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Introduction by the Organisers

The talks in this workshop gave a very broad perspective of recent developments
in algebraic number theory. The topics treated can be grouped together in several
dominating themes: Height pairings for cycles on Shimura varieties and derivatives
of L-functions, p-adic methods (p-adic Galois representations, relative Fontaine
theory and parallel transport for p-adic vector bundles), new results on Mordell-
Weil groups for elliptic curves, Iwasawa theory and L-values, higher dimensional
class field theory.

Three talks were related to the relation between height pairings of cohomologi-
cally trivial cycles and derivatives of L-functions. The talk by Bruinier reported on
joint work with Yang about the Arakelov height pairing of cycles on the Shimura
variety for the group O(n, 2), where the cycles are defined by Shimura varieties
for the group O(n− 1, 2). The talk by Zhang was devoted to his joint result with
Yuan and Zhang on the relation of a height pairing of Gross-Schoen cycles on 3-
fold products of Shimura curves to the derivative of the triple product L-function.
Results in a similar direction were also presented by Howard (joint work with
Yang). They show that the intersection numbers of Hirzebruch-Zagier cycles at
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finite places are encoded Fourier coefficients of the derivative of a non-holomorphic
Eisenstein series.

Another group of three talks concerned Fontaine’s theory of p-adic Galois rep-
resentations of local fields. This theory is extremely active, in particular in con-
nection with the p-adic Langlands program. Berger reported on the classifica-
tion of potentially trianguline representations in dimension 2, a notion introduced
by Colmez in connection with his work on the p-adic Langlands correspondence.
Carouso reported on two results about the ramification of semi-stable Galois rep-
resentations, treating the cases of tame and wild inertia actions. Fontaine’s result
concerned an elaboration of results by Kisin on finite group schemes.

Werner talked about joint work with Deninger on vector bundles on p-adic
curves and parallel transport. In contrast to earlier result one can now also treat
vector bundles which have strongly semi-stable reduction after pullback to a ram-
ified covering.

The talk by Andreatta was about a relative version of Fontaine’s theory and
the application to Faltings’ comparison result.

The generalization of the ∞-fern introduced by Gouvea, Mazur and Coleman
for modular curves to the Galois representations of type U(3) was presented by
Chenevier.

Kerz presented a new approach to higher dimensional class field theory pioniered
by Wiesend, which was refined and elaborated by him in joint work with Schmidt.

The talk by Geisser was somewhat related. He discussed Suslin homology and
cohomology and especially its p-part. He formulates a generalization of a conjec-
ture by Kato and explained the relation to higher dimensional class field theory.

Stix discussed non-abelian examples of the section conjecture. He showed that
certain curves admit no sections by showing that the Brauer-Manin obstruction is
the only obstruction to rational points.

A new approach to Ekedahl-Oort strata via level-1-truncations of loop groups
was presented by Viehmann. In fact all known relations between these strata can
be expressed in terms of group theoretical data of a loop group attached to the
corresponding Shimura variety of PEL-type.

The talk by Jannsen was of a more algebraic geometric nature and presented a
canonical resolution of singularities of 2-dimensional excellent schemes. This very
strong result is needed in a lot of arithmetic applications.

Two talks presented new results on ranks of Mordell-Weil groups of elliptic
curves. Dokchitser presented the result obtained with his brother about the parity
of ranks of elliptic curves. They can show, that if the Shavarevich-Tate group is
finite, then the parity of the Mordell-Weil rank is completely determined by the
sign of the root number. The other result, by Mazur and Rubin, is that over each
number field there are infinitely many elliptic curves of Mordell-Weil rank 0 and
if the dimension of the 2-torsion of the Shavarevich-Tate group is even, then there
are even infinitely many curves of rank 1.

There were two talks devoted to Iwasawa theory. Kakde talked about the results
in his thesis about congruences in non-commutative Iwasawa theory for totally real
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fields. Building on work of Kato, he was able to prove the congruences necessary
to show the Iwasawa main conjecture for some semi-direct products of abelian
groups.

Van Order explained her results on the two variable main conjecture for elliptic
curves over Q in the Z2

p-extension over an imaginary quadratic field. Here she
obtains some divisibility results, building on work by Kato and Rohrlich.

Goncharov explained his construction of mixed motives via his theory of ”Hodge
correlators”. The Hodge realization of these motives can be described in terms of
Green functions and their derivatives. For modular curves one gets in particular
the Beilinson-Kato elements.
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Abstracts

Canonical embedded and non-embedded resolution of singularities for
excellent two-dimensional schemes

Uwe Jannsen

(joint work with Vincent Cossart, Shuji Saito)

Mainly by work of Hironaka [7], there is a very strong form of resolution of sin-
gularities for schemes of characteristic zero. But there are only very few results
on birational resolution for varieties over fields of positive characteristic, not to
mention schemes of mixed characteristic. The talk presented the following results
obtained in [4], which are valid for any excellent scheme X of dimension 2.

Theorem 1 (Canonical controlled resolution) There exists a canonical finite
composition of morphisms

π : X ′ = Xn → . . .→ X1 → X0 = X

such that X ′ is regular and, for each i, Xi+1 → Xi is the blow-up of Xi in a
permissible center Di ⊂ Xi which is contained in (Xi)sing , the singular locus of
Xi. In particular, π is an isomorphism over Xreg = X −Xsing . This sequence is
functorial in the sense that it is compatible with automorphisms of X (every such
automorphism extends to the sequence in a unique way) and with Zariski or étale
localizations U → X (the pull-back to to U is the canonical resolution sequence
for U after suppressing the morphisms which become isomorphisms over U).

Following Hironaka, a subscheme D ⊂ X is called permissible, if D is regular
and X is normally flat along D, i.e., all sheaves Jn/Jn+1 are locally free OX/J-
modules, where J ⊂ OX is the ideal sheaf of D.

Theorem 2 (Canonical embedded resolution) Let i : X →֒ Z be a closed im-
mersion, with Z regular and excellent. There is a canonical commutative diagram

X ′ i′−−−−→ Z ′

π

y
yπZ

X
i−−−−→ Z

where X ′ and Z ′ are regular, i′ is a closed immersion, and π and πZ are proper
and surjective morphisms inducing isomorphisms over Z −Xsing. The morphisms
π and πZ are compatible with automorphisms of (X,Z) and (Zariski or étale)
localizations in Z.

In fact, starting from Theorem 1 one gets a sequence Z ′ = Zn → . . . Z1 →
Z0 = Z by blowing up “in the same centers” and identifying Xi+1 with the strict
transform of Xi in Zi+1. Then all Zi are regular since the blow-up of a regular
scheme in a regular center is again regular. We obtain several refinements.
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Theorem 3 (Canonical embedded resolution with boundary) Let i : X →֒ Z
be a closed immersion into a regular scheme Z, and let B ⊂ Z be a simple normal
crossings divisor such that no irreducible component of X is contained in B. Then
there is a canonical commutative diagram

X ′ i′−−−−→ Z ′ ⊃ B′

πX

y πZ

y

X
i−−−−→ Z ⊃ B

where i′ is a closed immersion of regular schemes, B′ = π−1
Z (B) ∪ E (with E

the exceptional locus of πZ) is a strict normal crossings divisor on Z ′, and X ′

intersects B′ transversally on Z ′. Moreover, πX and πZ are projective, surjective,
isomorphisms outside Xsing ∪ (X ∩ B), and compatible with automorphisms of
(Z,X,B) and with Zariski or étale localizations in Z.

In the paper [9], this theorem is applied to obtain finiteness results for certain
motivic cohomology groups of varieties over finite fields. Another application is:

Corollary 1 Let Z be a regular excellent scheme (of any dimension), and let
X ⊂ Z be a reduced closed subscheme of dimension at most two. Then there
exists a projective surjective morphism π : Z ′ −→ Z which is an isomorphism
over Z −X , such that π−1(X), with the reduced subscheme structure, is a strict
normal crossings divisor on Z ′.

In Theorem 3, π and πZ are obtained by successive blow-ups in permissible
centersD which are transversal with the respective normal crossing divisors, which
in turn are obtained as the full transforms (including the exceptional divisors) of
the previous normal crossing divisors. We also obtain a more general version, in
which B can contain irreducible components of X . In addition, we get a variant for
non-reduced schemes X , in which case (X ′)red is regular and normal crossing with
B and X ′ is normally flat along (X ′)red. Moreover, we obtain a variant, in which
we only consider strict transforms for the normal crossings divisor, i.e., where we
forget about the exceptional divisors. Theorem 1, i.e., the case where we do not
assume any embedding for X , is also proved in a more general version, which
allows a non-reduced scheme X as well as a so-called boundary on X , a notion
which is newly introduced by us. Again this theorem comes in two versions, one
with complete transforms and one with strict transforms. Our approach implies
that these last results imply both Theorem 1 and Theorem 3. In particular,
the canonical resolution sequence of Theorem 3 for B = ∅ and strict transforms
coincides with the intrinsic sequence for X from Theorem 1.

To our knowledge, none of the three theorems is known, at least not in the
stated generality. Even for dim(X) = 1 we do not know a reference for these
results, although they may be well-known. Zariski [12] proved Theorem 1 (without
discussing canonicity or functoriality) for irreducible surfaces over algebraically
closed fields of characteristic zero, and in [13] proved Corollary 1 for surfaces
over fields of characteristic zero which are embedded in a non-singular threefold.
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Abhyankar [2] extended the latter result to all algebraically closed fields (see also [5]
for a shorter version). For schemes of characteristic zero and arbitrary dimension,
Theorems 1, 2 and 3 were proved by Hironaka [7], but constructivity, canonicity or
functoriality were only addressed in the later literature, see, e.g., [11], [3], and [6].
As for weaker versions of resolution, Abhyankar [1] showed how to resolve a surface
over an algebraically closed field by so-called local uniformization, and Lipman [10]
obtained resolution of singularities for arbitrary excellent two-dimensional schemes
X , by a finite sequence Xn → . . . X1 → X alternating normalization, and blow-
ups in finitely many isolated singular points. But the processes of uniformization
or normalization are not obtained by permissible blow-ups, and it is not known
how to extend them to an ambient regular scheme Z like in Theorems 2 and 3, so
these weaker results were not sufficient for the mentioned applications in [9].

Our approach is based on a method sketched by Hironaka (for hypersurfaces) in
[8]. We use Hilbert-Samuel functions as invariants which measure the singularities
and construct a sequence of blow-ups for which the invariants are non-increasing,
and finally decreasing, so that in the end one reaches the regular situation. One
blows up ‘the worst locus’, i.e., the stratum where the invariants are maximal,
after possibly desingularising this stratum. The main point is to show that the
invariants do finally decrease. In characteristic zero this is done by the method
of maximal contact, but we show that maximal contact does not exist in positive
characteristic, even for surfaces. Instead we use Hironaka’s polyhedra.
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Parity of the rank of an elliptic curve

Vladimir Dokchitser

(joint work with Tim Dokchitser)

By the Mordell-Weil theorem, the group ofK-rational points E(K) of an elliptic
curve E over a number field K is finitely generated. Its Z-rank is the rank of the
elliptic curve, rkE/K . I will discuss the parity of this rank. There is an obvious
remark to make: if the rank is odd, then it is non-zero, and E(K) must be infinite.

Root numbers. It should be directly pointed out that virtually nothing can be
said concerning the parity of the Mordell-Weil rank without appealing to some
conjectures. What will be discussed here is the expected behaviour of this parity.

Recall that the conjecture of Birch and Swinnerton–Dyer predicts that the rank
of E should agree with its analytic rank, that is the order of vanishing at s = 1
of the L-function L(E/K, s). Now L(E/K, s) is expected to satisfy a functional
equation of the form L(E/K, s) ↔ ±L(E/K, 2−s). Note that the sign determines
the parity of the order of vanishing of the L-function at the central point s = 1.
Part of the standard conjectural framework is a precise construction of the sign —
it is given by the global root number w(E/K). Thus we expect the parity formula

(−1)rkE/K = w(E/K) .

By definition, the global root number is defined as the product of local root
numbers w(E/Kv) = ±1:

w(E/K) =
∏

v
w(E/Kv) ,

the product taken over all the places of K. The definition of the local root is rather
elaborate and is also non-constructive (it is the same as the corresponding local
epsilon-factor, except that it is scaled down to have absolute value 1; see [5, 6]).
However, the crucial point is that it is a purely local invariant. In other words,
the parity of the rank should be governed by purely local data.

Classification. To make the root numbers more concrete, here is a classification
covering all cases except when E/Kv has additive reduction:

• If E/Kv has good reduction, then w(E/Kv) = +1.
• If Kv = R or Kv = C, then w(E/Kv) = −1.
• If E/Kv has split multiplicative reduction, then w(E/Kv) = −1.
• If E/Kv has non-split multiplicative reduction, then w(E/Kv) = +1.

Most of the additive reduction cases can be found in [5] Thm 2. See also [3] Thms
1.3, 1.12 for a general, but slightly more cumbersome formula.

Examples. As explained above, the standard conjectures on L-functions and the
Birch–Swinnerton-Dyer conjecture imply that the rank of E/K being even or odd
is determined by whether the total product

∏
w(E/Kv) is +1 or −1. This very

specific type of behaviour has strong arithmetic implications. Here are a few
examples, whose proofs can be safely left as exercises. For a further discussion of
examples 3, 4 and 5, see [4] and [2].
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1. If E/Q is an elliptic curve and K an imaginary quadratic field in which all
primes of bad reduction of E split (Heegner hypothesis), then w(E/K) = −1.

2. Every elliptic curve over Q should have even rank over Q(i,
√

17). (The field
has been chosen so that all rational primes split in it.)

3. The elliptic curve
y2 + y = x3 + x2 + x

has rank 0 over Q. It has split multiplicative reduction at 19 and good reduction at
all other primes. Assuming the Birch–Swinnerton-Dyer conjecture, it must acquire
a point of infinite order in the field Q( 3

√
m) for every cube-free m 6= 0, 1, as its

rank over such a field must be odd.

4. The elliptic curve (of discriminant −114)

y2 = x3 + 5
4x

2 − 2x− 7

has everywhere good reduction over the field K = Q( 12
√
−11). Its global root

number is +1 over every finite extension of K, so its rank should be even over
any number field containing 12

√
−11. This elliptic curve does not have complex

multiplication, which could in principle have accounted for this behaviour of the
rank. Is it nevertheless possible to find some extra structure (“fake CM”) on E
that forces the rank to be always even?

5. The elliptic curve in the previous example already acquires everywhere good
reduction over F = Q( 6

√
−11). As this field has an odd number of infinite places,

the root number of E/F is −1. However it becomes +1 over every quadratic
extension of F . It follows that for every D ∈ F×/F×2 the quadratic twist of
E/F by D should have positive (odd) rank. Thus Goldfeld’s “ 1

2 average rank”
conjecture for elliptic curves over Q fails over general number fields.

Arithmetic. The following is a recent result of T. Dokchitser and myself on the
conjectural parity formula. See e.g. [1] §1 for a list of some other known results.

Theorem ([1] Thm 1.3, [3] Thm 1.2). Let E be an elliptic curve over a number
field K, and set F =K(E[2]). If the Tate-Shafarevich group X(E/F ) is finite, then

(−1)rkE/K = w(E/K) .

Here is a sketch of the proof. I will derive a formula for the parity of the rank
in terms of some local invariants, without taking the trouble to compare them to
the local root numbers. At least morally, the latter is a purely local problem.

The crucial ingredient is Cassels’ theorem, that the quantity

RegE/K · |X(E/K)| · CE/K√
∆K · |E(K)tors|2

is the same for isogenous curves. Here RegE/K is the regulator, ∆K is the dis-
criminant of K, and CE/K is the product of the “local fudge factors” and periods
of the curve that enters the Birch–Swinnerton-Dyer conjecture. (So for K = Q,
CE/K = Ω+

∏
p cp, the real period multiplied by all the local Tamagawa numbers.)
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Case 1: E admits a K-rational 2-isogeny φ : E → E′. Invoke Cassels’ theorem,
and look at the resulting expression up to rational squares. This eliminates the
(difficult) contribution from X, and the resulting formula reads

RegE/K

RegE′/K
=

CE′/K

CE/K
· � .

Using the fact that φ and its dual are adjoints with respect to the height pairing,
one easily checks that the quotient of regulators is 2rkE/K · �. It follows that

rkE/K ≡ ord2
CE′/K

CE/K
mod 2 ,

a sum of local invariants.
Case 2: Gal(F/K) ≃ C3. Then rkE/K ≡ rkE/F mod 2; apply Case 1 for E/F .
Case 3: Gal(F/K) ≃ S3. One checks that the two abelian varieties

E × E × ResF/K and ResL/KE × ResL/KE × ResM/KE

are isogenous; here L and M = K(
√

∆E) are a cubic and a quadratic extension of
K in F respectively, and Res denotes restriction of scalars. Invoking the analogue
of Cassels’ theorem for abelian varieties (Tate–Milne), looking modulo squares and
making a regulator-computation leads to

rkE/K + rkE/L + rkE/F ≡ ord3
CE/F C2

E/K

CE/MC2
E/L

mod 2 ,

again a sum of local invariants. Case 1 expresses both rkE/L and rkE/F in terms
of local data, so we deduce such an expression for rkE/K as well.

Remark. The proof gives the following explicit formula for the parity of the rank,
assuming |X(E/F )| <∞. Write L/K for the smallest extension where E acquires
a 2-torsion point, and E′ for the corresponding isogenous curve. Then

rkE/K ≡
{

ord2

CE/L
C

E′/L
if [F :K]<6

ord2

CE/LCE/F
C

E′/L
C

E′/F
+ord3

CE/F C2
E/K

C
E/K(

√
∆E)

C2
E/L

if [F :K]=6

The terms on the right-hand-side can be computed in practice, see [3] footnote 1.
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Hodge correlators and generalized Rankin-Selberg integrals

Alexander Goncharov

1. A motivating example

Beilinson’s conjectures on the special values of L-functions imply that special
values of L-function of a motive are periods.

Periods are complex numbers which can be written as
∫

∆B

ΩA

where A,B are divisirs over Q in an n-dimensional smooth projective variety X
over Q, ΩA ∈ Ωn

log(X −A) is a form with logarithmic singularities along a divisor

A, and ∆B is an n-chain with boundary at B(C), where B is a divisir in X .

Example. Let f be a weight 2 modular Hecke eigenform. Then

L(f, 2) =

∫ ∞

0

f(iy)ydy

The only way we know how to prove that this is a period is this. Let Y (N) be
the level N modular curve for sufficiently large N , so that f(z)dz is a 1-form on
Y (N)(C). Let a be a degree zero divisor on Y − Y . By Manin-Drinfeld Theorem,
there exists a function ga ∈ O(Y )∗⊗Q such that div(ga) = (a). Then we have the
following reamrkable facts:

A) The Rankin-Selberg method plus the work of Bloch and Beilinson tells that
∫

Y (C)

log |ga|dlog|gb| ∧ f(z)dz ∼ L(f, 2)

where ∼ means equality up to certain explicitly known periods. (In particular,
this implies that it is a period - we skip details here).

B) The above integral is the regulator of an element

{ga, gb} ∈ K2(Y )

C) Finally, the elements {ga, gb}, suitably adjusted, form the Beilinson-Kato
Euler system.

This leads to a natural
Question: Is there a general framework for this?

The Hodge correlators provide a general way to present periods of the motivic
rational homotopy type of smooth varieties, togerther with their motivic avatars,
Motivic correlators.

In the case when the variety is a modular curve, the simplest Hodge correlators
deliver the Rankin-Selberg integrals, and their motivic avatars are the Beilinson’s
elements.
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2. Hodge correlators

Let A be a graded algebra. Denote by (CV , δ) the cyclic Lie algebra complex.
Namely,

CA := ⊕∞
m=0

(
⊗mA[1]

)
Z/mZ

The differential δ on CA is provided by products of neighbors in a cyclic word:

δ(α0 ⊗ . . .⊗ αm)C = Cyclem+1(−1)|αm|(α0 ⊗ . . .⊗ αm−2 ⊗ αm−1 ∪ αm)C .

Here Cyclem+1 means the sum of cyclic shifts, α ∈ H∗ is the shifted by one element
α and |α| is its degree.

Now let X be a compact Kahler manifold of dimension n. Let us consider the
following graded algebra without unit:

H∗ :=
H∗(X.C)

(H0(X.C) ⊕H2n(X.C)

Set

H := H2n(X)[−2].

Theorem 2.1. a) There is a canonical linear map, called the Hodge correlator
map:

(1) Cor∗H,a : H0
δ

(
CH∗ ⊗H

)
−→ C.

b) It describes the real mixed Hodge structure on the rational homotopy type of X.

In particular, let X be now a smooth projective variety over Q. Then H∗ =
H∗

DR ⊗ C, where H∗
DR is the reduced de Rham cohomology. Thanks to the part

b), the image of the Hodge correlator map

Cor∗H,a : H0
δ

(
CH∗DR

⊗H
)
−→ C

lies in the subring of periods.
The Hodge correlator map is defined as the correlator map assigned to a certain

Feynman integral related to X .
It can be generalized to the case when X is open, e.g. an open curve. In the

latter case we take

H∗ := grWH1(X)

In the case when the curve is the open modular curve, the Hodge correlator of
the length three cyclic word

(2) C(δa ⊗ δb ⊗ [f(z)dz])

is nothing esle as the Rankin-Selberg integral discussed above. Here δa is the class
in grWH1(X) assigned to the degree zero divisor a on X −X .



Algebraische Zahlentheorie 1681

3. Motivic correlators

Denote by ColieMot the hypothetical Motivic Lie coalgebra of the categopry of
all mixed motives over Q. It is a Lie coalgebra in the category of all pure motives
over Q. Then, assuming the motivic formalism, there is a canonical map

Cor∗Mot : H0
δ

(
CH∗Mot

⊗HMot

)
−→ ColieMot

Here H∗
Mot is a pure motive whose Betti realization is H∗. Its composition with

the natural period map

ColieMot −→ C

is the Hodge correlator map.
In particular, the element (2) maps under the motivic correlator map to the

Beilinson’s element {ga, gb} projected on the isotipical component corresponding
the Hecke eigenform f(z)dz. For simplicity we assume it is defined over Q.

The key point is that the map Cor∗Mot is a homomorphism of Lie coalgebras.
The details are available in [G1], [G2].

All known to me explicitly constructed elements in the motivic cohomology
related to non-critial values of L-functions turnes out to be Motivic correlators,
while the Hodge correlator delivers the corresponding Rankin-Selberg integral.
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Faltings heights of CM cycles and derivatives of L-functions

Jan Hendrik Bruinier

(joint work with Tonghai Yang)

Let E be an elliptic curve over Q. Assume that its L-function L(E, s) has an
odd functional equation so that the central critical value L(E, 1) vanishes. In this
case the Birch and Swinnerton-Dyer conjecture predicts the existence of a rational
point of infinite order on E. It is natural to ask if is possible to construct such a
point explicitly. The work of Gross and Zagier [11] provides such a construction
when L′(E, 1) 6= 0.

Let N be the conductor of E, and let X0(N) be the moduli space of cyclic iso-
genies of degree N of generalized elliptic curves. Let K be an imaginary quadratic
field of discriminant D such that D is a square modulo 4N . Gross and Zagier
consider a divisor on X0(N) given by elliptic curves with complex multiplication
by the maximal order of K. By the theory of complex multiplication, this divi-
sor is defined over K. Taking the trace and using a modular parameterization
X0(N) → E, one obtains a Q-rational point yE(D) on E . The Gross-Zagier
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formula states that the canonical height of yE(D) is given by the derivative of the
L-function of E over K at s = 1, more precisely

〈yE(D), yE(D)〉NT = C
√

|D|L′(E, 1)L(E,χD, 1).

Here C is an explicit non-zero constant which is independent ofK, and L(E,χD, s)
denotes the quadratic twist of L(E, s) by the quadratic Dirichlet character χD

corresponding to K/Q. It is always possible to choose K such that L(E,χD, 1) is
non-vanishing. So, in this case, yE(D) has infinite order if and only if L′(E, 1) 6= 0.

The work of Gross and Zagier triggered a lot of further research on height pair-
ings of algebraic cycles on Shimura varieties, see e.g. [9], [19], [20], [12], [15], [16].
In most of this work, the connection between a height pairing and the derivative
of an automorphic L-function comes up in a rather indirect way.

In our joint work with T. Yang [7], we consider a different approach to obtain
identities between certain height pairings on Shimura varieties of orthogonal type
and derivatives of automorphic L-functions. It is based on the Borcherds lift [1]
and its generalization in [4], [5]. We propose a conjecture for the Faltings height
pairing of arithmetic special divisors and CM cycles. We compute the archimedean
contribution to the height pairing. Using this result we prove the conjecture in
certain low dimensional cases.

Let (V,Q) be a quadratic space over Q of signature (n, 2), and letH = GSpin(V ).
We realize the hermitian symmetric space corresponding to H(R) as the Grass-
mannian D of oriented negative definite two-dimensional subspaces of V (R). For
a compact open subgroup K ⊂ H(Af ) we consider the Shimura variety

XK = H(Q)\
(
D ×H(Af )/K

)
.

It is a quasi-projective variety of dimension n, which is defined over Q, see [13].
Note that for small n there are exceptional isomorphisms relating H to other
classical groups. For instance GSpin(1, 2) ∼= GL2(R), so in the n = 1 case we are
essentially looking at modular curves. Hilbert modular surfaces can be viewed as
a particular n = 2 case and Siegel modular threefolds as a n = 3 case.

Let L ⊂ V be an even lattice, and write L′ for the dual of L. The discriminant

group L′/L is finite. Throughout we assume thatK ⊂ H(Af ) stabilizes L̂ = L⊗ZẐ
and that K acts trivially on L′/L. This is no loss of generality, since we can always
fulfil this assumption by choosing K sufficiently small.

It is an important feature of such Shimura varieties that they come with natural
families of algebraic cycles in all codimensions, see e.g. [13]. These special cycles
arise from embeddings of rational quadratic subspaces V ′ ⊂ V of signature (n′, 2)
with 0 ≤ n′ ≤ n. It is an interesting problem to consider height pairings of
arithmetic versions of special cycles in complementary codimension, see [15]. In
the present paper we study this problem for special divisors (where n′ = n − 1)
and special 0-cycles (where n′ = 0).

Let U ⊂ V be a negative definite two-dimensional rational subspace of V . The
Shimura variety corresponding to U is 0 dimensional and has a natural map toXK .
It defines a CM cycle Z(U) on XK , cf. [17]. Moreover, for any coset µ ∈ L′/L and
any positive rational number m with Q(µ) ≡ m mod 1, we have a special divisor
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Z(m,µ). It is given by Shimura subvarieties corresponding to rational quadratic
subspaces x⊥ for x ∈ L+ µ with Q(x) = m.

An arithmetic divisor on XK is a pair (x, gx) consisting of a divisor x on XK

and a Green function gx of logarithmic type for x. For the divisors Z(m,µ) we
obtain such Green functions by means of the regularized theta lift of harmonic
weak Maass forms. We consider the the subspace SL of the space of Schwartz
functions on V (Af ) generated by the characteristic functions φµ = char(µ + L̂)
of the cosets µ ∈ L′/L. The metaplectic extension Γ′ = Mp2(Z) of SL2(Z) has a
Weil representation ρL on SL, see e.g. [1].

Let k ∈ 1
2Z. We write M !

k,ρL
for the space of SL-valued weakly holomorphic

modular forms of weight k for Γ′ with representation ρL. Recall that weakly
holomorphic modular forms are those meromorphic modular forms whose poles
are supported at the cusps. The space of weakly holomorphic modular forms is
contained in the space Hk,ρL of harmonic weak Maass forms of weight k for Γ′

with representation ρL. Recall that harmonic weak Maass forms are real analytic
modular forms which are annihilated by the weight k Laplacian and which may
have poles at the cusps. An element f ∈ Hk,ρL has a Fourier expansion of the
form

f(τ) =
∑

µ∈L′/L

∑

n∈Q
n≫−∞

c+(n, µ)qnφµ +
∑

µ∈L′/L

∑

n∈Q
n<0

c−(n, µ)Γ(1 − k, 4π|n|v)qnφµ,

where Γ(a, t) denotes the incomplete Gamma function, and v is the imaginary
part of τ ∈ H. Note that there are only finitely many n < 0 for which c+(n, µ) is
non-zero. There is an antilinear differential operator ξ : Hk,ρL → S2−k,ρ̄L to the
space of cusp forms of weight 2 − k with dual representation. It is surjective and
its kernel is equal to M !

k,ρL
.

For τ ∈ H, z ∈ D and h ∈ H(Af ), let θL(τ, z, h) be the Siegel theta function
associated to the lattice L. For a harmonic weak Maass form f ∈ H1−n/2,ρ̄L

of
weight 1 − n/2, we consider the regularized theta integral

Φ(z, h, f) =

∫ reg

F
〈f(τ), θL(τ, z, h)〉 dµ(τ),

see [4], [5]. It turns out that Φ(z, h, f) is a logarithmic Green function for the
divisor

Z(f) =
∑

µ∈L′/L

∑

m>0

c+(−m,µ)Z(m,µ)

in the sense of Arakelov geometry (see [18]). The pair Ẑ(f) = (Z(f),Φ(·, f))
defines an arithmetic divisor on XK .

We aim to compute the Faltings height pairing of the arithmetic special divisor
Ẑ(f) and the CM cycle Z(U). The pairing is a sum of an archimedean and a
non-archimedean contribution. We begin by computing the archimedean part. It
is given by the evaluation 1

2Φ(Z(U), f) of the Green function of Ẑ(f) at the cycle
Z(U).
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By means of the splitting V = U⊥ ⊕ U , we obtain definite lattices N = L ∩ U
and P = L ∩ U⊥. Let

θP (τ) =
∑

λ∈P ′

qQ(λ)φλ =
∑

µ∈P ′/P

∑

m≥0

r(m,µ)qmφµ

be the theta series in Mn/2,ρP
associated to the positive definite lattice P . The

Fourier coefficients r(m,µ) are the representation numbers of m by the coset µ+P .
For to the negative definite 2-dimensional lattice N there is a similar theta series.
The corresponding genus theta series is related to an incoherent Eisenstein series
EN (τ, s; 1) of weight 1 via the Siegel Weil formula. Its central derivative EN (τ) =
E′

N (τ, 0; 1) is a harmonic weak Maass form in H1,ρN .
For a cusp form g ∈ S1+n/2,ρL

with Fourier expansion

g =
∑

µ

∑

m>0

b(m,µ)qmφµ

we consider the Rankin type L-function

L(g, U, s) = (4π)−(s+n)/2Γ
(

s+n
2

) ∑

m>0

∑

µ∈P ′/P

r(m,µ)b(m,µ)m−(s+n)/2.

Under mild assumptions on U , the completed L-function L∗(g, U, s) :=
Λ(χD, s+1)L(g, U, s) satisfies the functional equation L∗(g, U, s) = −L∗(g, U,−s).
Consequently, it vanishes at s = 0, the center of symmetry, and it is of interest to
describe the derivative L′(g, U, 0).

Theorem 0.1. Let f ∈ H1−n/2,ρ̄L
, and assume that the constant term c+(0, 0) of

f vanishes. We have

Φ(Z(U), f) = deg(Z(U)) ·
(
CT

(
〈f+, θP ⊗ E+

N 〉
)

+ L′(ξ(f), U, 0)
)
.

Here f+ and E+
N denote the holomorphic parts of the harmonic weak Maass forms

f and EN . Moreover, CT(S) denotes the constant term of a q-series S.

The first summand on the right hand side is an explicit (rational) linear com-
bination of the coefficients κ(m,µ) of E+

N . Each of these coefficients is a rational
linear combination of log(p) for primes p, which can be computed explicitly.

The theorem can be proved by combining the approach of Kudla and Schofer
to evaluate regularized theta integrals on special cycles (see [14], [17]) with results
on harmonic weak Maass forms and automorphic Green functions obtained in [5].

When f is actually weakly holomorphic then ξ(f) = 0. So the second sum-
mand on the right hand side of the formula vanishes. Moreover, Φ(z, h, f) =
−2 log |Ψ(z, h, f)|2 where Ψ(z, h, f) is a rational function on XK , namely the
Borcherds lift of f , see [1]. Hence Theorem 0.1 says that

log |Ψ(Z(U), f)| = −deg(Z(U))

4
CT

(
〈f+, θP ⊗ E+

N 〉
)
.

One obtains an explicit formula for the prime factorization of Ψ(Z(U), f), see [17].
It generalizes the formula of Gross and Zagier on singular moduli, that is, CM
values of the j-function.
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We now sketch a conjectural formula for the Faltings height pairing of arithmetic
special divisors and CM cycles. Assume that there is a regular scheme XK →
Spec Z, projective and flat over Z, whose associated complex variety is a smooth
compactification of XK . Let Z(f) and Z(U) be suitable extensions to XK of the
cycles Z(f) and Z(U), respectively. Such extensions can be found in many cases
(when n is small) using a moduli interpretation of XK , see e.g. [15], [16], or by

taking flat closures. Then the pair Ẑ(f) = (Z(f),Φ(·, f)) defines an arithmetic
divisor.

Conjecture 0.2. Let f ∈ H1−n/2,ρ̄L
, and assume that the constant term c+(0, 0)

of f vanishes. Then

〈Ẑ(f),Z(U)〉Fal =
deg(Z(U))

2
L′(ξ(f), U, 0).

In [7] we proved this conjecture in many cases of small dimension for n = 0, 1, 2.
In particular, for n = 1 we obtained a new proof of the Gross-Zagier formula. For
this we let V be the rational quadratic space of signature (1, 2) given by the
trace zero 2 × 2 matrices with the quadratic form Q(x) = N det(x), where N is
a fixed positive integer. Then H ∼= GL2. We chose the lattice L ⊂ V and the
compact open subgroup K ⊂ H(Af ) such that XK is isomorphic to the modular
curve Γ0(N)\H. The special divisors Z(m,µ) and the CM cycles Z(U) are both
supported on CM points and therefore closely related.

The space S3/2,ρL
can be identified with the space of Jacobi cusp forms of

weight 2 and index N . Recall that there is a Shimura lifting from this space to
cusp forms of weight 2 for Γ0(N), see [10]. Let G be a normalized newform of
weight 2 for Γ0(N) whose Hecke L-function L(G, s) satisfies an odd functional
equation. There exists a newform g ∈ S3/2,ρL

corresponding to G under the
Shimura correspondence. It turns out that the L-function L(g, U, s) is proportional
to L(G, s+ 1).

We may choose f ∈ H1/2,ρ̄L
with vanishing constant term such that ξ(f) =

‖g‖−2g and such that the principal part of f has coefficients in the number field
generated by the eigenvalues of G. Then Z(f) defines an explicit point in the
Jacobian of X0(N), which lies in the G isotypical component. In this case Con-
jecture 0.2 essentially reduces to the following Gross-Zagier type formula for the
Neron-Tate height of Z(f).

Theorem 0.3. The Neron-Tate height of Z(f) is given by

〈Z(f), Z(f)〉NT =
2
√
N

π‖g‖2
L′(G, 1).

The proof of this result which we give in [7] is quite different from the original
proof of Gross and Zagier and uses minimal information on finite intersections
between special divisors. Instead, we derive it from Theorem 0.1, modularity of
the generating series of special divisors (Borcherds’ approach to the Gross-Kohnen-
Zagier theorem [2], [6]), and multiplicity one for the subspace of newforms in
S3/2,ρL

. Another crucial ingredient is the non-vanishing result for coefficients of
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weight 2 Jacobi cusp forms by Bump, Friedberg, and Hoffstein [8]. Employing in
addition the Waldspurger type formula for the coefficients of g [10], we also obtain
the Gross-Zagier formula as stated at the beginning.
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Twists of elliptic curves and Hilbert’s Tenth Problem

Karl Rubin

(joint work with Barry Mazur)

This lecture is a report on investigations of the 2-Selmer rank in families of qua-
dratic twists of elliptic curves over arbitrary number fields. For example, we
show that under certain hypotheses an elliptic curve has many twists with trivial
Mordell-Weil group, and (assuming the Shafarevich-Tate conjecture) many others
with infinite cyclic Mordell-Weil group. Using work of Poonen and Shlapentokh,
it follows from our results that if the Shafarevich-Tate conjecture holds, then
Hilbert’s Tenth Problem has a negative answer over the ring of integers of every
number field. For details, see [5].

1. Results about ranks of twists

Let K be a number field. We will make use of the following weak version of the
Shafarevich-Tate conjecture. Let X(E/K) denote the Shafarevich-Tate group.

Conjecture XT2(K). For every elliptic curve E/K, dimF2 X(E/K)[2] is even.

Theorem 1.

(1) There are infinitely many elliptic curves E/K with E(K) = 0.
(2) If Conjecture XT2(K) holds, then there are infinitely many elliptic curves

E/K with E(K) ∼= Z.

Fix an elliptic curve E defined over K. Let Sel2(E) be the 2-Selmer group of
E/K, and

d2(E) := dimF2 Sel2(E).

If F/K is a quadratic extension, let EF denote the quadratic twist of E by F/K.
Then Theorem 1 is a consequence of the following theorem.

Theorem 2. Suppose E(K)[2] = 0, and suppose further that either K has a
real embedding, or that E has multiplicative reduction at some prime of K. If
0 ≤ r ≤ max{d2(E), 1}, then E has infinitely many twists with d2(E

F ) = r.

When K = Q, Chang [1, Theorem 1.1] proved a weaker version of Theorem
2, using similar methods to ours. Also when K = Q, Ono and Skinner ([3, §1],
[2, Corollary 3]) proved (by very different methods from ours) that, under the
hypotheses of Theorem 2, E has infinitely many twists with rank(E(Q)) = 0.

We also have the following, with stronger hypotheses and a stronger conclusion.

Theorem 3. Suppose Gal(K(E[2])/K) ∼= S3. Let ∆E be the discriminant of
some model of E, and suppose further that K has a place v satisfying one of the
following conditions:

• v is real and (∆E)v < 0, or
• v ∤ 2∞, E has multiplicative reduction at v, and ordv(∆E) is odd.

Then for every r ≥ 0, E has infinitely many twists with d2(E
F ) = r.



1688 Oberwolfach Report 30

In both Theorems 2 and 3, we can replace “infinitely many” in the conclusion
with a quantitative statement, namely that for X ∈ R+,

|{quadratic F/K : d2(E
F ) = r and NK/Qf(F/K) < X}| ≫ X/(logX)2/3

where f(F/K) denotes the finite part of the conductor of F/K.

2. Application to Hilbert’s Tenth Problem

Theorem 4. Suppose L/K is a cyclic extension of prime degree of number fields.

(1) There is an elliptic curve E over K with rank(E(L)) = rank(E(K)).
(2) If Conjecture XT2(K) is true, then there is an elliptic curve E over K

with rank(E(L)) = rank(E(K)) = 1.

Theorem 4 has applications to Hilbert’s Tenth Problem, thanks to the following
result of Poonen. If K is a number field, OK will denote its ring of integers.

Theorem 5 (Poonen, Theorem 1 of [4]). Suppose K ⊂ L are number fields,
and E/K is an elliptic curve with rank(E(K)) = rank(E(L)) = 1. Then OK is
diophantine over OL.

Using ideas of Poonen and Shlapentokh, Theorems 4 and 5 imply the following.

Theorem 6. Suppose K is a number field, and L is the Galois closure of K/Q.
If Conjecture XT2(L) holds, then Hilbert’s Tenth Problem has a negative answer
over OK .

In particular if Conjecture XT2(K) holds for every number field K, then
Hilbert’s Tenth Problem has a negative answer over the ring of integers of every
number field.

3. Ideas of the proofs

Suppose E is an elliptic curve over K. For every place v of K, let H(E/Kv)
denote the image of the Kummer map

E(Kv)/2E(Kv) →֒ H1(Kv, E[2]).

The 2-Selmer group Sel2(E) ⊂ H1(K,E[2]) is the (finite) F2-vector space defined
by the exactness of the sequence

0 −→ Sel2(E) −→ H1(K,E[2]) −→ ⊕
v
H1(Kv, E[2])/H(E/Kv).

If EF is a quadratic twist of E, then there is a natural identification of Galois
modules E[2] = EF [2]. This allows us to view Sel2(E), Sel2(E

F ) ⊂ H1(K,E[2]),
defined by different sets of local subgroups H(E/Kv), H(EF /Kv) ⊂ H1(Kv, E[2]).
By choosing F carefully, and studying how the H(E/Kv) change, we will be able
to compare Sel2(E) and Sel2(E

F ).

Lemma 7. If at least one of the following five conditions holds:

(1) v splits in F/K, or
(2) v ∤ 2 and E(Kv)[2] = 0, or
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(3) E is multiplicative at v, F/K is unramified at v, and ordv(∆E) is odd, or
(4) v is real and (∆E)v < 0, or
(5) v is a prime where E has good reduction and v is unramified in F/K,

then H(E/Kv) = H(EF /Kv).

Lemma 8. If v ∤ 2∞, E has good reduction at v, and v is ramified in F/K, then

H(E/Kv) ∩H(EF /Kv) = 0.

The next proposition follows from Lemmas 7, 8, and Poitou-Tate global duality.

Proposition 9. Suppose F/K is a quadratic extension ramified at exactly one
prime p, that E has good reduction at p, and that all of the following places split
in F/K:

• all primes where E has additive reduction,
• all v of multiplicative reduction such that ordv(∆E) is even,
• all primes above 2,
• all real places v with (∆E)v > 0.

Suppose further that the localization map

Sel2(E) −→ H(E/Kp)

is surjective. Then the kernel of this localization map is Sel2(E
F ), and so

d2(E
F ) = d2(E) − dimF2 H(E/Kp).

The proof of Theorem 2 now proceeds as follows. If E(K)[2] = 0 and d2(E) > 1,
then (using the Cebotarev theorem) we can always find F satisfying the conditions
of Proposition 9, and with dimF2 H(E/Kp) = 2. This allows us always to find a
twist that reduces the 2-Selmer rank by 2. Under additional assumptions, we can
find an F satisfying the conditions of Proposition 9, and with dimF2 H(E/Kp) = 1.

Once we find one twist of E with a given 2-Selmer rank, we can apply Propo-
sition 9 again, with F such that H(E/Kp) = 0, to find many other such twists.
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Gross–Schoen cycles and triple product L-functions

Shou-Wu Zhang

(joint work with Xinyi Yuan and Wei Zhang)

Root numbers and local linear functionals. Let F be a number field with
ring of adeles A. Let σ = σ1 ⊗ σ2 ⊗ σ3 be an irreducible cuspidal automorphic
representation of GL2(A)3. In [2], Piatetski-Shapiro and Rallis defined triple prod-
uct L-function L(s, σ). Assume that the central character ω of σ is trivial when
restricted to A×

ω|A× = 1.

Then the σ is self-dual and we have a functional equation for the Rankin L-series
L(s, σ)

L(s, σ) = ǫ(s, σ)L(1 − s, σ).

And the global root number ǫ(1/2, σ) = ±1. For a fixed non-trivial additive
character ψ of F\A, we have a decomposition

ǫ(s, σ, ψ) =
∏

ǫ(s, σv, ψv).

The local root number ǫ(1/2, σv, ψv) = ±1 does not depend on the choice of ψv.
Thus we have a well-defined set of places of F :

Σ =
{
v : ǫ(1/2, σv, ψv)ωEv/Fv

(−1) = −1.
}

These local sign can be also characterized by local linear functional:

v ∈ Σ ⇐⇒ HomGL2(Fv)(σv,C) 6= 0

where GL2,F is embedded into GL2,E induced by the embedding F ⊂ E. For each
place v, let Hv denote a division quaternion algebra over Fv. Let πv denote the
Jacquet-Langlands correspondence of σv on HEv( zero if σv is not discrete). Then
the work of Prasad (non-archimedean) and Loke (archimedean) shows that

dimHomGL2(Fv)(σv,C) + dimHom
H
×
v
(πv,C) = 1.

Let B be a quaternion algebra over A which is obtained fromM2(A) withM2(Fv)
replaced by Hv if ǫ(1/2, σv, ψv)ωEv/Fv

(−1) = −1, and let π be the admissible

representation of B×
E which is obtained from σ with σv replaced by πv if v ∈ Σ.

Then we have

dimHomB×v ×B×v
(πv ⊗ π̃v,C) = dimHomB×v

(πv,C) ⊗ HomB×v
(π̃v,C) = 1

where π̃ is the contragredient of π. An explicit element α in this space can defined

by integration of matrix coefficients: for any fv ∈ πv and f̃v ∈ π̃v , then we can
form the integration of matrix coefficients:

αv(fv, f̃v) :=
ζFv (2)

ζEv (2)

L(1, σv, ad)

L(1/2, σv)

∫

F×v \B×v

(πv(bv)fv, f̃v)db
×
v .

Here the Haar measure has been chosen for B×
v such that it takes volume 1 on

the maximal compact subgroup and the integral is normalized so it takes value 1
when everything is unramified.



Algebraische Zahlentheorie 1691

Gross–Schoen cycles. Now we assume that the global root number

ǫ(1/2, σ) = −1.

Then Σ is odd and the symmetry forces that the central value L(1
2 , σ) = 0 and

we are led to consider the first derivative L′(1
2 , σ). We assume further that F is a

totally real field, and that for any v|∞, all σi,v are discrete of weight 2. It follows
that the odd set Σ must contain all archimedean places.

For any open compact subgroup U of B×
f , we have a Shimura curve XU defined

over F such that for any archimedean place τ , we have the usual uniformization
as follows. Let B = B(τ) be a quaternion algebra over F with ramification set
Σ(τ) := Σ \ {τ} which acts on Poincaré double half plane H± = C \ R by fixing
an isomorphism B ⊗τ R = M2(R). Then we have the following identification of
analytic space at τ :

Xan
U,τ = B×\H± × B×

f /U.

We also have a similar unformization as a rigid space at a finite place in Σ using
Drinfeld’s upper half plane.

Let ∆U,ξ be the Gross–Schoen cycle on X3
U which is obtained form the diagonal

cycle by some modification with respect to the Hodge class ξ (the unique class
in Pic1(X)Q = limU Pic

1(XU )Q that is B×
f -invariant) as constructed in [1] and

[3]. It is shown in [1] that ∆U,ξ is homologously trivial and the Beilinson-Bloch
height pairing 〈∆U,ξ,∆U,ξ〉 is well defined unconditionally. More generally, one
has a well-defined height pairing

〈∆U,ξ,T(φ)∆U,ξ〉
for a Hecker operator defined by a function φ in the space S((B×

f )3) of locally

constant with compact support on (B×)3 invariant under U3 × U3. Here S(B×
f )

has two actions by B×
f from left and right translations. In fact, varying level

structure U the Gross–Schoen cycle ∆U,ξ forms a projective system but T(φ)
forms an inductive system. The projection formula ensures that the above paring
does not depends on the choice of the open compact U .

Note that the Hodge class ξ is invariant (up to torsion) under B×
f -translation.

And the diagonal cycle and various partial diagonals are automatically invariant
under the diagonal ∆(B×

f ) ⊂ (B×
f )3. It follows from the projection formula that the

linear form, denoted by γf , defined by φ 7→ 〈∆U,ξ,T(φ)∆U,ξ〉 is B×
f ×B×

f -invariant:

γf ∈ Hom
B
×

f B
×

f
(S(B×

f )⊗3,C).

Moreover, the height pairing depends only on the action of T(φi) on the weight
2 forms ([1], Prop. 8.3). In other words, the linear form γf factors through the
natural (B×

f × B×
f )3-equivariant projection

S(B×
f )⊗3 −→

⊕

π

πf ⊗ π̃f

where the sum is over the Jacquet-Langlands correspondences ρ on B× of all weight
2 cuspidal representation of GL2(A)3. In particular, by restricting to the subspace



1692 Oberwolfach Report 30

πf ⊗ π̃f for one π, we have a well-defined height pairing:

(1) γ ∈ Hom
B
×

f ×B
×

f
(πf ⊗ π̃f ,C).

It follows from the multiplicity one result that the two linear forms γ and α
must differ by a constant. The main result of this paper is:

Theorem 1.

(2) γ =
ζF (2)2L′(1/2, σ)

2L(1, σ, ad)
α,

Application to elliptic curves. Assume that F = Q and that πi corresponds
to elliptic curves over Q with same and square free conductor N . Then the central
characters of πi’s are all trivial and the sign of triple product L-series is the product
of the root numbers w(Ei) of Ei. Assume this product is −1 and let M be the
product of primes p such that the local product

∏
wp(Ei) = −1. Then M is the

product of order number of primes. Thus there is indefinte quaternion algebra B
over Q with discriminant M . Let X be the Shimura curves defined by B with
minimal level structure. Then we parameterizations: πi : X −→ Ei. For any
subset I, let X −→ E1 × E2 × E3 defined by πi for i ∈ I and zero map if i /∈ I.
Let ∆X be the cycle on E1 × E2 × E3 defined by the following formula:

∆X :=
∑

I⊂{1,2,3}
I 6=∅

(−1)#I−1πI∗X.

Then ∆X is homologously trivial thus a height of ∆X can be defined by Arakelov
theory. Our main theorem is the following conjecture of Gross–Kudla:

〈∆X ,∆X〉 = c · L′(2, H1(E1) ⊗H1(E2) ⊗H1(E3))

where c is an explicit positive constant. An interesting case is when E2 = E3 but
not isogenous to E1. Then the left hand side up to an explicit constant is equal
to the Neron–Tate height of a rational point x ∈ E1 defined as follows:

x =
∑

E1

π1∗π
∗
2(OE2)

where the right hand means the sum using group law on E1 of a divisor making by
pull-back and push forward of the origin OE2 of E2. In this way, we have further
formula in terms of Neron–Tate height of a rational point:

〈x, x〉NT = c · L(2, Sym2(E2) ⊗ E1) · L′(1, E1).
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Elliptic curves in dihedral towers and two-variable main conjectures of
Iwasawa theory

Jeanine Van Order

1. Two-variable main conjectures

Let E be an elliptic curve of conductor N defined over Q, parametrized by a
cuspidal Hecke eigenform f ∈ S2(Γ0(N)). Let p be a rational prime of either good
ordinary or multiplicative reduction for E. Fix an imaginary quadratic field k of
discriminant prime to N . Let k∞ denote the Z2

p-extension of k, with Galois group
G = Gal(k∞/k). Let kcyc denote the cyclotomic Zp-extension of k, and D∞ the
anticyclotomic Zp-extension of k. Let Γ = Gal(kcyc)/k) and H = Gal(k∞/kcyc).
Given a profinite group G, let Λ(G) denote its Iwasawa algebra over Zp.

Theorem 1.1. There exists a unique measure Lp(f, k∞) ∈ Λ(G) whose special-
ization to any finite order character W of G satisfies

W (Lp(f, k∞)) = η · L(f ⊗ gW , 1)

8π2〈f, f〉N
,

with η = η(f,W) a product of algebraic constants, L(f⊗gW , 1) the central value of
the convolution L-function L(f ⊗ gW , s), and 〈f, f〉N the Petersson inner product
of f with itself.

The integrality of Lp(f, k∞) can be deduced in two ways from the constructions
given by Hida [3] and Perrin-Riou [6]. On the other hand, let L be an extension
of k, and consider the short exact sequence

0 −→ E(L) ⊗ Qp/Zp −→ Sel(E/L) −→ X(E/L)(p) −→ 0,

with E(L) the Mordell-Weil group, Sel(E/L) the p∞-Selmer group, and X(E/L)(p)
the p-primary part of the Tate-Shafarevich group of E/L. Let X(E/L) denote the
Pontryagin dual of Sel(E/L).

Theorem 1.2. (Kato-Rohrlich) If E has good ordinary reduction at p, then
X(E/kcyc) is Λ(Γ)-torsion.

The structure theory of Λ(Γ)-modules then gives a Λ(Γ)-module pseudoisomor-
phism

X(E/kcyc) −→


⊕

i

Λ(Γ)/pmi ⊕
⊕

j

Λ(Γ)/f
nj

j


 ,(1)

with mi, nj ∈ Z, and fj monic irreducible distinguished polynomials (with respect
to an isomorphism Λ(Γ) ∼= Zp[[T ]]). We may then define from right hand side of
(1) the invariants

µE(k) =
∑

i

mi, λE(k) =
∑

j

nj · deg(fj),

and a characteristic power series charΛ(Γ)X(E/kcyc) =
∏

i,j p
mifnj .
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Proposition 1.3. If E has good ordinary reduction at an odd prime p, then
X(E/k∞) is Λ(G)-torsion.

A similar application of the structure theory then gives rise to a two-variable
characteristic power series charΛ(G)X(E/k∞) for X(E/k∞).

Corollary 1.4. If µE(k) = 0, then

(i) The two-variable invariant µΛ(G)X(E/k∞) vanishes.

(ii) There exists a Λ(H)-module isomorphism X(E/k∞) ∼= Λ(H)λE(k).

Conjecture 1.5. The dual Selmer group X(E/k∞) is Λ(G)-torsion. Moreover,
as ideals in Λ(G), (Lp(f, k∞)) = (charΛ(G)X(E/k∞)).

We remark that this conjecture is known for the special case of elliptic curves with
complex multiplication over the imaginary quadratic fields by which they admit
complex multiplication by works of Rubin (cf. eg. [8]) and Yager [10].

2. Dihedral main conjectures

We approach Conjecture 1.5 in the following way. Let K be any finite extension
of k contained in kcyc, viewed as a totally imaginary quadratic extension of its
maximal totally real subfield F . Assume that the root number of the Hasse-Weil
L-series L(E/k, s) is +1. Assume also the following technical conditions:

(i) p ≥ 5.
(ii) The Galois representation attached to the p-torsion E[p] has image iso-

morphic to GL2(Fp).
(iii) p does not divide the minimal degree of the modular parametrization ϕ :

X0(N) −→ E.
(iv) If v2 | NOF with p | N(v)+1 for a prime v ∈ F , then E[p] is an irreducible

Iv-module, where Iv denotes the inertial subgroup of GF at v.

Let K[p∞] denote the p∞-ring class tower over K, with JK(∞) = Gal(K[p∞]/K).
Let N denote the integer defined by

N =

{
pN if E has good ordinary reduction at p

N if E has multiplicative reduction at p.

Let f ∈ S2(Γ0(N )) denote the eigenform of level N that arises from f ∈ S2(Γ0(N)).
Let fF denote its basechange to F , and write φF for its Jacquet-Langlands lift, i.e.
so that fF = JL(φF ).

Theorem 2.1. There exists a unique measure Lp(φF ,K[p∞]) ∈ Λ(JK(∞)) whose
specialization to any finite order character ρK of JK(∞)) satisfies

ρK (Lp(φFK[p∞])) = κ ·
L(φF ⊗ gρ−1

K
, 1)

ΩφF

,

with κ = κ(ρK) some algebraic constant, L(φF ⊗ gρK , 1) the central value of the
convolution L-function L(φF ⊗ gρK , s), and ΩφF the Petersson inner product of
φF with itself. Moreover, the µ-invariant attached to Lp(φF ,K[p∞]) is given by
2νF , with νF the largest integer such tht φF is congruent to a constant mod pνF .
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Using a generalization of the Euler system argument of Bertolini-Darmon [1], along
with the nonvanishing theorem of Cornut-Vatsal [2], we obtain the following

Theorem 2.2. The dual Selmer group X(E/K[p∞]) is Λ(JK(∞))-torsion. More-
over, as ideals in Λ(JK(∞)), Lp(φF ,K[p∞]) ⊆ charΛ(JK(∞))X(E/K[p∞]).

We remark that Longo has obtained a similar result to Theorem 2.2 independently
for a different but general case of the totally real base field F , using the theory
of Hilbert modular forms. In any case, we obtain from Theorem 2.2 the following
consequences for the setting of the two-variable main conjecture described above.

Corollary 2.3. Assume that E has good ordinary reduction at p, with µE(k) = 0.
Then, corankΛ(H)X(E/k∞) = λE(k).

Example 2.4. Consider the elliptic curve E = 19a1 : y2 + y = x3 + x2 − 9x− 15
at p = 7 over k = Q(

√
−339). Computations of Pollack allow us to deduce that

X(E/k∞)(7) has Λ(H)-corank 4.

Let DK
∞ denote the compositum extension D∞ · K, with Galois group ΩK =

Gal(DK
∞/K) ∼= Zp.

Corollary 2.5. For any finite extension K of k contained in kcyc, the dual Selmer
group X(E/DK

∞) is Λ(ΩK)-torsion. Moreover, as ideals in Λ(ΩK), we have that
(Lp(f, k∞)|ΩK ) ⊆

(
charΛ(ΩK)X(E/k∞)

)
.

While successive applications of this result do not a priori imply the desired di-
visibility (Lp(f, k∞)) ⊆

(
charΛ(G)X(E/k∞)

)
, it seems that a modification of the

inductive argument in [1] for instance might allow one to deduce this.
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Trianguline representations

Laurent Berger

Trianguline representations are a special class of p-adic representations. Let K
be a finite extension of Qp and let GK = Gal(Qp/K). Fontaine has extensively
studied p-adic representations (finite dimensional E-linear representations of GK

where E, the field of coefficients, is a finite extension of Qp). In particular, he has
defined the important and useful notions of de Rham, semistable and crystalline
representations. Trianguline representations have been defined by Colmez in the
course of his work on the p-adic Langlands correspondence of Breuil. His definition
is in terms of (ϕ,Γ)-modules over the Robba ring and we give it here in the case
K = Qp in order to simplify the notation.

Let R = {f(X) =
∑

n∈Z anX
n where an ∈ E and there exists ρ(f) such that

f(X) converges for ρ(f) < |X |p < 1} be the Robba ring. The ring E† is the

subring of R consisting of bounded power series and O†
E is the set of f(X) ∈ R

with |an|p ≤ 1 for all n. All of those rings are endowed with a frobenius ϕ given
by ϕ(f)(X) = f((1 + X)p − 1) and an action of the group Γ ≃ Z×

p given by

[a](f)(X) = f((1 +X)a − 1) where [·] : Z×
p → Γ denotes the isomorphism between

Z×
p and Γ.
A (ϕ,Γ)-module is a free R-module of finite rank d endowed with a semilinear

frobenius ϕ such that Mat(ϕ) ∈ GLd(R) and with a commuting semilinear con-
tinuous action of Γ. We say that such an object is étale if there exists a basis in

which Mat(ϕ) ∈ GLd(O†
E ).

The main result relating (ϕ,Γ)-modules and p-adic Galois representations is the
following (it combines theorems of Fontaine, Fontaine-Wintenberger, Cherbonnier-

Colmez and Kedlaya) : if D is an étale (ϕ,Γ)-module, and if R̃ denotes one of

Fontaine’s rings, then V = (R̃⊗RD)ϕ=1 is a p-adic representation and the resulting
functor gives rise to an equivalence of categories : {étale (ϕ,Γ)-modules} → {p-adic
representations}. In this way, one realizes the category of p-adic representations
as a full subcategory of a larger one, the category of all (ϕ,Γ)-modules over R.

We then say that a (ϕ,Γ)-module D is triangulable if it is an iterated extension
of objects of rank 1, that is if we can write 0 = D0 ⊂ D1 ⊂ · · · ⊂ Dℓ = D where each
Di is a (ϕ,Γ)-module and Di/Di−1 is of rank 1. If V is a p-adic representation, then
we say that it is split-trianguline if the associated (ϕ,Γ)-module is triangulable,
and we say it is trianguline if there exists some finite extension F/E such that
F ⊗E V is split-trianguline.

Examples of trianguline representations include all semi-stable representations
and also the representations associated to finite slope overconvergent modular
forms (by a theorem of Kisin). In particular, trianguline representations are an
important tool in the study of eigencurves and eigenvarieties, as in the work of
Belläıche and Chenevier. They are also used by Colmez (and were defined for that
purpose) in his construction of the “unitary principal series of GL2(Qp)” which
realizes Breuil’s p-adic Langlands correspondence for trianguline representations.
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In order to classify trianguline representations, one needs a classification of
rank 1 (ϕ,Γ)-modules as well as the knowledge of the associated Ext1 groups. If
δ : Q×

p → E is a continuous character, one defines the (ϕ,Γ)-module R(δ) = R·eδ

where ϕ(eδ) = δ(p)eδ and [a](eδ) = δ(a)eδ. It is then a result of Colmez that every
(ϕ,Γ)-module of rank 1 is isomorphic to a R(δ) for a well-defined δ. Note that
one can define the slope of R(δ) to be valp(δ(p)) and the weight of R(δ) to be
lima→1 logp δ(a)/ logp(a). In addition, although I have not defined (ϕ,Γ)-modules
for K 6= Qp they can also be defined and it is a result of Nakamura that there is a
bijection between rank 1 (ϕ,Γ)-modules and continuous characters δ : K× → E×.
Finally, th e Ext1 groups were computed by Colmez (in most cases, and by Liu
in the remaining cases); they are E-vector spaces of dimension 1 or 2, and in
the latter case, the set of extensions is parameterized by a generalization of the
L-invariant.

We say that a p-adic representation is potentially trianguline if there exists a
finite extension K/Qp such that V |GK is trianguline. Examples of such objects
are given by de Rham representations and induced representations. Conversely,
we have the following result : if V is a 2-dimensional potentially trianguline repre-
sentation of GQp then either (1) V is split trianguline, or (2) V is a direct sum of
characters or an induced representation or (3) V is a twist of a de Rham represen-
tation (these three cases are of course not mutually exclusive). The proof of this
result relies on the use of Galois descent : if a triangulation of the (ϕ,Γ)-module
associated to such a representation does not descend, this imposes many conditions
on the possible slopes and weights of the occuring rank 1 (ϕ,Γ)-modules, implying
conditions either (2) or (3) (by using Fontaine’s theory of BdR-representations in
the latter case).

It is an open problem to find an explicit example of a p-adic representation
which is not potentially trianguline, although in recent joint work with Chenevier
we show that they do exist.
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The infinite fern of Galois representations of type U(3)

Gaëtan Chenevier

Let E be a number field, p a prime and let S be a finite set of places of E containing
the primes above p and ∞. Consider the set of isomorphism classes of continuous
semi-simple representations ρ : GE,S → GLd(Qp) of some fixed dimension d, where
GE,S is the Galois group of a maximal algebraic extension of E unramified outside

S. This is the set of Qp-points of a natural rigid analytic space X over Qp,
an interesting subset of which is the set X g of the ρ which are geometric, in the
sense that they occur as a subquotient of Hi

et(XE ,Qp)(m) for some proper smooth
variety X over E, some degree i ≥ 0 and some Tate twist m ∈ Z. Here are two
basic, but presumably difficult, open questions about X g:

Does X
g have some specific structure ? Can we describe its Zariski-closure in X ?

A trivial observation is that X g is countable, so it contains no subvariety of
dimension > 0. When d = 1, class-field theory and the theory of complex multi-
plication describe X g and X , in particular X g is Zariski-dense in X if Leopold’s
conjecture holds at p. When d > 1, the situation is actually much more interesting,
and has been first studied by Hida, Mazur, Gouvêa and Coleman when E = Q
and d = 2. A discovery of Gouvêa and Mazur is that in the most ”regular” odd
connected components of X , which are open unit balls of dimension 3, then X g

is still Zariski-dense. Furthermore, it belongs to an intriguing subset of X they
call the infinite fern [4], which is a kind of fractal 2-dimensional object in X built
from Coleman’s theory of finite slope families of modular eigenforms.

The aim of this talk is to present an extension of these results to the three-
dimensional case d = 3, mostly by studying the contribution of X g coming from
the theory of Picard modular surfaces. From now on E is a quadratic imaginary
field, p is an odd prime that splits in E, c is the non trivial element of Gal(E/Q)
and the set S is stable by c. Let q be a power of p and fix a continuous absolutely
irreducible Galois representation

ρ : GE,S → GL3(Fq)

of type U(3), i.e. such that ρ∨ ≃ ρc (the latter being the outer conjugate by
c). This last condition is equivalent to ask that ρ extends to a representation
ρ̃ : GQ,S → GL3(Fq) ⋊ Gal(E/Q) inducing the natural map GQ,S → Gal(E/Q)
and where c acts on GL3 via g 7→ tg−1. Let us denote by R(ρ) the universal GE,S-
deformation of type U(3) of ρ to the category of finite local Zq = W (Fq)-algebras
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with residue field Fq. This ring R(ρ) might be extremely complicated in general,
but we shall not be interested in these complications and rather assume that:

(H) H2(GQ,S , ad(ρ̃)) = 0.

In this case, one can show that R(ρ) is formally smooth over Zq of relative di-
mension 6. In particular, its analytic generic fiber X (ρ) in the sense of Berthelot
is the open unit ball of dimension 6 over Qq. This space is actually a connected
component of the locus of type U(3) of X . By definition its closed points x pa-
rameterize the lifts ρx of ρ such that ρ∨x ≃ ρc

x. Such an x will be said modular
if ρx is isomorphic to a p-adic Galois representation ρΠ attached by Rogawski to
some cohomological cuspidal automorphic representation Π of GL3(AE) such that
Π∨ ≃ Πc and which is unramified outside S and at the two places above p. These
Galois representations are cut out from the étale cohomology of (some sheaves
over) the Picard modular surfaces of E. We say that ρ is modular if there is at
least one modular point in X (ρ). It migh t well be the case that each ρ is modular
(a variant of Serre’s conjecture).

Theorem A: Assume that ρ is modular and that (H) holds. Then the modular
points are Zariski-dense1 in X (ρ).

Example: If A is an elliptic curve over Q, then ρ := (Symm2A[p])(−1) is modular

of type U(3). Assume that E = Q(i), p = 5 and let S be the set of primes dividing

10 · condA · ∞, then (H) holds whenever A is in the class labeled as 17A, 21A, 37B,

39A, 51A, 53A, 69A, 73A, 83A, or 91B in Cremona’s tables (this depends on some

class number computations by PARI relying on GRH).

A first important step in the proof of Theorem A is a result from the theory of
p-adic families of automorphic forms for the definite unitary group U(3) ([2],[1]).
Fix v a prime of E dividing p, so that Ev = Qp. Define a refined modular point as
a pair (ρΠ, (ϕ1/p

k1 , ϕ2/p
k2 , ϕ3/p

k3)) in X (ρ) × G3
m where ρΠ is a modular Galois

1By Zariski-dense we simply mean here that if t1, t2, . . . , t6 are parameters of the ball X (ρ),
then there is no nonzero power series in Cp[[t1, . . . , t6]] converging on the whole of X (ρ) and that

vanishes at all the modular points.
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representation associated to Π, k1 < k2 < k3 are the Hodge-Tate numbers of ρΠ,v,
and where (ϕ1, ϕ2, ϕ3) is an ordering of the eigenvalues of the crystalline Frobenius
acting on Dcris(ρΠ,v) (recall that ρΠ,v := (ρΠ)|GEv

is a crystalline representation

of GEv = GQp). Define the eigenvariety E(ρ) ⊂ X (ρ) × G3
m as the Zariski-closure

of the refined modular points. The main theorem from the theory of p-adic fam-
ilies of automorphic forms for U(3) asserts that E(ρ) has equi-dimension 3. By
construction the refined modular points are Zariski-dense in E(ρ), and even have
some accumulation property. The complete infinite fern of type U(3) is the set
theoretic projection of E(ρ) in X (ρ). At a modular point in X (ρ) there are in
general 6 branches of the fern passing through it, as there are in general six ways
to refine a given modular point, hence 6 points in E(ρ) above it, so we get the
above picture. (In any dimension d: dimX (ρ) = d(d + 1)/2, dim E(ρ) = d and
there are up to d! ways to refine a given modular point).

Theorem B: There exist modular points x ∈ X (ρ) such that ρx|GEv
is irre-

ducible and has 6= crystalline Frobenius eigenvalues. If x is such a point, then
⊕

y 7→x,y∈E(ρ)

Ty(E(ρ)) −→ Tx(X (ρ))

(the map induced on tangent space) is surjective.

Considering the Zariski-closure Z in X (ρ) of the modular points satisfying the first
part of Theorem B, and applying Theorem B to a smooth such point of Z, we get
Theorem A. The first part of Theorem B is a simple application of eigenvarieties,
but its second part is rather deep. It relies on a detailled study of the properties at
p of the family of Galois representations over E(ρ), especially around non-critical
refined modular points, as previously studied in [1] (extending some works of Kisin
and Colmez in dimension 2). There are several important ingredients in the proof
but we end this short note by focusing on a crucial and purely local one.

Let L be a finite extension of Qp and let V be a crystalline representation of

Gal(Qp/Qp) of any L-dimension d. Assume V is irreducible, with distinct Hodge-
Tate numbers, and that the eigenvalues ϕi of the crystalline Frobenius on Dcrys(V )

belong to L and satisfy ϕiϕ
−1
j 6= 1, p for all i 6= j. Let XV be the deformation

functor of V to the category of local artinian L-algebras with residue field L. It is
pro-representable and formally smooth of dimension d2+1. For each ordering F of
the ϕi (such an ordering is called a refinement), we defined in [1] the F -trianguline
deformation subfunctor XV,F ⊂ XV , whose dimension is d(d+ 1)/2 + 1. Roughly,
the choice of F corresponds to a choice of a triangulation of the (ϕ,Γ)-module of
V over the Robba ring, and XV,F parameterizes the deforma tions such that this
triangulation lifts. When the ϕ-stable complete flag of Dcris(V ) defined by F is in
general position compared to the Hodge filtration, we say that F is non-critical.

Theorem C: Assume that d ”well-chosen” refinements of V are non-critical
(e.g. all of them), or that d ≤ 3. Then on tangent spaces we have an equality

XV (L[ε]) =
∑

F
XV,F(L[ε]).
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In other words ”any first order deformation of a generic crystalline representation
is a linear combination of trianguline deformations”. See [3] for proofs of the
results of this note.
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Higher dimensional global class field theory

Moritz Kerz

(joint work with Alexander Schmidt)

Let X be a regular, connected scheme which is flat separated and of finite type
over Z.

Problem: Describe Grothendieck’s abelian fundamental group πab
1 (X).

In the one-dimensional case this problem is solved by global class field theory
due to Hilbert, Takagi and Artin. A solution to the higher dimensional case of this
problem was given in the work of Bloch, Parshin, Kato and Saito using Milnor K-
theory, see [1] for the final result. Another more elementary approach has recently
been given by Wiesend [4]. Wiesend’s work has been completed and simplified
in [2] and [3].

Question: How can we define an idele class group C(X) generalizing the clas-
sical relative idele class group?

Wiesend’s idea is to consider all curves C →֒ X , i.e. closed integral subschemes
of X with dim(C) = 1. He defines the idele group of X to be:

I(X) =
⊕

x∈|X|
Z ⊕

⊕

C →֒X
v∈C∞

k(C)×v

where |X | denotes the set of closed points of X and for a curve C →֒ X we denote
by C∞ the set of places of the function field k(C) which do not correspond to

points of X̃ (the normalization of X). We endow the idele group I(X) with the
direct sum topology.

The idele class group is now defined to be the quotient

C(X) = coker[
⊕

C →֒X

k(C)× −→ I(X)]

endowed with the quotient topology.
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Proposition 1. Wiesend’s class group satisfies the following basic properties:

(1) C(−) is, in a canonical way, covariant functorial.
(2) The intersection of all open subgroups of C(X) is equal to the connected

component D(X) of 0 in C(X).
(3) There exists a continuous reciprocity homomorphism

ρ : C(X) −→ πab
1 (X)

such that the composition

Z
x−→ C(X)

ρ−→ πab
1 (X)

for a closed point x ∈ X sends 1 ∈ Z to the Frobenius.
(4) The reciprocity map ρ is a natural transformation of functors.

The fundamental theory of higher global class field theory in the sense of
Wiesend says:

Theorem 2. The sequence

0 −→ D(X) −→ C(X)
ρ−→ πab

1 (X) −→ 0

is topologically exact.

The following famous corollary was first shown by Kato and Saito [1] using
their version of higher dimensional class field theory. Nevertheless the proof via
Wiesend’s class field theory is considerably more elementary and does not use any
K-theory.

Corollary 3. The Chow group of zero cycles CH0(X) is finite.
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Truncations of level 1 of elements in the loop group of a reductive
group

Eva Viehmann

Let k be an algebraically closed field of characteristic p. Let L be either k((t)) or
Quot(W (k)) where W (k) is the ring of Witt vectors of k. Let O be the valuation
ring of L. We denote by σ : x 7→ xpr

the Frobenius of k over Fpr for some fixed r
and also the Frobenius of L over F = Fpr ((t)) resp. Qpr . Let OF be the valuation
ring of F . We denote the uniformizer t or p of OF by ǫ.
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Let G be a split connected reductive group over OF . Let B be a Borel subgroup
of G and let A be a split maximal torus contained in B. Let K = G(O) and let
K1 be the kernel of the projection K → G(k). Let W denote the Weyl group of

A in G and W̃ ∼= W ⋉X∗(A) the affine Weyl group. If M is a Levi subgroup of
G containing A let WM be the Weyl group of M and denote by MW the set of
elements x ofW that are shortest representatives of their cosetWMx. If µ ∈ X∗(A)
we write ǫµ for the image of ǫ ∈ F× under µ : Gm → A.

For b ∈ G(L) we call {g−1bσ(g) | g ∈ K} the K-σ-conjugacy class of b, and
[b] = {g−1bσ(g) | g ∈ G(L)} the σ-conjugacy class of b.

The goal of this talk is to describe the K-σ-conjugacy classes in K1\G(L)/K1.

Comparison with Ekedahl-Oort strata. Let X be a p-divisible group over
an algebraically closed field k of characteristic p. Then the Dieudonné module of
X is a pair (M, F ) where M is a free W (k)-module of rank equal to the height
h of X and where F : M → M is a σ-linear homomorphism. Choosing a basis
for M we can write F = bσ for some b ∈ GLh(W (k)[1/p]). A change of the
basis amounts to σ-conjugating b by an element of GLh(W (k)) = K. As b is
induced by the Dieudonné module (M, F ), we have b ∈ KpµK for some minuscule
µ ∈ X∗(A). Similarly, polarized p-divisible groups or abelian varieties lead to
elements b ∈ GSp2n(W (k)[1/p]) for n equal to the dimension of the p-divisible
group.

In [O1] Oort shows that one obtains a discrete invariant of X (the so-called
Ekedahl-Oort invariant) by considering the p-torsion points X [p], or equivalently
by studying the reduction of the module M together with the two maps F : M →
M and V = pF−1 : M → M modulo p. In terms of the element b, this corresponds
to considering the K1-double coset. In other words, this situation is analogous to
the above in the special case G = GLh or GSp2n and µ minuscule for O = W (k).
A classification of the Ekedahl-Oort invariant which is similar to our classification
has been given by Moonen and Wedhorn in [MW].

To classify the K-σ-conjugacy classes in K1\G(L)/K1 in general let us first
introduce some notation. For a dominant µ ∈ X∗(A) let Mµ be the centralizer of
µ, let Wµ be the Weyl group of Mµ and let µW = MµW . Let xµ = w0w0,µ where
w0 denotes the longest element of W and where w0,µ is the longest element of Wµ.
Let τµ = xµǫ

µ. Then τµ is the shortest element of WǫµW .

Theorem 1. Let b ∈ G(L). Let µ ∈ X∗(A) be the unique dominant element with
b ∈ KǫµK. There is a unique w ∈ µW such that the K-σ-conjugacy class of b
contains an element of K1wτµK1.

Definition 2. Let b ∈ G(L). The pair (w, µ) as in Theorem 1 is called the
truncation of level 1 of b.

In the case L = k((t)) we also consider the associated stratification of the
loop group of G. In the Witt vector case one obtains analogous stratifications for
example of the Siegel moduli space. Although it is not clear a priori whether these
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two cases have similar properties, there are comparison results (for example in
[W]) which allow to translate our results for the loop group to the other situation.

Definition 3. Let µ ∈ X∗(A) be dominant, let w ∈ µW and assume that
char(F ) = p. Then let Sw,µ be the reduced subscheme of the loop group of G
such that Sw,µ(k) consists of those g ∈ G(k((t))) whose truncation of level 1 is
(w, µ).

The Sw,µ are bounded and admissible locally closed subschemes of the loop
group and the closure of each stratum is a union of finitely many strata. The
following criterion generalizes a corresponding result for Ekedahl-Oort strata by
Wedhorn [W] to our situation.

Theorem 4. Sw′,µ′ ⊆ Sw,µ if and only if there is a w̃ ∈W with w̃w′τµ′ w̃−1 ≤ wτµ
with respect to the Bruhat order.

Truncations of level 1 and σ-conjugacy classes. One interesting open ques-
tion about Ekedahl-Oort strata is to determine which Newton polygons occur in
a given Ekedahl-Oort stratum. Recently progress towards answering this question
has been made in two ways. In a series of papers [Ha1], [Ha2], [Ha3] Harashita
proves a conjecture of Oort ([O2], 6.9) giving a characterization of the generic
Newton polygon in each Ekedahl-Oort stratum in the moduli space of princi-
pally polarized abelian varieties. Besides, Görtz, Haines, Kottwitz and Reuman
[GHKR] study the intersections between Iwahori double cosets in the loop group
of a reductive group and σ-conjugacy classes. We use results from [GHKR] to
deduce similar conditions for the intersections between the truncation strata and
σ-conjugacy classes. Especially, we obtain a generalization of Harashita’s theorem
to the loop group of any split connected reductive group.

Associated with each σ-conjugacy class [b] there is a unique so-called minimal
truncation type (wb, µb). It satisfies wbτµb

∈ [b] and a technical property which
ensures that Iwbτµb

I is K-σ-conjugate to wbτµb
(where I denotes the standard

Iwahori subgroup associated to B). The element wbτµb
is also called the minimal

element in the given class. This is a generalization of the notion of minimal p-
divisible groups (as in [O3]) to our context. The function field analog for general
G and µ of Oort’s conjecture is

Theorem 5. Let b ∈ G(L), and let (w, µ) be its truncation of level 1. Let wbτµb

be the minimal element in the σ-conjugacy class of b. Then wbτµb
∈ Sw,µ.

From Theorem 5, one can easily deduce the following corollary which gives a
characterization of the generic Newton polygon in a given stratum Sw,µ.

Corollary 6. Let [b] be the generic σ-conjugacy class in Sw,µ for some w ∈
µW . Then [b] is the maximal element (with respect to the usual ordering on the
associated Newton points) in the set of σ-conjugacy classes of minimal elements

w′τµ′ ∈ W̃ such that Sw′,µ′ ⊆ Sw,µ. This is also the same as the maximal class

[x] among all x ∈ W̃ with x ≤ wτµ.
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Here we use that Sw,µ is irreducible, so it contains a unique generic σ-conjugacy
class.

There is a direct way to translate our Theorems back to the case of mixed char-
acteristic. In particular, one obtains Oort’s conjecture (as shown by Harashita) as
well as an analog for non-polarized p-divisible groups.
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Vector bundles on p-adic curves and parallel transport

Annette Werner

(joint work with Christopher Deninger)

Let Qp be the algebraic closure of Qp and Cp its completion. By Zp and o, respec-
tively, we denote their ring of integers. Both rings have the same residue field k,
namely the algebraic closure of Fp.

Let X be a smooth, projective and connected curve over Qp and let E be a vector
bundle on XCp = X ⊗ Cp.

Definition: i) We say that E has strongly semistable reduction if there exists a
proper, finitely presented, flat model X of X over Zp and a vector bundle E on
X ⊗ o extending E such that the special fibre Ek is strongly semistable on all nor-
malized irreducible components of Xk.

ii) We say that E has potentially strongly semistable reduction if there exists a
finite (possibly ramified) covering α : Y → X of smooth, projective, connected
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curves over Qp such that the vector bundle α∗E on YCp has strongly semistable
reduction.

Recall that a strongly semistable vector bundle on a smooth, projective curve in
postive characteristic is a semistable vector bundle such that all its pullbacks by
powers of the absolute Frobenius remain semistable. One can show that a vector
bundle with potentially strongly semistable reduction is itself semistable.

Now we want to define parallel transport for vector bundles with potentially
strongly semistable reduction. For x ∈ X(Cp) the corresponding fibre functor
Fx associates to every finite étale covering of X the set of points lying above x.
The algebraic fundamental group π(X,x) is given as the automorphism group of
the fibre functor Fx.
Besides, if x and x′ are two points in X(Cp), we call any isomorphism between
the fibre functors Fx and Fx′ an étale path from x to x′.

Theorem: Let E be a vector bundle of degree 0 and rank r on XCp with potentially
strongly semistable reduction. For every étale path γ from x to x′ there is an
isomorphism

ρE(γ) : Ex → Ex′

of parallel transport which is functorial in γ. The association E 7→ ρE(γ) is
functorial, exact and compatible with tensor products and duals, Galois conjugation
and pullbacks with respect to finite morphisms of p-adic curves. In particular, for
every x ∈ X(Cp) we obtain a continuous representation

ρE,x : π(X,x) → GL(Ex).

This result can be regarded as a partial p-adic analogue of the result by Narasimhan
and Seshadri who established an equivalence of categories between polystable vec-
tor bundles of degree zero on a compact Riemann surface and unitary representa-
tions of the fundamental group.

In [Fa], Faltings has even shown a p-adic analogue of Simpson’s theory of Higgs
bundles.

The previous theorem was proven in [DW1] for vector bundles which have strongly
semistable reduction after pullback to an étale covering. The general case, allow-
ing pullbacks to a ramified covering α : Y → X , is treated in [DW2]. If α∗E
has strongly semistable reduction, it admits parallel transport along étale paths
by [DW1]. It is easy to see that this parallel transport descends to a parallel
transport for E along the étale paths in U ⊂ X , where U is the complement of
the ramification points of α. In particular, for x0 ∈ U(Cp) one obtains a repre-
sentation ρ : π1(U, x0) → GL(Ex0). The main point is: This representation has
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no monodromy at the ramification points i.e. that it factors over π1(X,x0). We
were unable to prove this algebraically. Instead our proof uses Grothendieck’s
comparison theorem between algebraic and topological fundamental groups and
so me considerations on Riemann surfaces.
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Arithmetic Intersections on Shimura Surfaces

Benjamin V. Howard

(joint work with Tonghai Yang)

Fix a real quadratic field F with different D ⊂ OF and let X → Spec(Z) be
the moduli stack of triples (A, κ, λ) in which A is an abelian scheme of relative
dimension two over an arbitrary base scheme, κ : OF → End(A) is an action of
OF on A satisfying the Kottwitz determinant condition, and λ : A → A∨ is an
OF -linear polarization whose kernel is A[D]. Thus X is an integral model of the
classical Hilbert modular surface X (C) = SL2(OF )\(H × H). For any such triple
(A, κ, λ) define the space of special endomorphisms

L(A, κ, λ) = {j ∈ End(A) : j = j∗ and κ(t) ◦ j = j ◦ κ(tσ) ∀t ∈ OF }.
Here j 7→ j∗ is the Rosati involution induced by λ and σ ∈ Gal(F/Q) is the
nontrivial element. The space of special endomorphisms is a finite free Z-module
(on each connected component of the base) and comes equipped with the quadratic
form Q(j) = j ◦ j∗. For a positive integer m let Tm be the moduli stack of
quadruples (A, κ, λ, j) in which (A, κ, λ) is as above, and j ∈ L(A, κ, λ) is a special
endomorphism satisfying Q(j) = n. Using the forgetful morphism Tm → X we
view Tm as a cycle on X . It can be shown that Tm is then of codimension one, and
agrees with the Hirzebruch-Zagier divisor first defined in [1]. Now fix a totally
complex quadratic extension E/F and consider the moduli stack YE of triples
(A, κ, λ) exactly as in the definition of X , except that now κ : OE → End(A) is
an action of OE on A. Using the forgetful morphism YE → X we view YE as a
codimension two cycle on X , the cycle of complex multiplication. The problem, as
per th e general program of Kudla [2], is to understand the intersection multiplicity
Tm · YE and its relation to Fourier coefficients of automorphic forms.

Define a Q-algebra M = E ⊗id,F,σ E (on the left E is an F -algebra via the
inclusion id : F → E and on the right E is an F -algebra by the conjugate em-
bedding σ : F → E) and let E′ ⊂ M be the subalgebra of elements fixed by the
automorphism a⊗ b 7→ b⊗ a. Then E′ is either a quartic CM field or a product of
two quadratic imaginary fields, and in either case we let F ′ ⊂ E′ be the maximal
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totally real subalgebra of E′. If (A, κ, λ) is an element of YE then the Q-vector
space

V (A, κ, λ) = L(A, κ, λ) ⊗Z Q

admits a natural action of E′, and there is a unique F ′-quadratic form Q′ on
V (A, κ, λ) with the property

Q(j) = TrF ′/Q(Q′(j)).

For any nonzero α ∈ F ′ we now define YE(α) to be the moduli stack of quadruples
(A, κ, λ, j) in which (A, κ, λ) is an object of YE and j ∈ L(A, κ, λ) satisfies Q′(j) =
α. By contemplation of the moduli problems there is a decomposition

Tm ×X YE =
⊔

α∈F ′

TrF ′/Q(α)=m

YE(α).

Consider a triple (T, κ, λ) in which T is a free Z-module, κ : OE → EndZ(T ) is
an action of OE on T , and λ : T × T → D−1 is a perfect OF -symplectic pairing.
To such a triple one may attach the finite rank Z-module

L(T, κ, λ) = {j ∈ EndZ(T ) : j = j∗ and κ(t) ◦ j = j ◦ κ(tσ) ∀t ∈ OF }
where j 7→ j∗ is the adjoint with respect to the Z-bilinear pairing TrF/Q ◦ λ on T .
As above the Q-vector space

V (T, κ, λ) = L(T, κ, λ) ⊗Z Q

admits an action of E′, which makes V (T, κ, λ) into a free E′-module of rank one.
The Q-quadratic form Q(j) = j ◦ j∗ on V (T, κ, λ) has the form

Q(j) = TrF ′/Q(Q′(j))

for a unique F ′-quadratic formQ′. The F ′-quadratic space V (T, κ, λ) has signature
(2, 0) at one archimedean place of F ′, and signature (0, 2) at the other, and by
replacing Q′ by −Q′ at the place of signature (0, 2) one obtains a quadratic space
V ∗(T, κ, λ) over F ′

A which is incoherent in the sense that it does not arise as the
adelization of an F ′ quadratic space. By the theory of Siegel-Weil one can attach
to this incoherent quadratic space an Eisenstein series which is a Hilbert modular
form of weight one on a congruence subgroup of GL2(OF ′). This Eisenstein series
satisfies a functional equation which forces it to vanish at the point s = 0. By
summing over all isomorphism classes of triples (T, κ, λ) one obtains an Eisenstein
series E(τ, s) which admits a Fourier expansion of the form

E(τ, s) =
∑

α∈F ′

cα(v, s) · qα

where v = Im(τ). Each Fourier coefficient cα(v, s) vanishes at s = 0.
The main result is as follows: suppose that α ∈ F ′ is totally positive. Then the

stack YE(α) is supported in a single nonzero characteristic, p. If p is unramified
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in E then (up to an explicit fudge factor)

c′α(v, 0) =
∑

x∈YE(α)(Fp)

1

|Aut(x)| length(Osh
YE(α),x)

where Osh
YE(α),x is the strictly Henselian local ring of YE(α) at x. In particular the

right hand side is finite and the left hand side is independent of v.
An earlier result of Yang [3] relates, under some very restrictive hypotheses,

the intersection multiplicities Tm · YE to the derivative of the pullback of E′(τ, 0)
via the diagonal embedding h → h × h. The above formula for c′α(v, 0) is a
preliminary result which, when extended to include all characteristics p and to
include archimedean intersections, will both refine and generalize the earlier result
of Yang.
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Bounding Galois action on semi-stable representations

Xavier Caruso

(joint work with T. Liu, D. Savitt)

Let p be a prime number and k be a perfect field of characteristic p. Consider
W = W (k) the ring of Witt vectors with coefficients in k and K0 = FracW . Let
K be a finite totally ramified extension of K0 of degree e. It is a complete discrete
valuation field with residue field k. Denote by K̄ an algebraic closure of K, and
by GK = Gal(K̄/K) the absolute Galois group of K.

1. Crystalline and semi-stable representations

In [10, 11], Fontaine has defined the notion of crystalline (resp. semi-stable)
representation of GK : they are representations of GK in finite dimensional Qp-
vector spaces that are “Bcris-admissible” (resp. “Bst-admissible”). We do not
want to explain exactly what it means in this note, but rather first recall that
all crystalline representations are semi-stable and then give two very important
examples. The first one is obtained as follows. Let X be a proper smooth variety
over K, and assume that X has a proper smooth (resp. proper semi-stable) model
on the ring of integers OK . Then the étale cohomology group Hr

ét(XK̄ ,Qp) is a
crystalline (resp. semi-stable) representation. The second example is the Galois
representation associated to a modular form of level prime to p, which is always
crystalline (of dimension 2).
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Recall also that a semi-stable representation V is in particular Hodge-Tate. If
Cp denote the completion of K̄, this means that there exists integers h1 ≤ · · · ≤ hd

such that V ⊗Qp Cp ≃ ⊕d
t=1 Cp(ht) where Cp(h) stands for Tate twist. Integers

ht are then uniquely determined and are called Hodge-Tate weights of V . We
sometimes represent these numbers by joing points of coordinates (t, h1 + · · ·+ht)
in the plane. The obtained polygon is called the Hodge polygon of V .

One can (more or less) precise Hodge-Tate weights for examples given above.
If V is a representation associated to a modular form of weight k, then its Hodge-
Tate are 0 and k − 1, whereas if V = Hr

ét(XK̄ ,Qp), we just know a priori that
Hodge-Tate weights of V are in {−r, . . . , 0}. In order to deal with non-negative
integers, one sometimes prefer regarding the dual representation V ∗ instead of V .

2. Tame inertia action (joint work with D. Savitt)

Let V be a semi-stable representation of GK and R ⊂ V a GK -stable Zp-lattice.
Define T = R/pR. In the section, we are interested in the action of the tame inertia
group on the semi-simplification of T . To this latter represention, one can attach,
following [13] §1, some tame inertia weights. They are numbers i1 ≤ . . . ≤ id
belonging to {0, . . . , p− 1}.

If K = K0 and V is crystalline with Hodge-Tate weights in {0, . . . , p − 2},
Fontaine-Laffaille’s theory implies that it = ht for all t. Unfortunately, in [4],
Breuil and Mézard computed explicit examples showing that equality between it
and ht no longer holds for semi-stable representations. Nevertheless, we have the
following.

Theorem 1 (with D. Savitt [5]). Assume V is semi-stable with Hodge-Tate
weights in {0, . . . , r} where r is an integer such that er < p− 1. Then

e(h1 + · · · + ht) ≤ i1 + · · · + it

for all t ∈ {1, . . . , d}. Furthermore, equality holds for t = d.

Theorem means that the Hodge polygon of V lies below its tame inetia polygon
whose successive slopes are i1

e , . . . ,
id

e . Under the additional assumption K = K0

and V is crystalline, Fontaine-Laffaille’s result states the equility between these two
previous polygons. In other words, inequality in Theorem 1 is indeed an equality
for all t. At this level, one may wonder if V crystalline is enough to imply this.
With Saviit, in [6], we gave a negative answer to this question by providing counter-
examples (with two-dimensional representation) as soon as K 6= K0. Fontaine-
Laffaille’s case appears then as very isolated.

3. Wild inertia action (joint work with T. Liu)

As before, pick V a semi-stable represention of GK and R ⊂ V a GK-stable Zp-
lattice. For all integer n ≥ 1, set Tn = R/pnR. In this section, we are interested in
the action of the wild inertia subgroup on Tn. Let Ln be the finite extension of K
corresponding to the finite index subgroup ker ρn ⊂ GK where ρn : GK → GL(Tn)
is the morphism that gives the action of GK on Tn. We would like to bound
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ramification of Ln, and so we have first to consider a measure of this ramification.
We will use the p-adic valuation of the different DLn/K . To fix normalization, let

vK denote the valuation on K̄ such that vK(K⋆) = Z.

Theorem 2 (with T. Liu [7]). Assume p > 2 and that Hodge-Tate weights of V
are between 0 and r. Pick an integer n and write nr

p−1 = pαβ with α ∈ N and
1
p < β ≤ 1. Then

vK(DLn/K) ≤ 1 + e(n+ α+ β) − 1

pn+α
.

Before our work, some partial results were already known in this direction.
First, in [8] and [9], Fontaine uses Fontaine-Laffaille’s theory to get some bounds
when K = K0, n = 1, r < p − 1 and V is crystalline. In [1], Abrashkin follows
Fontaine’s general ideas to extend the result to arbitrary n (other restrictions
remain the same). Later, with the extension by Breuil of Fontaine-Laffaille’s theory
to semi-stable case, it has been possible to achieve some cases where V is not
crystalline. Precisely in [2]1, Breuil obtains bounds for semi-stable representations
that satisfies Griffith transversality when n = 1 and er < p− 1. Very recently in
[12], Hattori proved a bound for all semi-stable representations with r < p− 1 (e
and n are arbitrary here). All these bounds have the same shape

(1) e
(
n+

r

p− 1

)
+ cte

with 0 ≤ cte ≤ 1. Since r is always assumed to be < p− 1, one can see that these
bounds are better than ours. However, the most important feature of Theorem 2
is to be applicable for any r! Furthermore, one remark that bounds of Theorem
2 have a logarithmic dependance in r, which may be quite surprising after (1)
(where the dependance seems to be linear2). Actually, it is very plausible that,
using analogous methods, one can improve Theorem 2 in order to fit with (1).
Precisely, we conjecture the following.

Conjecture 3. Theorem 2 is true with α and β replaced by α′ and β′ defined by
r

p−1 = pα′β′, α′ ∈ N and 1
p < β′ ≤ 1.

We finally wonder if better bounds exist when V is crystalline. It is actually
the case when e = 1 and r < p− 1 by results of Fontaine and Abrashkin, but it is
not clear to us how to extend this to a more general setting.
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Remarks on Suslin’s singular homology

Thomas Geisser

We discuss Suslin homology and cohomology, focusing on the p-part of Suslin
homology in characteristic p and on finite base fields. We give a generalization of
a conjecture of Kato in terms of Suslin homology, and discuss connections to class
field theory. The contents are based on the article [4].

1. General fields

1.1. Definition. Let X be separated and of finite type over a perfect field k. We
define CX

∗ to be the complex of abelian group, which in degree −i is the free
abelian group generated by closed irreducible subschemes of X × ∆i which are
finite and surjective over ∆i. The differentials are given by alternating maps of
pull-backs along face maps ∆i−1 → ∆i.

Suslin homology HS
i (X,A) of X with coefficients in the abelian group A is the

homology of CX
∗ ⊗ A, and Suslin cohomology is by definition the dual of Suslin

homology, i.e. for an abelian group A it is defined by Hi
S(X,A) := Exti

Ab(CX
∗ , A).

Assuming resolution of singularities over k, Suslin homology has the following
additional properties (and Suslin cohomology has the dual properties):

(1) If i : Z → X is a closed embeddding, f : X ′ → X is proper, and f induces
an isomorphism X ′ − X ′ ×X Z → X − Z), then there is a long exact
sequence

· · · → HS
i+1(X,Z) → HS

i (Z ′,Z) → HS
i (X ′,Z) ⊕HS

i (Z,Z) → HS
i (X,Z) → · · ·

(2) If X is proper, then motivic homology agrees with higher Chow groups,
HS

i (X,Z) ∼= CH0(X, i).



Algebraische Zahlentheorie 1713

(3) If X is smooth of pure dimension d, then motivic homology agrees with
motivic cohomology with compact support, HS

i (X,Z) ∼= H2d−i
c (X,Z(d)).

In particular, if Z is a closed subscheme of a smooth schemeX of pure dimension
d, then we have a long exact sequence

· · · → Hi(U,Z) → Hi(X,Z) → H2d−i
c (Z,Z(d)) → · · · .

The main theorem of Suslin and Voevodsky [5] states that if k is algebraically
closed and m is invertible k, then Suslin cohomology Hi

S(X,Z/m) is isomorphic
to etale cohomology Hi

et(X,Z/m).

1.2. The mod p Suslin homology in characteristic p. We are examining the
p-part of Suslin homology in characteristic p. We assume that k is algebraically
closed and resolution of singularities exists over k.

Theorem 1.1. If X be separated and of finite type over k, then HS
i (X,Z/pr) are

finite and vanish unless 0 ≤ i ≤ d.

The proof reduces to the smooth and projective case, in which case

HS
i (X,Z/pr) ∼= H2d−i

c (X,Z/pr(d)) ∼= H2d−i
c (X, νd

r (d)) ∼= H2d−i
c (Xet, ν

d
r (d)).

The latter group is known to be finite.
Together with the theorem of Suslin and Voevodsky, the thoerem shows that

Suslin cohomology can be regarded as an improvement of etale cohomology: For
m prime to the characteristic, it is usual etale cohomology, and for m a power of
the characteristic, it is a finite group, dual to Suslin homology.

Proposition 1.2. Assume X has a desingularization p : X ′ → X which is an
isomorphism outside of the open set U . Then HS

i (U,Z/pr) ∼= HS
i (X,Z/pr). In

particular, the p-part of Suslin homology is a birational invariant.

The hypothesis is satisfied if X is smooth and U dense, or if U contains all
singular points ofX and a resolution of singularities exists which is an isomorphism
outside of the singular points.

1.3. Etale theory. Let k̄ be the algebraic closure of k with Galois group Gk, and
let A be a continuous Gk-module A. Since Suslin homology does not have Ga-
lois descent, we redefine Suslin homology by imposing Galois-descent: We define
Galois-Suslin homology HGS

i (X,A) = H−iRΓ(Gk, C
X
∗ (k̄) ⊗ A) and Galois-Suslin

cohomology to be Hi
GS(X,A) = ExtiGk

(CX
∗ (k̄), A). This agrees with the old defi-

nition if k is algebraically closed. The argument of Suslin-Voevodsky [5] shows:

Theorem 1.3. If m is invertible in k and A finitely generated m-torsion Gk-
module, then

Hi
GS(X,A) ∼= Hi

et(X,A).

Duality results for the Galois cohomology of a field k lead via theorem 1.3
to duality results between Galois-Suslin homology and cohomology over k. For
example, if k be a finite field, A a finite Gk-module, and A∨ = Hom(A,Q/Z),
then there is a perfect pairing of finite groups HGS

i−1(X,A) ×Hi
et(X,A

∨) → Q/Z.
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2. Finite base fields

We fix a finite field Fq with algebraic closure F̄q and consider the following
conjecture, see [2]:

Conjecture P0: For all smooth and projective schemes X over the finite field Fq,
the groups HS

i (X,Q) vanish for i 6= 0.

Conjecture P0 is a consequence of Parshin’s conjecture, or finite dimensionality
in the sense of Kimura-O’Sullivan, or of Tate’s and Beilinson’s conjecture.

Assuming conjectureP0, the groups HS
i (X,Q) are finite dimensional and vanish

unless 0 ≤ i ≤ d. If X is smooth, then they vanish for i 6= 0. One can also show
that Conjecture P0 holds if and only if the groups HS

i (X,Z) are finitely generated
for all X/Fq if and only if the groups Hi

S(X,Z) are finitely generated for all X/Fq.

2.1. Weil-Suslin theory. Let X be separated and of finite type over Fq, X̄ =
X ×Fq F̄q and G be the Weil-group of Fq. We define Weil-Suslin homology with

coefficients in the G-module A, HW
i (X,A) to be the ith homology of the double

complex

CX
∗ (k̄) ⊗A

1−ϕ−→ CX
∗ (k̄) ⊗A,

where the Frobenius endomorphism ϕ acts diagonally. We obtain short exact
sequences

0 → HS
i (X̄, A)G → HW

i (X,A) → HS
i−1(X̄, A)G → 0.

If A is the restriction of a Ĝ-module, then the results of [1] give a long exact
sequence

· · · → HGS
i (X,A) → HW

i+1(X,A) → HS
i+1(X,A⊗ Q) → HGS

i−1(X,A) → · · ·
Weil-Suslin cohomology of a G-module A is defined analogously, and the exact
sequenes for Weil-Suslin homology have analog versions for cohomology. Analog
to the result for Suslin homology we get that Conjecture P0 holds if and only if
the groups HW

i (X,Z) are finitely generated for all X/Fq if and only if the groups
Hi

W (X,Z) are finitely generated for all X/Fq.

2.2. A Kato type homology and class field theory. Suslin-Kato-homology
HKS

i (X,A) with coefficients in the G-module A, is the ith homology of the coin-
variants of the complex considered above (CX

∗ (k̄)⊗A)ϕ. It measures the difference
between Suslin homology and Weil-Suslin homology: From the definition one de-
duces a long exact sequence

· · · → HS
i (X,A) → HWS

i+1 (X,A) → HKS
i+1(X,A) → HS

i−1(X,A) → · · · .
The cohomological theory can be defined analogously. The following is a general-
ization of a conjecture of Kato, see [3]

Conjecture 2.1. If X is smooth and connected, then HKS
i (X,Z) = 0 for i > 0

and HKS
0 (X,Z) = Z.

Using a theorem of Jannsen and Saito one can show that Conjecture 2.1 is
equivalent to conjecture P0. We have the following connection to class field theory:
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Conjecture 2.2. We have a canonical isomorphism

HWS
1 (X,Z)∧ ∼= πt

1(X)ab.

Under conjecture 2.1, HS
0 (X,Z) ∼= HWS

1 (X,Z), and conjecture 2.2 is a theorem
of Schmidt and Spieß.
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Congruences in non-commutative Iwasawa theory

Mahesh Kakde

In this talk we compute the K1 groups of Iwasawa algebras of a special kind of a
p-adic Lie group and certain localisations of it. As an application we will prove the
main conjecture for certain type of extensions of totally real fields. This approach
for attacking the main conjecture was suggested by Burns and Kato. In [1], Kato
computed the K1 group of the Iwasawa algebra of p-adic Heisenberg group and its
localisation used in Iwasawa theory. He then used the strategy to prove the main
conjecture. Our method is a generalisation of Kato’s computations.

1. Computation of the K groups

Fix an odd prime p. Let G = H ⋊ Γ, where H is an abelian pro-p group and Γ
is isomorphic to the additive group of p-adic integers. For a ring O (which for us
will be a complete, unramified extension of Zp), we denote ΛO(G) = lim

←−

U

O[G/U ],

the Iwasawa algebra of G with coefficients in O. Let Gi := H ⋊ Γpi

, and

Gab
i =: Hi × Γpi

. Here Hi is the appropriate quotient of H which gives the
abelianisation of Gi. Then for each i ≥ 0 we have the maps

K1(ΛO(G)) // K1(ΛO(Gi)) // K1(ΛO(Gab
i )) = ΛO(Gab

i )×.

Here the first maps is the norm map and the second is the one induced by natural
surjection of Gi onto Gab

i . This gives a map

θ : K1(ΛO(G)) →
∞∏

i=0

ΛO(Gab
i )×.

Our goal is to show that θ is injective and describe its image.
Notation: Fix a topological generator γ of Γ. Then γ acts on Hi. We consider

the map on ΛO(Hi×Γpi

) given by x 7→ ∑pi−1
k=0 γkxγ−k. Let Ti be the image of this

map. We also have the transfer homomorphism ver : Gab
i−1 → Gab

i which induces
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the homomorphism (this induced homomorphism is chosen so that it acts as the
absolute arithmetic Frobenius on the coefficients)

ver : ΛO(Gab
i−1) → ΛO(Gab

i ).

For 0 ≤ j ≤ i, we have the maps

Nr : ΛO(Hj × Γpj

)× → Λ(Hj × Γpi

)×, and

π : ΛO(Hi × Γpi

)× → ΛO(Hj × Γpi

)×.

Here again the first map is the norm map and the second is the one induced by
surjection of Hi onto Hj .
Simplifying assumption: The p-power map ϕ : G → G (g 7→ gp) induces a
homomorphism Gab

i−1 → Gab
i . It can be checked that this homomorphism is the

same as ver.
Let S = {f ∈ ΛO(G)|ΛO(G)/ΛO(G)f is a finitely generated ΛO(H)−module}.

It is proven in [2] that S is a left and right Ore set, multiplicatively closed and
does not contain any zero divisors. Hence one may localise ΛO(G) at S. We have
the localised analogue θS of θ.

θS : K1(ΛO(G)S) →
∞∏

i=0

ΛO(Gab
i )×S .

Theorem 1.1. Let Φ (resp. ΦS) be the the subgroup of tuples (xi)
∞
i=0 in∏∞

i=0 ΛO(Gab
i )× (resp.

∏∞
i=0 ΛO(Gab

i )×S ) such that (1) For all 0 ≤ j ≤ i, Nr(xj) =
π(xi),
(2) γ fixes xi for all i.
(3) ver(xi−1) ≡ xi(mod Ti) (resp. (mod TS,i)), for all i ≥ 1. Then θ induces
an isomorphism between K1(ΛO(G)) and Φ. Image of the homomorphism θS is
contained in ΦS. Hence Im(θS) ∩ ∏∞

i=0 ΛO(Gab
i )× = Im(θ).

2. Main conjecture

Let Λ(G) = ΛZp(G). Let F be a totally real number field. Let F∞ be a
totally real p-adic Lie Galois extension of F in which only finitely many primes
in F ramify. Assume that the cyclotomic Zp extension of F , denoted by F cyc, is
contained in F∞. Let Σ be a finite set of finite primes of F containing all primes
which ramify in F∞. Let G = Gal(F∞/F ). For any continuous homomorphism
ρ : G→ GLn(OL), where L/Qp is a finite extension induces

K1(Λ(G)S) → L ∪ {∞} (x 7→ x(ρ))

(∗) Consider the complex C. = RHom(RΓét(Spec(OF∞ [1/Σ]),Qp/Zp),Qp/Zp).
Assume that the cohomology of C. is S-torsion.

We also need the localisation sequence from K-theory

K1(Λ(G)) → K1(Λ(G)S)
∂−→ K0(Λ(G),Λ(G)S) → 0.
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Conjecture 2.1. There is a unique ζ(F∞/F ) = ζ ∈ K1(Λ(G)S) such that
(1) ∂(ζ) = −[C.], and
(2) For any Artin representation ρ of G and any k > 0, k ≡ 0(mod p − 1), we
have

ζ(ρκk
F ) = Lσ(ρ, 1 − k),

where κF is the cyclotomic character of F and LΣ(ρ, 1 − k) is the value of the
complex L-function associated to ρ with Euler factors at primes in Σ removed.

Remark Under the assumption (∗) main conjecture is known to be true whenever
G is abelian. This is the famous theorem of Wiles on Iwasawa main conjecture [3].

Now assume that G = Gal(F∞/F ) = H ⋊ Γ, where H = Gal(F∞/F cyc) and
Γ = Gal(F cyc/F ) and H is abelian pro-p as in the previous section. With the
notations from the previous section consider the diagram

K1(Λ(G)) //

θ

��

K1(Λ(G)S) //

θS

��

K0(Λ(G),Λ(G)S) //

��

0

∏∞
0 Λ(Gab

i )× //
∏∞

0 Λ(Gab
i )×S

//
∏∞

0 K0(Λ(Gab
i ),Λ(Gab

i )S) // 0

Let Fi be the unique extension of F of degree pi contained in F cyc. Let Ki be
the maximal abelian extension of Fi contained in F cyc. Hence Gab

i = Gal(Ki/Fi).

Proposition 2.2. (Burns, Kato) With the above assumptions on F∞/F , the main
conjecture for F∞/F is true if and only if (ζ(Ki/Fi))

∞
0 belongs to ΦS.

Using the q-expansion principle of Deligne and Ribet [4] we prove the following
theorem which proves the main conjecture in these cases.

Theorem 2.3. With above assumptions on F∞/F , the tuple (ζ(Ki/Fi)) belongs
to ΦS.
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Fontaine’s theory in the relative setting and applications to
comparison isomorphisms

Fabrizio Andreatta

(joint work with Olivier Brinon and Adrian Iovita)

Let p > 0 denote a prime integer and let k be a perfect field of characteristic p.
Let K be a complete discrete valuation field with residue field k, fraction field
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K and ring of integers OK . Denote by K a fixed algebraic closure of K and set
GK := Gal(K/K). We write Bcris for the crystalline period ring defined by J.-M.
Fontaine. Recall that Bcris is a topological ring, endowed with a continuous action
of GK , an exhaustive decreasing filtration Fil•Bcris and a Frobenius operator.

Let X → Spec(OK) be a smooth and proper morphism of relative dimension d
with geometrically irreducible fibres and assume that X is defined over W(k). We
consider the following crystalline conjecture:

Assume that there exist a Qp-adic étale sheaf L on XK and a filtered-F -isocrystal
E on XK which are associated. Then, for every i ≥ 0 there is a canonical and
functorial isomorphism commuting with all the additional structures (namely, fil-
trations, GK–actions and Frobenii)

Hi(Xet
K
,L) ⊗Qp Bcris

∼= Hi
cris(Xk/K, E) ⊗K Bcris.

The clarification of what “being associated” means is part of the conjecture.
The conjecture is now a theorem, proven by G. Faltings in [F1]. There are various
approaches to the proof of the conjecture. One (and the first) is based on ideas
of Fontaine and Messing using the syntomic cohomology on X ; a full proof (for
constant coefficients) using these methods was given by T. Tsuji. There is also
an approach (for constant coefficients) based on a comparison isomorphism in K-
theory which is due to W. Niziol. We follow the approach by Faltings, not in
its original version but using a certain topology described in [F2]. The strategy
consists in defining a new cohomology theory associated to X and proving that it
computes both the left hand side (via the theory of almost étale extensions) and
the right hand side of conjecture. The new inputs, compared to Faltings’s original
approach, are:

i) we systematically study the underlying sheaf theory of Faltings’ topology;

ii) we introduce certain acyclic resolutions of sheaves of periods on Faltings’
topology. This allows to avoid the need of providing a Poincaré duality in Falt-
ings’ setting compatible with Poincaré duality on crystalline cohomology and with
Poincaré duality on étale cohomology.

Faltings’ site has as objects the pairs
(
U,W

)
where U → X is an étale morphism

and W → UK is a finite and étale morphism. A family
(
Ui,Wij

)
i∈I,j∈Ji

is a

covering family if ∐i∈IUi → U is onto and if for every i ∈ I the map ∐j∈JiWij →
W ×U Ui is onto. One considers the topology defined by these covering families.
As noticed by A. Abbes this definition does not coincide with Faltings’ original
definition, but it provides the right topos used also by Faltings. We let Sh(X) be
the category of sheaves of abelian groups for this topology. We have a morphism
w∗ : Sh(Xet) → Sh(X) given by (U,W ) → U . Given a quasi-coherent M sheaf on
Xet, such as OX or Ωi

X/OK
, we write M for w∗(M).

We denote by Sh(X)N the category of inverse systems and by Ind
(
Sh(X)N

)
the

category of inductive systems of inverse systems. The reason to introduce this
category is that with Adrian Iovita we construct an object Bcris of OX ⊗ Bcris-
modules: working with inductive limits of inverse systems we manage to capture
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the fact that Bcris is a “topological” sheaf. We also construct an integrable, quasi-
nilpotent connection ∇ : Bcris −→ Bcris ⊗OX Ω1

X/OK
such that the complex

Bcris
∇1

−→ Bcris ⊗OX Ω1
X/OK

∇2

−→ Bcris⊗OX Ω2
X/OK

→ · · · ∇d

−→ Bcris ⊗OX Ωd
X/OK

→ 0

is exact. Furthermore, Bcris is endowed with a filtration satisfying Griffith’s
transversality i. e., such that ∇

(
Filr

(
Bcris

))
⊂ Filr−1 (Bcris) ⊗OX Ω1

X/OK
for ev-

ery r. There is also a Frobenius structure. We let B∇
cris be the kernel of the

connection. Consider v∗ : Sh(X) → Sh(Xet) induced at the level of topologies
by XetU 7→ (U,UK). A key fact, based on joint work with O. Brinon, is that
Riv∗Bcris = 0 for i ≥ 1 and it coincides with OX ⊗OK Bcris if i = 0.

Consider the functor u∗ : Sh(Xet
K

) → Sh(X) induced at the level of topologies by

(U,W ) 7→ W . Given a Qp-adic étale sheaf L we write L for w∗
(
L

)
. We say that

a Qp-adic étale sheaf L and a filtered-F -isocrystal E on XK are associated if there
exits an isomorphism of Bcris-modules E⊗K Bcris

∼= L⊗Qp Bcris compatible with all
extra structures. This notion is equivalent to those of Faltings and of O. Brinon
in [Br].

Suppose we have associated objects. Using the complex above we have that
Hi

(
X,L⊗QpB∇

cris

)
coincides with the hypercohomology of the complex Hi

(
X, E⊗OK

Ω•
X/OK

⊗OK Bcris

)
. Due to the result on Riv∗Bcris, this coincides with the de Rham

cohomology Hi
dR

(
X, E ⊗OK Ω•

X/OK

)
⊗OK Bcris (compatibly with all extra struc-

tures). Note that Hi
dR

(
X, E ⊗OK Ω•

X/OK

) ∼= Hi
cris(Xk/K, E). On the other hand, a

result of Faltings’ states that for a Qp-adic étale sheaf L we have Riu∗
(
L

)
=

0 for i ≥ 1. Hence, Hi
(
X,L

) ∼= Hi
(
Xet

K
,L

)
. One is then left to show that

Hi
(
X,L⊗Qp B∇

cris

) ∼= Hi
(
X,L

)
⊗Qp Bcris (compatibly with extra structures). Since

E and L are associated, also the duals E∨ and L∨ are associated. We then prove by
induction on i that Hi

dR

(
X, E⊗OK Ω•

X/OK

)
(resp. H2d−i

dR

(
X, E∨⊗OK Ω•

X/OK

)
) is an

admissible filtered F -module in the sense of Fontaine associated to the crystalline
representation Hi

(
Xet

K
,L

)
(resp. H2d−i

(
Xet

K
,L∨)

). This we do using Poincaré du-
alities on the étale side and de Rham side plus some fine criterion of admissibility
of filtered F -modules proven by P. Colmez and J.-M. Fontaine.
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Nonabelian examples for the section conjecture in anabelian geometry

Jakob Stix

The present report continues [Sx09a], that dealt with p-adic local obstructions, by
elaborating on the passage from local to global in the section conjecture. More
details can be found in [Sx08] and the preprint [Sx09b].

1. The section conjecture of anabelian geometry

1.1. The conjecture. Let k be a field, ksep a separable closure, and Galk =
Gal(ksep/k) its absolute Galois group. The étale fundamental group π1(X, x̄) of a
geometrically connected variety X/k with a geometric point x̄ ∈ X above ksep/k
forms an extension

(1) 1 → π1(X ×k k
sep, x̄) → π1(X, x̄) → Galk → 1,

which we abbreviate by π1(X/k) ignoring base points. A k-rational point a ∈ X(k)
yields by functoriality a section sa of (1), which depends on the choice of an étale
path from a to x̄. Thus sa is well defined only up to conjugation by elements from
π1(X×kk

sep, x̄). The section conjecture speculates the following, see Grothendieck
[Gr83] for the case of a number field k.

Conjecture 1. The map a 7→ sa is a bijection of the set of rational points X(k)
with the set Sπ1(X/k) of conjugacy classes of sections of π1(X/k) if k is a number
field or a finite extension of Qp and X is a smooth, geometrically connected curve
of genus g with boundary divisor D in its smooth projective completion, such that

(i) 2 − 2g − deg(D) is negative, i.e., X is hyperbolic, and
(ii) D has no k-rational point.

1.2. Evidence. It was known already to Grothendieck, that the map a 7→ sa of
Conjecture 1 is injective by an application of the weak Mordell-Weil theorem.

The real analogue of Conjecture 1 was proven by Mochizuki [Mz03] with alter-
native proofs later in [Sx08] Appendix A, and by Pal. Koenigsmann was able to
prove a birational form over p-adic local fields [Ko05].

The note [Sx08] contains a p-adic local obstruction to the existence of sections
and thus k-rational points that leads to a wealth of positive examples where Con-
jecture 1 holds, yet in the case that there are neither sections nor points. However,
it is known that this ostensibly dull case of empty curves is crucial, see [Sx08] Ap-
pendix C. Shortly afterwards, in [HS08] Harari, Szamuely and Flynn gave examples
for the section conjecture with still no points globally over Q but with local points
everywhere.

Further evidence for the section conjecture can be found in the work of Ellen-
berg, Esnault–Hai, Esnault–Wittenberg, Wickelgren, Säıdi–Tamagawa, and Hoshi–
Mochizuki.

Harari and Szamuely work with the abelianized extension π
(ab)
1 (X/k) obtained

by pushing with the characteristic quotient π1 ։ πab
1 of the maximal abelian

quotient. The aim of this report is to discuss structural aspects of Conjecture 1
which go beyond the abelianized extension.
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2. Adelic sections and Brauer–Manin obstructions

2.1. Adelic sections. An extension of algebraically closed base fields does not
alter the fundamental group in characteristic 0. Hence for an extension K/k the
extension π1(X ×k K/K) is a pullback of π1(X/k) and we get a natural map

Sπ1(X/k) → Sπ1(X/k)(K) := Sπ1(X×kK/K) s 7→ s⊗K.

Let k be a number field, kv its completion at a place v and Ak ⊂ ∏
v kv its ring of

adels Ak ⊂ ∏
v kv. The space of adelic sections Sπ1(X/k)(Ak) ⊂ ∏

v Sπ1(X/k)(kv)
of π1(X/k) is the set of all tuples (sv) such that for all quotients ϕ : π1(X) ։ G
with finite G all but finitely many of the ϕ ◦ sv : Galkv → G are unramified.

2.2. Brauer–Manin obstruction for sections. A class α ∈ H2(π1(X), µn) de-
scribes a function 〈α,−〉 : Sπ1(X/k)(Ak) → Q/Z on adelic sections of π1(X/k)
by the formula 〈α, (sv)〉 =

∑
v invv(s∗v(α)), where the maps invv are the local

invariant maps H2(kv, µn) ⊂ Br(kv) → Q/Z.

Theorem 2. The function 〈α,−〉 is well defined because only finitely many sum-
mands in

∑
v invv(s

∗
v(α)) do not vanish. The image of the global sections under

the diagonal map Sπ1(X/k) →
∏

v Sπ1(X/k)(kv) lands in the Brauer kernel

Sπ1(X/k)(Ak)Br := {(sv) ∈ Sπ1(X/k)(Ak) ; 〈α, (sv)〉 = 0 for all α}.
Proof: We only prove the second part which was independently also observed

by O. Wittenberg. We compute

〈α, (s⊗ kv)〉 =
∑

v

invv

(
(s⊗ kv)∗(α)

)
=

∑

v

invv

(
s∗(α) ⊗k kv

)
= 0

by the Hasse–Brauer–Noether local global principle for the Brauer group. �

2.3. Conditional results. Because
⋃

n H2(π1X,µn) ։ H2(X,Gm) is surjective
for hyperbolic curves, the classical Brauer–Manin obstruction for rational points
as in [Ma71] is subsumed under the corresponding obstruction for sections. We
can therefore prove the following conditional result.

Theorem 3. Let k be a number field such that Conjecture 1 holds for each com-
pletion kv. If the Brauer–Manin obstruction against rational points is the only one
for curves over k, then the section conjecture holds for hyperbolic curves over k.

3. Beyond abelian sections

3.1. The Reichardt–Lind curve. We present an affine curve over Q that by an
application of Section 2 can be shown not to admit sections. The corresponding
empty example for the section conjecture over Q has adelic points but none that
satisfies the Brauer–Manin obstructions, and moreover is not accounted for by the
explicit examples of [HS08].

The affine Reichardt–Lind curve U/Q is defined by 2Y 2 = Z4 − 17 with Y 6= 0.
Let X/Q be its smooth completion. The class αU = χY ∪ χ17 ∈ H2(π1(U), µ2),
the cup product of the two characters defined via Kummer theory by Y and 17,
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lifts to α ∈ H2(X,µ2). The corresponding function 〈α,−〉 takes the constant value
1
2 on adelic sections subject to an extra condition.

Theorem 4. The fundamental group extension π1(U/Q) for the affine Reichardt–
Lind curve U/Q does not split. In particular, the section conjecture holds trivially
for U/Q as there are neither rational points nor sections.

More precisely, the maximal geometrically pro-2 quotient π
(2)
1 (X/Q) of π1(X/Q)

for the projective Reichardt–Lind curve X/Q does not admit a section s that allows
a lifting s̃p

GalQp

s̃p

xx
s⊗Qp

��

π
(2)
1 (U) // // π

(2)
1 (X)

locally at p = 2 and p = 17.

3.2. Genus 2 curves. Potentially, the Brauer–Manin obstruction against sections

occurs only on a finer quotient than π
(ab)
1 (U/k), because it depends on H2. This

hope turns out to be illusory for the Reichardt–Lind curve. In order to have an

explicit example X , where π
(ab)
1 (X/k) splits and yet there is no section, we resort

to an argument of [Sx08] with some more care to prove the following.

Theorem 5. Let k/Qp be a finite extension for p > 2, and let X/k be a smooth
projective curve of genus 2.

(1) If X has period 1, then πab
1 (X/k) admits a section.

(2) If X has index 2, then the maximal geometrically metabelian quotient
πmetab

1 (X/k) does not split.

Explicit examples for the setup of Theorem 5, even of curves over number fields
that satisfy the conditions locally at some place, can be found in abundance.
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Finite group schemes and crystalline representations

Jean-Marc Fontaine

(joint work with Ariane Mézard)

This is a report on a part of a joint work in progress with Ariane Mézard whose
aim is to understand what is behind the links between torsion (ϕ,Γ)-modules (resp.
torsion ϕ-modules) and finite subquotients of crystalline representations studied by
Wach [6] and Berger [1] (resp. by Breuil [2] and Kisin [5]).

1 – Finite p-groups in characteristic p.

Let k a perfect field of characteristic p > 0 and W = W (k) the ring of Witt
vectors with coefficients in k. We choose a formal power series F ∈ W [[X ]] such
that F (0) = 0 and F ≡ Xp(mod p) and let S = W [[u]] the ring of formal power
series in an indeterminate u with coefficients in W that we endow with the unique
continuous endomorphism ϕS such that ϕSu = F (u) and ϕSs ≡ sp(mod p) for all
s ∈ S.

The ring OE which is the p-adic completion of S[1/u] is a complete discrete
valuation ring whose maximal ideal is generated by p. Its residue field E = k((u))
his itself the fraction field of the complete discrete valuation ring OE = k[[u]] =
S/pS.

We consider the full sub-category (OE)flét of schemes over Spec OE whose
objects are those schemes such that the structural morphism X → Spec OE is
flat with étale generic fiber. We put a Grothendieck topology on it by taking as
covering finite surjective families of flat morphisms of the category.

Let X = Spec A an object of (OE)flét, set Xη = Spec Aη, with Aη = E ⊗OE A
its generic fiber. For any n ∈ N, we denote On(Aη) the unique étale OE/pn-algebra
lifting Aη. There is a unique endomorphism ϕ of On(Aη) extending the Frobenius
on OE/pn and a unique homomorphism of rings On(Aη) →Wn(Aη) (ring of Witt
vectors of length n with coefficients in Aη) commuting with the Frobenius and
inducing the identity by reduction mod p. It is injective and we use it to identify
On(Aη) to a subring of Wn(Aη). We set On(X) = On(A) = Wn(A) ∩ On(Aη)(⊂
Wn(Aη)).

It is easy to see that On is a sheaf of S-algebras equipped with a Frobenius over
(OE)flét. Moreover O1 is the structural sheaf and, for m,n ∈ N, we have a short
exact sequence of abelian sheaves

0 → Om → Om+n → On → 0

and we may consider O∞ = lim−→m∈N
Om as a p-divisible sheaf of torsion S-modules,

equipped with a Frobenius.
A ϕ-module over S is an S-module M equipped with a ϕS-semi-linear map

ϕM : M → M , or, equivalently with a linear map ΦM : ϕ∗
SM → M . With

an obvious definiton of morphisms, they form an abelian category. We denote
Mtor(S, ϕ) the full sub-category whose objects are the M ’s which are p-torsion
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S-modules of finite type, without u-torsion and such that the S-module Coker ΦM

is of finite length.
Finally let Gffe

p (OE) be the category of finite and flat commutative group
schemes over OE with étale generic fiber.

The following theorem is not hard to prove directly. It is also an easy conse-
quence of the work of Zink [8].

Theorem 1.

i) For any object J of Gffe
p (OE), the ϕ-module M(J) = Homab. sh.(J,O∞)

is an object of Mtor(S, ϕ).
ii) For any object M of Mtor(S, ϕ) and any object X = Spec A of (OE)flét,

set J(M)(A) = Homϕ−mod(M,O∞(A)). Then J(M) is representable by
an object of Gffe

p (OE).
iii) The contravariant functor J 7→M(J) is fully faithful and induces an anti-

equivalence between Gffe
p (OE) and Mtor(S, ϕ). The functor M 7→ J(M)

is a quasi-inverse.

Let BT e
Qp

(OE) the category whose objects are Barsotti-Tate groups over OE

with étale generic fiber, and with HomBT e
Qp

(OE)(Γ1,Γ2) = Qp ⊗Zp Hom(Γ1,Γ2).

By going to the limit, we may associate to any object Γ of BT e
Qp

(OE) a free-

S[1/p]-module M of finite rank equipped with an injective S[1/p]-linear map ΦM :
ϕ∗

SM →M and the contravariant functor J 7→ (M,ΦM ) is fully faithful. Moreover,
for any Γ, the S[1/p]-module Coker ΦM is a torsion module of finite type. As S[1/p]
is a principal domain, we may associate to Γ the invariant factors of Coker ΦM .
In particular, for any non zero q ∈ S[1/p], we say that Γ is q-finite if Coker ΦM

is annihilated by a power of q. We say that Γ is minimally q-finite if it is q-finite
and if ,for any subobject Γ′ of Γ which is q-finite and such that Γ′ → Γ induces
an isomorphism on the general fiber, then Γ′ = Γ.

2 – From characteristic 0 to characteristic p

Let’s K be a finite totally ramified extension of the fraction field of W . Let K
be an algebraic closure of K and G = Gal(K/K). For any subfield L of K, we
call OL the intersection of L with the valuation ring of K.

We choose a uniformizing parameter π0 of K. We construct inductively a se-

quence (πn)n∈N of elements of K by requiring that σ−n

F (πn) = πn−1 (where σ−n

F
is the formal power series deduced from F by applying σ−n to the coefficients).
One sees easily that, for n > 0, Kn = K[πn] is a totaly ramified extension of Kn−1

and that πn is a uniformizing parameter of Kn (contrarly to the custom K = K0

and K0 may be different from W [1/p]).
There is a unique continuous homomorphism of W -algebras θ0 : S → OK

sending u to π0. Its kernel is a principal ideal and we choose a generator q of it.
In this context, the field E can be identified to the norm field of the extension

K∞/K [3,4,7]. Therefore (loc. cit.), to K corresponds a separable closure Es of
E together with an identification of GE = Gal(Es/E) to Gal(K/K∞).
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Let V be a p-adic continuous representation of GK . We may view it as a
Barsotti-Tate group over K up to isogeny. Similarly, when we restrict the action
of GK to GE , we can view it as an etale Barsotti-Tate group over E up to isogeny.

Proposition 2. Let V be a p-adic representation of GK which is crystalline with
non negative Hodge-Tate weights. There exists a unique object ΓV of BT e

Qp
(OE)

which is minimally q-finite and such that its general fiber corresponds to V with
the action of GE.

In the case where F = Xp, this is an easy consequence of a result of Kisin [5].
The extension to the general case is straightforward. It contains the cyclotomic
case considered by Wach and Berger.

Conversely, one can construct an equivalence of categories between crystalline
representations of GK with non negative Hodge-Tate weights and pairs consisting
of an object of BT e

Qp
(OE) and a suitable data descent.

We may extend this notion of suitable data descent to the category Gffe
p (OE).

This give a way to define the notion of a p-torsion crystalline representation in full
generality. Details will be given elsewhere.
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Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn

Dr. Xavier Caruso

U. F. R. Mathematiques
I. R. M. A. R.
Universite de Rennes I
Campus de Beaulieu
F-35042 Rennes Cedex

Prof. Dr. Gaetan Chenevier

Centre de Mathematiques
Ecole Polytechnique
Plateau de Palaiseau
F-91128 Palaiseau Cedex

Prof. Dr. Chandan Singh Dalawat

Harish-Chandra Institute
Chhatnag Road, Jhusi
Allahabad 211019
INDIA

Prof. Dr. Christopher Deninger

Mathematisches Institut
Universität Münster
Einsteinstr. 62
48149 Münster

Dr. Vladimir Dokchitser

Dept. of Pure Mathematics and
Mathematical Statistics
University of Cambridge
Wilberforce Road
GB-Cambridge CB3 0WB



Algebraische Zahlentheorie 1727

Dr. Amir Dzambic

Institut für Mathematik
Universität Frankfurt
Robert-Mayer-Str. 6-10
60325 Frankfurt am Main

Sandra Eisenreich

Fakultät für Mathematik
Universität Regensburg
Universitätsstr. 31
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