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Introduction by the Organisers

The workshop Mathematical Biology, organized by Emmanuele
DiBenedetto (Nashville), Benoit Perthame (Paris), and Angela Stevens (Heidel-
berg) was held May 3rd - May 9th, 2009. The Oberwolfach Institute was nearly
fully occupied. Especially many young scientists took part in the meeting. Exper-
imentalists, mathematical biologists, and mathematicians contributed to the lively
discussions during the workshop.

The first day was devoted to presentations by experimentalists and by mathe-
maticians, who closely collaborate with experimentalists.
Experiments for cell-cell signaling and chemotactic movement during the develop-
mental life-cycle of the model organism Dictyostelium discoideum were discussed
and during gastrulation of chicken embryos. Further, three-dimensional in vitro
tissue spheroids as bio-medical model systems for real-time testing of active phar-
maceutical ingredients were presented. Next, mathematical models for cell motility
and self-organization, robustness of pattern formation during development, struc-
tured population models for stem cell renewal and differentiation, chemical kinetic
models for the lac and the tryptophan operon, and models for the self assembly of
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biomembranes were addressed.

Tuesday morning was devoted to multiscale models for tissue growth and tissue
mechanics, as well as the mechanics of cell migration. In the afternoon stage struc-
tured population models for Leukemia were discussed, the effects of intracellular
noise on quorum sensing, and an overview over cell-based morphogenetic models
was given.

Since mathematical modeling of chemotaxis is a very fast developing field with
still a number of mathematical challenges, a full morning session was dedicated to
this topic. Models for multi-species chemotaxis, measure valued solutions for the
classical Keller-Segel model and the continuation of solutions beyond blow-up were
addressed, as well as pattern formation for chemotaxis models with non-diffusive
memory. In this context also a kinetic model for swarming was presented.

The Thursday session mainly dealt with structured population models in a va-
riety of contexts and related delay equations, which again was the topic of the very
last presentation of the workshop. Thus these talks connected back to the ear-
lier presentations on mathematical models for stem cells and leukemia. Further,
during the day, examples for model supported data analysis were given, models
which describe motor proteins moving along molecular filaments, numerical mod-
els for tumor growth, and a mathematical analysis of the random reorientation
and movement of Azospirillum brasilense was presented.

The last day was devoted to to traveling waves in population dynamics. and
deterministic and stochastic aspects of recombination.

Overall the workshop addressed mathematically challenging topics in the life-
sciences, like age/stage structured population models, chemotaxis, and bio-mechanical
models, as well as bio-medical experiments of actual interest. It was a pleasure
for us to organize this workshop, and we are very grateful for the professional and
very kind support of the Oberwolfach team before and during our stay at MFO.
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András Czirók (joint with András Szabó)
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Matthias Röger (joint with Mark A. Peletier)
A mesoscale shape energy for biomembranes . . . . . . . . . . . . . . . . . . . . . . . . 1318

Anna Marciniak-Czochra
Mathematical models of stem cells renewal and differentiation . . . . . . . . . 1320

Michael C. Mackey (joint with D. Horike, M. Santillán, N. Yildirim & E.
S. Zeron)
Understanding Bacterial Operon Dynamics: Insight from Mathematical
Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1323

Maria Neuss-Radu (joint with Willi Jäger, Andro Mikelić)
Modeling and analysis for the interaction of flow, chemical reactions, and
mechanics in cell tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1325

Giovanni Naldi (joint with Giacomo Aletti, Paola Causin)
Axon growth in neural development: a multiscale problem . . . . . . . . . . . . . 1328

Davide Ambrosi
The mechanics of cell migration: inverse and direct problem . . . . . . . . . . 1331

Marie Doumic Jauffret (joint with Peter Kim and Benôıt Perthame)
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Abstracts

Analysis of cell-cell signalling and chemotactic movement during
Dictyostelium development and chick gastrulation

Cornelis J. Weijer

We investigate the molecular mechanisms by which cells produce and detect
chemotactic signals and translate this information in directed coordinated move-
ment up or down chemical gradients. We study these questions in two different
experimental systems, the social amoebae Dictyostelium discoideu, and during
gastrulation in the chick embryo.

In Dictyostelium starvation for food induces the aggregation of thousands of
individual amoebae into a multi-cellular aggregate. During aggregation the cells
differentiate into a number of distinct celltypes, which form a migrating slug that
transforms into a fruiting body consisting of a stalk supporting a mass of spores.
The chemotactic aggregation of the cells is controlled by propagating waves of
cyclic-AMP emanating periodically form aggregation centres. Experiments show
that also in the multicellular stages the migration of the cells is controlled by prop-
agating waves of cAMP and that the interaction between wave propagation and
chemotaxis is sufficient to explain the principles of Dictyostelium morphogenesis.
We are analysing the in-vivo spatio-temporal dynamics of the signaltransduction
processes leading to polarised activation of the actin-myosin cytoskeleton. We
make extensive use of quantitative imaging techniques to measure signal trans-
duction dynamics during chemotactic cell movement of isolated cells as well as in
individual cells in multicellular tissues ([6]; [7]; [8]). We monitor the organisation,
dynamics and force generation of the cytoskeleton that results in movement using
TIRF and traction force microscopy. We have developed continuous and discrete
mathematical models to investigate the relation ship between signalling and cell
movement to understand the dynamical interactions that govern the morphogen-
esis of this organism ([11]; [12]).

We are also interested in understanding how cell movement is controlled during
the embryonic development of higher organisms, especially amniotes. Gastrulation
is one of the key phases of the development of higher animals. It starts with the
induction of the mesendoderm followed by movements of the epiblast to from the
streak and ingression of the mesendoderm. It is not yet firmly established what
controls the movement of the cells during this process. We investigate the role
of chemotaxis in the control of gastrulation movements. During gastrulation the
mesoderm and endoderm precursor cells move into the embryo to take up their
correct topological positions. We have tracked the in-vivo migration of mesoderm
cells, expressing fluorescent proteins, during gastrulation in the chick embryo and
shown that their movement is controlled by a combined action of chemo-attractants
and repellents belonging to the FGF, VEGF, PDGF and Wnt families ([1]; [9];
[13]; [14]). We have proposed that Fgf8 acts as a repellent for cells leaving the
streak([13]). The mechanism through which this repulsion works has so far been
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difficult to resolve experimentally. More recently Wnt 3, strongly expressed in
the streak has been shown to act as a strong repellent for cardiac precursor cells,
some of the first cells to ingress through the streak ([14]). Therefore it seems
likely that Fgf8 and Wnt3 act in concert to guide cells away from the streak. Fgf4
acts as a potent attractant for mesoderm cells and since it is secreted by cells
in the forming head-process it appears likely that this results in the migration of
cells back towards the central midline. FgfR1 and FgfR3 receptors are expressed
initially in the epiblast and subsequently in the migrating mesoderm. Migration
of the cells out of the posterior streak appears to require the expression of VegfR2
and the cells migrate in response to VegfA expressed in the overlying epiblast.
Inhibition of this receptor or depletion of its ligands results in complete inhibition
of migration of the posterior streak cells (Yang, Chuai and Weijer, submitted).
After migrating in the extra embryonic are these cells then aggregate to form blood
islands that form the precursors of the vasculature. This process is controlled by
expression of VegfA in the migrating cells, which is detected by VegfR2. We are
now interested in trying to understand how cells detect these factors and translate
this information to result in cell movement and how the signalling and movement
are integrated to result in gastrulation.

The first sign of gastrulation is the formation of the primitive streak. The prim-
itive streak, the site of invagination of the mesendoderm, forms at the posterior
site of the embryo and extends in anterior direction until it covers about 80% of
the epiblast. We have visualised the cell movement patterns occurring in the ep-
ithelial sheet of the epiblast during the formation of the primitive streak ([4]; [5]).
Streak formation appears to involve to large scale counter rotating cell flows that
merge at the site of streak formation. The flow patterns closely resemble a Stokes
flow in a fluid in a bounded circular domain ([2]). Mechanisms underlying streak
formation proposed so far involve oriented cell divisions driving elongation of the
streak, cell-cell intercalation in the posterior streak, chemotaxis in response to a
combination of repulsive and attractive signals and passive displacement of cells
on a deformable matrix Our current hypothesis is that formation of the primitive
streak also involves a combination of chemo-attractants and repellents ([2]; ([3]).
We are currently testing this hypothesis both experimentally and through detailed
computer simulations using a subcellular element model that is able to precisely
model the rheological properties of cells and tissues ([10]).
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3D in vitro tissue models and bioelectronic life-cell monitoring for cell
and tissue fingerprints: Basic data for mathematical modeling

Andrea Anneliese Robitzki

(joint work with Heinz-Georg Jahnke, Oliver Pänke)

Simulation of impedance spectra for 3D in vitro tissue models or spheres with dif-
ferent diameters and extracellular volume fractions 1. Impedimetric measurement
and modeling of 3D in vitro tumour models Multicellular tumour spheroids that
mimic a native cellular environment are widely used as model systems for test-
ing of active pharmaceutical ingredients. To study effect of drugs on 3D spheres
in real-time we designed and fabricated a novel type of 3D microcavity array for
fast, non-destructive impedance spectroscopy and extracellular recording. Spheres
are trapped between four gold electrodes. Fifteen individual 100 µm deep micro-
cavities with sizes from 200 to 400 µm allow an optimal positioning during the
measurement. Although the programmed cell death so-called apoptosis can be in-
duced in mamma carcinoma and /or human melanoma spheres by camptothecin.
Melanoma spheres do not show disintegration but displayed increased impedance
magnitudes compared to untreated controls. The silicon-based electrode array can
be used for the monitoring of any kind of 3D in vitro cell cultures. Since no ad-
herence of cells or labelling is necessary the multifunctional sensor chip provides
a basis for delivering basic data which can be used for mathematical modeling
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and/or simulation of biophysical impedance spectra. A combination and corre-
lation of laser scanning fluorescent microscopical images and bioelectronic finger-
prints of each sphere model might improve the situation for modeling living cells
and tissues [1, 2, 3].

Following the basic principle of data acquisition and processing each measure-
ment starts with the recording of a reference spectrum with one pair of uncovered
opposite electrodes. Then spectra for spheres covered electrodes are recorded.
For data interpretation the most characteristic frequency (peak) can be deter-
mined. Subsequently the normalized impedance at this frequency is calculated as
∆Z = (|Z|covered − |Z|uncovered)/|Z|uncovered. The most significant changes
in electrode impedance occur in a range from 10 kHz to 1 MHz, when biological
objects (3D spheres) are positioned between two electrodes [4].

The aim of e.g. an anticancer therapy is to inhibit tumour growth and tumour
cell cycle progression and therefore, proliferation and initiation of apoptosis. Each
of these desired effects of e.g. chemotherapeutics leads to a decrease of Rext.
Rext depends on the conductivity of the interstitial, the size of the sphere and the
volume fraction i. d. ratio of the volume of cells in relation to the volume of the 3D
in vitro tissue model. A suppression of cellular proliferation leads to a stop of tissue
growth which than shows lower absolute extra-cellular resistances Rext than it is
measured in larger, growing spheres. Induction of the programmed cell death i.d.
apoptosis results in secondary necrosis indicated by the lysis of apoptotic bodies.
Finally the volume fraction of such a 3D in vitro tissue decreases. The lower the
volume fraction of the in vitro tissue the lower is Rext. In this case the change
of the conductivity of the interstitial caused by changes of the concentration and
mobility of ions can be neglected [4, 5].

For visualization of changes in diameter and intracellular volume fraction of
spheres, monitored by impedance spectra, these impedance spectra can be calcu-
lated for different equivalent circuit models. Equivalent circuit models of spheres
are set up for the following cases (i) small volume (V), high intracellular volume
fraction (F), (ii) large V, high F, (iii) small V, small F and (iv) small V, large F.
The parameters for case (a) are fixed. Since small and large spheres show the same
cross sectional area in a 3D biochip and its cavity or capillary, the models for large
3D in vitro tissue models are composed of a series connection of two models for
small spheres. The smaller volume fraction can be modeled by smaller value for
Rext,sf and Cmem,sf and higher value for Rint,sf compared with Rext,hf , Cmem,hf ,
and Rint,hf. To clarify the problem, the values for Rext,sf and Rext,hf were chosen
so, that where f is the frequency and Za, Zc, Zd are the total impedances of the
circuit models described above.

At low frequencies the total impedances of the equivalent circuit models are
similar to the total extracellular resistances and at high frequencies similar to the
parallel connections of the total intracellular and the total extracellular resistances.
Therefore, some models reflect similar impedances at low frequencies (below the β-
dispersion) but different impedances at high frequencies (above the β-dispersion).
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The impedances of models are different at low frequencies but similar at high
frequencies.

2. An impedimetric microelectrode-based monitoring for label-free detection
of tau hyperphosphorylation in human neuroblastoma cells For monitoring the
modification of the Tau protein in Morbus Alzheimer brain slices and based on
our findings and with regard to absence of neurofilament L alterations in okadaic
acid treated neuroblasoma cells, we conclude that the observed impedimetric phe-
notype most likely reflects tau hyperphosphorylation induced pathological events.
These aspects are tau accumulation and, potentially, early stages of cytotoxicity
as well as tau aggregation. Effects of a potential Tau kinase inhibitor SRN-003-
556 and okadaic acid mediating hyperphosporylation of Tau on seal resistance and
membrane capacity could be documented. For calculating cell dependent parame-
ters a simplified equivalent circuit model was used. The values for the parameters
of CPEEl and RMEA were obtained from measured |Z|Eland PhiEl of electrodes
without cells and cell dependent parameters. RSeal and CMem were obtained
from measured |Z|Cell and PhiCell of electrodes with cells. Measured values of
neuroblaszoma cells treated either with okadaic acid, SRN-003-556 alone, or both,
SRN and okadaic acid for 10 h were analysed. Okadaic acid treated cell cultures
gradually decreased the relative RSeal with significant changes after 3, 5 and 10
h. When neuroblastoma cultures were pre-incubated with SRN-003-556 before
okadaic acid was applied RSeal values were not significantly changed after 3 h,
slightly increased after 5 h and decreased after 10 h. In contrast, for okadaic acid
treated cultures relative CMem values were increased after 5 and 10 h and whereas
SRN-003-556 pre-incubated cultures only show an increase after 10 h [6].
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Collective cell motility and self-organized sprout formation

András Czirók

(joint work with András Szabó)

Cell motility and its guidance through cell-cell contacts is a poorly understood,
but fundamental process during vasculogenesis and several other morphogenic pro-
cesses. Here we discuss two related problems: (i) how spontaneously polarized
cells, i.e., cells that maintain their migratory direction in time, move in high den-
sity cultures [1], and (ii) how tissue cells can organize into expanding multicellular
sprouts [2].

Self-organized flow patterns in monolayer cultures. Cell monolayers can
exhibit self-organized flow patterns that are different both from a long-range or-
dered state where all cells move in similar directions, and from a disordered state
where cells move diffusively and correlations decay rapidly both in space and time.
Instead, an intriguing streaming behavior is observed. We distinguish two types
of collective cell motility: endothelial cells behave more like a self-propelled liquid,
characterized by quick separation of adjacent cells (mixing) and flows consisting of
vortices and shear-lines separating domains moving in opposite directions. MDCK
cells resemble an elastic solid, where cell-cell contacts are maintained longer, shear
is diminished and an oscillatory movement is observed.

To better understand the emergence of collective flow patterns in cell mono-
layers, we studied a modified cellular Potts model (CPM), an often used way
to deal with movements of close packed cells [3]. The main advantage of the
CPM approach is that cell shape is explicitly represented, thus the simulation can
resolve cell intercalation, an important mode of configuration rearrangement in
high-density monolayers. To obtain a biologically plausible, yet simple model, we
consider cell polarity (a self-propulsion direction persisting in time) and its deter-
mination by past cell movements in addition to the surface tension-like cell-cell
adhesion and cell compressibility.

In the CPM lattice sites are labeled, and cells are represented as simple con-
nected domains, i.e., a set of adjacent lattice sites sharing the same label σ, equal
to the cell index i (0 < i ≤ N). Cell movement is resulted by a series of elemen-
tary steps. Each step is an attempt to copy the label value from a random lattice
site a to an adjacent site b. If the domains remain simply connected, thus cells
do not break apart or form holes, the probability assignment rule ensures (i) the
maintenance of a target cell size, (ii) adhesion of cells and (iii) active cell motion:

(1) ln p(a→ b) = min[0,−∆H(a→ b) + w(a → b)],

where w is a bias responsible for the dynamics and H is a goal function to be
minimzed:

(2) H = −
∑

〈x,x′〉

J(σx, σx′) + λ

N∑

k=1

δA2
k.
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The first term in Eq. (2) enumerates cell boundary lengths. The summation goes
over adjacent lattice sites, and J(i, j) = α, for i, j > 0, i 6= j and zero otherwise.
The second term in Eq. (2) is responsible to maintain a preferred cell area: for
each cell k the deviation of its area from a pre-set value is denoted by δAk.

Cellular self-propulsion was introduced through the cell polarity vector pk,
which represent the preferred direction of movement [4], and set w according to

(3) w(a→ b) = P
N∑

k=1

pk
|pk|

∆xk(a→ b),

where P is a weight factor, and ∆xk is the displacement of the center of cell
k, resulted by the elementary step considered. Motivated by statistical analysis
of single cell motility data [5], polarity is determined as a memory of past cell
displacements:

(4) pk(t) =

∞∑

τ=0

h(τ)∆xk(t− τ),

where h(τ) is a memory kernel. Therefore, we assume a positive feedback loop
involving cell movement and polarity.

Numerical simulations reveal that the propulsion term readily generates a self-
propelled ”fluid” or ”solid” states with meandering streams containing several
(10-20) cells [1]. The model can also exhibit a long-range ordered phase, when due
to the boundary conditions all cells participate in a single, system-wide rotational
movement. This state is reached by increasing either the compressibility, λ−1, P
or the duration of the memory h. By decreasing these parameters a completely
disordered state is reached, when no streams are formed and there is no persistent
motility. The main factor influencing the lateral size of the streams is λ.

Multicellular sprouts. During the formation of embryonic vasculature multi-
cellular sprouts invade rapidly into avascular areas, eventually creating an inter-
connected network pattern. Sprout elongation, in turn, depends on a continuous
supply of endothelial cells, streaming along the sprout towards its tip [6]. As long-
term videomicroscopy of in vitro cell cultures reveal, many cell lines such as C6
gliomas, or 3T3 fibroblasts form multicellular linear arrangements in vitro, similar
to the multicellular vasculogenic sprouts [2]. Close contact with elongated cells
enhances and guides cell motility. Time-lapse microscopic records reveal that cells
intensively move towards and within extending sprouts. After the sprouts became
wider, cell motility diminishes again.

To explain these phenomena, we suggest that the surface of elongated cells are
more attractive adhesion targets than the surfaces of well-spread, isotropic cells.
The cell biological basis for such a preference is not yet known. We speculate that
cells in elongated structures are under mechanical tension, and strained cells can
have a stiffer cytoskeleton. Cells are able to respond to variations in extracellular
matrix stiffness, and an analogous mechanotaxis utilizing cell-cell contacts is also
feasible. For example, VE-cadherin, a major cell-cell adhesion receptor of vascular
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endothelial cells, was recently shown to be incorporated in cell surface mechano-
sensing complexes.

To formulate and test the hypothesis that multicellular patterning is resulted
by cell-guided motility, we modified the above described CPM. As we do not deal
with a monolayer, we distinguish between cell free areas (σ = 0) and domains
belonging to cells (σ > 0), i.e., χ = Supp(σ). The J(i, j) interaction term, for
i 6= j, is thus given as

(5) J(i, j) =

{
α, for i, j > 0

β, for i = 0 or j = 0.

The parameter β/α specifies the preference of cell-cell connections over cell-medium
boundaries. For β > α or β < α cell-medium boundaries are preferred or penal-
ized, respectively.

The bias w(a → b) represents a tendency to contact elongated cells:

(6) w(a → b) ∼ [χ(a) − χ(b)]
∑

c
σc /∈{0,σa,σb}

θσc .

The χ(a) − χ(b) expression ensures that only cells (and not the medium) exhibit
the preference. Furthermore, if site b is occupied by a cell (χ(b) = 1) then no other
cell (χ(a) = 1) has an advantage to occupy that adhesion site. The summation in
Eq. 6 goes over only those neighbor sites of b that belong to cells other than σa
and σb. The measure of anisotropy for cell i is θi, obtained from the inertia tensor
of the lattice domain representing the cell as θi = (µi/νi)

1/2 − 1, where µi ≥ νi
are the two eigenvalues of the inertia tensor.

For certain parameter values the model indeed exhibits sprouting behavior,
reminiscent of those observed in experiments. After the initial bud appears, the
leading – elongated – cells attract other cells from the pool at the base of the
sprout. Cells consisting the sprout continue to migrate until they connect to
another cluster of cells. At that point the branch is established and becomes
stable. Due to the effective surface tension present in the system, branches can
also break up resulting in a coarsening effect. If sprouting takes place, then after
an initial transient regime the balance of surface tension driven coarsening and the
growth of new branches results in a quasi stationary state.
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Robustness of Pattern Formation in Development

Hans G. Othmer and David Umulis

In many developing organisms and tissues, the processes of pattern formation,
growth and morphogenetic movements, are strongly buffered against perturbations
such as changes in the ambient temperature or the loss of one copy of a gene,
and the question is what mechanisms confer such resilience. We address this
question in the specific context of scale-invariance: whether, and if so how, different
size embryos lead to normally-proportioned adults. At one extreme is mosaic
development in which removal of a part of a developing embryo at one stage results
in the absence of that part, or parts that develop from it, in later stages. On the
other hand, many systems show a high degree of regulation, particularly at early
stages of development, and such regulation is usually described as robustness, in
that the system can tolerate a certain class of perturbations.

To understand what we mean mathematically by robustness of a model, consider
the dynamical system

(1)
dx

dt
= F (x, p, S(t)) x(0) = x0

Three classes of ‘perturbations’ lead to three types of ‘insensitivity’ or ‘robustness’.
are as follows.

(1) Insensitivity with respect to inputs, by which we mean that in the long
run the system ignores a certain class of inputs. This type of robustness
is a characteristic of systems that adapt to constant signals, such as the
signal transduction system in E. coli.

(2) Insensitivity with respect to changes in the vector field, i.e., the function F
in 1. This is captured in the notion of coarseness or structural stability: a
vectorfield is structurally stable if its associated flow is orbit equivalent to
the flow generated by any vectorfield in a sufficiently small neighborhood in
a suitable topology. This is the broadest definition, for it includes changes
in F itself, but it is a strictly local (in a suitable topology) result, except
for linear vector fields.

(3) Insensitivity with respect to changes in parameters. Strictly speaking this
is a subset of (2), but is often considered by itself.

In this report we focus only on pattern formation, which involves the spatio-
temporal control of gene expression by chemical substances called morphogens.
A first step is to decide what characteristic of the dynamics is being tested for
robustness, and in the context of spatial pattern formation, it is often a measure
of the size of the system that is of interest with respect to robustness. Most de-
velopment involves evolution from one pattern to another, and the antecedent of
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the current stage provides what is called a prepattern for this stage. To under-
stand how scaling enters in the simplest context, suppose that a single morphogen
is produced at the boundary of a one-dimensional system, diffuses through the
region, and decays via a first-order reaction. In dimensionless form the governing
equations for the morphogen concentration c are

d2c

dξ2
= λ2c for ξ ∈ (0, 1)

−dc
dξ

= J at ξ = 0
dc

dξ
= 0 at ξ = 1,

where ξ = x/L, λ2 ≡ κL2/D, J = jL/D, and κ,D, and j are the first-order decay
rate, the diffusion coefficient, and the input flux, respectively. The solution is

c(ξ) =
J

λ

[
eλ(2−ξ) + eλξ

e2λ − 1

]
≡ J

λ
φ(ξ) =

j√
κD

φ(ξ).

Thus the stationary distribution is characterized by the dimensionless parameter
λ, which is the ratio of a diffusion time scale τD ≡ L2/D and a kinetic time scale
τK ≡ κ−1, and by a dimensional parameter that is the ratio of the input flux j to
a characteristic velocity defined by the diffusion constant and the decay rate. The
former determines how rapidly the morphogen concentration decays in space: the
larger λ, the more rapidly the solution decays from its value at the source. If the
input flux j is fixed, both the amplitude and the shape of the solution depend on
L, and thus this simple mechanism is not robust under substantial variations in
the length of a developing system.

To see how a patterning system based on reaction and diffusion can give rise to
scale-invariant patterns, consider the following system. Let M denote the concen-
tration of the morphogen and let C denote the concentration of a control species.
Suppose that they react and diffuse in the region Ω according to the following
equations.

∂M

∂t
= ∇ · (D(C)∇M) + κ(C)R(M) in Ω

∂C

∂t
= Dc∇2C +R in Ω

with homogeneous Neumann data on M and homogeneous Dirichlet data on C.
As indicated, either or both of the diffusion coefficient and the characteristic ki-
netic time scale of the morphogen can be modulated by the control species [2].
In effect, the former changes the underlying space metric by changing the diffu-
sion coefficient, and the latter changes the time scale by modulating the reaction
rates. If only diffusion is modulated then the diffusion coefficients must scale as
L2, which in effect changes the metric, since the level sets of the control species
provide a measure of distance from the boundary. If the kinetic scale factor κ
is modulated then it must scale as L−2 to produce scale-invariant steady-state
morphogen distributions. In the former case the time-scale for development is also
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invariant, but in the latter it varies with L. The question is whether any known
systems use some combination of these forms.

The common fruit fly Drosophila melanogaster has served as a model system
for studies of genetics and pattern formation for the past century, and substantial
progress in elucidating mechanisms of morphogen-mediated patterning has been
made in recent years. Scale-invariance of morphogen patterning has been docu-
mented for two pathways: Anterior/Posterior (A/P) patterning of the embryonic
axis by Bicoid protein [3, 4] and A/P patterning of wing imaginal discs by BMPs
[6]. The range of lengths for which scale-invariance has been observed can be very
large. For example, in Bicoid-mediated patterning, embryonic lengths between
species of Diptera vary by five-fold [3], yet the spatial distribution of Bicoid scales
appropriately. While the molecular mechanisms of embryonic and wing disc pat-
terning are very distinct, the physics governing morphogen gradient formation are
very similar at a coarse level. Both pathways are examples of source, diffusion,
trapping (SDT) mechanisms and theoretical analysis demonstrates how a simple
SDT mechanism can lead to scaling of the kinetics by L−2 [5]. Additional anal-
ysis of the SDT mechanism suggests that under certain conditions, changing the
number of traps can also lead to invariance of the time-scale for development by
modulation of the effective diffusion coefficient in proportion to L2 [7]. According
to analysis of the SDT model, scale-invariance can be automatically achieved if
patterning occurs in a two-dimensional layer at the surface of the embryo, and if
the total number of nuclei or binding sites is the same across species at similar
stages. It has been shown experimentally that the condition on the number of
nuclei holds [3].
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A mesoscale shape energy for biomembranes

Matthias Röger

(joint work with Mark A. Peletier)

In this talk we discuss a mesoscale model for the self-assembling of amphiphilic
molecules into thin bilayer structures. We propose an energy on a microscopic
scale and pass to a mesoscale description on the level of densities of polar and
nonpolar particles. To make a connection with well-known shape energies we pass
with the mesoscale energy to a macroscopic limit.

1. Motivation. Phosphilipids are an example of amphiphilic molecules, having a
polar head group and two hydrphobic tails. These lipids self-assemble – without
forming chemical bonds – to remarkably stable bilayer structures that are the main
building block of cell membranes.

Macroscopic models for the shape of such membranes or artificial vesicles con-
sider these as closed, smooth, and boundaryless surfaces and prescribe an energy
of the form

E(S) =

∫

S

k1(H −H0)
2 + k2K dH2.(1)

Here k1 > 0 and k2, H0 are constants, H and K are the (scalar) total and Gaussian
curvature, and H2 is the two-dimensional Hausdorff measure. Whereas such mod-
els have been quite successful in describing the variety of vesicle shapes they can-
not serve as an explanation of the self-assembling and the preference for uniformly
thin and closed structures. Our goal is a mesoscopic model that demonstrates this
preferences and that allows to compare the distinct contributions to the energy,
induced by the resistance against stretching, fracture, and bending. We aim at a
model that is as simple as possible but still keeps the essence of the amphiphilic
behaviour.

2. Derivation of the mesoscopic energy. At a microscopic level we idealize
lipid molecules as a tail bead and a head bead connected by a spring. We con-
sider configurations of N lipid molecules given by the positions Xt

i ∈ R
3 of tails

and Xh
i ∈ R

3 of heads, i = 1, ..., N . We then define an energy E(Ψ) on dis-
tribution functions Ψ(X), X =

(
(Xt

1, X
h
1 ), ..., (Xt

N , X
h
N )
)

that give the probabil-
ity to observe a certain configuration. E(Ψ) consists of a part that describes a
spring energy for each single molecule and an interaction part that models the
hydrophilic-hydrophobic repulsion:

Emicro(Ψ) =

N∑

i=1

∫
h
(
|Xt

i −Xh
i |
)
Ψ(X) dX + Eint(Ψ),

where h : R → R describes the actual choice of spring energy.
To pass to a mesoscopic description we associate to a given distribution function

Ψ density functions ̺t(Ψ), ̺h(Ψ) of tail and head particles and derive an energy
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for a given pair of density functions (rt, rh),

Emeso(rt, rh) = inf
{
Emicro(Ψ) : ̺t(Ψ) = rt, ̺h(Ψ) = rh

}
.(2)

One important simplifying assumption in our approach is that the interaction part
of the microscopic energy only depends on the associated densities,

Eint(Ψ) =

∫

R3

∫

R3

(1 − ̺t(Ψ)(x))̺t(Ψ)(y)κ(|x− y|) dxdy,

where κ is a fixed interaction kernel and where by an incompressibility assumption
1 − ̺t(Ψ) represents the portion of polar (head or water) particles.

It turns out that the inf in (2) is in fact attained and that any minimizer is
of the form Ψ(X) = ΠN

i=1ψ(Xt
i , X

h
i ) with a common distribution function ψ on

R
3×R

3. The single molecule part of the microscale energy leads on the mesoscale
to a contribution in form of a Wasserstein distance between the tail- and head
densities. The energy depends on the total particle number N , which we consider

to be large. We introduce ε := N− 1
2 , choose a constant M > 0, and fix the total

mass of tail and head particles to NM . We then consider the class of rescaled
density functions of tail and head particles,

K̃ε =
{

(uε, vε) : uε, vε : R
n → R, 0 ≤ uε + vε ≤ ε−1,

∫
uε =

∫
vε = M.

}

The mesoscale energy per particle is then for (uε, vε) ∈ K̃ε given by

F̃ε(uε, vε) = dh,ε
(
uε, vε

)
+

∫

R6

(
1 − εuε(x)

)
εuε(y)ε

−n+1κ
(x− y

ε

)
dxdy.(3)

Here the first term on the right-hand side describes a Wasserstein-type distance
term

dh,ε
(
uε, vε

)
= inf

ψ

{∫

R6

h
( |x− y|

ε

)
ψ(x, y) dxdy

}
,

where ψ is constrained to

uε(x) =

∫
ψ(x, y) dy, vε(y) =

∫
ψ(x, y) dx.

3. Mathematical analysis. To understand the behaviour of the mesoscale en-
ergy and to allow for a rigorous mathematical analysis we do some further simplifi-
cations: We choose for the spring energy h(r) = r, restrict to two space dimensions
n = 2, and replace the nonlocal repulsion energy, i.e. the second term in (3), by
a local interfacial energy. This leads to a set of admissable density functions

Kε =
{
(uε, vε) : uε, vε : R

n → {0, ε−1}, uεvε = 0,

∫
uε =

∫
vε = M

}

and a mesoscale energy

Fε(uε, vε) =
1

ε
d1

(
uε, vε

)
+ ε

∫

R2

|∇uε|,(4)
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where the first term is now the Monge–Kantorovich transport distance
(Wasserstein-1 metric) and the last term describes the length of the boundary
of the set {uε = ε−1}.

In [1] we proved rigorously that this functional prefers structures that are uni-
formly thin (with an optimal thickness given by 2ε), that ‘closed structures’ are
preferred, and that the bending of the structures is penalized. It is shown that a
lower bound for the energy is given by 2M . If we consider a sequence (uε, vε) of
structures whose energy is close to the optimal value 2M we can show that uε, vε
have to concentrate on a collection of curves γi, i = 1, ..., Q as ε → 0. Moreover,
the energy Fε is approximately of the following form:

Fε(uε, vε) ≈ 2M +

Q∑

i=1

Pstretching(γi) + ε

Q∑

i=1

Pfracture(γi) +
ε2

4

Q∑

i=1

∫

γi

κ2
i ,(5)

where Pstretching penalizes a nonuniform thickness of the structures, Pfracture counts
the number of open ends of the limit curves, and

∫
γi
κ2
i is the classical Euler

bending energy for curves. This statement is made precise in form of a Gamma-
convergence result for ε−2(Fε − 2M) and a sharp lower bound estimate. For a
precise statement and proofs of the results see [1]. The property that moderate-
energy sequences have to concentrate on curves shows the self-assembling be-
haviour, whereas the penalization of stretching, fracture and bending is shown
in the expansion (5) or the corresponding estimate in [1]. In particular, we ob-
serve that non-uniform thickness and fracture of the structures is indeed much
more penalized than bending. Our result therefore justifies that uniform thickness
and closedness enter the macroscale shape energies as hard constraints and that
a bending energy emerges from the amphiphilic behaviour of the constituents of
the membranes.
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Mathematical models of stem cells renewal and differentiation

Anna Marciniak-Czochra

In higher organisms, a steady supply of somatic cells is accomplished by prolif-
eration of various types of stem cells, which retained the capability for almost
indefinite self-renewal. According to need, driven by hormonal signals from the
organism, some stem cells commit to differentiation and maturation in the di-
rection of more specialized cell lineages. A well-know example is provided by
hematopoietic stem cells, which give rise to several lineages including precursors of
erythrocytes (red cells), lymphocytes (white cells) and megakaryocytes (platelets),
among other.

Hematopoiesis is a multi-step process, in which relatively small population of
hematopoietic stem cells gives rise to all types of blood cells. This process is
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based on asymmetric cell divisions leading to formation of more mature cells (dif-
ferentiation process) and replenishment of the subpopulations of cells of differ-
ent maturation stages (self-renewal). Understanding of the mechanisms govern-
ing hematopoiesis is of central interest in stem cell biology, especially because of
its clinical impact. High regenerative properties of hematopoietic stem cells are
used to reconstitute blood structure of patients after treatment with high-dose
chemotherapy, which results in a rapid decline of blood cell counts. It is known
that the dynamics of cell proliferation and differentiations is controlled by extra-
cellular signaling molecules such as cytokines. However, the precise nature of this
process is still unknown.

One established method of modeling of such hierarchical cell systems is to use a
discrete collection of ordinary differential equations, each of which describes a well-
defined differentiation stage. In such framework, a range of mathematical results
have been obtained (such as stability and oscillation criteria), some of which are
applicable to modeling of the underlying biological systems, e.g., [1].

Recently, we have proposed new multi-compartment models of hematopoiesis
[3]. The models are motivated by the clinical data on blood reconstitution and
on the experimental studies performed in the group of Prof. Anthony Ho and Dr.
Wolfgang Wagner (Department of Inner Medicine V, University of Heidelberg).
One of the crucial problems in the clinical practice is how to minimize the time
needed for blood regeneration, i.e., how to accelerate this process. This issue is
important, since during the period of blood reconstitution the immune system of
patients is not working, which often leads to acute infections and death. Our work
aims to approach the problem by investigation of the dynamics of hematopoiesis
in dependence on the key parameters. In particular, the role of the asymmetry of
cell division is investigated motivated by the recent experiments [2].

The models describe the dynamics of n cell subpopulations representing differ-
ent differentiation stages and assuming different modes of regulation. At least six
different compartments have been proposed although so far experimental data do
not provide a precise distinction between these stages. The generic model has the
form,

d

dt
u1 = (2a1(s) − 1)p1(s)u1 − d1u1,

d

dt
ui = (2ai(s) − 1)pi(s)ui + 2(1 − ai−1(s))pi−1(s)ui−1 − diui,

d

dt
un = 2(1 − an−1(s))pn−1(s)un−1 − dnun,(1)

where i = 1, ..., n − 1. Parameters ai(s) describe fractions of self-renewal of the
subpopulations (the fractions of the daughter cells, which do not differentiate)
and parameters pi(s) denote the proliferation rates. Parameters di denote the
decay rates for each subpopulation. s denotes a concentration of some signalling
molecules (cytokines), which may regulate the differentiation and proliferation
process. The level of the signal is assumed to be dependent on the level of mature
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cells, and it is given by

(2) s =
1

1 + kun
.

This dependence can be justified using a quasi-steady state approximation of the
plausible dynamics of the cytokine molecules, [3]. The expression reflects the
heuristic assumption that signal intensity achieves its maximum under absence of
mature cells and decreases asymptotically to zero if level of mature cells increases.

Considering different plausible regulatory feedback mechanisms lead to differ-
ent types of nonlinearities in the model equations. In particular, three different
regulatory modes are considered: (1) pi(s) = pi

1+kun
and constant ai, (2) constant

pi and ai(s) = ai

1+kun
and (3) pi(s) = pi

1+kun
and ai(s) = ai

1+kun
.

Under some assumptions, the models have similar qualitative behavior, i.e.,
their solutions converge to a unique positive equilibrium. However, the models
differ significantly concerning the rates of convergence, i.e., the time needed to
approach a defined neighborhood of the steady state for given initial conditions.
Regulation of proliferation rates, i.e., negative feedback between proliferation pa-
rameters and the value of the variable describing the number of mature cells,
results in a prolonged increase of the model solutions. In contrast, analogous reg-
ulation of the ratio of self-renewal rate versus differentiation rate (regulation of
the asymmetry of cell division) results in a faster increase of the solutions (faster
convergence rate). In summary, the numerical simulations, performed for differ-
ent initial conditions and different parameter sets, lead to the conclusion that the
regulation of the asymmetry of cell divisions is significantly more efficient that the
regulation of the proliferation rates.

The model (1) is based on the assumption that in each lineage of blood cell
precursors, there exists a discrete chain of maturation stages, which are sequen-
tially traversed. However, there are indications that the differentiation process is
less rigid and that it involves transitions which are continuous, along with discrete
ones. Assuming that the dynamics of differentiated precursors can be approxi-
mated by a continuous maturation model, we propose new mathematical models
of stem cells renewal and differentiation. The model has the form of a system
of a structured population equation coupled with ordinary differential equations.
Let w(t) denote a population of pluripotent hematopoietic stem cells, v(t) popula-
tion of mature cells and u(x, t) - a population of committed cells and differentiated
procursors, structured by the maturity level (denoted by x). Assuming that x = x∗

denotes the last maturity level of immature cells, and therefore, u(x∗, t) describes
the concentration of cells which differentiate into mature cells leads to the model
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equations of the form,

d

dt
w(t) = α(s)w(t),

∂tu(x, t) + ∂x[g(x, s)u(x, t)] = β(x, s)u(x, t),

g(0, s)u(0, t) = gw(s)w(t), t > 0,

d

dt
v(t) = g(x∗, s)u(x∗, t) − µv(t),(3)

with appropriate initial conditions. Here, g(x, s) = 2[1 − a(x, s)]p(x, s) describes
the velocity of the maturation process with a signal function s depending on the
concentration of mature cells v, given by a formula (2) (similarly as in multicom-
partment model). The parameters aw and pw satisfy the conditions, aw = a(0)
and pw = p(0). Furthermore, gw(·) = g(0, ·), α(s) = [2aw(s) − 1]pw(s) and
β = p(x, s) − d(x).

Conditions of stability, which we obtained, seem to have interesting biological
interpretations. The rate of HSC self-renewal (a1) has to be larger than 1/2.
In case of multi-compartment model this fraction has also to be larger than the
corresponding rates for the other compartments. Otherwise, the compartment
with the highest self-renewal potential takes over the stem cell function, whereas
all up-stream compartments including the HSC compartment eventually become
extinct. From that point of view stem cell behavior arises as a property of a whole
population and not as a property of single cells. Interestingly, the structured model
does not posses any semi-trivial steady states. If the structured subpopulation does
not extinct, its level stays strictly positive. It shows that continuous differentiation
may have different properties that the discrete one.
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Understanding Bacterial Operon Dynamics: Insight from
Mathematical Modeling

Michael C. Mackey

(joint work with D. Horike, M. Santillán, N. Yildirim & E. S. Zeron)

This talk focussed on recent mathematical models for the dynamics in three
paradigms of bacterial molecular biology:

(1) The lac (lactose) operon;
(2) The trp (tryptophan) operon; and
(3) The lysis/lysogeny switch in phage λ.
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Using chemical kinetic models appropriate for examining dynamics in large popula-
tions of bacteria, we have studied a variety of phenomena observed experimentally.
The examples chosen for discussion in this talk comprise three of the paradigmatic
bacterial systems that have been studied by molecular biologists over the past fifty
years, and because of the long history of attentions from experimentalists there is
an abundance of available data relative to other molecular regulatory systems.

(1) The lactose operon (also known as the lac operon) is a molecular nega-
tive feedback control system in E. coli that allows the bacterium to utilize
lactose as an alternative energy source in the absence of glucose. In the
lac operon a three dimensional mathematical model seems to accurately
capture the operon response to changes from a glucose to lactose medium
[5]. This model is a reduction of a higher dimensional model originally
presented in [2, 4]. Furthermore it is predicted [6, 7], and observed exper-
imentally, that there should be bistable behaviour in the switch between
the un-induced and induced states. However, there is still great contro-
versy about the exact nature of this bistability [7]. Details of our work on
this system and the most recent version of our models of the lac operon
may be found in [7].

(2) The tryptophan operon (known also at the trp operon) is the control sys-
tem in E. coli involved in the production of tryptophan. This control sys-
tem involves several different types of negative feedback. The trp operon
dynamics seem to be partially captured by a relatively simple system of
nonlinear differential delay equations [1]. (The delays arise because of
transcriptional and translational delays.) However, it is also clear that
there are discrepancies between the existing (but rather sparse) temporal
data on tryptophan and enzyme levels and the model predictions. We
suspect that this is due to unknown biological mechanisms that have not
been included in the modeling efforts.

We further predict in a more recent and complete treatment [8] that
there should be oscillations in tryptophan and enzyme concentrations un-
der certain circumstances as has been reported experimentally.

(3) In the lysis/lysogeny switch of phage λ we have offered at least one ex-
planation for the extraordinary stability of the lysogenous state [3]. This
explanation, consistent with the experimental data, resolves a controversy
that has been in existence for at least 20 years.
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Modeling and analysis for the interaction of flow, chemical reactions,
and mechanics in cell tissue

Maria Neuss-Radu

(joint work with Willi Jäger, Andro Mikelić)

1. Introduction

In this paper, we are studying model equations for processes in a porous elastic
structure of cells. Experimental research on the physiology of living cells and
tissues is providing more and more detailed information on the nano- and micro-
scale. There is an urgent demand for mathematical modelling of reactive flow and
transport and its interaction with elastic cell structures. Here we are formulating
model equations on the fine scale, with ε as scale parameter, including

- Fluid flow in the extracellular space, diffusion, transport and reactions of
substances in the fluid.

- Exchange of substances at the membranes.
- Diffusion of substances and chemical reactions inside the cells.
- Changes of the structures and their mechanical properties under the in-

fluence of chemical substances.

Using multiscale techniques, the scale limit is performed, and a macroscopic (ef-
fective) model system is derived preserving relevant information on the processes
on the microscopic level. One obtains in the limit a system similar to the Biot-law
in the theory of dynamic poroelasticity, however, due to the scaling resulting from
the analysis of the real data, the macroscopic velocities are solving a differential
equation containing only its spatial derivatives.

These investigations were motivated by questions asked by physiologists inter-
ested in perfusion and transport through tissue under varying mechanical and
chemical conditions. The effective permeability of the tissue is changed under the
influence of the mechanical changes caused in the solid phase. Experimental stud-
ies were performed by [2] for thin layers of endothelial cells. This cell layers were
exposed either to chemicals or to shear stress caused by flow.
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2. Setting of the microscopic model

Let ε > 0 be a sequence of strictly positive numbers tending to zero, and let
[0, T ] denote a time interval, with T > 0. We consider the domain Ω = (0, 1)3

consisting of two subdomains: the tissue part formed by the elastic cells and the
fluid part representing the intercellular space. The tissue part is denoted by Ωε,
the fluid part by Ωεf , and the fluid-solid interface by Γε = ∂Ωεf∩∂Ωε. The boundary

of the domain Ω consists of three parts ∂Ω = Γ1 ∪ Γ2 ∪ Γ3, where Γ1 = {x1 =
0}×(0, 1)2, Γ2 = {x1 = 1}×(0, 1)2 and Γ3 = ∪j=2,3({xj = 0}∪{xj = 1})×(0, 1)2.
The outer unit normal to ∂Ω is denoted by ν. On the interface Γε, we denote by
ν the outer unit normal to the fluid part Ωεf . The microscopic structure of Ωε

and Ωεf is periodic, and is obtained by the repetition of the scaled standard cell

Y = [0, 1]3. We denote by Yf and Ys the fluid respectively the solid part of Y .
We start from the following dimensionless system on the microscopic scale,

formulated in [1], describing the evolution of the common displacement function
in the solid and fluid part uε, and of the concentrations of the two substances
transported within the tissue cε1, c

ε
2. This is a coupled system for the fluid/structure

interaction:

∂2uε

∂t2
+

1

ε2
∇pε = ∆

(
∂uε

∂t

)
in Ωεf × (0, T )(1)

∇ ·
(
∂uε

∂t

)
= 0 in Ωεf × (0, T )(2)

∂2uε

∂t2
=

1

ε2
∇ · (A(F(cε1))D(uε)) in Ωε × (0, T )(3)

uεχΩε
f

= uεχΩε on Γε × (0, T )(4)
(
− 1

ε2
pεI + 2D

(
∂uε

∂t

))
· ν =

1

ε2
AD(uε) · ν on Γε × (0, T )(5)

with the elasticity coefficients changing as a function of cumulated quantity of cε1:

F(cε1)(x, t) = (K ⋆t F (cε1))(x, t) =

∫ t

0

K(t− τ)F (cε1(x, τ)) dτ,
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and for the evolution of the concentrations:

∂cε1
∂t

−∇ ·
(
D1(c

ε
2)∇cε1

)
= G1g1(c

ε
1, c

ε
2) in Ωε × (0, T )(6)

D1(c
ε
2)∇cε1 · ν = 0 on ∂Ωε × (0, T )(7)

cε1(0) = c10 in Ωε(8)

∂cε2
∂t

+
∂u

∂t
· ∇cε2 −D2∆c

ε
2 = G2g2(c

ε
2) in Ωεf × (0, T )(9)

1

K

∂cε2
∂t

− 1

K
D2∆c

ε
2 = G3g3(c

ε
1, c

ε
2) in Ωε × (0, T )(10)

(
∂u

∂t
cε2 −D2∇cε2

)
χΩε

f
· ν = −D2

K
∇cε2χΩε · ν on Γε × (0, T )(11)

cε2χΩε
f

= cε2χΩε on Γε × (0, T )(12)

This system has to be closed by initial and boundary conditions at the outer
boundary. Regarding the boundary conditions for uε, we impose zero normal
stresses on Γ1 in the fluid and solid, and given normal stresses (S1,S2,S3) on Γ2.
On Γ3 we suppose zero displacements. For the concentration cε1, we have no-flux
conditions on ∂Ωs. For cε2, we impose Dirichlet boundary conditions on Γ1, and
no-flux conditions on the rest of ∂Ω. For the precise formulation of the boundary
and initial conditions, see [1] where also the existence, uniqueness and stability of
a solution of problem (1)-(12), has been proven, under suitable assumptions on
the data.

3. Effective equations

Based on uniform estimates on the microscopic solutions (uε, cε1, c
ε
2), we prove

that they converge to the macroscopic quantities (u0, c01, c
0
2), satisfying the follow-

ing effective equations.

• Homogenized system for the solid displacements

−Divx
{∫

Ys

A(F(c01))(Dx(u
0) +Dy(u

1))dy

}
+ |Yf |∇xp

0(t, x) = 0,

in Ω × (0, T )

• Darcy’s type equations for the averaged velocity. The two-scale approxi-
mation of the velocity is given by

v0(t, x, y) = ∂tu
0(t, x) + w0(t, x, y) · χYf

(y)

and satisfies∫

Yf

v0(t, x, y)dy − |Yf |∂tu0(t, x) = −K∇xp
0(t, x), in Ω × (0, T )

divx

∫

Yf

v0(t, x, y)dy =

∫

Ys

divy (∂tu
1)(t, x, y)dy, in Ω × (0, T )

with p0 being the macroscopic approximation for the pressure.
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• Homogenized system for the concentrations

|Ys|∂tc01 − divx

{∫

Ys

D1(c
0
2)(∇xc

0
1 + ∇yc

1
1)dy

}
= |Ys|g(c01, c02),

in Ω × (0, T )
∫

Y

k(y)dy ∂tc
0
2 −D2divx

{∫

Y

k(y) (∇xc
0
2 + ∇yc

1
2)dy

}
+

+divx

{(
|Yf |∂tu0 +

∫

Yf

∂tw
0

)
c02

}
= g2(c

0
2)χΩf

+ g3(c
0
1, c

0
2)χΩs ,

in Ω × (0, T )

Here, the functions u1, c11, c
1
2 are periodic with respect to the microscopic variable

y, and represent the first order terms in the asymptotic expansions of the functions
uε, cε1, and cε2 respectively. They are calculated from problems formulated on the
standard cell.
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Axon growth in neural development: a multiscale problem

Giovanni Naldi

(joint work with Giacomo Aletti, Paola Causin)

In the embryo, undifferentiated sets of cells form organized patterns following
pathways marked by chemical cues. At this small scale, cues are represented by
single molecules, displaced from their release location by diffusion. Diffusion is
the movement of matter from areas with higher concentrations (near the source)
to areas of lower concentrations. Cells crawl along the positive gradient, towards
the direction of increasing chemical signal, from the periphery to the source. This
establishes the controlled flow of material needed to build structured tissues. Cells
work out the right direction sensing the chemical cues released in the environ-
ment, filtering out noise. In this work we focus on the axon growth phenomena in
neural development. To understand this mechanism, it is essential to dig into the
process of gradient sensing. Cells try to detect very small differences in molecule
concentration across their tiny diameter [3]. With this respect, they behave like an
instrument that counts molecules in its surroundings and is allowed only a limited
number of probings. The study of the measurement errors of such an instru-
ment can explain the shape of the trajectories. In the developing nervous system,
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axons find the targets they will innervate navigating through the extracellular en-
vironment. Pathfinding crucially relies on chemical cues and, among the others,
guidance by gradients of diffusible ligands plays a key role (see, e.g., [4, 5, 6]).
Detection and transduction of navigational cues is mediated by the growth cone
(GC), a highly dynamic structure located at the axon tip. The cascade that leads
to motility decisions is initiated by binding of the ligand with receptors located on
the GC surface and on filopodia, thin filaments that protrude out from the distal
part of the GC. In [1] a mathematical description of the growth cone transduction
chain as a series of functional boxes characterized by input/output relations is
provided. The model relies on the assumption that the characteristic time of inde-
pendent concentration measures by growth cone receptors, the characteristic time
of growth cone internal reorganization preceding motion and the characteristic
time needed for a discernible axon turning belong to separated scales. The results
give insight into the deterministic vs. stochastic regime of internal growth cone
functions that are not readily accessible from experimental observations, pointing
out a substantial equilibrium of the two contributions. The present Authors have
extended the mathematical description of the growth cone transduction cascade of
by adding a model of the gradient sensing process related to the theory of [2]. The
study of the transmission of the noise-to-signal ratio allows to predict the variabil-
ity of the gradient assay as a function of experimental parameters as the ligand
concentration, both in the single and in the multiple ligand tests. As in [1], the
model of axon chemotaxis we consider involves a synthetic mathematical represen-
tation of the transduction cascade of the GC. Different subsystems are identified,
which lead from sensing of ligand concentration gradients to motion. Measures of
concentration differences in the environment are produced by the Sensing Device
Subsystem (SDSys). The Intracellular Transduction Subsystem (ITSys) processes
the input from the SDSys producing a signal which, through the Motor Actua-
tor Subsystem (MASys), causes the deviation of the GC trajectory. Intracellular
transduction is a highly complex network. A gradient of chemoattractant (resp.
chemorepellant) concentration orients the GC motion toward (resp. away from)
the direction of the concentration source. Receptors located on the GC surface
and filopodia bind to external ligands. The density function of bound receptors
around the GC can be used to model the process of ligand concentration sensing.
In the present model, we do not consider such a physical process, but we directly

model the output of the SDBox as a mathematical object, the vector P̂ which
triggers the deviation of the GC trajectory. The vector P̂ is a function of the
gradient concentration: its direction is related to the orientation of the stimulus
gradient, while its modulus is connected to the amplification produced by the GC
transduction chain. According to a mechanical description, we ascribe the trajec-
tory deviation to an equivalent force vector process Pt acting on an equivalent GC
mass m. The process Pt, output of the STBox is continuously attracted towards
P̂. The role of the STBox is to compare the output P̂ of the SDBox, function of
the external signals, against an “equivalent” actual force Pt. In this process, a
memory effect exists which damps the response. Moreover, we suppose that the
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equivalent force Pt induces an acceleration only along the direction transversal to
the trajectory. Consequently, if the axon moves with velocity vector vg only the
direction of the unit vector eg is affected, leaving the velocity modulus constant.
Based on the above considerations, the complete model of the GC motion reads:

given P̂, find for 0 ≤ t ≤ T the GC position xg = xg(t), such that

ẋg = vg, v̇g =
Pt sinβ

m
e⊥, dPt = −Pt − P̂

τ
dt+ σ

√
2

τ
dWt,

xg(0) = x0
g, vg(0) = vge

0
g, P0 = P0,

where Wt denotes a two(three)dimensional Wiener process.
For the full 2D (or 3D) model we suppose the mesenchyme (extracellular ma-

trix located within the embryonic mesoderm) to be a deformable elastic body that
undergoes large deformations due to an imposed motion of its (computational)
boundaries. In particular, we consider the mesenchyme to be an hyperelastic ma-
terial. We adopt the simplest isotropic St. VenantKirchhoff model (the extracellu-
lar matrix is known to exhibit a viscoelastic mechanical behavior: a more detailed
characterization of the mechanical properties should be done). For the numerical
simulation we discretize the elastic problem with the finite element method, we
obtain the field of matrix displacements and velocity vφ. Moreover, we describe
each axon as a 1D elastic fiber immersed in the extracellular matrix, modeled
as a 2D continuum deformable body. The axon trajectory is represented by the
successive positions of the axon head, given by dxd/dt = vg(t) + vφ: an intrinsic
growth velocity plus the time rate variation of the matrix shape. The variation of

vg(t) is given by dvg(t) = v
(1)
g + v

(2)
g , where the first component is due to matrix

deformation while the second term is related to chemical cues (microscopic model
of filopodia), axon mechanical properties (bending vs. axial stiffness), and sto-
chastic noise. Diffusible substances released in the extracellular matrix by target
regions are modeled by diffusionreaction system. The process is supposed to be
quasi-stationary due to the fact that the concentration field reaches an equilibrium
faster than the characteristic time of axon outgrowth (at each time, the geometry
of the extracellular matrix domain is given by the solution of the continuum me-
chanics problem). In Figure 1 we show an example of a numerical simulation for
the whole process. We integrate numerically the SDE complete model by consider-
ing 500 axons, randomly seeded along the bottom boundary and assigned different
birth times, a prescribed motion is imposed to the top and bottom borders. A
weak attractive diffusible cue is placed in the top-central part of the domain while
repulsive cues are placed close to the corners. A 3D model is being developed in
order to obtain a more realistic representation of in vivo phenomena: the analysis
of such a model with numerical results and comparisons with respect the biological
data will be appear in a forthcoming paper.
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Figure 1. A numerical result for the complete model.
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The mechanics of cell migration: inverse and direct problem

Davide Ambrosi

Cell locomotion occurs through complex interactions that involve, among others,
actin polymerization, matrix degradation, chemical signaling, adhesion and pulling
on substrate and fibers. When focusing on mechanical aspects only, a major issue
is the determination of the dynamic action of the cells on the environment during
migration: the cells adhere, pull on the surrounding matrix and move forward.
Continuum mechanics seems to be the correct mathematical framework to address
a quantitative understanding of the force balance that occur at the surface that
separates the cell and the deformable environment. However, there are two main
reasons that make this insight not trivial.
The first motivation is that the involved spatial scales are small and direct mea-
surement of the forces is a non–trivial task. In some cases these data are experi-
mentally obtained, but in configurations that are quite far from the physiological
environment. The second and even more challenging difficulty is that cells are a
non–standard mechanical system at all; they are made by several components of
very different mechanical behaviour and, even more importantly, the main me-
chanical component of the cell (the citoskeleton) is formed by a polimeric network
that continously polimerizes and de-polimerizes at the extremities, thus generating
the active self–deformation of the cell that determines its ability to migrate.
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In the talk given at the MFO it has been shown that cell traction can be fruitfully
studied as an inverse problem. A quantitative methodology in this respect has
been proposed in 1996 by Dembo et al. [3], an approach further improved by
Dembo and Wang in 1999 [4]. They deduce the traction exerted by a fibroblast on
a polyacrylamide substrate from the measured displacement of several fluorescent
beads merged in the upper layer of the gel.

Under assumptions of isotropy and homogeneity, the deformations are supposed
to be small and the equations of linearized elasticity apply. Although the displace-
ment of the substrate u(x) is known at some points on the surface, say uo its value,
we cannot plug this directly into the elasticity operator to obtain f . The motiva-
tions are twofold: since uo is known in some portions of the domain only, there
are many f that can produce this known displacement. Secondly, inverse prob-
lems are well known to excite high frequency components of the (always present)
experimental error and a regularization procedure is therefore needed.
Following Dembo and Wang, the solution u of the elasticity equation is written in
integral form using the Green tensor G of the elasticity equation for the half space
domain (Boussinesq problem). The force per unit surface generating a displace-
ment near to the experimental one (in a suitable sense) is obtained by discrete
minimiaztion of the quadratic mean error under force penalization to ensure reg-
ularization (Tikhonov method).

The same issue studied illustrated above can be alternatively addressed using
classical functional analysis. The minimization of the distance between the mea-
sured and the computed displacement under penalization of the force magnitude
is stated before the elasticity equations are solved. Standard derivation of the cost
function leads to two sets of elastic–type problems: the direct and the adjoint one.

The three–dimensional elasticity system of equations is approximated by a two–
dimensional plane–stress one by vertical averaging along an effective thickness h:

−µ̂∆u − (µ̂+ λ̂)∇ (∇ · u) = f , u|∂Ω = 0,(1)

where

µ̂ = h
E

2(1 + ν)
, λ̂ = h

Eν

1 − ν2
.

and E and ν are the Young modulus and the Poisson ratio respectively. h is the
averaging depth fixed by the depth of field of the microscope. In our case h is 1.5
microns; the beads lying below such vertical coordinate are not in focus and there-
fore their position is not measured. Consequently the displacement u should be
understood as the average displacement along h, which is nearly the displacement
of the center of the beads.
The functional J(f) measures the difference between the displacement field pro-
duced by f and the experimental one u0 under penalization of the square norm of
the force field itself. It is defined as follows:

J(f) =

∫

Ω0

|u − u0|2 dV + ε

∫

Ω

|f |2dV,(2)
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where ε is a real positive number. We look for g minimizing J :

(3) J(g) ≤ J(f), ∀f ∈ Vc,

where Vc ⊂ L2(Ω) is the space of the finite energy functions with support in Ωc.
Variational derivation of J(f) and introduction of the adjoint differential equation
yields the following direct and inverse systems of partial differential equations [1]

−µ̂∆u− (µ̂+ λ̂)∇ (∇ · u) = − χc
ε

p, u|∂Ω = 0,

−µ̂∆p− (µ̂+ λ̂)∇ (∇ · p) =χou − u0, p|∂Ω = 0.
(4)

The value of the penalty parameter ε and the averaging depth h can be fixed on
the basis of arguments suggested by modal analysis or by the L-curve criterion.
The unknown of the adjoint equation is just the shear stress exerted by the cells
we are looking for. The two systems of equations can then be solved numerically
by a coupled finite element discretization.

In the Oberwolfach meeting the discussion has focused on the regularity prop-
erties that characterize the solution of equations (4) depending on the smoothness
of the datum u0. Moreover it has been shown as the above methodology can
be applied to 3D cell migration too, a much more complicated framework where
inhomogeneity and anisotropy prevent the use of other methods. Assuming that
collagen fibers play no mechanical role, in the linearized case the following direct
and inverse problem can be formally deduced:

∇ ·T(∇u) = 0 T(∇u)n = −1

ε
(p − p̄) on ∂Ωc u = 0 on ∂Ω

∇ ·T(∇p) = χou − uo T(∇p)n = 0 on ∂Ωc p = 0 on ∂Ω

where T is the Cauchy stress tensor, p̄ is the surface average value of p on ∂Ωc
and n is the tensor normal to ∂Ωc. In the nonlinear case the equations should be
conveniently re-stated in a material system of coordinates, the adjoint operator
depends on u and the second equation takes a more complicated form. If fibers
have a mechanical role, it will be T(∇u,m) where m(x) is the density of fibers
directed as m in x. The details of this generalization remain to explored.
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Stability Analysis of a Simplified Yet Complete Model for Chronic
Myelegeneous Leukemia

Marie Doumic Jauffret

(joint work with Peter Kim and Benôıt Perthame)

We analyze the asymptotic behavior of a partial differential equation (PDE)
model for hematopoiesis. This PDE model is derived from the original agent-
based model formulated by Roeder et al. in [1], and it describes the progression
of blood cell development from the stem cell to the terminally differentiated state.

To conduct our analysis, we depart from the PDE model proposed by Kim et al
in [2], which proved to coincide very well with the simulation results obtained by
Roeder et al. We further simplify the PDE model to make it amenable to analysis
and justify the validity of our approximations using numerical simulations. An
analysis of the simplified PDE model proves to exhibit very similar properties than
the original agent-based model, even if for slightly different coefficients. Hence, the
simplified model is of value in understanding the dynamics of hematopoiesis and
of chronic myelogeneous leukemia, and it presents the advantage of having fewer
parameters, which makes comparison with both experimental data and alternative
models much easier.

Chronic myelogenous leukemia (CML) is a cancer of the blood and bone marrow
that results in the uncontrolled growth of myeloid blood cells. More than 90% of
all CML cases are associated with a gene abnormality, known as the Philadelphia
(Ph) chromosome. In addition, CML is highly responsive to treatment by the drug
imatinib that specifically targets the gene abnormality.

Recently, CML has been the focus of several mathematical models. A new
paradigm of cancer development emerged from the idea of cancer stem cells (Bon-
net et al, 1997). This hypothesis states that a variety of cancers originate from
a self-replenishing, cancer population, now known as cancer stem cells. Using
this idea, Roeder et al. developed a mathematical model of CML stem cells. In
their model, leukemia stem cells continually circulate between proliferating and
quiescent states.

We take the PDE model in [2] and simplify it as much as possible without
altering the fundamental assumptions of Roeder et al.. It leads to three possible
approximations, the simplest one being given by the following model:

dA

dt
= −ω(Ω)A(t) +

∫ 1

0

α(x,A)Ω(x, t)dx, 0 ≤ x ≤ 1, t ≥ 0,(1)

∂Ω∗

∂t
+ ρd

∂Ω∗

∂x
= (−α(x,A) + b)Ω(x, t)(2)

with boundary condition

(3) Ω(0, t) =
ω(Ω)

ρd
A(t), Ω(t) =

∫ 1

0

Ω(x, t)dx.

In this system, Ω represents the density of proliferating and maturing stem cells,
whereas A is the density of fully immature quiescent cells. Mature cells are given
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by Ω(t, x = 1). Cells can exchange compartments with rates α(x,A) and ω(Ω),

where Ω =
1∫

0

Ω(t, x)dx is the total population of proliferating cells. Both α and

ω are decreasing functions of the population - in order to model competition for
room in each of the compartment. The average renewal term is given by b, and
the maturing speed by ρd.

The originality of this model is to take into account reversible maturity: when
they become quiescent, cells replenish themselves and become immature again.

To conduct the analysis we use duality arguments related to the ”General Rel-
ative Entropy“ method introduced by B. Perthame, L. Rhyzik, P. Michel, S. Mis-
chler (see [3]). This method requires us to handle the eigenvalue problem and its
adjoint, which we do first, and then use them to build entropy functionals. An-
other method is to reduce the system to a delay differential equation (DDE), and
we also comment on how this is possible.

The main mathematical results are given by the following proposition.

Proposition.
Let α(x, ·) be continuous positive decreasing function for all x and ω(·) bounded.

Let us denote

P (A) =

∫ 1

0

α(x,A)e

x
R

0

b−α(y,A)
ρd

dy
dx.

• Zero is always a steady state, and there is a nonzero steady state (which
is unique) iff P (0) > ρd.

• If for A large enough P (A) < ρd, then any solution
(
Ω(t, x), A(t)

)
of

(1)–(3) remains bounded for all t ≥ 0, i.e., A ∈ L∞(0,∞) and Ω ∈
L∞((0,∞) × (0, 1)).

• If P (0) ≤ ρd, then the zero steady state is globally attractive. If on the
contrary P (0) > ρd, then the zero steady state is unstable.
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Intracellular Noise and Quorum Sensing

Johannes, Müller

(joint work with Alexandra Hutzenthaler, Robert Schlicht)

One of the challenges in mathematical biology is to cope with better and better
measurements, that meanwhile deal with smallest entities like single cells, or even
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single molecules. Models are forced to acknowledge – at least up to a certain degree
– discreteness and the stochasticity of the subject under investigation. Following
the approach [2, 4], in [3] a model for stochasticity in gene expression is described
and analyzed. In that model, it is assumed that the gene product (mRNA or
a protein) is present in large numbers, while the gene itself only exists in one
copy. Transcription is regulated by the interaction of regulatory protein and a
promotor region: binding of the regulatory protein to the promotor region alters
the transcription rate. It is possible to treat the gene product as a continuous
variable, while the state of the gene (bound or unbound to the regulatory protein)
is a binary random variable. This approach yields a correlated random walk for
the density of gene products.

In [3] especially a positive feedback loop (the gene product and the regulatory
protein are identical, and the transcription rate is much higher if the protein is
bound to the promotor) is considered. The considerations show that the distribu-
tion describing the amount of the gene product is (in general) bimodal. The two
maxima correspond to the bistability of the corresponding deterministic model.

This outcome allows us to simplify the description of a cell by assuming an acti-
vated and a resting state. The intracellular noise allows a single cell to switch back
and forth between these two states. In case of Quorum Sensing – an intercellular
communication system – the gene product is able to freely pass the cell membrane.
In contrast to other situations, where cells act independently with respect to the
gene products under consideration, in Quorum Sensing there is a common pool
for the gene product. Let us denote by x the amount of this gene product. Given
x, the rate for a cell to jump from resting to activated state is ν(x), while that
for deactivation is µ(x). Let us assume that we have N cells. The state of the
system is given by a point (x, n) in the product space R+ × {0, .., N}, where the
first component indicates the amount of gene product, the second component the
number of activated cells. If we condition on the number of activated cells n, the
gene product follows a deterministic law

ẋ = αN + βn− γx =: vn(x)

where α is the basic, and α + β the increased production rate of the gene prod-
uct, while γ denotes the degradation rate. Furthermore, let (for fixed x) L(x) ∈
R(N+1)×(N+1) denote the infinitesimal generator of the random walk on {0, .., N}
given by the stochastic process for the number of activated cells n. That is,
(L(x))(i,n) is the infinitesimal transition probability from i to n activated cells.
Let π(n;x) be the invariant distribution for given x.

If we denote the probability density of the state (x, n) at time t by p(t, x, n),
the complete model then has the following form (see e.g. [1, 3]),

∂tp(t, x, n) + ∂x(vn(x)p(t, x, n)) =

N∑

i=0

(L(x))(i,n)p(t, x, i).
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Defining the mean velocity v(x) =
∑N
i=0 vn(x)π(n;x), and introducing – slightly

artificially – the small variable ε, we obtain

ε2∂tp(t, x, n) + ε2∂x(v(x)p(t, x, n)) + ε∂x([vn(x) − v(x)]p(t, x, n))

=

N∑

i=0

(L(x))(i,n)p(t, x, i).

This is, the original model coincides with the model given in this equation only
for ε = 1. However, taking the limit ε → 0, we obtain (following the procedure
described in [1]) an approximation of the density by p(t, x, n) ≈ π(n;x) h(t, x),
where the marginal distribution h(t, x) obeys the equation

∂th(t, x) = −∂x (g(x)h(t, x)) + ∂x (a(x)∂xh(t, x))

with zero flux boundary conditions at x0 = αN/γ and x1 = (α + β)N/γ. The
functions g(x) and a(x) are defined via

g(x) = αN − γx+
βNν(x)

µ(x) + ν(x)
+
β2N(ν(x)∂xµ(x) − µ(x)∂xν(x))

(µ(x) + ν(x))4)
(ν(x) − µ(x))

and

a(x) =
β2Nν(x)µ(x)

(µ(x) + ν(x))3
.

Numerical simulations show that this reduced model approximates quite well the
marginal distribution for x for the original model.

We now relate the variables to a given volume V , i.e. we introduce cell densities
(ρ = N/V ) and, correspondingly, signal substance density (z = x/V ). The rates
µ(.) and ν(.) then depend on the density of signaling molecules, i.e. they are
functions of z rather than x. We define the average net production rate of signaling
substance f(z) and a second function g1(z) (that does not play a role for V → ∞)

f(z) = αρ+
βρν(z)

µ(z) + ν(z)
− γz,

g1(z) =
β2ρ(ν(z)∂zµ(z) − µ(z)∂zν(z))

(µ(z) + ν(z))4)
(ν(z) − µ(z)).

We find for the rescaled equations

∂th(t, z) = −∂z ((f(z) + g1(z)/V )h(t, z)) +
1

V
∂z (a1(z)∂zh(t, z)) ,

with

a1(z) =
β2ρν(z)µ(z)

(µ(z) + ν(z))3
.

We are now interested in stationary states for medium and large populations,
i.e. for the limits V → ∞ and t → ∞. The result depends on the order in which
the limits are taken.

(1) First V → ∞:
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We obtain a hyperbolic PDE, which can be solved via the characteristics,

ż = f(z).

This is the deterministic model for this biological system. The solution of the
ODE tends to the roots of f(z), and the stability can be determined by inspecting
the derivative of f at these points. The system exhibits bistability and hysteresis.

(2) First t→ ∞:
We obtain the stationary solutions of the PDE for h(z, t),

0 = −∂z ((f(z) + g1(z)/V )h(z)) +
1

V
∂z (a1(z)∂zh(z)) .

which reads

h(z;V ) = c(V ; z0)
(
e

R

z
z0
f(ζ)/a1(ζ) dζ

)V (
e

R

z
z0
g1(ζ)/a1(ζ) dζ

)
.

The constant c(V ; z0) is used to normalize the L1 norm of h(z) to one. For
V → ∞, the function h(z;V ) tends to a point mass centered at the (generically
unique) maximum of h(z;V ), i.e. on roots of f(z), which correspond to locally
stable stationary states in the ODE ż = f(z). Hence, as expected, we again find
the stationary states of the deterministic model. It is unexpected, though, that
the bistability and hysteresis is lost.

Summary: Stochasticity may destroy hysteresis for slowly changing param-
eters. Our finding can be interpreted as the possibility of the system to “tunnel”
from one (deterministic locally stable) state to another. In this way, one station-
ary state generically “wins”. Only if the parameters are changed fast enough,
the picture changes and the hysteresis is present again (the tunneling effect is too
slow). If the parameters are changed even faster, the hysteresis is destroyed, as
the time scale separation of the change in the parameters and that in the system
is not given any more.
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Cell-based morphogenetic models

Markus Kirkilionis

We consider and discuss the mathematical structure of morphogenetic models
based on a single cell or single cell nucleus framework. In particular we like to use
structured cell population models, where the cells are structured according to their
state in the cell-cycle, and any other necessary . To understand the mathematical
structure in the following we start by looking at a typical single cell experiment,
the movement of a single cell on a substrate in a Petri-dish. This basic experiment,
for example changing the direction of motion of this cell under observation, shows
the different structures we need to incorporate to understand the organization of
multi-cell tissue models, see Fig. 1.

Figure 1. A cell in a cellular environment. According to cur-
rent experimental knowledge cellular behaviour and growth will
depend on the cell’s internal state, the geometry of the external
environment, positional information like chemical gradients (here
called a ’field’), and the geometrical and mechanical properties of
the cell itself.

It is clear that we need to structure any morphogenetic model with different de-
tail taking all the aspects of Fig. 1 into account. The plan is to replace the classical
reaction-diffusion models by cell-based at the same time internally and spatially
structured cell populations. There are several reasons why this is required, both
from a mathematical and an experimental point-of-view:

• The classical reaction-diffusion theory working with transport terms based
on diffusion only, and deriving morphogen gradients with the help of Tur-
ing instabilities is not size-scale independent. As we know embryos even
of the same species can vary in size considerably, such mechanisms cannot
create robust developmental principles of self-organization.
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• As a mathematical principle we therefore require a number of invariance
principles all different classes of morphogenetic models have to satisfy. The
most important one is that developmental dynamics should be indepen-
dent of variations in embryo size. There are other such principles based
on experimental evidence, for example using transplantation experiments
and subsequent differentiation of the tissue. It has been suggested that
transplantation experiments in morphogenesis cannot understood without
memory of the system, here suggested to be equivalent to the cell’s internal
state.

• There is currently an explosion of data available for single cells, includ-
ing the cell cycle which is essential to understand the differentiation and
growth of tissues. In addition much more is known on how cell’s interact
and communicate with each other, for example by different receptors on
the cell surfaces. To include such mechanisms structured cell populations
are offering an ideal mathematical framework.
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Multi-species chemotaxis

Dirk Horstmann

Multi-agent-attraction resp. multi-agent-repulsion is nothing unusual in chemo-
taxis. There are several examples known for the reaction of mobile species to
multiple stimuli in the environment. Furthermore, there are also examples where
the chemotactical behavior of multiple population depends on the reaction to mul-
tiple attractants, like in host-parasitoid interactions. Taking all these aspects into
account one can generalize the “classical” chemotaxis equations by Keller and Segel
(compare [4]) to n mobile species that react on m different chemical substances.
In this talk we consider the particular case of the following simplified multi-species
system

(1)






∂
∂tpi = ∇(ki,1(pi)∇pi) + ∇

(
n∑

l=1,l 6=i

δi,lki,2(pi)θi,l(pl)∇pl
)

−∇
(

m∑
j=1

ωi,jki,3(pi)∇Φi,j(sj)

)
, (x, t) ∈ Ω × (0, T )

∂
∂tsj =

(
m∑
k=1

bk,j∆sk

)
−

m∑
k=1

γk,jfk,j(sk) +
n∑
k=1

αk,jgk,j(pk, sj),

(x, t) ∈ Ω × (0, T )

with homogeneous Neumann boundary conditions, where the ai, bk,j , αk,j , ωi,j , δi,l
and γk,j are given constants and the ki,1(·), ki,2(·), ki,3(·), θi,l, Φi,j(·), fk,j(·) and
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gj,k(·, ·) are given functions. According to [5] we set λi,j =
m∑
k=1

ωi,kαj,k = ωiαj

if ki,1(·) = id, ki,2(·) = id, ki,3(·) = id, θi,l = 1, Φi,j(·) = id, fk,j(·) = id and
gj,k(p, s) = p. In this case G. Wolansky introduced in [5] the following notations:

(1) A population i1 is attracted (resp. repelled) to (resp. from) a population i2
if λi1,i2 > 0 (resp. λi1,i2 < 0). In particular, a population is self-attracting
(self-repelling) if λi,i > 0 (resp λi,i < 0).

(2) A pair of populations i1, i2 ∈ {1, ..., n} is said to be in a conflict, if λi1,i2 ×
λi2,i1 < 0.

In the given situation a pair of populations i1, i2 ∈ {1, ..., n} is said to be conflict-
free, if λi1,i2 × λi2,i1 > 0 and if there are n positive constants ρ1, ..., ρn such that
ρiλi,l = ρlλl,j . However, for general systems like (1) we have to introduce also
some other definitions (compare [1]):
Suppose that ki,2(·) and θi,j(·) do not change sign for all i, j ∈ {1, .., n} with i 6= j.
For i 6= j we set κi,j(pi, pj) = δi,jki,2(pi)θi,j(pj) · δj,ikj,2(pj)θj,i(pi).

(1) A population i1 has common objectives (has no common objectives) with
a population i2 if κi1,i2(pi1 , pi2) > 0 (resp. κi1,i2(pi1 , pi2) < 0).

(2) If δi1,i2ki1,i2(pi1)θi1,i2(pi2) = δi2,i1ki2,i2(pi2)θi2,i1(pi1) we say that the pop-
ulations i1 and i2 have homogeneous common objectives.

(3) We say that the system describes motion with common objectives, if and
only if κi,j(pi1 , pi2) > 0 for all i, j ∈ {1, ..., n} with i 6= j.

Now we considered the special system
(2)




∂
∂tpi = ai∆pi + ∇

[
n∑

l=1,l 6=i

δi,lpi∇pl −
m∑
j=1

ωi,jpi∇sj
]
, (x, t) ∈ Ω × (0, T )

∂
∂tsj =

(
m∑
k=1

bk,j∆sk

)
−

m∑
k=1

γk,jsk +
n∑
k=1

αk,jpk, (x, t) ∈ Ω × (0, T )

with homogeneous Neumann boundary conditions. Assuming additionally that
the matrices B = (bi,j)n×n, G = (γi,j)m×m and D = (δi,j)n×n are symmetric, B is
positive definite and ωi,j = 0 iff αj,i = 0 for i ∈ {1, .., n} and j ∈ {1, ..,m} holds
true, we introduce (for this kind of conflict-free systems in the presence of motion
with common objectives) the following Lyapunov functional:

L(p, s) =
1

2

m∑

j=1

m∑

l=1

βl,j

∫

Ω

[bj,l∇sj∇sl + γj,lsjsl] dx+

n∑

i=1

ρi

∫

Ω

aipi log(pi)dx

−
n∑

i=1

m∑

j=1

ρiωi,j

∫

Ω

pisjdx+

n∑

i=1

n∑

k=1,k 6=i

ρiδi,k

∫

Ω

pipkdx,

where the matrix β = (βl,j)m×m is such that βαi = ρiωi for all 1 ≤ i ≤ n and
m∑
l=1

βl,j > 0 for all j ∈ {1, ...,m} with ρi > 0 for all i ∈ {1, ..., n}. This generalizes

a result in [5]. Now we see that L(p, s) is monotone non-increasing for classical
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solutions of (2) if ρi > 0 for all i ∈ {1, ..., n}, i.e. in the conflict-free situation.
However, there are also other situations in which a Lyapunov functional exists.
Therefore, we look at
(3)




∂
∂tpi = ∇(ki,1(pi, s)∇pi) −∇

(
ki,2(pi, s)

m∑
j=1

ωi,j∇sj
)
, (x, t) ∈ Ω × (0, T )

∂
∂tsj =

(
m∑
k=1

bk,j∆sk

)
−

m∑
k=1

γk,jsk +
n∑
k=1

αk,jgk,j(pk, sj), (x, t) ∈ Ω × (0, T )

with homogeneous Neumann boundary conditions, where the bk,j and γk,j are
given constants and the functions ki,1(·), ki,2(·, ·) and gk,j(·, ·) 6= 0. Assuming the
same as above for the matrices B = (bi,j)n×n, G = (γi,j)m×m and D = (δi,j)n×n,
we set Gi,j(pi, sj) = −

∫ sj gi,j(pi, y)dy. As shown in [1] there exists a Lyapunov
function for system (3), if there exist n functions Ri(pi) such that

ki,2(pi, s)

ki,1(pi, s)

[
m∑

k=1

ωi,k
∂2

∂p2
i

Gi,k(pi, sk) +
d2

dp2
i

Ri(pi)

]
+

∂2

∂pi∂sj
Gi,j(pi, sj) = 0

for all j ∈ {1, ...m} if additionally

m∑

j=1

∂2

∂p2
i

Gi,j(pi, sj) +
d2

dp2
i

Ri(pi) ≥ 0 for all i ∈ {1, ..., n}

holds true for the solution of (3). The Lyapunov function for system (3) is then
given by

H(p, s) =
1

2

m∑

j=1

m∑

l=1

∫

Ω

βl,j [bj,l∇sj∇sl + γj,lsjsl]dx +

n∑

i=1

∫

Ω

ρiRi(pi)dx

+
n∑

i=1

m∑

j=1

ρiωi,j

∫

Ω

Gi,j(pi, sj)dx,

if ρi > 0 for all i ∈ {1, ..., n}, where the matrix β = (βl,j)m×m is such that

βαi = ρiωi for all 1 ≤ i ≤ n and
m∑
l=1

βl,j > 0 for all j ∈ {1, ...,m}.

In the last part of the talk, we paid our attention to some simplified multi-species
chemotaxis models that (after some transformations) are of the following type:

(4)






Ut = ∇(∇U − χ1U∇V ), in Ω × (0, T )
Wt = ∇(∇W ± χ2W∇V ), in QT

Vt = ∆V − γV + ν±
(
λU ± µW − 1

|Ω|

)
, in Ω × (0, T )

∂U
∂n = ∂W

∂n = ∂V
∂n = 0 on ΓT

U(0, x) = U0(x), W (0, x) = W0(x), x ∈ Ω,
V (0, x) = V0(x), x ∈ Ω.

As mentioned before, we have two Lyapunov functionals at hand in the conflict-
free situations that are helpful tools for analyzing the time asymptotic behavior
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of the solutions. The corresponding steady state problems to (4) are given by:

(5) 0 = ∆V − γV + ν±



λ eχ1V

∫

Ω

eχ1V dx
∓ µ

e∓χ2V

∫

Ω

e∓χ2V dx
− 1

|Ω|





and have a variational structure. Besides some statements on the time asymptotic
behavior of solutions to (4) also some existence and uniqueness results for problem
(5) are established by using some results from [3].
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Measure solutions of the 2D Keller-Segel model as limit of a stochastic
many particle model

Christian Schmeiser

(joint work with Jan Haskovec)

The existence theory of strong solutions of the two-dimensional elliptic-parabolic
Keller-Segel model

∂tρ+ ∇ · (ρ∇S[ρ] −∇ρ) = 0 ,

S[ρ](x) = − 1

2π

∫

R2

log(|x− y|)ρ(y) dy ,

subject to the initial condition ρ(t = 0) = ρI , has reached a very mature state
recently. Already in [6] it has been observed that the total mass M =

∫
R
ρ dx

of the cells is a critical parameter. For solutions with bounded second moment
(
∫

R
ρ|x|2 dx < ∞), strong solutions exist globally in time in the subcritical case

M < 8π, and the cell population is dispersed. In the supercritical case M > 8π
solutions blow up in finite time creating point aggregates of cells, and in the critical
case M = 8π solutions exist globally in time and aggregate in infinite time [1],
[2]. In [3] Poupaud’s theory of diagonal defect measures [7] has been applied to
prove unconditional global existence of weak measure solutions of the generalized
problem

∂tρ+ ∇ · (j[ρ, ν] −∇ρ) = 0 ,
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where ν ∈ M1((0, T )×R
2)2×2 is a symmetric, nonnegative matrix valued measure

(the so-called diagonal defect measure), verifying the estimate

tr(ν(t, x)) ≤
∑

a∈Sat(ρ(t))

ρ(t)({a})2δ(x− a) ,

with Sat(ρ(t)) denoting the atomic support of the limiting bounded, nonnegative
Radon measure ρ(t) ∈ M+

1 (R2). The distributional definition of the convective
flux j[ρ, ν] with a test function φ ∈ C∞

c ((0, T ),R2) is given by
∫ T

0

∫

R2

j[ρ, ν](t, x)φ(t, x)dx dt

= −1

2

∫ T

0

∫

R4

K(x− y)ρ(t, x)ρ(t, y)(φ(t, x) − φ(t, y)) dx dy dt

−1

2

∫ T

0

∫

R2

ν(t, x)∇φ(t, x) dx dt ,

with K(x) = x
2π|x|2 for x 6= 0, and K(0) = 0.

In the spirit of [8] the Keller-Segel problem can been approximated by the
system

dxn = −M
N

∑

n6=m≤N

Kε(xn − xm)dt+
√

2 dBn , Kε(x) =
x

|x|(|x| + ε)
,

of stochastic differential equations for a system of N identical particles with mass
M/N . The regularization parameter ε > 0 is used to make the deterministic par-
ticle velocity bounded. This is sufficient for existence and uniqueness of bounded
solutions of the corresponding Kolmogorov forward equation

(1) ∂tp+

N∑

n=1

∇xn ·



−M
N

∑

m 6=n

Kε(xn − xm)p−∇xnp



 = 0 ,

for the many-particle probability distribution p = p(t, x1, . . . , xN ). In [4] the
limit N → ∞ has been carried out for fixed positive ε and initial conditions
p(0, x1, . . . , xN ) = PI(x1) · · ·PI(xN ) of i.i.d. particles. As a result, global solutions
of a regularized Keller-Segel problem are derived, which, by the theory of [3],
converge to measure valued solutions as ε→ 0.

The order of the limits has been reversed in [5]. The limit ε→ 0 in (1) leads to
measure solutions with diagonal defect measures similarly to the Poupaud theory.
Subsequently, also the limit N → ∞ can be carried out with the (distributional)
convergence result

lim
N→∞

∫

R2(N−k)

p dxk+1 . . . dxN = P (t, x1) · · ·P (t, xk)

for marginals, whereMP (t, x) is a measure solution (with diagonal defect measure)
of the Keller-Segel model. A similar factorization property holds for the limiting
defect measures.
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Non unique continuation of solutions of the Keller-Segel model in the
sense of measures

Juan J. L. Velazquez

(joint work with S. Luckhaus, Y. Sugiyama)

The classical Keller-Segel model for chemotactic aggregation in two spatial dimen-
sions reads as:

ut = ∆u−∇ (u∇v)
0 = ∆v + u

It is well known that the solutions of this PDE can develop singularities in finite
time (cf. [1]). Moreover, a large amount of information concerning the number of
possible blow-up points and the structure of the solutions at the time of formation
of the singularities is known (cf.[4]).

In this report, the continuation of the solutions beyond the blow-up time is
considered. It turns out that the resulting weak solutions derived in this form
satisfy different weak formulations that generalize the concept of solution for the
Keller-Segel system to measure valued solutions.

The continuation of the solutions of the Keller-Segel system beyond the blow-up
time has been considered in several papers and with different approaches. In the
paper [5] the following system was studied using formal asymptotic expansions:
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ut = ∆u−∇ (fε (u)∇v)
0 = ∆v + u

fε (u) =
1

ε
F (εu) , ε > 0

F (U) =
1

1 + U

In particular, it was seen in [5] that the solutions of this regularized system of
equations should converge to a measure having the form:

u =
∑

j

αj (t) δxj(t) + ureg

where αj (t) , xj (t) satisfy a system of ODEs coupled with the evolution of the
regular part of this measure.

A different approach was used in [3]. In this paper a concept of weak solution
that allowed to extend the concept of solution for the Keller-Segel model to mea-
sures was introduced. A key step in the definition of weak solution used in [3] was
a symmetrization argument of the nonlinear term rather similar to the argument
used in the paper [4] to prove single point blow-up for the Keller-Segel system.

We have considered in the paper [2] two different regularizations of the Keller-
Segel system, namely:

ut = ∆u−∇ (fε (u)∇v)
0 = ∆v + fε (u)

fε (u) =
1

ε
F (εu) , ε > 0

F (U) =
1

1 + U

and

ut = ∆(u+ εuα) −∇ (u∇v) , α > 1 , ε > 0

0 = ∆v + u

We prove in [2] that the limit of the solutions of these two different systems
converge to different measures that satisfy different weak formulations. Moreover,
we obtain information on the amount of mass that can be concentrated at the
singular points for both limit measures.
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Some kinetic models in swarming

José A. Carrillo

I presented a kinetic theory for swarming systems of interacting, self-propelled
discrete particles. Starting from the the particle model [6], one can construct solu-
tions to a kinetic equation for the single particle probability distribution function
using distances between measures [5].

Moreover, I introduced related macroscopic hydrodynamic equations. General
solutions include flocks of constant density and fixed velocity and other non-trivial
morphologies such as compactly supported rotating mills. The kinetic theory
approach leads us to the identification of macroscopic structures otherwise not
recognized as solutions of the hydrodynamic equations, such as double mills of
two superimposed flows.

I also presented and analysed the asymptotic behavior of solutions of the con-
tinuous kinetic version of flocking by Cucker and Smale [4], which describes the
collective behavior of an ensemble of organisms, animals or devices. This kinetic
version introduced in [7] is obtained from a particle model. The large-time behav-
ior of the distribution in phase space is subsequently studied by means of particle
approximations and a stability property in distances between measures. A contin-
uous analogue of the theorems of [4] was shown to hold for the solutions on the
kinetic model. More precisely, the solutions concentrate exponentially fast their
velocity to their mean while in space they will converge towards a translational
flocking solution.

The presentation was based in works in collaboration [1, 2, 3].
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Qualitative behavior of a Keller-Segel model with non-diffusive
memory

Kyungkeun Kang

(joint work with Angela Stevens, Juan J. L. Velázquez)

We consider a one-dimensional Keller-Segel model with a logarithmic chemotatic
sensitivity and a non-diffusion chemical:

(1) ut = uxx −
(
u
wx
w

)

x
, wt = uwλ, 0 ≤ λ < 1.

The main question addressed for the equations (1) is whether smooth solutions
exist globally in time, or blowup happens. A crucial assumption is that the chem-
ical is produced by the chemotactic species and decay terms do not occur. The
equations (1) was introduced and formally analyzed in [3] and [2], respectively.

Using the change of variable, z = (1 − λ)−1w
1
θ with θ = 1

1−λ , the equation (1)
can be written as

(2) ut = uxx − θ
(
u
zx
z

)

x
, zt = u, 1 ≤ θ <∞.

In [4], existence of global solutions for linear production kinetics, λ = 0(or θ = 1)
was proved. On the other hand, it was shown in [1] that finite time blow-up
may occur for specific explicit initial data provided that production kinetics are
exponential, λ = 1 (or θ = ∞).

We note that (a, at) with a > 0 is a spatially independent solution of (2). In
case that θ = 1, we show both linear and nonlinear stability for solutions of (2)
when initial data of the solutions is sufficiently close to the homogeneous solution.
To be more precise, we prove

Theorem I Let θ = 1 and (a, at) be a space-independent solution of (2), where
a > 0 is constant. If (u, z) is a solution with initial data (u0, z0) sufficiently close
to (a, a), then there exists v∞ ∈ H2 such that u and z

t both converges to a+ v∞
for t→ ∞ in a suitable sense. �

For the proof of Theorem I we use the Fourier expansions. We first look for
solution of the form

u(x, t) = a+ v(x, t), z(x, t) = at+ ξ(x, t).

We then obtain the perturbed equations

vt = vxx −
(

1

t
ζx

)

x

−
(

ζx
z̄ + ζ

v − aζζx
z̄(z̄ + ζ)

)

x

, ζt = v.

For convenience, we introduce the norm |||ψ|||2L,k =
∫ L
(L−1)+ ||ψ(t)||2Hkdt, where

k ≥ 0, L > 1 and (L − 1)+ = max {L − 1, 1}. We treat separately the stability
issues for linear or nonlinear case and the convergence of u and z

t to a + v∞ for
t→ ∞ for both cases can be shown in the following sense, respectively:
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(i) (Stability of the linearized case)

||u(t) − (a+ v∞)||H2 −→ 0, as t → ∞,

∣∣∣∣

∣∣∣∣
ζ(t)

t
− (a+ v∞)

∣∣∣∣

∣∣∣∣
H2

−→ 0 as t → ∞.

(ii) (Stability of the nonlinear case)
∣∣∣∣

∣∣∣∣
ζ(t)

t
− v∞

∣∣∣∣

∣∣∣∣
H2

−→ 0 for t → ∞,

||v(t) − v∞||H1 −→ 0 for t → ∞,

|||v − v∞|||L,2 −→ 0 for L → ∞.

On the other hand, in case that 1 < θ < 3, we construct blow up solutions at
infinite time. More precisely, we prove the following:

Theorem II There exist a family of initial data u0, z0 ∈ C2,ν such that the
corresponding solutions (u, z) of (2) satisfy u(x, t) → µδ(x) in the sense of mea-
sures, where µ =

∫
I u0(x)dx. Moreover, the following asymptotic formula hold for

z(x, t):

(i) z(x, t) → z∞(x) as t → ∞ uniformly in compact sets of I \ {0} for some

function z∞ ∈ C2(I \ {0}) satisfying limx→∞ x
2

θ−1 z∞(x) = B− 1
θ−1 .

(ii) There exist constants A,B depending on the initial data such that

lim
t→∞

z

(
y

t
θ−1
3−θ

, t

)

t
2

3−θ

=
1

(By2 +A)
1

θ−1

uniformly in any compact sets {y : |y| ≤ C}. �
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The delay equation formulation of structured population models

Odo Diekmann

(joint work with Mats Gyllenberg, Hans Metz)

A delay equation is a rule for extending a function of time towards the future, on
the basis of the known past. Renewal Equations prescribe the current value, while
Delay Differential Equations prescribe the derivative of the current value. With
a delay equation one can associate a dynamical system by translation along the
extended function. There is a rich qualitative theory for these dynamical systems.

Structured population models are traditionally formulated as first order PDE
with non-local boundary conditions. By way of two examples (size-structured
consumers competing for an unstructured resource and size-structured cell pop-
ulations) we show how, for a special class of initial conditions, these models can
be reformulated in terms of delay equations. The special class forms a forward
invariant attracting set, so the information that is lost by restricting to it concerns
transient behaviour only.

The consumer-resource model is described by the system

(1)

b(t) =

∫ ∞

0

b(t− a) β(Ξ(a;St), S(t))F(a;St)da,

dS

dt
(t) = f(S(t)) −

∫ ∞

0

b(t− a)γ(Ξ(a;St), S(t))F(a;St)da.

It is extensively studied in a joint paper with Mats Gyllenberg, Shinji Nakaoka,
Hans Metz and Andre de Roos. This paper, entitled Daphnia revisited, is dedi-
cated to Horst Thieme at the occasion of his 60th birthday.

Equations with infinite delay

Mats Gyllenberg

(joint work with Odo Diekmann)

A large class of models of physiologically structured populations take the form of
a nonlinear renewal equation coupled with a delay-differential equation:

x(t) = F1(xt, yt),(1)

ẏ(t) = F2(xt, yt), t > 0.(2)

Here the unknowns x and y are defined on R with values in R
m and R

n, respec-
tively. The subscript denotes translation:

xt(θ) := x(t + θ), −∞ < t ≤ 0.

The equations (1) and (2) have to be supplemented by initial conditions

x(t) = ϕ(t),(3)

y(t) = ψ(t), −∞ < t ≤ 0.(4)
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Let ̺ > 0. As state space we choose X = X1 × X2 with X1 = L1
̺(R−; Rm),

the Banach space of all (equivalence classes of) measurable functions ϕ : R− =
(−∞, 0] → R

m such that the weighted integral

(5) ‖ϕ‖1,̺ =

∫ 0

−∞

e̺θ|ϕ(θ)| dθ

is finite, and X2 = C0,̺(R−; Rn) of all R
m-valued functions ψ defined on R− such

that θ 7→ e̺θψ(θ) is continuous and vanishes at minus infinity with norm

‖ψ‖∞,̺ = sup
θ∈R−

e̺θ|ψ(θ)|.

The function F1 maps X into R
m and F2 maps X into R

n.
A first reason for the weight is that we want to consider steady-states , that

is, constant solutions of (1) & (2), and constants do not belong to L1 when the
domain (delay) is infinite. The second reason for the weight is that we want some
Laplace transforms to be defined in a strip to the left of the imaginary axis.

Assume that F is continuouslu Fréchet differebtiable. Linearizing the concrete
system (1) & (2) about a steady-state one obtains

x(t) =

∫ ∞

0

k11(θ)x(t − θ)dθ +

∫

R+

µ12(dθ)y(t − θ),(6)

ẏ(t) =

∫ ∞

0

k21(θ)x(t − θ)dθ +

∫

R+

µ22(dθ)y(t − θ),(7)

where k11 and k21 are matrix valued functions defined on R+ such that

‖ki1‖∞,̺ <∞

and µ12 and µ22 are matrices, the elements of which are measures on R such that
∫

R+

e̺θµ(dθ) <∞.

Let

M(λ) =

(
I 0
0 λI

)
−
(
k̂11(λ) µ̂12(λ)

k̂21(λ) µ̂22(λ)

)
,

where the hat denotes Laplace transform. The characteristic equation is

(8) detM(λ) = 0.

In [3] we proved the following theorem.

Theorem 0.1. (Principle of linearized stability)

(a) If all the roots of the characteristic equation (8) have negative real part,
then the steady state is exponentially stable.

(b) If there exists at least one root of (8) with positive real part, then the steady
state is unstable.
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Theorem 0.1 extends the results of [5] to the case of infinite delay. As in [5],
we use perturbation theory of adjoint semigroups to prove Theorem 0.1. In fact,
we show that the concrete problem (1) & (2) is equivalent to the abtract integral
equation

(9) u(t) = T0(t)

(
ϕ
ψ

)
+ j−1

∫ t

0

T ′∗
0 (t− s)(ℓ ◦ F )(u(s))ds.

Here the unperturbed semigroup T0 is shift to the left and extension by zero in
the first component and by the value at zero in the second component. T ′∗

0 is an
extension of T0 to a bigger space X ′∗ and j is a natural injection of X into X ′∗. ℓ
is an injection of R

m × R
n into X ′∗.

In the case of finite delay the problem has a property called sun-reflexivity,
which, amoing other things, guarantees that the integral in (9) makes sense and
belongs to j(X). However, a small modification of the sun-reflexive theory makes
it possible to treat equations with infinite delay in essentially the same framework.

Lack of compactness is a second complication that arises when one moves from
finite to infinite delay. When the delay h is finite, the unperturbed semigroup
T0(t) will have finite dimensional range for t > h. In applications to renewal
equations it is even nilpotent. In any case, T0 is eventually compact when the
delay is finite. Combined with the fact that G has finite dimensional range, this
yields that the perturbed semigroup T for the linearized equation is eventually
compact. As a consequence, the spectrum of the infinitesimal generator A of T
is a pure point spectrum and the growth bound ω(T ) of T equals the spectral
bound s(A) of A, which is the supremum of the real part of the eigenvalues of A.
It follows that to determine the stability or instability of steady-states it suffices
to locate the eigenvalues of A in the complex plane. When the delay is infinite,
this is no longer necessarily true and the inequality s(A) ≤ ω(T ) may be strict.
Therefore the location of the eigenvalues of A does not tell the whole story. But
here we switch from the abstract setting to the concrete delay equations and use
the Payley-Wiener theorem.
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Model supported data analysis – some examples and principles

Wolfgang Alt

A historical review, which seems appropriate in the current DARWIN-year cel-
ebrating the initiation of modern evolution theory 150 years ago, reveals that
“Mathematical Biology” with the Oberwolfach Conferences having been started
in 1975 can look back to an age of almost one century, thinking of LOTKA’s
seminal work in 1925, for example, and the subsequent initiation of “Population
Genetics”, whose roots go further back to the early bio-statistical (‘biometric’)
theories by PEARSON in the beginning of the 20th century, when also the con-
cept of ‘gene’ was coined – 1909, exact 100 years ago [1]. In the same year, the

zoologist UEXKÜLL, who together with the botanist REINKE was one of the
early founders of “Theoretical Biology” [2], had coined the theoretical concept
of environment (‘Umwelt’) as the exterior ‘counter-part’ of the interior dynamic
structure (‘Gefüge) of a living organism, experienced by applying various ’func-
tional cycles of action and perception’: each organism constructs its own ‘Umwelt’
as world of acting (‘Wirkwelt’) and world of sensing (‘Merkwelt’) in such a way
that any object only appears as a counter-structure (‘Gegengefüge’) between in-
ternally represented action signals (‘Wirkmale’) and sensor signals (‘Merkmale’).
Thereby the ‘outer feedbacks’ of an own action via perceived environmental sig-
nals can be functionally controlled (‘counter-rolled’) by ‘inner feedback cycles’ as
realized by the neural feedback of proprioception during locomotion.

By presenting three biological examples I want to prove and emphasize, that this
quite simple but important ‘principle of life’ has to be regarded, when mathemat-
ical models are used to analyse and interpret the observations of living organisms.
Often, essentially ‘descriptive’ models are applied, which by numerical simulation,
statistical analysis and parameter fitting just want to reproduce the experimental
data as they have been acquired and measured by the observer. However, then
we can easily fail by not primarily modeling the organism, rather our own cog-
nitive process of experimenting and observing. Thus, a true biological model
supported data analysis must try to reconstruct the internal ‘knowledge’ and
‘functional regulation’, which the organism uses to perform the behavior that we
observe.

0.1. Orientation and path integration in desert ants. Desert ants as
Cataglyphis fortis use a hitherto unknown neural algorithm of path integration
for estimating the position of their nest (=’home’) relative to their current body
axis, by using quite accurate measurements of their walking speed v(t) and angular
orientation, thus also of their turning speed ω(t). Nevertheless, one observes sys-
tematic errors of their homing path with a tendency to underestimate the distance
in proportion to the length of the outgoing path and to overestimate the orienta-
tion angle in proportion to its net curvature. A simple model of ‘leaky integration’
is proposed [4], which implements a constant leakage rate into the activity of two
hypothetical interneurons representing the current values of the ant’s egocentric
Cartesian coordinates (X(t), Y (t)) for nest position, see Fig. 1(left). The observed
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Figure 1

geocentric coordinates (x(t), y(t)) of the ant’s moving path is then transformed via
a simple linear ODE for (X,Y ) with v and ω as coefficients, whose solution could
easily be realized by the ant’s brain. See Fig. 1(right) for visualization of a simu-
lated path during foraging (1), reorientation (2) and homing (3), showing totally
different trajectories in the observer’s and the ant’s view. Though other models,
which rely on an artificial approximation of the nonlinearities appearing in the path
integrator ODE for egocentric polar coordinates, can also reproduce the observed
orientation data, we strongly argue for the more physiological ‘leaky integrator’
model, whose outcome might even be ‘anticipated’ by the ant and used as infor-
mation for further phases of systematic home search. When statistically analysing
the field data of ant paths (recorded in the Tunesian desert) under support of our
model, three internal control parameters can be extracted: the leakage parameter
for path integration, the strength as well as the time constant for counter-steering
of the turning rate ω(t) in response to the internally represented ‘sidewards nest
deviation’ Y (t) on the way home.

0.2. Burst response of neuromast sensor cells. Fishes as the goldfish Caras-
sius auratus use the lateral line system to measure relative speeds or pressure
differences of the surrounding water by mechanosensors called neuromast. Not
only in response to such stimuli, also spontaneously, extracellular recordings of
single neuromasts reveal characteristic features of bursting spike sequences (ac-
tion potentials in the axonal plasma membrane). Whereas the statistical analysis
of Poisson-like burst processes is usually performed by investigating the distribu-
tion or correlation of the observed interval times, we propose a general method
of model supported burst analysis regarding the above-mentioned ‘life principle’:
Within the neural network of post-sensor data processing by the fish brain, at the
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synapses any presynaptic spike train signal St is transformed into a non-spiking
postsynaptic membrane depolarization P (t), which can be reconstructed by solv-
ing the simple differential equation dP = St − P ∗ dt/T (linear filter of 1st order)
driven by the empiric signal as stochastic input. Then, standard probability theory
and auto-correlation analysis can be applied to extract characteristic properties
of the neuromast bursting pattern. Moreover, we realize that ‘integrate-and-fire’
models for spike burst generation at the axon hill of a single sensor or neuron cell
(cf. [5]) assume analogous types of differential equations for inhibiting membrane
currents R(t) as ‘negative feedback’ onto the own membrane potential, and there-
fore might regard this as a kind of ‘proprioceptive functional cycle’, thus as a part
of the cell’s internal knowledge about its stimulatory ‘world of action (Merkwelt)’,
namely the surrounding neural network.

0.3. Dynamics of cell adhesion and motility. Cell motility of tissue and blood
cells on adhesive substrata is induced through the action of actin filaments, which
by organized polymerization and by cross-linking with myosin-II motor proteins
constitute a transiently swelling and contracting polymer network that is used by
the cell for protrusion in frontal lamellipods, traction force production at the cell-
substrate border and subsequent retraction of the rear. This leads to typical two-
dimensional picture sequences of adhesion areas Ω(t) ‘beneath the cell’ with moving
boundaries. For cells moving on an elastic substratum, more descriptive methods
have succeeded in estimating the adhesive force vector field in Ω(t) by solving an
inverse problem for the elastic substrate deformation measured at discrete points
outside the cell area (see the contribution by D. Ambrosi during this Workshop).
However, this methods usually do not consider any modeling of the intracellular
biophysical processes causing the motion pattern. Therefore, according to the ‘life
principle’ applied to model supported data analysis in the two preceding examples,
we would like to promote the following idea by using the so far developed models of
the cytoplasm as a contractile, reactive and highly viscous two-phase flow system,
mathematically represented by a hyperbolic-/elliptic system of mass and force
balance equations plus a hybrid system of reaction-diffusion-transport equations
for the various states of adhesion molecules (integrins), see [3]. The following
program would have to be performed: 1.Record the cell geometry by extracting
cell outlines ∂Ω(t) for a picture sequence, 2. simulate actin and integrin dynamics
in the given cell geometry Ω(t), 3. check compatibility of boundary conditions
by suitable adjustment of model parameters, and 4. compute the traction forces
beneath the cell. For me it still seems a dream to successfully pursue this idea,
however, due to joint effort by such or similar modeling approaches we might be
able to understand more about the internal biochemical and biophysical regulation
mechanisms, which migrating cells use to perform and control their active motility.
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An alignment model with double selection mechanism

Ivano Primi

(joint work with Angela Stevens, Juan J.L. Velázquez)

The results of this talk are related to a mathematical model for alignment of
elongated cells or filaments in a 2-dimensional geometry. The model is still too
simple and abstract to be applied to real alignment phenomena. It has however
a very interesting feature, which mirrors a fundamental characteristic of align-
ment phenomena, namely a dynamics that drives the system from a continuous of
orientations into the selection of a finite number of them.

Such a long time dynamics is not an exclusive property of alignment phenomena.
A biological population can be often divided in classes according to the values of
one or more relevant parameters. In case of alignment phenomena this parameter
is the orientation in the space, for age structured populations is the age etc.

Interactions internal to the population or with the external environment can
lead to a redistribution of the individuals into the different classes. In several
cases the interactions are such that the final effect of this redistribution is the
transition from an initial situation, when the individuals are spread more or less
randomly over a continuous of classes, to a final situation, when the great majority
of the population is split only into a finite number of classes. Often, and this is
also the case of alignment phenomena, there is not only selection of a finite number
of states but also of a particular distribution of the total population into them.

For two dimensional alignments exemplo gratia, if in the long run only two
opposite directions are selected, this could mean that one half of the population
is oriented along one direction and the other half along the opposite one and no
other ways of splitting are possible. Examples of biological relevance for this double
selection mechanism could be cell differentiation or plasticity in the hematopoietic
stem cell system.

What makes our model for 2D-alignment relevant, is to be the simplest possible
one offering the double selection mechanism, selection of the final states and of
the distribution of the population between them.

The basic assumption is that two elongated cells or filaments either attract or
repel each other depending on the value of the angular difference between their
orientations. If the angle between the filaments or cells is close, then they tend
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to align into the same orientation; if the angle between them is larger, then they
tend to align themselves in opposite directions. The turning effect is considered
to be non-deterministic, which is the main difference with respect to the model
presented in [3].

Our model takes the form of an integro-differential equation for a function f on
the unit circle S

1:

∂tf(u, t) = −
∫

S1

T [f ](u, v)f(u, t) dv +

∫

S1

T [f ](v, u)f(v, t) dv .

Like in kinetic models, f is a density distribution, f(u, t) denotes namely the
density distribution of cells or filaments over the orientation u ∈ S

1 at time t. For
practical reasons we have normalized the arc-length of the unit circle to 1 and
used the representation S

1 = [−1/2, 1/2] with identification of the points 1/2 and
−1/2.

The first term on the right hand side of the equation describes the bundles
of cells or filaments which reorient away from u, the second term the bundles
orienting themselves into direction u. From the equation one can easily derive
that the total mass m =

∫
S1 f(u) du is conserved. Up to a scaling it is always

possible to set m = 1. In this equation T is a turning rate: T [f ](u, v) represents,
roughly speaking, the probability for a filament oriented along the direction u to
re-orient itself in the direction v. Choosing for the turning rate T a simple linear
Ansatz with constant interaction rate, one obtains the following definition of T ,

T [f ](u, v) =

∫

S1

Gσ(v −Mw(u))f(w, t) dw .

Here Gσ is an even, bounded and periodic probability density, namely the standard
periodic Gaussian, which is used to describe the non-deterministic nature of the
turning.

The function Mw, the so called optimal reorientation, defines the way the fila-
ments tend to re-orient themselves, depending on their original orientations, due to
the interaction with a given filament oriented in the direction w. For a system in-
variant under rotationsMw(u) = u+V (w−u), where V , the so called orientational
angle, is a smooth, 1-periodic and odd function, i.e. V (−u) = −V (u) for all u ∈ R.
Since we assume attraction when the difference w−u is small and repulsion if it is
larger, the orientational angle also fulfills the property, V (z) = V (0) = V (1/2) = 0,
V (x) > 0 in (0, z), and V (x) < 0 in (z, 1/2) for a suitable z ∈ (0, 1/2).

The presence of the probability density Gσ allows for non-sharp re-orientations:
Mw is the preferred orientation of re-alignment and not the only possible one. A
smaller σ means a narrower Gσ and then a higher accuracy of the re-orientation.
The limiting case is the Dirac mass G0(x) = δ0, which describes deterministic
turning. This case has been extensively studied in [3]. In my joint work with
Stevens and Velázquez (see [4]) we have looked for steady states in the limit σ
positive but small. If we assume that the typical deviation σ and the orientational
angle V are small, the evolution equation for the density distribution f can be
approximated by a second order parabolic equation using a Fokker-Planck type of
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argument, which results in

∂tf =
σ2m

2
∂xxf + ∂x

(
f(x)

∫

S1

V (x− y)f(y)dy

)
∀x ∈ R ,

where m = 1 is the total mass and x has been used in place of u to denote
the angle variable. This parabolic equation for 2D-alignments has been already
considered by E. Geigant (see [1]) and by Geigant and Stoll (see [2]), who carried
out a bifurcation analysis of steady state solutions and a stability analysis of some
of them by means of the Fourier transform. In [4] we concentrate on proving the
existence of non constant steady states and on performing a numerical analysis of
their stability.

The steady states of the parabolic equation are solutions of





σ2

2 fxx + d
dx

(
f(x)

∫
S1 V (x− y)f(y)dy

)
= 0 ∀x ∈ R

f (−1/2) = f (1/2)∫
S1 f(x) dx = 1 ,

or equivalently of the first order equation
{
fx + f(x)

∫
S1 V (x− y)f(y)dy = 0 ∀x ∈ R∫

S1 f(x) dx = 1 .

The equivalence between the second- and the first-order formulation is proved by
integration/differentiation w.r. to x using that V is 1-periodic and odd. These
properties of V allow also to omit the periodicity condition in the first order
formulation, since every solution of the first order problem turns out to be 1-
periodic. Notice that f ≡ 1 is a trivial steady state. In addition, since we are
assuming invariance under rotations, every non trivial steady state yields a 1-
parameter family of steady states: if f is a non trivial steady state, then any
rotation fθ(x) := f(x + θ) of angle θ ∈ (0, 1) is still a steady state and in gen-
eral differs from f . The steady state problem has then a strong non-uniqueness
property.

If we take σ = 0 we obtain back the equation studied in [3]:

f(x)

∫

S1

V (x − y)f(y) dy = 0 .

Since V (0) = V (±1/2) = 0, every convex combination of a Dirac mass at 0 and
a Dirac mass at ±1/2 is a solution of the last equation. This means that every
possible distribution of the total population in two opposite orientations is a steady
state and then a possible “limit state” for the solutions of the evolutive equation.
For σ = 0 we have then no mass selection but just selection of the final orientations.

For σ > 0 this changes: steady states can only be constructed, if the aligning
masses are either equal or the total mass is concentrated in one direction. In
addition, since for σ > 0 the evolutive equation is parabolic, the Dirac-deltas
steady states are replaced by smooth peak-like density distributions. Type and

stability of the steady states depend on the sign of I :=
∫ 1/2

0
V (x) dx. For a general

V this integral is different from zero and its sign has a simple interpretation: if
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positive, then the tendency of the filaments to aggregate in one direction is stronger
than the one to align in opposite directions, if negative, then the contrary is true.

Therefore it is not surprising that for I < 0 there is no 1-peak like steady
state with the mass strongly concentrated around the orientation x = 0. On the
contrary, for I > 0 and under the assumption that σ is “small” with respect to V
we could prove existence of a smooth 1-peak like steady state. According to the
numerical simulations, this steady state is stable.

A simple heuristic argument allows to understand that, if there is a two-peaks
like steady state with concentration of mass around two opposite orientations, then
the two peaks must have the same height, i.e. the total population must be equally
split between them. The existence of double peaked steady states has been proved
both for I > 0 and for I < 0. The proof requires, in addition to some technical
assumptions on V , the condition that σ is small with respect to V , namely σ < σ̄
for a suitable positive σ̄ = σ̄(V ). According to the numerical simulations, what
changes with the sign of I is the stability of the double peaked steady-states: if
the sign is negative they are stable, if it is positive they are unstable. Therefore
only if I < 0 the double peaked steady states can represent possible large time
limit behaviors for the solutions of the evolutive equation.

Under suitable assumptions on V and for σ > 0 sufficiently small it is possible
to prove also for N ≥ 3 the existence of N -peaks like steady states with peaks
symmetrically displaced along S

1 and having all the same height. We conjecture
that they are all unstable, as it is shown by numerical simulations for the case
N = 4.

The numerical simulations also show that for I 6= 0 the trivial steady state
f ≡ 1 is always unstable, which according to the interpretation of the sign of I is
not at all surprising.
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Asymmetric potentials and motor effect: large deviations and
homogenization approaches

Panagiotis Souganidis

(joint work with Benôıt Perthame)

In this talk we provide a mathematical analysis for the appearance of concentra-
tions (as Dirac masses) in the solutions to Fokker-Plank systems with asymmetric
potentials written as

{
−ǫ ∂2

∂x2ni − ∂
∂x (∇ψi(x) ni) + νiini =

∑
j 6=i νijnj in (0, 1),

ǫ ∂∂xni(x) + ∇ψi(x) ni(x) = 0 for x = 0 or 1.

or





−ǫn(1)
ǫ,xx − (ψy(

x
ǫ )n

(1)
ǫ )x + 1

ǫ ν
(1)(xǫ )n

(1)
ǫ = 1

ǫ ν
(2)(xǫ )n

(2)
ǫ

in (0, 1) ,

−ǫn(2)
ǫ,xx + 1

ǫ ν
(2)(xǫ )n

(2)
ǫ = 1

ǫ ν
(1)(xǫ )n

(1)
ǫ

ǫn
(1)
ǫ,x + ψy(

x
ǫ )n

(1)
ǫ = n

(2)
ǫ,x = 0 for x = 0 or 1 .

These problems have been proposed as models to describe motor proteins moving
along molecular filaments. The components of the system describe the densities
of the different conformations of the proteins.

Our results are concerned with the limit when ǫ vanishes and are based on the
study of a Hamilton-Jacobi equations arising, at the zero diffusion limit, after an
exponential transformation change of the phase funxction that yields a semilinear
system of viscous Hamilton-Jacobi equations. We consider different classes of
conformation transitions coefficients (bounded, unbounded, locally vanishing and
oscillating).

Numerical modeling of tumor growth

Thierry Colin

(joint work with Didier Bresch, Frederique Billy, Emmanuel Grenier, Benjamin
Ribba, Olivier Saut)

Tumor angiogenesis is a process by which new blood vessels are formed from the
existing vas- culature and carry additional nutrients and oxygen to tumor cells,
allowing them to proliferate. The process of angiogenesis is extremely important
in the development of tumors. It is generally accepted that a tumor, which needs
nutrients and oxygen to grow, cannot increase beyond few millimeters cubed with-
out an enhanced blood supply [1]. During tumor growth, a molecular cascade
drives the transition from the avascular stage to the vascular stage: new vessels
are formed from the surrounding existing vasculature, migrate towards the tumor
cells, and pene- trate the tumor mass to deliver oxygen and nutrients to the tu-
mor cells. Indeed, angiogenesis, or new vessel formation, is a result of a complex
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molecular balance be- tween numerous pro-angiogenic and anti-angiogenic endoge-
nous substances [2]. The complexity of angiogenesis is partly due to the existence
of a number of such factors. In breast cancer for instance, up to seven distinct
pro-angiogenic factors can be expressed [3].

Over the last 25 years, several mathematical models of angiogenesis have been
developed (see [4] for a review). Discrete mathematical models, based on cellular
automata, have been mainly used to predict the structure of extra- and intra-
tumoral vascular networks. Continuous models of tumor-induced angiogenesis
are based on ordinary or partial differential equations governing the change in
endothelial cell density, and the concentrations of tumor pro-angiogenic factors and
of fibronectin (a component of the extra-cellular matrix). From the physical point
of view, these models focus mainly on the endothelial cell diffusion, chemotaxis and
haptotaxis. It has also been proposed that mathematical models of angiogenesis
can be coupled with those of tumor growth. In [5], X. Zheng, S. M. Wise, and V.
Cristini propose a vascular tumor growth model in which the tumor growth model
proposed by H. M. Byrne and M. A. Chaplain [6] is coupled with a continuous-
discrete model of angiogenesis, such as that described by A. R. Anderson and M.
A. Chaplain [7]. In [8], P. Macklin et al. couple a tumor growth model with a
discrete model of tumor-induced an- giogenesis in order to take into account the
impact of blood flow on changes in the vascular network. Due to their complexity,
these models are only qualitative. Moreover, they only integrate one or two of the
molecular factors that drive the angiogenesis process, and the underlying tumor
growth model is often very simplistic and fails to take cell cycle regulation into
account.

Since the angiogenesis process was first identified as a key process in tumor
development a few years ago, pharmaceutical companies have been looking for
inhibitors of angiogenesis. Several anti- angiogenic molecules have been identified
and tested in clinical trials but, with a few exceptions, and as is all too often the
case with targeted therapies, efficacy has been difficult to demonstrate. This makes
it rather difficult to assess attempts to optimize treatment. New anti-cancer drugs
are designed to target a particular cancer process, unlike standard chemothera-
peutic compounds that have a cytotoxic effect on all proliferative cells. Targeted
therapies, which are also known as cytostatic treatments act mainly at the molec-
ular level. For instance, some anti-angiogenic drugs, such as the best known, Be-
vacizumab (Avastin, Roche), prevent the binding of vascular endothelial growth
factor (VEGF), a pro-angiogenic endogenous substance, to Flk-1 receptors located
on the membrane of endothelial cells that constitute the blood vessels. This re-
sults in the inhibition of endothelial cell proliferation and, in consequence, of the
formation of new blood vessels, without any direct toxic effect on healthy cells.
To make it possible to analyze the effect of such molecular-targeted treatments by
means of mathematical models, we need to include the main molecular entities in
multiscale models of tumor growth. In this paper we describe a pharmacologically-
based continuous mathematical model of an- giogenesis and tumor growth. At the
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molecular level, we were careful to use pharmacological laws to model the activa-
tion of angiogenesis as the result of the binding of ma jor angiogenic molecular sub-
stances to their respective receptors. This molecular-level model was embedded
in the macroscopic model, based on reaction-diffusion partial differential equa-
tions, that describes the spatio-temporal change in the densities of the unstable
and stable endothelial cells that constitute the blood vessel wall. At each of the
time steps in the model, sources of oxygen were defined according to the spatial
disposition of the endothelial cells. The oxygen concentration was then computed,
and introduced as an input signal into the cell cycle model of tumor cells. Indeed,
depending on the local con- centration of oxygen, we assumed that cancer cells
would proliferate, die, or enter the quiescent compartment. In the model, quies-
cent cells, deprived of oxygen, secrete vascular endothelial growth factor (VEGF).
This in turn activates angiogenesis, and this constitutes the feedback loop of the
model.
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The random walk of Azospirillum brasilense

K.P. Hadeler

(joint work with Kevin Flores)

In the last few years we have been interested in modeling dynamics where different
phases are coupled by random transitions. One example is coupling an active phase
to a quiescent phase which generally stabilizes the active dynamics (in the case of
equal coupling rates [4]) but may also produce Turing-like instabilities (sufficiently
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distinct coupling rates [5] [3] [6]). We refer to the review paper [7] for applications
of these ideas to spread in space and biological problems. Another class of problems
are random walks with alternating modes of motion. Two examples of the latter
class are described here in detail [1] [2].

The free-living bacterium Azospirillum brasilense shows a mixed pattern of
propagation. In liquid medium it has one polar flagellum and it moves forward
and backward on a straight line while the direction of this line changes only slowly.
The motion of the bacterium has been modeled by a system of two transport
equations in R3 which are based on a biased correlated random walk for the for-
ward/backward motion and diffusion on the unit sphere for the change of direc-
tion. State variables are position, direction and forward/backward, hence time-
dependent solutions arefunctions of a variable in R+ ×R3×S2×{±}. Parameters
are speeds, turning rates, diffusion rates which depend on whether motion is for-
ward or backward. For this system a diffusion approximation has been derived.
The diffusion coefficient is a positively definite quadratic form in the speeds with
coefficients depending on turning and diffusion rates on the sphere. The formula
shows clearly how the convection term of the 1D biased correlated random walk
yields a large contribution to the 3D diffusion coefficient. Similar results have
been obtained for the 2D problem (which is not simply the restriction of the 3D
problem to two dimensions).

The method of proof is moment approximation, closure and Kac’ trick of elim-
ination of assistant variables. The methods have also been used to describe the
random motion on circles of whirligig beetles in which case the diffusion coefficient
depends on speed, turning rate and radius of the circles.
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Progressive fronts in several biological problems

Guillemette Chapuisat

Many biological problems are modeled by a progressive front solution of a reaction-
diffusion equation. The spreading direction may be due to the geometry of the
space but it can also be forced by the non linearity. For example, a depolarization
wave during ischemic stroke follows a reaction-diffusion mechanism in the gray
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matter and a diffusion and absorption equation in the white matter, but the gray
matter is only a thin layer at the periphery of the brain. Hence depolarization
waves are solutions of

(1)
∂u

∂t
−△u = λu(u− θ)(1 − u)1Ω − αu1Rn\Ω

where Ω is a domain that represents the gray matter, a cylinder for example. I
have studied the existence of travelling front for such an equation using energy
methods.

In population dynamics, there are equations of the same type. For example, if
f is the density of a population that depends on the time t, the space x ∈ R and
on a quantitative trait y ∈ R and if the most adapted trait is y = 0 after some
simplifications, f is a solution of the equation

(2)
∂u

∂t
−△u = λu(1 − u) − α|y|2u.

With H. Berestycki, I have proved that this equation has a travelling front solution
if and only if α is small enough. We use moving planes methods.

Another problem of the same type appears in the modelling of tumour cords
(i.e. tumors that grow along a blood vessel).

Influence of habitat fragmentation on species persistence and
biological invasions

François Hamel

(joint work with Henri Berestycki and Lionel Roques)

The talk is concerned with the mathematical analysis of some aspects of species
persistence and biological invasions in heterogeneous diffusive excitable media.
Reaction-diffusion equations offer a very rich structure from a mathematical point
of view and, even oversimplified, they provide qualitative estimates which may
help to get a better understanding of the underlying biological models. The model
which we have studied is based on the patch model borrowed from a book by
Shigesada and Kawasaki (Biological Invasions, Theory and Practice, Oxford Univ.
Press, 1997). It describes the evolution of a (scalar) quantity u, the density of
a species, in a periodic excitable medium. The function u satisfies the reaction-
diffusion equation

∂u

∂t
−∇ · (A(x)∇u) = f(x, u), x ∈ R

N ,

where the diffusion A and the reaction term f are assumed to be periodic in x.
The growth rate, namely the derivative f ′

u(x, 0) of f(x, u) at u = 0, may change
sign as x varies. But f is assumed to satisfy f(x, 0) = 0 and f(x, u)/u is decreasing
with u > 0 and is nonpositive when u is large, uniformly in x. Typical examples
are f(x, u) = (µ(x)−ν(x)u)u, where µ and ν are periodic and continuous, and ν is
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positive. We have given a necessary and sufficient condition for species persistence,
that is for the existence of positive solutions p(x) of the stationary problem

−∇ · (A(x)∇p) = f(x, p) in R
N .

The existence, and uniqueness, of p is shown to be equivalent to the negativity of
the principal periodic eigenvalue of the linearized operator −∇·(A(x)∇)−f ′

u(x, 0)
around 0 (the state 0 is then unstable). We have then proved new Liouville
type results for these semilinear elliptic equations with periodic coefficients, by
using sliding methods and subsolutions which are constructed in large enough
balls. We have also studied the influence of the size and the location of the
heterogeneities in the medium. We have especially shown the negative effect of
the fragmentation on species persistence (environmental fragmentation, which is
mainly due to human activities and geographical barriers, is known to be one of
the causes for species endangerment and loss of biodiversity). The proofs, which
are based on periodic rearrangement inequalities, give in particular a rigorous
justification, as well as a generalization in a much more general framework, to some
formal results obtained by Shigesada and Kawasaki. Then, we have proved that
the condition for species persistence is equivalent to the condition for biological
invasions, that is the existence of pulsating traveling fronts connecting the unstable
state 0 to the unique positive stationary state p. A formula for the minimal speed
of propagation in each direction has been given. Lastly, I have talked about
the following optimization problem: in a binary environment where the growth
rate f ′

u(x, 0) takes only two values with a given average and where the diffusion
reduces to the Laplace operator, how to maximize the chances for species survival ?
From a mathematical point of view, this means minimizing the principal periodic
eigenvalue of an elliptic operator, when the potential takes only two values and has
a given average. The unknowns are the locations of the two regions, say favourable
and unfavourable, of the medium in each cell of periodicity. We have obtained
numerical and rigorous results on this shape optimization problem. There seems to
be two main types of optimal configurations: the ball-shaped and the stripe-shaped
configurations, depending on the size of favourable regions. However, we have
proved that each of these two configurations is not always optimal and shown that
the optimal configurations reflect a compromise between the detrimental habitat
edge effects and the positive advantage of the domain boundary effects (proximity
of habitat in the neighbour cells).
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Deterministic and stochastic aspects of recombination

Ellen Baake

(joint work with Michael Baake, Inke Herms)

Populations evolving under the joint influence of recombination and resampling
(traditionally known as genetic drift) are investigated. First, we summarise and
adapt a deterministic approach, as valid for infinite populations, which assumes
continuous time and single crossover events [1]. The corresponding nonlinear sys-
tem of differential equations permits a closed solution, both in terms of the type
frequencies and via linkage disequilibria of all orders; we point out that this is
due to some ‘hidden’ linearity in the model. To include stochastic effects, we then
consider the corresponding finite-population model, the Moran model with single
crossovers, and examine it both analytically and by means of simulations [2]. Par-
ticular emphasis is on the connection with the deterministic solution. If there is
only recombination and every pair of recombined offspring replaces their pair of
parents (i.e., there is no resampling), then the expected type frequencies in the finite
population, of arbitrary size, equal the type frequencies in the infinite population.
This is a very unusual property for a stochastic process with interaction, which
may be traced back to conditional independence of certain marginal processes. If
resampling is included, the stochastic process converges, in the infinite-population
limit, to the deterministic dynamics, which turns out to be a good approximation
already for populations of moderate size.
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Lipschitz semigroups on metric spaces and structural stability of a
nonlinear population model

Piotr Gwiazda

(joint work with Anna Marciniak-Czochra)

Models describing time evolution of physiologically structured populations have
been extensively studied in recent years, eg. Ref.[3, 8, 6]. Global existence and
structural stability of structured models were established for solutions defined in
Banach space L1 [6, 8]. However, in biological applications, it is often necessary
to describe populations in which the initial distribution of the individuals is con-
centrated with respect to the structure and it is relevant to consider initial data in
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the space of Radon measures as proposed in [7]. The model has the general form,

∂tµt + ∂x(F2(µt)µt) = F3(µt)µt, in R
+ × [0, T ],

F2(µt)(0) µt(0) =

∫ +

R

F1(µt)(x) dµt(x), in [0, T ],(1)

where x denotes the state of an individual (for example the size, level of neoplas-
tic transformation, stage of differentiation) and u(x, t) the density of individuals
being in state x ∈ R

+ at time t. By F3(u, x) we denote a function describing
the individual’s rate of evolution, such as the growth or death rate. F2(u, x)
describes the rate of the dynamics of the structure, i.e., the dynamics of the trans-
formation of the individual state. The boundary term describes the influx of new
individuals at state x = 0. The example of nonlinear functions F1, F2, and F3

is Fi : M(R+) → W 1,∞(R+), Fi(µt)(x) = f(x)G
(∫∞

0 ϕdµt
)

with f ∈ W 1,∞, G -

Lipschitz continuous, ϕ ∈ W 1,∞.
For linear age-dependent population dynamics, a qualitative theory using semi-

group methods and spectral analysis has been laid out in [4]. The follow-up works
(see e.g. Ref. [3]) are devoted to nonlinear models. All the results there concern-
ing continuous dependence of solutions on time and initial state are based on the
weak∗ topology of Radon measures. There exist simple counter-examples indi-
cating that continuous dependence, either with respect to time or to initial state,
generally cannot be expected in the strong topology.

The aim of this study is to consider such system of equations as the Lipschitz
semigroup on metric space. In fact we are motivated by the results from the
kinetic theory where the application of the so-called bounded Lipschitz distance
and Wasserstein distance to transport type equation have been known for many
years (see e.g. [2]). We will consider two different metrics:

1. Flat metric (also called: bounded Lipschitz distance)
We look for a metric defined on the space M+(R+). For µ, ν ∈ M+(R+) the flat
metric ρ is defined by

ρ(µ, ν) := sup
{∫

R+ ψ d(µ− ν)
∣∣∣ ‖ψ‖W 1,∞ ≤ 1

}
.

Observe that

ρF (µ, ν) ≤ |µ− ν|(R+) ≤ µ(R+) + ν(R+) <∞.

Lemma: The set M+(R+) endowed with the flat metric ρF is a complete separable
metric space.

2. Wasserstein-like metric
Metric for the space M+

1 (R+) (finite nonnegative measures, first moment inte-
grable). For µ, ν ∈ M+

1 (R+) the metric ρW is defined by

ρW (µ, ν) := sup
{∫

R+

ψd(µ− ν)
∣∣∣ ‖ψ′‖L∞ ≤ 1, |ψ(·)| ≤ 1 + | · |

}
.

Observe that

ρW (µ, ν) ≤
∫

R+

(1 + x)dµ+

∫

R+

(1 + x)dν <∞.
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Lemma The set M+
1 (R+) endowed with the flat Wasserstein-like ρW is a com-

plete separable metric space.
Remark: To indicate the difference between flat metric and Wasserstein-like met-
ric let us consider the distance w.r.t. both metrics of two Dirac measures located
at the points a and b. We compute directly:

ρF (δa, δb) = min{2, |a− b|}
and

ρW (δa, δb) = |a− b|
Let us formulate the main result:

Theorem (Existence and Lipschitz dependence on model ingredients)

Suppose that F, F̃ : M+(R+) →
{
(a, b, c) ∈ W 1,∞(R+)3 | b(0) > 0, a ≥ 0

}

(i) supµ∈M+(R+) ‖F (µ)‖W 1,∞ < ∞ and

supµ∈M+(R+) ‖F̃ (µ)‖W 1,∞ < ∞,

(ii) for any R > 0, there exist constants LR, L̃R > 0 such that
‖F (µ) − F (ν)‖∞ ≤ LR ρF (µ, ν) and

‖F̃ (µ) − F̃ (ν)‖∞ ≤ L̃R ρF (µ, ν)
for all µ, ν ∈ M+(R+) with |µ|(R+), |ν|(R+) ≤ R.

Then, for any initial measure µ0 ∈ M+(R+), there exists a Lipschitz continuous
solution µ : [0, T [−→ (M+(R+), ρF ). Moreover, the solutions satisfy

(1) ρF (µt, µs) ≤ C1|t− s|,
(2) ρF (µF1,F2,F3

t , νF̃1,F̃2,F̃3

t )

≤ eC2t · ρF (µ0, ν0) + C3t · (‖F1 − F̃1‖∞ + ‖F2 − F̃2‖∞ + ‖F3 − F̃3‖∞)

where C1, C2 and C3 are some positive constants, and µF1,F2,F3

t , νF̃1,F̃2,F̃3

t

are two solutions for initial conditions µ0 and ν0 and kinetics
F = (F1, F2, F3) and F̃ = (F̃1, F̃2, F̃3), respectively.

Remark: The same result holds for Wasserstein-like metric with additional as-
sumption supµ∈M+

1 (R+) ‖∂xF3(µ)‖L∞
1+x

<∞ bounded.

Remark: In the proof of the above theorem the estimates for linear problem
based on dual problem are essential. For different applications of the dual formula
to structure population model see [9].
Remark: Contrary to the previous paper [5], where the proof of the existence
was done by showing the compactness with help of mutational equations (see: [1])
in the present work we use simpler idea of Lipschitz semigroups on metric spaces.
That provides the much shorter proof and possibility to construct effective numer-
ical approximation.

The last issue that we would like to discuss is the question of the proper distance
that should be taken into account in such a problem. It is close to the problem of
empirical stability. For the comparison of the model with the ”experiment” and
callibration, one can ask: What is the usual information from ”experiments”?{∫ (n+1)h

nh
dµ
}∞

n=1
= {an}∞n=1 (discrete aggregated information).

Assume that {an}∞n=1 is given and define
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A = {µ ∈ M+(R+) |
∫ (n+1)h

nh
dµ = an, n = 1, 2, . . .}.

What is diam(A)? How it depends on h?

• For norm metric it does not depend on h, and diam‖·‖M(R)
(A) = 2

∑∞
n=1 an.

• The same if we consider diam‖·‖L1
(A ∩ L1) = 2

∑∞
n=1 an.

• For the metric ̺F we have diam̺F (A) ≤ min{h, 2}∑∞
n=1 an.

• For the metric ̺W we have diam̺W (A) ≤ h
∑∞

n=1 an.
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Universitätsstr. 25
33615 Bielefeld

Dr. Thomas Blesgen

Max-Planck-Institut für Mathematik
in den Naturwissenschaften
Inselstr. 22 - 26
04103 Leipzig

Ansgar Bohmann

Universität Heidelberg
Angewandte Mathematik und Bioquant
Im Neuenheimer Feld 267
69120 Heidelberg

Prof. Dr. Jose A. Carrillo

Departament de Matematiques
Universitat Autonoma de Barcelona
Edifici C
E-08193 Bellaterra (Barcelona)

Dr. Guillemette Chapuisat

LATP(Mathematiques)
Faculte St. Jerome
Universite Aix-Marseille III
Avenue Escadrille Normandie-N.
F-13397 Marseille Cedex 20

Prof. Dr. Thierry Colin

Mathematiques et Informatique
Universite Bordeaux I
351, cours de la Liberation
F-33405 Talence Cedex

Prof. Dr. Andras Czirok

Dept. of Cell Biology & Anatomy
University of Kansas Med. Ctr.
1008 WHW 3901 Rainbow Blvd.
Kansas City KS 66160-7400
USA

Prof. Dr. Emmanuele DiBenedetto

Vanderbilt University
Department of Mathematics
1416 Stevenson Center
Nashville , TN 37240
USA

Prof. Dr. Odo Diekmann

Department of Mathematics
Utrecht University
Budapestlaan 6
NL-3584 CD Utrecht

Dr. Marie Doumic-Jauffret

INRIA Rocquencourt
Domaine de Voluceau
B. P. 105
F-78153 Le Chesnay Cedex



Mathematical Biology 1371

Prof. Dr. Messoud Efendiyev

Institut für Biomathematik
und Biometrie
GSF Forschungszentrum Neuherberg
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Weyertal 86 - 90
50931 Köln
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