a cohomological criterion for a linear presentation and multigraded Castelnuovo-
Mumford regularity, we establish the following principle: every projective embed-
ding of a scheme determined by the complete linear series of a sufficiently ample
line bundle is cut out by the (2×2)-minors of a matrix of linear forms. In other
words, given a projective scheme X , there exists a line bundle L0 on X such that,
for all L ∈ Pic(X) for which L ⊗ L−1

0 is numerically effective (nef), the image of
the map ϕ|L| : X →֒ P

(
H0(X, L)

)
corresponds to the ideal I2(A) for some matrix

A of linear forms. Extending the work of Eisenbud-Koh-Stillman [2] for reduced
irreducible curves, we also specify effective bounds for L0 on products of projective
spaces, Gorenstein toric varieties, and smooth n-folds. By considering more than
one factorization of L or equivalently more than one matrix A of linear forms, we
can weaken the explicit bounds.

Finally returning to our initial motivation, this work suggests that, for an em-
bedding X ⊂ Pr given by the complete linear series of a sufficiently ample line
bundle, the homogeneous ideal of the kth secant variety Seck(X) is defined by the
(k+2)×(k +2)-minors of A. Assuming this is true, it would be interesting to have
explicit bounds for “sufficiently ample” in this context.
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Toroidalization in Higher Dimensions

Steven Dale Cutkosky

Suppose that Φ : X → Y is a dominant morphism of varieties over a field of
characteristic zero. Φ is toroidal if there are simple normal crossing divisors DX

on X and DY on Y such that Φ−1(DY ) = DX and for all p ∈ X , Φ is formally
isomorphic to a morphism of toric varieties at p. In other words, Φ is locally a
monomial mapping with respect to the divisors DY and DX .
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The problem of toroidalization is to construct a commutative diagram of mor-
phisms

X1
Φ1→ Y1

↓ ↓
X

Φ→ Y

such that the vertical arrows are products of monoidal transforms (blow ups of
nonsingular subvarieties) and Φ1 : X1 → Y1 is toroidal.

This problem is solved locally along a valuation in all dimensions in earlier work
of the author ([C1], [C2]). The case when X has arbitrary dimension n and Y
is a curve follows from the theorem of resolution of singularities for varieties of
arbitrary dimension ([H] and more recent simplifications in the proof), and is in
fact really equivalent to this theorem. There are several proof in the case when
X and Y both are of dimension 2 (for instance [AKMW], [AK], [CP]). In earlier
papers of the author, toroidalization is proved in the case when X has dimension
3 ([C3], [C4]).

An approach to proving toroidalization in all dimensions n of X is to make use
of induction on the dimension of Y ; as remarked earlier, the case when Y has
dimension 1 follows from resolution of singularities.

We have recently proven that toroidalization can be proven in the case that
X has arbitrary dimension n and Y has dimension 2. An interesting aspect of
the proof is its relation with difficulties that come up in related problems such as
resolution of vector fields and resolution of singularities.

The proof is by consideration of formal local representations of the map of the
form

u = (xa1

1 · · ·xar

t )n

v = P (xa1

1 · · ·xar
r ) + xb1

1 · · ·xbr
r F

where gcd(a1, . . . , ar) = 1, P is a series, x1, . . . , xr do not divide F , and xb1
1 · · ·xbr

r F
has no terms which are powers of xa1

1 · · ·xar

t . A main invariant is the order of F .
This invariant is not so well behaved. In fact, it is not upper semicontinuous, and
it can actually increase (but by at most 1) under blow ups. However, a related
invariant which is the order of a log form associated to the map, is at least upper
semicontinuous. Comparison of these two invariants under a series of algorithms
allows us to construct a series of blow ups above X which lead to a reduction
in order. This is the most difficult part of the proof. These algorithms require
blow ups of general varieties through a point (or subvariety), and a lot of care
is required in algebraizing and then patching the local algorithms together to get
a global construction. We may also have to modify the divisor DX . When this
process is completed, we obtain a morphism X1 → X such that the associated
map X1 → Y is “strongly prepared”. We finish the proof using the result of our
joint paper with Olga Kascheyeva [CK], which shows that it is then possible to
construct a sequence of blow ups above Y and X1 to obtain a toroidal map.
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The a invariants of normal graded Gorenstein rings and varieties with
even canonical class

Kei-ichi Watanabe

Let R = ⊕n≥0Rn be a Noetherian normal graded ring with R0 = k field and
Proj (R) = X . We always assume that GCD of {n | Rn 6= 0} is 1.

Such normal graded ring is described by so called DPD (Dolgachev- Pinkham-
Demazure) construction (cf. [3] for the case dim R = 2 and [2] for the general case).
Namely, put X = Proj (R) and fix a homogeneous element T of the quotient field
of R. Then there exists unique Q divisor D on X such that ND is an ample
Cartier divisor on X and

R = ⊕n≥0H
0(X,OX(nD))T n.

We denote this ring as R = R(X, D).

Let KR be a canonical module of R. The isomorphism class of canonical module
is determined up to isomorphism as graded modules. We say that R is quasi-
Gorenstein if KR is a free R module, so that R is Gorenstein if and only if it is
quasi-Gorenstein and Cohen-Macaulay. If this is the case, KR

∼= R(a) for some
a ∈ Z and we call this a the a-invariant of R (cf. [1]).

In the case R is generated by R1 over R0 (we say that R is a “standard graded
ring”), if R is Gorenstein with a(R) = α, then OX(KX) ∼= OX(α). Thus KX

should be Q-cartier and either KX = 0, or KX or −KX is ample and a(R) can
take very limited values.

But if R is not standard, the situation is not so simple. For example if X = Pn

with n odd, then for every integer α 6= 0, there exists a normal Gorenstein ring
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with Proj (R) = X and a(R) = α. If X = Pn with n even, then for every odd
integer α, there exists a normal Gorenstein ring with Proj (R) = X and a(R) = α.
But a(R) is never even.

Definition 1. Let X be a normal projective variety over k then we define

A(X) = {a(R) | R is quasi-Gorenstein and Proj (R) = X}.
We have the following facts.

Proposition 2. (1) For every normal projective variety X , 1 ∈ A(X).
(2) If there is a normal Cohen-Macaulay graded ring R with Proj (R) = X ,

then there is a normal Gorenstein graded ring R with Proj (R) = X

Definition 3. Let X be a normal projective variety. We say X has even canonical
class if cl(KX) = 2 cl(D) for some divisor D in the divisor class group of X .

Theorem 4. If there exists a quasi-Gorenstein ring R with Proj (R) = X and
even a(R), then X has even canonical class.

These statements follow from the characterization for Cohen-Macaulay and
quasi-Gorenstein property for R (cf. [4]).

Example 5. Let X be a normal projective variety and H be an ample (integral
Q-Cartier Weil) divisor on X . Also, we assume that dimH0(X,OX(H)) ≥ 2 in
(1) and (2) .

(1) If KX is linearly equivalent to sH with some negative even integer s, then
A(X) = Z \ 0.

(2) If X does not have even canonical class and KX is linearly equivalent to sH
with some negative odd integer s ≤ −3, then A(X) is the set of all odd integers.

(3) If KX = 0, then A(X) = Z≥0, the set of all non-negative integers. (Con-
versely, if 0 ∈ A(X), then KX = 0.)

(4) If X has even canonical class and KX is ample Q-Cartier, then A(X) = Z>0,
the set of all positive integers.

(5) If X does not have even canonical class and KX is ample Q-Cartier, then
A(X) is the set of all positive odd integers.

(6) If the divisor class group Cl(X) ∼= Z with the class of −KX as ample
generator, then A(X) is the set of odd integers ≥ −1.

Question 6. (1) For every normal projective variety X , the set A(X) coincides
with one of the sets appearing in (1)-(6) of Example 5 ?

(2) What is the condition for X so that A(X) contains a negative integer? It
is easy to see that the condition “−KX is big” is a necessary condition. Is it also
a sufficient condition?

(3) If X is a Fano variety with index 1, then is A(X) the set of odd integers
≥ 1 ?

Remark. In my talk at Oberwolfach, I overlooked the case (6) in Example 5.
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Universitätsstr. 150
44801 Bochum

Prof. Dr. Claudia Polini

Department of Mathematics
University of Notre Dame
Notre Dame , IN 46556
USA

Prof. Dr. Tim Römer
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