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Introduction by the Organisers

The goal of this workshop was similar to that organized by Stolz and Teichner in
2005, namely to bring together topologists and physicists interested in field theo-
ries. Various flavors of field theories were discussed in the talks, classical as well
as quantum, topological as well as conformal field theories, with an emphasis on
relations to topology and (higher) category category. Another focus were differ-
ential cohomology theories which are useful in certain physical models to describe
charges, currents and fields. In the rest of this introduction, we will outline how
some of the talks at the workshop fit into the themes described above.

A featured speaker was Kevin Costello with three lectures on Factorization
algebras in perturbative quantum field theory. It it well-known that the observables
in a classical mechanical system are the functions on the associated phase space
which form a Poisson algebra, while the observables in a quantum mechanical
system are operators which form an associative algebra. The goal of deformation
quantization of classical systems is the classification of all associative algebras
which modulo ~ reduce to the Poisson algebra of a given classical system. In his



1548 Oberwolfach Report 28

talks, Costello described an analog of deformation quantization for field theories.
His first result (Theorem 1 in his abstract) describes the structure of observables
of a classical field theory as a factorization algebra which is an algebra over a
suitable operad P0. Costello went on to define a quantization of such a structure
as a factorization algebra over the Beilinson-Drinfeld operad, which modulo ~

agrees the original operad over P0 (the Beilinson-Drinfeld operad has the same
relationship to P0 as the associative operad has to the Poisson operad).

Christoph Schweigert and Ingo Runkel showed in their two talks entitled Con-
formal field theory and algebra in braided tensor categories how to construct con-
formal field theories from ‘special symmetric Frobenius algebras’ in the modular
tensor category provided by the representations of a suitable vertex operator al-
gebra. This can be extended to make similar statements about open-closed theo-
ries (‘D-branes’) and theories involving defect lines. Concerning topological field
theories, Kevin Walker talked about Blob homology, a new homological way to
produce topological field theories, and Chris Schommer-Pries presented his work
on the classification of 2 -dimensional extended field theories (which involve data
associated to manifolds of dimension 0 in addition to those of dimension 1 and
2). Ralph Cohen made use of recent results of Hopkins-Lurie concerning the clas-
sification of extended field theories to relate string topology of a manifold to the
sympletic field theory of its cotangent bundle.

Making use of differential real K -theory Dan Freed described the space of fields
and the action of a 2 -dimensional string theory and its 10 -dimensional field theory
approximation. An axiomatic approach to differential cohomology was presented
by Thomas Schick and Ulrich Bunke described an explicit model for differential
K -theory motived by index theory.

Not related to field theories (as far as we know today), but a spectacular result
in topology is the recent solution (announced this spring) of an almost 50 year old
question by Kervaire by Hill, Hopkins and Ravenel. Mike Hopkins described the
fascinating history of the problem as well as an outline of their proof in his talk
at this workshop as well as providing many details in a long evening session.

We would like to thank the Oberwolfach Institute for providing the ideal setting
for this workshop and all participants for bringing lots of enthusiasm and energy,
which showed e.g. in the (sometimes parallel) informal evening sessions initiated
by the participants.
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Abstracts

Conformal field theory and algebra in braided tensor categories

Christoph Schweigert

(joint work with Jens Fjelstad, Jürgen Fuchs, Ingo Runkel)

Let V be a conformal vertex algebra with the property that its representation
category C carries the structure of a modular tensor category:

• The category C is an abelian semi-simple category enriched over the cate-
gory of finite-dimensional complex vector spaces.

• It is noetherian, i.e. has finitely many isomorphism classes of simple objects
for which we choose a set I of representatives. The tensor unit is assumed
to be simple; I is chosen such that it contains the tensor unit.

• It is a ribbon category with a braiding that is non-degenerate in the sense
that

K0(C) ⊗Z C → End(idC)

[U ] 7→ α[U ] = (α
[U ]
V )V ∈C

with α
[U ]
V ∈ End(V ) given by the monodromy of U around V is an isomor-

phism of complex algebras.

It is well-known that any modular tensor category gives rise to a three-dimensio-
nal topological field theory, i.e. a symmetric tensor functor

tftC : cobordC
3,2 → vectfd(C)

from a category cobordC
3,2 of (3,2)-cobordims decorated with objects and mor-

phisms of the modular tensor category C with values in finite-dimensional complex
vector spaces.

In this talk, we have introduced a category of oriented decorated surfaces X
such that a double X̂ of the surface can be seen as an object in cobordC

3,2. The

double X̂ comes with an orientation reversing involution σ such that X̂/〈σ〉 ∼= X .
The principle of holomorphic factorization states that the correlator Cor(X) is an
element in such a vector space Cor(X) ∈ tftC(X) that is required

(1) to be invariant under the action of the so-called relative mapping class
group Map(X)σ ≡ {x ∈ Map|x ◦ σ = σ ◦ x} ∼= Map(X).

(2) to obey certain factorization constraints.

It can be shown that a solution to these constraints is given as follows [1]: the
decoration data for X are given by the bicategory of special symmetric Frobenius
algebras in C. The Morita class of such a special symmetric Frobenius algebra
labels a full local conformal field theory with chiral symmetries given by the ver-
tex algebra V . A-modules label boundary conditions, and A1-A2-bimodules label
topological defect lines.
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This solution is constructed in terms of a cobordism ∅ MX→ X̂ with embedded
ribbon graph, where the ribbons are labelled by data from the bicategory such
that

Cor(X) = tftC(MX)1 ∈ tftC(X̂) .

Conversely, one can show [2] (restricting to the case of a single boundary condition
and no defect lines in X) that any solution to the consistency constraints satisfying
certain natural extra conditions (see Theorem 4.26 of [2]) is of this form.

References
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Conformal field theory and algebra in braided tensor categories II

Ingo Runkel

(joint work with Jürgen Fuchs, Liang Kong, Christoph Schweigert)

In part I of this series of two talks we have seen that the data decorating a
conformal field theory world sheet is taken from the bicategory Frob(C) of special
symmetric Frobenius algebras in the modular tensor category C provided by the
representations of a suitable vertex operator algebra V .

A Frobenius algebra A ∈ Frob(C) labels a full CFT with chiral symmetry V .
Part of the data of such a CFT is the space of bulk fields B. This is an object
in the product category C+ ⊠ C−, the C-linear category whose objects are direct
sums of pairs of objects, and whose morphism spaces are tensor products (over
C) of those in C. The signs ± refer to the braiding and twist, C+ is just equal
to C, and C− is C with inverse braiding and twist. The space of bulk fields B is
associated to a marked point in the interior of the world sheet, and by evaluating
correlators with several marked points on a sphere, the object B gets equipped
with the structure of a commutative symmetric Frobenius algebra. We will now
give a direct construction of B, starting from the modular tensor category C and
a special symmetric Frobenius algebra A ∈ C.

The starting point is a functor R : C → C+ ⊠ C− which is left and right adjoint
to the tensor product functor T . The functor R acts on objects as

R(V ) =
⊕

i∈I

(V ⊗ U∨
i )⊠ Ui ,

where I is a set of labels for representatives Ui of the isomorphism classes of
simple objects in C and ( )∨ denotes the dual. One checks that R is naturally
isomorphic to R′(V ) =

⊕
i∈I U

∨
i ⊠ (V ⊗ Ui). We will use R in what follows. It is

in general not a tensor functor (it is so only if C is equivalent to the category of
finite dimensional complex vector spaces), but it is a lax and colax tensor functor,
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and one can show that if A is a special symmetric Frobenius algebra, so is R(A)
[1, Prop. 2.25]. Typically, R(A) is not commutative.

The algebraB we aim to describe is commutative, and turns out to be the centre
of R(A). To be more precise, in a braided tensor category there are two notions of
a centre: The left centre Cl(A) of an algebra A is the maximal subobject of A such
that m ◦ cA,A ◦ (e⊗ idA) = m ◦ (e⊗ idA), where m is the multiplication morphism
of A, c is the braiding of C, and e is the subobject embedding; the right centre
Cr(A) is the maximal subobject of A such that m◦cA,A◦ (idA⊗e) = m◦ (idA⊗e).
The left and right centre are in general not isomorphic, and possibly not even
Morita equivalent. However, one can single out a preferred class of modules, the
so-called local modules, and show that the categories of local Cl(A)-modules and
local Cr(A)-modules are equivalent [2, Thm. 5.20].

The space of bulk fields of a CFT motivates a third notion of a centre.

Definition 1. [3, Def. 4.9] The full centre of a special symmetric Frobenius algebra
A in a modular tensor category C is Z(A) = Cl(R(A)) ∈ C+ ⊠ C−.

That Cl appears instead of Cr is linked to a choice made when defining the lax
and colax tensor structure on R (cf. [1]). The full centre Z(A) is a commutative
special symmetric Frobenius algebra [3, Lem. 4.10], which contains Cl(A)⊠ 1 and
1 ⊠ Cr(A) as subalgebras. It has another interesting property which neither the
left nor right centre provide: Z(A) separates Morita classes.

Theorem 1. [4, Thm. 1.1] Let C be a modular tensor category and let A,B be
simple special symmetric Frobenius algebras in C. Then Z(A) ∼= Z(B) as algebras
if and only if A and B are Morita equivalent.

In CFT, the interpretation of Z(A) is that as an object in C+⊠ C− it describes
the space of bulk fields associated to a marked point in the interior of the world
sheet, and its counit and multiplication encode the correlator of a sphere with
three marked points. One can ask if every commutative symmetric Frobenius
algebra B ∈ C+ ⊠ C− can be written in the form Z(A) for some A ∈ Frob(C).
This turns out to be true if we impose two more conditions: the algebra B must
be simple and its quantum dimension must coincide with the global dimension of
C. In CFT these two conditions refer to the uniqueness of the bulk vacuum and
modular invariance of correlators on the torus.

Theorem 2. [1, Thm. 3.4, 3.22] Let C be a modular tensor category and let B be
a simple commutative symmetric Frobenius algebra in C+ ⊠ C− with dim(B) =
Dim(C). Then there exists a simple special symmetric Frobenius algebra A ∈ C
such that B ∼= Z(A) as Frobenius algebras.

This means that every CFT which is defined on genus zero closed oriented
surfaces, has the same rational vertex operator algebra V as left and right moving
chiral symmetry, has a unique bulk vacuum, and is modular invariant on the torus,
can be extended to a consistent set of correlators on open/closed world sheets.
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If we describe a full CFT by an object A ∈ Frob(C), we have automatically also
singled out a preferred boundary condition, namely the one labelled by A. Equiv-
alent CFTs with different preferred boundary conditions correspond to Morita
equivalent algebras in C. In view of this it would be desirable to have a Morita
invariant formulation of the datum defining a CFT. This is provided by the notion
of module categories, which can be understood as the categorification of a module
over a ring: A right module category over a tensor category C is a category M to-
gether with a bifunctor ⊙ : M×C → M and associativity and unit isomorphism
subject to coherence conditions, see, e.g., [5].

Given an algebra A ∈ C, the category A-mod of left A-modules is a module
category over C via M × V 7→ M ⊗ V . Under suitable assumptions, in particular
semi-simplicity and finiteness of the categories C and M, there is a converse state-
ment [5, Thm. 1]: The internal end of an object M ∈ M is the object End(M) ∈ C
representing the functor V 7→ Hom(M ⊙V,M). It comes equipped with the struc-
ture of an algebra, and End(M)-mod is equivalent, as a module category, to M.

The CFT interpretation of a module category M over the modular tensor cat-
egory C is that the objects of M are the boundary conditions compatible with the
chiral symmetry, and the internal end End(M) for a given M ∈ M is the space of
boundary fields assigned to a marked point on a boundary segment labelled by M .
In fact, we can replace the bicategory Frob(C) by an equivalent bicategory whose
objects are (suitable) module categories over C, and whose morphisms from M to
N are given by the category of module category functors Fun(M,N ).

We will now see how to construct also the commutative Frobenius algebra
B associated to marked points in the bulk directly from the module category.
Given a module category M over C we define two functors α+ and α− from
C to Fun(M,M), called braided induction. On objects they act in the same
way, α±

V is the functor M 7→ M ⊙ V . One also has to provide an isomorphism

α±
V (M ⊙ U)

∼→ α±
V (M) ⊙ U . This is done with the braiding of C, and the sign ±

tells us to take either the braiding or its inverse.
We turn Fun(M,M) into a module category over C ⊠ C via a bifunctor ⊛ :

Fun(M,M)×C⊠C → Fun(M,M), given on objects by F⊛(U⊠V ) = α+
U ◦F ◦α−

V .
Let IdM be the identity functor on M and define

ZM = End(IdM) ∈ C ⊠ C .

Theorem 3. Let C be a modular tensor category and let A be a special symmetric
Frobenius algebra in C. Then ZA−mod

∼= Z(A) as algebras.

A corresponding statement holds for an algebra A over a field k: the endomor-
phisms of the identity functor on A-mod are isomorphic, as an algebra, to the
centre of A.

In CFT terms, this theorem tells us that the internal end of the identity functor
on the category of boundary conditions M provides us with the space of bulk fields.
More generally, for F ∈ Fun(M,M), the internal end End(F ) describes the space
of defect fields, i.e. the space of fields associated to a marked point on the world
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sheet that lies on a defect line labelled by F . The bulk fields occur as the special
case of defect fields on the invisible defect, labelled by the identity functor.
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The geometry and topology of orientifolds

Daniel S. Freed

(joint work with Jacques Distler and Gregory W. Moore)

We study some topology in the perturbative string and its long-distance field
theory approximation. Specifically, we investigate the orientifold construction in
string theory. This has attracted much interest among string theorists as they
use it to build models. We leave that aspect to the physicists; our concern here
is the mathematical foundation. Specifically, our work gives a precise definition
of the fields and action in both the perturbative 2-dimensional string theory and
the 10-dimensional field approximation. We go on to prove two theorems of a
purely topological nature about these theories. The first is the computation of
the background Ramond-Ramond charge in KR-theory (with 2 inverted) in the
10-dimensional theory. The second is an anomaly cancellation on the worldsheet
in the 2-dimensional theory.

This work has only recently been completed and we are beginning to write
complete proofs as well as a more thorough exposition. A brief summary has
appeared [1]. We make a few remarks here as introductory background to [1] and
the subsequent papers.

Recall first how the low-dimensional fields emerge in string theory. One first in-
vestigates the string moving in 10-dimensional Minkowski spacetime M10. Quan-
tizing the theory on a 2-dimensional Lorentzian cylinder one obtains a Hilbert
space with a representation of the 10-dimensional Poincaré group. In super-
string theory there are two spin structures on the worldsheet, so on the cylin-
der four possibilities. They lead to a Z/2Z × Z/2Z-grading of the Hilbert space
in which Z/2Z = {Neveu-Schwarz,Ramond} is named after physicists who made
important early contributions. The quotient Z/2Z-grading distinguishes bosons
from fermions. There is an infinite set of particles—irreducible representations of
Poincaré—of which one keeps only the massless ones in the low-energy or long-
distance approximation. Then one writes a free field theory which reproduces this
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list of particles. Finally, one seeks to study the string on more general 10-manifolds
(spacetimes) X10 and with more general surfaces (worldsheets) Σ2 mapping in.

Fields which are differential forms on Minkowski spacetime are called abelian
gauge fields. In quantum theories the associated charges are “quantized”—that is,
constrained to live in a full lattice—according to Dirac. This is implemented by
a cohomology theory; then the currents and fields are geometric objects in some
generalized differential cohomology theory. In superstring theory the B-field and
Ramond-Ramond field are of this type.

The orbifold construction in string theory is encoded by spacetimes which are
orbifolds in the sense of Satake.

With this in mind we give the following.

Definition 1. An NSNS superstring background consists of:

(1) a 10-dimensional smooth orbifold X together with Riemannian metric and
real-valued scalar (dilaton) field;

(2) a double cover π : Xw → X, the orientifold double cover;
(3) a differential twisting β̌ of KR(X), the B-field;
(4) and a twisted spin structure κ : ℜ(β) → τKO(TX − 2).

The Ramond-Ramond field is self-dual, so is equipped with a quadratic re-
finement of the usual pairing between electric and magnetic currents (which are
identified for self-dual fields). It is easiest to state on a 12-manifold, where it is
integer valued. Recall that the representation ring of Z/2Z is generated by the
sign representation ǫ.

Definition 2. Fix an NSNS superstring background as in Definition 1. Then

(1) an RR current is an object ǰ ∈ ob ǨR
β̌
(Xw);

(2) the required quadratic form on a 12-manifold M is the composition

KRβ(Mw) −→ KO
ℜ(β)
Z/2Z

(Mw)
κ−−→
∼=

KO
τKO(TM−4)
Z/2Z

(Mw) −→ KO−4
Z/2Z

(pt) −→ Z

j 7−→ jj 7−→
∫

Mw

jj 7−→ ǫ-component

The data in these definitions are the bosonic fields in the 10-dimensional the-
ory; they are fixed background data in the 2-dimensional theory. There are also
fermionic fields, but we do not specify them here. Differential twistings of K-
theory are classified by a cohomology theory with three nonzero homotopy groups
in degrees 0,1,3. These correspond to degree shifts, double covers, and gerbes. It
is important in our picture that all three are present, both in the 2-dimensional
theory and the 10-dimensional theory. The twisted spin structure is an isomor-
phism of twistings of KO(X). There is a Bott shift acting on the NSNS data,
reflecting Bott periodicity, and theories related by a Bott shift are equivalent.
The Ramond-Ramond current lives in twisted differential KR-theory.

We state the two topological theorems. Let F ⊂ Xw be the fixed point set of
the involution.
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Theorem 3. The center of symmetry of the quadratic form in Definition 2 is

(4) µ =
1

2
i∗

(
κ−1 Ξ(F )

ψ−1
(
κ−1 Euler(ν)

)
)

∈ KR[1/2]β(Xw).

Here Ξ(F ) is a KO-theory analog of the Wu class; Euler(ν) is the Euler class of
the normal bundle, after localization; ψ is a twisted version of the Adams squaring
operation, which is invertible after inverting 2; and i∗ is pushforward in KR-theory
by the inclusion of the fixed point set.

The background RR charge is −µ.
The fields in the two-dimensional theory are enumerated in the following. We

do not couple the superstring to the RR field.

Definition 5. Fix an NSNS superstring background as in Definition 1. Then a
worldsheet consists of

(1) a compact smooth 2-manifold Σ (possibly with boundary) with Riemannian
structure;

(2) a spin structure α on the orientation double cover π̂ : Σ̂ → Σ whose un-

derlying orientation is that of Σ̂;
(3) a smooth map φ : Σ → X;
(4) an isomorphism φ∗w → ŵ, or equivalently a lift of φ to an equivariant

map Σ̂ → Xw;

(5) a positive chirality spinor field ψ on Σ̂ with coefficients in π̂∗φ∗(TX);

(6) and a negative chirality spinor field χ on Σ̂ with coefficients in T ∗Σ̂ (the
gravitino).

Assume the boundary of Σ is empty. The exponentiated Euclidean action, after
integrating out ψ and χ, has two factors on which we focus:

(6) exp
(
2πi

∫

Σ

ζ̌ · φ∗β̌
)
· pfaff D

bΣ

(
π̂∗φ∗(TX)− 2

)
,

the B-field amplitude and a pfaffian of a Dirac operator. Working over a parameter
space S we find that each factor is anomalous, i.e., is a section of a hermitian line
bundle LB → S and Lψ,χ → S, respectively. These bundles carry compatible
covariant derivatives.

Theorem 7. There is a trivialization of the tensor product LB ⊗ Lψ,χ → S de-
termined by the twisted spin structure κ.

We hope to get the more refined statement that this trivialization 1, which is
geometric in the sense that ‖1‖ = 1, ∇1 = 0, is canonical. The trivialization 1 is
part of the data which specifies the theory, the “setting of the quantum integrand”.

Notice the quite different roles of the B-field and twisted spin structure in the
theories. In the 10-dimensional theory they are used to define the RR current:
the B-field twists differential KR-theory and the twisted spin structure is part
of the quadratic form. In the 2-dimensional theory the B-field is integrated over
the worldsheet and, in a novel twist, this integral is anomalous; the twisted spin
structure is used to cancel the anomaly and set the quantum integrand.
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Factorization algebras in perturbative quantum field theory

Kevin Costello

(joint work with Owen Gwilliam)

In this series of lectures I described an analog, in quantum field theory, of the
deformation quantization approach to quantum mechanics. In order to do this, I
explained the following.

(1) The structure present on the collection of observables of a classical field
theory. This structure is the analog, in the world of quantum field theory,
of the Poisson algebra which appears in classical mechanics. This structure
we called a classical factorization algebra.

(2) The structure present on the collection of observables of a quantum field
theory to satisfy. This structure is that of a factorization algebra; this is
a C∞ analog of the notion of chiral algebra introduced by Beilinson and
Drinfeld [1].

(3) A quantization theorem. In a wide range of situations, the classical factor-
ization algebra associated to a classical field theory admits a quantization.
Further, the set of quantizations accessed by this theorem is parameter-
ized (order by order in ~) by the space of deformations of the Lagrangian
describing the classical theory.

This quantization theorem applies to examples of physical interest, in-
cluding pure Yang-Mills theory.

Finally, I explained how (under certain restrictions) the factorization algebra
associated to perturbative quantum field theory encodes the correlation functions
of the theory.

0.1. The definition of a factorization algebra – which is the structure present on
the set of observables of a quantum field theory – is rather straightforward to give.

Definition 1. Let M be a manifold of dimension n. A factorization algebra F on
M consists of the following data.

(1) For every connected open set U ⊂ M , a cochain complex of topological
vector spaces, F(U).

(2) If B1, . . . , Bk are disjoint balls in M , all contained in a larger ball Bk+1,
a continuous map

F(B1) ⊗ · · · ⊗ F(Bk) → F(Bk+1)

(where we use the completed projective tensor product).
(3) These maps must satisfy an evident compatibility condition.
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Clearly, this definition is reminiscent of the definition of an En algebra. In
fact, En algebras are equivalent to a special class of factorization algebras on Rn.
This definition is an analog of the definition of chiral algebra given by Beilinson
and Drinfeld [1]. Chiral algebras are a geometric way of encoding the axioms of a
vertex algebra.

The observables of a quantum field theory on M should form a factorization
algebra. If B ⊂M is a ball, the space F(B) should be thought of as the space of
measurements one can make in the region B of the space-time manifold M .

0.2. Factorization algebras form a symmetric monoidal category: if F ,G are fac-
torization algebras, then we can define a factorization algebra F⊗G by the formula

(F ⊗ G) (B) = F(B) ⊗ G(B)

for a ball B ⊂M .

Definition 2. A commutative factorization algebra is a commutative algebra in
the category of factorization algebras.

0.3. Suppose we have a classical field theory onM . We are working perturbatively,
so we can assume that the space of fields is the space of sections of some graded
vector bundle E on M . We will suppose that we are given a classical action, which
is a local functional

S : Γ(M,E) → R.

satisfying some conditions detailed in [2].
The main object of interest in a classical field theory is the space of solutions to

the Euler-Lagrange equation. If U ⊂ M is an open set, let EL(U) be the formal
space of sections of E on U which satisfy the Euler-Lagrange equations, and which
are infinitesimally near the zero section. Sending U 7→ EL(U) defines a sheaf of
formal spaces on M .

This sheaf of solutions to the Euler-Lagrange equations can be encoded in the
structure of a commutative factorization algebra. If B ⊂ M is a ball, we will let
O(EL(B)) denote the space of functions on EL(B).

Sending B 7→ O(EL(B)) defines a commutative factorization algebra: given
disjoint balls B1, . . . , Bn in a ball Bn+1, there is a restriction map

EL(Bn+1) → EL(B1) × · · · × EL(Bn).

Replacing the map of spaces by the corresponding map of algebras of functions
yields the desired structure of commutative factorization algebra.

0.4. So far we have described the QFT analogs of commutative and associative
algebras (namely, commutative factorization algebras and plain factorization al-
gebras). It remains to describe the analog of Poisson algebras, and to state the
quantization theorem.

Poisson algebras interpolate between commutative algebras and associative (or
E1) algebras. For us, the object describing the observables of a quantum field
theory is not an E1 in a symmetric monoidal category; instead, it is an E0 algebra.
An E0 algebra in vector spaces is simply a vector space with an element; an E0
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algebra in any symmetric monoidal category is an object of this category with a
map from the unit object. An E0 algebra in the category of factorization algebras
is simply a factorization algebra, as every factorization algebra has a unit.

Thus, the analog of the Poisson operad we are searching for is an operad that
interpolates between the commutative operad and the E0 operad. Such an operad
was constructed by Beilinson and Drinfeld [1]; we will call it the BD operad.

Definition 3. Let P0 be the operad generated by a commutative and associatve
product, ∗, and a Poisson bracket {−,−}.

Let BD denote the differential graded operad over the ring R[[~]] which, as a
graded operad, is simply P0 ⊗ R[[~]], but which is equipped with differential

d∗ = ~{−,−}.

Modulo ~, the operad BD is the same as the operad P0. However, if we invert
~, we find that

BD ⊗R[[~]] R((~)) ≃ E0 ⊗R R((~)).

Thus, we find that the operad P0 bears the same relationship to the operad E0

as the usual Poisson operad bears to the associative operad E1.

Definition 4. A quantization of a P0 algebra V cl (in some symmetric monoidal
category) is a BD algebra V q and an isomorphism of P0 algebras V q/~ ≃ V cl.

This definition is analogous to the definition of quantization of a Poisson algebra
into an associative algebra.

0.5. The analog, in the world of QFT, of the structure of Poisson algebra, is a P0

algebra in the category of factorization algebras on M (we will just call this a P0

factorization algebra on M). Thus, we would expect that a classical field theory
on M yields a P0 factorization algebra on M .

One general source of P0 algebras is the following lemma.

Lemma 1. The algebra of functions on the derived critical locus of a function on
a finite dimensional scheme (or stack) is a P0 algebra.

The space of solutions to the Euler-Lagrange equation is, of course, the critical
locus of the action function on the infinite dimensional space of fields. This suggests
that functions on the derived space of solutions to the Euler-Lagrange equation is
a P0 algebra. This is indeed the case:

Theorem 1. Suppose we have a classical field theory on M . If B ⊂ M is a ball,
let O(ELh(B)) denote the differential graded commutative algebra of functions on

the derived space of solutions to the Euler-Lagrange equation. Then, O(ELh(B))
has a canonical structure of P0 algebra, compatible with the factorization structure.

Thus, O(ELh(B)) defines a P0 algebra in the category of factorization algebras
on M . We will denote this P0 factorization algebra, associated to the classical field
theory with action S, by Fcl

S .
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0.6. Now we have the definition of the algebraic structure associated to classical
field theory, one can ask whether there is a quantization. The following theorem
is proved using the effective field theory techniques of [2].

Theorem 2. Let us fix a classical theory on M , with associated P0 factorization
algebra Fcl

S .

Let Q(n) describe the simplicial set of possible quantizations of Fcl to a BD
algebra in factorization algebras, up to order ~n+1.

Then, there is a simplicial set T (n) which fits into a commutative diagram

T (n) //

��

Q(n)

��
T (n−1) // Q(n−1)

such that T (n) is a torsor over T (n−1) for the simplicial abelian group of deforma-
tions of the local functional describing the classical theory.

This theorem allows us to quantize any classical theory using obstruction the-
ory. Obstructions lie in H1 of the cochain complex of deformations of the local
functional describing the classical theory; deformations lie in H0.

This theorem, together with results of [2], can be applied to produce a quanti-
zation of the classical factorization algebra associated to pure Yang-Mills theory
on a flat manifold.
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Differential cohomology theories

Thomas Schick

(joint work with Ulrich Bunke)

Given an ordinary cohomology theory E, a differential refinement Ê of E is a
functor from the category of smooth manifolds to the category of graded abelian
groups which includes information about E(M) together with differential form
information for de Rham representatives of the images of classes in E(M) in
E(M)⊗R. The classical example is Deligne cohomology (or equivalently Cheeger-
Simons differential characters [5]) for ordinary integral cohomology.

This is motivated from considerations in string theory as presented by Dan
Freed [6].

We give a precise axiomatic definition of such a smooth refinement, also includ-
ing axioms for multiplicative version and for the appropriate notion of suspension
in this context [2].
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An abstract construction of such an extension (as functor with values in abelian
groups) is given by Hopkins-Singer [7].

In the talk, we present geometric constructions of such differential refinements
(with product and suspension) for K-theory [2], bordism theories and Landweber
exact cohomology theories [4], and ordinary cohomology [1].

We present a uniqueness theorem for such refinements [3]; stating that any two
such differential cohomology refinements are naturally isomorphic with a unique
isomorphism, provided Ek(pt) ⊗ Q is trivial for k odd, and provided they satisfy
the suspension relation required above. The transformation is automatically a
transformation of ring theories if one deals with multiplicative cohomology theo-
ries. On the other hand, we show that there are exotic abelian group structures
(on smooth K-theory) without the suspension compatibility.

References

[1] Ulrich Bunke, Matthias Kreck and Thomas Schick. A geometric description of smooth co-
homology arXiv:0903.5290

[2] Ulrich Bunke and Thomas Schick. Smooth K-theory. arXiv:0707.0046, 2007, to appear in
Asterisque.

[3] Ulrich Bunke, Thomas Schick. Uniqueness of smooth extensions of generalized cohomology
theories. arXiv:0901.4423, 2009.

[4] Ulrich Bunke, Thomas Schick, Ingo Schröder, and Moritz Wiethaup. Landweber exact formal
group laws and smooth cohomology theories. arXiv:0711.1134, 2007, to appear in Algebraic
and Geometric Topology.

[5] Jeff Cheeger and James Simons. Differential characters and geometric invariants. In Notes
of Stanford conference 1973, volume 1167 of Lecture Notes in Math., pages 50–49. Springer
Verlag, New York, 1985.

[6] Daniel S. Freed. Dirac charge quantization and generalized differential cohomology. In Sur-
veys in differential geometry, Surv. Differ. Geom., VII, pages 129–194. Int. Press, Somerville,
MA, 2000.

[7] M. J. Hopkins and I. M. Singer. Quadratic functions in geometry, topology, and M-theory.
J. Differential Geom., 70(3):329–452, 2005.

Smooth K-theory

Ulrich Bunke

(joint work with Thomas Schick)

This talk was a report on the model of smooth K-theory [3] and related construc-
tions [3]. In [3] smooth K-theory has been constructed in terms of cycles and
relations. A cycle is a pair of a geometric family and a differential form. A cycle is
trivial if the associated Dirac operator has an invertible perturbation so that the
associated η-form is equal to the differential form of the cycle.

In the case of smooth K-theory the results of [2] apply so that our model
gives the unique smooth extension of K-theory which in addition has a unique
multiplicative structure. The geometric model furthermore allows the construction
of an orientation structure which comprises the notion of a smooth K-orientation
and the corresponding integration maps.
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Riemann-Roch theorems describe the compatibility of integration maps with
natural transformations. The prototypical example concerns the Chern character.
Its smooth generalisation has been shown in [3].

Adams operations are operations on K-theory. In [1] was shown that they
have unique refinements to smooth K-theory. The Riemann-Roch theorem for
the Adams operations involves the cannibalistic class of the Spinc-normal bundle.
This K-theoretic characteristic class plays the same role as the Â-class in the
classical index theorem. In [1], given a smooth K-orientation, a refinement of the
cannibalistic class in smooth K-theory was constructed. The central result in that
paper is that the smooth refinement of the Riemann-Roch theorem for the Adams
operations holds true. This result has interesting applications e.g. to the structure
of e-invariants for families of framed manifolds [1].

We refer to the literature cited below for a discussion of related work by other
authors.
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Superconnections and Index Theory

Alexander Kahle

It is natural to consider studying the index theory of Dirac operators coupled to
superconnections. In my talk I describe the results in [8], highlighting the main
theorems and constructions, and sketching some proofs.

Superconnections were introduced to mathematics by Daniel Quillen [12] as a
generalisation of the notion of a connection to the category of Z/2Z-graded vector
bundles. A superconnection on a Z/2Z-graded vector bundle V → X is an odd
derivation on Ω•(X ;V ). Concretely, every superconnection ∇ may be written

(1) ∇ = ∇ +
∑

i

ωi,

where ∇ is a connection on V , and each ωi is an odd element of Ωi(X ; End(V )).
One may form Dirac operators out of superconnections in a manner entirely

analogous to the construction of Dirac operators from ordinary connections. The
Dirac operator associated to a hermitian Z/2Z-graded vector bundle V → X with
a superconnection ∇, where X is a spin and Riemannian manifold, is defined by
the following sequence:
(2)

D(∇) : Γ (S(X) ⊗ V )
(∇S⊗1)⊕(1⊕∇) //Ω•(X ; S(X) ⊗ V )

c(·) //Γ (S(X) ⊗ V ) ,

where here S(X) is the bundle of Z/2Z-graded spinors on X , ∇S is the Levi-
Civita connection and c(·) denotes Clifford multiplication. We will take X to be
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compact and ∇ unitary in the appropriate sense. Under these conditions D(∇)
is a formally self-adjoint first-order elliptic differential operator. In terms of the
grading on Γ(S ⊗ V ), the Dirac operator decomposes as

D(∇) =

(
/D(∇)∗

/D(∇)

)
.

One should think of /D(∇) as being analogous to the classical Dirac operator.
The most basic question one may ask in studying the index theory of these

operators is to compute their index. This is done easily as a corollary of the
Atiyah-Singer index theorem [2]:

index /D(∇) = (2πi)− dimX/2

∫

X

Â
(
ΩX
)
ch(∇).

This follows as the superconnection ∇ may be homotoped to a connection (by
sending all the forms to zero), thus reducing to the usual Atiyah-Singer index
theorem for Dirac operators coupled to connections. Any novelty, therefore, intro-
duced by considering Dirac operators coupled to superconnections must lie at the
level of geometry. In fact the key new features already appear when formulating a
local index theorem in this setting. We recall that the original theorem [1, 7, 10]
computes the t→ 0 limit of the supertrace heat kernel associated to a Dirac oper-
ator in terms of canonical differential forms associated to the geometry. This may
lead one to expect a theorem for superconnections to read1

(3) lim
t→0

Tr pt(x, x) dx
?
= (2πi)− dimX/2

[
Â(ΩX) ch(∇)

]

(dimX)
,

where here pt(x, y) is the integral kernel associated to the heat semigroup e−tD(∇)2 .
Unfortunately, the limit in Eq. 3 does not even converge! To understand where

the problem arises, we recall that to prove the local index theorem for ordinary
Dirac operators, one examines the behaviour of the heat kernel under dilation ofX
– superconnections however have terms in many cohomogical degrees, and Dirac
operators coupled to them do not behave homogeneously under dilation. To take
account of this inhomogeneity, we introduce an R×-action on superconnections:

(4) ∇
s = ∇ +

∑

i

|s|(1−i)/2ωi,

where ωi ∈ Ωi(X ; End(V )). The local index theorem then reads:

Theorem 1 (Getzler [6]). Let X be a compact, spin and Riemannian manifold,
with finite dimensional complex and hermitian Z/2Z-graded vector bundle V → X
with unitary superconnection ∇. Then

lim
t→0

Tr pt,1/t(x, x) dx = (2πi)− dimX/2
[
Â(ΩX) ch∇

]

(dimX)
,

where pt,s(x, y) is the integral kernel associated to exp[−tD(∇s)2].

1In this note “Tr” always refers to the supertrace.
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Getzler proved the theorem using stochastic techniques. In [8] we provide a
new proof using only analytic methods.

One may enrich the local index theorem to a families index theorem. The good
notion of “family” for Riemannian geometry is the so-called Riemannian submer-
sion, given by a triple (π : X → Y, gX/Y , P ), where π is a smooth submersion, gX/Y

is a metric on the vertical tangent bundle T (X/Y ), and P : T (X) → T (X/Y ) is
a projection. We require that the fibres be spin and compact. A hermitian Z/2Z-
graded vector bundle with unitary connection (V,∇) → X then gives a family of
Dirac operators parameterised by Y , constructed by applying the construction in
Eq. 2 fibrewise. The families index theorem expresses the index of this family as
an element of K(Y ). Bismut [3] constructs an explicit (infinite dimensional) Z/2Z-
graded vector bundle with superconnection representing this element for families
of Dirac operators coupled to ordinary connections; we extend his construction to
families of Dirac operators coupled to superconnections. In this case the Chern
character of the pushed forward superconnection π!∇ is computed by

(5) lim
t→0

chπt! ∇ = (2πi)−
1

2
dimX/Y π∗Â(Ωπ) ch(∇),

where Ωπ is the curvature of the Riemannian map (the family analogue of the
Riemannian curvature) and πt is the re-scaled Riemannian map (π, |t|−1gX/Y , P ).
The R×-action on superconnections is implicit in the rescaling of π: one computes

that πt! ∇ = (π!∇
1/t)t. Again the R×-action on superconnections is crucial for the

convergence of the limit.
Bismut and Freed [4, 5] (following work of Quillen [11]) showed how one may

construct a geometric determinant line bundle (i.e. a hermitian line bundle with
connection, with a section that represents the determinant) associated to a family
of Dirac operators. We extend their construction to families of Dirac operators
coupled to superconnections. Again, the R×-action (Eq. 4) plays a crucial role: its
presence in Th. 1 makes it essential to consider the entire family of Dirac opera-
tors D(∇s). These do not in general commute, and thus cannot be simultaneously
diagonalised. One is thus lead to a dichotomy: one may either construct the de-
terminant line bundle using the usual spectral definition and forsake geometric
interpretations of its curvature and holonomy2 or one must sacrifice a natural
“spectral” definition interpretation of the determinant line bundle in favour of
obtaining a geometric line bundle with curvature and holonomy given by natural
index theoretic quantities. We choose the latter course, and construct a canon-
ical geometric line bundle associated to a family of Dirac operators coupled to
superconnections with curvature computed by

(2πi)−
1

2
dimX/Y

[
π∗Â(Ωπ) ch(∇)

]

(2)
,

and holonomy computed by the appropriate η-invariant mod Z, where the notation
is as in Eq. 5.

2This construction is in fact done for a wider class of operators in [4, 5].
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In order to construct the determinant line bundle we also briefly investigate
the η-invariant for Dirac operators coupled to superconnections. Here again one
encounters an essential dichotomy between emphasising the spectral or geometric
nature of the original invariant. We choose to preserve the geometric aspects of
the invariant (in this case, that it obey an APS-theorem).

To summarise: the essential novelty that pervades the index theory of Dirac
operators coupled to superconnections is the presence of the R×-action (Eq. 4). It
presents numerous technical difficulties, both in the proof of the index theorems,
and in the definition of secondary invariants and constructions associated to these
operators. However, taken properly into account the basic theorems and formulas
in the geometric index theory of Dirac operators coupled to superconnections end
up very similar to those in classical geometric index theory.
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∞-operads, BV∞, and Hypercommutative∞

Gabriel C. Drummond-Cole

(joint work with Bruno Vallette)

Fix a ground field k of characteristic zero.

Theorem 1. [1, 6] Let (V, ·, ∂,∆) be a differential BV algebra which satisfies the
“∂-∂̄” lemma. There exists the structure of a hypercommutative algebra on the
homology H(V, ∂).



Strings, Fields and Topology 1567

This theorem was generalized by Park [8], who weakened the “∂-∂̄” condition
to a different one called “semiclassical”. The “semiclassical” condition was then
weakened further to “noncommutative Hodge to de Rham degeneration” by Ter-
illa [9] (see also [5]). The construction was opaque and not clearly functorial. Our
work illustrates an extension and illumination of the theorem above, and points
the way to filling in the following chart, which schematically describes this passage:

Algebra differential BV algebra Hypercommutative algebra

Topology
Framed little disks

(Version of genus zero
moduli space M0,n)

Deligne-Mumford compactification
of genus zero moduli space (M0,n)

Geometry ? Linear family of formal flat connections

There is a model category structure on operads which can be used to illumi-
nate the homotopy theory of algebras over different operads, c.f. [7, 2]. Namely,
the structure of an algebra over a cofibrant operad can be transferred across a
quasiisomorphism; this is not true for operads in general. However, every operad
O admits a cofibrant replacement O∞

∼→ O, and so an O-algebra structure can
be transferred “up to homotopy” as a O∞ structure. For instance, given an as-
sociative algebra V and a linear quasiisomorphism f : V → W , it is not always
possible to put an associative algebra structure on W which realizes f as a map of
algebras. However, W can be given an A∞ structure which realizes an extension
of f as a quasiisomorphism of A∞ algebras.

This principle is very useful, but also abstract. It would be nice to be able to
realize this with a construction of a cofibrant replacement O∞

∼→ O. One way
to obtain such a replacement is through the composition of the bar and cobar
functors between the categories of operads and cooperads:

B : Op → coOp

Ω : coOp → Opcofibrant

There is a canonical map

ΩBO ∼→ O
The “cobar-bar” resolution gives a particular realization of O∞, but in practice
this particular choice can be unwieldy. In order to find a smaller resolution, it
would be nice to replace BO, which is an operad in chain complexes, with a
smaller, quasiisomorphic complex, such as its homology. Then we could take

O∞ = ΩHBO ∼→ O
Unfortunately, in general, this runs into the same problem that exists with alge-
bras: namely, the structure of a cooperad does not transfer nicely across quasi-
isomorphism. However, again like algebras we have a transfer theorem if we are
willing to consider ∞-cooperads, that is, cooperads up to homotopy.

Theorem 2. Let C be a coaugmented cooperad in the category of chain complexes.
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(1) H(C) carries the transferred structure of an ∞-cooperad which is quasiiso-
morphic as ∞-cooperads to the strict cooperad structure on C.

(2) There exists a functor Ω∞ : coOp∞ → Opcofibrant that respects quasi-
isomorphisms and that coincides up to quasiisomorphism with Ω on strict
cooperads.

These theorems fit a familiar pattern but the explicit formulae are new and
have been very useful in the work being reported.

Getzler [4] showed that the hypercommutative operad has the nice formality
property, namely that BHyc is quasiisomorphic as a strict cooperad to its homol-
ogy, called coGrav. So we get a small presentation of Hyc∞ as ΩcoGrav.

For the BV operad, BBV is not quasiisomorphic as a strict operad to HBBV,
but according to Theorem 2, we have a presentation of BV∞ as Ω∞HBBV. Using
recent work by Gálvez-Carillo, Tonks, and Vallette [3], we have proved:

Theorem 3. (1) Viewed as a strict cooperad, H(BBV) ∼= k[δ] ⊕ coGrav.
(2) Viewed as ∞-cooperads, H(BBV)/k[δ] → coGrav is an isomorphism.

An analysis of the higher infinity cooperad structure on HBBV relates the role
that k[δ] plays to the “noncommutative Hodge to de Rham degeneration” and
Park’s “semiclassical” condition and yields the following:

Theorem 4. (1) Let (V, ·, ∂,∆) be a differential BV algebra which satisfies
the “noncommutative Hodge to de Rham degeneration” property. Then
there exists the structure of a Hyc∞ algebra on the homology H(V, ∂).

(2) If V is “semiclassical” then the structure is unique. In particular, there is
a functor from the category of semiclassical differential BV algebras with
“semiclassical BV∞ morphisms” to the category of Hyc∞ algebras.

Remark 1. One can apply the homology functor to the Hyc∞ structure on H(V, ∂)
to recover the strict hypercommutative algebra of [1].

By keeping the full Hyc∞ structure and not compressing to the strict algebra,
the corollary yields higher level invariants, which correspond (in part) in the geo-
metric world to extending a connection to a superconnection. This constitutes a
hint as to what fills in the question mark in the chart above.
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Some algebra and applications related to mapping spaces

Scott O. Wilson

(joint work with Thomas Tradler, Mahmoud Zeinalian)

In this talk we begin with a useful language for some elementary concepts in alge-
braic topology, and then show how these can be used to define generalizations of
Hochschild homology. We also give some applications to invariants and construc-
tions that appear in settings such as Chern characters, Witten deformations, and
PDE’s related to fluids.

Recall that a differential graded algebra is precisely a strict monoidal functor
from the category of finite sets (denoted F) to the category of chain complexes
(denoted Ch). We can generalize this definition by asking for a weak functor, i.e.
one that is monoidal only up to a coherent natural transformation. We’ll refer to
these as partial algebras.

The meaning of such functors is illuminated by a theorem proved by the author:
such partial algebras can be functorially rectified to E∞-algebras. With this in
mind, though, one may prefer to deal with the apparently small package of a
partial algebra.

There are versions of this functor approach in many other settings: modules
over algebras, algebras over any operad, and their modules, co-versions of all of
these, etc.

Examples of these structures are abundant. The author has proved the following
conjecture of J. McClure: the chains of a PL space form a partial co-algebra, where
the structure maps are generalized diagonal maps and the natural transformation
is given by the cartesian product of chains. An appropriate dual of this gives a
partial algebra on cochains. By a theorem of Mandell, it’s reasonable that this
tidy package determines the integral homotopy type of a nilpotent space.

Now, for any partial algebra A : F → Ch, and any finite simplicial set Y : ∆ →
F , we obtain by composition a simplicial object of chain complexes, whose total
complex1 we denote by CHY (A). In fact, this forms a partial algebra itself. And
there are module versions, etc.

This construction generalizes the Hochschild complex of an algebra and the
higher Hochschild complexes of Pirashvilli [4], [2]. More recently Ginot, Tradler
and Zeinalian have shown that for the algebra A of differential forms on X there

1This construction, defined for any simplicial set Y and partial algebra A, should also be

related to K. Walker’s Blob Homology, which is defined for (at least) any manifold M and
category C. See his abstract in this report.
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is, for any Y , an iterated integral map yielding a quasi-isomorphism from CHY (A)
to the forms on Map(Y,X) (assuming certain connectivity hypothesese) [3]. The
product in the domain is identified with a shuffle product and corresponds to the
cup product on the mapping space.

For the case for Y = S1, and (A, d) a strict dga, CHY (A) is the usual Hochschild
complex of A with differential D. The existence of the shuffle product, ∗, implies
the exponential map is defined, and we can compute

e1⊗x = 1 + 1 ⊗ x+ 1 ⊗ x⊗ x+ 1 ⊗ x⊗ x⊗ x+ · · ·
Furthermore,

De1⊗x = (1 ⊗ (dx+ x2)) ∗ e1⊗x

This implies that Maurer-Cartan elements of A give cycles on CHS1

(A) and, if we
imagine A as matrices of forms on M , it reminds us of the formula for curvature
of a connection.

This analogy has been taken further in Getzler, Jones, and Petrack [1] by con-
structing, from a bundle with connection, a closed equivariant form in cyclic chains
agreeing with Bismut’s analytic construction, which has the property that, upon
restriction to the constant loops M ⊂ LM , it gives the classical Chern character.

We are working now to similarly construct a cycle in CHS1×S1

which restricts
appropriately to the class above and satisfies an equivariance condition2.

Another interesting example is given by the path space, i.e. Y = I is the
interval. For A = Ω(M) there is a differential D on CHI(A) induced by the
standard action of A on itself (on the left and right).

For M Riemannian, the Hodge-star operator ⋆ induces a dual module structure
given by (x, y) → ⋆−1(x∧⋆y), making (A, d∗) into a differential module over (A, d).
Thus, on the same underlying vector space of CHI(A), we obtain a differential
D∗ corresponding to the usual right action and the dual left action. Clearly D∗ is
given by the transport of D by id⊗ · · · ⊗ id⊗ ⋆, so D∗ is the formal adjoint of D.
We call ∆ = [D,D∗] the Laplacian on the path space and note that it has square
root D +D∗.

For x ∈ A of degree 1 and s ∈ R we compute

(1) ∆(e1⊗s·x⊗1 · y) = e1⊗s·x⊗1 ·D2
x,s(y)

where, letting Lx denote left multiplication by x, and L∗
x = ⋆−1Lx⋆ denote its

adjoint, we have

Dx,s = d+ d∗ + sLx + sL∗
x

This is the deformation of d + d∗ considered by Witten in [5], which can be used
to prove the Poincaré-Hopf Index formula. It would be interesting to understand
further properties of the operators D + D∗ and ∆ on the path space, as well as
their analogues defined on algebraic models of maps into a Riemannian manifold.

2Some conference participants suggested that the data of gerbes with connections may be a
more appropriate setting for this construction.
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An interesting special case of (1) appears when we set y = x and assume x is
divergence free, d∗x = 0. Using ⋆−1(x ∧ ⋆x) = ‖x‖2 we obtain

D2
x,s(x) = d∗dx+ s

(
⋆−1(x ∧ ⋆dx) + d‖x‖2 + dx ∧ x

)
+ s2‖x‖2x

The self-linking term dx ∧ x vanishes in dimension two and lower, though may
be non-trivial in dimensions three and higher. The remaining terms are degree one,
and modulo the s2 term, can be seen in the Navier-Stokes equation for viscosity
equal to one:

ẋ = ⋆−1(x ∧ ⋆dx) + d‖x‖2 + d∗dx+ dp

Here x is now a time dependent 1-form (vector field) and the pressure p is deter-
mined uniquely (up to a constant) by the Hodge decomposition.

It may be fruitful to understand further connections between deformations of
the Laplacian and non-linear PDE’s such as this fluid equation.
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Topological Defects, D-Branes, and the Classification of Local TFTs in

Low Dimensions

Christopher Schommer-Pries

Recently there have been many new and exciting developments relating higher
categories and topology, particularly in the area of local (i.e. extended) topological
field theory. In this talk we show how the higher-categorical point of view organizes
and relates several existing notions in topological quantum field theory.

One particularly important recent development is the formulation and proof,
due to M. Hopkins and J. Lurie [2], of the Baez-Dolan cobordism hypothesis [3].
Roughly speaking this characterizes the higher categorical bordism category in
terms of an algebraic description. There are many variations of the bordism n-
category and this algebraic description is the easiest to formulate in the case where
bordism are equipped with framings. In this case the framed bordism n-category
is the “free symmetric monoidal n-category generated by a single fully dualizable
object”.

As of the time of this talk, full details of the Hopkins and Lurie proof have not
become publicly available. Instead we focus and an alternative concrete approach
developed in the author’s dissertation [1], and which is valid in low dimensions.
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We discuss the results and techniques used to prove a generators and relations
classification of local 2-dimensional topological field theories.

This explicit approach then leads naturally to a thorough understanding of nat-
ural transformations of field theories. Due to the duality present in the bordism
bicategory, these natural transformations are automatically invertible. However,
by altering the definition of natural transformation slightly (a notion we call un-
natural transformations) we obtain a new concept which is similar to a natural
transformation, but not necessarily invertible.

A careful and explicit examination shows that these unnatural transformations
exactly reproduce the notions of topological defect encountered in the talks of C.
Schweigert and I. Runkel. As a further specialization, an unnatural transformation
between a theory and the trivial theory yields an open-closed field theory extending
the original non-trivial one. This is also known as a topological D-brane. Thus
the higher categorical setting provides a context in which all three of these notions
can be seen as particular aspects of a unified concept.
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Invertible conformal nets

André Henriques

(joint work with A. Bartels, C. Douglas)

1. Conformal nets

We begin by quickly describing the symmetric monoidal 3-category (CN3 ,⊗) of
conformal nets. The objects of CN3 are Z/2-graded conformal nets. The arrows
between two nets A and B are called A-B-defects. The 2-morphisms between A-
B-defects D and E are called D-E-sectors. Finally, the 3-morphisms of CN3 are
called homomorphisms of sectors. One of our main result is that CN3 is indeed a
symmetric monoidal 3-category.

Before describing the objects of our 3-category CN3 , we need a few facts about
pin structures on one dimensional manifolds.

Definition 1.1. A pin interval is an interval equipped with a complex line bun-
dle S → I, and an isomorphism S⊗2 ∼−→ T ∗

C
I between the square of S and the

complexified cotangent bundle of I.
An embedding between pin intervals (I ′, S′) and (I, S) consists of an embedding

f : I ′ →֒ I, along with an isomorphism β : f∗S → S′. We allow β to be either C-
linear or C-antilinear. If β is linear, then the first one of the following two diagrams
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should commute. Otherwise, it is the second diagram that should commute:
(1)

f∗(S⊗2)
∼ //

β⊗2

��

f∗(T ∗
C
I)

T∗
C
f

��
S′⊗2 ∼ // T ∗

C
I ′

f∗(S⊗2)
∼ //

β⊗2

��

f∗(T ∗
C
I) = f∗(T ∗I) ⊗ C

T∗f⊗(z 7→z̄)

��
S′⊗2 ∼ // T ∗

C
I ′ = T ∗I ′ ⊗ C

We say an embedding (f, β) is C-linear, respectively C-antilinear, if β is so.

Let (I, S) be a pin interval. Its pin involution is the map γ given by the identity
on I and negation on S. There are two other non-trivial involutions ci and c−i that
restrict to the identity on I. We call them the conjugating involutions. In order
to distinguish one from the other, we first introduce the notion of a coorientation
of I. By this, we mean a coorientation of T ∗I inside its complexification T ∗

C
I. If

the pin intervals (I, S), (I ′, S′) are equipped with coorientations, we say that an
embedding (f, β) preserves the coorientations if so does the right vertical arrow of
the relevant diagram (1).

Let (I, S) be a pin interval equipped with a coorientation, and let v be a section
of T ∗

C
I representing the coorientation. Let

√
v be the section of S (defined up to

sign) determined by the equation
√
v ⊗√

v = v. For j = i or −i, the conjugating
involution cj of (I, S) acts by j on spanR{

√
v } and by −j on spanR{

√−v }.
Definition 1.2. We let INTPin be the topological category whose objects are
pin intervals equipped with a coorientation. The morphisms are pin embeddings
(either C-linear or C-antilinear) that do not need to preserve the coorientation.

Let VN denote the category whose objects are complex Z/2-graded von Neu-
mann algebras, and whose morphisms are given by

homVN(A,B) := hom(A,B) ∪ hom(A, B̄) ∪ hom(A,Bop) ∪ hom(A, B̄op).

The hom-sets are given the topology of pointwise convergence.

Definition 1.3. A Z/2-graded conformal net is a continuous functor

(2) A : INTPin → VN.

To an embedding f : J →֒ I, it assigns a map A(f) : A(J) → A(I) of the kind
prescribed by the following table:

(3)

f is C-linear. f is C-antilinear.

f respects the
coorientations.

A(f) ∈ hom
(
A(J),A(I)

)
A(f) ∈ hom

(
A(J),A(I)

)

f does not respect
the coorientations.

A(f) ∈ hom
(
A(J),A(I)

op) A(f) ∈ hom
(
A(J),A(I)

op)
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Moreover, if γ is the pin involution of I, then A(γ) should be the grading involution
of A(I), and if cj is a conjugating involution, then A(cj) should be the map

#j : A(I) → A(I)
op

. It is subject to the following axioms:
•Isotony: The image of an embedding J →֒ I is an injective map A(J) →֒ A(I).
•Locality: If J ⊂ I and K ⊂ I have disjoint interiors, then the images of A(J)
and A(K) graded commute inside A(I).
•Strong additivity: If I = J ∪K, then A(J) and A(K) generate A(I).
•Haag duality: If I = J ∪K and J ∩K is a point, then the image of A(J) is the
graded commutant of A(K) inside A(I).
•Split property: If J , K are disjoint subintervals of I and the inclusions are
compatible with both orientations and coorientations, then the map from the
algebraic tensor product A(J) ⊗alg A(K) → A(I) extends to the spacial tensor
product

A(J) ⊗̄A(K) → A(I).

•Diff covariance: If ϕ : I → I is a diffeomorphism that restricts to the identity
in a neighborhood of ∂I, then A(ϕ) is an inner automorphism of A(I).
•Vacuum: Let S1 ⊂ C denote the unit circle. Every subinterval of S1 acquires a
pin structure from its embedding in C. Let

(4) I := exp
(
[0, πi]

)
, I ′ := exp

(
[πi, 2πi]

)
.

Equip I and I ′ with the inward coorientation. After upgrading the map j : I ′ → I,
j(z) := z̄ to a pin isomorphism, it induces a homomorphism

A(j) : A(I ′) → A(I)op .

Let H0 := L2(A(I)). We then have two left actions

λ : A(I) → B(H0), ρ : A(I ′) → B(H0),

given by the formulas λ(a)(ξ) := a ξ and ρ(b)(ξ) := (−1)|b||ξ| ξA(j)(b).
Let J ⊂ I be a subinterval such that J ∩ I ′ = {1} or {−1}, and let J ′ := j(J).'$

&%
I

I ′

 
!

J

J ′

Then the action of the algebraic tensor product

λ⊗ ρ : A(J) ⊗alg A(J ′) −→ B(H0)

extends (uniquely) to an action of A(J ∪ J ′).

2. µ = 1 and invertibility

Let A be a conformal net. Its vacuum sector

H0 := L2
(
A(exp([0, πi]))

)

is the identity on the identity defect of A. It is an A(I)-module for every I ⊂
S1, where S1 is endowed with the inward coorientation. We shall say that A is
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irreducible if its vacuum sector is irreducible. In other words, A is irreducible if
A 6= 0, and if ∨

I⊂S1

A(I) = B(H0).

This is equivalent to the algebras A(I) being factors i.e., having trivial center.
If AHB is a bimodule between factors, then its statistical dimension dim(AHB)

is an invariant that lives in {0}∪[1,∞]. The statistical dimension is additive under
direct sums, and multiplicative under tensor product and Connes fusion. Recall
that if I, J ⊂ S1 don’t intersect, then A(J)⊗̄A(I) acts on H0 by the split property.
Define intervals

I1 := exp
(
[0, πi2 ]

)
, I2 := exp

(
[πi2 , πi]

)
, I3 := exp

(
[πi, 3πi

2 ]
)
, I4 := exp

(
[ 3πi2 , 2πi]

)
.

Definition 2.1. The µ-index µ(A) of an irreducible conformal net A is the sta-
tistical dimension of the bimodule

A(I1)⊗̄A(I3) H0 A(I2)op⊗̄A(I4)op .

With the above definitions in place, we can now state our results:

Theorem 2.2. A conformal net A is invertible in CN3 if and only if it is irre-
ducible and µ(A) = 1.

Theorem 2.3. A conformal net is fully dualizable in CN3 if and only if it is a
finite direct sum of irreducible nets Ai, and all of those have µ(Ai) <∞.

Blob Homology

Kevin Walker

(joint work with Scott Morrison)

We define a chain complex B∗(M,C) (the “blob complex”) associated to an
n-category C and an n-manifold M . For n = 1, B∗(S

1, C) is quasi-isomorphic to
the Hochschild complex of the 1-category C. So in some sense blob homology is a
generalization of Hochschild homology to n-categories. The degree zero homology
of B∗(M,C) is isomorphic to the dual of the Hilbert space associated to M by
the TQFT corresponding to C. So in another sense the blob complex is the
derived category version of a TQFT. A third specialization of the blob complex
is when we take C to be trivial in dimensions less than n, so that C is essentially
a commutative algebra thought of as an n-category. If we take this commutative
algebra to be the polynomial algebra C[t], then B∗(M,C) is homotopy equivalent
to C∗(Σ

∞(M)), singular chains on the infinite symmetric power of M .
We hope to apply blob homology to tight contact structures on 3-manfolds

(n = 3) and the extension of Khovanov homology to general 4-manifolds (n = 4).
In both of these examples, exact triangles play an important role, and the derived
category aspect of the blob complex allows this exactness to persist to a greater
degree than it otherwise would.
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B0(M,C) is defined to be finite linear combinations of C-pictures on M . (A
C-picture on M can be thought of as a pasting diagram for n-morphisms of C in
the shape of M together with a choice of homeomorphism from this diagram to
M .) There is an evaluation map from B0(B

n, C) (C-pictures on the n-ball Bn)
to the n-morphisms of C. Let U be the kernel of this map. Elements of U are
called null fields. B1(M,C) is defined to be finite linear combinations of triples
(B, u, r) (called 1-blob diagrams), where B ⊂M is an embedded ball (or “blob”),
u ∈ U is a null field on B, and r is a C-picture on M \ B. Define the boundary
map ∂ : B1(M,C) → B0(M,C) by sending (B, u, r) to u • r, the gluing of u and r.
B1(M,C) can be thought of as the space of relations we would naturally want to
impose on B0(M,C), and so H0(B∗(M,C)) is isomorphic to the generalized skein
module (dual of TQFT Hilbert space) one would associate to M and C.

Bk(M,C) is defined to be finite linear combinations of k-blob diagrams. A k-
blob diagram consists of k blobs (balls) B0, . . . , Bk−1 in M . Each pair Bi and Bj
is required to be either disjoint or nested. Each innermost blob Bi is equipped
with a null field ui ∈ U . There is also a C-picture r on the complement of the
innermost blobs. The boundary map ∂ : Bk(M,C) → Bk−1(M,C) is defined to be
the alternating sum of forgetting the i-th blob.

If M has boundary we always impose a boundary condition consisting of an
n−1-morphism picture on ∂M . In this note we will suppress the boundary condi-
tion from the notation.

The blob complex has the following properties:

Functoriality. The blob complex is functorial with respect to diffeomorphisms.
That is, fixing C, the association

M 7→ B∗(M,C)

is a functor from n-manifolds and diffeomorphisms between them to chain com-
plexes and isomorphisms between them.

Contractibility for Bn. The blob complex of the n-ball, B∗(B
n, C), is quasi-

isomorphic to the 1-step complex consisting of n-morphisms of C. (The domain
and range of the n-morphisms correspond to the boundary conditions on Bn. Both
are suppressed from the notation.) Thus B∗(B

n, C) can be thought of as a free
resolution of C.

Disjoint union. There is a natural isomorphism

B∗(M1 ⊔M2, C) ∼= B∗(M1, C) ⊗ B∗(M2, C).

Gluing. Let M1 and M2 be n-manifolds, with Y a codimension-0 submanifold of
∂M1 and −Y a codimension-0 submanifold of ∂M2. Then there is a chain map

glY : B∗(M1) ⊗ B∗(M2) → B∗(M1 ∪Y M2).

Relation with Hochschild homology. When C is a 1-category, B∗(S
1, C) is

quasi-isomorphic to the Hochschild complex Hoch∗(C).
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Relation with TQFTs and skein modules. H0(B∗(M,C)) is isomorphic to
AC(M), the dual Hilbert space of the n+1-dimensional TQFT based on C.

Evaluation map. There is an ‘evaluation’ chain map

evM : C∗(Diff(M)) ⊗ B∗(M) → B∗(M).

(Here C∗(Diff(M)) is the singular chain complex of the space of diffeomorphisms
of M , fixed on ∂M .)

Restricted to C0(Diff(M)) this is just the action of diffeomorphisms described
above. Further, for any codimension-1 submanifold Y ⊂M dividingM into M1∪Y
M2, the following diagram (using the gluing maps described above) commutes.

C∗(Diff(M)) ⊗ B∗(M)
evM // B∗(M)

C∗(Diff(M)) ⊗ C∗(Diff(M)) ⊗ B∗(M1) ⊗ B∗(M2)

evM1
⊗evM2

44

glDiff

Y ⊗glY

OO

B∗(M1) ⊗ B∗(M2)

glY

OO

In fact, up to homotopy the evaluation maps are uniquely characterized by these
two properties.

A∞ categories for n−1-manifolds. For Y an n−1-manifold, the blob complex
B∗(Y ×I, C) has the structure of an A∞ category. The multiplication (m2) is given
my stacking copies of the cylinder Y × I together. The higher mi’s are obtained
by applying the evaluation map to i−2-dimensional families of diffeomorphisms in
Diff(I) ⊂ Diff(Y × I). Furthermore, B∗(M,C) affords a representation of the A∞

category B∗(∂M × I, C).

Gluing formula. Let Y ⊂M divide M into manifolds M1 and M2. Let A(Y ) be
the A∞ category B∗(Y × I, C). Then B∗(M1, C) affords a right representation of
A(Y ), B∗(M2, C) affords a left representation of A(Y ), and B∗(M,C) is homotopy
equivalent to B∗(M1, C) ⊗A(Y ) B∗(M2, C).

Relation to mapping spaces. There is a version of the blob complex for C an
A∞ n-category instead of a garden variety n-category.

Let π∞
≤n(W ) denote the A∞ n-category based on maps Bn → W . (The case

n = 1 is the usual A∞ category of paths in W .) Then B∗(M,π∞
≤n(W )) is homotopy

equivalent to C∗({maps M →W}).
Product formula. Let Mn = Y n−k×W k and let C be an n-category. Let A∗(Y )
be the A∞ k-category associated to Y via blob homology. Then

B∗(Y
n−k ×W k, C) ≃ B∗(W,A∗(Y )).

There is a similar result for general fiber bundles.

Higher dimensional Deligne conjecture. The singular chains of the n-dimen-
sional fat graph operad act on blob cochains.
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The n-dimensional fat graph operad can be thought of as a sequence of general
surgeries of n-manifolds Ri ∪ Ai  Ri ∪ Bi together with mapping cylinders of
diffeomorphisms fi : Ri ∪ Bi → Ri+1 ∪ Ai+1. (Note that the suboperad where
Ai, Bi and Ri ∪ Ai are all diffeomorphic to the n-ball is equivalent to the little
n+1-disks operad.)

If A and B are n-manifolds sharing the same boundary, define the blob cochains
B∗(A,B) (analogous to Hochschild cohomology) to be A∞ maps from B∗(A) to
B∗(B), where we think of both (collections of) complexes as modules over the A∞

category associated to ∂A = ∂B. The “holes” in the above n-dimensional fat
graph operad are labeled by B∗(Ai, Bi).

Background fields in twisted differential nonabelian cohomology

Urs Schreiber

(joint work with J. Baez, T. Nikolaus, H. Sati, Z. Škoda, J. Stasheff, D.
Stevenson, K. Waldorf)

1. Motivation: background fields

An interesting supply of motivations for and applications of generalized notions
of cohomology arises in formal higher energy physics in the context of theories that
combine and generalize Maxwell’s theory of the electromagentic field, Einstein’s
theory of the gravitational field and Yang-Mills’ theory of general gauge fields.

In order to formalize and study certain phenomena exhibited by such higher
background fields – such as what is called by the Kalb-Ramond field in heterotic
supergravity or the C-field in maximal supergravity – Hopkins and Singer in their
seminal work [1] developed the general theory of differential refinements of gener-
alized Eilenberg-Steenrod cohomology. Based on this, Freed [2] explained certain
subtle effects, previously observed semi-rigorously by physicists, systematically as
phenomena exhibited by cocycles in differential generalized cohomology.

This involves notably various twists of one kind of cohomology by another. The
most familiar example is twisted K-theory, the cohomology theory that in formal
high energy physics describes the Chan-Paton background field.

But the physical applications indicate that this is only the simplest example
in a more general theory of twisted generalized cohomology. The next example is
the famous Green-Schwarz mechanism in heterotic supergravity, which, as Freed
explained, amounts to asserting a kind of twist of a higher differential cohomology
class. While this clarifies some of the structure, it remains noteworthy that the
twist in the Green-Schwarz mechanism is fundamentally encoded not in abelian
generalized coholomology, but by the class of a G-principal bundle for a nonabelian
group G, hence by a coycle in nonabelian cohomology.

While abelian generalized cohomology has spectra as coefficients – maximally
abelian spaces – degree n-nonabelian cohomology allows as coefficients arbitrary
homotopy n-types. Such nonabelian cohomology is traditionally most familiar in
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the study of 1- and 2-gerbes [3] as well as in the higher Schreier theory [4] of
nonabelian group extensions.

But it was already realized in [5] that generalized Eilenberg-Steenrod cohomol-
ogy, sheaf cohomology as well as nonabelian cohomology all describe hom-sets in
homotopy categories of (pre)sheaves with values in ∞-groupoids – called simpli-
cial presheaves. This perspective was later refined by Joyal and Jardine’s study [6]
of the model category structure on simplicial presheaves. By the recent result of
Lurie [7] we know that these constructions model precisely the theory of ∞-stacks
[8].

This leads one to expect that a general theory of smooth cohomology that en-
compasses abelian as well as nonabelian phenomena concerns the (∞, 1)-topos of
∞-stacks on a small version of the site Diff of smooth manifolds. This perspective
on ∞-stacks as the truly general notion of cohomology is implied by Lurie’s very
notion of (∞, 1)-topos as a context that “behaves like topological spaces”. It can
be found made explicit for instance in [9].

We therefore place ourselves in the context of the (∞, 1)-topos H of ∞-stacks
on Diff and discuss the following questions:

• What is the general notion of differential cohomology in H?
• What is the general notion of twisted cohomology in H?
• How does this describe phenomena exhibited by background fields in for-

mal high energy physics?
• How does this induce the corresponding quantum field theories of objects

charged under these background fields?

The last of these four questions is our main motivation. Here, however, we
don’t go into this last question except that it shall serve to motivate our answer
to the first question:

2. Twisted differential nonabelian cohomology

2.1. Differential nonabelian cohomology. Recall that, as finally fully formal-
ized in [10], an n-dimensional topological quantum field theory is an (∞, n)-functor
Z : Bordn → V on n-dimensional bordisms with values in an (∞, n)-category of
something like n-vector spaces.

On the other hand, when we have on a target space object X a background field
under which an n-dimensional object is charged, we expect a notion of parallel
transport and holonomy encoded by an (∞, n)-functor exp(

∫
∇) : Bordn(X) → V

from bordisms equipped with maps into X , that assigns to an n-dimensional bor-
dism its parallel transport or holonomy, as a morphism in V . The above suggests
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that those QFTs Z that arise as σ-models in that they are encoded by a back-
ground field ∇ are, in some sense, extensions

Bordn(X)
exp(

R

∇) //

��

V

Bordn

Z∇

66
n

n

n

n

n

n

n

field space
background field //

��

V

parameter space

quantum propagation
l

l

l

55
l

l

l

l

along the obvious forgetful (∞, n)-functor Bordn(X) → Bord(X). Whatever this
extension procedure may be, a necessary prerequisite for studying it is a good grasp
of how to encode differential cocycles on X in terms of functors on Bordn(X).

In a series of articles [11, 12, 13, 14] it was shown that gerbes with connection
and more generally higher principal bundles with connection are indeed encoded
as morphisms in H of the form

∇ : Pn(X) → V
where Pn(X) is essentially the subobject of Bordn(X) consisting only of topolog-
ically disk-shaped bordisms in X : the path n-groupoid of X .

Theorem 2.1. Let G be a Lie group, BG the corresponding one-object smooth
groupoid in H and BAUT(G) the one-object 2-groupoid coming from the automor-
phism 2-group of G. Let X be manifold, then

• H(P1(X),BG) ≃ GBund∇(X)
= {G-principal bundles with connection on X}

• H(P2(X),BAUT(H)) ≃ HGrb∇ff
(X)

= {G-gerbes with fake-flat connection on X} .

In particular let BBU(1) be the smooth 2-groupoid with the Lie group U(1) in
degree 2, then

• H(P2(X),BBU(1)) ≃ BdlGrb∇(X)
= {line bundle-gerbes with general connection on X}

In the abelian case a fake-flat connection is just a general connection, but in the
nonabelian case, as well as in the abelian equivariant case, it is more restrictive
than what one might expect. For full nonabelian differential cohomology the above
is slightly too naive and replaced by the following.

Definition 2.2. For every object X ∈ X there is an object Π(X) = lim
→

Pn(X),

the fundamental ∞-groupoid of X. For any coefficient object A ∈ H we call
H(Π(X), A) the flat differential A-cohomology of X.

For A once deloopable there is a morphism P : H(X,A) → H(Π(X),BA) whose
image P (c) of an A-cocycle c we call the characteristic curvature class of c.

Given a class P ∈ H(Π(X),BA) we call the corresponding P -twisted flat differ-
ential A-cohomology HP (Π(X), A) the differential A cohomology with cur-

vature P .

The last clause uses the following definition of twisted cohomology.
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2.2. Twisted nonabelian cohomology.

Definition 2.3. Let Ĝ → G → A be a fibration sequence in H. Notice that
by the left-exactness of the Hom, for any object X ∈ H we obtain the fibration

sequence H(X, Ĝ) // H(X,G)
obstr // H(X,A) in cohomology that character-

izes Ĝ-cocycles as those G-cocycles whose obstructing A-cocycle is trivializable.
For c ∈ H(X,A) any possibly nontrivial A-cocycle on X, define the c-twisted

Ĝ-cohomology Hc(X,A) to be the homotopy pullback

H(X, Ĝ)
⌋

//

��

∗

∗7→c

��
H(X,G)

obstr // H(X,A)

.

2.3. Examples: background fields in twisted differential nonabelian co-

homology. These two definitions may be combined to yield a notion of twisted
differential nonabelian cohomology. The local cocycle identities satisfied by the
curvature characteristic forms of these twisted cocycles are the twisted Bianchi
identities in the physics literature, as indicated in the following list of examples.

Claim 2.1. fibration sequence: BU(n) → BPU(n)
c1→ B2U(1)

• twisting cocycle: lifting gerbe;
• twisted cocycle: twisted bundles / gerbe modules
• twisted Bianchi identity: dF∇ = H3

• occurence: Freed-Witten anomaly cancellation on D-brane

Claim 2.2. fibration sequence: BString(n) → BSpin(n)
1

2
p1→ B3U(1)

• twisting cocycle: Chern-Simons 2-gerbe;
• twisted cocycle: twisted nonabelian String-gerbe with conection
• twisted Bianchi identity: dH3 ∝ 〈F∇ ∧ F∇〉
• occurence: Green-Schwarz anomaly cancellation

Proof. [15]: use the BCSS model [16] of String(n) with the construction from
[17] of 1

2p1, then use [18, 20] to compute local differential form data. �

Claim 2.3. fibration sequence: BFivebrane(n) → BString(n)
1

6
p2→ B7U(1)

• twisting cocycle: Chern-Simons 6-gerbe;
• twisted cocycle: twisted nonabelian Fivebrane-gerbe with connection
• occurence: dual Green-Schwarz anomaly cancellation for NS 5-brane mag-

netic dual to string

Proof. Analogous to the above. And use [19, 20]. �

Claim 2.4. fibration sequence: B2U(1) → B(U(1) → Z2) → BZ2
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• twisting cocycle: Z2-orbifold;
• twisted cocycle: orientifold gerbe / Jandl gerbe with connection

Proof. Use [21] and the bosonic part of [22]. �

References

[1] M. J. Hopkins, I.M. Singer, Quadratic functions in geometry, topology, and M-theory, J.
Diff. Geom. 70 (2005) 329-452, [arXiv:math.AT/0211216].

[2] D. S. Freed, Dirac charge quantization and generalized differential cohomology, Surv. Differ.
Geom., VII, 129–194, Int. Press, Somerville, MA, 2000, [arXiv:hep-th/0011220].

[3] Lawrence Breen, Notes on 1- and 2-gerbes, in J. Baez and P. May, eds., Towards Higher
Categories, Institute for Mathematics and its Applications, [arXivmath.CT/0611317]
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String structures, 3-forms, and tmf classes

Corbett Redden

Consider P
π→M , where P is a principal Spin(k)-bundle over a closed manifold

M (compact without boundary). We then define a (topological) string structure
on P to be a lift of the classifying map from BSpin(k) to BString(k). Here,
BString(k) is the homotopy fiber of the characteristic class p1

2 , as seen in the
fibration sequence

BString(k) → BSpin(k)
p1

2→ K(Z, 4).

While there are various descriptions of string structures, any construction will
produce such a lift, and homotopy classes of lifts to BString(k) have a convenient
classification.

Definition. A string class S is a cohomology class S ∈ H3(P ; Z) that restricts
fiberwise to the stable generator of H3(Spin(k); Z).

Proposition.

• {String structures}/(homotopy) ∼= {String classes}
• A string structure/class exists if and only if p1

2 (P ) = 0 ∈ H4(M ; Z).

• The set of string classes is a torsor for H3(M ; Z) under the natural addi-
tive action of π∗.

We now wish to describe the harmonic representative of a string class. A Rie-
mannian metric on P determines the Hodge Laplacian ∆ acting on differential
forms. Hodge’s Theorem implies that Ker∆i, the harmonic i-forms, is canonically
isomorphic to Hi(P ; R).

Start with the data (P
π→M, g,A), where g is a Riemannian metric on M , and

A is a connection on P . The connection A provides an orthogonal splitting of TP .
Then, the choice of a bi-invariant metric gSpin on Spin(k) defines the 1-paremeter
family of Riemannian metrics on P

gδ := π∗g ⊕ δ2gSpin

for δ > 0. Shrinking the fibers, or taking the limit as δ → 0, is known as the
adiabatic limit. While the metric becomes singular at δ = 0, work of Mazzeo–
Melrose, Dai, and Forman [MM, Dai, For] show that the harmonic forms extend
smoothly to δ = 0. We denote this limit as

Hi(P ) := lim
δ→0

Ker∆i
gδ

⊂ Ωi(P )

and note that Hi(P ) ∼= Hi(P ; R).

Theorem. Consider (P
π→ M, g,A) with p1

2 (P ) = 0. In the adiabatic limit, the
harmonic representative of a string class S is of the form CS3(A) − π∗HS,g,A,
where CS3(A) is the Chern–Simons 3-form, and HS,g,A ∈ Ω3(M); i.e.

H3(P ; Z) → H3(P ; R)
∼=→ H3(P )

S 7−→ CS3(A) − π∗HS,g,A,
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(If one does not take the adiabatic limit, the difference between CS3(A) and
the harmonic representative of S is not in general in π∗Ω3(M).) This form HS,g,A

satisfies two useful properties. First,

d∗HS,g,A = 0 ∈ Ω2(M).

Secondly, the connection A determines a differential cohomology class p̌1
2 (A) [CS],

and HS,g,A = p̌1
2 (A) as differential classes. This is encoded in the following stan-

dard exact sequence:

Ω3
Z(M) → Ω3(M) → Ȟ4(M) → H4(M ; Z) → 0

HS,g,A 7→ p̌1

2
(A) 7→ p1

2
(P ) = 0

In the language of differential characters, p̌12 (A) is a homomorphism from 3-cycles
to R/Z, and the form HS,g,A gives a specified lift of the homomorphism to R.
There is also the following equivariance: if one changes the string class by adding
π∗ψ ∈ π∗H3(M ; Z), then

HS+π∗ψ,g,A = HS,g,A +Hψ,g

where Hψ,g is the harmonic representative of ψ. This changes the lift of the
character from R/Z to R in the expected way. The above story can be duplicated
with Spin(k) replaced by any compact, simply-connected, semi-simple Lie group
G, and p1

2 replaced by a level λ ∈ H4(BG; Z).
Our motivation for dealing with string structures stems from

MString
σ→ tmf,

the String-orientation of the cohomology theory tmf or topological modular forms
[Hop]. A spin manifold Mn with string class S ∈ H3(Spin(TM); Z) naturally
produces an element in string-bordism and a class σ(M,S) ∈ tmf−n(pt) refining
the Witten genus. The Witten genus is, heuristically, the S1-equivariant index of
6DLM , the Dirac operator on the free loop space LM . The string structure actually
arises when constructing the mathematically rigorous spinor bundle on LM . It
is hoped that the natural home for families index theorems on loop spaces will
live in tmf , just as ordinary families index theorems live in K and KO-theory.

The analogy between the Witten genus and the Â-genus led Stolz to the following
conjecture.

Conjecture (Stolz [Sto]). Let Mn be a spin manifold with p1
2 (M) = 0 ∈ H4(M ; Z).

If M admits a metric of positive Ricci curvature, then the Witten genus of M is
zero.

One could also ask if something analogous to Hitchin’s theorem might hold.
Namely, if a string manifold Mn admits a positive Ricci curvature metric, then
is σ(Mn,S) = 0 ∈ tmf−n? While there are no known counterexamples to Stolz’
conjecture, the answer to the preceding question is most certainly no.
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For example, consider S3 ∼= SU(2). The Witten genus is 0 (it does not have
dimension 4k), yet the various framings produce different string structures which
yield all elements in

MString−3(pt) ∼= tmf−3(pt) ∼= πs3
∼= Z/24.

Furthermore, the round metric on S3 has positive Ricci curvature, and even posi-
tive sectional curvature. So, any attempt to generalize Hitchin’s theorem must take
into account both the geometry and the string structure. This leads to the follow-
ing hypothesis, where HS,g is the 3-form constructed above with P = Spin(TM)
and A the Levi–Civita connection.

Hypothesis. Let Mn be a spin manifold with p1
2 (M) = 0 ∈ H4(M ; Z). If M

admits a string class and metric (S, g) such that g has positive Ricci curvature
and HS,g = 0, then σ(M,S) = 0 ∈ tmf−n(pt).

The condition that HS,g = 0 is quite strong as it implies that the differential

class p̌1
2 (g) = 0. If we consider the situation of S3, there is a useful 1-parameter

family of left-invariant metrics, known as the Berger metrics, obtained by rescaling
the fibers of the Hopf fibration. The above hypothesis holds true in this family of
metrics, yet it would not if either condition were weakened. In particular, when g
is the round metric and S is induced from D4, the form H = 0 and the σ-invariant
is 0. However, there is a metric for which the Ricci curvature is nonnegative but
not positive; this metric and the right-invariant framing produce H = 0 and a
generator of tmf−3(pt). There are also infinitely many other string classes and
metrics which produce H = 0 but not positive Ricci curvature.
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String Connections and Chern-Simons 2-Gerbes

Konrad Waldorf

String structures on a principal Spin(n)-bundle P over a smooth manifold M can
be understood geometrically in two ways: (A) as lifts of the structure group of
P from Spin(n) to a certain 3-connected cover, the string group [7], and (B) as
lifts of the structure group of the looped bundle LP from LSpin(n) to its basic
central extension [3]. I want to advertise a third way (C), which is equivalent to
(A): string structures are trivializations of a certain geometrical object, namely a
bundle 2-gerbe CSP associated to P . In the following I want to outline the main
results of my article [9] describing this approach.

The main advantage of my approach (C) is that the bundle 2-gerbe CSP enjoys
an explicit, smooth and finite-dimensional construction. This is in contrast to the
approaches (A) and (B), which involve both non-smooth or infinite-dimensional
smooth structures (the string group and loop spaces, respectively). I remark, how-
ever, that there is ongoing and promising research aiming at a finite-dimensional
and smooth replacement for the string group in terms of certain generalized Lie
2-groups [6].

The bundle 2-gerbe CSP is a certain Chern-Simons bundle 2-gerbe [1]. Let me
give the idea of its construction. We start with a given principal Spin(n)-bundle
P over M . The 2-fold fibre product P [2] := P ×M P comes with a canonical map
g : P [2] → Spin(n) which expresses the fact that P trivializes canonically when
pulled back to its own total space. Over Spin(n) one finds the basic bundle gerbe
G, whose Dixmier-Douady class is the generator of H3(Spin(n),Z) ∼= Z. There
exists a Lie-theoretic construction of G due to Gawędzki-Reis [2] and Meinrenken
[4], finite-dimensional and smooth. The pullback of G along the map g is one
part of the Chern-Simons 2-gerbe. The remaining ingredients are provided by a
multiplicative structure on G.

Like every bundle 2-gerbe, the Chern-Simons 2-gerbe has a characteristic class
in H4(M,Z). This class is

[CSP ] = 1
2p1(P ) ∈ H4(M,Z),

the obstruction against string structures in the Stolz-Teichner approach (A). As
a consequence, string structures on P exist if and only if CSP admits trivializa-
tions. The situation is even better: there exists a canonical bijection between
isomorphism classes of trivializations of CSP and equivalence classes of string
structures in the Stolz-Teichner approach (A). Summarizing, trivializations of the
Chern-Simons 2-gerbe CSP are a geometrical, smooth and finite-dimensional way
to describe string structures.

One can now lift the whole construction to a setup with connections. This bene-
fits particularly from the fact that we have only involved smooth, finite-dimensional
manifolds. We assume that the principal Spin(n)-bundle P comes equipped with
a connection A. One can show that this connection defines a canonical connection
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∇A on CSP . Let me just mention that part of this connection is a 3-form on P ,
namely the Chern-Simons 3-form TP (A). Now we can look at trivializations of
CSP that respect the connection ∇A in a certain way. This actually means to
equip a trivialization with additional structure, that we call string connection. In
my article [9] I show that

• To every string structure and every connection A on P there exists a string
connection.

• The set of possible choices forms a contractible space.

The collection of a string structure and a string connection is called a geometric
string structure. This notion of a geometric string structure has a number of
interesting properties, which I want to outline in the following.

• Geometric string structures on (P,A) form a 2-groupoid, which is a module
over the 2-groupoid of bundle gerbes with connection over M .

• On isomorphism classes, one obtains a free and transitive action of the

differential cohomology Ĥ3(M,Z) on the set of isomorphism classes of geo-
metric string structures is induced.

• Associated to every geometric string structure is a 3-form H ∈ Ω3(M)
whose pullback to P differs from the Chern-Simons 3-form TP (A) by a
closed 3-form with integral periods.

I remark that the notion of a geometric string structure in my approach (C)
coincides with the original definition given by Stolz and Teichner [7] in the sense
that both trivialize a certain Chern-Simons theory.

Another interesting link is to Redden’s thesis [5], in which he constructs an-
other 3-form Hg,A associated to a string structure, a connection A on P , and a
Riemannian metric g on M . One would like to have string connection associated
to g and A, such that the two 3-forms coincide, H = Hg,A. During the workshop,
Redden and I could at least show that such a string connection always exists.

Let me finally outline how my approach (C) to string structures relates to
approach (B), namely to lifts of the structure group of LP from LSpin(n) to its
basic central extension. For this purpose we look at the transgression of the Chern-
Simons 2-gerbe CSP to the free loop space LM . This is a bundle gerbe TCSP

over
LM that one can explicitly construct from the given bundle 2-gerbe. On the level
of characteristic classes, the construction covers the transgression homomorphism

H4(M,Z) → H3(LM,Z).

What has this bundle gerbe TCSP
over LM to do with string structures? We use

a result from [8] showing that the transgression of the basic bundle gerbe G defines
a principal U(1)-bundle over LM , which underlies the basic central extension

1 → U(1) → ̂LSpin(n) → LSpin(n) → 1.
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This fact makes the relation between CSP , which we have constructed using the
basic bundle gerbe G, and the string structures in the approach (B). More pre-
cisely, the bundle gerbe TCSP

is the lifting bundle gerbe associated to the problem
of lifting the structure group of LP along the above central extension. As a conse-
quence, string structures in the sense of trivializations of CSP transgress to string
structures in the sense of McLaughlin.
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String topology, field theories, and Fukaya categories

Ralph L. Cohen

(joint work with A. Blumberg and C. Teleman)

In this talk I will describe an ongoing project [6], in which we are attempting
to understand the implications of recent work on “open-closed” topological field
theories by Moore Segal [16], Costello [11], and Hopkins-Lurie [15], on the theory
of “string topology”, as introduced by Chas and Sullivan [7]. In particular we
will attempt to use the classification of field theories contained in these works, to
compare string topology to the symplectic field theory of the cotangent bundle.

In an open-closed topological field theory, one studies cobordisms beween com-
pact one-dimensional manifolds, whose boundary components are labeled by an
indexing set, D. The cobordisms are those of manifolds with boundary, that pre-
serve the labeling sets in a specific way. The set of labels D are referred to as
“D-branes”, and in the string theory literature these are boundary values of “open
strings”. An open-closed field theory is a monoidal functor from a category built
out of such manifolds and cobordisms, that takes values in a linear category, such
as vector spaces, chain complexes, or even the category of spectra. In this lecture
we will restrict our attention to chain complex valued theories.

One common aspect of the work on open-closed theories in [16], [11], [15] is the
attempt to understand the field theory F in terms of an associate (A∞) category
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CF . The objects of CF are the set ofD-branes, D. The space of morphisms between
λ0 and λ1 ∈ D is given by the value of the theory F on the object Iλ0,λ1

, defined
by the interval [0, 1] where the boundary component 0 is labeled by λ0, and 1 is
labeled by λ1. The composition rules in this (A∞) category are defined by the
values of F on certain “open-closed” cobordisms.

In this talk I reported on a project whose goal is to understand how the “String
Topology” theory of a manifold fits into this structure. This theory as originally
introduced by Chas and Sullivan [7], is an intersection theory in the space of loops,
or paths (with specified boundary conditions) of a closed, oriented n-dimensional
manifold M . It was shown by Godin [14] that there is a (positive boundary) TCFT
SM , which assigns to a circle the homology of the free loop space,

SM (S1) = H∗(LM ; k)

with field coefficients. This theory takes values in graded vector spaces (its a
homological theory) rather than chain complexes. In this theory the set of D-
branes D is the set of closed, oriented, connected submanifolds of M . The theory
assigns to a compact one-manifold c with boundary levels, the homology of the
mapping space,

SM (c) = H∗(Map(c, ∂;M)).

Here Map(c, ∂;M) refers to the space of maps c→M that take the labeled bound-
ary components to the submanifolds determined by the labeling. In particular, we
write PN0,N1

= Map(IN0,N1
, ∂;M) for the space of paths γ : [0, 1] → M such

that γ(0) ∈ N0, and γ(1) ∈ N1. An open-closed topological conformal field theory
in the sense of Costello is a chain complex valued theory, and it is conjectured
that the string topology theory has the structure of such a theory. The following
theorem, which we report on in this paper, gives evidence for this conjecture.

Theorem 1. (1) There is a category SM enriched over chain complexes over
a field k, whose objects are DM = connected, oriented submanifolds of M ,
and whose space of morphisms MorSM

(N1, N2) is chain homotopy equiva-
lent to the singular chains, C∗(PN1,N2

). Furthermore the compositions in
this category reflect the open-closed string topology operations on the level
of homology.

(2) The Hochschild homology of this category SM is the homology of the free
loop space,

HH∗(SM ) ∼= H∗(LM ; k).

Note. In this theorem we produce a rigid category, not just an A∞-category.
The morphisms in this category are a particular model of the space of morphisms
in the derived category of differential graded modules over the chains of the loop
space, C∗(ΩM). Namely, Let N →֒M be a closed, oriented submanifold, defining
an object of SM . Let x0 ∈ M be a fixed basepoint. Then the path space PN,x0

is a model for the homotopy fiber of the inclusion, N →֒ M . Its chains (or more
precisely the chains of an appropriate cofibrant replacement) can be viewed as a
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module over C∗(ΩM), and the morphisms in SM between submanifolds N1 and
N2, are defined to be

MorSM
(N1, N2) = RhomC∗(ΩM)(C∗(PN1,x0

), C∗(PN2,x0
)).

Composition in this category is given by composition of morphisms. The key
point in the above theorem is proving that this space of derived homomorphisms
is chain equivalent to C∗(PN1,N2

). This is done using a derived form of Poincare
duality, where one studies coefficient systems of modules over the C∗(ΩM), rather
than in the traditional setting of Poincare duality, where one studies modules over
the group ring k[π1(M)], which can be viewed as the ring of path components of
the DGA C∗(ΩM). This duality relies on the work of Dwyer-Greenlees-Iyengar
[12]. Another aspect of this theorem is that showing that under this Poincare
duality equivalence, composition of homomorphisms correspond to the Sullivan
string product in homology. This uses the work on “umkehr maps” in [10].

Given any fixed submanifold N , the space of self-morphisms, MorSM
(N,N) ≃

C∗(PN,N) is a differential graded algebra. Again, on the level of homology, this
algebra structure is the string topology product introduced by Sullivan [18]. In
this project we study the Hochschild cohomology,HH∗(C∗(PN,N), C∗(PN,N)), and
prove that when M is simply connected, then for a large class of submanifolds, N ,

HH∗(C∗(PN,N), C∗(PN,N)) ∼= H∗(LM)

as algebras. We show that the class of manifolds for which the above isomorphism
holds includes the case when the inclusion N →֒ M is null homotopic, (so for
example all strict submanifolds of a sphere), as well as when N →֒ M is the
inclusion of the fiber of a fibration p : M → B, or more generally, when N →֒
M can be factored as a sequence of embeddings, N = N0 →֒ N1 →֒ · · ·Ni →֒
Ni+1 · · ·Nk = M where each Ni ⊂ Ni+1 is the inclusion of a fiber of a fibration
pi+1 : Ni+1 → Bi+1. We also discuss the Morita theory of module categories over
these DGA’s.

The lecture ended with a discussion of the relationship of Fukaya categories of
the cotangent bundle, T ∗M with its canonical symplectic structure. This is the
A∞-category associated to the symplectic field theory of the cotangent bundle. It
has been clear for some time that there is a close relationship between this field
theory and the string topology field theory of the underlying manifold M . See for
example, [1], [19], [8]. The objects of the Fukaya category Fuk(T ∗M) are exact,
Lagrangian submanifolds L ⊂ T ∗M . The morphisms are the “Lagrangian intersec-
tion Floer cochains”, CF ∗(L0, L1). For a submanifold N →֒M , let ν∗(N) ⊂ T ∗M
be the conormal bundle. These normal bundles are Lagrangian. Moreover Ab-
bondandolo, A. Portaluri, and Schwarz [3] recently showed that the Floer coho-
mology, HF ∗(ν∗(N1), ν

∗(N2)) is isomorphic to the homology of the path space,
H∗(PN1,N2

). Using work of Fukaya-Seidel-Smith [13], Abouzaid [4], and Nadler
[17], it is reasonable to conjecture that certain full subcategories of the Fukaya cat-
egory Fuk(T ∗M) are isomorphic to corresponding full subcategories of the string
topology category SM . Furthermore, with the classification of field theories due
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to Hopkins-Lurie [15], it was discussed how it is reasonable to believe that such
isomorphisms of A∞-categories should extend to imply isomorphisms of the cor-
responding open-closed field theories: the symplectic field theory of T ∗(M) on the
one hand, and the string topology field theory SM on the other hand. Evidence for
this conjecture, and how it might be implied by the Hopkins-Lurie classification
scheme was also discussed.
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The Kervaire invariant problem

Mike Hopkins

(joint work with Mike Hill and Doug Ravenel)

The authors recently proved that the elements θj do not exist for j > 6. Here
θj is a hypothetical element of order 2 in the stable homotopy groups of spheres
in dimension 2j+1 − 2.
In 1960, Kervaire defined a Z/2-valued invariant for closed, smooth manifolds with
a stable framing. In geometric terms, the above result means that the only possible
dimensions for such manifolds with nontrivial Kervaire invariant are

2, 6, 14, 30, 62, 126.

The first 5 dimensions were previously known to be realized, the first 3 by Sj ×Sj
for j = 1, 3, 7. The status of θ6 (in dimension 126) remains open.
The theorem implies that the kernel and cokernel of the Kervaire-Milnor map
(from the group of homotopy spheres to the homotopy group of spheres)

Θn → πstn /im(J)

are completely known finite abelian groups. Here Θn is the group of exotic smooth
structures on Sn and the map associates to it the underlying framed manifold.
The image of J : KOn+1 → πstn realizes the different choices of framings on such
homotopy spheres.

Reporter: Martin Olbermann
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