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Introduction by the Organisers

The conference was organized by Noga Alon (Tel Aviv), Béla Bollobás (Cambridge
and Memphis) and Ingo Wegener (Dortmund). The programme consisted of 12
main lectures, supplemented by 17 shorter contributions, and covered many areas
in Extremal and Probabilistic Combinatorics as well as in Theoretical Computer
Science.

A few months before the meeting, we were devastated to hear that the third
organizer of this conference, Professor Ingo Wegener, died in November 26, 2008.
Ingo was the friend and colleague of many of us, and his spirit was with us during
the meeting. The meeting started with a tribute to his memory and one of the
technical lectures focused on recent developments in the investigation of a problem
he raised in the previous Oberwolfach meeting we organized with him in 2006.
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The basic Probabilistic Method is the technique of proving the existence of
structures with unexpected properties by showing that a randomly chosen ob-
ject from an appropriate probability distribution has the properties with positive
probability. This method has been strikingly successful in Combinatorics, Graph
Theory, Geometry and Combinatorial Number Theory, and the probabilistic point
of view has had an enormous influence on theoretical computer science.

The speakers reported on recent developments in Ramsey theory, including
variants that deal with Random Graphs and random structures, on new results
in Combinatorial Geometry and on advances in the study of colouring problems
for graphs and hypergraphs. Novel results in percolation, extremal graph theory
and additive combinatorics have been described as well, combining combinatorial,
probabilistic and analytic ideas. Additional active topics discussed included results
on hashing, a new efficient algorithm for the local lemma, better algorithms for
the random k-set problem, new developments on random walks in random graphs,
and a discussion of reachability games.

The workshop focused on the connection and common themes of Combina-
torics, Discrete Probability and Theoretical Computer Science, and the lectures,
many of which given by young participants, stimulated fruitful discussions. The
fact that the participants work in different and yet related topics, and the open
problems session held during the meeting, encouraged interesting discussions and
collaborations.

Forty nine scientists, including forty from countries other than Germany partic-
ipated in the meeting. The organizers and participants thank the Mathematisches
Forschungsinstitut Oberwolfach for providing an inspiring setting for this confer-
ence.
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Abstracts

Structure and Cardinality of H-free graphs

József Balogh

A graph is called H-free if it contains no copy of H . Denote by fn(H) the number
of (labeled) H-free graphs on n vertices. As a natural extension of the Erdős-Stone
theorem [13], Erdős conjectured that

(1) fn(H) = 2(1+o(1)) ex(n,H)

when H contains a cycle. The lower bound is trivial, as all subgraphs of an
extremal H-free graph are H-free.

The conjecture was first shown to be true for cliques by Erdős, Kleitman and
Rothschild [12] and later Erdős, Frankl and Rödl [11] proved it for all graphs H
with χ(H) ≥ 3. We considered three different ways of extending their results:

• Finding more precise estimates for fn(H), and describing the structure of
almost all H-free graphs.
• Proving similar results when H is forbidden as an induced subgraph.
• Trying to prove the conjecture when H is a bipartite graph.

The structure of almost all H-free graphs. In order to state our results, we
need some definitions. Denote by Iν the ν-vertex graph with no edges. Given a
graph H , let the decomposition family of H ,M :=M(H), be the family of minimal
graphs M for which there exist a t = tH such that H ⊆M ′⊗Kp−1(t, . . . , t), where
M ′ = M ′(t) is the graph obtained by adding t isolated vertices to M . We say that a
graph H is weakly critical if there is an edge e ∈ E(H) for which χ(H−e) < χ(H).
The main result of Balogh, Bollobás and Simonovits [3] is the following.

Theorem 1. Let H be a graph with chromatic number r + 1 = χ(H). Then there
is a constant c = c(H), such that the following holds:
For almost all H-free graphs G there exists a partition (A, S1, . . . , Sr) of V (G),
such that

(a) |A| ≤ c,

(b) G[Sj ] is M(H)-free for every j ∈ [r].

In particular,

2(1−1/r)(n
2)nex(n/r,M) ≤ |fn(H)| ≤ 2(1−1/r)(n

2)nex(n,M)+cn.

In [4], Balogh, Bollobás and Simonovits proved more precise results for certain
families of graphs. Among others the following was proved:

Theorem 2. Let r and s be positive integers and H be a weakly critical graph
with chromatic number r + 1. Then almost every sH-free graph Gn on n vertices
has a set S of s − 1 vertices for which χ(Gn − S) = r, where sH is the graph
consisting of s vertex disjoint copies of H.
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Theorem 3. Denote by O6 the octahedron graph (which is the same as K(2, 2, 2)).
The vertices of almost every O6-free graph can be partitioned into two classes, U1

and U2, so that U1 spans a C4-free graph and U2 spans a P3-free graph.

Note that Theorem 2 was proved by Prömel and Steger [19] for s = 1.

The number of H-free graphs when H is bipartite. For most bipartite H ,
Conjecture (1) is still wide open, and even the correct order of magnitude of
log2 fn(H) is not known. The only nontrivial bipartite graphs, for which an es-
timate stronger than the trivial bound is known, are cycles. Kleitman and Win-
ston [16] proved that log2 fn(C4) ≤ 2.16384 · ex(n, C4), and later Kleitman and
Wilson [17] proved log2 fn(C6) = Θ(ex(n, C6)). For a little stronger estimates of
the number of graphs with large (even) girth, i.e., graphs with no short (even)
cycles, see [17, 18].

Balogh and Samotij [7] and [8] proved that for every 2 ≤ s ≤ t, fn(Ks,t) =

2O(n2−1/s). This bound is asymptotically sharp for all pairs (s, t) for which the
extremal number of Ks,t is known. The methods also yield a bound on the number
of Ks,t-free graphs with fixed order and size, extending the result of Füredi [14].
Using this bound, a relaxed version of a conjecture of Haxell, Kohayakawa and
 Luczak [15] is proved, and among others, it is showed that almost all K3,3-free
graphs of order n have more than 1/20 · ex(n, K3,3) edges.

The structure of almost all H-free graphs: the induced case. Note that
in the induced case it is better to consider the case when not a single graph H but
a family of graphs H is forbidden. Let f i

n(H) denote the number of graphs with
vertex set [n] containing no H ∈ H as an induced subgraph. We have to define the
coloring number of H, χC(H), to be the maximum number r + 1 for which there
exist s and t, with s + t = r, such that no G whose vertex set can be partitioned
into U1, . . . , Us, W1, . . . , Wt, where for every i, G[Ui] is a clique and G[Wi] is an
independent set, contains any H ∈ H as an induced subgraph.

The following result, proved by Alekseev [1], Bollobás and Thomason [9, 10],
and Prömel and Steger [20], generalizes the Erdős-Frankl-Rödl theorem.

Theorem 4. Let H be a family of graphs, and suppose χc(H) = r + 1. Then

f i
n(H) = 2(1−1/r+o(1))n2/2.

However, their proofs tell us very little about the structure of a typical H-free
graph G. Their theorem also gives rather weak bounds on the rate of convergence
of the entropy as n → ∞. Some fine structural results for the case r = 1 were
given in [5] and [6].

For each k ∈ N, the universal graph U(k) is the bipartite graph with parts
A ∼= [2]k and B ∼= [k], and edge set

E
(
U(k)

)
=
{
ab : a ∈ A, b ∈ B and b ∈ a

}
.

A graph G is said to be U(k)-free if there do not exist disjoint subsets A, B ⊂
V (G) such that G[A, B] = U(k). The main result of Alon, Balogh, Bollobás and
Morris [2] is the following:
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Theorem 5. Let H be a family of graphs, with colouring number χc(H) = r + 1.
Then there exist constants k = k(H) ∈ N and ε = ε(H) > 0 such that the following
holds.

For almost every H-free graph G there exists a partition (A, S1, . . . , Sr) of
V (G), such that

(a) |A| ≤ n1−ε,

(b) G[Sj ] is U(k)-free for every j ∈ [r].

Moreover

(2) 2(1−1/r)n2/2 ≤ |f i
n(H)| ≤ 2(1−1/r)n2/2 + n2−ε

for every sufficiently large n ∈ N.

Note that for r = 1 the relation (2) is not far from being best possible.
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The early evolution of the H-free process

Tom Bohman

(joint work with Peter Keevash)

In this talk we sketch an analysis of a significant portion of the initial evolution
of the H-free process, for some fixed graph H , defined by starting with an empty
graph on n vertices and then adding edges one at a time, chosen uniformly at
random subject to the constraint that no H subgraph is formed. More formally,
we begin with the graph on n vertices with no edges, which we denote G(0). Now
suppose i > 0 and we have some graph G(i− 1). We say that a pair uv of vertices
is open in G(i− 1) if uv is not an edge of G(i − 1) and G(i − 1) ∪ {uv} does not
contain H as a subgraph. We choose uv uniformly at random among all open pairs
in G(i − 1) and then G(i) is obtained from G(i − 1) by adding the edge ei = uv.
The process terminates when there are no open pairs, with some graph G on n
vertices that is a maximal H-free graph. Beside being of interest in its own right,
our analysis of this process produces new results in Ramsey theory and the theory
of Turán problems.

The study of such process was initiated in the late 1980’s by Erdős and others.
Ruciński and Wormald [9] introduced a differential equations method to analyze
the ‘maximum degree d’ process and thereby resolve a conjecture of Erdős. Erdős,
Suen and Winkler [6] obtained results on the triangle-free process and the bi-
partite process. Their analysis of the triangle-free process led to the best lower
bound on the Ramsey number R(3, t) known at that time. The upper bound
R(3, t) = O(t2/ log t) had been obtained by Ajtai, Komlós and Szemerédi [1], but

for many years the best known lower bound, due to Erdős [5], was Ω(t2/ log2 t).
Spencer conjectured that the triangle-free process is likely to produce a graph
that establishes a good lower bound on R(3, t) for t large; the idea being that
the triangle-free process admits enough random edges to bring the independence
number close to the smallest possible for a triangle-free graph. Finally, Kim [7]
determined the order of magnitude, showing that R(3, t) = Θ(t2/ log t). His
proof made use of a semi-random construction that is motivated (even guided)
by the triangle-free process, but the question remained open as to whether the
triangle-free process itself gives such a good construction. This was answered by
Bohman [3], who showed that with high probability, the graph produced by the

Research by Tom Bohman partially supported by NSF grant DMS-0701183. Research by
Peter Keevash partially supported by NSF grant DMS-0555755.
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triangle-free process has independence number bounded above by O(n1/2 log1/2 n)

and minimum degree bounded below by Ω(n1/2 log1/2 n).
The general H-free process was independently studied by Osthus and Taraz [8]

and by Bollobás and Riordan [4]. Say that a graph H is strictly 2-balanced if the
number of vertices vH and edges eH in H are both at least 3 and

eH − 1

vH − 2
>

eK − 1

vK − 2

for all proper subgraphs K of H with vK ≥ 3. Osthus and Taraz showed that if H
is strictly 2-balanced then for some c, C > 0 with high probability, for the H-free
process G has average degree at least cn1−(vH−2)/(eH−1) and maximum degree at
most Cn1−(vH−2)/(eH−1)(log n)1/(∆(H)−1). (In fact they proved the average degree
bound under a similar but weaker condition on H .) Wolfovitz [10] showed that if
H is strictly 2-balanced and regular then the expected number of edges in G is at
least cn2−(vH−2)/(eH−1)(log log n)1/(eH−1).

Our first main result gives a lower bound on the number of steps in the H-free
process.

Theorem 1. Suppose that H is a strictly 2-balanced graph with vH vertices and
eH edges. Then for some c > 0 with high probability the minimum degree in the
final graph of the H-free process is at least cn1−(vH−2)/(eH−1)(log n)1/(eH−1). In
particular, the Turán number satisfies

ex(n, H) = Ω
(
n2−(vH−2)/(eH−1)(log n)1/(eH−1)

)
.

We also get an upper bound on the independence number of the graph produced
by the H-free process for many choices of H . One consequence is the following
new lower bound on the off-diagonal Ramsey numbers.

Theorem 2. For fixed s ≥ 3 and t→∞, the Ramsey number satisfies

R(s, t) = Ω
(
t

s+1
2 (log t)

1
s−2−

s+1
2

)
.

Alon, Ben-Shimon and Krivelevich recently gave a construction that, given the
graph produced by the Ks-free process as input, produces a regular graph that
achieves the bound in Theorem 2.
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Geometric selection theorems

Boris Bukh

(joint work with Jǐŕı Matoušek and Gabriel Nivasch)

There are several problems in geometric combinatorics that involve approximation
of a large point set by a handful of points. The first result of the kind is due to
Rado:

Theorem 1 ([7]). For every finite set X ⊂ Rd there is a point p ∈ Rd such
whenever a convex set C does not contain p, C contains at most d

d+1 |X | points
of X.

The fraction d
d+1 is sharp as witnessed by the vertices of a regular simplex.

More generally, let X ⊂ Rd be a finite set, and F be a family of subsets of Rd.
A set N ⊆ Rd is called a weak ε-net with respect to F , where ε ∈ (0, 1] is a real
number, if N intersects every C ∈ F with |X ∩ C| ≥ ε|X |. Of special importance
are weak ε-nets with respect to convex sets, which we call simply weak ε-nets.
Rado’s says that there is a always 1-point weak d

d+1 -net. Let f(X, r) denote the

minimum cardinality of a weak 1
r -net for X . It is a nontrivial fact, first proved by

Alon, Bárány, Füredi, and Kleitman [1], that

f(d, r) := sup{f(X, r) : X ⊂ Rd finite}
is finite for every d ≥ 1 and every r ≥ 1; that is, for every set X there exist weak
ε-nets of size bounded solely in terms of d and ε. The best known upper bound is

f(d, r) = O(rd logc(d) r).
Consider another approximation problem. A n-point set X ⊂ Rd in general

position spans the family S(X) of
(

n
d+1

)
d + 1-dimensional simplices. Let g(X) =

1

( n
d+1)

maxp∈P #{∆ ∈ S(X) : p ∈ ∆}, and put

g(d) = inf{g(X) : X ⊂ Rd finite}.
In a rather surprising result Bárány [2] showed that g(d) is positive. The best lower

known bounds are g(2) ≥ 2/9 due to Boros and Füredi [3] and g(d) ≥ d2+1
(d+1)d+1

due to Wagner [8].
There is also a sparse version of the previous problem. For simplicity we consider

only dimension d = 2. Let X ⊂ Rd be an n-point set in general position, but
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instead of considering all
(
n
3

)
triangles spanned by X , let F be a family of α

(
n
3

)

triangles among the triangles spanned by X . Nivasch and Sharir [6] (fixing a
proof of Eppstein [5]) showed that in this situation there is always a point in
approximately cα3

(
n
3

)
triangles of F .

In these three approximation problems there have been no known non-trivial
constructions known. All the known bounds applied to arbitrary points sets, and
the proofs showed that no large point set can be approximated too well by a small
point set.

We introduce a class of construction, which establishes the first non-trivial lower
bounds for these three problems:

Theorem 2.

(1) For every d and r there is an X ⊂ Rd for which there is no weak 1/r-net
of size cdr(log r)d−1, i.e., f(r) = Ω

(
r(log r)d−1

)
.

(2) For every d and r there is an X ⊂ Rd for which there is no point in
(d+1)!

(d+1)d+1

(
n

d+1

)
simplices spanned by X, i.e., g(d) ≤ (d+1)!

(d+1)d+1 .

(3) For every α < 1 there is an n-point set X ⊂ Rd in general position and
a family F of α

(
n
3

)
triangles spanned by X such that no point is in more

than α2

log(1/α)

(
n
3

)
triangles of F .

The best previously known bounds were f(d, r) ≥ 1/r, g(d, r) ≤ 2−d and α2
(
n
3

)

respectively.
The basic element of the construction is a highly stretched grid {x1, . . . , xm}×

{y1, . . . , ym} where the real numbers x1, . . . , xm, y1, . . . , ym satisfy 1 ≪ x1 ≪
· · · ≪ xm ≪ y1 ≪ · · · ym and A ≪ B denotes exp(A) ≤ B (any other sufficiently
quickly-growing function in place of exp would also work). The crucial property is
that the intersections of convex sets with the stretched grid are well approximated
by combinatorial objects, called stair-convex sets. Stair-convex sets share most
properties of convex sets, but their definition involves no arithmetic operations,
which makes them much easier to work with. For full details the reader is referred
to [4].
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A Better Algorithm for Random k-SAT

Amin Coja-Oghlan

The k-SAT problem is well known to be NP-hard for k ≥ 3. But this merely indi-
cates that no algorithm can solve all possible inputs efficiently. Therefore, there
has been a significant amount of research on heuristics for k-SAT, i.e., algorithms
that solve “most” inputs efficiently. While some heuristics for k-SAT are very
sophisticated, virtually all of them are based on at least one of the following basic
paradigms.

Pure literal rule. If a variable x occurs only positively (resp. negatively) in the
formula, set it to true (resp. false). Simplify the formula by substituting the
newly assigned value for x and repeat.

Unit clause propagation. If the formula contains a clause that consists of only
a single literal (“unit clause”), then set the underlying variable so as to
satisfy this clause. Simplify and repeat.

Walksat. Initially pick a random assignment. Then repeat the following. While
there is an unsatisfied clause, pick one at random, pick a variable occurring
in the chosen clause randomly, and flip its value.

Backtracking. Assign a variable x, simplify the formula, and recurse. If the
recursion fails to find a satisfying assignment, assign x the opposite value
and recurse.

Heuristics based on these paradigms can be surprisingly successful (given that
k-SAT is NP-hard) on certain types of inputs, e.g., [7]. However, it remains re-
markably simple to generate formulas that elude all known algorithms/heuristics.
Indeed, the simplest conceivable type of random instances does the trick: let Φ
denote a k-SAT formula over the variable set V = {x1, . . . , xn} that is obtained
by choosing m clauses uniformly at random and independently from the set of
all (2n)k possible clauses. Then for a large regime of densities m/n satisfying as-
signments are known to exist due to non-constructive arguments, but no efficient
algorithm is known to find one.

To be precise, keeping k fixed and letting m = ⌈rn⌉ for a fixed r > 0, we say
that Φ has some property with high probability (“w.h.p.”) if the probability of
the property tends to one as n → ∞. Via the (non-algorithmic) second moment
method [1, 2] it can be shown that Φ has a satisfying assignment w.h.p. if m/n <
(1 − εk)2k ln 2. Here εk tends to 0 for large k. On the other hand, a very simple
first moment argument shows that no satisfying assignment exists w.h.p. if m/n >
2k ln 2. In summary, the threshold for Φ being satisfiable is asymptotically 2k ln 2.

Yet for densities m/n beyond O(2k/k) no algorithm has been known to find a
satisfying assignment in polynomial time with a probability that does not tend to
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Algorithm Density m/n < · · · Ref., year

Pure Literal o(1) as k →∞ [9], 2006

Walksat, rigorous 1
6 · 2k/k2 [6], 2009

Walksat, non-rigorous 2k/k [11], 2003

Unit Clause 1
2

(
k−1
k−2

)k−2 · 2k

k [4], 1990

Shortest Clause 1
8

(
k−1
k−3

)k−3 k−1
k−2 · 2k

k [5], 1992

SC+backtracking (“SCB”) ∼ 1.817 · 2k

k [8], 1996

BP+decimation, non-rigorous e · 2k/k [10], 2007

Table 1. Algorithms for random k-SAT

zero (Table 1 summarizes previous results). In fact, many algorithms, including
Pure Literal, Unit Clause, and DPLL-type algorithms, are known to fail or exhibit
an exponential running time beyond O(2k/k). There is experimental evidence that
the same is true of Walksat. Indeed, devising an algorithm to solve random for-
mulas w.h.p. for densities m/n up to 2kω(k)/k for any (howsoever slowly growing)
ω(k) → ∞ has been a prominent open problem [1, 2, 5, 10], which the following
theorem resolves.

Theorem 1. There is a sequence εk → 0 and a polynomial time algorithm Fix

such that Fix applied to a random formula Φ with m/n ≤ (1 − εk)2k ln(k)/k
outputs a satisfying assignment w.h.p..

Fix is a deterministic local search algorithm and runs in time O(n + m)3/2.
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Combinatorial theorems in sparse random sets

David Conlon

(joint work with W. T. Gowers)

Szemerédi’s theorem [8] states that for any k ∈ N and any δ > 0 there exists
n0 such that if n ≥ n0 then any subset of the set {1, 2, . . . , n} of size at least
δn contains an arithmetic progression of length k. A natural extension of this
definition is to say that a subset I of the integers is (k, δ)-Szemerédi if, for all
subsets J ⊂ I of size |J | ≥ δ|I|, J contains an arithmetic progression of length k.
For example, the celebrated theorem of Green and Tao [2] says that for any k ∈ N

and any δ > 0 there is n0 such that, for any n ≥ n0, the set of primes between 1
and n is (k, δ)-Szemerédi.

Given 0 ≤ p ≤ 1, define [n]p to be a random subset of {1, 2, . . . , n} where
each integer i is chosen with probability p. Our concern is with the following
question: when is the random set [n]p almost surely (k, δ)-Szemerédi? One simple
observation is that when the number of k-term arithmetic progressions in a set is
much less than the number of points in the set, the set cannot be (k, δ)-Szemerédi
for small δ. In that case we can just remove a point from each of the progressions
leaving some points but no progressions. In the random set [n]p, the expected
number of k-term arithmetic progressions is at most n2pk, while the expected
number of points is np. Therefore, the set [n]p cannot be (k, δ)-Szemerédi if n2pk ≤
(1−δ)np. Being a little more rigorous, it is easy to show that if p ≤ cn−1/(k−1), [n]p
is almost surely not (k, δ)-Szemerédi. Perhaps surprisingly, Kohayakawa,  Luczak
and Rödl [3] showed that if k = 3, this is essentially best possible. We extend their
result to all values of k.

Theorem 1. For every k ∈ N and δ > 0 there exist constants c and C such that

lim
n→∞

P
[
[n]p is (k, δ)-Szemerédi

]
=

{
0, if p < cn−1/(k−1),

1, if p > Cn−1/(k−1).

There are several results and conjectures of this variety in the literature. For
example, there is a beautiful theorem of Rödl and Ruciński [5, 6] determining
the threshold down to which a random graph Gn,p satisfies Ramsey’s theorem for
a given graph H . Another example is a conjecture of Kohayakawa,  Luczak and
Rödl [4] stating a similar threshold for when Gn,p almost surely satisfies a version of
Turán’s theorem. Though some partial results are known (see, for example, [1, 7]),
the general conjecture has remained open. Our method seems to be very general
and allows us, amongst other things, to reprove (and extend) the result of Rödl
and Ruciński and settle the conjecture of Kohayakawa,  Luczak and Rödl.
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Testing continuous distributions

Artur Czumaj

(joint work with Micha l Adamaszek and Christian Sohler)

We study the task of testing properties of probability distributions and our focus is
on understanding the role of continuous distributions in this setting. We consider
a scenario in which we have access to independent samples of a distribution D

over a potentially continuous or uncountable domain (e.g., on the interval [0, 1] or
on the n-dimensional continuous cube [0, 1]n). Our goal is to test whether D has
a given probability distribution or it is ε-far from it (in the statistical distance).

The topic of testing basic properties of the underlying probability distributions
has been extensively studied for many decades. While the standard approach in
statistics (and also more modern approaches, e.g., in data mining) have led to
the development of many high quality techniques and algorithms, until very re-
cently little attention has been paid to the computational complexity of testing
in the situations when the underlying distributions are over very large domains.
Motivated by these considerations, a number of new studies have emerged that
aim at developing efficient testers for various properties of distributions with the
focus on the small number of samples used for testing. In particular, it has been
shown that for a number of fundamental properties, such as independence, en-
tropy estimation, and the closeness between distributions, it is possible to test the
underlying distribution with the number of samples sublinear in the domain size.

While these studies lead to very efficient testers for various properties for distri-
butions on finite support, they seem to be useless when the underlying distribution
is on a continuous or uncountable domain. In this paper, our goal is to study the
phenomenon of testability of continuous distributions.
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Setting. We assume that there is an underlying probability distribution D from
which we can draw independent identically distributed samples (see, e.g., [4]). We
assume that each sample is of infinite precision and we will not consider the issue
of representation of the real numbers. The complexity of the tester is measured in
terms of the number of samples required in order to obtain a desired information
about the distribution.

We study the similarity and dissimilarity between various probability distri-
butions. We use the total variation distance to measure the similarity between
probability distributions. For any two probability distributions X and Y over Ω,
with density functions fX and fY , respectively, we say Y is ε-far from X if

1

2
·
∫

x∈Ω

|fX (x)− fY(x)| dx ≥ ε .

Our goal is to design an algorithm that for a given positive ε and a given
underlying probability distribution Q and a probability distribution D available
through random sampling, is able to distinguish between the case when Q = D

and when D is ε-far from Q. The algorithm is allowed to be randomized and can
err with probability at most 1

4 .

Continuous distributions are typically not testable. In general, it is in-
feasible to study interesting properties of continuous distributions without any
assumptions on the density function. For example, one can show that for every
integer t there is no tester A that distinguishes with at most t samples between
uniform distribution DU on [0, 1] and any distribution that is ε-far from uniform
(for example, take a uniform distribution on t3 randomly chosen points from the
interval [0, 1]; such distribution is discrete and hence it is 1

2 -far from uniform). This
result can be generalized for testing a number of natural properties for distributions
on continuous or uncountable domains by observing that a small discontinuity of
the density function makes testing many natural properties impossible.

One can also derive similar impossibility results from the existing lower bounds
for testing properties of discrete distributions. For example, Batu et al. [4] (see
also [6]) show that testing if a distribution on the support of size n is uniform
requires Ω(

√
n/ε2) samples. Since any continuous distribution can be seen as a

limit of a discrete distribution on a support of size n → ∞, the lower bound due
to Batu et al. implies that no algorithm can test if a given distribution on [0, 1]
is uniform [4]. This approach yields similar impossibility results for testing if a
given distribution is monotone, unimodal, or if two distributions are identical, etc.,
(see [1, 2, 3, 4, 5, 7, 8, 9] for more examples).

With these negative result, the natural challenge is to investigate if there are
any nontrivial continuous distributions that are efficiently testable.

Testing if a monotone high-dimensional distribution is uniform. The
main objective of this paper is to investigate if there are any nontrivial continuous
distributions that are testable. One of a very few properties of discrete distri-
butions in the CS literature that has only a light dependency on the size of the
support (the condition by our arguments above, that seems to be necessary to
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obtain a fast tester for continuous distributions) is that of testing if a monotone
distribution on a Boolean cube is uniform. Rubinfeld and Servedio [9] consider
the following problem: given a monotone1 (discrete) distribution D on a Boolean
cube {0, 1}n, test if D is uniform. Rubinfeld and Servedio [9] show that without
any assumption about the monotonicity of D, every testing algorithm requires
2Ω(n) samples, however, if D is monotone, then one distinguishes between the case
when D is uniform and when D is ε-far from uniform using O(n log(1/ε)/ε2) sam-

ples. Furthermore, this result is almost optimal in that Ω(n/ log2 n) samples are
necessary.

Our main contribution is the analysis of this problem in the setting when D is
a monotone distribution2 on an n-dimensional (continuous) cube [0, 1]n. First, we
provide a characterization of monotone distributions that are ε-far from uniform:

Theorem 1. Let D be a monotone distribution on [0, 1]n with density function f.
If D is ε-far from uniform then

Ef[‖x‖1] =

∫

x

‖x‖1 · f(x) dx ≥ n

2
+

ε

2
.

The proof of this theorem can be deduced from the following result (which is
the main technical contribution of the paper) by substituting g(x) = f(x)− 1.

Theorem 2. Let g : [0, 1]n → R be a monotone function with
∫
x

g(x) = 0. Then
∫

x

‖x‖1 · g(x) dx ≥ 1

4

∫

x

|g(x)| .

By combining Theorem 1 with the fact that for uniform distribution Q on [0, 1]n

we have EQ[‖x‖1] = n
2 , we can show that the following simple algorithm tests if a

distribution is uniform or it is ε-far from uniform:

Testing uniformity:

• Repeat r = 20 times:

Draw a sample (according to the distribution D) S = 〈x1, . . . , xs〉 from [0, 1]n

with s = ⌈ 40n

ε2 ⌉

If
Ps

i=1
‖xi‖1 ≥ s(n

2
+ ε

4
) then Reject and exit

• Accept

Theorem 3. Testing uniformity distinguishes between the uniform distribution on
[0, 1]n and any monotone distribution over [0, 1]n that is ε-far from uniform. Its
sample complexity is O(n/ε2) and it errs with the probability at most 1

4 .

1Distribution D is monotone if for any x = (x1, . . . , xn), y = (y1, . . . , yn), if xi ≤ yi for every
i then PrD x ≤ PrD y.

2A probability distribution D on [0, 1]n with density function f is monotone if for any x =
(x1, . . . , xn), y = (y1, . . . , yn), if xi ≤ yi for every i then f(x) ≤ f(y).



1242 Oberwolfach Report 23

References

[1] N. Alon, A. Andoni, T. Kaufman, K. Matulef, R. Rubinfeld, and N. Xie, Testing k-wise and
almost k-wise Independence, Proceedings of the 39th Annual ACM Symposium on Theory
of Computing (STOC), pp. 496–505, 2007.

[2] T. Batu, S. Dasgupta, R. Kumar, and R. Rubinfeld, The complexity of approximating
the entropy, Proceedings of the 34th Annual ACM Symposium on Theory of Computing
(STOC), pp. 678–687, 2002.

[3] T. Batu, E. Fischer, L. Fortnow, R. Kumar, R. Rubinfeld, and P. White, Testing ran-
dom variables for independence and identity, Proceedings of the 42nd IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 442–415, 2001.

[4] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White, Testing that distributions
are close, Proceedings of the 41st IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 259–269, 2000.

[5] T. Batu, R. Kumar, and R. Rubinfeld, Sublinear algorithms for testing monotone and
unimodal distributions, Proceedings of the 36th Annual ACM Symposium on Theory of
Computing (STOC), pp. 381–390, 2004.

[6] O. Goldreich and D. Ron, On testing expansion in bounded-degree graphs, Electronic Col-
loquium on Computational Complexity (ECCC), Report No. 7, 2000.

[7] S. Raskhodnikova, D. Ron, A. Shpilka, and A. Smith, Strong lower bounds for approximating
distribution support size and the distinct elements problem, Proceedings of the 48th IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 559–569, 2007.

[8] R. Rubinfeld, Sublinear time algorithms, Proceedings of the International Congress of Math-
ematicians, Madrid, Spain, August 22–30, 2006.

[9] R. Rubinfeld and R. A. Servedio, Testing monotone high-dimensional distributions, Proceed-
ings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pp. 147–156,
2005.

On risks of using cuckoo hashing: Strengths and weaknesses of
pseudorandom graphs generated by universal hashing

Martin Dietzfelbinger

(joint work with Ulf Schellbach)

Cuckoo hashing, introduced by Pagh and Rodler [10], is a strategy for maintaining
hash tables for a set S of keys from a “universe” U , so that lookups take constant
time in the worst case. The data structure consists of two tables T1 and T2 of
size m each, and it uses two hash functions h1, h2 : U → [m]. Given S ⊆ U ,
of size n = |S|, it is required that key x is stored in cell T1[h1(x)] or T2[h2(x)],
and that at most one key of S is stored in each cell. In this case we say that
h1 and h2 are suitable for S. Pagh and Rodler showed that if m ≥ (1 + ε)n for
a constant ε > 0, and if h1 and h2 are c log n-wise independent on S, for some
constant c > 0, then h1 and h2 are suitable for S with high probability, and there
is an insertion procedure (the “cuckoo strategy”, see [10]), that inserts each key
in expected constant time.

The cuckoo hashing data structure immediately induces a bipartite graph, the
cuckoo graph G(S, h1, h2), defined as follows: The left node set and the right node
set both are [m], and the edge set is

E(S, h1, h2) = {(h1(x), h2(x)) | x ∈ S}.
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This graph exhibits a certain degree of randomness, depending on the way S and
h1 and h2 are chosen. Clearly, h1 and h2 are suitable for S if and only if no
connected component of G(S, h1, h2) has more than one cycle.

The talk (which is based on the two papers [6, 7]) addresses the question how
strong the hash functions used in the scheme have to be. To achieve c log n-
wise independence by means of the hash class, sophisticated constructions must
be used [12], which are not really practical. In practice, one is tempted to use
cheap and fast hash classes and hope that they will behave almost like ran-
dom. In experiments, cuckoo hashing works very well with some weaker hash
function classes. However, already Pagh and Rodler reported on experimental
results that indicate that cuckoo hashing might not work well in combination
with the “multiplicative class” from [4] and recommended avoiding this class.
The multiplicative class Hmult

k,ℓ consists of functions ha : [2k] → [2l] of the form

ha(x) = ((a · x) mod 2k) div 2k−l, for 0 < a < 2k odd. One of these functions is
chosen at random, in the sense of universal hashing as introduced by Carter and
Wegman [2]. This class is 2-universal in the sense that the collision probability for
any two keys is at most 2/m. Another basic and important class is the “linear hash
class” H lin

p,m, for a prime number p > n and table size m < p. The functions in
this class have the format ha,b(x) = ((ax) mod p) mod m, for 0 ≤ a, b < p (chosen
randomly). This standard class is (almost) two-wise independent.

In 2008, Mitzenmacher and Vadhan [9] proved that if a 2-wise independent
hash class is used (or even if the collision probability is O(1/m)) and the key
set S exhibits a certain kind of partial randomness, and some further technical
conditions are fulfilled, then the combination of the key set and a hash function
chosen at random from a class of simple functions will behave very close to full
randomness, in a technical sense. This setup applies to cuckoo hashing, and it
would imply that if the conditions listed in the theorems given by Mitzenmacher
and Vadhan are fulfilled, then cuckoo hashing will work.

Our results indicate that care must be taken when using weak universal classes
in combination with cuckoo hashing. Under certain circumstances, it may happen
that the whole data structure crashes with high probability! In detail, our results
are as follows:

Result 1. In cuckoo hashing with the multiplicative class Hmult
k,ℓ (the table size

m is larger than 2n and hence way above the threshold sufficient for the stan-
dard analysis) all function pairs (h1, h2) from Hmult

k,ℓ will work badly with high

probability for fully random key sets of size n, if n/|U | > n1−δ for some constant
δ > 0.

Result 1 can be extended to non-dense key sets with n/|U | arbitrarily small, by
considering key sets chosen at random from a (structured) sub-universe U ′ ⊆ U .

Result 2. Cuckoo hashing with the standard almost 2-wise independent class
H lin

p,m exhibits a similar behaviour as in Result 1, again in the case where the key
set is relatively dense in U . This is true even if the two hash functions use different
prime moduli.
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Result 3. Another construction shows that cuckoo hashing with the multiplicative
class does not exhibit the behaviour provable for c · log n-wise independent classes
(the failure probability is Ω(1), while in the c · log n-wise independent case it is
O(1/n)), for sparse key sets that exhibit a certain grid structure.

The proof techniques for Results 1 and 2 are similar: One shows that the “full”
cuckoo graph G(U, h1, h2) has a very regular, periodic structure. Further, one
shows that it contains constant-size “obstructing subgraphs”, meaning connected
subgraphs with two cycles. Because of the periodicity, there is a linear number
of such subgraphs that do not overlap too much. By a standard argument (con-
ditional expectation inequality or second moment method) one sees that when a
relatively dense random set of edges (which corresponds to choosing a random
key set S) is chosen, the probability that one of these obstructing subgraphs is
chosen completely is 1 − o(1), which means that h1 and h2 are not suitable for S
with probability 1 − o(1). For the different hash classes the methods to find the
obstructing subgraphs are different.

On the surface, these results seem to contradict the results by Mitzenmacher
and Vadhan [9]. However, a closer look reveals that in the case of dense key
sets one of the technical assumptions for the main theorems from that paper are
not satisfied. Although the key set is fully random, a technical parameter (the
“collision probability”, closely related to the Renyi entropy) is too large.

On the one hand our results explain the experimental observations by Pagh
and Rodler and substantiates their warning against using multiplicative hashing
in combination with cuckoo hashing; on the other hand shows that one of the
“further technical conditions” of the Mitzenmacher/Vadhan result, namely the
requirement that key sets must be relatively sparse in U , is really necessary for
that result to be true.

Open problems: 1. It is an open problem to determine how strong universal
classes are needed to guarantee that cuckoo hashing works. Our work shows that
standard 2-wise independence classes are not enough; with contrived constructions
one can show that even bounding the collision probability for up to 5 keys one
cannot enforce that cuckoo hashing works ([3], manuscript by Cohen/Kane).
2. Fotakis, Pagh, Sanders, and Spirakis [8] described a generalization of cuckoo
hashing that uses more than 2 hash functions, say d many, and one table of size m.
It is an open problem to determine the exact threshold density for n/m for their
scheme to work, even with fully random hash functions. As described in [5] (Ob-
servation 2), the results of Calkin [1] give a one-sided bound. It is unknown (but
presumably true) that this bound is not optimal.
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Large induced trees in Kr-free graphs

Jacob Fox

(joint work with Po-Shen Loh and Benny Sudakov)

For a graph G, let t(G) denote the maximum number of vertices in an induced
subgraph of G that is a tree. The problem of bounding t(G) in a connected graph
G was first introduced twenty years ago by Erdős, Saks, and Sós [4]. Clearly, to get
a non-trivial result one must impose some conditions on the graph G, because, for
example, the complete graph contains no induced tree with more than 2 vertices. In
their paper, Erdős, Saks, and Sós studied the relationship between t(G) and several
natural parameters of the graph G. They were able to obtain asymptotically tight
bounds on t(G) when either the number of edges or the independence number of
G were known.

Erdős, Saks, and Sós also considered the problem of estimating the size of the
largest induced tree in graphs with no Kr (complete graph on r vertices). Let
tr(n) be the minimum value of t(G) over all connected Kr-free graphs G on n
vertices. In particular, for triangle-free graphs, they proved that

Ω

(
log n

log log n

)
≤ t3(n) ≤ O(

√
n log n),
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and left as an interesting open problem the task of closing the wide gap between
these two bounds.

The first significant progress on this question was made only recently by Ma-
toušek and Šámal [14], who actually came to the problem of estimating t3(n) from
a different direction. Pultr had been studying forbidden configurations in Priestley
spaces [2], and this led him to ask in [16] how large t(G) could be for connected
bipartite graphs G. Let tB(n) be the minimum value of t(G) over all connected
bipartite graphs on n vertices. It is clear that t3(n) ≤ tB(n), so the result of Erdős,
Saks, and Sós immediately gives a lower bound on tB(n).

Motivated by Pultr’s question, Matoušek and Šámal studied tB(n) and t3(n).
They found the following nice construction which shows that t3(n) ≤ tB(n) <
2
√

n + 1. Let m =
√

n, and consider the graph with parts V−m+1, V−m+2, . . . ,
Vm−1, where |Vi| = m − |i|, and each consecutive pair of parts (Vi, Vi+1) induces
a complete bipartite graph. This graph is clearly bipartite with m2 = n vertices,
and it is easy to see that every induced tree in it has at most 2m− 1 vertices. On
the other hand, Matoušek and Šámal were able to improve the lower bound on

tB(n) and t3(n), showing that t3(n) ≥ ec
√

log n for some constant c. Furthermore,
they also proved that if there was even a single value of n0 for which t3(n0) <

√
n0,

then in fact t3(n) ≤ O(nβ) for some constant β strictly below 1/2. The above fact
led Matoušek and Šámal to conjecture that the true asymptotic behavior of t3(n)
was some positive power of n which is strictly smaller than 1/2.

Our first main result essentially solves this problem. It determines that the order
of growth of both t3(n) and tB(n) is precisely Θ(

√
n), disproving the conjecture

of Matoušek and Šámal.

Theorem 1. Let G be a connected triangle-free graph on n vertices. Then t(G) ≥√
n.

Furthermore, our approach can also be used to give asymptotically tight bounds
on the size of the largest induced tree in Kr-free graphs for all remaining values
of r. In their original paper, Erdős, Saks, and Sós gave an elegant construction
which shows that tr(n) for r ≥ 4 has only logarithmic growth. Indeed, let T be a
balanced (r − 1)-regular tree, that is, a rooted tree in which all non-leaf vertices
have degree r − 1 and the depth of any two leaves differs by at most 1. Then the
line graph1 L(T ) is clearly Kr-free, and one can easily check that induced trees
in L(T ) correspond to induced paths in T , which have only logarithmic length.
Optimizing the choice of the parameters in this construction, one can show that

tr(n) ≤ 2 log(n−1)
log(r−2) + 2. On the other hand, using Ramsey Theory, Erdős, Saks, and

Sós also showed that tr(n) ≥ cr log n
log log n , where cr is a constant factor depending only

on r. Our second main result closes the gap between these two bounds as well,
and determines the order of growth of tr(n) up to a small multiplicative constant.

1The vertices of L(T ) are the edges of T , and two of them are adjacent if they share a vertex
in T .
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Theorem 2. Let r ≥ 4, and let G be a connected graph on n vertices with no
clique of size r. Then t(G) ≥ log n

4 log r .

One can similarly investigate induced forests in Kr-free graphs. Let fr(n) to
be the maximum number such that every Kr-free graph on n vertices contains an
induced forest with at least fr(n) vertices. We trivially have fr(n) ≥ tr(n). The
independence number α(G) of a graph is the size of the largest independent set
of vertices in G. The size of the maximum induced forest in any graph is closely
related to its independence number. Indeed, since an independent set is a forest
and every forest is bipartite, then the number of vertices of the largest induced
forest in a graph G is at least α(G) and at most 2α(G). Together with the best
known upper bound for off-diagonal Ramsey numbers [1], for fixed r ≥ 3 and all n,

we have fr(n) ≥ c(n logr−2 n)
1

r−1 for some positive constant c. Hence, f3(n) is
a factor on the order of

√
log n larger than t3(n). Furthermore, for fixed r > 3,

fr(n) and tr(n) behave very differently, as fr(n) is polynomial in n while tr(n)
is only logarithmic in n. This demonstrates that in Kr-free graphs on n vertices
the largest guaranteed induced forest is much larger than the largest guaranteed
induced tree.

We finish by mentioning some related research. Our work considers the Ramsey-
type problem of finding either a clique or a large induced tree. The similar problem
of finding an induced copy of a particular tree T in a Kr-free graph was indepen-
dently raised by Gyárfás [8] and Sumner [19]. They conjectured that for any fixed
integer r and tree T , any graph with sufficiently large chromatic number (depend-
ing on r and T ) must contain either an r-clique or an induced copy of T . Note
that the essential parameter for the graph G is now the chromatic number and
not the number of vertices. Indeed, a complete bipartite graph has no clique of
size 3, but contains only stars as induced subtrees. This conjecture is widely open,
although some partial results were obtained in [9, 10, 11, 17].

Induced trees were also studied in the context of sparse random graphs. This
line of research was started by Erdős and Palka [3], who conjectured that for any
constant c > 1, the random graph G(n, c/n) would with high probability contain
an induced tree of order γ(c)n. This was solved by Fernandez de la Vega [5], and
other variants of this result were obtained in [12, 6, 7, 13, 18]. In another regime,
when the edge probability is p = c log n/n, Palka and Ruciński [15] showed that the
largest induced tree in G(n, p) has size Θ(n log log n/ log n) with high probability.
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[8] A. Gyárfás, On Ramsey covering numbers, Coll. Math. Soc. János Bolyai , in: Infinite and
Finite Sets, North Holland/American Elsevier, New York (1975), 10.
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Coloring simple hypergraphs

Alan Frieze

(joint work with Dhruv Mubayi)

Hypergraph coloring has been studied for almost 50 years, since Erdős’ seminal
results on the minimum number of edges in uniform hypergraphs that are not
2-colorable. Some of the major tools in combinatorics have been developed to
solve problems in this area, for example, the local lemma and the nibble or semi-
random method. Consequently, the subject enjoys a prominent place among basic
combinatorial questions.

Closely related to coloring problems are questions about the independence num-
ber of hypergraphs. An easy extension of Turán’s graph theorem shows that a
k-uniform hypergraph with n vertices and average degree d has an independent
set of size at least cn/d1/(k−1), where c depends only on k. If we impose local
constraints on the hypergraph, then this bound can be improved. An i-cycle in a
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k-uniform hypergraph is a collection of i distinct edges spanned by at most i(k−1)
vertices. Say that a k-uniform hypergraph has girth at least g if it contains no
i-cycles for 2 ≤ i < g. Call a k-uniform hypergraph simple if it has girth at least 3.
In other words, every two edges have at most one vertex in common. Throughout
this abstract we will assume that k ≥ 3 is a fixed positive integer.

Ajtai-Komlós-Pintz-Spencer-Szemerédi [2] proved the following fundamental re-
sult that strengthened the bound obtained by Turán’s theorem above.

Theorem 1. ([2]) Let H = (V, E) be a k-uniform hypergraph of girth at least 5
with maximum degree ∆. Then it has an independent set of size at least

c n

(
log ∆

∆

)1/(k−1)

where c depends only on k.

Spencer conjectured that Theorem 1 holds even for simple hypergraphs, and
this was later proved by Duke-Lefmann-Rödl [5]. Theorem 1 has proved to be a
seminal result in combinatorics, with many applications. Indeed, the result was
first proved for k = 3 by Komlós-Pintz-Szemerédi [11] to disprove the famous
Heilbronn conjecture, that among every set of n points in the unit square, there
are three points that form a triangle whose area is at most O(1/n2).

The goal of this paper is to prove a result that is stronger than Theorem 1 (and
also the accompanying result of [5]). Our main result states that not only can one
find an independent set of the size guaranteed by Theorem 1, but in fact that the
entire vertex set can be partitioned into independent sets with this average size.
Recall that the chromatic number χ(H) of H is the minimum number of colors
needed to partition the vertex set so that no edge is monochromatic.

Theorem 2. Fix k ≥ 3. Let H = (V, E) be a simple k-uniform hypergraph with
maximum degree ∆. Then

χ(H) < c

(
∆

log ∆

) 1
k−1

where c depends only on k.

It is shown in [4] that Theorem 2 is sharp apart from the constant c. In order
to prove Theorem 2 we will first prove the following slightly weaker result. A
triangle in a k-uniform hypergraph is a 3-cycle that contains no 2-cycle. In other
words, it is a collection of three sets A, B, C such that every two of these sets
have intersection of size one, and A ∩B ∩ C = ∅.
Theorem 3. Fix k ≥ 3. Let H = (V, E) be a simple triangle-free k-uniform
hypergraph with maximum degree ∆. Then

χ(H) < c

(
∆

log ∆

) 1
k−1

,

where c depends only on k.
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The proof of Theorem 3 rests on several major developments in probabilistic
combinatorics over the past 25 years. Our approach is inspired by Johansson’s
breakthrough result on graph coloring, which proved Theorem 3 for k = 2.

The proof technique, which has been termed the semi-random, or nibble method,
was first used by Rödl (inspired by earlier work in [2, 11]) to confirm the Erdős-
Hanani conjecture about the existence of asymptotically optimal designs. Subse-
quently, Kim [9] (see also Kahn [8]) proved Johansson’s theorem for graphs with
girth five and then Johansson proved his result.

The implication Theorem 3 → Theorem 2 forms a much shorter (but still non-
trivial) part of this paper (See Section 2). Our proof uses a recent concentration
result of Kim and Vu [10] together with some additional ideas similar to those
from Alon-Krivelevich-Sudakov [3].

Finally, we remark that our proof of Theorem 3 also gives the same upper bound
for list chromatic number. On the other hand, we are not able to prove Theorem 2
for list chromatic numbers. We end with a conjecture posed in [6].

Conjecture 1. ([6]) Let F be a k-graph. There is a constant cF depending only on
F such that every F -free k-graph with maximum degree ∆ has chromatic number
at most cF (∆/ log ∆)1/(k−1).
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[1] M. Ajtai, P. Erdős, J. Komlós, E. Szemerédi, On Turán’s theorem for sparse graphs, Com-
binatorica 1, 313–317 (1981).

[2] M. Ajtai, J. Komlós, J. Pintz, J. Spencer and E. Szemerédi, Extremal uncrowded hyper-
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Bootstrap percolation on G(n, p)

Svante Janson

(joint work with Tomasz  Luczak, Tatyana Turova and Thomas Vallier)

Bootstrap percolation on a graph G is defined as the spread of activation or infec-
tion according to the following rule, with a given threshold r ≥ 2: We start with a
set A(0) ⊆ V (G) of active vertices. Each inactive vertex that has at least r active
neighbours becomes active. This is repeated until no more vertices become active,
i.e., when no inactive vertex has r or more active neighbours.

We are mainly interested in the final size A∗ of the active set, and in particular
whether eventually all vertices will be active or not. If they are, we say that the
initial set A(0) percolates. We will study a sequence of graphs of order n→∞; we
then also say that (a sequence of) A(0) almost percolates if the number of vertices
that remain inactive is o(n), i.e., if A∗ = n− o(n).

Bootstrap percolation has been studied on various graphs, both deterministic
and random; one can study either a random initial set or the deterministic problem
of choosing an initial set that is optimal in some sense. For example, a classical
folklore problem is to find the minimal percolating set in a two-dimensional grid;
see Balogh and Pete [3] and Bollobás [5]. (These references also treat higher-
dimensional grids.) Some further references for random initial sets on various
graphs are Cerf and Manzo [6], Holroyd [7] (grids); Balogh and Bollobás [1] (hy-
percube); Balogh, Peres and Pete [2] (infinite trees); Balogh and Pittel [4] (random
regular graphs).

We here study bootstrap percolation on the Erdös-Rényi random graph Gn,p

(which somewhat surprisingly seems to have been neglected so far in this context),
with an initial set A(0) consisting of a given number a vertices chosen at random.
This was first studied by Vallier [8]; we here present a simple method that allows
us to both simplify the proofs and improve the results.

In order to analyze the bootstrap percolation process on Gn,p, we change the
time scale and consider at each time step the spread of activation from one vertex
only. Choose u1 ∈ A(0) and give each of its neighbours a mark ; we then say
that u1 is used, and let Z(1) := {u1} be the set of used vertices at time 1. We
continue recursively: At time t + 1, choose a vertex ut+1 ∈ A(t) \ Z(t) (provided
this set is non-empty). We give each neighbour of ut+1 a new mark. Let ∆A(t+1)
be the set of inactive vertices with r marks; these now become active and we let
A(t + 1) = A(t) ∪∆A(t + 1) be the set of active vertices at time t. We finally set
Z(t + 1) = Z(t) ∪ {ut+1} = {ui : i ≤ t + 1}, the set of used vertices.

The process stops when A(t) \ Z(t) = ∅, i.e., when all active vertices are used.
We denote this time by T ;

(1) T := min{t ≥ 0 : A(t) \ Z(t) = ∅}.

Thus the final infected set is A(T ) = Z(T ), and its size is

(2) A∗ := |A(T )| = |Z(T )| = T.
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Hence, the set A(0) percolates if and only if T = n, and A(0) almost percolates if
and only if T = n− o(n).

Since |Z(t)| = t and Z(t) ⊆ A(t) for t = 0, . . . , T , we also have, with A(t) :=
|A(t)|, the number of active vertices at time t,

(3) T = min{t ≥ 0 : A(t) = t}.
We analyze this process by the standard method of revealing the edges of the

graph Gn,p only on a need-to-know basis. We thus begin by choosing u1 as above
and then reveal its neighbours; we then find u2 and reveal its neighbours, and so
on. Let, for i /∈ Z(s), Ii(s) be the indicator function that there is an edge between
the vertices us and i. This is also the indicator that i gets a mark at time s, so if
Mi(t) is the number of marks i has at time t, then

(4) Mi(t) =
t∑

s=1

Ii(s),

at least until i is activated (and what happens later does not matter). Note that
if i /∈ A(0), then, for every t ≤ T , i ∈ A(t) if and only if Mi(t) ≥ r.

The crucial feature of this description of the process, which makes the analysis
simple, is that the random variables Ii(s) are i.i.d. Be(p). We have defined Ii(s)
only for s ≤ T and i /∈ Z(s), but it is convenient to add further (redundant)
variables so that Ii(s) are defined, and i.i.d., for all i ∈ Vn and all s ≥ 1.

Define, for i ∈ Vn \ A(0),

(5) Yi := min
{
t : Mi(t) ≥ r

}
.

If Yi ≤ T , then Yi is the time vertex i becomes active, but if Yi > T , then Yi never
becomes active. Thus, for t ≤ T ,

A(t) = A(0) ∪ {i /∈ A(0) : Yi ≤ t}.
By (4) and (5), each Yi has a negative binomial distribution NegBin(r, p);

P(Yi = k) = P
(
Mi(k − 1) = r − 1, Ii(k) = 1

)
=

(
k − 1

r − 1

)
pk(1 − p)r−k;

moreover, these random variables Yi are i.i.d.
We let, for t = 0, 1, 2, . . . ,

S(t) := |{i /∈ A(0) : Yi ≤ t}|,
so

(6) A(t) = S(t) + A(0) = S(t) + a.

By (3), (2) and (6), it suffices to study the stochastic process S(t). Note that
S(t) is a sum of n − a i.i.d. processes 1[t ≥ Yi], each of which is 0/1-valued and
jumps from 0 to 1 at time Yi. The fact that S(t), and thus A(t), is a sum of i.i.d.
processes makes the analysis easy; in particular, for any given t,

S(t) ∼ Bin
(
n− a, P(Y1 ≤ t)

)
.
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We have, for any given t0,

T ≥ t0⇐⇒min
t<t0

(A(t)− t) > 0⇐⇒ a + min
t<t0

(S(t)− t) > 0⇐⇒ a > −min
t<t0

(S(t)− t).

(Note that is exact; so far no approximation has been done.)
To find the threshold for (almost) percolation, we thus only have to find the

minimum mint<t0(S(t) − t) for t0 = n or t0 close to n. Standard concentration
results show that S(t) ≈ E S(t), where

E S(t) = (n− a) P(Y1 ≤ t) = (n− a) P(M1(t) ≥ r),

and explicit results are easily found.
For notational simplicity we state the result for r = 2 only. In this case,

E S(t)− t has a minimum 1/(2np2) at t = 1/(np2) (asymptotically), and we obtain
the following result.

Theorem 1. Let r = 2, and assume n−1 ≪ p = p(n) ≪ n−1/2. Then the
threshold for (almost) percolation is

a∗ :=
1

2np2
.

More precisely, for any fixed δ > 0,

(i) If |A(0)| ≤ (1− ε)a∗, then whp A∗ ≤ 2|A(0)|.
(ii) If |A(0)| ≥ (1 + ε)a∗, then whp A∗ = n − o(n). If further np ≥ log n +

log log n + ω(n) for some ω(n)→∞, then whp A∗ = n, so A(0) percolates
completely.

Moreover, S(t) − E S(t) converges after normalization to a Gaussian process,
and it is easy to refine the results above and obtain very precise information on
the width of the critical window (which is of the order

√
a∗); we also obtain a

Gaussian limit law for the final size A∗ in the subcritical case.
Details will appear.

References

[1] J. Balogh and B. Bollobás, Bootstrap percolation on the hypercube, Probability Theory and
Related Fields 134 (2006), no. 4, 624–648.

[2] J. Balogh, Y. Peres and G. Pete, Bootstrap percolation on infinite trees and non-amenable
groups, Combinatorics, Probability and Computing 15 (2006), no. 5, 715–730.

[3] J. Balogh and G. Pete, Random disease on the square grid, Random Structures and Algo-
rithms 13 (1998), no. 3-4, 409–422.

[4] J. Balogh and B. G. Pittel, Bootstrap percolation on the random regular graph, Random
Structures and Algorithms 30 (2007), no. 1-2, 257–286.

[5] B. Bollobás, The Art of Mathematics. Coffee Time in Memphis. Cambridge University
Press, New York, 2006.

[6] R. Cerf and F. Manzo, The threshold regime of finite volume bootstrap percolation, Sto-
chastic Process. Appl. 101 (2002), no. 1, 69–82.

[7] A. E. Holroyd, Sharp metastability threshold for two-dimensional bootstrap percolation,
Probabability Theory and Related Fields 125 (2003), no. 2, 195–224.

[8] T. Vallier, Random graph models and their applications, Ph. D. thesis, Lund University,
2007.



1254 Oberwolfach Report 23

A Probability inequality using typical moments and Concentration
Results

Ravi Kannan

The well-known Höffding-Azuma (H-A) inequality is widely used to prove con-
centration results. For real-valued random variables X1, X2, . . .Xn satisfying two
conditions:

|Xi| ≤ 1 Absolute Bounds
E(Xi | X1, X2, . . .Xi−1) = 0 Martingale Difference Sequence,

the inequality gives “Gaussian” tail bounds on the probability that
∑n

i=1 Xi de-
viates from 0:

Pr

(∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ c1e

−c2t2/n,

for some constants c1, c2. The main aim of this paper is to weaken the assumption
of an absolute bound, while retaining the essential strength of the conclusion. We
present two theorems which do this, (of which only the simpler Theorem 1 is stated
here) both upper bounding E(

∑n
i=1 Xi)

p (the p th moment of
∑n

i=1 Xi) for some
even integer p; from this it is simple to get tail bounds. Our Theorem 1 is simply
stated and proved. But both H-A inequality and Chernoff bounds are very special
cases of it. Also, several hard concentration results made easy by Talagrand’s cele-
brated inequality – like the (geometric) Travelling Salesperson problem, Minimum
weight spanning trees, Longest Increasing Sequence and bin-packing – are also
simply tackled by Theorem 1 which yields similar (within constants) Gaussian tail
bounds. We are also able to get other results – for example, chromatic number
of sparse random graphs, and random projections. Theorem 1 also weakens the
Martingale difference condition to a condition we call Strong Negative Correlation;
this weakening has several uses too as we will see.

The absolute bound of H-A is weakened in Theorem 1 to bounds on (even)
moments of Xi conditioned on (any) value of X1 + X2 + · · · + Xi−1. A further
weakening is obtained in our Main Theorem – Theorem 2 whose proof is more
complicated, but still elementary. In Theorem 2, we use information on conditional
moments of Xi conditioned on “typical values” of X1 + X2 + · · ·+ Xi−1 as well as
the “worst-case” values. This is very useful in many contexts as we show. Using
Theorem 2, we settle the (discrete case of the) stochastic bin-packing problem
studied by Rhee and Talagrand and others by proving concentration results which
we show are best possible. We also give exponential tail bounds on the number of
triangles in sparse random graphs and indicate several other applications.

Theorem 1. Let X1, X2, . . .Xn be real valued random variables and p an even
positive integer satisfying

E Xi(X1 + X2 + . . . Xi−1)l ≤ 0, l < p, odd; i = 2, 3, . . . n.

E(X l
i | X1 + X2 + . . . Xi−1) ≤

(
n
p

)(l−2)/2

l!, l ≤ p, even; i = 1, 2, 3, . . . n.
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Then we have E (
∑n

i=1 Xi)
p ≤ (24np)p/2.

We will apply the theorem usually with p ≤ n. With this, it is clear that the
bounds on conditional moments we assume are weaker than the absolute bound
of 1 in H-A. In fact, the l! will help in many cases, for the reason that it is the l th
moment of the Poisson distribution with mean 1.
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Hamiltonicity problems in random graphs

Michael Krivelevich

Hamiltonicity has always been one of the most central and attractive subjects in
the theory of random graphs, with a variety of impressive results achieved and
ingenious arguments discovered during the last five decades. Its most important
achievements include:

• If p(n) = ln n+ln ln n+ω(n)
n for any function ω(n) → ∞, then a random graph

G(n, p) is almost surely Hamiltonian (Komlós and Szemerédi [9], Bollobás [4]);

• almost every random graph process G̃ = (Gi)
(n
2)

i=0 is such that exactly at the
very moment i the last vertex of degree 1 disappears, the graph Gi is Hamil-
tonian (Ajtai, Komlós and Szemerédi [1], Bollobás [4]);

• for every fixed d ≥ 3, a random d-regular graph Gn,d is almost surely Hamil-
tonian (Robinson and Wormald [12], [13]);

• if p(n) = ln n+O(ln ln n)
n , then G ∼ G(n, p) contains almost surely ⌊ δ(G)

2 ⌋ edge
disjoint Hamilton cycles (Bollobás and Frieze [5]).

Recent years brought a surge of renewed interest in the subject, and quite a
few interesting results and approaches appeared. In this survey talk I will discuss
some of them, and will indicate briefly main ideas of the proofs. The results to be
discussed include:

Hamiltonicity in (n, d, λ)-graphs

A graph G = (V, E) is called an (n, d, λ)-graph if it has n vertices, is d-regular and
all of its eigenvalues but the largest one are at most λ in their absolute values.
The setting of (n, d, λ)-graphs supplies a convenient vehicle to study properties of
regular – and typically pseudo-random – graphs. It has been proven that if G is
an (n, d, λ)-graph and

λ ≤ (ln ln n)2

1000 lnn · ln ln ln n
d ,

then G is Hamiltonian for large enough n (Krivelevich and Sudakov [11]).
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Packing edge disjoint Hamilton cycles

• If p = const, then a random graph G(n, p) contains almost surely (1 −
o(1))np/2 edge disjoint Hamilton cycles (Frieze and Krivelevich [6]);

• If p = (1+o(1)) ln n
n , then G ∼ G(n, p) contains almost surely ⌊ δ(G)

2 ⌋ edge
disjoint Hamilton cycles (Frieze and Krivelevich [7]).

Local resilience w.r.t. Hamiltonicity

This is a relatively new concept introduced by Sudakov and Vu [14]. It is aimed
to measure quantitatively the strength with which a graph G possesses certain
property P . Applied to Hamiltonicity, the problem reads as follows: given a
Hamiltonian graph G, what is the maximal ∆ = ∆(G) such that for every subgraph
H ⊂ G with ∆(H) ≤ ∆, the subgraph G − H is still Hamiltonian? The above
parameter ∆ is called then the local resilience of G with respect to Hamiltonicity.
It is easy to see that for a nearly d-regular graph G, the local resilience of G is
at most (1 + o(1))d/2, thus providing an easy upper bound of np/2 for a random
graph G(n, p). The following results have been obtained recently:

• if p > ln4 n/n, then almost surely the local resilience of G(n, p) with respect
to Hamiltonicity is (1/2− o(1))np (Sudakov and Vu [14]);

• There exist constants C > 0 and ǫ > 0 such that if a graph G is generated
according to G(n, p) with p ≥ C ln n/n, then almost surely the local resilience
of G with respect to Hamiltonicity is at least ǫCnp (Frieze and Krivelevich [7]);

• For every ǫ > 0 and large enough constant d, the local resilience of a random
d-regular graph Gn,d with respect to Hamiltonicity is at least (1/6−ǫ)d (Ben-
Shimon, Krivelevich and Sudakov [3]).

Hamiltonicity in Achlioptas processes

Consider the following online random process with parameter r = r(n). Start with
an empty graph G0 on n vertices. At round i, i ≥ 1, r edges ei1, . . . , eir are chosen
uniformly at random from the set of currently missing edges E(Kn) − E(Gi−1)
and are shown to an algorithm. The algorithm, based only on the edges of the
current round and edges currently on the board, decides to keep one of the current
edges eij and returns the rest to the pool. The goal is to choose edges so as to
advance or alternatively to delay a given graph property P . The setting, clearly
generalizing the usual random graph process (case r = 1) is meant to reflect and to
investigate the power of multiple choices in online algorithms on random inputs,
similarly to the classical “power of two choices” result of Azar, Broder, Karlin
and Upfal [2] about the balls-into-bins question. The model was suggested by
Dimitris Achlioptas, who asked whether for r = 2 there exists an online algorithm
that almost surely avoids creating a giant component for sizably longer than 0.5n
rounds of the usual random graph process.

For the case of advancing Hamiltonicity the following trivial lower bounds ap-
ply: (1) the number of rounds required is at least ((1 + o(1))n ln n)/(2r) (to see
a Hamilton cycle in the union of edges presented at the first r rounds; (2) the
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number of rounds required is at least n, the number of edges in a Hamilton cy-
cle. Krivelevich, Lubetzky and Sudakov proved [10] the following matching upper
bounds:

• the sublogarithmic case r = o(log n): there is an algorithm constructing a
Hamilton cycle almost surely in ((1 + o(1))n ln n)/(2r) rounds;

• the superlogarithmic case: r ≫ log n: there is an algorithm constructing a
Hamilton cycle almost surely in n + o(n) rounds;

• the logarithmic case r = γ ln n: at least (1+1/(2γ))n rounds are almost surely
required; there is an algorithm that almost surely produced a Hamilton cycle
in at most (3 + 1/γ)n rounds.

Maker-Breaker Hamiltonicity games

These are games between two players, called Maker and Breaker, who take turns
in claiming unoccupied edges of a graph G, one edge at at turn. Maker wins iff
he possesses a Hamilton cycle of his edges by the end of the game. Consider now
the case where the board of the game G is generated as a random graph G(n, p).
Clearly, when p(n) is below the threshold for Hamiltonicity, Maker typically loses,
as G has no Hamilton cycle to begin with. In a joint work with Hefetz, Stojakovič

and Szabó [8] we proved that if p(n) ≥ ln n+(ln ln n)c

n for some constant c > 0,
then for almost every board G ∼ G(n, p) Maker wins the Hamiltonicity game.
This shows that quite close to the Hamiltonicity threshold not only G(n, p) is
typically Hamiltonian, it is also robustly Hamiltonian – it is possible to construct
a Hamilton cycle even when playing against an adversary.
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The probabilistic method in topology

Nati Linial

The probabilistic method has revolutionized all of discrete mathematics. It has
had a great impact on other areas as well, e.g., on the study of normed spaces.
Our hope is that similar ideas can as well be very beneficial to topology. The
most obvious contact point is the theory of simplicial complexes. A simplicial
complex is a very natural object for combinatorics and for geometry alike. From
the combinatorial perspective, a simplicial complex F is a finite family of sets that
is closed under taking subsets. Namely, if A ∈ F and B ⊆ A, then B ∈ F as well.
Members of F are called faces or simplices and the dimension of the face A ∈ F
is defined as dim(A) := |A| − 1. The dimension of F is defined as the largest
dimension of a face in F . We say that F ⊆ 2[n] has a full k-dimensional skeleton
if every A ⊆ [n] of cardinality ≤ k + 1 belongs to F . A simplicial complex can
be realized geometrically e.g., by associating to every face A ∈ F a (geometric or
topological) simplex of dimension dim A. In this way simplicial complexes provide
a useful way of depicting geometric objects.

It is often mentioned that a graph is nothing but a one-dimensional simpli-
cial complex. This simple observation was the starting point to our joint work
with Roy Meshulam [3]. We interpret the G(n, p) model of random graphs as
a one-dimensional simplicial complex whose one-dimensional faces (= edges) are
selected at random independently and with probability p. We have introduced a
higher-dimensional analogue of this construction, Xd(n, p), a model of a random
d-dimensional complex on vertex set [n]. Such a complex has a full (d − 1)-
dimensional skeleton and every d-dimensional face is included in the complex in-
dependently and with probability p. It should be clear that X1(n, p) is nothing
but G(n, p). We hope to develop a theory that determines the typical properties of
complexes in Xd(n, p). The questions we investigate are, to a large extent inspired
by the main findings in the G(n, p) theory. Thus, the higher-dimensional analogue
of graph connectivity is the vanishing of the (d − 1)-st homology of a random
complex from Xd(n, p). The corresponding threshold was determined in [3]. Sub-
sequent work by Meshulam and Wallach [5] has extended these results to homology
with coefficients from any finite abelian group. The same problem remains open
for homology with integer coefficients. The threshold for simple connectivity in
the 2-dimensional case has been almost exactly determined by Babson, Hoffman
and Kahle in [1].
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This perspective leads to numerous interesting problems where fundamental
facts and problems in graph theory suggest new problems in higher-dimensional
complexes. A good illustration is provided by the quest for a higher-dimensional
analogue of Cayley’s formula for the number of labeled trees. One realizes that a

spanning tree can be viewed as a column basis for the inclusion matrix of [n]×
(
[n]
2

)

matrix. The same question for the
(
[n]
d

)
×
(

[n]
d+1

)
inclusion matrix is at present

widely open. In this context one should mention Kalai’s work [2] which provides
a beautiful weighted higher-dimensional Cayley’s formula. In recent work with
Meshulam and Rosenthal [4] we introduce some interesting new constructions of
higher-dimensional analogues of spanning trees (so called Q-hypertrees) and de-
termine exactly when they are collapsible.
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Cutoff phenomena for random walks on random regular graphs

Eyal Lubetzky

(joint work with Allan Sly)

A finite ergodic Markov chain is said to exhibit cutoff if its distance from the
stationary measure drops abruptly, over a negligible time period known as the
cutoff window, from near its maximum to near 0. That is, one has to run the
Markov chain until the cutoff point in order for it to even slightly mix, and yet
running it any further would be essentially redundant.

Let (Xt) be an aperiodic irreducible Markov chain on a finite state space Ω
with transition kernel P (x, y) and stationary distribution π. The worst-case total-
variation distance to stationarity at time t is defined by

d(t)
△
= max

x∈Ω
‖Px(Xt ∈ ·)− π‖TV,

where Px denotes the probability given X0 = x, and where ‖µ− ν‖TV, the total-
variation distance of two distributions µ, ν on Ω, is given by

‖µ− ν‖TV
△
= sup

A⊂Ω
|µ(A) − ν(A)| = 1

2

∑

x∈Ω

|µ(x) − ν(x)|.
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We define tmix(ε), the total-variation mixing-time of (Xt) for 0 < ε < 1, as

tmix(ε)
△
= min {t : d(t) < ε} .

Next, let (X
(n)
t ) be a family of such chains, each with its corresponding worst-case

total-variation distance from stationarity dn(t), its mixing-times t
(n)
mix, etc. We say

that this family of chains exhibits cutoff at time t
(n)
mix(1

4 ) iff the following sharp
transition in its convergence to stationarity occurs:

(1) lim
n→∞

t
(n)
mix(ε)

/
t
(n)
mix(1− ε) = 1 for any 0 < ε < 1.

The rate of convergence in (1) is addressed by the following: A sequence wn =

o
(
t
(n)
mix(1

4 )
)

is called a cutoff window for the family of chains (X
(n)
t ) if for any ε > 0

there exists some cε > 0 such that for all n,

(2) t
(n)
mix(ε)− t

(n)
mix(1 − ε) ≤ cεwn.

That is, there is cutoff at time tn = t
(n)
mix(1

4 ) with window wn if and only if

t
(n)
mix(s) = (1 + O(wn)) tn = (1 + o(1))tn for any fixed 0 < s < 1,

or equivalently, cutoff at time tn with window wn occurs if and only if
{

limλ→∞ lim infn→∞ dn(tn − λwn) = 1,

limλ→∞ lim supn→∞ dn(tn + λwn) = 0.

Although many natural families of chains are believed to exhibit cutoff, deter-
mining that cutoff occurs proves to be an extremely challenging task even for fairly
simple chains, as it often requires the full understanding of the delicate behavior
of these chains around the mixing threshold. Before reviewing some of the related
work in this area, as well as the conjectures that our work addresses, we state a
few of our main results.

The focus of this work is on random walks on a random regular graph, namely
on G ∼ G(n, d), a graph uniformly distributed over the set of all d-regular graphs
on n vertices, for d ≥ 3 and n large. This important class of random graphs
has been extensively studied, among other reasons due to the remarkable expan-
sion properties of its typical instance. One useful implication of these expansion
properties is the rapid mixing of the corresponding simple random walk (SRW),
the chain whose states are the vertices of the graph, and moves at each step to a
uniformly chosen neighbor. Namely, the SRW on such a graph has a mixing time
of O(log n) with high probability (whp), that is, with probability tending to 1 as
n→∞.

Our first result establishes both cutoff and its optimal window for the SRW

on a typical instance of G(n, d) for any d ≥ 3 fixed. This settles conjectures of
Durrett [2, Conjecture 6.3.5] and Peres [4] in the affirmative.

Theorem 1. Let G ∼ G(n, d) be a random regular graph for d ≥ 3 fixed. Then
whp, the simple random walk on G exhibits cutoff at d

d−2 logd−1 n with a window
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of order
√

log n. Furthermore, for any fixed 0 < s < 1, the worst case total-
variation mixing time whp satisfies

tmix(s) =
d

d− 2
logd−1 n− (Λ + o(1))Φ−1(s)

√
logd−1 n,

where Λ =
2
√

d(d−1)

(d−2)3/2 and Φ is the c.d.f. of the standard normal.

The essence of the cutoff for the SRW on a typical G ∼ G(n, d) lies in the
behavior of its counterpart, the non-backtracking random walk (NBRW), that
does not traverse the same edge twice in a row (formally defined soon). Curiously,
this chain also exhibits cutoff on G(n, d) whp, only this time the cutoff window is
constant : (2) holds for wn = 1 and cε logarithmic in 1/ε:

Theorem 2. Let G ∼ G(n, d) be a random regular graph for d ≥ 3 fixed. Then
whp, the non-backtracking random walk on G has cutoff at logd−1(dn) with a
constant-size window. More precisely, for any fixed ε > 0, the worst case total-
variation mixing time whp satisfies

tmix(1− ε) ≥ ⌈logd−1(dn)⌉ − ⌈logd−1(1/ε)⌉,
tmix(ε) ≤ ⌈logd−1(dn)⌉+ 3⌈logd−1(1/ε)⌉+ 4.

Establishing the above theorems requires a careful analysis of the local geometry
around typical pairs of vertices, via a Poissonization argument. Namely, we show
that the number of edges between certain neighborhoods of two prescribed vertices
is roughly Poisson. Similar arguments then allow us to formulate analogous results
for the case of regular graphs of high degree, that is, G(n, d) where d is allowed
to tend to ∞ with n, up to no(1). In particular, this resolves a conjecture of
Hildebrand [3] in a strong sense (from worst-case starting point rather than average
one, and after replacing the o(1) error-term by an additive 2).

Remarks:

• We have established the cutoff phenomenon for SRWs and NBRWs on almost
every d-regular graph on n vertices, where 3 ≤ d ≤ no(1) (beyond which the
mixing time is O(1) and we cannot have cutoff). For both walks, we obtained
the precise cutoff location and window:

1. For the SRW, the cutoff point is whp at d
d−2 logd−1 n, and in fact, we

obtained the two leading order terms of tmix(s) for any fixed s.

2. For the NBRW, cutoff occurs at logd−1(dn) whp ( d
d−2 times faster than

the SRW) with an O(1) window. Moreover, for large d, the entire mixing
transition takes place within a 2-step cutoff window.

• In addition, we provided a randomized algorithm to approximate tmix(s) of the

SRW on an input d-regular graph, with a runtime of Õ(n · tmix(s)). One may
thus test (in nearly linear time for typical graphs) whether the SRW on a given
d-regular graph indeed exhibits the above mentioned sharp transition in its
mixing.
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• Finally, we provided explicit constructions of d-regular graphs (for any d ≥ 3
fixed) where the SRW has cutoff at prescribed locations.

• It would be interesting to extend our results to any arbitrary family of ex-
panders. While one may design such graphs where the SRW has no cutoff,
such constructions seem highly asymmetric, and the following conjecture seems
plausible (see also [1, Question 5.2]):

Conjecture 1. The SRW on any family of vertex-transitive expander graphs
exhibits cutoff.

• Similarly, recalling the above comparison of tmix of the SRW and the NBRW

on random regular graphs, it would be interesting to extend this result to any
family of vertex-transitive expander graphs.
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The evolution of random planar graphs

Tomasz  Luczak

(joint work with Mihyun Kang)

We are concerned with the evolution of the random planar graph Gpl(n, M), i.e., a
graph chosen uniformly at random from the family Gpl(n, M) of all planar graphs
with vertex set {1, 2, . . . , n} and M edges.

The studies of random graphs and maps on 2-dimensional surfaces were initi-
ated in sixties by Tutte [6]. The enumerative and structural problems concerning
random maps, i.e., embedded graphs on a surface, are nowadays well settled. In
particular, the number of all planar maps was found already by Tutte [7]. Re-
cently, the topological structure of scaling limits of random maps was determined
and studied; see, for instance, [1, 2, 5].

On the other hand, similar problems for random graphs which are embeddable
on a surface are still widely open. The asymptotic formula for the number of
all planar graphs has been found only recently by Giménez and Noy [3]. They
also determined the asymptotic size of the family Gpl(n, M) for M = αn, where
α ∈ (1, 3). For α < 1/2 the size of Gpl(n, M) can be easily deduced from the
behavior of the uniform random graph G(n, M), but in the range α ∈ [1/2, 1] the
asymptotic formula for |Gpl(n, M)| has not been known. As for the structure of the
random planar graph the main reference here is a beautiful paper of McDiarmid,
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Steger, and Welsh [4], who deduced many properties of the random planar graph
from the asymptotic behavior of a certain Markov chain.

We combine the generating functions and combinatorial methods to estimate
the number of planar random graphs |Gpl(n, M)| for n/2 ≤ M ≤ n + n2/3. We
also identify two periods of the critical behavior in the evolution of Gpl(n, M).
The first critical phenomenon, similar to the phase transition observed in the
evolution of random forests, occurs when M = n/2 + O(n2/3) and the dominant
component emerges in Gpl(n, M). The other critical phase can be observed when

M = n+O(n3/5). At that time of the evolution of Gpl(n, M) the size of the largest
component reaches n− o(n) and, consequently, the rate of its growth significantly
slows down.
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Assigning Papers to Referees

Kurt Mehlhorn

Refereed conferences require every submission to be reviewed by members of a
program committee (PC) in charge of selecting the conference program. A main
responsibility of the PC chair is to organize the review process, in particular, to
decide which papers are assigned to which member of the PC. The PC chair typ-
ically bases her decision on input from the PC, her knowledge of submissions and
PC members, or scores that are computed automatically from keywords provided
by authors and PC members. From now on, we call PC members reviewers or
referees. There are many software systems available that support the PC chair
in her task; for example, EasyChair [8], HotCRP [7], Softconf [2], Linklings [1],
CMT [4], and Websubrev [6]. Used in more than 1300 conferences in 2008 alone [9],
EasyChair is currently the most popular conference management software. The
system asks the reviewers to declare conflicts of interests and to rank the papers
(for which the reviewer has no conflict of interest) into three classes: high interest,
medium interest, and low interest. This process is called bidding. Based on this
information, the system automatically computes an assignment that the PC chair
can later review and modify accordingly. Creating an assignment from scratch by
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hand is normally not feasible since many conferences get in excess of 500 submis-
sions [3]. The talk will be based on the paper Assigning Papers to Referees [5]
by Naveen Garg, Telikepalli Kavitha, Amit Kumar, Kurt Mehlhorn, and Julián
Mestre. In this paper, we propose to optimize a number of criteria that aim at
achieving fairness among referees/papers. Some of these variants can be solved
optimally in polynomial time, while others are NP-hard, in which case we design
approximation algorithms. Experimental results strongly suggest that the assign-
ments computed by our algorithms are considerably better than those computed
by popular conference management software.

References

[1] Linklings. http://www.linklings.com/ .
[2] Sofconf. http://www.softconf.com/ .
[3] P. Apers, Acceptance rates major database conferences, http://wwwhome.cs.utwente.nl/

∼apers/rates.html .
[4] S. Chaudhuri. Microsoft’s academic conference management service, http://cmt.research.

microsoft.com/cmt/ .
[5] N. Garg, T. Kavitha, A. Kumar, K. Mehlhorn, and J. Mestre, Assigning Papers to Referees,

http://www.mpi-inf.mpg.de/∼mehlhorn/ftp/RefereeAssignment.pdf , 2008.
[6] S. Halevi. Websubrev. http://people.csail.mit.edu/shaih/websubrev/ .
[7] E. Kohler. HotCRP. http://www.cs.ucla.edu/∼kohler/hotcrp/ .
[8] A. Voronkov, EasyChair. http://www.easychair.org .
[9] A. Voronkov. EasyChair – users. http://www.easychair.org/users.cgi .

Some recent results and some open problems concerning solving
infinite duration games

Peter Bro Miltersen

Dante in Purgatory – a riddle: There are seven terraces in Purgatory,
indexed 1, 2, 3, 4, 5, 6, 7. Dante enters Purgatory at terrace 1. Each day, if Dante
finds himself at some terrace i ∈ {1, 2, . . . , 7}, he must play a game of matching
pennies against Lucifer: Lucifer hides a penny, and Dante must try to guess if
it is heads up or tails up. If Dante guesses correctly, he proceeds to terrace i + 1
the next morning – if i + 1 is 8, he enters Paradise and the game ends. If, on
the other hand, Dante guesses incorrectly, there are two cases. If he incorrectly
guesses “heads”, he goes back to terrace 1 the next morning. If he incorrectly
guesses “tails” the game ends and Dante forever loses the opportunity of visiting
Paradise. How can Dante ensure ending up in Paradise with probability at least
3/4? How long should he expect to stay in Purgatory before the game ends in order
to achieve this?

The somewhat striking answer to this riddle is that it is possible for Dante
to go to Paradise with probability at least 3/4, but any strategy achieving this
guarantee has the downside that it allows Lucifer to confine Dante to Purgatory

Research supported by Center for Algorithmic Game Theory, funded by the Carlsberg
Foundation.
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for roughly 1025 years (In comparison, the current age of the universe is less than
1011 years so even playing one move per nanosecond would not help Dante much.)
Other strategies guarantee Dante to go to Paradise with probability at least 99% or
99.9999%, but he would have to be even more patient to play these. Details can be
found in [5] which is one of three papers we surveyed in this talk, the others being
[1] and [4]. All papers are concerned with solving two-player, zero-sum, terminal-
payoff, finite-state games of potentially infinite duration, a class of games that has
been the subject of formal study since Zermelo [6]. We consider algorithmically
solving such games when they are given explicitly as graphs by which we mean
computing optimal strategies (or near-optimal strategies, when optimal ones fail
to exist). The three papers consider three subclasses of these games. In the talk,
we described each and mentioned interesting unsolved open problems. The most
important are repeated below.

• Andersson et al. [1] study deterministic graphical games, or “Awari-like games”.
These are turn-based games of perfect information with no stochasticity in the
rules of the game. The paper shows that such games can solved in almost
linear time. A main open question is whether such games can be solved in
linear time, by a comparison based algorithm.

• Miltersen and Gurvich [4] study simple stochastic games or “Backgammon-
like” games1. These can be viewed as deterministic graphical games augmented
with coin or dice throws. The paper shows that solving these games are in fact
equivalent to solving various other classes of two-player, zero-sum games, in
particular mean-payoff and discounted-payoff games. A main open question,
first stated by Condon [2] twenty years ago is whether simple stochastic games
can be solved in polynomial time.

• Hansen, Koucky and Miltersen [5] study deterministic graphical games or
“Poker-tournament-like” games. These add to the previous models simultane-
ous moves, i.e., the games are no longer turn-based. Everett [3] showed that
while such games in general do not possess optimal strategies, they possess
ǫ-optimal mixed strategies for any ǫ > 0. These are the objects we consider
computing. Hansen, Koucky and Miltersen exhibit a game, PURGATORYn

(Dante’s Purgatory described above is PURGATORY7) with the property that
representing ǫ-optimal strategies requires exponential space when standard
(say, fraction) representation of probabilities is used. It is an open problem if
some non-standard representation can be devised enabling representation and
computation of ǫ-optimal strategies in polynomial space.

1Oliver Riordan pointed out to the author during the workshop that with the doubling option,
backgammon is in fact not a finite-state game, so we mean backgammon without the doubling
rule.
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Critical thresholds in bootstrap percolation

Robert Morris

Let G be a graph, r ∈ N be a positive integer, and A ⊂ V (G) be a set of ‘infected’
sites. Bootstrap percolation (or r-neighbour bootstrap percolation) is the following
deterministic process: at each time-step we infect sites with at least r already
infected neighbours, and infected sites remain infected forever. To be precise, let
A0 = A, and

At+1 = At ∪
{
v ∈ V (G) : |Γ(v) ∩At| ≥ r

}

for each t ≥ 0. We write [A] =
⋃

At, and say A percolates if [A] = V (G).
The bootstrap process is closely related to the Ising model, and was introduced

around thirty years ago in the context of statistical physics [11]. The process has
been most commonly studied on the torus [n]d, with the elements of the set A
chosen independently at random, with probability p, say. The main question is to
determine the critical threshold for percolation,

pc(G, r) := inf
{
p : P(A percolates) ≥ 1/2

}
.

The groundwork in the area was laid by Aizenman and Lebowitz [1] and by Schon-
mann [24], and important breakthroughs were made by Cerf and Cirillo [9], and
by Holroyd [17]. Building on the ideas in these papers, we have recently proved
the following results, amongst others (see [3, 4, 5, 6, 15, 20, 21]).

Theorem 1 (M.). There exist constants C > c > 0 such that

π2

18 log n
− C

(log n)3/2
≤ pc([n]2, 2) ≤ π2

18 log n
− c

(log n)3/2
.

Let log(r) denote an r-times iterated logarithm.
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Theorem 2 (Balogh, Bollobás and M. (for d = r = 3), and Balogh, Bollobás,
Duminil-Copin and M. (for all d ≥ r ≥ 2)). Let d, r ∈ N, with d ≥ r ≥ 2. Then
there exists a constant λ(d, r) > 0 such that

pc([n]d, r) =

(
λ(d, r) + o(1)

log(r−1) n

)d−r+1

as n→∞. Moreover, we can determine λ(d, r) exactly.

The constant λ(d, r) is expressed as an integral which we cannot solve. However,
Holroyd [17] showed that λ(2, 2) = π2/18, and in [4] we show that λ(d, 2) =
d−1
2 + o(1), and dλ(d, d)→ π2

6 as d→∞.
Balogh and Bollobás [2] were the first to consider the bootstrap process on the

hypercube, and determined pc up to a constant factor when r = 2. We have
recently improved this result as follows. Let x ≈ 1.16577 be the smallest positive
root of the equation

∞∑

k=0

(−1)kxk

2k2−kk!
= 0.

Theorem 3 (Balogh, Bollobás and M.). There exist constants C > c > 0 such
that

(
16x

n2
+

c log n

n5/2

)
2−2

√
n ≤ pc(Qn, 2) ≤

(
16x

n2
+

C(log n)2

n5/2

)
2−2

√
n.

We showed moreover that

pc([n]d, 2) =
4x + o(1)

d2
2−2
√

d log2 n

whenever d ≫ log n. We also studied the problem for majority percolation, and
proved the following theorem.

Theorem 4 (Balogh, Bollobás and M.).

pc

(
[2]n, n/2

)
=

1

2
− 1

2

√
log n

n
± O

(
log log n√

n log n

)
.

Moreover, if d ≥ (log log n)2+ε then pc([n]d, d) = 1
2 + o(1) as n, d→∞.

Let pc(Zd) denote the critical probability for (zero-temperature) Glauber dy-
namics on Zd, i.e., the smallest bias (p > 1/2) in the initial density of + spins
leads to fixation (all vertices +) with probability 1. It is a folklore conjecture that
pc(Zd) = 1/2 for every 2 ≤ d ∈ N. Using techniques from the proof of Theorem 4
(see [3]), I proved the following result.

Theorem 5 (M.). pc(Z
d)→ 1

2 as d→∞.

There are many open questions in the area. For example:
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Question 1. We know that

pc([n]d, d) =

{
o(1), if n is larger than a tower of 2s of height d,

1/2 + o(1), if n ≤ 22
√

d

.

What can we say about the transition between these two extremes?

Question 2. What is the critical threshold for other graphs? The bootstrap process
has been studied on

• trees, by Balogh, Pete and Peres [7], and by Fontes and Schonmann [12],
• Gd, the random regular graph, by Balogh and Pittel [8],
• other lattices, by Holroyd, Liggett and Romik [19], and by Holroyd and

Duminil-Copin [18],
• the percolation cluster in Z2, by Gravner and McDonald [16],
• a wide range of ‘locally tree-like’ regular graphs, by Balogh, Bollobás and

Morris [3].

Theorem 3 gives sharp bounds on pc([n]d, 2) whenever d≫ log n. However, we
can say almost nothing about the high dimensional case when r = 3, even for the
hypercube.

Problem 1. Determine pc([2]n, 3).

Solving the following problem would be a very useful step. It is also an inter-
esting extremal question in its own right.

Problem 2. It is easy to show that

n ≤ m(n) := min
{
|A| : A ⊂ [2]n percolates with r = 3

}
≤ 1

3

(
n

2

)
+ n.

Determine m(n). In particular, is it true that m(n) = Θ(n2)?

Finally, we return to the Ising model.

Problem 3. The following are the best-known bounds for Glauber dynamics on
Z2 (due to Fontes, Schonmann and Sidoravicius [13]):

1

2
≤ pc(Z2) < 1 − 1

1010
.

Improve the upper bound.

References

[1] M. Aizenman and J. L. Lebowitz, Metastability effects in bootstrap percolation, J. Phys. A
21 (1988), 3801–3813.

[2] J. Balogh and B. Bollobás, Bootstrap percolation on the hypercube, Probability Theory and
Related Fields 134 (2006), 624–648.

[3] J. Balogh, B. Bollobás and R. Morris, Majority bootstrap percolation on the hypercube,
Combinatorics, Probability and Computing 18 (2009), 17–51.

[4] J. Balogh, B. Bollobás and R. Morris, Bootstrap percolation in three dimensions, to appear
in Annals of Probability .



1270 Oberwolfach Report 23

[5] J. Balogh, B. Bollobás, H. Duminil-Copin and R. Morris, The sharp threshold for r-
neighbour bootstrap percolation, in preparation.

[6] J. Balogh, B. Bollobás and R. Morris, Bootstrap percolation on the hypercube, in prepara-
tion.

[7] J. Balogh, Y. Peres and G. Pete, Bootstrap percolation on infinite trees and non-amenable
groups, Combinatorics, Probability and Computing 15 (2006), 715–730.

[8] J. Balogh and B. Pittel, Bootstrap percolation on random regular graphs, Random Struc-
tures and Algorithms 30 (2007), 257–286.

[9] R. Cerf and E. N. M. Cirillo, Finite size scaling in three-dimensional bootstrap percolation,
Ann. Prob. 27 (1999), 1837–1850.

[10] R. Cerf and F. Manzo, The threshold regime of finite volume bootstrap percolation, Sto-
chastic Proc. Appl. 101 (2002), 69–82.

[11] J. Chalupa, P. L. Leath and G. R. Reich, Bootstrap percolation on a Bethe latice, J. Phys.
C 12 (1979), L31–L35.

[12] L. R. Fontes and R.H. Schonmann, Bootstrap percolation on homogeneous trees has 2 phase
transitions, J. Statist. Phys. 132 (2008), 839–861.

[13] L. R. Fontes, R. H. Schonmann and V. Sidoravicius, Stretched Exponential Fixation in
Stochastic Ising Models at Zero Temperature, Commun. Math. Phys. 228 (2002), 495–518.

[14] J. Gravner and A. E. Holroyd, Slow convergence in bootstrap percolation, Ann. Appl. Prob.
18 (2008), 909–928.

[15] J. Gravner, A. E. Holroyd and R. Morris, Beyond metastability: the critical threshold for
two-dimensionsal bootstrap percolation, in preparation.

[16] J. Gravner and E. McDonald, Bootstrap percolation in a polluted environment, J. Statist.
Phys. 87 (1997), 915–927.

[17] A. E. Holroyd, Sharp Metastability Threshold for Two-Dimensional Bootstrap Percolation,
Probability Theory and Related Fields 125 (2003), 195–224.

[18] A. E. Holroyd and H. Duminil-Copin, personal communication.
[19] A. E. Holroyd, T. M. Liggett and D. Romik, Integrals, partitions, and cellular automata,

Trans. Amer. Math. Soc. 356 (2004), 3349–3368 (electronic).
[20] R. Morris, Glauber dynamics in high dimensions, submitted.
[21] R. Morris, The phase transition for bootstrap percolation in two dimensions, in preparation.
[22] S. Nanda, C. M. Newman and D. Stein, Dynamics of Ising spin systems at zero temperature,

In On Dobrushin’s way (From Probability Theory to Statistical Mechanics), eds. R. Minlos,
S. Shlosman and Y. Suhov, Am. Math. Soc. Transl. (2) 198 (2000), 183–194.

[23] C. M. Newman and D. Stein, Zero-temperature dynamics of Ising spin systems following a
deep quench: results and open problems, Physica A 279 (2000), 159–168.

[24] R. H. Schonmann, On the behaviour of some cellular automata related to bootstrap perco-
lation, Ann. Prob. 20 (1992), 174–193.

A constructive proof of the general Lovász Local Lemma

Robin Moser

(joint work with Gábor Tardos)

The Lovász Local Lemma [1] is a powerful tool to non-constructively prove the
existence of combinatorial objects meeting a prescribed collection of criteria that
do not interleave to much. It is usually formulated in terms of probability theory
in the following fashion.

Theorem 1. Let A = {A1, A2, . . . , Am} be a finite collection of events in some
probability space. For each i, let Γ(Ai) ⊆ A be a subset of events such that Ai
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is independent of the collection A\(Γ(Ai) ∪ {Ai}). If there exists an assignment
x : A → (0, 1) of reals to the events such that for each i,

Pr[Ai] ≤ x(Ai) ·
∏

B∈Γ(Ai)

x(B)

then the probability that all events in A are avoided is positive.

Since the classical proof of this statement is non-constructive and the probability
of avoiding all the events may be very small, it has for a long time remained
an open question whether it is possible to efficiently construct an outcome of
the experiment that does. There is a big number of applications of the lemma,
among which a classical one is hypergraph 2-colouring: in the simplest case, if a
hypergraph is k-uniform and each edge intersects at most 2k/e − 1 other edges,
then there exists a 2-colouring of the hypergraph’s vertices such that no edge
becomes monochromatic. In 1991, Beck achieved a first breakthrough in the search
question by providing an algorithm that non-monochromatically 2-colours a k-
uniform hypergraph where each edge intersects at most 2k/48 other edges. Alon
improved this to neighbourhoods of size 2k/8. Later, Srinivasan [4] found a method
that copes with 2k/4 dependencies and we gave such methods for 2k/2 in [5] and
O(2k) in [6].

We now finally prove that the search problem is polynomial in the case of almost
all known applications of the lemma. We try to be as general as possible. However,
in order to make the problem algorithmically accessible at all, we need to make a
natural assumption about the structure of a given application by introducing the
notion of variables and slightly weakening the requirements for dependency. We
prove the following statement.

Theorem 2. Let P = {P1, P2, . . . , Pn} be a finite set of independent random
variables over some probability space. Let A = {A1, A2, . . . , Am} be a collection of
events which are determined by P and let vbl(Ai) ⊆ A denote the unique minimal
set of variables by which Ai is determined. For each i, let Γ(Ai) := {Aj ∈ A | Aj 6=
Ai, vbl(Ai) ∩ vbl(Aj) 6= ∅}. Suppose there exists an algorithm that samples, for
a given event Ai, new random values for all variables in vbl(Ai), we will say that
it resamples Ai, and another one that checks whether an event occurs for given
evaluations. Consider the randomized procedure that samples all variables/events
at random once and then repeatedly picks any occurring event and resamples it
until no events occur anymore. If there exists an assignment x : A → (0, 1) of
reals to the events such that for each i,

Pr[Ai] ≤ x(Ai) ·
∏

B∈Γ(Ai)

x(B),

then that procedure finds an evaluation of the variables such that all events are
avoided, resampling each event Ai at most x(Ai)/(1−x(Ai)) times in expectation.

The proof is mainly a matter of accurate bookkeeping and becomes, once the
right notions have been chosen, very straightforward. We introduce the concept of
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witness trees : for each step the algorithm performs, a “justification” can be given
in the form of a tree representing all steps that have been executed before and
which are “responsible” for the resampled event to occur at the time in question.
From the information encoded in such a witness tree, large parts of the random
input used can be reconstructed making each single witness tree unlikely to appear.
Juxtaposing their small probability with the number of ways in which witness trees
can be constructed yields an effective bound on the expected number of valid trees
that can witness the resampling of each given event and therefore on the expected
number of times each given event can be resampled.

We remark that it is possible to give a parallel version of the algorithm that runs
in basically O(log2(m)) time when attaching a processor to each event and making
mild additional assumptions. Moreover, if we restrict ourselves to cases where the
neighbourhood sizes are bounded by some constant, then we can derandomize the
algorithm by listing all possible witness trees up to some size and then tailoring a
sequence of evaluations of the variables which will prevent any of these trees from
occurring when running the usual procedure.
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Mean-field conditions for percolation on finite graphs

Asaf Nachmias

Let {Gn} be a sequence of finite transitive graphs with vertex degree d = d(n)
and |Gn| = n. Denote by pt(v, v) the return probability after t steps of the non-
backtracking random walk on Gn. We show [3] that if pt(v, v) has quasi-random
properties, then critical bond-percolation on Gn behaves as it would on a random
graph. More precisely, if

lim sup
n

n1/3
n1/3∑

t=1

tpt(v, v) <∞ ,
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then the size of the largest component in p-bond-percolation with p = 1+O(n−1/3)
d−1

is roughly n2/3. In Physics jargon, this condition implies that there exists a scaling
window with a mean-field width of n−1/3 around the critical probability pc = 1

d−1 .

A consequence of our theorems is that if {Gn} is a transitive expander family
with girth at least (2

3 +ǫ) logd−1 n then {Gn} has the above scaling window around

pc = 1
d−1 . In particular, bond-percolation on the celebrated Ramanujan graph

constructed by Lubotzky, Phillips and Sarnak [2] has the above scaling window.
This provides the first examples of quasi-random graphs [1] behaving like random
graphs with respect to critical bond-percolation.
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Game-theoretic Analysis of Steganographic Security

Rüdiger Reischuk

1. Introduction

The aim of steganography is to hide secret messages in unsuspicious covertexts in
such a way that the mere existence of a hidden message is concealed. The basic
scenario assumes two communicating parties Alice (sender) and Bob (receiver) as
well as an adversary Eve who is often also called a “warden” due to Simmons’ [1]
motivation of the setting as secret communication among prisoners. Eve wants
to find out whether Alice and Bob are exchanging hidden messages among their
covertext communication. The stegosystem has to satisfy two conditions – (a)
reliability, i.e., the ability of Alice to effectively transmit secret information to
Bob and (b) security, i.e., the ability to prevent Eve from distinguishing between
original covertexts and modified stegotexts.

In the last years some advances have been made in the analysis of stegano-
graphic systems (see for example [2]). Using notions from cryptography such as
indistinguishability and adapting them to a steganography scenario, Hopper et
al. have shown that it is possible to construct stegosystems that are provably
secure against passive and active attacks [3]. However, their construction has sev-
eral drawbacks in terms of practicality, in particular a very low transmission rate.
Dedić et al. have analysed a generalisation of the scheme to a larger number of
bits per document [4]. They have shown that for a reliable and secure black-box
stegosystem (i.e., one in which Alice has no knowledge whatsoever of the cover-
text channel), the number of sample documents drawn from the covertext channel
grows exponentially in the number of bits embedded per document.
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Here, we report on recent results on setting up a framework for a detailed
analysis of stegosystems [5, 6]. Steganography can be modelled as a game between
the stegoencoder and the warden. Alice selects an embedding strategy and Eve a
procedure for steganalysis with the goal to maximize, resp. minimize the security-
The inequality in knowledge between the encoder and the adversary about the
covertext distribution assumed so far is not adequate to model typical situations
when steganography is used in practice. In reality, Alice neither has zero nor full
knowledge about the covertext channel, but rather something in between, since she
has the option to choose which kind of covertext channels (pictures, texts, music,
. . . ) to be used, and the warden has to cope with this choice. Therefore, we
propose a more realistic model of steganography, called grey-box steganography, in
which the encoder has partial knowledge of the covertext channel, and investigate
the influence of different levels of knowledge.

2. Basic Notation and Definitions

Symbols u taken from an alphabet Σ are called documents. A finite concatenation
of such documents u1||u2|| . . . ||uℓ is a communication sequence or covertext. Typ-
ically, the document models a piece of data (e.g., a digital image or fragment of
the image) while the communication sequence models the complete message sent
to the receiver in a single communication exchange.

Definition (Channel). A channel C is a function that takes a history H ∈ Σ∗ as
input and produces a probability distribution DH on Σ. A history H = s1s2 . . . sm

is legal if each subsequent symbol is obtainable given the previous ones, i.e., if
PrDs1s2...si−1

[si] > 0 for all i ≤ m. The min-entropy of the channel C is the value

minH H∞(DH) where the minimum is taken over all legal histories H.

A steganographic information transmission is thought of taking a covertext
C = c1 . . . cℓ ∈ Σℓ and modifying it to a stegotext S = s1 . . . sℓ ∈ Σℓ such that
S additionally encodes an independent message M . Let b denote the message
encoding rate, i.e., (on average) a single stegodocument sj encodes b bits of M .
For this purpose we require the channel to be sufficiently random. We will assume
that the covertext channel distribution has a sufficiently large min-entropy h, that
is larger than b.

Definition (Stegosystem). In the following, let n = ℓ · b denote the length of
the messages to be embeded into covertexts. A stegosystem S for the message
space {0, 1}n is a triple of probabilistic algorithms [SK, SE, SD] with the following
functionality:

– SK is the key generation procedure that on input 1n outputs a key K of
length κ, where κ is a security parameter that may depend on n;

– SE is the encoding algorithm that takes a key K ∈ {0, 1}κ, a message M ∈
{0, 1}n, accesses the sampling oracle EXC() of a given covertext channel C and
returns a stegotext S ∈ Σn/b;

– SD is the decoding algorithm that takes K and S and returns a message M ′.
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S is called a black-box stegosystem if the algorithms SE, SD have no a priori
knowledge about the distribution of the covertext channel and can obtain informa-
tion about it only by querying the sampling oracle. The unreliability of S with
respect to the covertext channel C is given by

UnRelSC := max
M∈{0,1}n

Pr[K ← SK(1n), EXC : SD(K, SE(K, M)) 6= M ] .

The time complexities of the algorithms SK, SE, SD are measured with respect
to n, κ, and σ, where an oracle query is charged as one unit step. A stegosystem
is efficient if its time complexites are polynomially bounded.

To measure the security of a stegosystem we have to estimate how likely an
adversary, the warden W , can discover that the covertext channel is used for
transmitting additional information? If we put no algorithmic restrictions on W
(i.e., information-theoretic security) it is necessary that (1) the stegotext S lies in
the support of the covertext channel, otherwise W could test S for membership in
supp(C), and (2) the probability of producing a stegotext S equals the probability
of drawing S according to C. To simplify the analysis, we will assume that the
distribution on the support is uniform. Thus, we concentrate on the problem how
the encoder can learn the support of the channel and then uniformly generate
stegotexts. Learning complex distributions will be another issue.

For security analyses with complexity theoretic restrictions these assumptions
can be relaxed in such a way that W is assumed to be polynomially time-bounded.
Thus, Alice has to make sure that a adversary cannot detect deviations from the
two conditions above in polynomial time.

Definition (Chosen Hiddentext Attack).
Let S = [SK, SE, SD] be a stegosystem and C be a covertext channel. In a chosen
hiddentext attack for parameters (n, κ), W has access to two oracles:

– a reference oracle EXC() that he can query for samples from the covertext
channel C and

– a challenge oracle CH that is randomly selected being either
• OS – the oracle that for a randomly chosen key K of length κ and a message

M of length n provided by W outputs the stegotext S = SE(K, M), or
• OC – the oracle that for a randomly chosen key K of length κ and the mes-

sage M draws a covertext of length |SE(K, M)| from the covertext chan-
nel C.

The task of W is to determine the nature of CH. We define his advantage
over random guessing for a given covertext channel C as AdvSC (W ) : |Pr[WOS =
1] − Pr[WOC = 1]| , where WOS (resp. WOC) means that the challenge oracle is
the oracle OS (resp. OC) and WOS = 1 means that W decides on “stegotext”.

W may have additional information, for example about the channel C, that can
help him to distinguish the random selection of the oracle. In the most favourite
case, W possesses a complete specification of C, in which case he does not need the
reference oracle. Let d be a bound on the maximal amount of such information
and call this the description size of W .
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Definition (Steganographic Security against CHA).
The insecurity of a stegosystem S with respect to a covertext channel C and com-
plexity bounds d, t, q, l is defined by InSecSC (d, t, q, l) := maxW {AdvSC (W )}, where
the maximum is taken over all adversaries W of description length d working in
time at most t and making at most q queries of total length l bits to the challenge
oracle CH.

Insecurity and unreliability of a stegosystem S with respect to a channel family
F are given by InSecS

F(d, t, q, l) := maxC∈F InSecSC (d, t, q, l) and UnRelSF :=
maxC∈F UnRelSC .

3. Results

In [5] it is shown that depending on the learning complexity of the channel family,
the complexity of membership tests and the complexity of the construction process,
efficient and secure steganography is possible. Explicit constructions are given for
the classes of monomials, decision lists and DNF-formulae.

The security level of a stegosystem derived from the notion of insecurity as
given above is quite strong since the worst case channel is measured. In [6] we
give examples of families of channels and corresponding stegosystems that have
high insecurity, but still cannot be broken by an adversary almost everywhere.
We develop alternative notions and investigate their relations. In particular, the
following definition turns out to be useful.

Definition. The detectability on average of a stegosystem S with respect to
the channel family F is given as follows, where the maximum is taken over all
(d, t, q, λ)-wardens W :

AvgDetectSF(d, t, q, λ) := max
W

EC∈F [AdvSC (W )] .

We construct families of so called flat h-channels that are random or pseudoran-
dom subsets of size 2h of the document space Σ [4, 7], and show that detectability
on average gives the right measure of security that one would expect intuitively in
practice.

References

[1] G. Simmons, The Prisoners’ Problem and the Subliminal Channel, In Chaum, D., ed.:
Advances in Cryptology : Proc. CRYPTO’1983, New York, Plenum Press, 1984, 51–67.

[2] P. Moulin, J. O’Sullivan, Information-theoretic Analysis of Information Hiding, IEEE Tr.
Information Theory 49 (2003), 563–593.

[3] N. Hopper, J. Langford, L. von Ahn, Provably Secure Steganography, IEEE Tr. Computers
58 (2009), 662–676.
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Susceptibility in inhomogeneous random graphs

Oliver Riordan

(joint work with Svante Janson)

Given a graph G with n vertices, its susceptibility χ(G) may be defined as the
mean size of the component containing a random vertex:

(1) χ(G) =
1

n

∑

v∈V (G)

|C(v)|,

where C(v) denotes the component of G containing the vertex v, and |H | the
number of vertices in a graph H . Equivalently, listing the components of G as
Ci = Ci(G), i = 1, . . . , K, we have

(2) χ(G) =

K∑

i=1

|Ci|
n
|Ci| =

1

n

K∑

i=1

|Ci|2.

Listing the components in decreasing order of size, breaking ties in any way, the
modified susceptibility χ̂(G) is defined by

(3) χ̂(G) =
1

n

K∑

i=2

|Ci|2,

where the largest component has been omitted from the sum. If the graph G
contains a ‘giant’ component, containing a constant fraction of the vertices, then
the sum defining χ(G) is typically dominated by this component, and it turns out
to be more informative to study χ̂(G). In what follows the graph G will itself be
random, so both χ(G) and χ̂(G) are random variables.

The quantities defined above are closely related to ones appearing in statistical
physics, in particular in percolation: χ(G), or rather its expectation, is analogous
to the expected size E(|C0|) of the open cluster containing a given (or random)
vertex, and χ̂(G) to E(|C0|; |C0| < ∞). These latter quantities have been exten-
sively studied; see, for example, [5]. In contrast, not much rigorous work has been
done for finite random graphs.

In both contexts, the behaviour of χ or χ̂ is most interesting near the phase
transition at which a giant component emerges, where these functions have singu-
larities. For results for G(n, p), see, for example, Durrett [8], or the very detailed
results of Janson and Luczak [9]. One of the main motivations for studying suscep-
tibility is that in more complicated models it can be used to give information about
the phase transition, while being much simpler to calculate than the size of the
largest component. For an example of this approach see Spencer and Wormald [10].

In the present work we study the susceptibility of the random graphs Gn =
G(n, κ) produced by the general inhomogeneous model of Bollobás, Janson and
Riordan [2] and its generalizations in [3, 4]; these models generalize many sparse
random graph models introduced earlier, and form a natural setting for the study
of phase transitions in random graphs.
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Without going into full details of the models, a key feature in all cases is that
the model is defined using a kernel κ, i.e., a symmetric measurable function from
[0, 1]2 to R. In the model of [2], each vertex i has a type xi ∈ [0, 1]. These types,
which must satisfy a certain uniform distribution assumption, may be deterministic
or random. Given the types, Gn is simply the random graph in which edges are
independent, and the probability of the edge ij is min{κ(xi, xj)/n, 1}.

As in [2], we aim to relate the behaviour of Gn to that of the Poisson Galton–
Watson branching process Xκ associated to κ; this is the multi-type process in
which the types of the children of a particle of type x form a Poisson process
on [0, 1] with intensity measure κ(x, y) dy. Writing |Xκ| for the total number of
particles in Xκ, the natural analogues of χ and χ̂ in this context are

χ(κ) = E |Xκ|
and

χ̂(κ) = E
(
|Xκ|1|Xκ|<∞

)
.

Note that both expectations may be infinite.
One of our main results is that under either of two additional assumptions, that

κ is bounded, or that the types xi are independent and identically distributed, we

then have χ(Gn)
p→ χ(κ) and χ̂(Gn)

p→ χ̂(κ). In the bounded case, what we
prove is more general: we consider random graphs Gn with independence between
the edges, where the matrices An specifying the edge probabilities are uniformly
bounded and converge in a certain weak sense to κ. The sense of convergence
here involves the cut metric of Borgs, Chayes, Lovász, Sós and Vesztergombi [6];
sequences Gn of this form were studied by Bollobás, Borgs, Chayes and Riordan [1].

Fixing a kernel κ, and considering Gn = G(n, λκ) for a real parameter λ > 0, as
shown in [2] there is a phase transition at a certain value of λ, above which a giant
component appears. Here we study the behaviour of χ(λκ) and χ̂(λκ) as functions
of the parameter λ ∈ (0,∞), and in particular the behaviour at the threshold for
existence of a giant component. We show that χ(λκ), which may found by solving
a certain linear equation, may be used to find the critical value of λ.

Finally, we illustrate our results by considering several specific models, including
the CHKNS model of Callaway, Hopcroft, Kleinberg, Newman and Strogatz [7] and
the closely related graphs introduced by Dubins.
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On the Number of Triangles in a Random Graph

Alex Scott

(joint work with Atsushi Tateno)

For fixed p ∈ (0, 1), let G ∈ G(n, p) be a random graph and let X(G) be the number
of triangles in G. Then µ := E X(G) = Θ(n3) and σ2 := VarX(G) = Θ(n4). It is

well known that X̃ := (X − µ)/σ converges in distribution to a standard normal
distribution. In particular, a special case of results of Barbour, Karoński and
Ruciński [1] shows that

(1) sup
x∈R

∣∣P[X < µ + xσ]− Φ(x)
∣∣ = O(n−1/2),

where Φ is a standard normal distribution function. While this gives a good global
picture of the distribution of X , it does not tell us much about the probability
that X takes particular values. For instance, it does not tell us anything about
the probability that X is even.

Loebl, Matoušek and Pangrác [2] looked at the properties of X modulo q and
proved the following.

Theorem 1 ([2]). There are constants q0, C > 0 such that if q ∈ [q0, C log n] is
prime then

max
k

∣∣P(X ≡ k mod q)− 1/q
∣∣ = o(1/q).

How far could such a result be extended? If q = Ω(σ) = Ω(n2), it follows from
(1) that X cannot be asymptotically uniform (a standard normal distribution
is not asymptotically uniform modulo r unless r = o(1)). Thus we must have
q = o(n2). We prove the following.

Theorem 2. Let p ∈ (0, 1) be fixed, and let G ∈ G(n, p) be a random graph. If
q(n) = o(n2/ log n) is integer-valued, then

max
k

∣∣P[X(G) ≡ k mod q]− 1/q
∣∣ = o(1/q).
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Note that we do not require q to be prime.
Our methods also yield more detailed local information: indeed, we are able to

prove a local limit theorem for X .

Theorem 3. Let p ∈ (0, 1) be fixed, and let G ∈ G(n, p) be a random graph. Then

max
k

∣∣P[X(G) = k]− φn(k)
∣∣ = o(n−2).

Here,

φn(k) =

∫ (k−µ+1/2)/σ

(k−µ−1/2)/σ

φ(x) dx

is the natural guess for P[X = k] given the central limit theorem for X .
Both results follow from a “smoothness theorem.” Roughly speaking, this

smoothness theorem asserts that X is (in a certain sense) very close to a sum
of several independent random variables with nice distributions. In particular,
over a large range, the distribution of X is extremely ‘flat’. This gives us enough
local information to prove the two theorems above.

We conjecture that analogous results will hold for the number of copies of any
fixed subgraph H .
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A Proof of Green’s Conjecture Regarding the Removal Properties of
Sets of Linear Equations

Asaf Shapira

A system of ℓ linear equations in p unknowns Mx = b is said to have the
removal property if every set S ⊆ {1, . . . , n} which contains o(np−ℓ) solutions
of Mx = b can be turned into a set S′ containing no solution of Mx = b, by
the removal of o(n) elements. Green [GAFA 2005] proved that a single homoge-
nous linear equation always has the removal property, and conjectured that every
set of homogenous linear equations has the removal property. In this paper we
confirm Green’s conjecture by showing that every set of linear equations (even
non-homogenous) has the removal property. We also discuss some applications of
our result in theoretical computer science, and in particular, use it to resolve a
conjecture of Bhattacharyya, Chen, Sudan and Xie [3] related to algorithms for
testing properties of boolean functions.
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1. Introduction

The (triangle) removal lemma of Ruzsa and Szemerédi [15], which is by now
a cornerstone result in combinatorics, states that a graph on n vertices that con-
tains only o(n3) triangles can be made triangle free by the removal of only o(n2)
edges. Or in other words, if a graph has asymptomatically few triangles then it is
asymptotically close to being triangle free. While the lemma was proved in [15] for
triangles, an analogous result for any fixed graph can be obtained using the same
proof idea. Actually, the main tool for obtaining the removal lemma is Szemerédi’s
regularity lemma for graphs [17], another landmark result in combinatorics. The
removal lemma has many applications in different areas like extremal graph the-
ory, additive number theory and theoretical computer science. Perhaps its most
well known application appears already in [15] where it is shown that an inge-
nious application of it gives a very short and elegant proof of Roth’s Theorem [14],
which states that every S ⊆ [n] = {1, . . . , n} of positive density contains a 3-term
arithmetic progression.

Recall that an r-uniform hypergraph H = (V, E) has a set of vertices V and a
set of edges E, where each edge e ∈ E contains r distinct vertices from V . So a
graph is a 2-uniform hypergraph. Szemeredi’s famous theorem [16] extends Roth’s
theorem by showing that every S ⊆ [n] of positive density actually contains arbi-
trarily long arithmetic progressions (when n is large enough). Motivated by the
fact that a removal lemma for graphs can be used to prove Roth’s theorem, Frankl
and Rödl [4] showed that a removal lemma for r-uniform hypergraphs could be
used to prove Szemeredi’s theorem on (r + 1)-term arithmetic progressions. They
further developed a regularity lemma, as well as a corresponding removal lemma,
for 3-uniform hypergraphs thus obtaining a new proof of Szemeredi’s theorem for
4-term arithmetic progressions. In recent years there have been many exciting
results in this area, in particular the results of Gowers [6] and of Nagle, Rödl
Schacht and Skokan [12, 13], who independently obtained regularity lemmas and
removal lemmas for r-uniform hypergraph, thus providing alternative combinato-
rial proofs of Szemeredi’s Theorem [16] and some of it generalizations, notably
those of Furstenberg and Katznelson [5]. Tao [18] and Ishigami [9] later obtained
another proof of the hypergraph removal lemma and of its many corollaries men-
tioned above. For more details see [7].

In this paper we will use the above mentioned hypergraph removal lemma in
order to resolve a conjecture of Green [8] regarding the removal properties of sets
of linear equations. Let Mx = b be a set of linear equations, and let us say that a
set of integers S is (M, b)-free if it contains no solution to Mx = b, that is, if there
is no vector x, whose entries all belong to S, which satisfies Mx = b. Just like the
removal lemma for graphs states that a graph that has few copies of H should be
close to being H-free, a removal lemma for sets of linear equations Mx = b should
say that a subset of the integers [n] that contains few solutions to Mx = b, should
be close to being (M, b)-free. Let us start be defining this notion precisely.
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Definition (Removal Property). Let M be an ℓ × p matrix of integers and let
b ∈ Nℓ. The set of linear equations Mx = b has the removal property if for every
δ > 0 there is an ǫ = ǫ(δ, M, b) > 0 with the following property: if S ⊆ [n] is
such that there are at most ǫnp−ℓ vectors x ∈ Sp satisfying Mx = b, then one can
remove from S at most δn elements to obtain an (M, b)-free set.

Green [8] has initiated the study of the removal properties of sets of linear
equations. His main result was the following:

Theorem 1 (Green [8]). Any single homogenous linear equation has the removal
property.

The main result of Green actually holds over any abelian group. To prove this
result, Green developed a regularity lemma for abelian groups, which is some-
what analogous to Szemerédi’s regularity lemma for graphs [17]. Although the
application of the group regularity lemma for proving Theorem 1 was similar to
the derivation of the graph removal lemma from the graph regularity lemma, the
proof of the group regularity lemma was far from trivial. One of the main conjec-
tures raised in [8] is that a natural generalization of Theorem 1 should also hold
(Conjecture 9.4 in [8]).

Conjecture 1 (Green [8]). Any system of homogenous linear equations Mx = 0
has the removal property.

Very recently, Král’, Serra and Vena [10] gave a surprisingly simple proof of
Theorem 1, which completely avoided the use of Green’s regularity lemma for
groups. In fact, their proof is an elegant and simple application the removal lemma
for directed graphs [1], which is a simple variant of the graph removal lemma that
we have previously discussed. The proof given in [10] actually extends Theorem 1
to any single non-homogenous linear equation over arbitrary groups. Král’, Serra
and Vena [10] also show that Conjecture 1 holds when M is a 0/1 matrix, which
satisfies certain conditions. But these conditions are not satisfied even by all 0/1
matrices.

In this paper we confirm Green’s conjecture for every homogenous set of linear
equations. In fact, we prove the following more general result.

Theorem 2 (Main Result). Any set of linear equations Mx = b has the removal
property.

After our paper appeared on the Arxiv we learned that independently of our
work, Král’, Serra and Vena managed to improve upon their results in [10, 11] and
obtain a proof of Conjecture 1.
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Average-case analyses of Vickrey costs

Gregory Sorkin

(joint work with Prasad Chebolu, Alan Frieze and Páll Melsted)

1. The VCG auction mechanism

Suppose that in a graph, each edge is provided by an independent, selfish agent
who incurs a cost for supplying it (or for allowing us to drive over it, transmit
data over it, or whatever). This “private” cost, the price point at which the agent
is neutral between selling the edge or not, is known only to herself. We wish
to buy some structure, for example a path between two particular points, or a
spanning tree, as cheaply as possible. An obvious “mechanism” to do this is to
ask each agent the cost of her edge, find the cheapest structure, and pay each
agent accordingly. The problem with this and many other mechanisms is that
agents have an incentive to lie: by inflating her claimed cost, an agent may get
more money.

Research by Alan Frieze partially supported by NSF grant DMS 6721878.



1284 Oberwolfach Report 23

A Vickrey-Clarke-Groves (VCG) auction [23, 5, 11] is a cleverly designed “truth-
ful” mechanism: assuming that the agents act without collusion, in a VCG auction
it is in each agent’s best interest to name her true cost. Under the same assump-
tion, a VCG auction also maximizes “social welfare”: the structure selected is the
one that is genuinely cheapest (and so the least possible resource is consumed in
road maintenance, data-server support, or whatever).

In a VCG auction, an “auctioneer” first finds a cheapest structure S∗, according
to the edge costs c(e) declared by the agents. (This might be a cheapest path, for
example; VCG was first explicitly applied to the shortest-path problem in [20, 21].)
For each edge e ∈ S∗ in this structure, the auctioneer pays the corresponding agent
not the stated cost c(e) of the edge, but a measure of the benefit it provides, namely
the difference between what a cheapest structure would have cost if the edge were
not present or had infinite cost, call it c(S∞

e ), and what the cheapest structure
would have cost if the edge were free, call it c(S0

e ). It is clear that neither of these
terms depends on c(e). An agent whose edge is not used, e /∈ S∗, is not paid
anything. It is well known and easily verified that if an edge e is used the amount
paid for it is at least c(e), that the auction is truthful, and (using the truthfulness
property) that it maximizes social welfare.

2. Average-case analysis

Naturally, the VCG mechanism pays more than the cost of the cheapest struc-
ture, and unfortunately the overpayment can be arbitrarily large. In [3, 4] it is
shown that any truthful mechanism has bad worst-case s–t path overpayment.
One alternative to this pessimistic worst-case analysis is through real-world mea-
surements of the VCG overpayment, and such a study appears in [9]. Another
alternative, and the one we adopt here, is to compare the VCG cost with the min-
imum cost in an average-case setting. This was done for shortest paths in certain
graphs in [18, 6, 13, 8]. We consider the expected VCG overpayment in three
settings, in each of which the expected minimum cost is a classical result in the
analysis of random structures.

2.1. Shortest paths. We first consider shortest paths in the complete graph Kn,

or complete digraph ~Kn, with i.i.d. exponential(1) edge weights, where exponen-
tial(1) denotes the exponential distribution with mean 1. (We use the terms edge
weight, cost, or length interchangeably, and a shortest path is a cheapest path.)
Janson [12] has shown that whp the distance between two vertices, say 1 and n,
in this model is (1+o(1)) log n/n. We prove that the asymptotic expected Vickrey
cost is twice as large.

Theorem 1. Suppose that the edges of the complete graph Kn (respectively, di-

graph ~Kn) have i.i.d. exponential mean-1 edge weights. Let E(SP) be the expected
cost of a shortest path from 1 to n. Then

E(VCG) ∼ 2 E(SP).
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2.2. Minimum Spanning Tree. We next consider a minimum spanning tree of
Kn with uniform [0, 1] edge weights. It was shown by Frieze [10] that the expected
cost E(MST) of a minimum spanning tree on Kn satisfies limn→∞ E(MST) = ζ(3).
Even though there is no nice expression for the exact expectation for finite n, we
prove that the expected VCG cost is exactly (not just asymptotically) twice as
large.

Theorem 2. Suppose that the edges of the complete graph Kn have i.i.d. uniform
[0, 1] edge weights. Let E(MST) be the expected cost of a minimum spanning tree.
Then

E(VCG) = 2 E(MST).

2.3. Assignment. Finally, we consider the VCG cost of a perfect matching in a
complete bipartite graph with random edge weights, known as the “random assign-
ment problem”. When the edge weights are i.i.d. exponential(1) random variables,
Mézard and Parisi [15, 16, 17] gave a sophisticated mathematical physics argument,
using the “replica method”, that the minimum cost AP satisfies limn→∞ E(AP) =
ζ(2) = π2/6. Aldous [1, 2] made this mathematically rigorous through reasoning
about a “Poisson weighted infinite tree”. For finite values of n, Parisi [22] con-
jectured the expected cost to be

∑n
i=1 i−2, Coppersmith and Sorkin [7] extended

the conjecture to cheapest cardinality-k assignments in Km,n, and these results
were proved simultaneously, by different methods, by Linusson and Wästlund [14]
and Nair, Prabhakar and Sharma [19]. A beautiful short proof was later found by
Wästlund [24].

As in the previous cases, we find that the expected VCG cost is twice the
minimum cost asymptotically.

Theorem 3. Suppose that the edges of the complete bipartite graph Kn,n have i.i.d.
exponential mean-1 edge weights. Let E(AP) be the expected cost of a minimum
weight perfect matching. Then

E(VCG) = E(AP) + n

(
1

n− 1
+

n−1∑

l=1

1

l

n− l

n

−
n−1∑

l=2

1

l(l− 1)

l−1∑

i=0

n− i

n

l∏

j=i+1

(n− j)j

(n− j + 1)j − 1

)

∼ 2 E(AP).

3. Open questions

The same question can be raised for any combinatorial optimization problem
with random weights. Natural candidates for consideration include a minimum
spanning arborescence (rooted tree with all arcs oriented away from the root) in

the complete digraph ~Kn (the directed analogue of MST result), a minimum-weight
perfect matching in Kn (the non-bipartite analogue of Random Assignment), and

the symmetric or asymmetric Traveling Salesman Problem (in Kn or ~Kn respec-
tively). The natural edge weight distributions are i.i.d. uniform [0, 1] or i.i.d.
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exponential(1); asymptotically these will be equivalent, but one or other may be
more convenient, and with luck one might give an exact (non-asymptotic) result
like the one given here for MST. We conjecture that in these cases too the expected
Vickrey cost is twice the expected minimum cost, asymptotically. Assuming this
pattern holds, it would be most interesting to understand why it is so.
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[15] M. Mézard and G. Parisi, Replicas and optimization, J. Physique Lettres 46 (1985), 771–
778.
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Synchrony and Asynchrony in Neural Networks

Angelika Steger

(joint work with Fabian Kuhn, Konstantinos Panagiotou and Joel Spencer)

The dynamics of large networks is an important and fascinating problem. Key
examples are the Internet, social networks, and the human brain. In this pa-
per we consider a model introduced by DeVille and Peskin [1] for a stochastic
pulse-coupled neural network. The key property of their model, which they stud-
ied experimentally and by some non-rigorous estimates of the expected behavior,
is that the network can exhibit both synchronous and asynchronous behavior, a
property which is omnipresent in the human brain. Synchrony is achieved when
there are massive interactions between the neurons, i.e., huge bursts that include
a substantial fraction of the neurons. Alternatively, the network is in an asynchro-
nous state when there are only few interactions between the neurons, and only
small bursts occur.

The system of DeVille and Peskin consists of n identical neurons, which have k
different levels of internal potential. Whenever a neuron has the largest possible
potential, it fires, having the effect that the potential of each other neuron increases
with some small probability p (typically, p will be such that in expectation only
constantly many neurons are affected). Note that this may be the beginning of
a huge chain reaction: after the first firing, other neurons may have reached the
highest potential, and hence will also fire, which in turn could stimulate other
neurons to fire. This chain reaction, which we will call a burst, ends at the first
moment in which there is no neuron with a potential that is large enough. Then,
the potential of all neurons that fired is reset to zero. On the other hand, if
no neuron fires, a randomly selected neuron increases its potential by some fixed
quantity. In this paper we analyze this model rigorously, thereby achieving two
goals. Firstly, we are able to answer the questions of DeVille and Peskin about the
actual parameter settings and thresholds for which changes between synchronous
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and asynchronous behavior occur. In addition to that, we give a very precise
picture for the dynamics of the system, depending on the values of the parameters
p and k. Secondly, we kind of disprove an observation of DeVille and Peskin that
one should expect spontaneous transitions between these two extreme states. In
fact we show, that once the system is in any of the two configurations, it stays
there with very high probability.

Before we state our results in detail we first try to convey some intuition. As-
sume for the moment (the unrealistic setting) that k = 1. Then each neuron that
is promoted one level in the interburst mode starts to fire immediately. The follow-
ing burst mode can then be viewed as follows. Think of a random graph Gn,p (in
the Erdős-Rényi sense, with n nodes/neurons and edge probability p). Then the
neuron that fires is in some connected component of Gn,p, and the other neurons
that will fire in this burst phase are exactly the other nodes in that component.
That is, whether we will see a “big” burst (linear in n) or only “small” bursts
(of size o(n)) depends on the relation of p and n. More precisely, by applying
well-known results from random graph theory, see e.g. [2], we will see only small
bursts if p≪ 1/n, while in the case p≫ 1/n huge bursts also happen.

If k > 1 things get much more interesting. Clearly, we can still think of the
neurons at the highest level k−1 forming a random graph with edge probability p,
and we know that all neurons in the component that contains a firing neuron will
also fire. However, due to the presence of the smaller levels also other neurons
may fire. Assume, for example, that a neuron from level k− 2 is promoted during
a burst phase to level k − 1. It then has to be integrated into the random graph
– and by that it may combine two connected components into a larger one.

At this point the following should be plausible.

Theorem 1. Suppose that p = βk/n, where β > 1. Then, for sufficiently large k,
regardless of the starting configuration, we will observe with high probability after
finitely many time steps a big burst in which Θ(n) neurons fired.

Now let us consider the case β < 1. If we start with a configuration in which
all levels contain roughly n/k neurons then nothing exciting is going to happen:
we will probably never experience any big bursts and the system stays in the state
where all levels contain roughly the same number of neurons. If on the other hand
we start in a configuration in which all neurons are in the same level, say at level 0,
then we show that also this type of state is preserved. That is, the neurons move
“simultaneously” up towards level k−1, and only “tiny” bursts are observed. Once
this level contains a sufficient number of neurons, a big burst starts – and it brings
most neurons back to level 0; and a new cycle starts from the beginning. More
precisely, we show the following.

Theorem 2. There exists a c > 0 such that the following is true. Suppose that
p = βk/n, where

β ≥ 25/4

(k ln k)1/4
·
(

1 +
c√
ln k

)
.
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Then for k sufficiently large, when starting with all neurons in level 0, the system
converges to a stable state where bursts of size at least (1 − o(1)) · n/2 occur at
least every kn time units.

In addition to this, we provide a very precise characterization of the stable state,
and determine the asymptotic fraction of neurons that are involved in a big burst.
Note that the above theorem only applies if β < 1 is not too small. The next
results says that the lower bound from Theorem 2 is essentially sharp.

Theorem 3. There exists a c > 0 such that the following is true. Suppose that
p = βk/n, where

β ≤ 25/4

(k ln k)1/4
·
(

1− c√
ln k

)
.

Then, for k sufficiently large, the following holds with high probability. If the
system starts with all neurons in level 0, then there will be a finite number of big
busts, and after that the system will remain in an asynchronous state.

We prove these theorems by showing that the typical behavior of the system is
actually very close to the trajectories described by an associated mean-field model.
In particular, we prove that the trajectory of our system will deviate significantly
from some deterministic trajectory with only exponentially small probability. A
major difficulty that we have to overcome here is that the system jumps between
two inherently different states: the burst and the interburst mode. While the sys-
tem is in either of these two modes, by applying the so-called ‘Differential Equa-
tion Method’ (see Wormald [4] and Seierstad [3]) we obtain after some technical
work that with probability very close to one the actual behavior is not far from
a solution of a set of differential equations. However, handling the ‘transitions’
between the two modes is a challenging task, which required the development of
new techniques.
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Hypergraph Ramsey problem

Benny Sudakov

(joint work with David Conlon and Jacob Fox)

The Ramsey number r(s, n) is the least integer N such that every red-blue coloring
of the edges of the complete graph KN on N vertices contains a red Ks (i.e., a
complete subgraph all of whose edges are colored red) or a blue Kn. Ramsey’s
theorem states that r(s, n) exists for all s and n. Determining or estimating
Ramsey numbers is one of the central problems in combinatorics. A classical
result of Erdős and Szekeres, which is a quantitative version of Ramsey’s theorem,
implies that r(n, n) ≤ 22n for all n. Erdős showed using probabilistic arguments
that r(n, n) > 2n/2 for n > 2. Despite efforts by various researchers, the best
known constant factors in the above exponents so far remain the same.

Off-diagonal Ramsey numbers, i.e., r(s, n) with s 6= n, have also been intensively
studied. For example, after several successive improvements, it is known that there

are constants c1, . . . , c4 such that c1
n2

log n ≤ r(3, n) ≤ c2
n2

log n , and for fixed s > 3,

(1) c3

(
n

log n

)(s+1)/2

≤ r(s, n) ≤ c4
ns−1

logs−2 n
.

Although already for graph Ramsey numbers there are significant gaps between
the lower and upper bounds, our knowledge of hypergraph Ramsey numbers is
even weaker. The Ramsey number rk(s, n) is the minimum N such that every
red-blue coloring of the unordered k-tuples of an N -element set contains a red set
of size s or a blue set of size n, where a set is called red (blue) if all k-tuples from
this set are red (blue). Erdős, Hajnal, and Rado [5] showed that there are positive
constants c and c′ such that

2cn2

< r3(n, n) < 22c′n
.

They also conjectured that r3(n, n) > 22cn

for some constant c > 0 and Erdős
offered a $500 reward for a proof. Similarly, for k ≥ 4, there is a difference of
one exponential between the known upper and lower bounds for rk(n, n), i.e.,
tk−1(cn2) ≤ rk(n, n) ≤ tk(c′n), where the tower function tk(x) is defined by
t1(x) = x and ti+1(x) = 2ti(x).

The study of 3-uniform hypergraphs is particularly important for our under-
standing of hypergraph Ramsey numbers. This is because of an ingenious con-
struction called the stepping-up lemma due to Erdős and Hajnal. Their method
allows one to construct lower bound colorings for uniformity k + 1 from colorings
for uniformity k, effectively gaining an extra exponential each time it is applied.
Unfortunately, the smallest k for which it works is k = 3. Therefore, proving that
r3(n, n) has doubly exponential growth will allow one to close the gap between the
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upper and lower bounds for rk(n, n) for all uniformities k. There is some evidence
that the growth rate of r3(n, n) is closer to the upper bound, namely, that with
four colors instead of two this is known to be true. Erdős and Hajnal constructed
a 4-coloring of the triples of a set of size 22cn

which does not contain a monochro-
matic subset of size n. This is sharp up to the constant c. It also shows that the
number of colors matters a lot in this problem and leads to the question of what
happens in the intermediate case when we use three colors. The 3-color Ramsey
number r3(n, n, n) is the minimum N such that every 3-coloring of the triples of
an N -element set contains a monochromatic set of size n. In this case, Erdős

and Hajnal have made some improvement on the lower bound 2cn2

, showing that

r3(n, n, n) ≥ 2cn2 log2 n. Here, we substantially improve this bound, extending the
above mentioned stepping-up lemma of these two authors to show

Theorem 1. There is a constant c > 0 such that r3(n, n, n) ≥ 2nc log n

.

For off-diagonal Ramsey numbers, a classical argument of Erdős and Rado [6]
from 1952 demonstrates that

rk(s, n) ≤ 2(rk−1(s−1,n−1)

k−1 ).

Together with the upper bound in (1) it gives, for fixed s, that

r3(s, n) ≤ 2(r2(s−1,n−1)
2 ) ≤ 2

c n2s−4

log2s−6 n .

Our next result improves the exponent of this upper bound by a factor of ns−2

polylog n .

Theorem 2. For fixed s ≥ 4 and sufficiently large n,

log r3(s, n) ≤
(

(s−3)
(s−2)! + o(1)

)
ns−2 log n.

Erdős and Hajnal [4] showed that log r3(4, n) > cn using the following simple
construction. They consider a random tournament on [N ] = {1, . . . , N} and color
the triples from [N ] red if they form a cyclic triangle and blue otherwise. Since it
is well known and easy to show that every tournament on four vertices contains at
most two cyclic triangles and a random tournament on N vertices with high prob-
ability does not contain a transitive subtournament of size c′ log N , the resulting
coloring neither has a red set of size 4 nor a blue set of size c′ log N . In the same

paper from 1972, they suggested that log r3(4,n)
n →∞. Here we prove the following

new lower bound which implies this conjecture.

Theorem 3. There is a constant c > 0 such that log r3(s, n) ≥ c sn log
(

n
s + 1

)

for all 4 ≤ s ≤ n.

Despite the fact that Erdős [2] believed r3(n) is closer to 22cn

, together with
Hajnal [1], he discovered the following interesting fact about hypergraphs which
maybe indicates the opposite. They proved that there are c, ǫ > 0 such that
every 2-coloring of the triples of an N -element set contains a subset S of size
s > c(log N)1/2 such that at least (1/2 + ǫ)

(
s
3

)
triples of S have the same color.

That is, this subset deviates from having density 1/2 in each color by at least some
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fixed positive constant. Erdős [3] further remarks that he would begin to doubt
that r3(n) is double-exponential in n if one can prove that any 2-coloring of the
triples of an N -set contains some set of size s = c(ǫ)(log N)δ for which at least
(1− ǫ)

(
s
3

)
triples have the same color, where δ > 0 is an absolute constant. Erdos

and Hajnal proposed [1] that such a statement may even be true with δ = 1/2.
Our first result shows that this is indeed the case.

Theorem 4. For each ǫ > 0 and ℓ, there is c = c(ℓ, ǫ) > 0 such that every ℓ-
coloring of the triples of an N -element set contains a subset S of size s = c

√
log N

such that at least (1− ǫ)
(

s
3

)
triples of S have the same color.

By considering random ℓ-coloring of the triples, it is easy to see that this theo-
rem is tight up to the constant factor c. Our result also demonstrates (at least for
ℓ ≥ 3) that the maximum almost monochromatic subset that an ℓ-coloring of the
triples must contain is much larger than the corresponding monochromatic subset.
This is in striking contrast with graphs, where these two quantities have the same
order of magnitude, as demonstrated by a random ℓ-coloring of the edges of KN .

Another open problem from the 1989 paper of Erdős and Hajnal [1] asks whether
one can exhibit a fixed hypergraph of density larger than 1/2 + ǫ on c

√
log N

vertices that occurs monochromatically. That is, can we find dense hypergraphs
with small Ramsey numbers? We show that this is indeed the case by obtaining
a new upper bound on the ℓ-color Ramsey number of a complete multipartite
3-uniform hypergraph. A hypergraph H = (V, E) consists of a vertex set V and
an edge set E, which is a collection of subsets of V . A hypergraph is k-uniform
if each edge has exactly k vertices. For a k-uniform hypergraph H , the Ramsey
number r(H ; ℓ) is the minimum N such that every ℓ-coloring of the k-tuples of an
N -element set contains a monochromatic copy of H . The complete d-partite k-
uniform hypergraph Kk

d (n) is the k-uniform hypergraph whose vertex set consists
of d parts of size n and whose edges are all k-tuples that have their vertices in
some k different parts. The number of vertices of K3

d(n) is dn and the number of

edges in K3
d(n) is

(
d
3

)
n3 > (1 − 3

d)
(
dn
3

)
, i.e., it has edge density more than 1− 3

d .

In particular, as d increases, the edge density of K3
d(n) tends to 1. Therefore,

Theorem 4 is an immediate corollary of the following theorem.

Theorem 5. The ℓ-color Ramsey number of the complete d-partite hypergraph
K3

d(n) satisfies

r(K3
d(n); ℓ) ≤ 2ℓ2rn2

,

where r = r2(d−1; ℓ) is the ℓ-color Ramsey number of the complete graph on d−1
vertices.
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[1] P. Erdős and A. Hajnal, Ramsey-type theorems, Discrete Appl. Math. 25 (1989), 37–52.
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Uncoordinated Two-Sided Matching Markets

Berthold Vöcking

(joint work with Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni and
Heiko Röglin)

A matching is stable if it does not contain a blocking pair, that is, a pair of agents
from different sides who can deviate from this matching and both benefit. Gale
and Shapley [2] showed that stable matchings always exist and can be found in
polynomial time. Besides their theoretical appeal, two-sided matching models have
proved useful in the empirical study of many labor markets such as the National
Resident Matching Program (NRMP). Since the seminal work of Gale and Shapley,
there has been a significant amount of work in studying two-sided markets. See
for example, the book by Knuth [4], the book by Gusfield and Irving [3], or the
book by Roth and Sotomayor [5].

In many real-life markets, there is no central authority to match agents, and
agents are self-interested entities. This motivates the study of uncoordinated two-
sided markets, first proposed by Knuth [4]. Uncoordinated two-sided markets can
be modeled as a game among agents of one side, which we call the active side.
The strategy of each active agent is to choose one agent from the passive side, and
stable matchings correspond to Nash equilibria of the corresponding games. In
order to understand the behavior of the agents in these uncoordinated markets,
it is interesting to analyze the dynamics that arise when agents play repeatedly
better or best responses to the strategies of the other agents.

1. Better Response Dynamics

To the best of our knowledge, Donald Knuth was the first who suggested to
consider Nash dynamics in two-sided markets. He showed that the better response
dynamics can cycle [4]. This means, it is possible to start with a matching M1 and
to resolve some blocking pairs, leading to a sequence of matchings M1, M2, . . . , Mk

with Mk = M1. Hence, in the worst case the better response dynamics never
stabilizes. This, however, assumes that blocking pairs are resolved in a certain
order, which is not realistic in an uncoordinated environment. Hence, he suggested
to analyze the random better response dynamics. Roth and Vande Vate [6] proved
that for every matching M , there exists a polynomial sequence of blocking pairs
that lead to a stable matching when resolved consecutively. Hence, the random
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better response dynamics reaches a stable matching in a finite number of steps
with probability one.

This leaves open the question of how long it takes to stabilize. We believe that
this is a crucial question as it corresponds to the question of how long an uncoordi-
nated market needs to stabilize. In [1], we resolved this question and proved that
there exists a family of two-sided markets such that the random better response
dynamics takes a number of steps that is exponential in the size of the graph.
This result indicates that coordination is necessary as there exist uncoordinated
markets that need with high probability exponential time to stabilize.

2. Best Response Dynamics

Both Knuth’s cycle [4], and Roth and Vande Vate’s proof [6] hold only for the
better response dynamics, and not for the best response dynamics, where women
are activated and choose their best blocking pair. We extended these results to best
responses. That is, we showed that also the best response dynamics can cycle and
that starting from any matching, there exists a short sequence of best responses
to a stable matching. As a corollary of the proof of the latter result, we obtain
that every sequence of best responses starting with the empty matching reaches
a stable matching after a polynomial number of steps. Hence, when starting with
the empty matching, no central coordination is needed to reach a stable matching
quickly if agents play only best responses.

In contrast to this, we showed that the result for random better responses can
be extended to the random best response dynamics when arbitrary starting config-
urations are allowed. Hence, even if agents play only best responses, coordination
is necessary if arbitrary initial matchings are allowed.

References

[1] H. Ackermann, P. W. Goldberg, V. S. Mirrokni, H. Röglin, and B. Vöcking, Uncoordinated
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Tight Lower Bounds for Greedy Routing in Uniform Small World
Rings

Philip Woelfel

(joint work with Martin Dietzfelbinger)

abstract

Motivated by Kleinberg’s Small World Graph model and packet routing strate-
gies in peer-to-peer networks, greedy routing algorithms on augmented networks
have been investigated thoroughly. We prove tight lower bounds for one- and
two-sided greedy routing on augmented rings.

1. Overview

An augmented network consists of a base network G = (V, E) together with a
probability distribution that for each vertex v ∈ V defines probabilities of addi-
tional links from v to vertices u ∈ V − {v} to be present. These additional links
are called long range contacts. Often, the base network has a natural notion of
“distance”, and the probability distribution for the long range contacts is uniform
in the sense that the probability for the existence of a long range contact from u
to v does not depend on the labels of u and v, but only on the distance from u
to v. Such uniform augmented networks were first considered by Watts and Stro-
gatz [16] as a mathematical model to understand the “small-world phenomenon”
occurring in social networks and the web. (The most prominent example of the
phenomenon is the short chains of acquaintances, or “six degrees of separation”
between any two individuals in the United States, as observed in Milgram’s fa-
mous experiment [14].) Kleinberg [10, 11] started studying algorithmic aspects of
such networks, in particular the cost of finding short paths greedily, i.e., by always
following the edge that minimizes the distance to the destination. He proved that
for uniform augmented meshes with a carefully chosen distribution for long range
contacts, the path found by this greedy method has expected length O((log n)2).

Since then, greedy routing and uniform augmented graph models have found
a tremendous amount of interest (see the surveys [5, 12]). We focus on the
one-dimensional case, where the underlying network is a one-dimensional grid
or a one-dimensional ring. Here, deterministic constructions were given for ℓ =
Θ(log n) long range contacts (Chord [6, 15]). Probabilistic constructions for ℓ ∈
[Ω(1), O(log n)] were proposed by Kleinberg [10, 11], in Symphony [13], and in
Randomized-Chord [8, 17]. In all these constructions, the expected number of
steps for greedy routing is O((log n)2/ℓ) (see also [1]). One distinguishes the “one-
sided case” in which a token cannot change its direction on the ring and the
“two-sided case” where this is allowed. Regarding upper bounds, no difference
between these cases is known. It is a natural question to ask whether there are
distributions for the long range contacts that allow faster greedy routing than the
known upper bound O((log n)2/ℓ).
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Lower bounds were obtained either for exactly ℓ or for an expected number
of ℓ long range contacts per node. Aspnes, Diamadi, and Shah [1] offered a
bound of Ω((log n)2/(ℓ log log n)) for the one-sided case, which was improved to
Ω((log n)2/(ℓ · alog∗ n)), for some constant a > 1, by Giakkoupis and Hadzilacos [7].
Although not explicitly stated, a lower bound technique for black-box optimiza-
tion in [2] implies a tight lower bound of Ω((log n)2) for one-sided greedy routing
on the uniform augmented ring with ℓ = 1 long range contact per node.

For the two-sided case, in [1] a lower bound of Ω((log n)2/(ℓ2 log log n)) was
shown, for distributions µ that obeyed certain, quite strict, monotonicity condi-
tions. Under similar assumptions, Flammini et al. [4] showed an optimal lower
bound of Ω((log n)2) for the diameter of undirected paths, where each node has
exactly one long-range contact. (Note that the diameter is potentially larger than
the expected greedy routing time.)

Aspnes, Diamadi and Shah conjectured a lower bound of Ω((log n)2/(ℓ log log n))
for both, the one- and the two-sided case; Giakkoupis and Hadzilacos [7] conjec-
tured a lower bound of Ω((log n)2/ℓ), which matches the known upper bounds for
ℓ = O(log n). Our contribution is a proof of the latter conjecture for both the
two-sided and the one-sided case, with no restriction on the distribution µ at all,
except that a node has an expected number of ℓ ∈ [Ω(1), O((log n)2)] long range
contacts.

2. The Main Results

In order to prove lower bounds for one- and two-sided greedy routing on the ring,
we consider a random process in which a token is moved over a board with 2n + 1
cells, labelled from left to right with the numbers −n, . . . , n. At the beginning, the
token is placed in a location X0 chosen uniformly at random from {1, . . . , n}, and
then it is moved in a series of steps towards its target, which is cell 0. In each step,
a set D ⊆ {−n, . . . ,−1, 1, . . . , n} of step sizes is chosen at random according to a
probability distribution µ on the set of all such step size sets. (The distribution
remains the same throughout the game.) Then the token is moved from its current
position X to position X − d, where d is the step size in D that minimizes the
distance |X − d| of the token to its target. If |X − d| ≥ |X | for all d ∈ D, then
the token stays put.1 Let T2 denote the number of steps needed until the target
is reached, and let L = Eµ(|D|) be the average number of possible step sizes. We
establish the following lower bound on the expected number Eµ(T2) of steps until
the token reaches its destination. (This is asymptotically tight for L = O(log n).)

Theorem 1. Let µ be an arbitrary probability distribution over the subsets of
{−n, . . . ,−1, 1, . . . , n} and let L = Eµ(|D|) = O((log n)2). Then Eµ(T2) =
Ω((log n)2/L).

1In the corresponding graph routing problem, only sets D that contain {−1, 1} are considered
(to capture the links of the base network). Thus, the token moves in every step until the target
has been reached. Adding a constant number of elements to D does not change our asymptotic
lower bounds.
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For L = ω(log n ·log log n), the lower bound Ω(log n/ log L), which is larger than
Ω((log n)2/L), can be proved rather easily by other means (see, e.g., Theorem 3
in [1]).

Applying Theorem 1 with L = ℓ + 2 for Ω(1) ≤ ℓ ≤ O((log n)2) we obtain
a lower bound of Ω((log n)2/ℓ) for two-sided greedy routing on a ring of size n,
with uniform long range contacts chosen at random according to an arbitrary
distribution µ, with an expected number of ℓ long range contacts at each vertex.

We state a second, analogous, theorem for the one-sided case. The process now
starts on a randomly chosen cell X0 in {1, . . . , n}. In each step, as long as the
current cell X is not 0, a set D ⊆ {1, . . . , n} is chosen, according to a distribution µ
on all subsets of {1, . . . , n}, and one moves to cell X−d for the largest d ∈ D∪{0}
with d ≤ X . Let T1 denote the number of steps it takes in the one-sided process
until the token reaches cell 0.

Theorem 2. Let µ be an arbitrary probability distribution over the subsets of
{1, . . . , n} and let L = Eµ(|D|) = O((log n)2). Then Eµ(T1) = Ω((log n)2/L).

3. Our Proof Technique

As already observed in [1] (and in [2]), instead of studying the “token process”
directly, it is advantageous to delay the decision on the starting point, and consider
a new Markov chain S0, S1, S2, . . . that has intervals as states. An interval St =
{a, . . . , b} represents the information that the token is in one of the points of the
interval, with equal probability. (For example, S0 = {1, . . . , n}, because in the
beginning the token is placed uniformly at random on a point in this set.) The
new Markov chain is equivalent to the token process in the sense that the expected
time to reach {0} is the same as Eµ(T2).

A state (interval) S has “weight” |S|, its size. A very coarse measure for the
progress made by a step from S to S′ is the quotient |S|/|S′| > 1. In a run
S0, S1, S2, . . . , ST2 of the interval process the total progress, obtained by multi-
plying these quotients, must be n. Each step of the interval process, from state
S to state S′, say, that uses set D of step sizes, is associated with one d ∈ D in
some clever way. We use an “accounting method” approach as it is often used in
amortized analysis. With each step we associate an abstract “cost” caused by this
step, which takes S, S′, D, and the associated step size d into account.

We then show that the expected cost of one step, starting in an arbitrary
state S, is O(1). Further, we show by a convexity argument that if in a run
S0, S1, S2, . . . , ST of the interval process much of the naive progress (shrinking in-
terval lengths) is achieved, then the total cost (sum) of these steps in this run is
Ω((log n)2/L). Overall we get that in every run the total cost is Ω((log n)2/L),
and the expected cost incurred in one step is O(1). Then it is intuitively clear,
and it can be proved by a variant of Wald’s equation from [9], that the expected
number of steps must be Ω((log n)2/L).

For details of the proof, we refer to [3].
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