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Introduction by the Organisers

This was a very successful and enjoyable workshop which showed the diversity and
vitality of the area. The meeting was attended by 48 participants from 16 countries
representing all continents (except Antarctica). In the 26 talks given during the
course of the week, both leading experts and promising young mathematicians
were invited to present recent trends and new developments in the field. Most
of the talks dealt with nonlinear elliptic and parabolic equations, while special
emphasis was laid on

• singularities and concentrating solutions
• the interaction between PDE and geometry
• Liouville type theorems
• symmetry and symmetry breaking.

A number of important talks were concerned with solutions of nonlinear ellip-
tic equations on all of Euclidean space. For example, in some talks surprisingly
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complicated solutions tending to a constant were discussed together with connec-
tions with differential geometry. Another talk presented new solutions for elliptic
systems modeling quadruple junction structures. The importance and future po-
tential of this work was illustrated when several participants were invited to give
lectures at the International Congress of Mathematicians in 2010. The atmosphere
of the workshop was fruitful and stimulating, which was most visible outside the
scheduled lecture time when ideas were exchanged in numerous scientific discus-
sions in small groups. Here some promising joint research projects from experts
with different methodological background were initiated. The feedback of the par-
ticipants was very positive; there was a clear consensus that due to the strong
dynamics of the field there is a need for regular meetings within the unique atmo-
sphere of the MFO.
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ferential Equations
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Nonlinear Liouville theorems and applications . . . . . . . . . . . . . . . . . . . . . . . 1453

Filomena Pacella (joint with Francesca Gladiali and Tobias Weth)
Symmetry and nonexistence results for low Morse index solutions to
semilinear elliptic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1454



1430 Oberwolfach Report 26

Enea Parini (joint with Christopher Grumiau)
On the Lane-Emden problem for the p-Laplacian . . . . . . . . . . . . . . . . . . . . 1457

Angela Pistoia (joint with Monica Musso)
Tower of bubbles in almost critical problems . . . . . . . . . . . . . . . . . . . . . . . . 1459
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Abstracts

Global Dynamics of Spike Solutions to the Allen-Cahn Equation and
Invariant Manifolds from Approximations

Peter W. Bates

(joint work with Kening Lu, Chongchun Zeng)

We view particles as peak-like approximate minimizers for the energy functional

E(u) ≡
∫

Ω

(
ε2

2
|∇u|2 − F (u)),

where F (u) may be like up+1

p+1 − u2

2 , p > 1, or some more general nonlinearity

having a similar shape for u > 0 and Ω is a smoothly bounded domain in Rn.
We speak of ‘approximate’ minimizers since we discuss non-equilbrium states,
which have ‘condensed’ to localized states and which evolve by the gradient flow
of E:

(∗)







ut = ε2∆u+ f(u) (t, x) ∈ [0,∞) × Ω,

∂u

∂n
= 0 on ∂Ω,

where 0 < ε << 1. It is assumed that f = F ′ is such that there is a non-
degenerate positive radially symmetric ground state (e.g. up−u, p > 1, subcritical,
or u(u− a)(1 − u) with 0 < a < 1

2 ).
We note that stationary states with peaks have been discussed in detail by many

authors, starting with papers by Ni and Takagi (see, e.g. [2, 3, 4]) where typically
variational methods are used. The idea is that a rescaled version of the ground
state, centered at a point on ∂Ω is close to being a critical point of the energy
functional with the first order error being proportional to the mean curvature of
∂Ω.

In fact, various authors have used three techniques: Variational, namely, con-
strained minimization or saddle point reduction, reducing the equation to a family,
Γ, of states parameterized by ∂Ω in the vicinity of a critical point of the mean
curvature; A nonlinear Lyaponov-Schmidt reduction to Γ; Dynamical systems,
looking for a quasi-invariant manifold as a graph over Γ.

These methods are all based on the same idea: Peak states are strongly unsta-
ble in certain directions,strongly stable in a finite co-dimensional submanifold,
very weakly stable or unstable in “translational” directions (along Γ).
This concept is known as “Normal Hyperbolicity, which has been shown to be
necessary and sufficient for the persistence of invariant manifolds under perturba-
tion.

Our manifold Γ is not invariant and, strictly speaking, normal hyperbolicity is
only defined for invariant manifolds. Here we develop a theory for approximately
invariant, approximately normally hyperbolic manifolds for semiflows in Banach
space, proving the existence of truly invariant normally invariant manifolds in the
vicinity of manifolds that are approximately so. We expect that this abstract
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result will be useful in a variety of settings when one can construct approximate
solutions to PDEs, as in the case of the Allen-Cahn equation above.

To demonstrate, we build an approximately invariant normally hyperbolic man-
ifold by taking the rescaled radially symmetric ground state: w satisfying







∆w + f(w) = 0, y ∈ Rn,

w(0) = maxw(y), w > 0,

w(y) → 0, |y| → ∞.

With L0 ≡ ∆ + f ′(w) : W 2,q(Rn) → Lq(Rn), σ(L0) ∩ (−b,∞) = {λ1, 0}, for some
b > 0; λ1 > 0 is the principle eigenvalue, and the eigenspace of 0 is spanned by
{ ∂w∂yj

: j = 1, 2, . . . , n}.
Define

|u|qk,ε = Σki=0ε
qi−nΣ|α|=i|∂αu|qLq(Ω).

The phase space will be taken as X = (W 2,q(Ω), | · |0,ε).
For any p ∈ ∂Ω, let

w̃ε,p(x) = w(
x − p

ε
).

Since w̃ε,p does not satisfy the boundary condition, it will be modified: Given any
v : ∂Ω → R, let h be the solution of

{

ε2∆h+ f ′(0)h = 0, x ∈ Ω,
∂h
∂n = v, x ∈ ∂Ω.

Define a linear operator Bc by Bc(v) = h. For p ∈ ∂Ω, let Wε,p = w̃ε,p−Bc(∂w̃ε,p

∂n ).

Define the smooth imbedding ψε : ∂Ω → L2(Ω) by

ψε(p) ≡Wε,p

and the approximate invariant manifold

Mε = ψε(∂Ω).

The boundary correctionBc(
∂wε,p

∂n ) is (better than) order O(ε) in terms of |·|k,ε for
any k ≥ 0. Let v(x) > 0 be the first eigenfunction, corresponding to the eigenvalue
λ1, of the linearized operator L0.
For any p ∈ ∂Ω, define ṽε,p(x) = v(x−pε ), Vε(p) = ṽε,p −Bc( ∂

∂n ṽε,p), and Xu
ε,p =

span{Vε}, Xc
ε,p = Tψε(p)Mε, Xs

k,ε,p = (Xc
ε,p⊕Xu

ε,p)
⊥. Then Mε is approximately

invariant and normally hyperbolic in the sense of the abstract results, provided ε
is sufficiently small.

Obtain an inflowing center-stable invariant manifold W cs and an overflowing
center-unstable invariant manifold W cu. These are Cj sections of the vector bun-
dles (Mε, X

s
ε,k,p) and (Mε, X

u
ε,p), respectively.

By taking their intersection, we obtain an invariant manifold M̃ε in a small
W k,q neighborhood of Mε, which therefore consists of spike-like functions.
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Finally, one can compute the vector field on M̃ε induced by the equation, obtaining
a dynamical system on ∂Ω for the location of the peak of the spike.

The results can be summarized as
Theorem(BLZ[1])
Under the assumptions mentioned above, for any sufficiently small ε > 0, there
exists a smooth mapping Ψε : ∂Ω →W 2,2

ε (Ω) such that

(1) For any q ∈ (n,∞), there exists C > 0 independent of p ∈ ∂Ω and ε > 0
such that

|Ψε(p) − w(
· − p

ε
)|C0((∂Ω, 1

ε2<·,·>),W 2,2
ε (Ω)∩W 2,q

ε (Ω)) ≤ Cε

|Ψε(p) − w(
· − p

ε
)|C1((∂Ω, 1

ε2<·,·>),W 2,2
ε (Ω)∩W 2,q

ε (Ω)) → 0.

(2) There exists a unique p̃ ∈ ∂Ω such that maxx∈Ω̄ Ψε(p)(x) = Ψε(p)(p̃).
Moreover |p− p̃| < Cε2 for some C > 0 independent of 0 < ε << 1.

(3) M∗
ε ≡ Ψε(∂Ω) is a normally hyperbolic invariant manifold of the flow

generated by the PDE (*).
(4) Equation (*) induces a vector field Yε(p) on ∂Ω that satisfies

|Yε(p) − γε3∇κ(p)| ≤ Cε4

for some C > 0 independent of p ∈ Tp∂Ω where
κ(p) = H(p) ·N(p) and H(p) is the mean curvature vector of ∂Ω and

γ =
1

3

∫

∂Rn
+

[
w′(|y|)
|y|

]2

y4
jdy > 0.
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Asymptotics of Grow-Up Solutions and Global Attractors of
Non-Dissipative PDEs

Nitsan Ben-Gal

There has been much study in recent decades regarding the asymptotics of
solutions and the decomposition of attracting sets for the dissipative and fast
non-dissipative (f(u) superlinear) forms of the scalar reaction-diffusion equation

(1) ut = uxx + f(u), x ∈ [0, L]
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with boundary conditions. While the dissipative form of (1) guarantees the exis-
tence of a compact global attractor, the fast non-dissipative form of (1) leads to
finite time blow-up of solutions.

This talk introduces recent results which determine the asymptotics of solutions
and the decomposition of the attracting set for the slowly non-dissipative scalar
parabolic PDE

(2)

ut = uxx + bu+ g(u)
︸ ︷︷ ︸

f(u)

x ∈ [0, π], t ≥ 0, ux(0) = ux(π) = 0

b > 0; g(u) bounded, C2, Lipschitz

The equation with linearly growing nonlinearity f(u) as in (2) induces a dynam-
ical system wherein there are no blow-up solutions, but for any positive b there
exists a subset of solutions to (2) wherein solutions grow to infinity in infinite time.
These solutions are termed “grow-up solutions” of the dynamical system.

Due to the existence of grow-up solutions we cannot construct a global attractor
in the classical sense. We introduce the concept of a non-compact global attractor
and discuss how such an object may be decomposed, which leads to the following
theorem:

Theorem 1. The non-compact global attractor of Equation (2) is the union of the
bounded equilibria of (2), their connecting heteroclinics, the equilibria at infinity,
transfinite heteroclinics connecting bounded equilibria with equilibria at infinity,
and the infinite heteroclinics which connect equilibria within infinity.

In the classic dissipative case the primary tools of this decomposition are the
time map, lap number, and y-map. The “Connection Problem”, which seeks
to obtain the complete decomposition of the global attractor via the determina-
tion of which connecting heteroclinics exist and which are blocked, was solved by
Brunovský and Fiedler through the use of the first two tools and the invention of
the y-map [1, 2] for dissipative systems.

We address the implications of the time map and lap number for the global
bifurcation diagram and non-compact attractor for equations of the form (2), es-
pecially the ability of the time map to determine all bounded equilibria of (2).
We extend the y-map to slowly non-dissipative systems as well as to a broader
range of boundary conditions than originally pursued. The extended y-map, using
the properties of the lap number which were derived by Matano [5], allows us to
determine all possible asymptotic behavior of solutions to (2) as well as providing
the necessary tools for determining uniquely all bounded heteroclinics originating
at any given bounded equilibria.

Recent results from the thesis of Hell [4] provide us with a Conley index at
infinity. This tool allows for the study of the equilibria at infinity and the con-
struction of heteroclinics which connect such equilibria to each other. Even with
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this new tool, the techniques used to solve the Connection Problem in the dis-
sipative case are insufficient to determine which equilibria at infinity a bounded
equilibria connects to.

To address this issue we adapt the concept of inertial manifolds first introduced
by Foias, Sell, and Temam [3]. Inertial manifolds are a valuable tool for describ-
ing the large-time behavior of a dissipative dynamical system via the reduction
of the infinite-dimensional case to the finite-dimensional. Via adaptation of the
properties necessary to the construction of inertial manifolds and alteration of the
construction process, we were able to prove the existence of inertial manifolds for
equations of the form (2).

This provides us with the necessary convergence results with which to uniquely
determine to which equilibria at infinity any transfinite heteroclinic will connect.
Combining this with our results on bounded heteroclinics and the work of Hell
within infinity allows us to uniquely determine all elements of each type in Theorem
1. This leads to our main result:

Theorem 2. Given a stationary solution v of (2), all stationary solutions, both
finite and infinite, to which v connects are uniquely determined. Thus, the non-
compact global attractor of (2) may be decomposed explicitly.
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Periodic and Bloch solutions to a magnetic nonlinear Schrödinger
equation

Mónica Clapp

(joint work with Renato Iturriaga and Andrzej Szulkin)

The behavior of a charged particle in the presence of an external magnetic field
B and an electric field is described by the magnetic Schödinger operator

LA,V = (−i∇ +A)2 + V,

where V : RN → R is an electric potential and A : RN → RN is a magnetic
potential associated to B, that is, curlA = B. In the language of differential forms,
A is a 1-form A = A1dx1 + · · · + ANdxN and curlA := dA =

∑

j<k bjkdxj ∧ dxk,

where bjk = (curlA)jk = ∂jAk − ∂kAj .
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We consider the nonlinear problem

(℘A)

{
(−i∇ +A)2u+ V u = |u|p−2u,
u ∈ L2

loc(R
N ,C), ∇u+ iAu ∈ L2

loc(R
N ,CN ),

where A ∈ C1,α(RN ,RN ) and V ∈ C0,α(RN ) are 2π-periodic in each variable
x1, ..., xN , V > 0, and p ∈ (2, 2∗) with 2∗ := ∞ if N = 2 and 2∗ := 2N

N−2 if N ≥ 3.

Existence of solutions to the equation in (℘A) with periodic and nonperiodic
data whose absolute value vanishes at infinity has been shown for example in
[7, 9, 1, 10, 6, 4, 3, 5], both in the classical and semiclassical regime. There is an
extensive literature on this subject in the nonmagnetic case A = 0.

We address two questions: First, the gauge-dependence problem if one considers
only 2π-periodic solutions and second, the multiplicity question for solutions whose
absolute value is 2π-periodic.

Recall that every closed 2-form B on RN is exact, that is, there exists a 1-form
A such that curlA = B. Moreover, if Ã is another 1-form with curlÃ = B, then
A− Ã is the gradient of a function ϕ. A straightforward computation shows that

(1) u solves (℘A) ⇐⇒ e−iϕu solves (℘Ã).

This is called the gauge invariance. It says that the choice of A with fixed curlA =
B does not affect the solutions of (℘A) in any essential way, as long as we allow
arbitrary solutions.

Since our data are periodic, it is natural to consider periodic solutions. Now,
if we are interested only in 2π-periodic solutions the situation changes drastically.
In this case, problem (℘A) can be interpreted as a problem on the N -dimensional
flat torus T

N := R
N/2πZ

N which has nontrivial topology. This has the effect that
a 2π-periodic closed 2-form B might not be the curl of a 2π-periodic 1-form [2]. A
necessary and sufficient condition for this to happen is that the mean value of B
over [0, 2π]N is 0. Moreover, two 2π-periodic 1-forms A and Ã do not necessarily
differ by the gradient of a 2π-periodic function, so there is no obvious one-to-one
correspondence between the 2π-periodic solutions of (℘A) and those of (℘Ã) as

given by (1). However, Ã differs from A + z by the gradient of a 2π-periodic
function ϕ for some z ∈ RN . This leaves us with comparing problems (℘A+z)
for different choices of z ∈ RN . So the question is, does the choice of z ∈ RN

affect the solutions of (℘A+z) in some essential way? Now, in the context of

quantum physics, a relevant quantity is the absolute value of the solution: |u(x)|2
can be interpreted as the (unnormalized) probability density of finding a particle
at x. Note that (1) establishes a one-to-one correspondence which preserves the
absolute value of the solutions. So one may ask whether there is a one-to-one
correspondence associating to each 2π-periodic solution u0 of (℘A) a 2π-periodic
solution uz of (℘A+z) with the same absolute value, i.e. |uz| = |u0| . We address
this question and prove the following.

Theorem 1. Assume that problem (℘A) has a nowhere vanishing 2π-periodic
solution u0. Then there exists a quadric Q of codimension at least one containing
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the origin with the following property: If (℘A+z) has a 2π-periodic solution uz such
that |uz| = |u0| , then z ∈ Q + ZN .

By a quadric we mean, as usual, the set of zeros of a quadratic polynomial. So
Theorem 1 implies, in particular, that (℘A+z) does not have a 2π-periodic solution
uz with |uz| = |u0| for a.e. z ∈ RN .

It is also natural to look for solutions to (℘A) which are not necessarily periodic
but whose absolute value is periodic. Moreover, from the point of view of physics
it is desirable that (℘A) is invariant with respect to the gauge choice for the vector
potential A. This suggests looking at solutions of the form ψ(x) = eiz·xu(x)
with z ∈ RN and u a 2π-periodic function. Following the usual terminology,
we call them Bloch solutions. More precisely, they are Bloch solutions with real
quasimomentum z (in general, z ∈ CN is admitted, see e.g. [8]). They have 2π-
periodic absolute value and render problem (℘A) gauge invariant, more precisely,

ψ is a Bloch solution of (℘A+z) ⇐⇒ eiz·xψ is a Bloch solution of (℘A).

In quantum mechanical models two solutions ψ and eiγψ, γ ∈ R, represent the
same state. So the state space is, in fact, the space of S1-orbits [ψ] := {eiγψ :
γ ∈ R} of the Sobolev space of complex-valued functions ψ where the solutions
are seaked. The group of translations ZN acts also on the S1-orbit space in the
obvious way. Basically, Bloch solutions are solutions whose S1-orbit is 2π-periodic.

A 2π-periodic solution uz of (℘A+z) gives rise to a Bloch solution ψz := eiz·xuz
of (℘A) with the same absolute value. Hence, the gauge-dependence question for
2π-periodic solutions is related to the multiplicity question for Bloch solutions. As
a consequence of Theorem 1 we obtain the following.

Theorem 2. Assume there exists ε0 > 0 such that for every |z| < ε0 problem
(℘A+z) has a nonwhere vanishing 2π-periodic solution uz. Then problem (℘A) has
an uncountable family of Bloch solutions (ψα)α∈I such that

|ψα| 6= |ψβ | if α 6= β.

Moreover, if uz is a ground state, then for each δ > 0 there is an uncountable set
J ⊂ I such that

∣
∣
∣
∣
∣

∫

[0,2π]N
|ψα|p −

∫

[0,2π]N
|u0|p

∣
∣
∣
∣
∣
< δ ∀α ∈ J .
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On a conjecture by De Giorgi in large dimensions

Manuel del Pino

(joint work with Michal Kowalczyk, Juncheng Wei)

We consider the Allen-Cahn equation

(1) ∆u+ (1 − u2)u = 0 in R
N .

E. De Giorgi [3] formulated in 1978 the following celebrated conjecture:

(DG) Let u be a bounded solution of equation (1) such that ∂xN
u > 0. Then the

level sets [u = λ] are hyperplanes, at least for dimension N ≤ 8.

Equivalently, under the above conditions the statement asserts the existence of
a ∈ RN , b ∈ R, |a| = 1 such that u has the form

u(x) = w(a · x− b)

where w(t) is the unique solution of

w′′ + (1 − w2)w = 0, w(0) = 0, w(±∞) = ±1,

namely w(t) = tanh(t/
√

2). De Giorgi conjecture has been proven in dimensions
N = 2 by Ghoussoub and Gui [5] and for N = 3 by Ambrosio and Cabré [1].
Savin [6] proved its validity for 4 ≤ N ≤ 8 under a mild additional assumption.
(DG) is a statement parallel to Bernstein’s theorem for minimal graphs which in
its most general form, due to Simons [8], states that any minimal hypersurface in
RN , which is also a graph of a function of N − 1 variables, must be a hyperplane
if N ≤ 8. Bombieri, De Giorgi and Giusti [2] proved that this fact is false in
dimension N ≥ 9, by constructing a nontrivial entire solution to the minimal
surface equation

(2) ∇ ·
(

∇F
√

1 + |∇F |2

)

= 0 in R
8.

by means of the super-subsolution method. Let us write

x′ = (x1, . . . , x8) ∈ R
8, u =

√

x2
1 + · · · + x2

4, v =
√

x2
5 + · · · + x2

8.
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The BDG solution has the form F (x′) = F (u, v) with the symmetry property
F (u, v) = −F (v, u) if u ≥ v. In addition we can show that F becomes asymptotic
to a function homogeneous of degree 3 that vanishes on the cone u = v. Let
Γ = {x9 = F (x′)} be the minimal BDG graph so predicted, and let us consider for
α > 0 its dilation Γα = α−1Γ, which is also a minimal graph. Our result, which
disproves statement (DG) in dimensions 9 or higher is the following.

Theorem 1. [4] Let N = 9. For all α > 0 sufficiently small there exists a bounded
solution uα(x) of equation (1) such that

∂x9uα(x) > 0 for all x ∈ R
9,

and such that for x = y + tν(αy), where y ∈ Γα and ν is a choice of normal to Γ
we have

u(x) = w(t) + o(1),

where |t| < δ
α and o(1) → 0 uniformly as α→ 0.

Let us consider coordinates to describe points in R9 near Γα, x = y + tν(αy),
y ∈ Γα, |t| < δ

α . Then we choose as a first approximation w(x) := w(t + h(αy))
where h is a smooth, small function on Γ, to be determined. Looking for a solution
of the form w + φ, the problem becomes essentially reduced to

∆Γα
φ+ ∂zzφ+ f ′(w(z))φ + E +N(φ) = 0 in Γα × R

where S(w) = ∆w + f(w), E = χ|z|<α−1δ S(w), N(φ) = f(w + φ) − f(w) − f ′(w)φ+

B(φ), f(w) = w(1 − w
2), and B(φ) is a second order linear operator with small

coefficients, also cut-off for |z| > δα−1. Rather than solving the above problem
directly we consider a projected version of it:

(3) L(φ) := ∆Γα
φ+ ∂zzφ+ f ′(w(z))φ = −E −N(φ) + c(y)w′(z) in Γα × R

(4)

∫

φ(y, z)w′(z) dz = 0 for all y ∈ Γα

A solution to this problem can be found in such a way that it respects the size
and decay rate of the error E, which is roughly of the order ∼ r(αy)−3e−|z|, this is
made precise with the use of a linear theory for the projected problem in weighted
Sobolev norms and an application of contraction mapping principle. Finally h s
found so that c(y) ≡ 0. We have c(y)

∫
w′2dz =

∫
(E + N(φ))w′ dz and thus we

get reduced to a (nonlocal) nonlinear PDE in Γ of the form

(5) J (h) := ∆Γh+ |A|2h = O(α)r(y)−3 +Mα(h) in Γ, h = 0 on Γ∩ [u = v],

whereM(h) is a small operator which includes nonlocal terms. A solvability theory
for the Jacobi operator in weighted Sobolev norms is then devised, with the crucial
ingredient of the presence of explicit barriers for inequalities involving the linear
operator above, and asymptotic curvature estimates by Simon [7]. Using this
theory, problem (5) is finally solved by means of contraction mapping principle.
The monotonicity property follows from maximum principle applied to the linear
equation satisfied by ∂x9u.
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[1] L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in R3 and a
conjecture of De Giorgi, Journal Amer. Math. Soc. 13 (2000), 725–739.

[2] E. Bombieri, E. De Giorgi, E. Giusti, Minimal cones and the Bernstein problem. Invent.
Math. 7 1969 243–268.

[3] E. De Giorgi, Convergence problems for functionals and operators, Proc. Int. Meeting on
Recent Methods in Nonlinear Analysis (Rome, 1978), 131–188, Pitagora, Bologna. (1979).

[4] M. del Pino, M. Kowalczyk, J. Wei On De Giorgi Conjecture in Dimension N ≥ 9 Preprint
arXiv:0806.3141v2 (2008).

[5] N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math.
Ann. 311 (1998), 481-491.

[6] O. Savin, Regularity of flat level sets in phase transitions. To appear in Ann. of Math.
[7] L. Simon, Entire solutions of the minimal surface equation, J. Differential Geometry 30

(1989), 643–688
[8] J. Simons, Minimal varieties in riemannian manifolds. Ann. of Math. (2) 88 1968 62–105.

Concentration phenomena in 2D for exponential-type nonlinearities

Pierpaolo Esposito

(joint work with Juncheng Wei)

The basic problem we are interested in is the equation
{

−∆u = λ+ V +eu
R

Ω
V +eu − λ− V −e−u

R

Ω
V −e−u in Ω

u = 0 on ∂Ω
(MF )

where λ+, λ− ≥ 0, V +, V − : Ω → [0,+∞) are smooth potentials and Ω ⊂ R2 is a
smooth domain.

Problem (MF ) is of interest in fluid mechanics, self-dual Gauge theories, confor-
mal geometry, etc. For example, in fluid mechanics the stationary Euler equations
for a planar, incompressible and homogeneous fluid can be rewritten in terms of
the vorticity function ω, and an “ansatz” on the relation among the vorticity func-
tion and the stream function ψ reduces the Euler equations to a single equation
on ψ of the form (MF ) with a general R.H.S.
Many choices of the “ansatz” (Stuart, Joyce-Montgomery and Tur-Yanovski ansatz)
are physical meaningful and lead to vortex-type configurations. They are all of
exponential type and lead to equations in the general form (MF ) with potentials
V +, V − possibly vanishing like |x− p0|2α, α ∈ N.

In the regular exponential case (λ− = 0 and infΩ V
+ > 0) the asymptotic ana-

lyis of non-compact sequences of solutions is deeply understood as well as their
existence by a perturbative construction. In the non-compact case the R.H.S. in
(MF ) concentrates to a sum of Dirac deltas supported at the so-called blow-up
points.
In the singular exponential case (λ− = 0 and V ∼ |x − p0|2α as x → p0) the
asymptotic analysis is harder and has received significant contributions just re-
cently. The construction of non-compact sequences of solutions is open so far and
has recently got a positive answer just on simply connected domains (see [1]).
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The asymptotic analysis of the sinh−Gordon case (V + = V −, λ+, λ− > 0 and
infΩ V

+ > 0) has been achieved in [3] as a quantization result on the masses of the
limiting Dirac deltas. The authors leave the question of the simple/multiple char-
acter of the blow-up points as an open problem. Note that in the corresponding
pure exponential situation the blow-up points are always simple. In collaboration
with J. Wei, in [2] we give a partial negative answer. By perturbative methods
(the so-called nonlinear Lyapunov-Schimdt reduction) we construct a sequence of
solutions of (MF ) on the unit ball with V + = V − = 1 and Neumann boundary
condition as a super-position of a positive peak at the origin and three negative
peaks on the vertices of a small equilateral triangle. In this way, the origin is
a multiple blow-up point due to the collapse of four peaks (a positive and three
negative ones). In the talk I’ll describe this construction and exhibit the expan-
sion of the so-called reduced energy to give an idea on how such solutions can be
obtained.
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Symmetric quadruple phase transitions

Changfeng Gui

(joint work with Michelle Schatzman)

In this talk, we discuss a model which models the quadruple junction via gener-
alized Allen-Cahn equation as in [3]. We introduce a quadruple well potential W
with each well (global minimum point) representing a phase of grain. In material
science, crystalline materials with a quadruple junction structure is studied in [7],
[5], etc.

Assuming that all phases of the grain interior are of equal status, the potential
W can be chosen so that it has the symmetry of a regular tetrahedron. The
physical state of a crystalline material may be represented by an order parameter
V which is a R3 -vector valued function. The order parameter V has a constant
value u0 in each grain, where u0 corresponds to one of the wells of the potential.
The following energy functional is used to gauge the physical state

(1) EΩ,ǫ(V ) =

∫

Ω

ǫ|∇V |2 +
1

ǫ
Q(V )dx

where ǫ > 0 is a small physical constant which is related to the difussion rate and
therefore the thickness of the grain boundary. The dynamics of the physical state
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can be modeled by the gradient flow of the energy functional, i.e.

(2) Vt = ǫ∆V − 1

ǫ
∇VQ(V ), x ∈ Ω, t > 0.

A very interesting problem in this model is the formation of quadruple junction
where all four grains meet. The finer structure of quadruple junction can be
expressed as a scaling of a solution of the Euler -Lagrange equation

(3) −∆U + ∇2Q(U) = 0, U : R
3 → R

3

with suitable asymptotic behavior at infinity which shows a quadruple structure.
We construct rigorously such a quadruple junction solution with proper symmetry,
in the same spirit as done in [4] for triple junction solutions. However, the technical
details of constructing quadruple junction solution turns out to be much more
complicated, due to both the complexity of the three dimensional geometries and
the new additional structure of the solution. Indeed, more interesting phenomena
arise in this model compared to the two dimensional problem of triple junctions.
We have to construct first one dimensional transition profile between two phases
(heteroclinic solution) with target space R3 and study its special properties; then
reproduce a triple junction solution with target space R3, which is not just the
trivial generalization of [4] due to the extra dimension of the target space and the
fourth well of the potential. Moreover, the structure of the quadruple junction
solution has a subtle two dimensional transition layer connecting different triple
junctions in different faces, which requires delicate analysis.

To state our main result, the following notation and assumptions are introduced.

(Q1): The potential Q is a nonnegative function of class C3 from R3 to R which
is invariant under Γ, i.e.

∀γ ∈ Γ : Q ◦ γ = Q.

(Q2): W vanishes only at the points in X = {a,b, c,d} in R3, and the Hessian
∇2Q(x) is nondegenerate for all x ∈ X. The eigenvalues of ∇2Q(x) are the strictly
positive numbers λ1 ≤ λ2 ≤ λ3 for x ∈ X.

(Q3): There is a constant R0 > 0 such that

(4) ∇Q(u) · u := (u,∇Q(u)) ≥ 0, ∀u ∈ R
3 with |u| ≥ R0

Choose any two wells x,y ∈ X = {a,b, c,d}, and consider the minimization
problem

(5) exy = min

{∫

R

1

2
|v′|2 +Q(v) dt : v ∈ H1

loc(R)2, v(−∞) = x, v(∞) = y

}

.

It can be shown that exy > 0 and the minimizer exists, as in [8], [1]. The minimizer
represents the transition profile between phases x and y.
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Let z be a minimizer connecting a to b and be called heteroclinic connection;
it satisfies the Euler-Lagrange equation

(6) −z′′ + ∇zQ(z) = 0.

The operator A defined by

(7) D(A) = H2(R)3, Av = −v′′ + ∇2Q(z)v

is a self-adjoint nonnegative operator; the lower bound of its essential spectrum is
governed by its behavior at infinity: it is equal to the lower bound of the spectrum
of ∇2Q(a), i.e. λ1. It is easy to see that z′ belongs to the kernel of A.

The main assumption is the non degeneracy of the heteroclinic connection z,
namely

(Q4): the kernel of A is spanned by z′.

The main result reported in this talk is the following existence theorem of
symmetric quadruple junction solution.
Theorem: Under the assumptions (Q1)-(Q3) for the potential Q and (Q4) for
the linearized operator A, there exists a solution U in C2(R3,R3) to the Euler-
Lagrange equation (3) with a symmetric quadruple structure. Namely, U satisfies
U ◦γ = γ ◦U for γ ∈ Γ and, for any vector x ∈ R3 with x ·(a−b) > 0, x ·(a−c) >
0, x · (a − d) > 0,

(8) lim
t→∞

|U(tx) − a| = 0.

The symmetry of U also yields the corresponding limits of U relative to other wells
b, c,d.
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Symmetry and monotonicity of least energy solutions

Louis Jeanjean

(joint work with J. Byeon, M. Maris, M. Squassina)

In [3] we give a simple proof of the fact that for a large class of autonomous
quasilinear elliptic equations and systems the solutions that minimize the corre-
sponding energy in the set of all solutions are radially symmetric. We require just
continuous non linearities and no cooperative conditions for systems. Thus, in
particular, our results cannot be obtained by using the moving planes method.

In the case of scalar equations, we also prove that any least energy solution has
a constant sign and is monotone with respect to the radial variable.

Our results of symmetry are based on a general approach, just developed by
M. Maris [6] to study the symmetry of the minimizers of a functional under one
(or several) constraint. Basically his result says that if the problem admits a
minimizer and if any minimizer is at least a C1 function then any minimizer is a
radial function.

In [3] we show that, under some general “abstracts” conditions any least energy
solution can be viewed as a minimizer of a functional on a constraint and we then
apply the results of [6]. These “abstracts” conditions are known to hold in any
situation (within our framework) where it has been previously proved the existence
of least energy solutions. The result on the constant sign is obtained by a simple
scaling argument.

As a special case of our results, we show that under the same conditions that
guarantee the existence of solutions (see [1]) the least energy solutions of

(1) −∆u = g(u), u ∈ H1(RN )

are all radially symmetric, of given sign and monotone. This answer a conjecture
of P.L. Lions [5] and for the corresponding system’s version of (1) a conjecture of
Brézis and Lieb [2].

Motivated by [3] we derive in [4] the existence of least energy solutions for a
general class of scalar quasilinear equations set on RN . Checking that the “ab-
stract” conditions hold we extend our results of symmetry and monotonicity to
this class.
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Entire Solutions of the Allen-Cahn equation and Complete Embedded
Minimal Surfaces of Finite Total Curvature in R3

Micha l Kowalczyk

(joint work with M. del Pino, J. Wei)

We establish a correspondence between minimal surfaces M which are complete,
embedded and have finite total curvature in R3, and finite Morse index bounded,
entire solutions of the Allen-Cahn equation ∆u + f(u) = 0 in R3, where f =
−F ′ with F bistable and balanced, for instance F (u) = 1

4 (1 − u2)2. We assume
additionally that M is non-degenerate, in the sense that its bounded Jacobi fields
are all originated from rigid motions (this is known for instance for a Catenoid and
for the Costa-Hoffman-Meeks surface of any genus) We prove that for any small
α > 0 the Allen-Cahn equation has a bounded solution uα whose 0-level set lies
close to the blown-up surface Mα := α−1M . We prove that uα is non-degenerate
and find that its Morse index coincides with the index of the minimal surface. A
continuum of solutions of this type, with ends eventually diverging logarithmically
from Mα is also found. Our construction suggests parallels of De Giorgi conjecture
for general bounded solutions of finite Morse index.

Equivariant Yamabe problem and Hebey–Vaugon conjecture

Farid Madani

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. Denote by
I(M, g), C(M, g) and Rg the isometry group, the conformal transformations group
and the scalar curvature respectively. Let G be a subgroup of the isometry group
I(M, g). E. Hebey and M. Vaugon [2] considered the following problem:

Is there some G−invariant metric g0 which minimizes the functional

J(g′) =

∫

M
Rg′dvg′

(
∫

M
dvg′)

n−2
n
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where g′ belongs to the G−invariant conformal class of metrics g defined by:

[g]G := {g̃ = efg/f ∈ C∞(M), σ∗g̃ = g̃ ∀σ ∈ G}
The positive answer would have two consequences. The first is that there exists a
I(M, g)−invariant metric g0 conformal to g such that the scalar curvature Rg0 is
constant. The second is that the A. Lichnerowicz’s conjecture [3], stated below, is
true.
Lichnerowicz conjecture. For every compact Riemannian manifold (M, g)
which is not conformal to the unit sphere Sn endowed with its standard metric,
there exists a metric g̃ conformal to g for which I(M, g̃) = C(M, g), and the scalar
curvature Rg̃ is constant.

To such metrics correspond functions which are necessarily solutions of the Yamabe

equation. In other words, if g̃ = ψ
4

n−2 g, ψ is a G−invariant smooth positive
function then ψ satisfies

4(n− 1)

n− 2
∆gψ +Rgψ = Rg̃ψ

n+2
n−2 .

The classical Yamabe problem, which consists to find a conformal metric with
constant scalar curvature on a compact riemannian manifold, is the particular
case of the problem above when G = {id}. Denote by OG(P ) the orbit of P ∈M
under G, Wg the Weyl tensor associated to the manifold (M, g) and ωn the volume
of the unit sphere Sn. We define the integer ω at the point P as

ω(P ) = inf{i ∈ N/‖∇iWg(P )‖ 6= 0}
Hebey–Vaugon conjecture. If (M, g) is not conformal to the sphere Sn en-
dowed with its standard metric gcan, or if the action of G has no fixed point, then
the following inequality holds

(1) inf
g′∈[g]G

J(g′) < n(n− 1)ω2/n
n ( inf

Q∈M
cardOG(Q))2/n

This conjecture is the generalization of T. Aubin’s conjecture [1] for the Yamabe
problem corresponding to G = {id}, where the constant in the right side of the
inequality is equal to infg′∈[gcan] J(g′) for Sn. In this case, the conjecture is com-
pletely proved.

Using the test function of T. Aubin [1] and R. Schoen [4], E. Hebey and M. Vau-
gon [2] proved the conjecture when the action of G is free over M , when the
dimension of M is between 3 and 11 or when there exists P ∈ M with minimal
orbit (finite) such that ω(P ) > (n− 6)/2 or ω(P ) ≤ 2.

In this talk we will show how the Hebey–Vaugon conjecture solves the equivariant
Yamabe problem, using Sobolev embedding in presence of symmetries. We give
some ideas about the proof of the following new result :
Hebey–Vaugon conjecture is valid if there exists a point P with minimal orbit
(finite) under G such that ω(P ) < 15.
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Minimal surfaces in CR manifolds

Andrea Malchiodi

(joint work with Jih-Hsin Cheng, Jenn-Fang Hwang and Paul Yang)

Let us consider a three dimensional manifold M . A contact structure ξ on is
a completely non-integrable two-dimensional distribution on M , while a contact
form Θ is a non-zero 1-form on M which annihilates ξ. We will always assume
Θ to be oriented, namely that dΘ(u, v) > 0 if (u, v) is an oriented basis of ξ.
The Reeb vector field is the unique vector field T such that Θ(T ) = 1 and such
that dΘ(T, ·) = 0. A CR structure compatible with ξ is an endomorphism J : ξ
→ ξ such that J2 = −Id. We assume that also J is oriented, namely that for
every non-zero vector field X , the couple (X, JX) is an oriented basis of ξ. A CR
manifold (or pseudo-hermitian) is a manifold endowed with a CR structure and
with a global contact form Θ. We have a natural volume form

V (Ω) =

∫

Ω

Θ ∧ dΘ

and a metric defined on ξ called Levi form

LΘ(v, w) = dΘ(v, Jw).

For the Heisenberg group H1, we have the standard choices

ê1 =
∂

∂x
+ y

∂

∂z
, ê2 =

∂

∂y
− x

∂

∂z
, T̂ =

∂

∂z
, Θ̂ = xdy − y dx+ dz,

while the CR structure J is defined as Jê1 = ê2.
Consider next a regular surface Σ embedded in M3. If p ∈ Σ and if TpΣ 6= ξ(p)

(as it happens generically), we define e1(p) as the unique (up to the sign) unit
vector belonging to TpΣ ∩ ξ(p), and e2(p) = J(p)e1(p). Assuming that Σ is the
boundary of an open set Ω, if we take a variation of this set in the direction fe2
we have

δfe2V (Ω) =

∫

Σ

fω; δfe2

∫

Σ

ω = −
∫

Σ

fHω,

for some explicit 2-form ω (depending on Σ and on the CR structure) and for
some function H . We call ω the (pseudo)-area form of Σ and H the (pseudo)-
mean curvature.
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For the Heisenberg group, our definition coincide with those in [CDG], [DGN],
[Pau]. Moreover, the area element ω coincides with the three dimensional Haus-
dorff measure of Σ, considered in [B] and in [FSS].

Graphs in the Heisenberg group. Let u : Ω ⊆ R2 → R be a smooth function, and
let Σ be the graph of u

Σ =
{

(x, y, u(x, y)) | (x, y) ∈ R
2
}
.

It turns out that, at regular points, e1 ∈ TΣ ∩ ξ is given by

e1 =
1

D



−(uy + x)





1
0
y



+ (ux − y)





0
1
−x







 ,

where

D =
[
(ux − y)2 + (uy + x)2

] 1
2 .

One also finds that

H =
1

D3
{(uy + x)2uxx − 2(uy + x)(ux − y)uxy + (ux − y)2uyy},

so the equation H ≡ 0 is

(∗) (uy + x)2uxx − 2(uy + x)(ux − y)uxy + (ux − y)2uyy = 0

In [CHMY], see also [CH] and [GP] for some extensions, the following classification
result was proved.

Theorem A. The only entire C2 smooth solutions to (∗) are of the form

u = ax+ by + c (a plane with a,b,c being real constants);(1.1)

u = −abx2 + (a2 − b2)xy + aby2 + g(−bx+ ay)(1.2)

(a, b being real constants such that a2 + b2 = 1 and g ∈ C2).

The main ingredient for proving Theorem A is the analysis of the singular points
of Σ (or of u), which are given by

S(u) =
{

(x, y) ∈ R
2 : ux − y = uy + x = 0

}
.

For a minimal graph we have the following characterization of the singular points.

Proposition Let Ω be a domain in the xy−plane. Let u ∈ C2(Ω) be a solution
of (∗). Let p0 be a singular point of u. Then either p0 is isolated in S(u) or
there exists a small neighborhood of p0 which intersects with S(u) in exactly a C1

smooth curve through p0.

The analysis of the singular points can also be employed to study surfaces with
bounded (p)-mean curvature in general 3-dimensional CR manifolds. We have
indeed the following result.
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Theorem B. Let M be a pseudohermitian 3-manifold. Let Σ be a closed, con-
nected surface, C2 smoothly immersed in M with bounded p-mean curvature. Then
the genus of Σ is less than or equal to 1. In particular, there are no constant p-
mean curvature or p-minimal surfaces Σ of genus greater than one in M.

The above proposition has been applies in [RR] to classify C2 isoperimetric sets in
H1, according to a well known conjecture by P.Pansu. Other results concerning
Pansu’s conjecture can be found in [MR].

According to the results in [CHY] and [R] however, weak solution of (∗) might
have lower regularity than C2, and in particular in [CHY] a condition is given to
characterize minimizers in terms of the angles formed by singular curves and char-
acteristic curves (projections onto the x− y plane of the integral curves of e1). By
this reason, in [CHMY2], the structure of the singular set for C1 solutions is being
studied. The following result has been proved, deriving an ordinary differential
equation for the above quantity D along characteristic curves.

Theorem C. Consider a C1 smooth p-minimal graph over a plane domain Ω. Let
p be a singular point in Ω. Then either p is an isolated singular point, i.e., there
exists a neighborhood V ⊂ Ω of p such that V contains no other singular points
except p, or there exists at least one C0 singular curve γ : [0, 1] → Ω (i.e., γ is
continuous and γ(s) is a singular point for each s ∈ [0, 1]) such that γ(0) = p and
γ(1) 6= p.
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Existence of solutions for singular problems by perturbation methods

Marcelo Montenegro

The purpose of this note is to describe how to approximate some classes of singular
equations by nonsingular equations. We obtain a solution to each nonsingular
problem and estimates guaranteeing that the limiting function is a solution of the
original problem.

The following problem was studied in [4]

(1)

{

−∆u = χ{u>0}
(
− u−β + λup

)
in Ω

u = 0 on ∂Ω

0 < β < 1 and 0 < p < 1.

Theorem 1. There exists a maximal solution for every λ > 0. There is constant
λ∗ > 0 such that for λ > λ∗ the maximal solution is positive. And for λ < λ∗, the
maximal solution vanishes on a set of positive measure.

We solve problem (1) by perturbing the equation as −∆u+ u
(u+ε)1+β = up. The

solutions uε ց u pointwisely and

(2)

∫

Ω

u(−∆ϕ) +

∫

{u>0}

1

uβ
ϕ ≤ λ

∫

Ω

upϕ,

∀ϕ ∈ C2(Ω), ϕ ≥ 0, ϕ = 0 on ∂Ω.
There are two approaches to show that u is indeed a solution of (1). Relation

(2) tells us that u is a maximal subsolution. We then regularize it and show that

u ∈ C1, 1−β
1+β and indeed solve the problem (1). In doing this, we need to obtain

a local estimate |∇u| ≤ Cu
1−β

2 in Ω′ ⊂⊂ Ω. One of the main ingredients is the
Harnack type lemma below.

Lemma 1.1. For every ball Br(p) ⊂ Ω there are constants c0, τ > 0 depending
only on n and β such that if

−
∫

∂Br(p)

u ≥ c0r
2

1+β , then u(x) ≥ τ−
∫

∂Br(p)

u a.e. in Br/2(p)

The second approach relies on an estimate for uε by the maximum principle,

namely |∇uε| ≤ Cu
1−β

2
ε in Ω′ ⊂⊂ Ω. The idea to obtain such an estimate is to

define v = |∇uε|2
u1−β

ε

ϕ2
1, where ϕ1 is the first eigenfunction of the Laplacean with

zero boundary condition. The function v has a maximum at x0 ∈ Ω, and then
∆v(x0) ≤ 0. If the estimate is not true, it is possible to take a constant C > 0
independently of ε such that sup v > C and by computation ∆v(x0) > 0, a
contradiction. Using the estimate and multiplying the equation by an adequate
test function, we let ε→ 0 in the equation to get a weak solution.
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The next problem was studied in [6]
{

−∆u = χ{u>0}
(

log u+ λup
)

in Ω

u = 0 on ∂Ω

Both approaches described above work in this case and an analogous result to
theorem (1) holds true. The estimate obtained for the maximal subsolution (which
is a solution) is |∇u| ≤ Cu in Ω′ ⊂⊂ Ω and u ∈ C1,1, a better regularity than the
one for (1). This is roughly explained since logu is less singular than −1/uβ. The
estimate by maximum principle is |∇uε| ≤ Cuε in Ω′ ⊂⊂ Ω.

The fully nonlinear problem is addressed in a work in progress with E. Teixeira.
We consider {

F (D2u) = G
(
x, u, |∇u|2

)
in Ω

u = f on ∂Ω

with f ∈ C1,α(∂Ω) andG : Ω×R×R → R a C1 function. Following [2], F : Sym(d×
d) → R and F (0) = 0. The uniform ellipticity reads as follows: ∃λ,Λ, 0 < λ ≤ Λ
such that

F (M + N ) ≤ F (M) + Λ‖N+‖ − λ‖N−‖, ∀M,N ∈ Sym(d× d).

In order to state our Lipschitz estimate, let φ : (0,∞) → R such that
lim inf
s→∞

φ(s) ≥ 0. We define the asymptotic behavior of φ passing 0, κ : (0, 1) →
(0,∞) by κ(ε) := inf{s : φ(s) > −ε}.

Theorem 2. Let u ∈ C3(Ω) be a solution. Define

σ(|p|) := inf
(x,u)

DuG(x, u, |p|2)|p|2 −
∣
∣DxG(x, u, |p|2)

∣
∣ |p|

G2(x, u, |p|2)

assume S := lim inf
|p|→∞

σ(|p|) ≥ 0. Then max
Ω

|∇u| ≤ C, where C depends only on d,

λ, Λ, ‖f‖C1,α and the asymptotic behavior of σ passing 0.

The proof runs by defining v = |∇u|2. We compute Di,jv and use the equation.
Since v has a maximum at x0 ∈ Ω, we use the asymptotic behavior to conclude
the estimate. It is not a proof by contradiction.

Specializing the function G we study the problem

(3)

{
F (D2u) = β(u)Γ

(
|∇u|2

)
in Ω

u = f on ∂Ω,

where β : R → R and Γ: [0,∞) → R are C1,α functions. We have two consequences
of Theorem 2.

Corollary 2.1. If infu
β′(u)
β(u)2 > −∞ and Γ(τ)

τ → +∞ as τ → +∞, then

max
Ω

|∇u| ≤ C.

Corollary 2.2. If β is nondecreasing, |β| + |β′| > 0 and lim inf
τ→∞

Γ(τ) > 0, then

max
Ω

|∇u| ≤ C.
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The approach to solve (3) is by considering again a perturbed problem

(4)

{
F
(
D2uǫ

)
= βǫ(uǫ)Γ

(
|∇uǫ|2

)
in Ω

uǫ = f on ∂Ω.

Using Corollary 2.1 we derive existence of a Lipschitz viscosity solution for

(5)

{

F (D2u) =
1

uq
χ{u>0}Γ

(
|∇u|2

)
in Ω

u = f on ∂Ω,

with q ≥ 1, Γ ≥ 0, Γ superlinear and F concave. In this case βǫ(u) = 1/uq for
u > ε and βǫ(u) = ε for u < −ε. Between −ε and ε, βǫ(u) is a fourth order
polinomial. Since βǫ(u) is not monotone, Perron’s method should be adapted by
adding a term ku in both sides of the equation. This gives a solution uε to (4).
The estimate of Theorem 2 permits us to let uε → u, thus obtaining a viscosity
solution of (5).

Another existence of viscosity solution result can be obtained using Corollary 2.2
for the problem

(6)

{
F (D2u) = χ{u>0}Γ

(
|∇u|2

)
in Ω

u = f on ∂Ω.

In this case βε is defined as follows. Let ρ be a smooth function supported in [0, 1],
ρ > 0 in (0, 1) and normalized as to

∫

R
ρ = 1. We define

βǫ(s) :=
1

2

∫ s/ǫ

0

ρ(τ)dτ − 1

2

∫ −s/ǫ

0

ρ(τ)dτ +
1

2
+ ǫ,

which satisfy the assumptions of Corollary 2.2.
Equations similar to (5) and (6) have been treated in [3, 5]. The solutions of

the equations my exhibit a free boundary, which regularity can be studied with
techniques from [1].
Acknowledgement. The author was supported by MFO, CNPq and FAEPEX-
UNICAMP. He would like to thank the organizers for their kind invitation.
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Nonlinear Liouville theorems and applications

Pavol Quittner

(joint work with Thomas Bartsch, Peter Poláčik, Philippe Souplet)

Consider classical solutions of the semilinear heat equation

(1) ut = ∆u+ |u|p−1u, x ∈ R
N , t ∈ R,

where p > 1 is subcritical in the Sobolev sense:

p < pS :=
N + 2

(N − 2)+
.

Liouville theorems state that if u is an entire solution of (1) (a solution defined
for all times, positive and negative) and u is contained in an admissible class of
functions then u ≡ 0. For example, if p < pB := N(N + 2)/(N − 1)2 then (1) does
not possess nontrivial solutions in the class of nonnegative functions (see [1]). It
is not known whether the exponent pB can be replaced with the critical Sobolev
exponent pS . The following theorem due to [2, 4, 5] supports this conjecture.

Theorem 1 Let 1 < p < pS. Equation (1) does not possess nontrivial classical
solutions in the class of radial functions with bounded zero number.

Here “radial function” means a function u = u(x, t) which is radially symmetric
with respect to the spatial variable x, hence u(x, t) = U(|x|, t). The notion “func-
tion with bounded zero number” is defined as follows: Let I ⊂ [0,∞) and J ⊂ R

be intervals and U = U(r, t) : I × J → R be a continuous function. We say that
U is a function with bounded zero number if the number

zI(U(·, t)) := sup{k : ∃r1, . . . , rk+1 ∈ I, r1 < r2 < · · · < rk+1,

U(ri, t) · U(ri+1, t) < 0 for i = 1, 2, . . . , k}
is finite and bounded uniformly in t ∈ J . Of course, one takes I = [0,∞) and
J = R in Theorem 1.

It is known that Liouville-type theorems and scaling arguments can be used
in order to obtain precise estimates for solutions of related problems in bounded
and unbounded domains (see [3, 4]). As an application of such estimates based on
Theorem 1, the following result has been proved in [5]: Consider the problem

(2)







ut − ∆u = m(t)f(u), |x| < R, t ∈ (0, T ),

u = 0, |x| = R, t ∈ (0, T ),

u(x, 0) = u(x, T ), |x| < R,

where R, T ∈ (0,∞), x ∈ RN ,

(3) m ∈ W 1,∞([0, T ]) is positive, m(0) = m(T ),

(4)

{

f ∈ C1(R), f(0) = 0, f ′(0) ≤ 0,

|f ′(u)| ≤ C(1 + |u|r−1), r < pS ,
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and

(5) lim
|u|→∞

f(u)

|u|p−1u
= 1 for some p ∈ (1, pS).

Theorem 2 Assume (3), (4), (5). Fix Z ∈ {0, 1, 2, . . .}. Then there exists a
radial solution u(x, t) = U(|x|, t) of (2) satisfying z(0,R)(U(·, t)) = Z for all t.
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Symmetry and nonexistence results for low Morse index solutions to
semilinear elliptic equations

Filomena Pacella

(joint work with Francesca Gladiali and Tobias Weth)

Consider the class of semilinear elliptic equations

(1) −∆u = f(|x|, u) in Σ

where Σ is a radial (but not necessarily bounded) subdomain of RN , N ≥ 2 and
f : Σ × R → R is locally a C1,α-function. In the case where Σ 6= RN , we consider
(1) together with Dirichlet boundary conditions

(2) u = 0 on ∂Σ.

We are interested in the question whether certain classes of solutions inherit - at
least partially - the symmetry of the underlying domain. When Σ = RN , the
moving plane method can be used to show radial symmetry of positive solutions
of (1) under further assumptions on f and on the decay of the solutions at infinity.
The first results in this direction were derived in the famous paper of Gidas, Ni and
Nirenberg [9] and were extended in various directions in several papers (see e.g.
[4, 5, 11] and the references therein). Other symmetry results, using a different
method based on symmetrization techniques, were obtained in [2].
Very few results are available in the case when the solution changes sign or the
underlying domain is an annulus or the exterior of a ball in RN . In part this is
due to the fact that the study of nodal solutions in unbounded domains presents
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several technical difficulties, and in many cases (see e.g. [7, 1]) these solutions form
a set with a more complicated structure than the set of positive solutions. In the
following, we present some symmetry results based on Morse index information
which we have obtained in [14] and [10]. For this we need to recall a few definitions.

Definition 1. A function u ∈ C(Σ) is said to be foliated Schwarz symmetric if
there is a unit vector p ∈ RN , |p| = 1 such that u(x) only depends on r = |x| and

θ = arccos
(
x
|x| · p

)

and u is nonicreasing in θ.

Now let us denote by Qu the quadratic form corresponding to a solution u of
(1) and (2), i.e.

(3) Qu(φ, ψ) =

∫

Σ

[∇φ∇ψ − Vu(x)φψ] dx, ψ, φ ∈ C1
0 (Σ)

where Vu : RN → R is given by Vu(x) = f ′(|x|, u(x)) = ∂f
∂u (|x|, u(x)) and C1

0 (Σ)

denotes the space of all C1-functions Σ → R with compact support strictly con-
tained in Σ.

Definition 2. We say that a C2-solution of (1), (2)

• is stable if Qu(ψ, ψ) ≥ 0 for all ψ ∈ C1
0 (Σ);

• has Morse index equal to K ≥ 1 if K is the maximal dimension of a
subspace X of C1

0 (Σ) such that

Qu(ψ, ψ) < 0 for all ψ ∈ X \ {0}.
We note that, if the underlying domain Σ is bounded, than the Morse index of

a solution u of (1), (2) coincides with the number of negative Dirichlet eigenvalues
of −∆ + Vu on Σ. Our main symmetry results now read as follows (see [14] and
[10])).

Theorem 3. Suppose that f(|x|, s) has a convex derivative f ′(|x|, s) = ∂f
∂s (|x|, s)

for every x ∈ Σ. Then every solution u of (1) and (2) with |∇u| ∈ L2(Σ) and
Morse index j ≤ N is foliated Schwarz symmetric.

Theorem 4. Suppose that f(|x|, s) is convex in the s-variable for every x ∈ Σ.
Then every solution u of (1) and (2) with |∇u| ∈ L2(Σ) and Morse index j ≤ N
is foliated Schwarz symmetric.

We note that the assumption |∇u| ∈ L2(Σ) is automatically satisfied if Σ is
bounded, i.e. if Σ is a ball or an annulus in RN centered at the origin. By passing
from bounded domains (which were considered in [14] and [13]) to unbounded
domains, we not only encounter technical difficulties but also new phenomena
since the shape of solutions depends in a subtle way both on decay assumptions
and the class of nonlinearities. Theorem 4 in particular improves the main result
in [12], where only solutions with Morse index less than or equal to one were
considered.

We remark that under the assumptions of Theorem 3 or 4 there are only two
possibilities, namely either the solution is radially symmetric or is strictly mono-
tone in the polar angle, and both cases occur in particular examples. In contrast,
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stable solutions u are radially symmetric even without any convexity assumption
on the nonlinearity f . Indeed we have:

Theorem 5. Every stable solution u of (1) and (2) such that |∇u| ∈ L2(Σ) is
radial. If in addition Σ = RN and f does not depend on |x| then u is constant.

This Theorem generalizes and complements results on stable solutions obtained
in [3] and [6]. The main difference here is that we also consider the domain RN \B
and - as in the other results - allow |x|−dependence of the nonlinearity. On the
other hand, in case f does not depend on |x| and the underlying domain Σ is
unbounded, we can deduce the following nonexistence results from Theorems 3
and 4.

Theorem 6. Assume that Σ = RN and f = f(s), i.e., f does not depend on
x and that either f is convex or f ′ is convex. Then there are no sign changing
solutions u of (1) with

|∇u| ∈ L2(RN ), u(x) → 0 as |x| → ∞
and Morse index j ≤ N .

Theorem 7. Assume that Σ = RN \B and f = f(s), i.e., f does not depend on
x and that either f is convex or f ′ is convex. Then there are no solutions u –
neither positive nor sign changing – of (1) and (2) with

|∇u| ∈ L2(Σ), u(x) → 0 as |x| → ∞
and Morse index j ≤ N .

These nonexistence results are rather easy corollaries of Theorems 3 and 4 except
in the case where nodal solutions in RN \ B have to be excluded. They apply in
particular to semilinear elliptic equations of the type

(4) −∆u = |u| 4
N−2u in R

N ,

where 3 ≤ N ≤ 6, and

(5) −∆u+ u = |u|σu, u ∈ H1(RN ) or u ∈ H1
0 (RN \B),

where σ ≥ 1 and σ < 4
N−2 if N > 3. In the case of (4). the assumptions

(6) |∇u| ∈ L2(Σ), u(x) → 0 as |x| → ∞
are automatically satisfied since it is proved in [8] that every classical solution u
with finite Morse index belongs to the space D1,2(RN )∩L∞(RN ), where D1,2(RN )
is defined as the completion of C∞

0 (RN ) in the norm ‖v‖D1,2(RN ) = ‖∇v‖L2(RN ).
We believe that the properties (6) hold for finite Morse index solutions corre-
sponding to a more general class of nonlinearities, although they are certainly not
satisfied in the case of the Allen-Cahn nonlinearity f(u) = u− u3.
Since we allow the nonlinearity to depend on |x|, Theorem 3 applies to nonau-
tonomous problems of the type

(7) −∆u+ V (|x|)u = |u|σu, u ∈ H1(RN ) or u ∈ H1
0 (RN \B)
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where σ ≥ 1 and σ < 4
N−2 if N > 3. As a consequence, all solutions of (7) with

|∇u| ∈ L2 and Morse index less than or equal to N are foliated Schwarz symmetric.
If we restrict our attention to positive solutions, the same statement is true also
for 0 < σ < 1, since Theorem 4 applies in this case.
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On the Lane-Emden problem for the p-Laplacian

Enea Parini

(joint work with Christopher Grumiau)

In [1] we consider the Lane-Emden equation for the p-Laplacian

(1)

{
−∆pu = λ|u|q−2u in Ω

u = 0 on ∂Ω

where Ω ⊂ Rn is a bounded domain, λ > 0 and 1 < p < q < p∗ (with p∗ = np
n−p if

p < n and p∗ = ∞ otherwise). Weak solutions of the equation are critical points



1458 Oberwolfach Report 26

of the functional

ϕq(u) =
1

p

∫

Ω

|∇u|p − λ

q

∫

Ω

|u|q.

defined on the Sobolev space W 1,p
0 (Ω). It can be easily seen that ϕq is not bounded

from below; to overcome this difficulty, one defines the Nehari manifold

Nq =
{

u ∈ W 1,p
0 (Ω) \ {0} | dϕq(u)(u) = 0

}

and the nodal Nehari set

Mq = {u ∈W 1,p
0 (Ω) |u+, u− ∈ Nq}

where

dϕq(u)(v) =

∫

Ω

|∇u|p−2∇u∇v − λ

∫

Ω

|u|q−2uv.

All the critical points of ϕq are contained in Nq, and all the sign-changing critical
points belong to Mq. It can be proved that there exists a minimizer of ϕq on
Nq (resp. Mq), which is a positive (resp. sign-changing) critical point of ϕq and
which therefore is called ground state solution (resp. least energy nodal solution)
of (1).

The behaviour of families of ground state and least energy nodal solutions as
q → p for a fixed λ > 0 is also investigated. Let us denote by λ1(p; Ω) and λ2(p; Ω)
the first and the second eigenvalues of the p-Laplacian respectively. The following
theorems hold.

Theorem 1. Let {uq}q>p be a family of ground state solutions of the Lane-Emden
problem.
(i) If λ < λ1(p; Ω), then uq diverge to infinity as q → p.
(ii) If λ = λ1(p; Ω), then uq converge to a first eigenfunction of −∆p as q → p.
(iii) If λ > λ1(p; Ω), then uq converge to zero as q → p.

Theorem 2. Let {uq}q>p be a family of least energy nodal solutions of the Lane-
Emden problem.
(i) If λ < λ2(p; Ω), then uq diverge to infinity as q → p.
(ii) If λ = λ2(p; Ω), then uq converge to a second eigenfunction of −∆p as q → p.
(iii) If λ > λ2(p; Ω), then uq converge to zero as q → p.

A natural question is whether the above mentioned results hold also when 1 <
q < p. In this case the functional ϕq has a different structure, and the Nehari

manifold is no longer a closed subset of W 1,p
0 (Ω), since there exists a sequence

{un} of solutions of (1) such that un → 0 as n → ∞ (see [2]). However, it is
possible to prove that the equation admits a unique positive solution (see [3]).
The investigation of this problem represents surely an interesting research topic.
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Tower of bubbles in almost critical problems

Angela Pistoia

(joint work with Monica Musso)

In this paper we are interested in the construction of solutions to the slightly
super critical problem

(1) ∆u+ λ ǫ
N−4
N−2u+ u

N+2
N−2+ǫ = 0 in Ω, u > 0 in Ω, u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN , N ≥ 5, λ is a positive parameter
and ǫ is supposed to be small and positive.

We are also interested in the construction of sign changing solutions to the
slightly sub critical problem problem

(2) ∆u+ |u| 4
N−2−ǫu = 0 in Ω, u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN , N ≥ 3 and ǫ is supposed to be small
and positive.

In a celebrated paper, Brezis and Nirenberg [1] established that the problem

∆u+ µu+ u
N+2
N−2+ǫ = 0 in Ω, u > 0 in Ω, u = 0 on ∂Ω,

for ǫ = 0, in a general bounded smooth domain Ω, is solvable for 0 < µ < λ1,
where λ1 is the first eigenvalue of −∆ under Dirichlet boundary conditions. This
result is optimal, since the condition µ < λ1 is also necessary for existence. On the
other hand, Pohozaev’s identity, gives nonexistence for µ ≤ 0 and for any ǫ ≥ 0,
in star-shaped domains.

In [2] the authors study the problem of existence for solutions to (1) in the case
Ω is the unit ball. In this context, they construct families of radially symmetric
solutions uǫ to (1) such that uǫ(0) = ‖uǫ‖∞ → ∞ as ǫ → 0. To be more precise,
they find that, given any number k ≥ 1, there exist solutions of the form

uǫ(y) = αN

k∑

j=1




1

1 +M
4

N−2

j |y|2





N−2
2

Mj ( 1 + o(1) ) as y → 0 ,

where Mj → +∞ and Mj = o(Mj+1), as ǫ→ 0, for all j and αN = (N(N−2))
4

N−2 .
The shape of the solutions described above is the one of a super position of bubbles,
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namely sum of functions of the form

Uδ,ζ(x) = αN

(
δ

δ2 + |x− ζ|2
)N−2

2

,

with Mj = δ−
N−2

2 and ζ = 0. The family of functions Uδ,ζ, for any parameter
δ > 0 and any point ζ ∈ RN , is known to be the only bounded solutions to the

limit problem ∆u+ u
N+2
N−2 = 0 in RN .

The phenomena discovered in [2], namely the existence of solutions to a certain
semilinear elliptic problem involving the critical Sobolev exponent with the shape
of a superposition of several bubbles centered at the same point but with different
scaling parameters, was new and somewhat surprising, since for ǫ = 0 and µ→ 0+

only a single bubble is present.
The method used to prove the result in [2] strongly relies on the symmetry of

the problem. In [3], the authors could extend the construction described above
to a more general class of domains, namely domains whose associated Robin’s
function has a non degenerate critical point. More precisely, if the domain Ω is
such that the corresponding Robin’s function has a non degenerate critical point
ζ, one of the results contained in [3] states that solutions to (1) of the form of a
tower of bubbles centered at ζ do exist. We point out that such a nondegeneracy
condition is satisfied, for example, if Ω is a perturbation of a convex and axially
symmetric domain.

In [4] we further extend the result in [2] and [3] to any bounded smooth domain.
Indeed we prove that in any bounded domain Ω problem (1) does admit solutions
with the shape of a tower of bubbles and we remove the assumption on the non-
degeneracy of the critical point of the Robin’s function.

Theorem 1. Assume N ≥ 5. Then, given an integer k ≥ 1, there exists a
number λ̄k > 0 such that if λ > λ̄k there exists ǫk > 0 such that for any ǫ ∈ (0, ǫk)

there exist points ξj
(i)
ǫ ∈ Ω, positive numbers dj

(1)
ǫ < dj

(2)
ǫ , j = 1, . . . , k and two

solutions u
(i)
ǫ , i = 1, 2, of Problem (1) of the form

(3) uǫ(y) = αN

k∑

j=1






dj
(i)
ǫ ǫ

2j−1
N−2

(

dj
(i)
ǫ ǫ

2j−1
N−2

)2

+ |y − ξj
(i)
ǫ |2






N−2
2

+ Θǫ(y),

where, as ǫ goes to 0, ‖Θǫ‖H1
0(Ω) → 0, τ

(

ξj
(i)
ǫ

)

→ minx∈Ω τ(x) and dj
(i)
ǫ → dj

(i) >

0, for i = 1, 2 and j = 1, . . . , k.

As far as it concerns problem (2), in [5], the authors prove that if Ω is axially
symmetric, problem (2) has a sign-changing solution with the shape of a tower of
bubble with alternate signs, centered at the center of symmetry of the domain. In
[4] we extend such a result to an arbitrary domain.

Theorem 2. Assume N ≥ 3. Then, given an integer k ≥ 1, there exists
ǫk > 0 such that for any ǫ ∈ (0, ǫk) there exist points ξjǫ ∈ Ω, positive numbers
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djǫ j = 1, . . . , k and a solutions uǫ of Problem (2) of the form

(4) uǫ(y) = αN

k∑

j=1

(−1)j






djǫǫ
2j−1
N−2

(

djǫǫ
2j−1
N−2

)2

+ |y − ξjǫ|2






N−2
2

+ Θǫ(y),

where, as ǫ goes to 0, ‖Θǫ‖H1
0(Ω) → 0, τ

(
ξjǫ
)
→ minx∈Ω τ(x) and dj ǫ → dj > 0,

for j = 1, . . . , k.

The proof of our results is based on a nonlinear Liapunov-Schmidt reduction.
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Singularities of complex solutions of the Burgers equation

Peter Poláčik

(joint work with Vladimı́r Šverák)

We consider the viscous 1D Burgers equation

(1) ut + uux = uxx

in R × (0,∞) with initial condition u(x, 0) = u0(x), where we allow u0 to be
complex-valued. A well-known fact about equation (1) is that the transformation
u = −2vx/v, called the Cole-Hopf transformation, leads to standard heat equation
vt = vxx for v. The singularities of u correspond to the zeros of v. For real valued
functions, v cannot have zeros if they are not present in v(x, 0) and one sees
immediately that for u0 real and “sufficiently regular” the initial value problem
for equation (1) has a unique smooth global solution. We show that complex
valued solutions do develop singularities. One can then ask about the nature of
the singular set. We show that, roughly speaking, if there are no singularities
present in the initial data, then the singularities of u are isolated in R × (0,∞).
In a “typical situation” the number of singularities of such a solution u will be
finite. However, we have examples of solutions with infinitely many (isolated)
singularities.

We now formulate our results more precisely. For a complex-valued u ∈ L1(R)
we define U(x) =

∫ x

−∞ u(ξ) dξ and v = exp(−U/2). Vice-versa, given a complex-

valued v ∈W 1,1
0 (R) (the space of all absolutely continuous functions that have the
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derivative in L1(R)) with v(x) 6= 0 in R and v(x) → 1 as x → −∞, we let u =
−2vx/v. For time-dependent functions on R we apply the above transformations
at each time level.

A well known simple calculation shows that u satisfies equation (1) if and only
if v satisfies the standard heat equation vt = vxx.

We can now solve the initial value problem for equation (1) with a complex
valued u0 ∈ L1(R) as follows. Set v0(x) = exp{− 1

2

∫ x

−∞ u0(ξ) dξ} and let v be the
bounded solution of the heat equation with initial data v0. It is easy to check that
there is T > 0 such that |v(x, t)| ≥ ε > 0 in R × (0, T ) and hence u = −2vx/v is a
well-defined local-in-time solution of equation (1) with u(x, 0) = u0(x).

The following result gives a sufficient condition for the global existence of such
a solution.

Proposition 1. In the notation above, assume that u0 ∈ L1(R) with
∫

R
| Imu0| ≤

2π. Then equation (1) has a global smooth solution u with u(x, 0) = u0(x). If in
addition |

∫

R
Imu0| < 2π, then supx |u(x, t)| → 0 as t→ ∞.

On the other hand, there are solutions which develop singularities.

Proposition 2. For each δ > 0 there exists a smooth, compactly supported
(complex-valued) u0 with

∫

R
Im |u0| < 2π+ δ such that the solution of equation (1)

with initial condition u0 blows up in finite time.

The above results show that solutions with initial conditions satisfying
|
∫

R
Imu0| =

∫

R
| Imu0| = 2π lie on the “threshold between blow up and decay.”

We next look at the asymptotic behavior of such threshold solutions.

Proposition 3. Assume u0 ∈ L1(R) is compactly supported, with |
∫

R
Imu0| =

∫

R
| Imu0| = 2π. Then there exist a real γ and a complex β with Imβ 6= 0 such

that the solution u of equation (1) with u(x, 0) = u0(x) satisfies

(2) u(x, t) =
−2

(x − γ
√

2t) + β
+ O(

1√
t

), (t→ ∞)

uniformly in x ∈ R. The constants γ and β are determined by u0. In particular,
γ = 0 if and only if

∫

R
Reu0 = 0.

Note that −2/(x+ b), b ∈ C\R, is a family of steady states of (1). The solution
in the previous result approaches the family as t→ ∞, converging to one of them
if and only if γ = 0.

We next examine the structure of the singular set of u which corresponds to
the nodal set of v.

Theorem 4. Let v be a bounded complex-valued solution of the heat equation in
R × (0,∞). Assume v has no zeros in some neighborhood of R × {0}. Then all
zeros of v in R × (0,∞) are isolated.

We remark that typically v has only finitely many zeros, but there are initial
conditions for which v has infinitely many zeros:
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Proposition 5. There exists a smooth (complex-valued) function v0 ∈ W 1,1
0 (R)

such that v0(−∞) = 1, |v0(x)| ≥ ε0 > 0 for any x ∈ R, and the solution v of
the heat equation with v(·, 0) = v0 vanishes at infinitely many points (0, τk), with
τk → ∞.

The proofs of the above results are given in [3]. This research was inspired by
[2], where complex-valued solutions of 3D incompressible Navier-Stokes equations
which develop singularities were found. Finally, we mention that in a recent paper
[1], Lu Li has carried out a detailed analysis of the behavior of complex solutions of
equation (1) near their singularities. In particular, she has given all possible blow
up rates (they are all of type II) and rescaled blow up profiles of such solutions.
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On existence and behavior of minimizers for the
Schrödinger-Poisson-Slater problem

David Ruiz

Our starting point is the system of Hartree-Fock equations:
(1)

−∆ψk + (V (x) −Ek)ψk +ψk(x)

∫

R3

|ρ(y)|2
|x− y| dy−

N∑

j=1

ψj(x)

∫

R3

ψj(y)ψk(y)

|x− y| dy = 0,

where ψk : R
3 → C form an orthogonal set in H1, ρ = 1

N

∑N
j=1 |ψj |2, V (x) is an

exterior potential and Ek ∈ R. This system appears in Quantum Mechanics in the
study of a system of N particles.

In (1), the last term is usually called the exchange term, and is the most difficult
term to be treated. A very simple approximation of this term was given by Slater
[12] in the form:

N∑

j=1

ψj

∫

R3

ψj(y)ψk(y)

|x− y| dy ∼ Csρ
1/3ψk,

where Cs is a positive constant.
By a mean field approximation, the local density ρ can be estimated as ρ = |u|2,

where u is a solution of the problem:

−∆u(x) + V (x)u(x) +Bu(x)

∫

R3

|u(y)|2
|x− y| dy = C|u(x)|2/3u(x).



1464 Oberwolfach Report 26

This system receives the name of Schrödinger-Poisson-Slater system (see for in-
stance [2, 4]). In recent years problem (2) has been object of intensive research,
see [1, 7, 5, 6, 9, 10] and the references therein.

In this paper we are interested in the following version of the Schrödinger-
Poisson-Slater problem:

(2) −∆u+ u+ λ

(

u2 ⋆
1

|x|

)

u = |u|p−2u,

where λ > 0. Our approach is variational, that is, we will look for solutions of (2)
as critical points of the associated energy functional Iλ : H1(R3) → R,

Iλ(u) =
1

2

∫

R3

(
|∇u|2 + u2

)
dx+

λ

4

∫

R3

∫

R3

u2(x)u2(y)

|x− y| dx dy − 1

p

∫

R3

|u|p dx.

In [10] the following existence results were given:

λ small λ ≥ 1/4
2 < p < 3 Two solutions inf Iλ|H1

r
> −∞ No solutions inf Iλ = 0

p = 3 One solution inf Iλ|H1
r

= −∞ No solutions inf Iλ = 0

3 < p < 6 One solution inf Iλ|H1
r

= −∞ One solution inf Iλ|H1
r

= −∞

In the above table, “Two solutions” (respectively, “One solution”) means that
there exist at least two (respectively, one) positive radial solutions. On the other
hand, “No solution” means that there are no nontrivial solutions.

Let us consider the case p ∈ (2, 3). With λ small, there exist two solutions,
one of them corresponding to a minimum of Iλ|H1

r
. This solution must blow up

as λ → 0, since I0|H1
r

is unbounded below. The aim of the talk is to describe the
asymptotic behavior of those radial minimizers.

A partial answer is given in [6, 9]. In those papers, by using a perturbation
technique, solutions of (2) with a certain behavior are found (for λ small). More-
over, those solutions correspond to local minima of Iλ|H1

r
and their energy tend to

−∞ as λ → 0, so it is quite reasonable to think that those solutions correspond
to global minima. However, those solutions are provided only if p < 18/7.

At this point, some natural questions arise: what is the meaning of the value
p = 18/7? How do minimizers behave if p ∈ (18/7, 3)? Here we intend to answer
both questions.

By making the change of variables v(x) = ε
2

p−2u(εx), ε = λ
p−2

4(3−p) , we obtain:

(3) −∆v + ε2v +

(

v2 ⋆
1

|x|

)

v = |v|p−2v.

This motivates the study of the limit problem:

(4) −∆v +

(

v2 ⋆
1

|x|

)

v = |v|p−2v.

Problem (4) can be thought of as a zero mass problem (see [3]), but under the
action of a nonlocal term. To start with, H1(R3) is not the right space to study
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it. It seems quite clear that the right space should be:

E = E(R3) = {u ∈ D1,2(R3) :

∫

R3

∫

R3

u2(x)u2(y)

|x− y| dx dy < +∞}.

The double integral expression is the so-called Coulomb energy of the wave, and
has been very studied, see for instance [8]. We also denote Er = E(R3) the
subspace of radial functions.

In [11] we give the following general inequality on the Coulomb energy term:

Theorem 1. Given α > 1/2, there exists c = c(α) > 0 such that for any u :
RN → R measurable function, we have:

(5)

∫

RN

∫

RN

u2(x)u2(y)

|x− y|N−2
dx dy ≥ c

(
∫

RN

u(x)2

|x|N−2
2 (1 + |log |x||)α

dx

)2

.

In particular, E ⊂ L2(R3, |x|− 1
2 (1 + |log |x||)−α dx) continuously.

We are not aware of any lower bound for the Coulomb energy in this fashion.
We think that this inequality can be very useful in other frameworks, such as the
Hartree equation or the Thomas-Fermi-Von Weizsäcker model.

Making use of (5) we obtain the following embedding result:

Theorem 2. Er(R
3) ⊂ Lp(R3) continuously for p ∈ (18

7 , 6], and the inclusion is

compact for p ∈ (18
7 , 6). Moreover, Er(R

3) is not included in Lp(R3) for p < 18
7 .

Thanks to Theorem 2, for p ∈ (18
7 , 6], the functional J : Er → R,

J(v) =
1

2

∫

R3

|∇v|2 dx+
1

4

∫

R3

∫

R3

v2(x)v2(y)

|x− y| dx dy − 1

p

∫

R3

|v|p dx,

is well-defined, C1, and its critical points correspond to solutions of (4). Moreover:

Theorem 3. For any p ∈ (18/7, 3), J is coercive and weak lower semicontinuous.
Therefore, it attains its infimum, which is negative. As a consequence, (4) has a
positive solution in E.

Finally, Theorem 3 can be used to describe the asymptotic behavior of the
radial minimizers of Iλ (see [11]):

Theorem 4. Suppose that p ∈ (18/7, 3) and let uλ be a minimizer of Iλ|H1
r
. Then,

as λ→ 0,

uλ = ε−
2

p−2 vε

(x

ε

)

,

where ε = λ
p−2

4(3−p) and d(vε,K) → 0. Here K ⊂ E is the set of minimizers:

K = {v ∈ E : J(v) = min J},
and d(v,K) = inf{‖v−w‖E : w ∈ K}. In particular, given λn → 0, we have that
εn → 0 and vεn

→ v in E (up to a subsequence) where v is a minimizer of J .
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Eigenvalue problem for the 1-Laplace operator

Friedemann Schuricht

(joint work with Bernd Kawohl, Zoja Milbers)

For Ω ⊂ Rn open bounded with Lipschitz boundary the variational problem

(1)

∫

Ω

|Du|p dx→ Min! subject to

∫

Ω

|u|p dx = 1

in the Sobolev space W1,p
0 (Ω) is related to the intensively studied eigenvalue prob-

lem for the p-Laplace operator

−div |Du|p−2Du = λ|u|p−2u .

In the limit case p = 1 minimizers of problem (1) do not belong to W1,1
0 (Ω) in

general. Therefore we have to consider

(2) E(u) :=

∫

Ω

d|Du| +

∫

∂Ω

|u| dHn−1 → Min!

subject to

(3) G(u) :=

∫

Ω

|u| dx = 1

in the space BV (Ω) of functions of bounded variation (here the surface integral
replaces homogeneous boundary conditions). This problem formally leads to the
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equation

−div
Du

|Du| = λ
u

|u| .

Since typical solutions of (2), (3) are characteristic functions of a subset of Ω, this
equation is highly degenerate and needs a suitable interpretation.

In Kawohl & Schuricht [3] it is shown that problem (2), (3) has always a solution
u ∈ BV (Ω) which is called eigenfunction of the 1-Laplace operator and satifies an
equation

(4) −div z = λs a.e. on Ω, λ = E(u)

where z ∈ L∞(Ω,Rn) and s ∈ L∞(Ω) are related to u by the conditions

(5) ‖z‖L∞ = 1 , div z ∈ Lp′(Ω) , E(u) = −
∫

Ω

udiv z dx

(with 1
p + 1

p′ = 1) and

(6) s(x) ∈ Sgn (u(x)) a.e. on Ω where Sgn (α) :=







1 if α > 0,
[−1, 1] if α = 0,
−1 if α < 0.

In [3] it is even shown that for any s satisfying (6) there is some vector field
z with (5) such that equation (4) is satisfied, i.e. a minimizer u has to satisfy
infinitely many Euler-Lagrange equations in general. We call u a solution of the
single eigenvalue equation if it satisfies (4) for one selection s satisfying (6) and
a corresponding z with (5) and we call u a solution of the multiple eigenvalue
equation if it satisfies (4) for any selection s satisfying (6) with corresponding
vector fields z.

Now a natural question is that for higher eigensolutions of the 1-Laplace oper-
ator. But it is not immediately clear how to define them. The multiple eigenvalue
equation might be satisfied merely by a minimizer and the single equation has
“too many” solutions (there is always a continuum of eigenvalues where “most”
of them have a continuum of normalized eigenfunctions). Thus we claim to define
eigenfunctions as critical points of E with respect to the constraint G(u) = 1. But
what are critical points if E and G are convex but nondifferentiable functions.
They can be defined by means of the weak slope |dF |(u) replacing ‖F ′(u)‖ for
a merely continuous or even lower semicontinuous function F (cf. Degiovanni &
Marzocchi [2]). More precisely, we call u ∈ BV (Ω) eigenfunction of the 1-Laplace
operator if the weak slope |d(E + IK)|(u) = 0 where IK denotes the indicator
function of the set K := {v | G(v) = 1}. The weak slope depends on the norm
chosen in the underlying space and it seems to be reasonable to study critical
points also with respect to the Lq-norm instead of the BV -norm for 1 ≤ q ≤ n

n−1 .

Correspondingly, we call u ∈ BV (Ω) a BV -eigenfunction or Lq-eigenfunction. It
turns out that

(7) any Lq-eigenfunction is also a BV -eigenfunction



1468 Oberwolfach Report 26

and that

(8) any BV -eigenfunction satisfies the single eigenvalue equation.

In Milbers & Schuricht [4] the existence of a sequence of pairs {±uk} ⊂ BV (Ω)
of Lq-eigenfunctions with corresponding eigenvalues λk = E(uk) → ∞ is verified
(partial results can also be found in Chang [1]). By (7) and (8) each eigenfunction
uk satisfies the single eigenvalue equation. Unfortunately these eigenfunctions
cannot be identified by the single eigenvalue equation, since it has many solutions
that do not seem to be critical points of the corresponding variational problem.
Therefore we are looking for further necessary conditions for critical points that
might at least reduce the set of candidates for eigenfunctions.

In the calculus of variations it is known that the evaluation of so called inner
variations does not provide an additional condition to the usual Euler-Lagrange
equation for smooth problems, but it might give an additional information in
the nonsmooth case as present here. Thus, for an eigenfunction u we consider
perturbations of the form

v(x, t) := u(x+ tξ(x)) for ξ ∈ C∞
0 (Ω,Rn) , |t| small.

This way, for any L1-eigenfunction u ∈ BV (Ω) of the 1-Laplace operator we can
derive the following additional necessary condition that

(9)

∫

Ω

〈z,Dξ z〉 − div ξ d|Du| = −λ
∫

Ω

|u|div ξ dx for all ξ ∈ C∞
0 (Ω,Rn)

where λ = E(u) is the corresponding eigenvalue and z ∈ L∞(Ω,Rn) is given by the
polar decomposition Du = z|Du| (notice that this z is somehow related to the z in
(4) but it is not necessarily the same). It turns out that this new condition easily
rules out the solutions of the single eigenvalue equation that had been thought not
to be eigenfunctions. Moreover this condition allows to derive further consequences
for L1-eigenfunctions. It is still open in general how far the solutions of the single
eigenvalue equation and of (9) are also eigenfunctions.

The situation is much clearer in R1. Using the results of Chang [1], we readily
obtain that there is a unique correspondence between the solutions of the single
eigenvalue equation (4) combined with (9) and the L1-eigenfunctions. Interest-
ingly, the set of BV -eigenfunctions is strictly larger than that of L1-eigenfunctions.
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The proof of the Lane-Emden conjecture in four space dimensions

Philippe Souplet

The so-called Lane-Emden conjecture asserts that the elliptic system
{

−∆u = vp, x ∈ Rn,

−∆v = uq, x ∈ R
n,

(p, q > 0) has no positive classical solution if and only if the pair (p, q) lies below
the Sobolev critical hyperbola, i.e.

1

p+ 1
+

1

q + 1
> 1 − 2

n
.

This statement is the analogue of the celebrated Gidas-Spruck [3] Liouville-type
theorem for the scalar case. Up to now, the conjecture had been proved for radial
solutions [5, 8], in n ≤ 3 space dimensions [9, 6], and in certain subregions below
the critical hyperbola for n ≥ 4 [2, 11, 5, 9, 4, 7, 1].

We shall report on our recent work [10], where we establish the conjecture in 4
space dimensions and obtain a new region of nonexistence for n ≥ 5. Our proof
is based on a delicate combination involving Rellich-Pohozaev type identities, a
comparison property between components via the maximum principle, Sobolev
and interpolation inequalities on Sn−1, and feedback and measure arguments.

Such Liouville-type nonexistence results have many applications in the study of
nonvariational elliptic systems, namely for a priori estimates, existence and singu-
larity analysis.
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Large time behavior in a viscous Hamilton-Jacobi equation with
degenerate diffusion

Christian Stinner

We study weak solutions of the one-dimensional viscous Hamilton-Jacobi equation

(1) ut = (|ux|p−2ux)x + |ux|q in (−R,R) × (0,∞)

with homogeneous Dirichlet boundary conditions, where R > 0, p > 2 and 1 <
q < p − 1. For these solutions we investigate the convergence to steady states
via a Lyapunov functional, which is constructed with a technique developed by
Zelenyak (see [12]).

The more general problem

ut = ∆pu+ a |∇u|q in Ω × (0,∞), where Ω ⊂ R
n, p ≥ 2, q > 0, a ∈ {−1, 1},

∆pu := div (|∇u|p−2∇u) is the well-known p-Laplacian operator and n ∈ N is
arbitrary, possesses many different qualitative behaviors.

In particular, the semilinear equation, which corresponds to the case p = 2,
has been widely studied by several authors. Concerning the large time behavior
of nonnegative solutions to the semilinear equation in a bounded domain with
homogeneous Dirichlet boundary conditions, it has been shown that for q ≥ 1 and
a ∈ {−1, 1} any global classical solution converges to zero (see [3], [8]), whereas
gradient blow-up occurs in case of q > 2 and a = 1 for large initial data (see [7]).
Moreover, in case of q ∈ (0, 1) the phenomenon of extinction in finite time has
been shown for a = −1 (see [3]), while for a = 1 there is a one parameter family
of nonnegative steady states and any solution evolving from sufficiently regular
initial data converges uniformly to one of these stationary solutions (see [4]).

Concerning the quasilinear equation with p > 2 and q > 1, the large time
behavior of solutions to the Cauchy problem has been studied recently (see [1],
[2], [5], [6]). In particular, the existence of the critical exponents q1 = p − 1 and
q∗ = p− n

n+1 , which separate different kinds of behavior, was established. But to
the best of our knowledge, no result implying the convergence to a nonzero state
is known for the quasilinear equation in a bounded domain with homogeneous
Dirichlet boundary conditions.

In this talk, we show the existence of a one parameter family of nonnegative
stationary solutions of (1). Moreover, we prove the existence of a global weak
solution of (1) which converges to one nonnegative steady state wϑ as t → ∞.
This behavior is observed for all initial data u0 ∈ C1([−R,R]) satisfying the zero
boundary condition. In particular, the limit wϑ fulfills wϑ 6≡ 0 in case of u0 ≥ 0
and u0 6≡ 0, while the solution of (1) tends to zero for nonpositive initial data.

Although this behavior corresponds to the result observed for the semilinear
problem (see [4]), the proofs differ significantly. We also establish the existence
of a Lyapunov functional using a method from [12]. But as the weak solution of
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(1) is not regular, we can only use a Lyapunov functional for classical solutions of
certain approximative and parabolic problems. For these approximate functions
uε, we obtain two estimates involving the derivatives (uε)t and (uε)xx, respectively.
Applying now a version of the Aubin-Lions lemma (see [10]) and adapting a method
which has been used for other degenerate parabolic equations (see [11]), we can
prove the convergence to the steady states.

The results presented in this talk will be published in [9].
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Symmetry properties and existence of solutions to nonlinear
Schrödinger equations with singular electro-magnetic potentials

Susanna Terracini

(joint work with Laura Abatangelo)

We are concerned with differential operators of the form

(1)

(

i∇− A(θ)

|x|

)2

− a(θ)

|x|2

where A(θ)
|x| is the vector magnetic potential associated to the magnetic field B =

dA(θ)
|x| with A(θ) ∈ L∞(SN−1,RN), a(θ)|x|2 is the electric potential and both A(θ) and
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a(θ) are in ∈ L∞(SN−1,R). A quadratic form can be associated to this differential
operator, that is

(2)

∫

RN

∣
∣
∣
∣

(

i∇− A(θ)

|x|

)

u

∣
∣
∣
∣

2

−
∫

RN

a(θ)

|x|2
u2.

We shall always assume the quadratic form to be stricly positive definite.
As a natural domain to study the properties of the quadratic form one can

consider the closure of compactly supported functions C∞
C (RN \ {0}) with respect

to the quadratic form: this turns out to be D1,2(RN )∩L2(|x|−2dx). In this space
we are interested in weak solutions to

(3)

(

i∇− A(θ)

|x|

)2

u− a(θ)

|x|2
u = u2∗−1 in R

N \ {0}

and in particular in their symmetry properties.
To investigate these questions, we refer to solutions which minimize the Rayleigh

quotient over suitable spaces of symmetric elements of D1,2(RN ) ∩ L2(|x|−2dx)

(4)

∫

RN

∣
∣
∣
∣

(

i∇− A(θ)

|x|

)

u

∣
∣
∣
∣

2

−
∫

RN

a(θ)

|x|2
u2

(∫

RN

|u|2
∗

)2/2∗ .

We are concerned also with Aharonov-Bohm type potentials. In R2 a vector
potential associated to the Aharonov-Bohm magnetic field has the form

A(x1, x2) = α

(

− x2

|x|2
,
x1

|x|2

)

where α ∈ R stands for the circulation of A around the thin solenoid (see [3] for
further details). In this paper we consider the analogous of these potentials in R

N

for N ≥ 3, that is

α(x1, x2, x3) =

( −αx2

x2
1 + x2

2

,
αx1

x2
1 + x2

2

, 0

)

(x1, x2) ∈ R
2 , x3 ∈ R

N−2 .

Our main result can be stated as follows:

Theorem 1. Assume N ≥ 4 and a(θ0) > 0. There exist ǫ > 0 such that,
when ‖B‖LN(B(θ0,r)) < ǫ, the equation (3) admits at least one entire solutions in

D1,2(RN )∩L2(|x|−2dx). The same conclusion holds in dimension N = 3 provided
∫

S(N−1)
a(θ)dθ ≥ 0

When a(θ) ≤ 0 the minimization of the Rayleigh quotient fails, cause of the
diamagnetic inequality. However, one can still obtain existence and multiplicity of
solutions in symmetric cases.

Theorem 2. Assume a(θ) ≡ a ∈ R− and assume that A commutes with the
subgroup of rotations on a fixed plane and on its orthogonal. There exist a∗ <
0 such that, when a < a∗, the equation (3) admits at least two distinct entire
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solutions in D1,2(RN ) ∩ L2(|x|−2dx): one is radially symmetric while the second
one is only invariant under a discrete group of rotations on the first two variables.

In order to distinguish the two solution, we make use of the following result
that, we believe, can be of independent interest.

Theorem 3. Suppose u ∈ D1,2(RN ) ∩ L2(|x|−2dx) has a double cylindrical sum-

metry, i.e. u = u(r1, r2) (where r1 =
√

x2
1 + x2

2 and r2 =
√

x2
3 + · · · + x2

N ) is a
solution to

(5) −∆u− a

|x|2
u = f(x, u)

with a ∈ R− and f : RN × C → C being a Carathéodory function, C1 with respect
to z, such that it satisfies the growth restriction

|f ′
z(x, z)| ≤ C(1 + |z|2

∗−2)

for a.e. x ∈ RN and for all z ∈ C.
If the solution u has Morse index m(u) ≤ 1, then u is a radial solution, that is

u = u(r) where r =
√

x2
1 + · · · + x2

N .

These are joint works with Laura Abatangelo.
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Liouville type theorems for a class of non-cooperative elliptic systems

Tobias Weth

(joint work with E.N. Dancer, J.C. Wei)

We study the set of solutions of the nonlinear elliptic system

(P )







−∆u+ λ1u = µ1u
3 + βv2u in Ω,

−∆v + λ2v = µ2v
3 + βu2v in Ω,

u, v > 0 in Ω, u = v = 0 on ∂Ω,

in a smooth domain Ω ⊂ RN , N ≤ 3 with coupling parameter β ∈ R. This system
arises in the study of Bose-Einstein double condensates, see e.g. [5]. Here we
report results obtained in [2] concerning the impact of the parameters on Liouville
type theorems, a priori bounds and the existence of multiple solutions of (P ). Our
first result is the following.
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Theorem 1. If N ≤ 3, β > −√
µ1µ2, there exists a constant C = C(β, µ1, µ2,Ω) >

0 such that for any solution (u, v) of (P ) we have

‖u‖L∞(Ω), ‖v‖L∞(Ω) ≤ C

The assumption on β in this Theorem is optimal. More precisely, consider the
fully symmetric case λ1 = λ2, µ1 = µ2 and V1 = V2 ≡ 0. Then, by a rescaling,
(P ) becomes

(1)







−∆u+ u = u3 + βv2u in Ω,

−∆v + v = v3 + βu2v in Ω,

u, v > 0 in Ω, u = v = 0 on ∂Ω.

The critical value −√
µ1µ2 corresponds to β = −1 in (1), which is now invariant

under the reflection (u, v) → σ(u, v) = (v, u). This invariance is essential for the
following result.

Theorem 2. Let N ≤ 3.
(a) If β ≤ −1, then system (1) admits a sequence (uk, vk)k of solutions with

‖uk‖L∞(Ω) + ‖vk‖L∞(Ω) → ∞.

(b) For any positive integer k there exists a number βk > −1 such that, for β < βk,
system (1) has at least k pairs (u, v), (v, u) of solutions.

We briefly add some comments.
1. For β > −1, every positive solution of the Dirichlet problem for the scalar
equation −∆u + u = u3 in Ω gives rise to a diagonal solution 1√

1+β
(u, u) of (1).

In contrast, it will be evident from our construction that the solutions obtained
in Theorem 2 have different components u, v. Moreover, for β 6= 1, system (1)
does not admit nontrivial solutions (u, v) with u 6= v and u ≤ v or v ≤ u (as is
easily seen by multiplying the first equation of (1) with v, the second equation
with u and integrating). Consequently, all solutions obtained in Theorem 2 have
intersecting components.
2. The proof of Theorem 2 relies on a variant of Liusternik-Schnirelman theory on
a submanifold M (depending on β) of the underlying energy space H1

0 (Ω)×H1
0 (Ω).

The importance of this manifold is given by the following properties; it contains
all solutions of (1), it is invariant under the reflection σ, and σ has no fixed points
in M if β ≤ −1.
3. The multiplicity statements in Theorem 2 carry over to the corresponding
problem in the full space RN if compactness is restored by restricting to radial
functions. More precisely, with essentially the same proof we can show that, for
β ≤ −1, system (1) admits infinitely many radial bound state solutions if Ω = RN ,
and the number of radial bound states tends to infinity as β ց −1, β > −1.
4. If Ω = B1(0) is the unit ball in R

N , a different approach based on a corre-
sponding parabolic problem shows the existence of radial solutions of (1) with a
prescribed number of intersections of u and v, see [14].

A priori bounds for systems like (P ) have been studied extensively in recent years,
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see [11, 3, 4, 12, 15] and the references therein. With the exception of [11], in all
these papers the a priori bounds are derived from Liouville type theorems for the
corresponding limiting elliptic system by means of a well known rescaling argument
of Gidas and Spruck [7]. In our case the limiting system is

(2)

{

−∆u = µ1u
3 + βv2u in Ω,

−∆v = µ2v
3 + βu2v in Ω.

If β is nonnegative, this system is cooperative, so techniques based on the maxi-
mum principle allow to prove the nonexistence of nontrivial nonnegative solutions
of (2) in Ω = RN and Ω = RN+ := {x ∈ RN : xN > 0} together with Dirich-
let boundary conditions, see e.g. [4] and [12]. In the following we improve these
results by relaxing the condition on β. More precisely, we have:

Theorem 3. If N ≤ 3, β > −√
µ1µ2, and (u, v) is a classical solution of the

system 2 either in Ω = RN or in Ω = RN+ := {x ∈ RN : xN > 0} and satisfying

Dirichlet boundary conditions u = v = 0 on ∂R
N
+ , then (u, v) = 0.

For N = 1, 2, these Liouville theorems are rather simple consequences of nonex-
istence results for solutions of the differential inequality −∆w ≥ w3 obtained in
[1, 6, 8, 9]. The case N = 3 is essential more involved, since −∆w ≥ w3 admits
solutions if the underlying domain is a half space in R3, see [9]. We combine a
doubling lemma of Poláčik, Quittner and Souplet [10] with a uniform Hopf type
estimate on boundary derivatives and a variant of Pohozaev’s identity to deal with
this case. This procedure is new and might be useful for other non-cooperative
elliptic systems.
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Remarks on some quasilinear critical problems

Michel Willem

(joint work with Sébastien de Valeriola)

Abstract

In this paper we prove the almost everywhere convergence of the gradient of

Palais-Smale sequences, allowing us to apply the Brezis-Lieb lemma. This leads

us to show that infima are attained, and thus to prove the existence of optimal

solutions for some critical problems. Our method does not use the concentration-

compactness principle.

2000 Mathematics Subject Classification. 35J20, 35J25, 35J60, 35J65.
Key words. Critical exponents, p-Laplacian, Quasilinear elliptic problems.

In the framework of the classical paper by Brezis and Nirenberg ([2]), the analysis
of a critical minimization problem involves

(1) a strict inequality,
(2) a convergence theorem.

The first step is always difficult and technical. On the other hand, the second step
uses only the Hilbert space structure of W 1,2

0 (Ω) and the Brezis-Lieb lemma ([1]).
This method is applicable to many other problems, like the existence of optimal

functions for the critical Poincaré-Sobolev inequality in W 1,2(Ω) (see [3]).

For quasilinear critical problems, the spaces W 1,2
0 (Ω) and W 1,2(Ω) are replaced

by W 1,p
0 (Ω) and W 1,p(Ω). Since there is no Hilbert space structure, various so-

phisticated tools were used.

(1) The concentration-compactness principle for the critical Dirichlet prob-
lem, for the critical Neumann problem, for the critical Poincaré-Sobolev
inequality and for the critical trace inequality.

(2) Approximation by subcritical problems and regularity theorems, for the
critical Dirichlet problem and for the critical trace inequality.
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Our aim is to deduce the convergence theorems for quasilinear critical problems
from an elementary result. We prove the almost everywhere convergence of the
gradients of Palais-Smale sequences. It is then possible to use the Brezis-Lieb
lemma for the sequence of the gradients instead of the Hilbert space structure.

Our main result on the almost everywhere convergence of the gradients is the
following.

We define

T (s) =

{

s if |s| 6 1,
s
|s| if |s| > 1,

.

Theorem 1. Let p > 1, let Ω be an open bounded subset of RN and let (un) ⊂
W 1,p(Ω) be such that un ⇀ u in W 1,p(Ω) and

(1)

∫

Ω

(

|∇un|p−2 ∇un − |∇u|p−2 ∇u
)

· ∇T (un − u)dx → 0, n→ ∞.

Then

(1) there exists a subsequence (unk
) such that

∇unk
→ ∇u a.e. on Ω,

(2)

lim
n→∞

(∫

Ω

|∇un|p dx−
∫

Ω

|∇(un − u)|p dx

)

=

∫

Ω

|∇u|p dx,

(3) for any 1 6 q < p, un → u in W 1,q(Ω).
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Infinitely many positive solutions for elliptic problems with critical
growth

Shusen Yan

(joint work with L.P.Wang and J.Wei)

We will present a new technique to construct infinitely many positive solutions for
some elliptic problems with critical growth.

Firstly, we consider the following prescribed scalar curvature problem:

(1)

{

−∆u = K(y)u
N+2
N−2 , u > 0 in RN

u ∈ D1,2(RN ),
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where K(y) ≥ K0 > 0.
We assume that K(r) satisfies the following condition:
(K): There is a constant r0 > 0, such that

K(r) = K(r0) − c0|r − r0|m +O(|r − r0|m+θ), r ∈ (r0 − δ, r0 + δ),

where c0 > 0, θ > 0 are some constants, and the constantm satisfies m ∈ [2, N−2).
Let

xj = (rk cos
2π(j − 1)

k
, rk sin

2π(j − 1)

k
, 0) ∈ RN , j = 1, · · · , k,

and

Ua,λ =
αNλ

N−2
2

(1 + λ2|y − a|2)
N−2

2

,

where αN is the constant, such that −∆Ua,λ = U
N+2
N−2

a,λ . Then we have the following
result:

Theorem 1 (with J.Wei): Suppose that N ≥ 5 and K(r) satisfies (K). Then
there is an integer k0 > 0, such that for any integer k ≥ k0, problem (1) has a
solution uk of the form

uk =

k∑

j=1

Uxj,k,µk
+ ωk,

where as k → +∞, ‖ωk‖L∞ = o
(
k

N−2
N−2−m

)
, µk = Λkk

N−2
N−2−m

rk ∈ (r0 −
1

µ1+θ̄
k

, r0 +
1

µ1+θ̄
k

), Λk ∈ (Λ1,Λ2).

In particular, (1) has infinitely many solutions.

Since (1) does not satisfy the Palais-Smale condition, it is hard to use the
variational techniques to obtain a multiplicity result for (1). In Theorem 1, we
construct solutions with large number of bubbles near a local maximum set |y| = r0
of the function K(|y|), and thus obtain the existence of infinitely many solutions
for (1). Note that these solutions have very large energy and are non-radial. To
obtain such solutions, condition (K) is nearly necessary. See [6, 9].

Next, we consider

(2)

{

−∆u+ λu = u
N+2
N−2 , u > 0 in Ω

∂u
∂ν = 0, on ∂Ω

where Ω is a bounded domain in RN , ν is the outward unit normal of ∂Ω at y.



Topological and Variational Methods for Partial Differential Equations 1479

If the nonlinear term in (2) is replaced by up and p is sub-critical, then C.S.Lin,
W.M. Ni and Takagi [8] proved the u must be a constant if λ > 0 is small. From
this result, Lin and Ni made the following conjecture [7]:

Lin-Ni conjecture: If λ > 0 is small, then (2) only has a constant solution.

Assume that Ω is the unit ball. Then Adimurthi-Yadava [1, 2, 3], Budd, Knapp
and Peletier [4] proved that

• if N = 3 or N ≥ 7, and u is radially symmetric, then u is a constant if
λ > 0 is small;

• if N = 4, 5 or 6, problem (2) admits a non-constant radial solution.

So we see that the Lin-Ni’s conjecture is not always true if N = 4, 5, 6.
If N = 3 and Ω is convex, then Lin-Ni’s conjecture is true. See [11, 10]. On

the other hand, Druet, Robert and Wei proved [5] that assuming N ≥ 7 and the
mean curvature H(x) 6= 0 for all x ∈ ∂Ω, if the solution uλ satisfies

(3)

∫

Ω

u
2N

N−2

λ ≤ C,

for some constant C > 0, independent of λ, then for λ small, uλ ≡ constant.
By the results mentioned above, we see that if N ≥ 7, the solutions are either

radially symmetric (in the case of the a ball), or have bounded energy, then the
solutions must be a constant if λ is small. But these results can not cover the case
that the solutions are non-radial with large energy. Recall that the solutions we
constructed for the prescribed scalar curvature problem are non-radial with large
energy. Using the same technique, we can now construct counter examples for the
Lin-Ni’s conjecture for all dimensions N ≥ 3.

Theorem 2 (with L.P.Wang and J.Wei): Suppose that N ≥ 3. Then, there
are non-convex domains Ω, such that problem (2) has infinitely many solutions
for any fixed λ > 0. Thus, Lin-Ni’s conjecture is not always true in non-convex
domain.

Remark: By [11, 10], the assumption that Ω is non-convex is necessary when
N = 3.

Theorem 3 (with L.P.Wang and J.Wei): Suppose that N ≥ 4. Then, there
are convex domains Ω, such that problem (2) has infinitely many solutions for any
fixed λ > 0. Thus, Lin-Ni’s conjecture is not always true in convex domain.

Remark: By [11, 10], the assumption N ≥ 4 is necessary.
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Solutions with moving singularities for a semilinear parabolic equation

Eiji Yanagida

(joint work with Shota Sato)

We study the semilinear parabolic equation

(1) ut = ∆u+ up, x ∈ R
N ,

where p > 1 is a parameter. It is known that for N ≥ 3 and p > psg := N/(N−2),
(1) has a singular steady state ψ∞(x) ∈ C∞(RN \ {ξ0}) with a singular point
ξ0 ∈ RN that is explicitly expressed as

ψ∞(x) = L|x− ξ0|−m, m =
2

p− 1
, L = {m(N −m− 2)}1/(p−1).

Clearly, the spatial singularity of u = ψ∞ persists for all t > 0, but the singular
point does not move in time.

In [1], we studied the existence of a solution of (1) whose spatial singularity
moves in time. More precisely, we define a solution with a moving singularity as
follows.

Definition. The function u(x, t) is said to be a solution of (1) with a moving
singularity at ξ(t) ∈ RN for t ∈ (0, T ), where 0 < T ≤ ∞, if the following
conditions hold:

(i) u, up ∈ C([0, T );L1
loc(R

N )) satisfy (1) in the distribution sense.

(ii) u(x, t) is defined on {(x, t) ∈ RN+1 : x ∈ RN \ {ξ(t)}, t ∈ (0, T )}, and is twice
continuously differentiable with respect to x and continuously differentiable with
respect to t.

(iii) u(x, t) → ∞ as x→ ξ(t) for every t ∈ [0, T ).
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Concerning the solutions with singularities, it turns out that

p∗ :=
N + 2

√
N − 1

N − 4 + 2
√
N − 1

, N > 2,

plays a crucial role. We note that p∗ is larger than psg and is smaller than the
Sobolev critical exponent pS := (N + 2)/(N − 2). In our previous paper [1], for
psg < p < p∗, we established the time-local existence, uniqueness and comparison
principle for a solution with a moving singularity of the Cauchy problem (1) with
the initial condition

(2) u(x, 0) = u0(x) in R
N ,

where u0 ∈ L1
loc(R

N ) is a nonnegative function. Given the motion ξ(t) of a singu-
larity and the initial data u0(x) satisfying some conditions, it can be shown that
for some T > 0, there exists a solution of (1) and (2) with a moving singularity at
ξ(t).

Our aim here is to find a time-global solution with a moving singularity. To
this aim, we first consider a forward self-similar solution of the form

(3) u = (t+ 1)−1/(p−1)ϕ((t+ 1)−1/2x− a),

where a ∈ RN is a given point. If ϕ(z) satisfies

(4) ∆zϕ+
z + a

2
· ∇zϕ+

1

p− 1
ϕ+ ϕp = 0, z ∈ R

N ,

in the distribution sense, then u defined by (3) satisfies (1) in the distribution
sense. Moreover, if

(A1) ϕ(z) is defined on RN \ {0} and is twice continuously differentiable,

(A2) ϕ(z) → ∞ as z → 0, then u defined by (3) may become a time-global
solution with a singularity at ξ(t) = (t+ 1)1/2a.

In order to state our result, we define Λ to be a set of p > psg such that the
equality

(−m+ i)(N −m+ i− 2) + pm(N −m− 2) = j(N + j − 2)

holds for some
i ∈ {1, 2, . . . , [m]} and j ∈ {0, 1, 2, . . . , i},

where [m] denotes the largest integer not greater than m. Clearly Λ is a finite set.
Concerning the existence of a forward self-similar solution with a moving sin-

gularity, we have the following result.

Theorem 1. Let N ≥ 3. Suppose that p 6∈ Λ and

psg < p <

{

p∗ if N ≤ 10,
N+2
N−1 if N > 10.

Then there exists δ > 0 such that if |a| < δ, (4) has a solution ϕ(z) satisfying
(A1), (A2) with the property

0 < ϕ(z) < C|z|−m on R
N \ {0}
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for some C > 0.

Our next result is concerning the existence of a more general time-global solution
of (1) with a moving singularity.

Theorem 2. Assume that N and p satisfy the same conditions as in Theorem 1.
Then there exists δ > 0 such that if ξ(t) satisfies ξ(t) ∈ Ci+1+α([0,∞); RN ) for

i = [ [m−λ1]+1
2 ] and some α > 0, and

∥
∥
∥exp

( ·
2

)

ξt(exp(·) − 1)
∥
∥
∥
Ci([0,∞);RN )

< δ,

(1) has a time-global solution with a moving singularity at ξ(t). Here λ1 is a
positive constant defined by

λ1 :=
N − 2 −

√

(N − 2)2 − 4pm(N −m− 2)

2
.

We remark that if ξ(t) ∈ Ci+1+α([0,∞); R
N ) satisfies

|ξ(j)(t)| ≤ β(t+ 1)−j+
1
2 , j = 1, 2, . . . , i+ 1

for sufficiently small β > 0 and i = [ [m−λ1]+1
2 ], then ξ(t) satisfies the assumption

of Theorem 2. This means that the singular point ξ(t) can connect any two points
in RN . More details can be found in [2].
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50923 Köln
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Universität Giessen
Mathematisches Institut
Arndtstr. 2
35392 Giessen



1486 Oberwolfach Report 26

Guillaume Warnault

UFR de Sciences
Universite de Picardie Jules Verne
33 rue Saint Leu
F-80039 Amiens Cedex

Nils Waterstraat

Mathematisches Institut
Georg-August-Universität
Bunsenstr. 3-5
37073 Göttingen

Prof. Dr. Tobias Weth

Institut für Mathematik
Universität Frankfurt
Robert-Mayer-Str. 6-10
60325 Frankfurt am Main

Prof. Dr. Michel Willem

Dept. de Mathematiques
Universite Catholique de Louvain
Chemin du Cyclotron 2
B-1348 Louvain-la-Neuve

Dr. Michael Winkler

Fachbereich Mathematik
Universität Duisburg-Essen
Universitätsstr. 3
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