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Introduction by the Organisers

The workshop Multiplier Ideal Sheaves in Algebraic and Complex Geometry, or-
ganised by Stefan Kebekus (Freiburg), Mihai Paun (Nancy), Georg Schumacher
(Marburg) and Yum-Tong Siu (Cambridge MA) was held April 12th – April 18th,
2009. Since the previous Oberwolfach conference in 2004, there have been impor-
tant new developments and results, both in the analytic and algebraic area. This
meeting included several leaders in the field as well as many young researchers.

The title of the workshop stands for phenomena and methods, closely related to
both the analytic and the algebraic area. The aim of the workshop was to present
recent important results with particular emphasis on topics linking different areas,
as well as to discuss open problems.



1102 Oberwolfach Report 21

The original approach involving the theory of partial differential equations and
subelliptic estimates was addressed in several contributions, including existence
theorems for L2-holomorphic functions and applications of multiplier ideal sheaves
to solutions of the Ricci-flow and the Monge-Ampère equation. Further areas in-
cluded the study of Seshadri numbers, canonical models, as well as log canoni-
cal varieties and their canonical rings. The solution of the ACC conjecture for
log canonical thresholds was presented. Furthermore, the analogues of multiplier
ideals in positive characteristic were discussed.



Multiplier Ideal Sheaves in Algebraic and Complex Geometry 1103

Workshop: Multiplier Ideal Sheaves in Algebraic and Complex
Geometry

Table of Contents

Lawrence Ein (joint with Tommaso de Fernex, Mircea Mustaţă)
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Abstracts

Shokurov’s ACC Conjecture for log canonical thresholds on smooth

varieties

Lawrence Ein

(joint work with Tommaso de Fernex, Mircea Mustaţă)

Let k be an algebraically closed field of characteristic zero. Log canonical varieties
are varieties with mild singularities that provide the most general context for
the Minimal Model Program. More generally, one considers the log canonicity
condition on pairs (X, at), where a is a proper ideal sheaf on X (most of the
times, it is the ideal of an effective Cartier divisor), and t is a nonnegative real
number. Given a log canonical variety X over k, and a proper nonzero ideal sheaf
a on X , one defines the log canonical threshold lct(a) of the pair (X, a). This
is the largest number t such that the pair (X, at) is log canonical. One makes
the convention lct(0) = 0 and lct(OX) = ∞. One also defines a local version of
the log canonical threshold at a point p ∈ X , which we denote by lctp(a). The
log canonical threshold is a fundamental invariant in birational geometry, see for
example [9], [7], or Chapter 9 in [12].

Shokurov’s ACC Conjecture [13] says that the set of all log canonical thresholds
on varieties of any fixed dimension satisfies the ascending chain condition, that
is, it contains no infinite strictly increasing sequences. This conjecture attracted
considerable interest due to its implications to the Termination of Flips Conjecture
(see [2] for a result in this direction). The first unconditional results on sequences
of log canonical thresholds on smooth varieties of arbitrary dimension have been
obtained in [5], and they were subsequently reproved and strengthened in [10].

Theorem 1. For every n, the set

T sm
n := {lct(a) | X is smooth, dimX = n, a ( OX}

of log canonical thresholds on smooth varieties of dimension n satisfies the ascend-
ing chain condition.

As we will see, every log canonical threshold on a variety with quotient sin-
gularities can be written as a log canonical threshold on a smooth variety of the
same dimension. Therefore for every n the set

T quot
n := {lct(a) | X has quotient singularities, dimX = n, a ( OX}

is equal to T sm
n , and thus the ascending chain condition also holds for log canonical

thresholds on varieties with quotient singularities.
In order to extend the result to log canonical thresholds on locally complete

intersection varieties, we consider a more general version of log canonical thresh-
olds. Given a variety X and an ideal sheaf b on X such that the pair (X, b) is log
canonical, for every nonzero ideal sheaf a ( OX we define the mixed log canonical
threshold lct(X,b)(a) to be the largest number c such that the pair (X, b · ac) is log
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canonical. Note that when b = OX , this is nothing but lct(a). Again, one sets
lct(X,b)(0) = 0 and lct(X,b)(OX) =∞. The following is our main result.

Theorem 2. For every n, the set

Ml.c.i.
n := {lct(X,b)(a) | X l.c.i., dimX = n, a, b ⊆ OX , a 6= OX , (X, b) log can. }

of mixed log canonical thresholds on l.c.i. varieties of dimension n satisfies the
ascending chain condition.

Corollary 3. For every n, the set

T l.c.i.
n := {lct(a) | X l.c.i., dimX = n, a ( OX}

of log canonical thresholds on l.c.i. varieties of dimension n satisfies the ascending
chain condition.

We will use Inversion of Adjunction (in the form treated in [6]) to reduce Theo-
rem 2 to the analogous statement in which X ranges over smooth varieties. More
precisely, we show that all sets

Msm
n :={lct(X,b)(a) | X smooth, dimX = n, a, b ⊆ OX , a 6= OX , (X, b) log can.}

satisfy the ascending chain condition. It follows by Inversion of Adjunction that
every mixed log canonical threshold of the form lct(X,b)(a), with a and b ideal
sheaves on an l.c.i. variety X , can be expressed as a mixed log canonical threshold
on a (typically higher dimensional) smooth variety. This is the step that requires
us to work with mixed log canonical thresholds. The key observation that makes
this approach work is that if X is an l.c.i. variety with log canonical singularities,
then dimk TxX ≤ 2 dimX for every x ∈ X . This implies that the above reduction
to the smooth case keeps the dimension of the ambient variety bounded.
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Remarks on a theorem by H. Tsuji

Bo Berndtsson

LetX be a compact complex manifold of dimension n with ample canonical bundle,
KX . If φ is a metric on KX , then eφ is a volume form on X . If φ has positive
curvature so that i∂∂̄φ is a positive form, we can also equip the manifold X with
the Kahler metric ωφ := i∂∂̄φ, with the associated volume form

ωφn := (ωφ)n/n!.

Let V be the volume of the manifold for this latter volume form; it is independent
of the choice of φ. The metric ωφ satisfies the Kähler-Einstein equation if

ωφn/V = ceφ,

where c is a constant. We shall always normalize our Kahler potentials so that
c = 1.

By a theorem of Aubin and Yau (see eg [3]), a Kähler-Einstein metric always
exists if KX is ample, and its (normalized) Kahler potential φ := φKE is uniquely
determined.

In a very interesting paper, H. Tsuji [4] has recently shown that the Kähler-
Einstein potential can be obtained as a limit of a sequence of metrics computed
iteratively by Bergman kernel constructions. (He has also continued this study in
[5] in a much more general setting, but this note concerns only the case of ample
canonical bundle.) The aim of the talk is to give an alternate proof of Tsuji’s the-
orem, using Bergman kernel asymptotics by Bouche-Tian-Catlin- Zelditch (see e g
[6]) . This method also allows us to get uniform convergence (Tsuji proved conver-
gence in L1) at an explicit rate, and to obtain existence and a similar convergence
result for balanced metrics (see below).

Given any (smooth) metric φ on KX , and any natural number k we get an
associated metric on the space H0(X, (k + 1)KX) of global holomorphic sections
of (k + 1)KX by

‖u‖2kφ =

∫

X

|u|2e−kφ.

Let Bkφ be its associated Bergman kernel, defined as

Bkφ =
∑
|uj |2,



1108 Oberwolfach Report 21

where uj is an orthonormal basis for H0(X, (k + 1)KX). Obviously
∫

X

Bkφe
−kφ = dk,

the dimension of H0(X, (k + 1)KX). Let

βk(φ) =
1

k + 1
(logBkφ − log dk);

it is again a metric on KX , and it satisfies
∫

X

e(k+1)βk(φ)−kφ = 1.

From this it follows easily from Hölder’s inequality that
∫

X

eβk(φ) ≤ 1,

if the integral of eφ is at most one. (We also see that equality holds exactly when
φ is a fixed point of the map βk. )

The operator ’φ maps to β(φ)’ therefore maps the set of metrics on KX with
this property to itself.

Theorem 1. Let φ be an arbitrary continuous metric on KX. Let k >> 0 and
define iteratively a sequence of metrics φm by φ0 = φ and

φm+1 = βk+m(φm).

Then

sup
X
|φm − φKE |

tends to zero at the rate 1/m2.

This theorem is due to Tsuji, with slightly weaker convergence. (Tsuji writes
his conclusion as lim supφm = φKE . This seems to be not quite enough for
applications, but his method gives L1-convergence.)

One interesting consequence of Tsuji’s theorem is the plurisubharmonic vari-
ation of Kahler-Einstein metrics in the relative case. If we let Z be an n + l
dimensional manifold smoothly and properly fibered over an l-dimensional base
we can apply Tsuji’s theorem to each fiber. Since we can choose the initial metric φ
to have plurisubharmonic variation when the fiber varies, it follows from the results
of [1] that all the fiberwise Bergman kernels will have plurisubharmonic variation
as well. Taking limits, we conclude that the fiberwise Kähler-Einstein metrics φKE
will have plurisubharmonic variation too. A stronger result in this direction has
been proved recently by Schumacher [2], who gets an explicit lower bound for the
curvature of the variation, giving in particular strict plurisubharmonicity where
the Kodaira-Spencer class does not vanish.

Let us say that a metric φ is k-balanced if it is a fixed point for the map βk, so
that

Bkφ/dk = e(k+1)φ.
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Theorem 2. If m >> 0 there is a unique m-balanced metric, φ(m). Moreover

sup
X
|φ(m) − φKE |

tends to zero at the rate 1/m2.

This result can be proved using similar methods as in the proof of Theorem 1.
It should be noted, that whereas the convergence results in Theorems 1 and 2 use
the existence of Kahler-Einstein metrics, the existence result for balanced metrics
does not.

The main tool in our proof is the follwing lemma that compares Bergman kernels
to sub- (or super-) solutions to the Kahler-Einstein equation.

Lemma 3. Let φ0 be a smooth metric on KX with positive curvature form satis-
fying

ωφ0
n /V ≥ eφ0+a,

where a is constant. Let φ be an arbitrary continuous metric on KX such that

eφ ≥ Ceφ0 ,

where C is constant. Then

eβk(φ) ≥ Ck/(k+1)ea/(k+1)(1− ǫk)1/(k+1)eφ0 .

Here ǫk is a sequence of positive numbers, depending only on φ0, tending to zero
at rate at most 1/k, and in the special case φ0 = φKE , ǫk tends to zero at the rate
1/k2. A similar estimate from above of eβk(φ) holds if we revers the two inequalities
in the assumption.

This lemma follows easily from the Bergman kernels asymptotics of φ0 if we
compare the Bergman kernel for φ with the Bergman kernel for φ0. If we take
φ0 = φKE , we can take a = 0 and apply the lemma iteratively starting with
some constant C. We then get better and better estimates as we go along (since
k/(k + 1) < 1) , and Theorem 1 follows.

To show the existence of balanced metrics, without using the existence of
Kähler-Einstein metrics, we take φ0 arbitrary with positive curvature form, so
that φ0 satisfies the first hypothesis of the lemma for some a. The lemma then
shows that the operator βk maps the set of metrics φ with |φ− φ0| ≤ A into itself
if A is large enough, and from there we can deduce the existence of a fixed point
as a point maximizing the integral of eβkφ .

As a last comment we can note that we may change Tsuji’s construction by
defining

φ̃j = bkj
(φ̃j−1),

where kj is some sequence tending to infinity. Then we still get convergence to
φKE as long as

∑
1/kj diverges.
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Fake projective planes and complex exotic quadrics

Sai-Kee Yeung

The first theme of the talk is to update the results on classification of fake pro-
jective planes. The following main result is the consequence of results of Prasad-
Yeung [3] and Cartwright-Steger [2]. A fake projective plane is a smooth complex
surface which has the same Betti numbers as P 2

C but which is not biholomorphic
to P 2

C . Here is the conclusion.
There are altogether one hundred fake projective planes up to biholomorphism

in twenty-six non-empty classes of fake projective planes. This consists of fifty
pairs of non-isometric Riemannian fourfolds, each of which consists of two biholo-
morphically distinct fake projective planes with conjugate complex structures.
There can at most be one more class of fake projective planes, corresponding to
very specific number fields.

The second theme of the talk is to introduce an approach to study the complex
exotic quadrics. We say that a complex surface is a complex exotic quadric if
it is homeomorphic but not biholomorphic to the complex quadric in P 3

C . It is
well-known that Hirzebruch surfaces of even type are complex exotic quadrics. A
folklore conjecture is that these are the only complex exotic quadrics (cf. [1], [4]).
In particular, there should not be complex exotic quadrics of general type.

Suppose M is an complex exotic quadric of general type. Our approach consists
of two steps. The first step is algebraic, stating that the nef cone of the M
consists of convex linear combinations of the two line bundles L1, L2 satisfying
L1 · L1 = 0 = L2 · L2 and L1 · L2 = 1. The second step is analytic, studying an
appropriate limit of the Bergman kernels generated by sections of nLi + aKM for
some fixed a > 0 as n→∞.
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On the extension of L
2 holomorphic functions from analytic sets with

singularities

Takeo Ohsawa

Let M be a complex manifold of dimension n, let E be a holomorphic vector
bundle over M , let S be a closed complex analytic subset of M , and let K be the
canonical line bundle of M . Given a C∞ volume form dV on M , a C∞ fiber metric
h of E and a measure dµ on S, we denote by A2(S,E ⊗ K,h ⊗ (dV )−1, dµ) the
space of L2 holomoprhic sections of E⊗K over S with respect to h⊗ (dV )−1 and
dµ. A2(S,E ⊗K,h⊗ (dV )−1, dµ) is independent of dV , so that we shall denote it
by A2(M,E ⊗K,h).

For any locally integrable function ψ : M −→ [−∞,∞), the spaces A2(S,E ⊗
K, e−ψh⊗(dV )−1, dµ) and A2(M,E⊗K, e−ψh) are defined similarly. We shall call

e−ψh a singular fiber metric of E. Given a singular fiber metric h̃ of E, a bounded
linear operator I : A2(S,E ⊗K, h̃ ⊗ (dV )−1, dµ) −→ A2(M,E ⊗K, h̃) satisfying

I(f)|S = f for any f will be called an extension operator for (E ⊗K, h̃⊗ (dV )−1)
from (S, dµ) to (M,dV ).

Let φ : M −→ [−∞, 0) be a continuous function. We shall say that φ has a
pole along S if the following are satisfied.

(1) φ−1(−∞) = S,
(2) φ|M\S is C∞,

(3) e−φ is not integrable on an open set U ⊂M whenever U ∩ S 6= ∅.

Given a function φ which has a pole along S, we say that dµ is a residual
majorant of (dV, φ) if the inequality

(4) lim sup
r−→∞

∫

−r<φ<−r+1

ρe−φdV ≤
∫

S

ρdµ

holds for any nonnegative continuous function ρ with compact support on M .
We say that (E, h) is φ-positive if there exists a positive number τ0 such that

(E, he−(1+τ)φ) are Nakano semipositive on M\S if τ ∈ [0, τ0]. We shall denote the
supremum of such τ0 by ν(h, φ).

Let X be a closed subset of M . We say that X is L2-negligible if, for any point
p ∈ X and for any neighbourhood V ∋ p, every L2 holomorphic n-form on V \X
is holomorphically extendible to V .

The main result of [1] was

Theorem 1. Let M be a complex manifold with a C∞ volume form dV , let E be
a holomorphic vector bundle over M with a C∞ fiber metric h, let S be a closed
complex analytic subset of M equipped with a measure dµ, and let φ : M −→
[−∞, 0) be a continuous function with poles S. Suppose that dµ is a residual
majorant of (dV, φ), h is φ-positive, and that there exists an L2-negligible set X ⊂
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M such that M\X is Stein and S ∩ X is nowhere dense in S. Then for any
plurisubharmonic function ψ on M , there exists an extension operator

(5) I : A2(S,E ⊗K, e−ψh⊗ (dV )−1, dµ) −→ A2(M,E ⊗K, e−ψh)

whose norm is bounded by a constant depending only on ν(h, φ).

Applicability questions aside, this has been all what can be said by extending
[2], Any small positive step from here should require a completely new method.
The following was announced (essentially), but there turned out to be a gap in
the proof, so that I would like to leave it as an open question.

Conjecture 2. In the situation fo theorem 1, let x ∈ S\X. Assume that n ≥ 3
and that ψ = 0 on a neighbourhood U of x. Then there exists a neighbourhood
V of x with V ⋐ U , such that, for any holomorphic section f of E ⊗ K over S
satisfying

(6)

∫

S\V
e−ψ|f |2dµ <∞,

there exists a holomorphic extension f̃ of f to M satisfying

(7)

∫

M

e−ψ|f̃ |2dV ≤ C
∫

S\V
e−ψ|f |2dµ.

Here C is a constant depending von h and V , but not on the choices of ψ of f .
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Morse Inequalities and Deformations of Compact Complex Manifolds

Dan Popovici

Let X be a compact complex manifold, dimCX = n. Fix a Hermitian metric, that
is a C∞ positive-definite (1, 1)-form ω, onX . According to [3], a Kähler current is a
d-closed current T of bidegree (1, 1) such that T ≥ ε ω on X for some constant ε >
0. Kähler currents need not exist on an arbitraryX . The problem of characterising
compact complex manifolds X that carry a Kähler current was settled in [1] in
the following form. Recall that X is said to be a Fujiki class C manifold if there
exists a proper holomorphic bimeromorphic map (i.e. a holomorphic modification)

µ : X̃ → X from a compact Kähler manifold X̃ to X . Similarly, X is said to be
a Moishezon manifold if there exists a holomorphic modification µ : X̃ → X such
that X̃ is a projective manifold.
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Theorem 1. (a) (Demailly-Paun [1]) A compact complex manifold X is a Fujiki
class C manifold if and only if there exists a Kähler current T on X.
(b) (Ji-Shiffman [3]) A compact complex manifold X is Moishezon if and only
if there exists a Kähler current T on X whose De Rham cohomology class {T } is
integral.

By Kodaira’s Embedding Theorem, a projective manifold is a compact Kähler
manifold carrying a Kähler form of integral De Rham cohomology class. The
weaker, bimeromorphically equivalent, versions stand in a similar relation: Moishe-
zon manifolds are the integral class version of Fujiki class C manifolds as far as
Kähler currents are concerned.

The object of our work is to study the behaviour of the projective and Kähler
properties of compact complex manifolds in the limit under holomorphic deforma-
tions. According to [4], a complex analytic family of compact complex manifolds
is a proper holomorphic submersion π : X → ∆ between complex manifolds X
and ∆. Thus the fibres Xt := π−1(t) are (smooth) compact complex manifolds of
equal dimensions n. Here the base ∆ will be a ball about the origin in some Cm.
It suffices to take m = 1. Our motivation comes from the following.

Conjecture 2. (folklore) Suppose that the fibre Xt is Kähler for every t ∈ ∆⋆ :=
∆ \ {0}. Then the limit fibre X0 is expected to be a Fujiki class C manifold.

Pending a solution of this conjecture, we announce a proof of the following
integral class version of it.

Theorem 3. ([6]) Let π : X → ∆ be a complex analytic family of compact complex
manifolds such that the fibre Xt := π−1(t) is projective for every t ∈ ∆⋆ := ∆\{0}.
Then the limit fibre X0 is Moishezon.

We shall now outline the main steps in the proof of Theorem 3 and a strategy to
tackle Conjecture 2. The overarching idea goes back to the work of J. -P. Demailly:

• Step 1: choose Kähler forms ωt on the fibres Xt with t 6= 0 in such a way that
for a sequence tk → 0 the forms ωtk converge weakly to a current T of type (1, 1)
on the limit fibre X0;

• Step 2: prove Morse inequalities to ensure the existence of a Kähler current S
on X0 in the same De Rham cohomology class as T.

Step 1 has been settled in [6] and is common to the approaches to Theorem 3
and Conjecture 2. Let X denote the differentiable manifold underlying all fibres
Xt and let (Jt)t∈∆ be the holomorphic family of complex structures on (Xt)t∈∆.
Choose now a family (γt)t∈∆, varying in a C∞ way with t ∈ ∆, of Gauduchon
metrics on the Xt’s (i.e. each γt is a positive-definite (1, 1)-form for Jt satisfying
∂t∂̄tγ

n−1
t = 0). Such a family always exists by the proof of Gauduchon’s Vanishing

Excentricity Theorem [2].
If Xt is projective for all t ∈ ∆⋆ (as in Theorem 3), there exists a non-zero

integral De Rham cohomology class α ∈ H2(X,Z) such that, for every t ∈ ∆⋆,
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α can be represented by a 2-form which is of Jt-type (1, 1). Furthermore, α can
be chosen in such a way that α is an ample class on Xt for all t 6= 0 outside
a countable union Σ′ of analytic subsets of ∆⋆. Let Σ := {0} ∪ Σ′ ⊂ ∆. The
main difficulty in settling Step 1 is proving uniform boundedness for the masses
of Kähler forms ωt w.r.t. the relevant powers of the Gauduchon metrics γt.

Proposition 4. ([6]) The C∞ family (γt)t∈∆ of Gauduchon metrics on the fibres
(Xt)t∈∆ can be chosen with the following property. For every t ∈ ∆ \ Σ and
every Jt-Kähler form ωt belonging to the class α, there exists a constant C > 0
independent of t such that

0 <

∫

Xt

ωt ∧ γn−1
t ≤ C, for all t ∈ ∆ \ Σ,

after possibly shrinking ∆ about 0.

The proof of this result proceeds comparatively painlessly under the extra as-
sumption that the Hodge number h0,1(t) := dimH0,1(Xt,C) does not jump at
t = 0. This will be the case a posteriori for all Hodge numbers hp,q(t), but ruling
out the jumping of h0,1(t) at t = 0 on a priori grounds seems to be a daunting task.
Our approach in [Pop09] is to prove the uniform mass boundedness above even
allowing for the mythical possibility of jumping. To this end, we introduce a new
type of metric that we call a strongly Gauduchon metric: ∂tγ

n−1
t is required to be

∂̄t-exact rather than just ∂̄t-closed as the Gauduchon condition required. Unlike
Gauduchon metrics, strongly Gauduchon metrics need not exist on an arbitrary
compact complex manifold. We prove that their existence is equivalent to the
non-existence of a non-zero (1, 1)-current that is both ≥ 0 and d-exact. Moreover,
since the ∂∂̄-lemma holds on everyXt with t 6= 0, by the Kähler assumption, every
Gauduchon metric on the generic fibre is strongly Gauduchon. We prove as well
that if the limit fibre X0 carries a strongly Gauduchon metric γ0, then Proposi-
tion 4 follows. Finally, by a positivity argument and a study of eigenvalues, we
prove that any C∞ family (γt)t∈∆ of Gauduchon metrics on the fibres Xt can be
modified to a C∞ family of strongly Gauduchon metrics (i.e. γ0 becomes strongly
Gauduchon) and Proposition 4 follows.

Proposition 4 implies the weak compactness of the family (ωt)t∈∆\Σ. One can
therefore extract a subsequence (ωtk), tk → 0, converging weakly to a current
T ≥ 0 on X0 which lies in the same integral cohomology class α and is of type
(1, 1) for J0. If the Kähler forms ωt have been chosen to have prescribed volume
forms by means of the Aubin-Yau theorem, the limit current T is easily seen
to satisfy the extra positivity condition

∫
X0

T nac > 0, where Tac is the absolutely

continuous part of T in the Lebesgue decomposition.
Step 2 consists in an application on X0 of the singular Morse inequalities that

were the main result in [5].

Theorem 5. (reformulation of Theorem 1.3. in [5]) Let X be a compact complex
manifold, dimCX = n. Suppose there exists a d-closed (1, 1)-current T on X whose
De Rham cohomology class is integral and which satisfies
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(i) T ≥ 0 on X ; (ii)

∫

X

T nac > 0.

Then the cohomology class of T contains a Kähler current S. Implicitly, X is
Moishezon.

In the situation of Conjecture 2, the class α cannot be chosen constant in
general. However, it is sufficient for our purposes to choose a family of Kähler
classes αt, t 6= 0, such that the volume of αt is uniformly bounded below by a
strictly positive constant. This can be arranged using the Gauss-Manin connection.
Thus, Step 1 can be run identically to the case of Theorem 3 producing a limit
current on X0 satisfying the positivity assumptions (i) and (ii) in Theorem 5. The
only difference to the projective case is that the De Rham class of T need not be
integral. Conjecture 2 would follow if the integral class assumption on T could
be removed from the statement of Theorem 5. This is Demailly’s conjecture on
transcendental Morse inequalities.
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Estimates for the Kähler-Ricci flow

Duong Hong Phong

(joint work with Jacob Sturm)

Let (X,ω0 = i
2g

0
k̄j
dzj ∧ dx̄k) be a compact Kähler manifold of dimension n. The

Kähler-Ricci flow is the following parabolic non-linear heat equation

(1) ġk̄j(t) = −(Rk̄j − µgk̄j), gk̄j(0) = g0
k̄j .

We shall restrict to the case where c1(X) > 0, ω0 ∈ πc1(X), and µ = 1, where the
fixed points of the flow are precisely Kähler-Einstein metrics, the characterization
of whose existence is still an open question at this time. For a discussion of
conjectures of Yau [20] and notions of K-stability due to Tian [18] and Donaldson
[5] regarding the existence of constant scalar curvature metrics in a given Kähler



1116 Oberwolfach Report 21

polarization, see e.g. [15]. Since the flow preserves the Kähler class, we may set
gk̄j = g0

k̄j
+ ∂j∂k̄φ, ωφ = ω0 + i

2∂∂̄φ, and rewrite the Kähler-Ricci flow

(2) φ̇ = log
ωnφ
ωn0

+ φ− u(z, 0), φ(0) = c0

as a flow of potentials, where c0 is a constant, and for each gk̄j(t), we have defined
the Ricci potential u(z, t) by

(3) Rk̄j − gk̄j = ∂j∂k̄u,

∫
euωnφ =

∫

X

ωnφ ≡ V.

It is well-known that the flow exists for t ∈ [0,∞) [1, 19], so the main issue is its
convergence.

1. Multiplier ideal sheaves

The convergence of the Kähler-Ricci flow admits the following characterization
in terms of multiplier ideal sheaves:

Theorem 1. [10] Let the constant c0 in the equation (2) be chosen to be

(4) c0 =

∫ ∞

0

e−t‖∇φ̇‖2L2dt+
1

V

∫

X

u(z, 0)ωn0 .

(which is a well-defined, finite quantity, independent of the choice of initial condi-
tions for the flow). Then the Kähler-Ricci flow converges if and only if there exists
p > 1 so that

(5) supt≥0

∫

X

e−pφωn0 <∞.

Besides the (unpublished) works of Perelman, the original proof of this theorem
relied heavily on the works of Kolodziej [7]. We note that the characterization given
in Theorem 1 of convergence for the Kähler-Ricci flow is very close to Nadel’s
criterion for the non-existence of Kähler-Einstein metrics [9, 4]. However, it is
more complicated here due the facts that the φ’s are not normalized to satisfy
supXφ = 0, and that the characterization is in terms of a dynamical rather than a
static multiplier ideal sheaf, in Siu’s terminology [17]. A criterion for the Kähler-
Ricci flow idential to Nadel’s can be found in [16]. For an application of Theorem
1 to the convergence of the Kähler-Ricci flow on Del Pezzo surfaces, see Heier [6]
(and also the abstract of his talk at this workshop).

2. The ∂̄ operator on vector fields

Next, we discuss some estimates which hold in all generality for the Kähler-
Ricci flow. They are formulated in terms of the Ricci potential u, the L2 norm of
its gradient

(6) Y (t) =

∫

X

|∇u|2ωnφ
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and the lowest strictly positive eigenvalue λ(t) for the ∂̄ operator on vector fields

(7) λ(t) = infW⊥H0(X,T 1,0)
‖∂̄W‖2
‖W‖2 .

Theorem 2. [11] The following estimates always hold for the Kähler-Ricci flow
on a compact Kähler manifold (X,ω0), ω0 ∈ πc1(X):

(a) ‖R(t)− n‖C0 ≤ C Y (t− 1)
1

2(n+1)

(b) There exists N , ρ0, · · · , ρN > 0, depending on n with 1
2 (ρ0 + · · ·+ ρN ) > 1,

so that

(8) Ẏ (t) ≤ −2λ(t)Y (t) + 2λ(t)Fut(π(∇u)) + C

N∏

j=0

Y (t− j) 1
2 ρj .

where π is the orthogonal projection onto the space of holomorphic vector fields,
and Fut is the Futaki invariant, defined on holomorphic vector fields W by

(9) Fut(W ) =

∫

X

(Wu)ωnφ .

Observe that (a) is a strong smoothing statement, since the left hand side can
be identified with ‖∆u‖C0, and (a) asserts that this quantity can be controlled by
‖∇u‖L2, at the cost of moving a unit back in time. The statement (b) provides a
way to establish the exponential decay of Y (t), when the Futaki invariant vanishes
and the eigenvalues λt are uniformly bounded from below by a positive constant
[11]. This last condition is intimately related to a stability condition introduced
in [14] with respect to the group Diff(X) of diffeomorphism of X , namely that
the closure of the orbit of the complex structure of (X,ω0) under Diff(X) does

not contain any complex structure J̃ with a strictly higher number of independent
holomorphic vector fields.

For applications of Theorem 2 to the Kähler-Ricci flow on manifolds of positive
bisectional curvature, see [12, 2]. A different approach is proposed in [3].

For a generalization of Theorem 2 to the modified Kähler-Ricci flow and solitons,
see [13].

For a very recent different version of (b) of Theorem 2 with a simpler proof, see
[8].
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Gonality, Seshadri numbers and singular potentials

Wing-Keung To

(joint work with Jun-Muk Hwang)

Let X be a compact Riemann surface of genus g ≥ 2. A basic invariant as-
sociated to the hyperbolic geometry of X is its injectivity radius ρX with re-
spect to the hyperbolic metric ds2X . The assignment X → ρX defines a function
ρ : Mg −→ (0,+∞) on the moduli space Mg of compact Riemann surfaces of
genus g. It is known that ρ is a topological Morse function on Mg (see e.g. [S]
where 2ρ is denoted by syst). On the other hand, Mg, as the moduli space of
algebraic curves of genus g, has been studied extensively in the context of alge-
braic geometry. In particular, there are many special algebraic subvarieties and
algebraic stratifications of Mg arising from the theory of algebraic curves, which
provide rich geometry ofMg as an algebraic variety.

The present work [5] reported in this talk is an outgrowth of our attempt to
study the interplay between the hyperbolic geometry and the algebraic geometry
of Riemann surfaces. More specifically, we will investigate the gonality stratifica-
tion of Mg, which is one of the most fundamental stratifications of Mg. Recall
that the gonality δ = δ(X) of X is the minimum of the degrees of non-constant
surjective holomorphic maps from X onto the Riemann sphere P1, and it takes
values between 2 and ⌈ g2⌉+1 (with the lower bound being attained precisely when
X is a hyperelliptic curve). Here ⌈x⌉ denotes the smallest integer ≥ x. Thus the
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values of this algebro-geometric invariant define a stratification of Mg, and it is
well known that for each integer δ satisfying 2 ≤ δ ≤ ⌈ g2⌉ + 1, the stratum with
gonality δ is a non-empty algebraic subvariety in Mg.

To state our result, we denote the geodesic distance function on X with respect
to ds2X by dX(·, ·). For each x ∈ X and R > 0, we denote by B(x,R) := {y ∈
X

∣∣ dX(x, y) < R} the geodesic ball of X centered at x and of radius R. It is
easy to see that for each x ∈ X , there exists a unique local holomorphic isometry
σx : B(x, ρX) −→ B(x, ρX) such that σx(x) = x and dσx

∣∣
TxX

= −Idx, where Idx
is the identity map on TxX . Note that the individual σx’s may be defined on a
possibly bigger domain than B(x, ρX). Next we consider the Cartesian product
X ×X , and denote its diagonal by D := {(x, y) ∈ X ×X

∣∣x = y}. For any given
r > 0, we consider the geodesic tubular neighborhood of D in X × X given by
Wr := {(x, y) ∈ X ×X

∣∣ dX(x, y) < r} ⊃ D. For each x ∈ X , we denote the graph

of σx by Graph(σx) := {(y, σx(y))
∣∣ y ∈ B(x, ρX)} ⊂ X × X . It is easy to see

that D̂(x,x) := Graph(σx) ∩WρX
is a 1-dimensional complex submanifold of WρX

intersecting D only at (x, x), and we call D̂(x,x) the anti-diagonal of WρX
at (x, x).

For a complex analytic subvariety V of an open set in X×X , we simply denote by
Vol (V ) its volume with respect to the product metric on X ×X induced by ds2X .

It is easy to see that for each 0 < r ≤ ρX , the value of Vol (D̂(x,x) ∩Wr) is the

same for all x ∈ D, and we simply denote the common value by Vol (D̂(·,·) ∩Wr).
We denote by KX×X the canonical line bundle on X ×X . The Seshadri number
ǫ(KX×X , D) of KX×X along D is simply given by

ǫ(KX×X , D) := sup{ ǫ ∈ R
∣∣KX×X − ǫD is nef on X ×X}

(see e.g. [8], Remark 5.4.3). Our main result is the following

Theorem 1. ([5]) Let X be a compact Riemann surface of genus ≥ 2.
(i) Then for any real number r satisfying 0 < r ≤ ρX and any purely 1-dimensional
complex analytic subvariety V of the geodesic tubular neighborhood Wr of the di-
agonal D in X ×X, one has

Vol (V ) ≥ 8π sinh2(
r

4
) · (V ·D) = Vol (D̂(·,·) ∩Wr) · (V ·D).

In particular, for each 0 < r ≤ ρX and each value s of V ·D, the above lower bound
is attained by the volume of some (and hence any) V consisting of the intersection
of Wr with the union of s copies of anti-diagonals counting multiplicity.

(ii) As a consequence, for all α ∈ R satisfying 0 ≤ α ≤ 4 sinh2(
ρX
4

), the R-divisor

class KX×X − αD is nef on X ×X; and equivalently, one has

ǫ(KX×X , D) ≥ 4 sinh2(
ρX
4

).

Our approach for obtaining the lower bound for ǫ(KX×X , D) (or more gener-
ally, that for the volumes of complex analytic varieties in X ×X) is adapted from
the authors’ earlier works ([2], [3]) on an analogous problem for the Seshadri num-
ber of the canonical line bundle at a given point for a smooth compact quotient
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Y of a bounded symmetric domain Ω (see also [4]). An essentially new difficulty
in our present situation is that the product metric on X × X does not have a
Kähler potential near D, whereas in [2] and [3], the Bergman kernel function of
Ω descends readily to a local potential for the Kähler metric (induced from the
Bergman metric on Ω) near each point in Y . To overcome this, we introduce
an auxiliary semi-Kähler form which does admit a potential function in geodesic
tubular neighborhoods of D (the choice of the auxiliary semi-Kähler form is es-
sentially unique if optimal result is to be achieved). Thereafter, an analogue of
the argument in [2] and [3] is carried out to modify its potential function into a
singular one with desired pole-order along D. From Theorem 1, one obtains the
following

Corollary 2. ([5]) Let X be a compact Riemann surface of genus g ≥ 2 and of

gonality δ. Then we have ρX ≤ 2 cosh−1
( gδ

g + δ − 1

)
≤ 2 cosh−1 δ.

The special case of Corollary 2 for hyperelliptic Riemann surfaces (i.e. when
δ = 2) also follows from the argument (with minor adaptation) of Katz-Sabourau in
([7], Proof of Proposition 3.6). However, the argument of Katz-Sabourau depends
on the existence of hyperelliptic involutions for such Riemann surfaces, and it does
not appear to generalize readily to the cases when δ > 2. From Corollary 1, one
deduces readily the the following

Corollary 3. ([5]) Let {Xi}∞i=1 be a tower of compact (hyperbolic) Riemann sur-
faces. Then we have δ(Xi) −→∞ as i −→∞.

We remark that with {Xi}∞i=1 as in Corollary 2, a result of Yeung [10] implies
that KXi

is very ample, i.e., δ(Xi) ≥ 3, for all sufficiently large i.

Next we recall from ([8], p. 76) the invariant associated to a compact Riemann
surface X of genus g ≥ 2 given by

t(X) := inf{t > 0
∣∣ t+ 1

2g − 2
KX×X −D is nef on X ×X} =

2g − 2

ǫ(KX×X , D)
− 1,

which is useful in the study of the ample cone over the symmetric product S2X
of X (see e.g. [8], p. 78). It is also known that one always has t(X) ≤ g and
that t(X) ≤ g − 1 if and only if X is non-hyperelliptic (cf. e.g. [8], p. 77]).
Moreover, it follows from a result of Kouvidakis [6] that t(X) ≤ g

[
√
g] for very

general X (see [8], p. 76]), where [x] denotes the greatest integer ≤ x. This upper
bound of t(X) is not known to hold over an open subset ofMg. Nonetheless, by
combining Theorem 1 and the explicit examples of Riemann surfaces constructed
by Buser-Sarnak [1], we have

Corollary 4. ([5]) There exist a constant c > 0, a strictly increasing sequence
of positive integers {gi} and a corresponding sequence of non-empty open subsets

Ui ⊂Mgi
(in the classical topology) such that t(X) ≤ c · g

2
3

i for all X ∈ Ui, i =
1, 2, 3, · · · .
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Seshadri constants and generation of jets

Thomas Bauer

(joint work with Christoph Schulz and Tomasz Szemberg)

Seshadri constants. Consider a smooth projective variety X of dimension n
over C and an ample line bundle L on X . The Seshadri constant of L at a point
x ∈ X is the number

ε(L, x)
def
= max { ε ≥ 0 f∗L− εE nef } ∈ R ,

where f is the blow-up of X at x with exceptional divisor E over x. This invariant,
introduced by Demailly in [6], may be thought of as measuring the local positivity
of L at the point x. One has the two basic estimates

0 < ε(L, x) ≤ n
√
Ln ,

where the first one comes from (the easy part of) Seshadri’s criterion for ampleness,
and the second one from Kleiman’s theorem.

While Seshadri constants were originally introduced in the context of the Fujita
conjecture, they are today viewed as interesting invariants in their own right. The
guiding questions are:

• What geometric information do Seshadri constants encode?
• What upper and lower bounds – or even explicit values – can one find for

surfaces and higher-dimensional varieties?
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Local positivity on abelian varieties. Consider a polarized abelian variety
(X,L) of dimension n. The two basic facts on Seshadri constants, which both
come from homogeneity, are:

• The number ε(L, x) = ε(L) does not depend on the point x ∈ X , and
• one has the lower bound ε(L) ≥ 1.

The author has shown in [1] the lower bound

ε(L) ≥ 1

4
n
√

2Ln

for the very general polarized abelian variety (X,L) of fixed type. For abelian
surfaces of Picard number one, the Seshadri constants can even be explicitly com-
puted by means of a diophantine equation (see [2, Sect. 6]): If L is ample of type
(1, d), then

ε(L) = 2d · k0

ℓ0
=

2d√
2d+ 1

k2
0

,

where (k0, ℓ0) is the minimal solution of Pell’s equation

ℓ2 − 2dk2 = 1 .

Recently, we studied in joint work with Ch. Schulz [3] the case, where X is the
self-product E×E of an elliptic curve. While the product E×E might seem to be
an easy case at first glance, the challenge here is to determine ε(L) explicitly for
all ample line bundles L on X . Note that the ample cone is 4-dimensional or 3-
dimensional, depending on whether E has complex multiplication or not. In [3] we
determine these Seshadri constants, which in effect means that we can explicitly
describe the Seshadri function

Nef(X) −→ R, L 7→ ε(L) .

on the nef cone of X . Interesting features in this situation are: (1) All Seshadri
constants (of integral line bundles) are integers, as they are computed by elliptic
curves, and (2) every elliptic curve “matters”, i.e., for each of the countably many
elliptic curves F ⊂ X there is an ample line bundle L on X such that F computes
the Seshadri constant ε(L). Our methods use some nice geometry of numbers:
To show the existence of the elliptic curves in question amounts to finding lattice
points in suitably small balls.

Generation of jets. One knows from [6, Theorem 6.4] that the Seshadri constant
ε(L, x) of an ample line bundle L at a point x on a smooth projective variety can
be characterized as the rate of growth of the number of jets that the linear series
|kL| generate at x for k ≫ 0: One has

ε(L, x) = lim
k−→∞

s(kL, x)

k
,

where s(kL, x) is the number of jets that |kL| generates at x, i.e. the maximal
integer s such that the evaluation map H0(X, kL) −→ H0(X, kL ⊗ OX/ms+1

x )
is surjective. So, if we knew the sequence of integers (s(kL, x))k (which is a
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rather theoretical possibility), then we could just compute ε(L, x) as the limit of
a sequence. In joint work with T. Szemberg [4] we study the converse question:

Once ε(L, x) is known, what can we say about the sequence of
numbers (s(kL, x))k ?

We consider first Fano varieties, where our results yield a nice characterization of
projective space in terms of Seshadri constants, which also follows from work of
Bonavero, Campana, and Wísniewski [5]:

If X is a Fano variety of dimension n such that ε(−KX , x) = n+1
for some x ∈ X, then X ≃ Pn.

On Fano varieties different from Pn one has ε(−KX , x) ≤ n for all points x (see
[4, Theorem 2]).

Secondly, we study varieties with trivial canonical bundle. If X is such a variety,
n = dim(X), and L ample, then an immediate application of vanishing for big and
nef divisors yields the following estimates:

(a) If ε(L, x) = n
√
Ln and ε(L, x) ∈ Z, then

k · ε(L, x)− (n+ 1) ≤ s(kL, x) ≤ k · ε(L, x) ,
(b) else

⌊k · ε(L, x)⌋ − n ≤ s(kL, x) ≤ ⌊k · ε(L, x)⌋ .
(Here ⌊·⌋ denotes the round-down.) So there are for every k ≥ 1 only n + 2
resp. n + 1 possible values for the number s(kL, x). In concrete situations, we
can provide further restrictions on the possible values: For instance, on smooth
quartic surfaces X ⊂ P3, we have for k ≫ 0 only the two possibilities

s(OX(k), x) = 2k − 3 or s(OX(k), x) = 2k − 2 .

A particularly intriguing example is given by theta functions: Consider a prin-
cipally polarized abelian surface (X,Θ). One knows from [7] that ε(Θ) = 4

3 , so
that there are by (b) for every k only three possible values for the number s(kΘ, x)
of jets that pluri-theta divisors generate. While ε(Θ, x) = ε(Θ) is independent of
the point x, the numbers s(kΘ, x) do depend on x, at least for k = 1 and k = 2.
Here are two open questions, whose answer would be very interesting to know:

• Is s(kΘ, x) independent of x when k ≫ 0 ?
• Is the sequence of numbers s(kΘ, x) (for large k) the same for every prin-

cipally polarized abelian surface (X,Θ) or does it depend on the moduli?
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Seshadri constants and geometry of surfaces

Tomasz Szemberg

(joint work with Thomas Bauer, Andreas Knutsen, Wioletta Syzdek)

Let X be a smooth projective variety and L a nef line bundle on X . Recall that
the number

ε(X,L;x) := inf
L · C

multx C

is the Seshadri constant of L at the point x ∈ X (the infimum being taken over all
irreducible curves C passing through x). The Seshadri constant ε(X) of the variety
X is defined taking the infimum over all points x ∈ X and all ample line bundles L.
It is not known if the Seshadri constant ε(X) is positive in general (this question
was posed by Demailly already in his fundamental paper [3, Question 6.9]). If the
Picard number of the variety is 1, then ε(X) > 0 by the Seshadri criterion for
ampleness and one may ask for some effective estimates. We recall the following
result from [7, Theorem 7].

Theorem 1. Let S be a smooth projective surface with ρ(S) = 1 and let L be an
ample line bundle on S. Then for any point x ∈ S

(S) ε(S,L;x) ≥ 1 if S is not of general type and
(G) ε(S,L;x) ≥ 1

1+ 4
√
K2

S

if S is of general type.

Moreover both bounds are sharp.

For surfaces with arbitrary Picard number we pose the following conjecture.

Conjecture 2. Let S be a minimal surface, L an ample line bundle on S and
x ∈ S an arbitrary point, then

ε(S,L;x) ≥ 1

2 + 4
√
|K2

S |
.

The situation becomes much nicer if one studies very general points instead of
arbitrary. This is due to the fact that Seshadri constants considered as a function of
x are lower semi-continuous in the topology which closed sets are at most countable
unions of Zariski closed sets. In particular there is an open subset in the topology
on which the Seshadri numbers are constant and maximal among values attained
for a fixed L at all points x of X . This maximal value will be denoted by ε(X,L; 1).
For surfaces, we have the following result of Ein and Lazarsfeld [4].

Theorem 3 (Ein-Lazarsfeld). Let X be a smooth projective surface and L a nef
and big line bundle on X. Then

ε(X,L; 1) ≥ 1.
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There are easy examples showing that one cannot get a better lower bound in
general. However, following some ideas of Nakamaye [6] we show that examples of
this kind can be classified.

Theorem 4. Let X be a smooth surface and L an ample line bundle on X. If

ε(X,L; 1) <

√
7

9
·
√
L2 ,

then

(a) either X is fibred by curves computing Seshadri constant of L at their
general points, or

(b) X is a rational surface.

The key ingredient for the proof is the following Lemma, which was proved in
[5] and independently by Bastianelli in [1].

Lemma 5. Let S be a smooth projective surface. Suppose that
CU = {(Cu, xu) | u ∈ U} is a family of pointed curves as above parametrized by
a 2-dimensional subset U ⊂ Hilb(S) and C is a general member of this family. Let

C̃ be its normalization. Then

C2 ≥ m(m− 1) + gon(C̃),

where gon(D) denotes the gonality of a curve D.

As a consequence we get the following strengthening of results in [2, Thms. 2
and 3] characterizing genus 2 fibrations on surfaces of general type.

Corollary 6. Let X be a smooth projective surface such that KX is big and nef.
If K2

X ≥ 5, then either

(a) ε(KX , 1) > 2, or
(b) ε(KX , 1) = 2, and there exists a pencil of curves of genus 2 computing

ε(KX , x) for x very general.

In the opposite direction, if X is a smooth minimal surface of general type such
that there is a genus 2 fibration f : X −→ B over a smooth curve B, then

ε(KX , 1) ≤ 2 ,

and if K2
X ≥ 4, then actually

ε(KX , 1) = 2 .
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Lower bounds for Seshadri constants on CP2 blown up in 10 points

Thomas Eckl

Conjecture 1 (Nagata, [7]). Let p1, . . . , pn be n ≥ 10 points on CP2 in general
position, and let π : X → CP2 be the blow up of these n points. Furthermore, call
H the divisor class of a line on CP2, and denote the exceptional divisor over pi
with Ei. Then the R-divisor

π∗H − ǫ
n∑

i=1

Ei

is nef iff 0 ≤ ǫ ≤ 1√
n
.

Hence 1√
n

is the multi-point Seshadri constant of p1, . . . , pn ∈ CP2, for the line

bundle OP2(1).
It is well known that Nagata’s conjecture can be deduced from another conjecture
on the dimension of linear systems on CP2 (see e.g. [1]):

Conjecture 2 (Harbourne-Gimigliano-Hirschowitz [5, 4, 6]). Let p1, . . . , pn be n
points on CP2 in general position, and let π : X → CP2 be the blow up of these
n points. Furthermore, call H the divisor class of a line on CP2, and denote
the exceptional divisor over pi with Ei. Given a degree d and n multiplicities
m1, . . . ,mn, the linear system |dπ∗H −∑n

i=1miEi| has the expected dimension

max(−1,
d(d+ 3)

2
−

n∑

i=1

mi(mi + 1)

2
)

iff there exists no (−1)-curve C on X such that

C.(dπ∗H −
n∑

i=1

miEi) ≤ −2.

An effective way of this deduction can be given, by restricting the linear systems,
for which the Harbourne-Hirschowitz conjecture must be checked. This uses a new
characterization of multi-point Seshadri constants:

Theorem 3 (Eckl [3]). Let L be an ample on a smooth projective complex surface
X, and p1, . . . , pn ∈ X arbitrary points. Then the multi-point Seshadri constant
of p1, . . . , pn for L equals

sup
k;D1,D2

minj mini=1,2(multxj
Di)

k
,
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where the supremum is taken over all pairs of divisors D1, D2 ∈ |kL| such that
p1, . . . , pn are isolated points in D1 ∩D2.

With this characterization we can show

Theorem 4 (Eckl [3]). Let p1, . . . , pn be n ≥ 10 points on CP2 in general position,
and let π : X → CP2 be the blow up of these n points. If (di,mi), i ∈ N, is a
sequence of integer pairs, such that the linear system |diπ∗H − mi

∑n
j=1 Ej | is

non-empty of expected dimension, and di

mi

i→∞−→ a√
n

then the R-divisor

π∗H − a√
n

n∑

j=1

Ej

is nef on X.

An often used method to study linear systems of the form |dπ∗H −∑n
i=1miEi|

on CP2 blown up in n points is the degeneration method:

Degenerate CP2 blown up in n points into a union of varieties
being the blow up of CP2 in less points (or points in special po-
sition), degenerate the linear system, prove that the degenerate
linear system restricted to each of the components has expected
dimension, try to glue along the intersections, and conclude by
using semi-continuity.

In a recent preprint [2], Ciliberto and Miranda set up an iterative procedure which
improves in each step the bounds obtained from such a degeneration. They start
by blowing up and flopping a (−1)-curve destroying the non-specialty in one of the
degeneration components. Such a curve must exist if we believe in the Harbourne-
Hirschowitz conjecture. Then they twist the line bundle of the complete linear sys-
tem in question appropriately, and continue to work on the flopped degeneration.
The flopping improves the situation on the component with the bad (−1)-curve,
without worsening it on other components in the cases considered by Ciliberto and
Miranda. In this way they obtain the (up to now) best known lower bound 55

174

for the Seshadri constant of 10 points on CP2.
As expected some streamlining of this machinery is achieved by using Theorem 4
from above, because with its help it is not necessary to study all linear systems
|dπ∗H − m

∑10
j=1 Ej | with d

m above a certain bound. Furthermore it may be
more convenient not to work on the complete flops but on the intermediate blow
ups: The flops introduce non-normal components, and to argue on linear systems
restricted to them anyway requires to go back to their normalizations. Finally,
one can use the special position of the points blown up on the components and
uniformly apply the following generalization of a criterion of Harbourne [5], or
variants of it, to obtain non-specialty of linear systems:

Proposition 5. Let p1, . . . , pn be n points on CP2 in general position, and let
π : X → CP2 be the blow up of these n points. Furthermore, let F be a line
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bundle on X such that F is not he pull back of a line bundle on CP2 blown up in
p1, . . . , pn−1.
Suppose that C ⊂ X is a reduced curve with irreducible components C1, . . . , Ck
such that

(KX + C).Ci < F.Ci, i = 1, . . . , k.

Then the linear system of global sections of F is non-special if the linear system
of global sections of F ⊗O(−C) is non-special.
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Invariant multiplier ideal sheaves on Fano surfaces

Gordon Heier

In the seminal paper [3], Nadel introduced the notion of a multiplier ideal subsheaf
of the sheaf of holomorphic functions on a complex manifold. He proved that the
non-existence of certain invariant multiplier ideal sheaves is a sufficient criterion
for the existence of a Kähler-Einstein metric on a given Fano manifold.

In a much more recent development, the paper [4] gave an analogous, but
slightly weaker, sufficient criterion for the convergence of the Kähler-Ricci flow
on a given Fano manifold.

This talk will be about the contents of the papers [1] and [2], whose goal is to
clarify the question to what extent the above-mentioned sufficient criteria can be
used to prove the existence of Kähler-Einstein metrics or the convergence of the
Kähler-Ricci flow on Fano surfaces. The main results are as follows.

Theorem 1. Let X be a Fano surface obtained by blowing up P2 in 3, 4, or 5
points in general position. Then the conditions in Nadel’s sufficient criterion are
satisfied.

Theorem 2. Let X be one of the following Fano surfaces.

(1) P2 blown up in 4 points in general position,
(2) P2 blown up in 5 points in general position with Aut(X) = Z4

2 ⋊ Z4,Z4
2 ⋊

(Z3 ⋊ Z2), or Z4
2 ⋊ (Z5 ⋊ Z2).
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Then the conditions in Phong-Sesum-Sturm’s sufficient criterion are satisfied.

The proofs draw on a variety of techniques from algebraic geometry and group
theory, including the classification of Fano surfaces, cohomology vanishing theo-
rems and the representation theory of finite groups. A sketch of the proofs for the
case of 4 points will be given in the talk. The interested reader can find the exact
nature of the sufficient criteria, all details of the proofs as well as some further
results in [1] and [2].
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Finite generation, non-vanishing etc.

Vladimir Lazić

It has been a main goal of Algebraic Geometry since the work of the Italian school
on surfaces at the turn of the twentieth century to find a meaningful classification
of algebraic varieties, or at least of smooth ones. It has become clear in the 1980s
that the category of non-singular varieties is not large enough, and that certain
mild singularities must be allowed. Even if a variety X is smooth, the notion
of singularities is represented by a presence of a divisor ∆ on X such that the
adjoint bundle KX + ∆ satisfies certain conditions. We call (X,∆) a log pair.
Pairs appear naturally even on surfaces, as a consequence of Kodaira’s bundle
formula. The corresponding classification theory is now known as the Minimal
Model Program, or Mori Theory.

If (X,∆) is a pair, we can associate to it a log canonical ring

R(X,KX + ∆) =
⊕

m∈N

H0
(
X,OX(⌊m(KX + ∆)⌋)

)
,

where ⌊·⌋ denotes the component-wise round-down of a Weil divisor. It is a long
standing conjecture, present in various forms since [8] appeared, that the log canon-
ical ring is finitely generated when singularities are mild. The conjecture has many
important structural consequences for the geometry of X .

The most widely used class is that of kawamata log terminal, or klt, singularities.
Namely, we say that a pair (X,∆) is klt if J (X,∆) = OX , where J (X,∆) is the
corresponding multiplier ideal. Then it was proved in the remarkable paper [1]
that a log canonical ring of a klt pair is finitely generated. The proof therein
uses heavily techniques of the Minimal Model Program, and derives the finite
generation as a standard consequence of the general scheme of the theory.



1130 Oberwolfach Report 21

In my talk I present a new approach to the problem, which avoids completely
Mori theory, and is by induction on the dimension. The natural idea is to pick
a smooth divisor S on X and to restrict the algebra to it. If the restricted al-
gebra is finitely generated we might hope that the generators lift to generators
of R(X,KX + ∆). In order to obtain something meaningful on S, by adjunction
formula S should appear with coefficient 1 in ∆, which needs to be arranged.

However, even if the restricted algebra were finitely generated, the same might
not be obvious for the kernel of the restriction map. So far this seems to have been
the greatest conceptual issue in attempts to prove the finite generation by the plan
just outlined. The idea to resolve the kernel issue is to view R(X,KX + ∆) as
a subalgebra of a larger algebra, which would a priori contain generators of the
kernel. In practice this means that the new algebra will have higher rank grading.

The main result is thus [4], [5]:

Theorem. Let X be a projective variety, and for i = 1, . . . , ℓ let Di = ki(KX +
∆i+A) be an integral divisor on X, where A is an ample Q-divisor and (X,∆i+A)
is a klt pair. Then the graded ring

R(X ;D1, . . . , Dℓ) =
⊕

(m1,...,mℓ)∈Nℓ

H0
(
X,OX(m1D1 + · · ·+mℓDℓ)

)

is finitely generated.

The basic theory of higher rank finite generation is developed in [3] and related
to so-called b-divisors. The technical core of the paper rests on deep extension
theorems developed in [2] which are based on [7], and on techniques from [3]
which are used to prove that certain superlinear functions are piecewise linear.

Parts of the proof involve showing that certain convex sets in the set of divisors
onX are in fact rational polytopes. One of these sets contains divisors ∆ such that,
for a fixed ample divisor A, KX+∆+A is pseudo-effective. Therefore it is natural
to use a characterisation of pseudo-effectivity for such adjoint bundles from [6],
also derived without Mori theory. The result states that if such an adjoint divisor
is pseudo-effective, then in fact there is an effective divisor numerically equivalent
to it. I discuss this and related results also in the talk.
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Generic semi-positivity of cotangent bundles

Thomas Peternell

We fix a projective manifold X of dimension n. The aim of the lecture was to
present and discuss semi-positivity properties of the cotangent bundle of X , the
prototype of these results being Miyaoka’s famous theorem:

The cotangent bundle of a projective manifold is “generically nef” unless the man-
ifold is uniruled.

Our first result is the following sharpening of Miyaoka’s uniruledness criterion:

Theorem 1. Let X be a projective manifold, (Ω1
X)⊗m −→ S a torsion free coherent

quotient for some m ∈ N. Then detS is pseudo-effective if X is not uniruled.

A vector bundle E is generically nef if E|C is nef on the general curve cut out by
very ample linear systems of sufficiently high degree.
A line bundle L is pseudo-effective if c1(L) lies in the closure of the Kähler cone.
To sharpen generic nefness to pseudo-effectivity in the theorem, we use the charac-
terization [1] of pseudo-effective line bundles by moving curves which are images of
very ample curves above by birational morphisms. Our proof here is not entirely
algebro-geometric (Mehta-Ramanathan no longer applies), and rests on analytic
methods. In fact we use the following result due to M. Toma, which in turn is the
key to Theorem 2, a main ingredient in the proof of Theorem 1.

Theorem. Let α be a class in the interior of ME(X) and E and F two α-
polystable locally free sheaves. Then E ⊗ F is again α-polystable.

Recall that ME(X) denotes the movable cone of the n−dimensional projective
manifold X . We say that α ∈ ME(X) is geometric, if there exists a modification

π : X̃ −→ X from the projective manifold X̃ and ample line bundles Hi such that

α = λπ∗(H1 ∩ . . . ∩Hn−1)

with a positive multiple λ. By definition, ME(X) is the closed cone generated by
the geometric classes.
If λ ∈ Q+, we say that α is rational geometric.
If E and F are torsion free sheaves, then we put

E⊗̂F = (E ⊗ F)/tor.

Toma’s result is used to show the following - well-known in case of an ample
polarization.

Theorem 2. Let α ∈ ME(X) be a rational geometric class and let E and F be
α−semi-stable torsion free sheaves on X . Then E⊗̂F is again α−semi-stable.
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An important consequence of Theorem 1 is:

Theorem 3. Let X be a projective manifold. Suppose that ΩpX contains for some
p a subsheaf whose determinant is big (i.e. has Kodaira dimension n = dimX).
Then KX is big, i.e. κ(X) = n.

The uniruledness criterion of Theorem 1 has also other applications, e.g. one can
prove that a variety admitting a section in a tensor power of the tangent bundle
with a zero, must be uniruled.

Theorem 1 is actually a piece in a larger framework. To explain this, we consider
subsheaves F ⊂ ΩpX for some p > 0. Then one can form κ(detF) and take the
supremum over all F . This gives a refined Kodaira dimension κ+(X), introduced
in [2]. Conjecturally

κ+(X) = κ(X) (∗)
unless X is uniruled. Theorem 3 is nothing but this conjecture in case κ+(X) =
dimX.
We prove in [3] the conjecture (*) in several other cases. It is actually a consequence
of the following more general conjecture, which moreover deals only with line
bundles:

Conjecture: Suppose X is a projective manifold, and suppose a decomposition

NKX = A+B

with some positive integer N , an effective divisor A (one may assume A spanned)
and a pseudo-effective line bundle B. Then

κ(X) ≥ κ(A).

The special case A = OX implies that κ(X) ≥ 0 if X is not uniruled, using
the preceeding result, and the pseudo-effectiveness of KX when X is not uniruled
([1]).

In another direction we establish the special case in which B is numerically
trivial:

Theorem 4. Let X be a projective complex manifold, and L ∈ Pic(X) be numer-
ically trivial. Then:

(1) κ(X,KX + L) ≤ κ(X).
(2) If κ(X) = 0, and if κ(X,KX +L) = κ(X), then L is a torsion element in

the group Pic0(X).

In particular, ifmKX is numerically equivalent to an effective divisor, then κ(X) ≥
0.

This result permits, in particular, to handle numerically trivial line bundles in the
study of the conjecture Cn,m on irregular manifolds.
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Another application of Theorem 1 concerns the study of universal covers X̃
of complex projective n-dimensional manifolds X . The Shafarevich conjecture
asserts that X̃ is holomorphically convex, i.e. admits a proper holomorphic map
onto a Stein space. There are two extremal cases:

• either X̃ is compact and so π1(X) is finite or

• X̃ is a modification of a Stein space, hence through the general point of
X̃ there is no positive-dimensional compact subvariety.

This latter case happens in particular for X a modification of an Abelian variety
or a quotient of a bounded domain. It is conjectured (see [5], and [4] for the
Kähler case) that X should then admit a holomorphic submersion onto a variety
of general type with Abelian varieties as fibres, after a suitable finite étale cover
and birational modification. This follows up to dimension 3 from the solutions of
the conjectures of the Minimal Model Program. We prove here a special case and
a weaker statement in every dimension:

Theorem 5. Let X be a normal n-dimensional projective variety with at most
rational singularities.
(1) Suppose that the universal cover of X is not covered by its positive-dimensional
compact subvarieties. Then X is of general type if χ(OX) 6= 0.

(2) If X has at most terminal singularities and X̃ does not contain any compact
subvariety of positive dimension (eg. X is Stein), then either KX is ample, or KX

is nef, Kn
X = 0, and χ(OX) = 0.

This theorem is deduced from Theorem 1 via the comparison theorem [2], which
relates the geometric positivity of subsheaves in the cotangent bundle to the ge-
ometry of X̃ .
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From Multiplier ideals to equicharacteristic étale sheaves

Manuel Blickle

(joint work with Mircea Mustaţǎ)

Building upon the work of the school of tight closure – founded by Hochster and
Huneke in the early nineties – Hara, Yoshida, and Takagi [9, 8] defined generalized
test ideals as a positive characteristic, resolution free variant of multiplier ideals.
A question – trivial for multiplier ideals – whether the jumps (called F-thresholds)
in the resulting filtration are rational and discrete was not answered in the original
treatment. Our goal in this talk is to show how techniques which are at the heart of
proving discreteness [4, 3] are related to the cohomology of p-torsion étale sheaves.
We will illustrate this with an example of Miller [10] who gives a bound on the
Euler characteristic of p-torsion étale sheaves on smooth curves.

When measuring the severity of singularities the standard approach (in charac-
teristic zero) is to use resolution of singularities. As this is not (yet) available in
positive characteristic, one has to resort to alternative methods. The key there is
the classical result of Kunz which states that a local ring is regular if and only if
the pth power map, i.e. the Frobenius, is flat. This suggests that one could use
the failure of the flatness of the Frobenius in the study of singularities.

We let X = SpecR be a regular and F -finite scheme over a field of positive
characteristic. Then the Frobenius acts on the set of ideals of R by sending an
ideal a of R to F (a) = a[p] = R〈rp|r ∈ a〉, the ideal generated by the pth powers
of the elements of a. A key step in the construction of the generalized test ideals
is an inverse of this operation on ideals a 7→ a[p]. This can be described as follows.
Define

a[ 1
p
] = smallest ideal b such that b[p] ⊇ a

There are some other equivalent definitions of a[ 1
p
] and one that is useful for seeing

the relation to multiplier ideals is as follows: Let C : F∗ωX −→ ωX the Cartier
operator, i.e. the trace of the Frobenius under duality of finite morphisms, then

a[ 1
p
]ωX = C(F∗aωX). In any case we define the generalized test ideal

τ(X, at) = (aptpe
q)[

1
pe ] for e≫ 0

For this definition to make sense we observe that the expressions on the right
hand side for increasing e form an increasing sequence of ideals of R, which by
noetherian-ness of R stabilizes.

Suppose a log resolution is available also in positive characteristic, then one
may also use that same definition as in characteristic zero to define a multiplier
ideal J (X, at). The argument in [9] shows in this situation that one always has
an inclusion

τ(X, at) ⊆ J (X, at).

Example 1. For monomial ideals in a polynomial ring [7], or more generally
torus fixed ideals in a toric variety [1] one always has equality. There are some
partial results for bi-nomial ideals by Shibuta and Takagi (cf. Takagi’s talk in this
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workshop). If a is the ideal of the cone over an elliptic curve E then one has
equality for all t if and only if E is ordinary, i.e. dimFp

H1
et(E,Fp) = 1.

In particular it would be of great interest to find similar conditions as the last
one for a more general class of varieties.

Definition 2. We call a number λ ∈ R an F -threshold for (R, a) if for all ǫ > 0
the test ideal τ(R, aλ) 6= τ(R, aλ−ǫ).

The question we want to address is the rationality and discreteness of these
F -thresholds. Note that in the case of the jumping numbers for multiplier ideals
their rationality and discreteness was trivial since everything is determined from
one fixed resolution. However in the definition of the F -thresholds, one has a priori
infinitely many conditions to check.

Theorem 3 ([4],[3]). Let R be a regular and F -finite and a an ideal of R. In each
of the following situations

(1) R is essentially of finite type over a field
(2) a = (f) is a principal ideal

are the F -thresholds a discrete set of rational numbers.

The key point in proving this statement is to show that a certain descending
chain stabilizes (this leads to discreteness which then easily implies rationality).
If we consider the case of a principal ideal the descending chain which needs to
stabilize in order that the number a

q−1 for q = pe is not an accumulation point

of F -thresholds is obtained as follows: Consider the map γ : M0 = R
r 7→fa⊗rq

−−−−−−−→
F e∗R = F e∗M0. Observe that the smallest R submodule M1 of M0 such that

γ(M0) ⊆ F e∗M1 is equal to τ(R, fa/q) = (fa)[
1
q
]. Iterating this construction

we observe that Mi = τ(R, fa(1+q+...+q
i−1)/qi

) = (fa(1+q+...+q
i−1))

[ 1

qi ]
. Since the

exponents in this sequence of test ideals converges to a/(q − 1), the stabilization
of this sequence is equivalent to a/(q − 1) not being an accumulation point of
F -thresholds. There are several different ways one can proof the stabilization of
this descending chain. In [2] this appears as a by-product of a much more general
result on the existence of so-called minimal γ-modules.

To see how this relates to the cohomology of p-torsion étale sheaves we consider
the case of a smooth, projective curve C. In characteristic zero (or for coeffi-
cients with torsion not divisible by p) the Grothendieck-Ogg-Shafarevich formula
expresses the Euler characteristic of a constructible étale sheaf N in terms of the
genus g of the curve, the generic rank of N , and some purely local terms. In the
case that N is a constructible sheaf of Fp vector-spaces one cannot hope for an
exact expression like this (because of non-ordinaryness as in the example of elliptic
curves). However, suppose that N = MF = {m ∈ M |F (m) = m} arises as the
fixed points of a coherent CC -module M with a Frobenius action, Pink [11] ob-
served that one obtains always a lower bound (this comes from the Artin-Schreier
sequence):

χ(C,N) ≥ χ(C,M) = (1− g) rankN+ degM
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By work of Emerton and Kisin [6] or Böckle and Pink [5] such M always exists.
Miller [10] observed that (the dual of) the minimal γ-module alluded to above is of
maximal degree among such, and hence yields the best possible bound. Further-
more, it is canonically attached to N and thus can be used to obtain new coherent
invariants for the constructible sheaf N .
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Computations of log canonical thresholds

Shunsuke Takagi

(joint work with Takafumi Shibuta)

Several approaches to log canonical thresholds are known to exist. In this note,
we will explain how to compute log canonical thresholds using characteristic p
techniques.

Definition 1. Let X be a nonsingular algebraic variety over a field of character-
istic zero, a ⊆ OX be an ideal sheaf of X and x ∈ X be a point lying in the zero
locus of a. Fix a log resolution π : Y −→ X of a where aOY = OY (−F ). Write

F =

r∑

i=1

aiEi, KY/X =

r∑

i=1

kiEi.

The log canonical threshold of a at x ∈ X is defined to be

lctx(a) = min{(ki + 1)/ai | x ∈ π(Ei)}
(when x is not contained in the zero locus of a, we put lctx(a) =∞). The definition
of lctx(a) is independent of the choice of the log resolution π.
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Since the log canonical threshold is defined via a log resolution, it is difficult to
compute it. A notable exception is the case of monomial ideals.

Proposition 2 ([2, Example 5]). Let a = (xc1 , . . . , xcs) be a monomial ideal of the
polynomial ring k[x1, . . . , xn] over a field k and P (a) ⊆ Rd be the Newton polytope
of a. Then

lct0(a) = sup{t ∈ R+ | 1 ∈ t · P (a)}

= max

{
s∑

i=1

λi

∣∣∣∣∣

s∑

i=1

cijλi ≤ 1 for all 1 ≤ j ≤ n, λi ∈ Q≥0

}
,

where ci = (ci1, . . . , cin) for all i = 1, . . . , s.

Watanabe and the author introduced in [4] a characteristic p > 0 analogue of
log canonical thresholds.

Definition 3 ([4, Definition 2.1]). Let (R,m) be a regular local ring of character-
istic p > 0, then for each e ∈ N, we set νa(p

e) to be the largest nonnegative integer
r such that ar is not contained in m[pe] := (ap

e |a ∈ m). Then the F-pure threshold
of a is defined to be

fpt(a) = lim
e−→∞

νa(p
e)

pe
.

Let A be the localization of Z at some nonzero integer a. We fix a nonzero ideal
a of the polynomial ring A[x1, . . . , xn] such that a ⊆ (x1, . . . , xn). Let aQ := a ·
Q[x1, . . . , xn] and ap := a·Fp[x1, . . . , xn](x1,...,xn), where p is a prime number which
does not divide a and Fp := Z/pZ. We call the pair (Fp[x1, . . . , xn](x1,...,xn), ap)
the reduction of (Q[x1, . . . , xn], aQ) to characteristic p.

Hara and Yoshida discovered a connection between log canonical thresholds and
F-pure thresholds.

Theorem 4 ([1]). Let the notation be as above.

(1) If p≫ 0, then fpt(ap) ≤ lct0(aQ).
(2) lct0(aQ) = limp−→∞ fpt(ap).

Using this theorem, we obtain the following main technical result.

Proposition 5 ([3, Proposition 2.1]). Let S := k[x1, . . . , xn] be the n-dimensional
polynomial ring over a field k of characteristic zero. Let a = (f1, . . . , fr) be an
ideal of S generated by binomials fi = xai − γixbi , where ai = (ai1, . . . , ain),bi =
(bi1, . . . , bin) ∈ Zn≥0 \ {0} and γi ∈ k∗ for all i = 1, . . . , r. Put

A :=




a11 . . . ar1 b11 . . . br1
...

. . .
...

...
. . .

...
a1n . . . arn b1n . . . brn
1 0 1 0

. . .
. . .

0 1 0 1




∈MZ(n+ r, 2r),
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and consider the following linear programming problem:

Maximize:
r∑

i=1

(µi + νi),

Subject to: A (µ1, . . . , µr, ν1, . . . , νr)
T ≤ 1, µi, νi ∈ Q≥0.

Suppose that there exists an optimal solution (µ, ν) = (µ1, . . . , µr, ν1, . . . , νr) such
that A (µ, ν)T 6= A (µ′, ν′)T for all other optimal solutions (µ′, ν′) 6= (µ, ν). Then
the log canonical threshold lct0(a) is equal to its optimal value

∑r
i=1(µi + νi).

We use the above proposition to generalize Howald’s result to the case of bino-
mial ideals.

Theorem 6 ([3, Theorem 0.1]). Let k be a field of characteristic zero and let
a = (f1, . . . , fr) ⊆ (x1, . . . , xn) be an ideal of k[x1, . . . , xn] generated by binomials

fi = xai1
1 · · ·xain

n −γixbi1
1 · · ·xbin

n , where aij , bij ∈ Z≥0 and γi ∈ k for all i = 1, . . . , r
and j = 1, . . . , n. Suppose that a contains no monomials and, in addition, that
one of the following conditions is satisfied:

(1) f1, . . . , fr form a regular sequence for k[x1, . . . , xn],
(2) f1, . . . , fr form the canonical system of generators of the defining ideal of

a monomial curve in A3
k (in this case, r ≤ 3).

Then the log canonical threshold lct0(a) of a at the origin is equal to

max

{ r∑

i=1

(µi + νi)

∣∣∣∣
r∑

i=1

(aijµi + bijνi) ≤ 1 for all 1 ≤ j ≤ n, µi + νi ≤ 1, µi, νi ∈ Q≥0

}
.

Example 7. (1) Let a = (x4
1−x2x

2
3, x

4
2−x3

1x3, x
3
3−x1x

3
2) be the defining ideal

of the monomial curve Spec k[t9, t10, t13] in A3
k. Then

(µ1, µ2, µ3, ν1, ν2, ν3) = (5/24, 0, 0, 1/2, 0, 1/6)

is an optimal solution of the linear programming problem in Theorem 6.
Thus, lct0(a) = 5/24 + 0 + 0 + 1/2 + 0 + 1/6 = 7/8.

(2) Let a = (x3
1−x2

4, x
2
2−x1x4, x

2
3−x2x4) be the defining ideal of the monomial

curve Spec k[t8, t10, t11, t12] in A4
k. Then

(µ1, µ2, µ3, ν1, ν2, ν3) = (1/9, 1/3, 1/2, 0, 2/3, 1/3)

is an optimal solution of the linear programming problem in Theorem 6.
Thus, lct0(a) = 1/9 + 1/3 + 1/2 + 0 + 2/3 + 1/3 = 35/18.

(3) Let a = (x5
1 − x2x

2
4, x

7
2 − x4

3x4, x
3
3 − x1x

2
4, x

7
4 − x3

1x
6
2x

2
3, x

4
1x

6
2 − x3x

5
4) be the

defining ideal of the monomial curve Spec k[t53, t63, t85, t101] in A4
k. Then

a does not satisfy the assumption in Theorem 6, but we can still apply
Proposition 5 to this situation. It is easy to check that

(µ1, µ2, µ3, µ4, µ5, ν1, ν2, ν3, ν4, ν5) = (1/5, 1/14, 1/3, 0, 0, 1/2, 0, 0, 0, 0)
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is an optimal solution of the linear programming problem in Proposition
5 and, in addition, this solution satisfies the assumption in Proposition 5.
Thus, lct0(a) = 1/5 + 1/14 + 1/3 + 0 + 0 + 1/2 + 0 + 0 + 0 + 0 = 116/105.

Question 8. Let a ⊆ k[x1, . . . , xn] be a binomial ideal which contains no mono-
mials and let f1, . . . , fr be a system of minimal binomial generators for a. Then
do f1, . . . , fr satisfy the assumption in Proposition 5? We don’t know any coun-
terexample for the moment.
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Okounkov bodies on low-dimensional varieties

Alex Küronya

(joint work with Catriona Maclean)

In his influential articles [6] and [7], Okounkov explains how to associate a convex
body ∆(D) ⊆ Rn to an ample divisor D on an n-dimensional smooth variety X
equipped with a complete flag of subvarieties Yn−1 ⊃ Yn−2 . . . ⊃ Y0. The convex
body ∆(D) then encodes a lot of information on the asymptotic behaviour of
the complete linear system |D|. In their excellent survey article [5] Lazarsfeld and
Mustaţă extend Okounkov’s construction to big divisors, which we now summarize,
and prove various properties of these convex bodies.

For simplicity, start with a projective variety of dimension n defined over an
uncountable algebraically closed field of arbitrary characteristic. Certainly no
harm is done if we assume that we work over the complex numbers. Fix a complete
flag

X = Y0 ⊃ Y1 ⊃ . . . ⊃ Yn−1 ⊃ Yn = pt

with Yi being a smooth irreducible subvariety of codimension i in X . For a given
big divisor D the choice of the flag determines a valuation-like function

νY•,D : H0(X,OX(D)) \ {0} −→ Zn

s 7→ ν(s)
def
= (ν1(s), . . . , νn(s))

where the values of the νi(s)’s are defined in the following manner. We set

ν1(s)
def
= ordY1(s) .
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Dividing s by a local equation of Y1, we obtain a section s̃1 ∈ H0(X,D− ν1(s)Y1)
not vanishing identically along Y1. This way, upon restricting to Y1, we arrive at
a non-zero section

s1 ∈ H0(Y1, (D − ν1(s)Y1)|Y1) .

Then we set

ν2(s)
def
= ordY2(s1) .

Continuing in this fashion, we can define all the integers νi(s). The image of
the function νY•,D in Zn is denoted by v(D). With this in hand, we define the
Okounkov body of D with respect to the flag Y• to be

∆Y•
(D)

def
= the convex hull of

∞⋃

m=1

1

m
· v(mD) ⊆ Rn .

Remark. The construction is most likely familiar to some extent from the theory of
toric varieties. This is no coincidence, since when taking a torus-invariant complete
flag, the rational polytope PD commonly associated to a torus-invariant big divisor
D will be a translate of ∆(D).

To see a very simple example of this phenomenon, take Pn with a complete
flag of linear subspaces. Then the function ν on the sections of O(1) gives the
lexicographic order; the Okounkov body of a divisor in O(1) is an n-dimensional
simplex.

One of the illustrations of the new theory in [5] is the case of surfaces, where
they give an explicit description ∆(D). Here Zariski decomposition of divisors
provides a tool sufficiently strong for making such a concrete description possible.
A complete flag on the surface S consists of a smooth curve C on S, and a point
x on C.

Given a surface S equipped with a flag (C, x) and a Q-divisor D, Lazarsfeld
and Mustaţă define real numbers ν and µ by setting

ν = the coefficient of C in the negative part of the Zariski decomposition of D

µ = sup{t|D − tC is big } .
Equivalently, ν is the minimal real number for which C is not in the support of
the negative part of the Zariski decomposition of D − νC. As it turns out, the
Okounkov body of D ’lives’ over the interval [ν, µ] described by two functions, α(t)
and β(t) as follows. Let Nt be the negative part of the Zariski decomposition of
D−tC and set Pt = D−tC−Nt. Note that although Pt is nef, it is not necessarily
effective, though it is linearly equivalent to an effective divisor for all t with D−tC
effective. By setting

α(t) = ordx(Nt|C), β(t) = ordx(Nt|C) + Pt · C .

Lazarsfeld and Mustaţă prove the following theorem: the Okounkov body ∆(D)
is given by the inequalities

∆(D) = {(t, y) ∈ R2|ν ≤ t ≤ µ, α(t) ≤ y ≤ β(t)} .
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As a consequence of [1], it is observed in particular that α and β are both
piecewise linear and rational on any interval [ν, µ′] where µ′ < µ.

The first result we intend to present is a sharpening of the Lazarsfeld–Mustaţă
statement for surfaces. We also give a complete characterization of the rational
convex polygons which can appear as Okounkov bodies of surfaces. More precisely,
we prove the following.

Theorem. The Okounkov body of a big divisor D on a smooth projective surface
S is a convex polygon with rational slopes.

A rational polygon ∆ ⊆ R2 is up to translation the Okounkov body ∆(D) of a
divisor D on some smooth projective surface S equipped with a complete flag (C, x)
if and only if the following set of conditions is met.

There exists a rational number µ > 0, and α, β piecewise linear functions on
[0, µ] such that

(1) α ≤ β,
(2) β is a convex function,
(3) α is increasing, concave and α(0) = 0;

moreover
∆ =

{
(t, y) ∈ R2 | 0 ≤ t ≤ µ, α(t) ≤ y ≤ β(t)

}
.

It is in general quite difficult to say anything specific about asymptotic invari-
ants of divisors on higher-dimensional varieties. In particular, there is little in the
way of regularity that we can expect. It is established in [5] building on a clas-
sical example of Cutkosky [3], that there exist big divisors on higher-dimensional
varieties with non-polyhedral Okounkov bodies.

Fano varieties, however, enjoy many favourable properties, which guarantee
that all previously known asymptotic invariants behave in a ’rational polyhedral
way’ on them. Hence, one could hope that Okounkov bodies associated to divisors
on Fano varieties turn out to be rational polytopes. This however is not the case,
as the following example will show.

Theorem. There exists a Fano threefold X equipped with a flag X = Y0 ⊃ Y1 ⊃
Y1 ⊃ Y2 ⊃ Y3 such that for almost any ample divisor D on X, the Okounkov body
of D with respect to the flag Y• is not a polyhedron.

Our example is heavily based on a work of Cutkosky [2], where he produces
a quartic surface S ⊆ P3 such that the nef and effective cones of S coincide and
are round. The Néron-Severi space N1(S) is isomorphic to R3 with the lattice Z3

and the intersection form q(x, y, z) = 4x2− 4y2− 4z2. In particular he shows that
the divisor class (1, 0, 0) on S corresponds to a very ample divisor class [L] and
the projective embedding corresponding to L realizes S as a quartic surface in P3.
We obtain our Fano threefold by blowing up P3 along an irreducible curve of class
(1, 0, 0).
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Automorphism groups of invariant domains in the complexification of

isotropy irreducible homogeneous spaces

Xiang-Yu Zhou

Let K be a connected compact Lie group and L be a closed subgroup of K, KC

and LC be (universal) complexifications of K and L, then X = K/L is a compact
homogenous space and XC = KC/LC is a homogeneous Stein manifold which is
a complexification of X . Without loss of generality, we may assume that K acts
effectively on X = K/L. There is a natural holomorphic action of KC on XC given
by the left translation. Let D ⊂ XC be a K-invariant domain, where a domain
means a connected open set.

In the present talk, we present some background and an outline proof of the
following theorem.

Theorem. Let K/L be an isotropy irreducible homogeneous spaces (except a
couple of cases). Then Aut(D)0 = K.

Corollary. When (K,L) is a symmetric pair, then Aut(D)0 = K.

Definition. A homogeneous space K/L is said to be isotropy irreducible if the
isotropy (which is just adjoint) representation of L is irreducible on the vector space
k/ l, where k and l are Lie algebras of K and L; K/L is said to be strongly isotropy
irreducible if the isotropy (adjoint) representation of the identity component L0

of L is irreducible on the vector space k/ l.
Example. Irreducible Riemannian symmetric spaces are strongly isotropy irre-

ducible.

Isotropy irreducible homogeneous spaces are classified, and the isometry groups
of the spaces are explicitly given and just equal to K for effective action of K
except a couple of cases, see [10, 9]. Isotropy irreducible homogeneous space is an
important class of homogeneous Einstein manifold. It’s also close to representa-
tion theory.
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The above theorem extends the well-known result on Reinhardt domain. Let
D ⊂⊂ (C∗)n be a Reinhardt domain. It’s well-known that Aut(D) is compact and
the identity component Aut(D)0 of Aut(D) is exactly Tn, see [2], [1], [5], [7].

In [13], Zhou proved the following result.
Theorem ([13]). Let D ⊂⊂ KC/LC be a K-invariant domain, then Aut(D) is

compact.
Under a more assumption that (K,L) is a symmetric pair, the result is due to

Fels and Geati [4].

The proof of the above theorem is to relate the automorphism groups to the
isometric groups of some K-orbit via several reduction steps. In the steps, a result
of Zhou’s about the univalence of the envelope of holomorphy of invariant domains
plays a key role.

Theorem ([12]). Let M be a Stein manifold, KC holomorphically act on M .
Let D ⊂ M be a K-invariant orbit connected domain. Then the envelope of
holomorphy E(D) of D is schlicht and orbit convex if and only if the envelope of
holomorphy E(KC ·D) of KC ·D is schlicht. Furthermore, in this case, E(KC ·D) =
KC · E(D).

This result unifies and extends many known results. In particular, we have the
following theorem.

Theorem ([12]). Let K be a connected compact Lie group and L be a closed
subgroup of K. If L is connected, then any K-invariant domain D in XC = KC/LC

has schlicht envelope of holomorphy.
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Vanishing periods in complex geometry

Daniel Barlet

We begin to introduce the subject by considering a proper holomorphic function
f : X −→ D on a complex manifold of dimension n+ 1 such that

{df = 0} ⊂ {f = 0}.
For ω a smooth (p + 1)-differential form on X such that dω = 0 and df ∧ ω = 0

and for an horizontal family of p-cycles in the fibers of f , (γs)s∈ eD∗
, where D̃∗ is

the universal cover of the punctured disc D∗ := D\{0}, we define

ϕ(s) :=

∫

γs

ω/df

which is a multivalued holomorphic function on D∗. It admits a finite expansion
near s = 0

ϕ(s) =
∑

α∈Q,j∈[0,n]

cα,j(s).s
α−1.(log s)j

where cα,j ∈ O(D). This type of function describes the way a ”period” vanishes
in such a degenerating family of compact comex manifolds (Xs)s∈D, where we set
Xs := f−1(s).

We introduce in general (without assuming that f is proper), the complex

(k̃er df•, d•) on X and we show that there exists natural operations a := ×f and
b := df∧d−1 on the cohomology sheaves of this complex satisfying the commutation
relation

(@) ab− ba = b2.

We define the (non commutative) C-algebra

Ã :=





∑

ν≥0

bν .Pν(a)





where Pν ∈ C[x] for each ν ≥ 0, with the commutation relation (@).
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Theorem 1. (see [1]) For any non constant holomorphic function f : X −→ D on

a complex manifold X, there exists a natural complex of sheaves of left Ã-modules

which is canonically quasi-isomorphic to the complex (k̃er df•, d•), such that the

left Ã-module structure on its cohomology sheaves coincides with the operations a
and b defined above.

Of course this result impies that all natural operations on the complex of sheaves

(k̃er df•, d•) will be compatible with the left Ã-structure on cohomology.

Theorem 2. (see [2]) Assuimg f proper, for each i ≥ 0 the hypercohomology

Hi(K, (k̃er df•, d•)) is a left Ã-module with the following properties:

(1) The b-torsion is a finite dimensional C-vector space.
(2) The quotient Hi/(b-torsion) is a geometric (a, b)-module.

Recall that an (a, b)-module is a left Ã-module E which is free of finite type

on C[[b]] ⊂ Ã. It is called regular when its saturation

E# :=
∑

j≥0

(b−1.a)j .E ⊂ E[b−1]

is again of finite type on C[[b]].
It is called geometric when moreover any root of its Bernstein polynomial BE
which is the minimal polynomial of the action of b−1.a on E#/b.E# is in Q−∗.

The notion of geometric (a, b)-module is a ”generalisation” of the classical no-
tion of ”Brieskorn module” for a holomorphic function with an isolated singularity.
The geometric condition encodes the regularity theorem for the Gauss-Manin con-
nection, the Monodromy theorem and the ”positivity theorem” for characteristic
exponents of B. Malgrange.

In a second part we explain how the study of the ”monogenetic” (a, b)-module

Ã.x, for x a given element of a regular (a, b)-module, gives much more precise infor-
mation on the ”asymptotics” of x (think that x = ϕ(s) :=

∫
γs
ω/df for [ω] ∈ Hp+1

as above). We give two structure theorems for such ”monogenetic” (a, b)-modules
and we show that the Bernstein polynomial of such a regular (a, b)-module is rather
simple to compute ion such a case. In fact, it coincides with the characteristic ply-
nomial of b−1.a action on E#/b.E# in this case, so it has nice functorial behaviour.
We conclude with an explicit computation of an example making obvious that this
approach gives much precise results than the classical computations.
For detail see [3].
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Non-algebraicity criterion for foliations of general type

Jun-Muk Hwang

(joint work with Eckart Viehweg)

This is a report on my joint-work [1] with Eckart Viehweg. Let X be a complex
projective manifold. By a rank-1 foliation F on X , we mean a line subbundle
F ⊂ TX of the tangent bundle of X . Throughout, we will consider only rank-1
foliation and omit the term ‘rank 1’ from now on. The dual bundle F∗, equipped
with the natural quotient map Ω1

X −→ F∗ will be called the canonical bundle of
the foliation and will be denoted by K. The foliation is said to be of general type
if its canonical bundle K = F∗ is big. The kernel of the quotient map Ω1

X −→ K is
called the conormal bundle of the foliation and will be denoted by Q, i.e.,

0 −→ Q −→ Ω1
X −→ K −→ 0.

Given a foliationF , one fundamental question is whether the leaves are algebraic
curves. If all leaves are algebraic curves, we will say that the foliation is algebraic.
Our main result is the following non-algebraicity criterion.

Non-algebraicity Theorem Let X be a projective manifold and F ⊂ TX be
a foliation of general type. If F is algebraic, then the Iitaka dimension κ(detQ)
of the determinant of the conormal bundle is equal to dimX − 1.

The essence of the proof is the following structure theorem for algebraic folia-

tions. Denote by f : C −→M[N ]
g be the universal family of curves of genus g with

level N -structure for some integer N ≥ 3 and denote by ωf the relative dualizing
sheaf.

Structure Theorem For an algebraic foliation

0 −→ Q −→ Ω1
X −→ K −→ 0

with leaves of genus > 1 on a projective manifold X and given N ≥ 3, there is a
diagram

C η←− V
σ−→ X

f ↓ ♠ f ↓ ↓
M[N ]

g
ϕ←− W −→ ChowX

where

(1) V,W are projective manifolds,
(2) σ is surjective and generically finite,
(3) ♠ is a fiber product,
(4) σ∗K = η∗ωf and f∗Ω1

W ⊂ σ∗Q.

In fact, the bigness of σ∗K shows that η is generically finite over its image.
Hence ϕ is generically finite over its image and ϕ∗Ω1

M[N ]
g

−→ Ω1
W is generically

surjective. Now it is well-known that Ω1

M[N ]
g

is ample (see e.g. [3]). Thus detΩ1
W
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is big on W . It follows that κ(detQ) = dimW = dimX − 1. Thus Structure
Theorem implies Non-algebraicity Theorem.

The proof of Structure Theorem uses the classical Reeb Stability Theorem for
foliations (see e.g. [2]).

One application of Non-algebraicity Theorem is the following. Let (M,ω) be
a projective symplectic manifold. Given a non-singular hypersurface X ⊂ M ,
the restriction of the symplectic form ω on the tangent space of X at each point
x ∈ X has 1-dimensional kernel, defining a foliation on X , which we will call the
characteristic foliation of X induced by ω.

Theorem on Characteristic Foliations Let M be a non-singular projective
variety of dimension ≥ 4 with a symplectic form ω. Let X ⊂M be a non-singular
hypersurface of general type. Then the characteristic foliation on X induced by ω
cannot be algebraic.

In fact, for the characteristic foliation on X , K is exactly the canonical bundle
of X . Thus the characteristic foliation is of general type. Moreover, the symplectic
form ω induces a symplectic form on the conormal bundle Q, which implies that
detQ is trivial. Thus κ(detQ) 6= dimX − 1 and the foliation cannot be algebraic
by Non-algebraicity Theorem.

One particular case of Theorem on Characteristic Foliations is worth noting:

Corollary Let A = C2n/Λ be an even-dimensional principally polarized abelian
variety with smooth theta divisor. Fix any linear coordinate (p1, . . . , pn, q1, . . . , qn)
on C2n and let θ(p1, . . . , pn, q1, . . . , qn) be the Riemann theta function associated
to the period Λ. For a very general (i.e. outside a countable union of proper subva-
rieties) point (a1, . . . , an, b1, . . . , bn) on the theta divisor, the solution (pi(t), qi(t))
of the Hamiltonian flow

dpi
dt

= − ∂θ
∂qi

,
dqi
dt

=
∂θ

∂pi
, i = 1, . . . , n

with initial value pi(0) = ai, qi(0) = bi, i = 1, . . . , n, cannot have the locus of an
algebraic curve on A.
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A restriction theorem for positive characteristic analogues of

multiplier ideals in arbitrary codimension

Karl Schwede

For the past 30 years, people have been aware of connections between singularities
defined by the Frobenius action in characteristic p > 0 and singularities defined
by a resolution of singularities in characteristic zero. For example, the multiplier
ideal J (X,∆, at) after reduction to characteristic p≫ 0, is equal to the test ideal
τ(Xp,∆p, a

t
p), see [10], [17], [6], [8] and [18]. These relationships are summarized

in the diagram below.

Log Terminal
��

+ Gor.

qy %-
+3

��

Rational

��

rz $,
F -Regular

��

+ Gor.

+3

��

F -Rational

��
Log Canonical +3

em

+normal

W_

+ Gor. & normal

Du Boisdl F -Pure +3
V^

+ Gor.

F -Injective

Multiplier ideals ks +3 Test ideals

LC Centers +3 F -pure centers

The relations between the diagram’s left-hand-side (characteristic zero) and its
right-hand-side (characteristic p > 0) were worked on by many people; for example,
see [3], [4], [16], [7], [5], [11], [17], [8] [6], [1], [20], [19], [13], [12], [14]. One should
note that the arrow linking F -pure and log canonical singularities (respectively, F -
injective and Du Bois singularities) only goes one way. In these cases, the converse
direction (ie, a log canonical singularity is F -pure after reduction to characteristic
p > 0 for infinitely many p) is open.

We discuss now log canonical centers and their characteristic p > 0 analogues.
Consider a pair (X,∆) where X is normal and quasi-projective over C and ∆ is
an effective Q-divisor. A subvariety W ⊂ X is called a log canonical center of

(X,∆) if there exists some proper birational map π : X̃ → X with X̃ normal and

a divisor Ei ⊂ X̃ such that π(Ei) = W and ai ≤ −1, here ai is the discrepancy of
Ei for the pair (X,∆). An alternate characterization of a log canonical center is
the following:

• for every ǫ > 0 and every effective Cartier divisor G passing through ηW ,
the generic point of W , the pair (X,∆+ ǫG) does NOT have log canonical
singularities at ηW .

One can use this description of a log canonical center to create a characteristic
p > 0 analogue (simply replace the words “log canonical” with “F -pure”, wherever
they appear).
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There is another (very useful) way to think about these F -pure centers however.
First we discuss a positive characteristic interpretation of pairs (X,∆) such that
KX + ∆ is Q-Cartier. In particular, there is a bijection of sets:
{

Effective Q-divisors ∆ such
that (pe − 1)(KX + ∆) is Cartier

}
↔

{
Line bundles L and non-zero
elements of HomOX

(F e∗L ,OX)

}/
∼

Where the equivalence relation on the right identifies two maps if they agree up to
pre-multiplication by a unit of H0(X,OX). Also note that if ∆ is a Q-divisor such
that KX + ∆ is Q-Cartier with index not divisible by p, then there exists some
e > 0 such that (pe − 1)(KX + ∆) is Cartier. In the above correspondence, L is
OX((1 − pe)(KX + ∆)). The correspondence then follows from the isomorphism
F e∗OX((pe−1)∆) ∼= H omOX

(F e∗OX((1−pe)(KX+∆)),OX) (due to Grothendieck
duality for a finite morphism, see [9]). See [15] for more details.

One can then show the following:

Proposition 1. [14], [15] Suppose that ∆ is a Q-divisor on X such that KX + ∆
is Q-Cartier with index not divisible by p > 0. Set φ∆ : F e∗L → OX to be a
morphism corresponding to ∆ (via the above correspondence). Then W ⊂ X is an
F -pure center of (X,∆) if and only if φ∆(F e∗ (IWL )) ⊆ IW (here IW is the ideal
sheaf corresponding to W ).

Using this characterization, one can prove the following result.

Theorem. [15] Suppose that X is an integral normal F -finite noetherian scheme
essentially of finite type over a field of characteristic p > 0. Further suppose that
∆ is an effective Q-divisor on X such that KX + ∆ is Q-Cartier with index not
divisible by p. Let W ⊆ X be an closed subscheme that satisfies the following
properties:

(a) W is integral and normal.
(b) (X,∆) is F -pure at the generic point of W .
(c) W is a center of F -purity for (X,∆).

Then there exists a canonically determined effective divisor ∆W on W satisfying
the following properties:

(i) (KW + ∆W ) ∼Q (KX + ∆)|W , furthermore if (pe− 1)(KX + ∆) is Cartier
then (pe − 1)(KW + ∆W ) is also Cartier.

(ii) (X,∆) is sharply F -pure near W if and only if (W,∆W ) is sharply F -pure.
(iii) W is minimal among centers of sharp F -purity for (X,∆), with respect

to containment of topological spaces if and only if (W,∆W ) is strongly
F -regular.

(iv) For any ideal sheaf a which doesn’t vanish on W , there is a naturally
defined ideal sheaf τb(X,* W ; ∆, at), which philosophically corresponds
to an analogue of an adjoint ideal in arbitrary codimension, such that
τ(X,* W ; ∆, at)|W = τ(W ; ∆W , a

t), “the test ideal of (R,∆, at)”.

Using (iv) combined with Fedder’s criterion, [3], and using the technique of [2],
one can then prove the following.
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Theorem. [Blickle, –, Takagi, Zhang] Suppose that X is a normal variety and ∆
is a divisor on X such that KX +∆ is Q-Cartier with index not divisible by p > 0.
Suppose further that a is an ideal sheaf on X. Then the F -jumping numbers of
τ(X,∆, at) are a discrete set of rational numbers.
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Mild singularities

Sándor J Kovács

Classification of algebraic varieties is one of the most fundamental questions in
algebraic geometry. It is far from being completed, but we have a relatively detailed
plan on how to proceed.

First, one obtains a canonical model in order to find a natural polarization on a
birational model of the given variety. This is usually done via the Minimal Model
Program, first producing a minimal model and then its canonical model using base
point freeness. There have been spectacular advances in this theory recently, the
main example being [1]. There are other approaches to constructing the canonical
model, e.g., [3], but in any case the purpose of this note is to discuss something
else, so I will leave it to the reader to explore the details.

Once the canonical model is found, it may be embedded into a projective space
via some power of the canonical bundle. The necessary power only depends on the
Hilbert polynomial due to Matsusaka’s Big Theorem [4, 5, 6]. Then the moduli
space is constructed by taking a quotient of an appropriate subscheme of the
corresponding Hilbert scheme.

One may consider the produced moduli space and the procedure to determine
the moduli point of any given variety the answer to the classification problem.
The moduli space is, in some sense, a (non-discrete) “list” of preferred models in
a class of varieties one aims to classify.

A major technical difficulty arises from the fact that the canonical model of
a smooth projective variety is usually singular. But even if one restricted to
the study of smooth models, a meaningful theory should include information on
degenerations. In other words, one would like to obtain a compact moduli space.
In this case there is no way out; one must work with singular spaces.

Fortunately, the singularities that are necessary to consider can be controlled
and stay relatively “mild”. Nevertheless, it makes the treatment technical and to
some extent perhaps even threatening for a newcomer.

The main purpose of this talk was to discuss some of the singularities that occur
in this program, their relationships and significance. One of the main applications
discussed was the following joint result with János Kollár proved in [2]:

Theorem 1. Let φ : X −→ B be a flat projective morphism such that all fibers
are log canonical. Then the cohomology sheaves hi(ω

q

φ ) are flat over B, where ω
q

φ

denotes the relative dualizing complex of φ.

Corollary 2. Under the same hypethesis, assume that one of the fibers of φ is
Cohen-Macaulay. Then so are all the fibers.
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