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Introduction by the Organisers

The 2009 program on K-theory and motivic cohomology presented a varied series
of lectures on the latest developments in the field. 19 one-hour talks were deliv-
ered. In addition, we had a lively evening session trading questions and discussing
open problems. The participants represented all aspects of the community. The
common bound was the interaction of K-theory and algebraic geometry in its
many guises. We were particularly happy to see that a wide range of nationalities
were present.

AlgebraicK-theory is a systematic way of producing invariants for algebraic and
geometric structures. Its definition and many methods are taken from algebraic
topology, but it has proved particularly fruitful for problems of algebraic geometry,
number theory or the theory of quadratic forms. Motivic cohomology is closely
related: the two theories are related by a spectral sequence. Depending on the
question, motivic cohomology is used to understand K-theory — or vice versa.
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The field has matured and a wide range of methods (like topological cyclic
homology or motivic homotopy theory) has been developed. At present these
powerful tools are being used to get explicit results in examples and to settle some
old problems. The project of extending Voevodsky’s proof of the Milnor conjecture
to the more general Bloch-Kato conjecture for other primes than 2 is ongoing and
expected to be finished in the near future. A highlight of the conference was the
announcement in Kerz’s talk of the proof of Kato’s conjecture on higher Hasse
principles in case the coefficient characteristic is invertible.

We now want to describe in more detail the topics which were touched.

Computations in K-theory. Advances in understanding the relation of cyclic
homology or topological cyclic homology with K-theory formed the basis for the
lectures of Weibel, Gerhard and Walker, who showed how these foundational re-
sults have enabled a new series of computations. Cortiñas described new methods
for proving homotopy invariance of K-groups of rings of continuous functions.

Special varieties/applications. Semenov used some of the methods that went
into the proof of the Bloch-Kato conjecture to give an intrinsic characterization of
those varieties that arise as “norm varieties” for an element of étale cohomology of
the ground field. Using this result he gave a surprising application to a description
of the finite subgroups of forms of E8, completing a program of Serre’s. Kahn de-
scribed three methods, all relying on understanding forms of homogeneous spaces
and group schemes, for detecting interesting elements in the K-theory of central
simple algebras.

Categorical constructions for K-theory and motives. There were a number
of lectures devoted to categorical aspects of the theory. Arapura showed how one
could generalize Nori’s Tannaka-like approach to give a theory of motivic sheaves
over a base scheme. Ivorra constructed an A∞-structure on the Rost complexes
for cycle modules. Ayoub discussed the filtration by dimension in Voevodsky’s
triangulated category, giving rise to a theory of “motives mod algebraic equiva-
lence”. Schlichting showed us a new approach to the problem of localization for
Grothendieck-Witt theory, outlining a proof that works in all characteristics.

A1-homotopy theory. Three talks discussed foundational aspects of
A1-homotopy theory. Panin described the motivic version of the classical the-
orem of Conner and Floyd, the motivic version relating Voevodsky’s algebraic
cobordism with algebraic K-theory. Pelaez gave us his proof that the layers in
Voevodsky’s slice filtration in the motivic stable homotopy category are modules
over motivic Eilenberg-Mac Lane spectrum (when the base is a perfect field) or
over MGL (for general base). Wendt discussed unstable aspects of the theory,
outlining a proof of the fundamental fact that the “naive” algebraic version of the
classical singular complex construction does compute the A1-homotopy type for
linear algebraic group schemes. This result is one ingredient in Morel’s recently
announced proof of the Friedlander-Milnor conjecture.
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Motives/algebraic cycles. There were three lectures on classical Chow motives
and algebraic cycles. Srinivas constructed examples of varieties with highly non-
divisible Chow groups, relying on some classical geometry of Jacobian varieties.
Kimura extended to arbitrary Chow motives Jannsen’s result that “injectivity of
the cycle map implies surjectivity”, using what looks to be a very useful method of
“idempotent correspondences with support”. Vishik gave an overview of a series
of results that describe how the motive of a quadric splits into Lefschetz motives
over the algebraic closure of the ground field, and gave applications of these results
to the theory of quadratic forms.

Arithmetic. Finally, we had three lectures on arithmetic aspect of the theory.
Riou gave a report on a new proof of Gabber’s theorem on absolute purity of
étale cohomology, relying on Gabber’s refinement of de Jong’s theorem on mod-
ifications. Kerz described his proof with S. Saito of a conjecture of Kato, giving
a generalization of some of the main results of class field theory. One important
consequence of these results is the finiteness of certain mod ℓ Chow groups for
a quasi-projective variety over a finite field. Lichtenbaum gave an overview of
his ideas for constructing a cohomology theory for arithmetic varieties that would
describe the order of vanishing and leading term of zeta functions.
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Abstracts

K-theory of cones of smooth varieties

Charles Weibel

(joint work with Guillermo Cortiñas, Christian Haesemeyer, Mark Walker)

Let R be the homogeneous coordinate ring of a smooth projective variety X
over a field k of characteristic 0. We calculate the K-theory of R in terms of
the geometry of the projective embedding of X . This answers an old question
of Murthy, and clarifies several prior results. For example, we give the complete
calculation for R = k[x, y, z]/(xy = z2): Murthy proved that K0(R) = Z; we show
that K1(R) = K1(k)⊕ k (the lower bound given by Srinivas) and more generally:

Kn(k[x, y, z]/(xy = z2)) = Kn(k)⊕ Ωn−1
k ⊕ Ωn−3

k ⊕ · · · .

By standard results, the Adams operations split Kn(R)/Kn(k) into the direct

sum of its eigenspaces K̃
(i)
n (R), which have the additional structure of R-modules.

The prototype is the Picard group K
(1)
0 (R), which is isomorphic to the R-module

R+/R, where R+ is the seminormalization of R.
Under the philosophy of [1] and [2], the answer is expressed in terms of the

cyclic homology over Q when i < n and the cdh-cohomology of R over k when
i > n+1. The cdh-cohomology is further interpreted as a graded module, indexed
by twists t > 0, of Zariski cohomology groups of X . We have:

K̃(i)
n (R) =





HC
(i−1)
n−1 (R), i < n;

torsΩn−1
R /d torsΩn−2

R , i = n;{
⊕tH

0(X,Ωn
X(t))

}
/Ωn

R, i = n+ 1;

⊕tH
i−n−1(X,Ωi−1

X (t)), i ≥ n+ 2.

In particular, K0(R) = Z⊕ (R+/R)⊕
⊕

j,t>0H
j(X,Ωj

X(t)). When X is a curve,

the formulas simplify because we can ignore Hj(X,−) for j > 1; for example
K−1(R) = ⊕tH

1(X,OX(t)) and K0(R) = Z⊕ (R+/R)⊕
⊕

tH
1(X,Ω1

X(t)).
When X is defineable over a number field, the formulas simplify even more

because Ω∗
X = Ω∗

X/k ⊗ Ω∗
k. When X is not defineable over a number field, the

simplifications need to include the (arithmetic) twisted Gauss-Manin connection
∇. For example, we have the exact sequence

0→ K
(2)
1 (R)→

⊕tH
0(X,Ω1

X/k(t))

image Ω1
R/k

∇
→ Ω1

k ⊗
(
⊕tH

1(X,OX(t))
)
→ K

(2)
0 (R)→ 0.

References

[1] G. Cortiñas, C. Haesemeyer, M. Schlichting and C. Weibel, Cyclic homology, cdh-
cohomology and negative K-theory, Annals of Math. 167 (2008), 549–563.

[2] G. Cortiñas, C. Haesemeyer and C. Weibel, K-regularity, cdh-fibrant Hochschild homology,
and a conjecture of Vorst, J. AMS 21 (2008), 547–561.
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Norm varieties and algebraic groups

Nikita Semenov

Let k be a field of characteristic 0, p a prime number, and n an integer. For
simplicity we assume that k contains a primitive p-th root of unity.

Definition 1 ([2]). Let 0 6= u ∈ Hn
et(k, µ

⊗n
p ). A smooth projective irreducible

variety X over k is called a norm variety for u if

(1) dimX = pn−1 − 1 =: d;
(2) uk(X) = 0 ∈ Hn

et(k(X), µ⊗n
p );

(3) sd(X) 6= 0 mod p, where sd denotes the Milnor number of X .

Definition 2 ([3, Definition 5.1]). LetX be a smooth projective irreducible variety

over k and b =
pn−1 − 1

p− 1
. Consider the complex

CHb(X)
π∗

0−π∗

1−−−−→ CHb(X ×X)
π∗

0−π∗

1+π∗

2−−−−−−−→ CHb(X ×X ×X),

where πi is the i-th projection in the diagram

X ←← X ×X ←←← X ×X ×X.

An element ρ ∈ CHb(X ×X) is called a special correspondence of type (n, p) if

(π∗
0 − π

∗
1 + π∗

2)(ρ) = 0

and (π0)∗(ρ
p−1) 6= 0 mod p as an element in CH0(X) = Z.

In [3, Proposition 7.14] Markus Rost showed the following theorem:

Theorem 3. Let X be a smooth projective irreducible variety which possesses a
special correspondence of type (n, p). Assume that deg(CH0(X)) ⊂ pZ. Then the
Chow motive of X with Z(p)-coefficients has a direct summand R such that

X ⊗ R ≃

p−1⊕

i=0

X{bi} ⊗ Z(p).

We show:

Theorem 4 ([4, Theorem 5.1]). Let X be a smooth projective variety which pos-
sesses a special correspondence of type (n, p). Assume that deg(CH0(X)) ⊂ pZ.

Then there exists 0 6= u ∈ Hn
et(k, µ

⊗(n−1)
p ) such that X is a norm variety for u.

For any field extension K/k we have uK = 0 iff X has a zero-cycle of degree
coprime to p.

The proof of this theorem uses the technique of Voevodsky, the above result of
Rost, and the Voevodsky conjecture about νn-varieties proved by Vishik.

Next we show:

Theorem 5 ([4, Theorem 8.8]). Let G be a simple algebraic group over Q such
that GR is a compact Lie group of type E8. Let K be a field of characteristic 0. If
GK splits, then (−1)5 ∈ H5

et(K,Z/2) is zero.
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This statement was conjectured by J.-P. Serre in 1999 in the context of the
classification program of finite subgroups of Chevalley groups. The proof is based
on the previous theorem and uses the J-invariant of algebraic groups introduced
in my joint paper [1] with Petrov and Zainoulline.

References

[1] V. Petrov, N. Semenov, K. Zainoulline, J-invariant of linear algebraic groups, Ann. Sci. Éc.
Norm. Sup. 41 (2008), 1023–1052.

[2] M. Rost, Norm varieties and algebraic cobordism, Proc. of the International Congress of
Mathematiciants, ICM 2002, Beijing, China.

[3] M. Rost, On the basic correspondence of a splitting variety, Preprint 2007, Available from
http://www.math.uni-bielefeld.de/~rost
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from http://arxiv.org/abs/0905.4384

Algebraic K-theory of the dual numbers

Teena Gerhardt

(joint work with Vigleik Angeltveit, Lars Hesselholt)

It was proven by Soulé [5] that for a non-negative q, the relative algebraic K-
theory group Kq(Z[x]/(x2), (x)) is a finitely generated abelian group of rank 1 if q
is odd, and rank 0 if q is even. We improve upon Soulé’s result with the following
theorem:

Theorem 1. For m a positive integer and i a non-negative integer,

(1) K2i+1(Z[x]/(xm), (x)) is free of rank m− 1.
(2) K2i(Z[x]/(xm), (x)) is finite of order (mi)!(i!)m−2.

To prove this theorem we relate the algebraic K-theory groups in question to
topological cyclic homology groups using the cyclotomic trace map of Bökstedt-
Hsiang-Madsen [2]:

trc : Kq(Z[x]/(xm), (x))→ TCq(Z[x]/(xm), (x)).

By a theorem of McCarthy [4], this map is an isomorphism after profinite com-
pletion. Thus, we aim to compute the relative topological cyclic homology groups
TCq(Z[x]/(xm), (x)). A theorem of Hesselholt and Madsen [3] gives a formula
for these groups in terms of certain equivariant homotopy groups of topological
Hochschild homology. In particular, for each prime p we need to consider the
equivariant homotopy groups

TRn
q−λ(Z; p) = πq−λ(T (Z)C

pn−1 ) = [Sq ∧ S1/Cpn−1+, S
λ ∧ T (Z)]S1

Here Cpn−1 ⊂ S1 is the cyclic group of order pn−1, T (Z) denotes the topological

Hochschild S1-spectrum of Z, and Sλ denotes the one-point compactification of
the complex S1-representation λ. These groups have several operators on them.
Inclusion of fixed points induces a map

F : TRn
q−λ(Z; p)→ TRn−1

q−λ(Z; p)
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called the Frobenius. This map has an associated transfer

V : TRn−1
q−λ(Z; p)→ TRn

q−λ(Z; p)

called the Verschiebung. Further, the topological Hochschild S1-spectrum T (Z)
has the structure of a cyclotomic spectrum. From this cyclotomic structure we get
a map

R : TRn
q−λ(Z; p)→ TRn−1

q−λ′ (Z; p)

called the restriction. Here λ′ = ρ∗p(λ
Cp) where ρp : S1 → S1/Cp is the iso-

morphism given by the pth root. Evaluating the equivariant homotopy groups
TRn

q−λ(Z; p) and the operators V and R is sufficient to evaluate the relative topo-
logical cyclic homology in question, using the formula of Hesselholt and Madsen.

We prove the following theorem, giving a partial computation of these groups:

Theorem 2. Let n be a positive integer, and λ a finite dimensional complex S1-
representation. Then

(1) TRn
2i−λ(Z; p) is a free abelian group of rank equal to the number of integers

0 ≤ s < n such that i = dimC(λCps ).
(2)

|TRn
2i−1−λ(Z; p)| =

{
|TRn−1

2i−1−λ′(Z; p)|pn−1(i− dimC(λ)) if i > dimC(λ)

|TRn−1
2i−1−λ′(Z; p)| if i ≤ dimC(λ)

(3) For every integer q, the Verschiebung map

V : TRn−1
q−λ(Z; p)→ TRn

q−λ(Z; p)

is injective. For q even, the cokernel is free.

The restriction maps in the formula of Hesselholt and Madsen can also be un-
derstood, so as described above we can recover the main theorem from Theorem
2. The proof of Theorem 2 relies on computations of the equivariant homotopy
groups with Z/pZ-coefficients:

TRn
q−λ(Z; p,Z/pZ) = [Sq ∧ S1/Cpn−1+,Mp ∧ S

λ ∧ T (Z)]S1 ,

where Mp denotes the equivariant Moore spectrum given by the mapping cone
of the multiplication by p map on the sphere S1-spectrum. These groups were
evaluated by Angeltveit and Gerhardt [1], and by Tsalidis [6].
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A category of motivic sheaves

Donu Arapura

The goal is to construct an abelian category of motivic “sheaves” over any
quasi-projective base defined over a field of characteristic zero. The construction
is based on Nori’s method (c.f. [L]), and it almost certainly coincides with his
category when S = Spec k.

Fix a field k ⊆ C and another field F . A more precise statement is as follows:

Theorem 1. To every k-variety, there is an F -linear abelian category M(S;F )
with an abelian full subcategory Mtls(S;F ) of tame motivic “local systems” such
that

(1) There are exact realization functors RB, Ret, RH where

RB :M(S;F )→ Constr(San, F )

goes to the category of constructible sheaves of F -modules for the classical
topology. The image RB(Mtls(S;F )) is contained in the subcategory of
locally constant sheaves.

Ret :M(S;F )→ Constr(Set, F )

goes to the category of constructible sheaves of F -modules for the étale
topology. In this case, F should be finite or Qℓ.

The image Ret(Mtls(S;F )) is contained in the subcategory of locally
constant sheaves.

RH :Mtls(S; Q)→ VMHS(San)

goes to the category of admissible variations of mixed Hodge structures.
(2) To each good (e.g. projective) family f : X → S, there exist motives

hi
S(X)(n) ∈M(S;F ) corresponding to Rif∗F (n) under realization. More

generally, there is a motive hi
S(X,Y ) for good pairs (f : X → S, Y ⊆

X closed), which roughly corresponds to the fiberwise cohomology of the
pair.

(3) There are inverse images compatible with realizations.
(4) There are higher direct images (under some conditions) compatible with

realizations.
(5) There are tensor products onMtls(S;F ) compatible with realizations, mak-

ing this into a Tannakian category.
(6) The subcategoryMpure(S,Q) ⊂Mtls(S,Q) generated by smooth projective

families is a semisimple Tannakian category.

In outline, M(S, F ) is constructed as the universal theory for which:

(1) M(S;F ) is an F -linear abelian category with a faithful exact functor RB

to the category of sheaves of F -modules on S with its classical topology.
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(2) A morphismX ′ → X over S, taking Y ′ to Y would give rise to a morphism
of hi

S(X,Y )(w) → hi
S(X ′, Y ′)(w) compatible with the usual map under

RB.
(3) Whenever Z ⊆ Y ⊆ X , there are connecting morphisms hi

S(X,Y )(w) →

hi+1
S (Y, Z)(w) compatible with the usual maps.

(4) hi+2
S (X × P1, X × {0} ∪ Y × P1)(w) ∼= hi

S(X,Y )(w − 1).
(5) Objects and morphisms of M(S;F ) can be patched on a Zariski open

cover1.
(6) Objects and morphisms ofM(S;F ) can be patched on a Zariski cover.

Many of the properties can be deduced rather formally from the universality.
However, the construction of direct images is technically the hardest part and is
based on the method of the author given in [A] along with its refinement due to
de Cataldo and Migliorini [CM].

References
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Purity and duality in étale cohomology (after Ofer Gabber)

Joël Riou

This talk was based on two preprints [3] and [4] which are texts written for a

groupe de travail held at École Polytechnique during Spring 2006–2008. It was
devoted to new results by Ofer Gabber, with applications to étale cohomology.
We mainly focus on the new proof of Grothendieck’s absolute purity conjecture
in étale cohomology. The first proof given by Gabber, which used K-theory, was
written by Fujiwara [1].

Theorem 1 (Gabber). Let ℓ be a prime number. We set Λ = Z/ℓνZ for some ν ≥
1. Let i : Y → X be a closed embedding of codimension c between regular schemes
on which ℓ is invertible. There is a canonical isomorphism Cli : Λ

∼
→ i!Λ(c)[2c] in

the derived category D+(Y,Λ) of étale sheaves of Λ-modules over Y .

Corollary 2 (Gabber). Using the same notation as in theorem 1, there are canon-

ical isomorphisms Hp−2c
ét (Y,Λ(q−c))

∼
→ Hp

ét,Y(X,Λ(q)) for all (p, q) ∈ Z2 and long
exact sequences for all q ∈ Z:

· · · → Hp−2c
ét (Y,Λ(q − c))→ Hp

ét(X,Λ(q))→ Hp
ét(X − Y,Λ(q))→ . . .

We first construct these morphisms Cli and study their properties. They can
be generalized for locally complete intersection morphisms (l.c.i.):

1This will probably be replaced with a stronger descent property in the next version of these
notes.
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Proposition 3 (Gabber). We let Schic be the category whose objects are Z[1ℓ ]-
schemes admitting an ample bundle and whose morphisms are l.c.i. morphisms.
For any morphism f : Y → X in Schic, we let df be the virtual relative dimension
of f and define a functor f? = f !(−df )[−2df ] : D+(X,Λ) → D+(Y,Λ). We can
define a morphism Clf : Λ→ f?Λ in D+(Y,Λ) such that

(i) For any tuple of composable arrows Z
g
→ Y

f
→ X in Schic, the morphism

g?(Clg) ◦ Clg identifies to Clf◦g in D+(Z,Λ);
(ii) If f is smooth, Clf is the “Poincaré duality isomorphism”;
(iii) If f : Y → X is a regular closed embedding, Clf corresponds to the class

in H
−2df

Y (X,Λ(−df )) defined in [1].

The technical part of the proof lies in the verification of the fact that the classes
Clf attached to regular embeddings are compatible with composition. The proof
uses a geometric construction, called “modified blow-up”: if i : Y → X is a closed
embedding defined by a quasi-coherent sheaf of ideals I of finite type, for any
epimorphism E → I/I2 where E is a locally free sheaf on Y , we define a projective

morphism π : ÉclY,E(X)→ X which is an isomorphism over X − Y and such that
π−1(Y ) identifies to the projective bundle P(E). To this datum is attached a class
Cli,E ∈ H

2r
Y (X,Λ(r)) where r is the rank of E . When i is a regular embedding and

E → I/I2 is the identity, ÉclY,E(X) identifies to the blow-up XY ; then, the class
Cli,I/I2 is denoted Cli.

Remark 4. The construction of proposition 3 can be used to define pushforward
maps f : Hp(Y,Λ(q))→ Hp−2df (X,Λ(q − df )) in étale cohomology for projective
morphisms f in Schic.

The new proof of theorem 1 uses the same first reductions as the proof in [1]
does: we have to prove theorem 1 for regular schemes of finite type over S where S
is the spectrum of a discrete valuation ring. We may assume that S is of unequal
characteristic. We use the notion of punctual purity so that it remains to prove
that any regular scheme X of finite type over S is punctually pure. The case where
X is smooth is easy. Then, we use [2] to get the case of schemes with semi-stable
reduction. Then, we deduce from it the case of regular schemes which are the
underlying scheme of a log-smooth log-scheme over S (where S is equipped with
a chart S → SpecZ[N] corresponding to a morphism of monoids N → OS that
sends 1 to a uniformizer of S). To obtain the general case, we may try to use an
alteration X ′ → X where X ′ has semi-stable reduction (on some extension of S)
and a finite group G acts on X ′ (X ′ → X should be generically a Galois covering of
group G). If ℓ does not divide the order of G, a transfer argument shows that the
punctual purity of X follows from that of X ′. Otherwise, we consider an ℓ-Sylow
H of G and use a desingularization of the quotient X ′/H :

Theorem 5 (Gabber). Let T be the spectrum of an excellent discrete valuation
ring. Let Y be a log-smooth scheme over T equipped with a generically free and



1744 Oberwolfach Report 31

tame action of a finite group H 1. Then, there exists a projective and birational
morphism Y ′ → Y/H such that Y ′ is log-smooth over T and regular.

Definition 6. Let X be an excellent scheme. A dimension function on X is a
function δ : X → Z such that for any immediate specialisation of geometric points
x  y of X , there is an equality δ(y) = δ(x) − 1 where x and y are the points of
X under x and y 2.

Dimension functions may or may not exist. Over excellent schemes, they exist
at least locally for the Zariski topology. When the scheme is regular, δ = − codim
is a dimension function. For finite type schemes over a field, the usual notion of
dimension gives a dimension function.

Theorem 7 (Gabber). Let ℓ be a prime number. We set Λ = Z/ℓνZ for some
ν ≥ 1. Then, a noetherian excellent Z[1ℓ ]-scheme X has a dualising complex KX

( i.e., KX is an object in Db
c (X,Λ) such that the functor RHom(−,KX) induces

an involution on Db
c (X,Λ)) if and only if X has a dimension function. Moreover,

dualising complexes over noetherian excellent schemes have the following proper-
ties:

(i) If X is regular, the constant sheaf Λ is a dualising complex;
(ii) If f : Y → X is a separated morphism of finite type and KX is a dualising

complex on X, then f !KX is a dualising complex on Y ;
(iii) If f : Y → X is a regular morphism ( i.e., f is flat and has geometrically

regular fibres 3) and KX is a dualising complex on X, then f⋆KX is a
dualising complex on Y .

The widest previous result regarding duality was due to Deligne in SGA 4 1
2

(case of schemes of finite type over regular schemes of dimension ≤ 1). The key-
ingredient of the proof of theorem 7 is the notion of a candidate dualising complex
associated to a dimension function δ on X , i.e., an object K ∈ D+(X,Λ) equipped
with pinnings at all points (identification of the cohomology of K with support on
x with Λ(δ(x))[2δ(x)]) which satisfy some compatibilities with respect to Galois
actions and immediate specialisations. We prove that these candidate dualising
complexes enjoy properties (i)–(iii) (note that property (i) is highly related to
cohomological purity), that they exist and are unique up to unique isomorphisms,
and finally that they are dualising complexes.

1The action is tame if for any geometric point x or Y , the order of the stabilizer of x is
invertible at x.

2A specialisation x  y is an X-morphism X(x) → X(y) between the corresponding strict
henselisations of X. It is immediate when the closure of the image of the closed point x in X(y)

is 1-dimensional.
3Regular morphisms may or may not be of finite type. For instance, if X is a local excellent

scheme, the completion bX → X is a regular morphism. However, if we request that f is of
finite type, we precisely get the notion of smooth morphisms. A theorem of Popescu shows that
regular morphisms (between affine schemes) are obtained as suitable projective limits of smooth
morphisms.
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Linear algebraic groups in A1-homotopy theory

Matthias Wendt

A1-homotopy theory is one possible way of doing homotopy theory of algebraic
varieties, using as basic object a model structure on the category of simplicial
(pre)sheaves on the category Sm /S of smooth schemes over a finite type base

scheme S. One can define A1-homotopy group (pre)sheaves πA1

n (X) for any S-
schemeX , and it is an interesting matter to compute these. In the talk, I explained
how to compute the A1-homotopy groups of linear algebraic groups. The main
result is the following, cf. [3]:

Theorem 1. Let Φ be a root system not equal to A1, let S be the spectrum of an
excellent Dedekind ring, and let G(Φ) be the simply-connected Chevalley S-group
scheme associated to Φ. Then there are isomorphisms

πA1

n (G(Φ), I)(U) ∼= KVn+1(Φ, U)

for any smooth affine S-scheme U . The group schemes G(Φ) are pointed by the
neutral element I, and the groups KVn+1(Φ, U) are versions of the K-groups de-
fined by Karoubi and Villamayor.

This result has been proven by F. Morel in the case of the root systems Al,
l ≥ 2, cf. [2].

The main homotopical machinery to prove this type of result has been devel-
oped by Morel in [2]. Using this machinery, the result is a consequence of various
factorizations in Chevalley groups, which generalize Abe’s work [1] on Whitehead
groups of Chevalley groups. More precisely, the main intermediate result, general-
izing the work of Abe, is the following homotopy invariance of various K1-functors
associated to root systems.

Proposition 2. Let Φ be a root system not equal to A1, let R be an excellent
Dedekind ring, and let B be a regular R-algebra which is smooth and essentially
of finite type. Then there are isomorphisms

K1(Φ, B[t1, . . . , tn]) ∼= K1(Φ, B),
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where K1(Φ, B) = G(Φ, B)/E(Φ, B) is the quotient of the B-points of the Cheval-
ley group scheme G(Φ) modulo its elementary subgroup.

One can use Theorem 1 to provide descriptions of A1-homotopy groups of linear
algebraic groups and rationally trivial homogeneous spaces. A sample application
is the following description of A1-fundamental groups of simply-connected Cheval-
ley groups over infinite fields.

Corollary 3. Let k be an infinite field, and assume rk Φ ≥ 3. If Φ is non-
symplectic, there are isomorphisms

πA1

1 (G(Φ), I)(Spec k) ∼= KM
2 (k).

If Φ is symplectic and char k 6= 2, there are isomorphisms

πA1

1 (G(Φ), I)(Spec k) ∼= KMW
2 (k) ∼= H2(Sp∞(k),Z).

The assumptions rkΦ ≥ 3 and chark 6= 2 are probably not essential.
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Algebraic K-theory of toric varieties in characteristic p

Mark E. Walker

(joint work with Guillermo Cortiñas, Christian Haesemeyer, Chuck Weibel)

Let A be a finitely generated, cancellative, torsion-free, normal, abelian monoid,
let k be a field, and let k[A] denote the associated monoid-ring. Such an A is the
monoid (under vector addition) of the integer lattice points contained in a strongly
convex rational polyhedral cone in Rn. The associated affine variety U = Spec k[A]
is an affine toric variety. The variety U is normal, it contains the n-dimensional
split torus T as an open subvariety, and the canonical action of T on itself extends
to an action of T on all of U . Moreover, any affine variety with these properties
is given as Spec k[A] for some such A. More generally, a toric variety is a normal
k-variety X containing T as an open subvariety such that there is an action of T
on X extending the canonical one of T on itself. Any toric variety is given locally
by affine toric varieties associated to cones, and a general toric variety is built
from a fan of cones in Euclidean space.

For any positive integer c, there is a natural endomorphism θc on k[A] induced
by the monoid endomorphism a 7→ ac on A (where we write the product rule for the
monoid A multiplicatively). We think of θc as a “Frobenius like” endomorphism.
The endomorphism θc extends to any toric variety X . We write θc also for the
endomorphism of the K-groups (Hochschild homology groups, etc.) of X induced
from θc by functorality.
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Conjecture 1 (Gubeladze). Let Kq(k[A])[θ−1
c ] denote the result of formally in-

verting the action of θc on Kq(k[A]). If A has no non-trivial units, we have

Kq(k[A])[θ−1
c ] ∼= Kq(k).

More generally,
Kq(X)[θ−1

c ] ∼= KHq(X)[θ−1
c ]

for any toric variety X , where KH refers to Weibel’s homotopy K-theory defined
in [9].

Gubeladze proved this conjecture in the case char(k) = 0 in 2005 [6]. Cortiñas,
Haesemeyer, Weibel and I gave a new proof of this case of Gubeladze’s conjecture
in 2008 [3]. Our new proof used the recent result due to Cortiñas, Haesemeyer,
Schlichting, and Weibel [2] which asserts the existence of a homotopy cartesian
square of spectra

(2) K(X) //

��

KH(X)

��
HN(X) // HNcdh(X)

for a variety X over a field of characteristic 0. Here, HN refers to negative cyclic
homology (interpreted as a functor from varieties to Eilenberg-Mac Lane spectra)
and HNcdh its “cdh-sheafified” version. (Note that by Haesemeyer’s Theorem [7],
KH coincides with Kcdh, the “cdh-sheafified” version of K-theory, for varieties
over a field of characteristic zero.) Using this square, Gubeladze’s conjecture is
seen to be equivalent to its analogue for Hochschild homology. We prove this
analogue by relating the result of inverting θc on Hochschild homology with the
Zariski cohomology of certain sheaves on toric varieties, Ω̃q, that were defined by
Danilov [4].

In this talk, I describe a proof of Gubeladze’s conjecture for any field k of
characteristic p > 0:

Theorem 3. Gubeladze’s conjecture holds for a toric variety over a field of arbi-
trary characteristic.

In characteristic p > 0, the analogue of the homotopy cartesian square (2) is
given by the following theorem due to Geisser and Hesselholt [5].

Theorem 4 (Geisser-Hesselholt). For a variety defined over a field k of charac-
teristic p over which “strong” resolution of singularities holds, there is a homotopy
cartesian square

K(X)

��

// KH(X)

��
{TCn(X, p)} // {TCn

cdh(X, p)}

of pro-spectra. Here, TC refers to topological cyclic homology (which is a pro-
spectra) and TCcdh refers to its “cdh-sheafified” version.
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Recall that TCn(X, p) is the homotopy equalizer of the maps F,R defined
on TRn(X, p). The spectrum TRn(X, p) is the Cpn -fixed point spectra of the
topological Hochschild homology spectrum THH(X).

Our proof also relies on the following theorem of Hesselholt and Madsen [8]:

Theorem 5 (Hesselholt-Madsen). For a monoid A and field k of characteristic
p, the map

THH(k) ∧N cy(A)→ THH(k[A])

of S1-spectra induces an equivalence on fixed-point spectra for all finite subgroups
of S1. Here, N cy(A) is the cyclic bar construction of the monoid A.

Using these theorems, we are able to reduce Gubeladze’s conjecture to an as-
sertion about the effect of inverting θc on N cy(A). Roughly, we prove that the
functor from monoids to spaces

A 7→ N cy(A)[θ−1
c ]

satisfies an appropriate analogue of cdh-descent. In more detail, using the above
theorems due to Geisser-Hesselholt and Hesselholt-Madsen, Gubeladze’s conjec-
ture follows from the following two theorems of ours:

Theorem 6. For a finitely generated, cancellative, torsion-free, normal monoid
A, define the S1-space

Ω̃A =
∐

a∈A

N cy(A[ 1
a ])a

where A[ 1
a ] refers to the monoid obtained from A by adjoining an inverse to a and

N cy(A[ 1
a ])a is the connected component indexed by a. Then the map of S1-spaces

N cy(A)[θ−1
c ]→ Ω̃A[θ−1

c ]

is a homotopy equivalence on fixed-point subspaces for all finite subgroups of S1.

Theorem 7. The functor Spec(k[A]) 7→ THH(k) ∧ Ω̃A (extended to a functor
on toric varieties by imposing Zariski descent) satisfies descent for equivariant
blow-ups of toric varieties.

Finally, I comment on the fact that our proof of Gubeladze’s conjecture is not
dependent on assuming resolutions of singularities in characteristic p. This is
because the proof of the theorem of Geisser-Hesselholt requires only that one work
with a class of Cohen-Macaulay varieties for which singularities can be resolved
by blowing up varieties X along centers C such that X is normally flat along
C. It has been proven by Bierstone-Milman [1] that for toric varieties (which are
automatically Cohen-Macaulay), singularities may be resolved in this manner.
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Algebraic K-theory of rings of continuous functions

Guillermo Cortiñas

(joint work with Andreas Thom)

Write Comp for the category of compact Hausdorff spaces and continuous maps.
For X ∈ Comp, consider the (C∗-) algebra C(X) of continous functions X → C.
The talk was about the algebraic K-theory of C(X). The following results were
presented.

Theorem 1. For n < 0, the functor Comp → Ab, X 7→ Kn(C(X)) is homotopy
invariant.

Theorem 2. C(X) is K-regular.

Theorem 3. For n ≥ 1, the group KnC is equipped with a topology (which for
n = 1 is the usual, euclidean one of C∗). This topology is natural in the sense that
the natural map

Kn(C(X)) 7→ map(X,KnC), ξ 7→ (x 7→ evx(ξ))

factors through the set C(X,KnC) of continuous functions. Morevoer if X is
contractible, then this map is an isomorphism

Kn(C(X))
∼=
−→ C(X,KnC) (X contractible.)

Remark 4. The first theorem was conjectured by Rosenberg [1, 3.7]. He showed
(see [1, 3.8]) that his conjecture implies that Kn(C(D)) = kun(D) for n < 0 and
D a finite simplicial complex. The second theorem was first stated by Rosenberg;
see [1, 3.5]. Unfortunately, the proof given in loc. cit. is incorrect.
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The motivic Conner-Floyd theorem

Ivan Panin

(joint work with Oliver Röndigs, Konstantin Pimenov)

Quillen’s algebraic K-theory is reconstructed via Voevodsky’s algebraic cobor-
dism. More precisely, for a ground field k the algebraic cobordism P1-spectrum
MGL of Voevodsky is considered as a commutative P1-ring spectrum. Setting

MGLi =
⊕

p−2q=i

MGLp,q,

we regard the bigraded theory MGLp,q as just a graded theory. There is a unique
ring morphism φ : MGL0(k) → Z which sends the class [X ]MGL of a smooth
projective variety X to the Euler characteristic χ(X,OX) of the structure sheaf
OX . Our main result states that there is a canonical grade preserving isomorphism
of ring cohomology theories

φ : MGL∗(X,X − Z)⊗MGL0(k) Z
∼=
−→ K−∗(X on Z) ∼= K ′

−∗(Z),

on the category SmOp /k in the sense of [2], where K∗(X on Z) is Thomason-
Trobaugh K-theory and K ′

∗ is Quillen’s K ′-theory. In particular, the left-hand
side is a ring cohomology theory. Moreover, both theories are oriented in the
sense of [2] and φ respects orientations. The result is an algebraic version of a
theorem due to Conner and Floyd. That theorem reconstructs complex K-theory
via complex cobordism [1].
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On the surjectivity of the cycle map for motives

Shun-ichi Kimura

In [2, Theorem 3.6], U. Jannsen proved that when X is a smooth projective variety
over a universal domain Ω, if the cycle map cl : CH∗(X)Q → H∗(X,Q) is injective,
then it is also surjective. This theorem was generalized to Deligne cohomology in
[1] by H. Esnault and M. Levine. Also Murre and Srinivas proved that if CH∗(XΩ)Q

is countable, then the motive of X is isomorphic to a direct sum of the twists of
the Lefschetz motives (unpublished).

In this talk, we generalize Jannsen’s theorem to Chow motives. The details are
found in [3].

Theorem 1. Let M = (X, p, n) be a Chow motive over a universal domain Ω. If
CH∗(X)Q is a finite dimensional vector space over Q, then M is isomorphic to a
direct sum of the twists of Lefschetz motives, M ≃ ⊕Ldi .
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Remark 2. As pointed out by J. Riou during the talk, as for the definition of the
universal domain Ω, it is enough to assume that Ω is an algebraically closed field
with infinite transcendental degree over the prime field.

The main tool is the supported correspondence.

Definition 3. A correspondence from X to Y is an element α ∈ CH∗(X × Y ),
and we denote it as α : X ⊢ Y .

When S ⊂ X × Y is a closed subscheme with the inclusion i : S → X × Y , we
say that α : X → Y is supported on S if α = i∗(α̃) for some α̃ ∈ CH∗S. In this
case, we say that α is represented by α̃.

Lemma 4. Assume that α : X ⊢ Y and β : Y ⊢ Z are correspondences, supported
on S × T and U × V respectively.

(1) β ◦ α is canonically supported on S × V .
(2) If dimS + dimV < dim(β ◦ α), then β ◦ α = 0.
(3) If dimT + dimU < dimY , then β ◦ α = 0.

Definition 5. Let α : X ⊢ Y be a correspondence, supported on S×T , represented
by α̃. We call α a supported idempotent when α ◦ α is canonically represented by
α̃.

The main theorem easily follows from the Key Lemma.

Lemma 6 (Key Lemma). Let X/Ω be a d-dimensional smooth complete variety,
and 0 ≤ m < d be an integer, Sm ⊂ X a purely m-codimensional closed subscheme,
and αm : X ⊢ X a supported idempotent correspondence, supported on Sm × X.
Assume that the image of αm∗ : CH∗(X)Q → CH∗(X)Q is a finitely generated
vector space over Q. Then there exists a purely 1-codimensional closed subscheme
Sm+1 ⊂ Sm, a purely m-dimensional closed subscheme Tm ⊂ X, a correspondence
αm+1 : X ⊢ X supported on Sm+1 × X, and a correspondence βm : X ⊢ X
supported on Sm × Tm such that

(1) αm+1 + βm = αm as correspondences X ⊢ X, supported on Sm ×X,
(2) αm+1 and βm are supported idempotent, and
(3) αm+1 and βm are supported orthogonal, namely αm+1 ◦ βm = 0 and βm ◦

αm+1 = 0 as supported correspondences.

Bruno Kahn already generalized this result in the line of Murre-Srinivas.
Jannsen’s theorem implies the Hodge conjecture for varieties for which his theo-

rem applies. We hope that, by generalizing his theorem to motives (hence possibly
applicable to all varieties), we can eventually prove the Hodge conjecture by this
technique.
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The slice filtration for modules over ring spectra

Pablo Pelaez

Let X be a Noetherian separated scheme of finite Krull dimension, and MX be
the category of pointed simplicial presheaves on the smooth Nisnevich site SmX

over X equipped with the Morel-Voevodsky motivic model structure [4]. We will
denote by T the pointed simplicial presheaf represented by S1 ∧ Gm, where Gm

is the multiplicative group over X pointed by 1; and by Spt(MX) the category
of symmetric T -spectra on MX equipped with Jardine’s motivic model structure
[2]. The homotopy category of Spt(MX) is a triangulated category which will be
denoted by SH.

Given an integer q ∈ Z, we consider the following family of symmetric T -spectra

Cq
eff = {Fn(Sr ∧Gs

m ∧ U+) | n, r, s ≥ 0; s− n ≥ q;U ∈ SmX}

where Fn is the left adjoint to the n-evaluation functor

evn : Spt(MX)→MX

Voevodsky [13] defines the slice filtration as the following family of triangulated
subcategories of SH

· · · ⊆ Σq+1
T SHeff ⊆ Σq

TSH
eff ⊆ Σq−1

T SHeff ⊆ · · ·

where Σq
TSH

eff is the smallest full triangulated subcategory of SH which contains
Cq

eff and is closed under arbitrary coproducts.

It follows from the work of Neeman [5], [6] that the inclusion

iq : Σq
TSH

eff → SH

has a right adjoint rq : SH → Σq
TSH

eff , and that the following functors

fq : SH → SH

sq : SH → SH

are exact, where fq is defined as the composition iq ◦ rq, and sq is characterized by
the fact that for every E ∈ Spt(MX), we have the following distinguished triangle
in SH

fq+1E
ρE

q // fqE
πE

q // sqE // Σ1,0
T fq+1E

We will refer to fqE as the (q−1)-connective cover of E, and to sqE as the q-slice
of E.

Let A be a cofibrant ring spectrum with unit in Spt(MX), and A-mod be the
category of left A-modules in Spt(MX). The work of Jardine [2, Proposition 4.19]
and Hovey [1, Corollary 2.2] implies that the adjunction

(A ∧ −, U, ϕ) : Spt(MX)→ A-mod
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induces a Quillen model structure SptA(MX) in A-mod, this means that a map
f : M → N in SptA(MX) is a weak equivalence or a fibration if and only if Uf is
a weak equivalence or a fibration in Spt(MX).

It is easy to see that the homotopy category SHA of SptA(MX) is a triangulated
category [8, Proposition 3.5.3].

Theorem 1. Let A be an effective cofibrant ring spectrum with unit u : 1→ A in
Spt(MX), i.e. A belongs to the triangulated subcategory Σ0

TSH
eff defined above.

If s0(u) is an isomorphism in SH, then for every q ∈ Z the functor

sq : SH → SH

factors (up to a canonical isomorphism) through SHA

SH
sq //

s̃q ##F

F

F

F

SH

SHA

URA

OO

where RA denotes a fibrant replacement functor in SptA(MX).

Proof. We refer the reader to [8, Theorem 3.6.20 and Lemma 3.6.21] or [7, Theorem
2.1(vi)]. �

This theorem has several interesting consequences.

Corollary 2. Let q ∈ Z denote an arbitary integer and E denote an arbitrary
symmetric T -spectrum in Spt(MX).

(1) If the base scheme X is a perfect field k, then we have that the q-slice
sqE of E is equipped with a natural structure of HZ-module in Spt(MX),
where HZ denotes Voevodsky’s motivic Eilenberg-MacLane spectrum [11].
This proves a conjecture of Voevodsky [13].

(2) If we restrict the base scheme X further, and assume that it is a field of
characteristic zero; then we have that the q-slice sqE of E is a big motive
in the sense of Voevodsky, i.e. sqE has transfers.

(3) For any Noetherian separated base scheme X of finite Krull dimension,
we have that the q-slice sqE of E is equipped with a natural structure
of MGL-module in Spt(MX), where MGL denotes Voevodsky’s algebraic
cobordism spectrum [11]. This implies that over any base scheme, the slices
are always oriented cohomology theories.

Proof. (1): This follows from the work of M. Levine [3] (over a perfect field) and
Voevodsky [12] (over a field of characteristic zero), together with theorem 1. For
the details we refer the reader to [8] or [7].

(2): This follows from the work of Röndigs and Østvær [9], together with what
we have already proved in (1) above. For the details we refer the reader to [8] or
[7].
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(3): The work of Spitzweck [10, Corollaries 3.2 and 3.3] shows that MGL is
effective and that the unit map u : 1 → MGL induces an isomorphism s0(u) in
SH. Therefore the result is a direct consequence of theorem 1. �
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SK1 and SK2 of division algebras

Bruno Kahn

I presented 3 methods to produce Galois cohomology invariants of the form

SK1(A)→ H5
ét(F,Z(3))/r[A] ·H2

ét(F,Z(2))

according to a conjecture of Suslin, and

SK2(A)→ H6
ét(F,Z(4))/r[A] ·H3

ét(F,Z(3))

in case F contains an algebraically closed subfield.
Here F is a field, A is a division algebra of degree d prime to the characteristic

of F , r is a divisor of d and [A] is the class of A in the Brauer group Br(F ) ≃
H3

ét(F,Z(1)).
The first method uses an étale Bloch-Lichtenbaum spectral sequence converging

to a version of the étale K-theory of A (joint work with Marc Levine, [1, 6.9]).
Here, r = 1. The second one uses the K-theory of the generalised Severi-Brauer
variety SB(r, A): here, r = r. The last one uses the formula

H5
ét(SL1(A),Z(3))/H5

ét(F,Z(3)) ≃ Z
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where SL1(A) is the twisted form of SLd associated to A. Here, r = d, that is,
r[A] = 0.

An open problem is to compare these maps.
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The Mayer-Vietoris principle for Grothendieck-Witt groups

Marco Schlichting

This is a report on the author’s preprint [5].

Definition 1 ([5, Definition 2.11]). Let (E , w, ∗, η) be an exact category with weak
equivalences and duality [5]. Its Grothendieck-Witt space

GW (E , w, ∗, η)

is the homotopy fibre of a map of topological spaces

|(wSe
•E)h| → |wS•E|

where S•E is Waldhausen’s S•-construction [9], Se
• denotes its “edge-wise subdi-

vision” [9, 1.9 Appendix] and, for a category with duality (C, ∗, η), the category
of symmetric forms Ch has objects pairs (X,ϕ) where ϕ : X → X∗ is a map in C

satisfying ϕ∗ηX = ϕ and maps (X,ϕ) → (Y, ψ) in Ch are maps f : X → Y in C

such that ϕ = f∗ψf .

Let X be a scheme, Z ⊂ X be a closed subscheme, and L be a line-bundle on
X . Set

GW (X) = GW (Vect(X), iso,Hom( , OX), can)

GWn(X,L) = GW (Chb Vect(X), quis, Hom( , OX), can)

GWn(X on Z,L) = GW (Chb
Z Vect(X), quis, Hom( , OX), can)

where Vect(X) denotes the category of vector bundles on X , Chb Vect(X) is the

category of bounded chain complexes of vector bundles, Chb
Z Vect(X) is the full

subcategory of chain complexes which are acyclic outside Z, iso denotes the set
of isomorphisms, quis denotes the set of quasi-isomorphisms, and can denotes
the canonical isomorphism E → Hom(Hom(E,L), L) identifying a (complex of)
vector bundle(s) with its double dual.

Proposition 2 ([5, Proposition 3.8]).

(1) π0GW (X) is Knebusch’s Grothendieck-Witt group of X as defined in [4].
(2) For any exact category with weak equivalences and duality (E , w, ∗, η), the

abelian group π0GW (E , w, ∗, η) is generated by isomorphism classes [X,ϕ]
of symmetric spaces (X,ϕ) in (E , w, ∗, η) subject to the following relations
(a) [X,ϕ] + [Y, ψ] = [X ⊕ Y, ϕ⊕ ψ]



1756 Oberwolfach Report 31

(b) if g : X → Y is a weak equivalence, then [Y, ψ] = [X, g∗ψg], and
(c) if (E•, ϕ•) is a symmetric space in the category of exact sequences in
E, then

[E0, ϕ0] =
[
E−1 ⊕ E1,

(
0 ϕ1

ϕ−1 0

)]
.

Here “symmetric space” means a symmetric form (E,ϕ) for which the
map ϕ : E → E∗ is a weak equivalence.

Proposition 3 ([5, Proposition 6.5]). Considering a vector bundle as a complex
concentrated in degree 0 yields a homotopy equivalence

GW (X)
≃
−→ GW 0(X,OX).

Theorem 4 ([5, Theorem 9.2]). Let X be a scheme with an ample family of line-
bundles, let Z ⊂ X be a closed subscheme with quasi-compact open complement
j : U ⊂ X, and let L be a line bundle on X. Then for every n ∈ Z there is a
homotopy fibration of Grothendieck-Witt spaces

GWn(X on Z, L) −→ GWn(X, L) −→ GWn(U, j∗L).

Theorem 5 ([5, Theorem 9.3]). Let X be a scheme with an ample family of line-
bundles, let Z ⊂ X be a closed subscheme with quasi-compact open complement,
let L be a line bundle on X. Then for every n ∈ Z and every quasi-compact
open subscheme j : V ⊂ X containing Z, restriction of vector-bundles induces a
homotopy equivalence

GWn(X on Z, L)
∼
−→ GWn(V on Z, j∗L).

Theorem 6 ([5, Corollary 10.13]). Let X = U ∪ V be a scheme with an am-
ple family of line-bundles which is covered by two open quasi-compact subschemes
U, V ⊂ X. Then restriction of vector bundles induces a homotopy cartesian square

GW (X) //

��

GW (U)

��
GW (V ) // GW (U ∩ V ).

Remark 7. The theorems extend to negative degrees by introducing appropriate
non-connective spectra; see [5, §10].

Remark 8.

(1) The K-theory analog of the theorems are due to Thomason [8].
(2) The Witt-theory analog of the theorems were proved by Balmer in [1]

for regular noetherian separated schemes X with 1
2 ∈ Γ(X,OX). More

generally, the following holds [7]. Let X be a scheme with an ample family
of line-bundles, which is covered by two open quasi-compact subschemes
U, V ⊂ X . Assume that 1

2 ∈ Γ(X,OX). Then the total homotopy cofibre
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of the diagram of spectra representing Balmer’s Witt-groups

W ∗(X) //

��

W ∗(U)

��
W ∗(V ) // W ∗(U ∩ V )

is the spectrum representing Tate cohomology

Ĥ∗(Z/2,
K0(U ∩ V )

Im(K0(U) +K0(V ))
).

These cohomology groups are non-trivial, in general. This is the case, for
instance, for the standard covering P1

C = A1
C ∪ A1

C of the projective line
over a curve C with K−1(C) = Z (e.g., the nodal curve).

(3) Theorem 6 was also proved by Hornbostel in [2] for regular noetherian
separated schemes X with 1

2 ∈ Γ(X,OX) based on Balmer’s results above
and Karoubi’s fundamental theorem [3].

Remark on the proof: Our proof follows [8]. For that we show Grothendieck-
Witt theory analogs of Waldhausen’s fibration and approximation theorems [9] and
of Thomason’s cofinality theorem [8]. The main difference to [8] is that contrary to
K-theory the higher Grothendieck-Witt groups πiGW (E , w, ∗, η) are not invariant
under derived equivalences when 1

2 /∈ E , in general. In the talk we explained a
counter example which will appear in [6]. The lack of “invariance under derived
equivalences” prevents us from using perfect complexes and from extending our
results to general quasi-compact and quasi-separated schemes as was done for K-
theory in [8].

References

[1] Paul Balmer. Witt cohomology, Mayer-Vietoris, homotopy invariance and the Gersten con-
jecture. K-Theory, 23(1):15–30, 2001.

[2] Jens Hornbostel. A1-representability of Hermitian K-theory and Witt groups. Topology,
44(3):661–687, 2005.
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Algebraic Cycles on Generic Abelian 3-Folds

Vasudevan Srinivas

(joint work with Andreas Rosenschon)

This is a report on joint work with Andreas Rosenschon. The details will
appear in the forthcoming Proceedings of the Tata Institute Colloquium on Cycles,
Motives and Shimura Varieties.

Let X be a smooth projective variety over an algebraically closed field k. Recall
that CHi(X) denotes the Chow group of codimension i cycles modulo rational
equivalence. If ℓ is a prime number, let

ℓCH
i(X) = ℓ-torsion subgroup of CHi(X),

CHi(X)/ℓ = CHi(X)⊗Z Z/ℓZ.

We discuss finiteness statements for the groups ℓCH
i(X), CHi(X)/ℓ, focussing

mainly on the case k = C.
Some known results are as follows: It is “classical” that ℓCH

i(X), CHi(X)/ℓ
are both finite, for all ℓ, provided i ≤ 1. Next, it is known that ℓCH

i(X),
CHi(X)/ℓ are finite, for all ℓ, for i = dimX ; the main content here is Roit-
man’s theorem on torsion 0-cycles. It is known that ℓCH

2(X) is finite, for all ℓ;
this is basically a consequence of the results of Merkurjev-Suslin relating K2 of
fields and division algebras, combined with the results of Bloch-Ogus.

In a related vein, the groups ℓCH
i(X), CHi(X)/ℓ are “rigid”: if k →֒ K is an

extension of algebraically closed fields, and ℓ is invertible in k, then Lecomte [1]
showed that the natural base-change maps

ℓCH
i(X)→ℓ CH

i(X ×k K), CHi(X)/ℓ→ CHi(X ×k K)/ℓ

are isomorphisms. Though it is plausible they hold, the corresponding statements
for ℓ equal to the characteristic of k do not seem to be present in the literature,
as far as we know.

We show that these finiteness statements cannot be improved, in general, by
showing that

• there exists a smooth projective variety X over C such that, for all but
finitely many primes ℓ, the group CHi(X)/ℓ is infinite for all 2 ≤ i <
dimX ,
• there exists a smooth, projective variety X over C such that, for all but

finitely many primes ℓ, the group ℓCH
i(X) is infinite, for all 3 ≤ i <

dimX .

In fact, by considering varieties of the form Y × Pm, we see that it suffices to
construct (a) a smooth projective complex 3-foldX such that CH2(X)/ℓ is infinite
for all but finitely many ℓ, and (b) a smooth projective 4-foldX such that ℓCH

3(X)
is infinite for all but finitely many ℓ. Now we may apply the following result of
Schoen [3], together with Lecomte’s rigidity result, to show that an example as in
(b) can be constructed using an example as in (a):
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Theorem 1. Let k ( K be an extension of algebraically closed fields. Let W be a
smooth projective k-variety, and E be an elliptic curve over K with j(E) ∈ K \ k.
Then the external product map

CHi(W )⊗Z CH
1(E)torsion → CHi+1(W ×k E)torsion

is injective, for all i ≥ 0.

Thus, we reduce to proving our main result:

Theorem 2. Let X be a generic abelian 3-fold over C. Then CH2(X)/ℓ is infinite
for all but finitely many ℓ.

We remark that, using an isogeny, it suffices to consider the case when X is
principally polarized. Now, “generic” means the following: X determines a C-
valued point on the (coarse) moduli space of principally polarized abelian 3-folds,
which is a geometrically integral Q-scheme in a natural way; this C-point should
be a Q-generic point of the moduli space.

We also note that there are earlier results of a similar kind due to Schoen (see
[2], [4]):

Theorem 3. (1) Let E = {x3 + y3 + z3 = 0} ⊂ P2
Q

be the Fermat cubic, and

let X = E × E × E. Then CH2(X)/ℓ is infinite for all ℓ ≡ 1(mod 3).
(2) Let E be a generic elliptic curve over C, and let X = E × E × E. Then

CH2(X)/ℓ is infinite for any ℓ ∈ {5, 7, 11, 13, 17}.

These results certainly suggest that our main result should hold!
Our technique of proof is by adapting an argument of Nori [6], as in the proof

of Schoen [4]. This has two steps: first, one produces one example of a cycle which
is homologically trivial in CH2(X), but whose class in CH2(X)/ℓ is non-zero for
all but finitely many ℓ. Next, one views the generic abelian 3-fold as the geometric
generic member of a universal family over the moduli space, and uses the action
of suitable modular correspondences to create infinitely many distinct cycles, by
considering images of the non-trivial one.

To carry out the first step, one notes that the generic principally polarized
abelian 3-fold is the Jacobian of the generic curve of genus 3, which is the generic
fiber of a suitable universal family of curves over the moduli space of curves. The
well-known Ceresa construction for cycles on a Jacobian produces a “universal
Ceresa cycle”, shown to be non-trivial by Hain in [7]; he shows that the union of
the Ceresa cycles, in the total space of the universal family of Jacobians, has a non-
torsion topolocigal cycle class in singular cohomology. By making a comparison
with étale cohomology, and then applying a variant of the Bloch-Esnault method
(see [5], [2], [4]), one deduces that the generic Ceresa cycle has non-zero image in
CH2(X)/ℓ for all but finitely many ℓ, where X is the geometric generic fiber of the
universal family of Jacobians (or equivalently, of the universal family of principally
polarized abelian 3-folds, say with level 3 structure).

Now, as in Nori’s proof, we use that the Torelli map from the moduli of curves
of genus 3 to the moduli of principally polarized abelian 3-folds (say, both with
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level 3 structure) is of degree 2, and is ramified along the hyperelliptic locus. Just
as in Nori’s argument, this allows one to use modular correspondences to generate
infinitely many cycles mod ℓ, starting from the universal Ceresa cycle.
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n-Motivic Sheaves

Joseph Ayoub

This talk is based on our joint paper [1] with L. Barbieri-Viale. We fix a ground
field k which we assume, for simplicity, to be of characteristic zero. Also for
simplicity, we will work with rational coefficients. In the sequel, motivic sheaf is a
shorthand for homotopy invariant sheaf with transfers [3], i.e., a motivic sheaf F
is an additive contravariant functor from the category of smooth correspondences
Cor(k) (see [3, Def. 1.5]) to the category of Q-vector spaces such that:

(a) for every smooth k-scheme X , F(X)→ F(A1
X) is invertible.

(b) the restriction of F to the category Sm/k of smooth k-schemes is a Nis-
nevich (or equivalently, an étale) sheaf with transfers.

If F satisfies (b) but not necessarily (a), we call it a sheaf with transfers. The
category of sheaves with transfers will be denoted by Str(k). We denote HI(k) its
full subcategory of motivic sheaves. The obvious inclusion admits a left adjoint
h0 : Str(k) → HI(k). It follows from [3, Th. 22.3] that h0 is the given by the
Nisnevich sheaf of the associated homotopy invariant presheaf with transfers. In
particular, HI(k) is an abelian category and the inclusion HI(k) →֒ Str(k) is exact.
In fact, there is a natural t-structure on Voevodsky’s category DMeff(k) whose
heart is canonically equivalent to HI(k). This gives a hint why motivic sheaves
are important objects to study. Important examples include the following.

Example 1. Let X be a smooth k-scheme. We denote by C̃H
p
(X) the sheaf asso-

ciated to the presheaf U  CHp(U ×k X). This is a motivic sheaf.
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We recall the notion of an n-motivic sheaf from [1]. Fix an integer n ∈ N and
let Cor(k≤n) ⊂ Cor(k) be the full subcategory whose objects are the smooth k-
schemes of dimension less than n. Let Str(k≤n) be the category of contravariant
functors from Cor(k≤n) to the category of Q-vector spaces. There is an obvious
restriction functor σn∗ : Str(k)→ Str(k≤n) which has a left adjoint σ∗

n.

Definition 2. An object F ∈ HI(k) is an n-motivic sheaf if the obvious morphism

h0σ
∗
nσn∗F → F

is invertible. We denote by HI≤n(k) ⊂ HI(k) the full subcategory of n-motivic
sheaves.

It is formal to prove that HI≤n(k) is an abelian category. Given a morphism of
n-motivic sheaves a : F → G, coker(a) is again an n-motivic sheaf and gives the
cokernel of a in HI≤n(k). In other words, the inclusion HI≤n(k) →֒ HI(k) is right
exact. Unfortunately, it is an open problem whether or not this inclusion is left
exact. In other words, we don’t know that ker(a) is n-motivic, and the kernel of
a in HI(k) is a priori given by h0σ

∗
nσn∗ker(a). In fact, we conjecture much more

than the left exactness of the inclusion HI≤n(k) →֒ HI(k), namely:

Conjecture 3. There is a functor (−)≤n : HI(k) → HI≤n(k) which is a left
adjoint to the obvious inclusion.

Unfortunately, the previous conjecture seems out of reach for n ≥ 2. When
n = 0 or n = 1, the situation is much easier and the functors (−)≤n exist and are
denoted respectively by π0 and Alb. One can even write formulas:

π0(F) = colim
X→F

Qtr(π0(X)) and Alb(F) = colim
X→F

Alb(X)

where π0(X) is the étale k-scheme of connected components of X and Alb(X) is
the Albanese scheme of X considered as a sheaf with transfers.

Example 4. Assume that k is algebraically closed and let X be a smooth k-scheme.

Then one can prove that π0(C̃H
p
(X)) is the constant sheaf with value NSp(X),

the Neron-Severi group of codimension p-cycles up to algebraic equivalence.

We also address a (hopefully easy) conjecture.

Conjecture 5. Let X be a complex algebraic variety. Then Alb(C̃H
p
(X))(C) is

canonically isomorphic to the target of Walker’s morphic Abel-Jacobi map (see
[2]).

In fact, π0 and Alb are defined on the whole category Str(k) by the same
formulas. An important issue is that these functors can be left derived, yielding
two functors

Lπ0 : D(Str(k))→ D(HI≤0(k)) and LAlb : D(Str(k))→ D(HI≤1(k)).
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Moreover, these two functors pass to the A1-localization yielding two functors

Lπ0 : DMeff(k)→ D(HI≤0(k)) and LAlb : DMeff(k)→ D(HI≤1(k))

which are left adjoint to the obvious inclusions.
We now give two applications. The first one gives an extension of the classical

Neron-Severi groups to a bigraded cohomology theory.

Definition 6. Let X be a smooth k-scheme. We set

NSp(X, q) = Lqπ0(Hom(X,Q(p)[2p]))(k).

Then, NSp(X, 0) is the classical Neron-Severi group NSp(X) and we have a
canonical morphism from Bloch’s higher Chow groups:

CHp(X, q)→ NSp(X, q).

Except for q = 0, we do not expect this map to be surjective in general.
As a second application, we propose a definition of 2-motives.

Definition 7. A 2-motive is an object M ∈ DMeff(k) satisfying the following
properties.

(a) hi(M) = 0 for i 6∈ {0,−1,−2}.
(b) h0(M) is a 0-motivic sheaf.
(c) h−1(M) is a 1-motivic sheaf.
(d) h−2(M) is a 1-connected 2-motivic sheaf.
(e) M [+1] doesn’t contains a non-zero direct summand which is a 0-motivic

sheaf.
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Cycle modules, Milnor K-theory and the intersection A∞-algebra

Florian Ivorra

In this talk we give an overview of a work in progress on cycle modules and the
intersection theory developed by M. Rost in [4]. The aim of this work is to show
that for a cycle module M with a ring structure and a smooth separated scheme
X of finite type over a field, the cycle complex C∗(X,M ) of X with coefficients
in M defined by M. Rost has a structure of an A∞-algebra and to develop some
consequences of this fact.

The basic operation in Fulton’s approach to intersection theory [2] is the Gysin
map f∗ : CHp(X) → CHp−d(Y ) associated to a closed regular immersion f :
Y →֒ X of codimension d. This map is the composition of the specialization map
CHp(X) → CHp(NYX) obtained via the deformation to the normal cone NYX
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and the inverse of the pullback map CHp−d(Y ) → CHp(NYX) which exists by
homotopy invariance of Chow groups. For a smooth scheme X of pure dimension
d the intersection product of two cycles α ∈ CHp(X) and β ∈ CHq(X) is then
given by α ·β := ∆∗

X(α×β) where ∆X is the diagonal immersion. Recall that the
Chow group CHp(X) is given as the cokernel of the divisor map

CHp(X) = coker


 ⊕

x∈X(p+1)

κ(x)×
div
−−→

⊕

x∈X(p)

Z




and so is the 0-th homology group of the Gersten complex for Milnor K-theory

· · · →
⊕

x∈X(p+r)

KM
r (κ(x))→ · · · →

⊕

x∈X(p+1)

KM
1 (κ(x))

div
−−→

⊕

x∈X(p)

KM
0 (κ(x))→ 0.

In [4] M. Rost generalizes the classical intersection theory in two directions, first by
considering the whole Gersten complex and not only its 0-homology and secondly
by allowing more general coefficients than Milnor K-groups: his so called cycle
modules , which are essentially graded modules over Milnor K-theory endowed
with a few extra maps. Given a cycle module M , M. Rost builds his intersection
theory on the associated cycle complex C∗(X,M ), a Gersten like complex with
components given by

Cp(X,M , n) :=
⊕

x∈X(p)

Mn+p(κ(x)),

entirely in terms of the deformation to the normal cone and four basic maps
defined in a pointwise manner at the level of complexes: pullbacks, pushforwards,
mutiplication by units and boundary maps. He constructs not only a Gysin map

f∗ : Hp(C∗(X,M , n))→ Hp−d(C∗(Y,M , n+ d))

between the homology groups which coincides with Fulton’s map for n = −p and
M = KM

∗ , but he also lifts this map to a map of complexes

I(f) : C∗(X,M , n)→ C∗−d(Y,M , n+ d)

entirely defined in terms of the four basic maps. However, while the map f∗ does
not depend on any choices, the lifting I(f) depends on the choice of a coordination
of the normal bundle NYX , a variant of the usual notion of trivialization needed
for technical reasons. M. Rost proves also some weak functoriality. More precisely,
given a closed regular immersion g : Z →֒ Y , he shows that the maps I(g) ◦ I(f)
and I(f ◦ g) are homotopic.

The key point in this ongoing work is the following observation: the homotopy
constructed in [4] looks very special. It is reminiscent of the Gysin map by the
very way it is defined in terms of the four basic maps and a space of double
deformation to the normal cone. Given a cycle module M with a ring structure
and a coordination of the tangent bundle of a smooth separated scheme X of
finite type over a field, this remark suggests that the lack of associativity of the
intersection product provided by the map I(∆X) is controlled by some higher
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intersection products. One is therefore lead to think that Rost’s cycle complex
C∗(X,M ) carries an A∞-algebra structure which means that there should exist a
family of bigraded maps of degree (2− n, 0)

(1) mn : C∗(X,M )⊗n → C∗(X,M )

with the following properties:

– m1 is the differential of the cycle complex;
– m1◦m2 = m2◦(m1⊗1+1⊗m1), and som2 commutes with the differentials;
– m2◦(1⊗m2−m2⊗1) = m1◦m3+m3◦(m1⊗1⊗1+1⊗m1⊗1+1⊗1⊗m1),

and so the differential of m3 is equal to the associator of m2;
– more generally we have the relation

(2)
∑

n=r+s+t

(−1)r+stmr+1+t ◦
(
1⊗r ⊗ms ⊗ 1⊗t

)
,

where the sum is taken over all decompositions n = r + s+ t.

In the talk we explain how generalized spaces of deformation to the normal cone
are to provide such an A∞-algebra structure. To be more precise, for any integer
n ≥ 2, we describe the construction of a space of deformation DX,n parametrized
by the affine space An−1 which allows to deform simultaneously all the diagonal
immersions of Xn−1 in Xn and coincides with the usual space of the deformation
to the normal cone for n = 2. The higher intersection maps (1) are then obtained
as a composition of the four basic maps via these higher deformation spaces DX,n.
As explained by M. Rost in [4], a coordination of a vector bundle E over X defines
a retraction of the pullback map C∗(X,M )→ C∗(E,M ). The fibers over {0}n−1

of the spaces DX,n provide a bunch of vector bundles and the last step to establish
the formula (2) is to check that all the associated retractions are compatible once
a coordination of the tangent bundle of X is given.

Deformation to the normal cone spaces bearing some resemblance to the space
DX,n were also used within the context of the microlocal theory of sheaves [3] by
J.-M. Delort in his work [1].
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On higher cohomological Hasse principles

Moritz Kerz

(joint work with Shuji Saito)

In joint work with Saito, relying on previous work of Jannsen and Saito, we prove
Kato’s conjectures on higher cohomological Hasse principles, formulated in [5], in
case the coefficient characteristic is invertible on the scheme in question. Below
we restrict for simplicity to the case of varieties over finite fields.

Let k be a finite field, l a prime number with l 6= char(k) and Λ = Ql/Zl. For
a smooth projective algebraic curve X/k a classical result due to Hasse and Witt
says that there is an exact sequence

0 −→ Br(K) −→
⊕

v

Br(Kv) −→ Q/Z −→ 0

of Brauer groups. The l-primary part of this sequence can be written cohomolog-
ically as

0 −→ H2(k(X),Λ(1)) −→
⊕

x∈X0

H1(k(x),Λ) −→ Λ −→ 0.

Kato conjectued in [5] that for a smooth projective variety X/k of dimension d
the analogous niveau complex

0 −→ Hd+1(k(X),Λ(d))→ ⊕x∈Xd−1
Hd(k(x),Λ(d − 1)) −→ · · ·

−→ ⊕x∈X0H
1(k(x),Λ) −→ Λ −→ 0

should be exact.
Indeed using the homological methods of Jannsen-Saito [4], a localization trick,

an intersection theoretic pullback and Gabber’s refinement of de Jong’s theorem
on alterations we can verify this conjecture:

Theorem 1. Kato’s niveau complex is exact.

Remark 2. The exactness of Kato’s complex had been known

• under the assumption of a strong form of resolution of singularities over
finite fields (Jannsen [3], Jannsen-Saito [4]),
• up to degree 4 (Colliot-Thélène-Sansuc-Soulé [1], Colliot-Thélène [2], and

Jannsen-Saito [4]).

Here the degree m part of Kato’s complex is the part of the form ⊕x∈Xm
· · · .

An important corollary of Kato’s conjecture is the finiteness of a certain higher
Chow group. This is a special case of the so called Bass conjecture for higher
Chow groups.

Corollary 3. For all q,m ≥ 0 the group CHd(X, q)/lm is finite.
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Motives of quadrics

Alexander Vishik

The talk concerns the motivic structure of projective homogeneous varieties,
namely, the largests class among them, the quadrics. These questions are empty
over algebraically closed field, and give us an opportunity to study in a compressed
form the effects which distinguish the algebraically closed field from the arbitrary
one.

For the smooth projective quadric Q over the field k of characteristic not 2, let
M(Q) be its motive in the category Chow(k) of Chow motives over k. Over the
algebraic closure k, our quadric becomes completely split, and so, cellular. This
implies that M(Q|k) becomes isomorphic to a direct sum of Tate motives:

M(Q|k) ∼= ⊕λ∈Λ(Q)Z(λ)[2λ].

Then the same happens to an arbitrary direct summandN ofM(Q), and we obtain
a subset Λ(N) ⊂ Λ(Q). This permits to define the following equivalence relation:
for λ, µ ∈ Λ(Q) we say that λ and µ are connected in Λ(Q), if, for any direct
summand N of M(Q), λ ∈ Λ(N) ⇔ µ ∈ Λ(N). The resulting decomposition of
Λ(Q) into connected components is called the Motivic Decomposition Type. This is
an important discrete invariant of quadrics, and its interaction with such classical
invariant as the Splitting Pattern gives many results about both. The natural
question arises: What values of MDT are possible? This question for an arbitrary
quadric can be easily reduced to that for an anisotropic quadric, and in the latter
case, one shows that each connected component consists of an even number of
elements. So, the minimal cardinality of such a component is two. As was shown
by M.Rost ([3]), there is class of anisotropic quadrics where all the components are
“binary” (consist of just two elements). These are, so-called, excellent quadrics.
Examples include: Pfister quadrics, as well as anisotropic real quadrics of all
dimensions. In general, in a given dimension, excellent quadrics are the best ones
you could find. Our Main Theorem is the following:
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Theorem 1. All connections between Tate-motives which are present in the mo-
tives of an excellent quadric are also present in the motive of any anisotropic
quadric of the same dimension.

This result puts severe restrictions on the possible values of MDT as one can
apply it not only to Q but to anisotropic parts of it over various field-extensions.
As a corollary we get an estimate from below on the rank of an indecomposable
direct summand in the motive of a quadric in terms of its dimension:

Theorem 2. Let N be an indecomposable direct summand in the motive of some
anisotropic quadric. Let dim(N) + 1 = 2r1 − 2r2 + . . . + (−1)s−12rs, where r1 >
r2 > . . . > rs−1 > rs + 1 ≥ 1. Then:

(1) rank(N) ≥ 2s;
(2) Moreover, we can say, which particular 2s Tate-motives are present in Nk.

As a corollary we get the Binary Motive Theorem:

Theorem 3. ([1, Theorem 6.1]) Let N be a binary indecomposable direct summand
in the motive of some quadric. Then dim(N) = 2r − 1, for some r.

and the theorem of N.Karpenko on i1(q):

Theorem 4. (N.Karpenko, [2]) Let q be an anisotropic quadratic form of di-
mension m. Then (i1(q) − 1) is a remainder modulo 2r of (m − 1), for some
r < log2(n− 1).

The bound from Theorem 2 is optimal:

Proposition 5. In the notations of Theorem 2, for any given dimension, there
exists an indecomposable direct summand N (in the motive of some anisotropic
quadric), such that dim(N) is as prescribed, and rank(N) is exactly 2s.

In certain cases, it is also possible to produce the bound from above.

Theorem 6. Let N be a direct summand of M(Q), such that dim(N) = dim(Q) =
2r − 1, for some r, and Λ(N) does not contain (2r−1 − 2i), for 0 ≤ i ≤ n − 2.
Then N is binary.

This result shows that instead of checking dim(N) different Tate-motives you
need to deal only with log2(dim(N)) of them. The methods of proof of this result
are somewhat interesting and are similar to the proof of the, so-called, Main Tool
Lemma ([4, Corollary 3.5]), the result concerning the field of definition of Chow
group element, which has many applications and extensions in various directions.
As such an extension, let me formulate the integral version, which is new:

Theorem 7. Let Q be smooth projective quadric, and Y be smooth quasiprojective
variety over the field k. Let y ∈ CHm(Y |k). Suppose:

• m < dim(Q)/2;
• m is not divisible by 2r - the smallest power of two ≥ i1(q).

Then:
y is defined over k(Q) ⇔ y is defined over k.
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In the case of Pfister quadric, the second condition follows from the first one,
and since the Pfister quadric is a Norm-variety for the pure symbol modulo 2, we
get:

Theorem 8. Let k be a field of characteristic not 2, and r ∈ N. Then there exists
a field extension E/k such that:

1) KM
r (E)/2 = 0;

2) For any smooth quasiprojective variety Y/k, for any m < 2r−1 − 1, the
respective restriction map on Chow groups is surjective:

CHm(Y )։ CHm(YE).

Thus, the mod 2 and degree r cohomological invariants of algebraic varieties
can not affect rationality of cycles of codimension up to 2r−1 − 2 (and it is easy
to see that this bound is sharp).
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Motivic cohomology and special values of Dedekind zeta-functions

Stephen Lichtenbaum

We explain a general philosophy of how special values of zeta-functions of num-
ber fields ought to be given by products of Euler characteristics of cohomology
complexes.

Let X be an arithmetic scheme, i.e. a scheme of finite type over Spec Z. The
scheme zeta-function ζ(X, s) of X is given by

ζ(X, s) =
∏

x∈|X|

(1 −N(x)−s)−1,

where |X | is the set of closed points of X and N(x) is the cardinality of the
residue field κ(x). In good cases, and possibly in all cases, we can extend ζ(X, s)
to a meromorphic function in the plane.

We would like to give formulas for the order an of the zero and the leading term
ζ∗(X,n) of ζ(X, s) at s = n, a non-negative integer.

If X is projective and smooth over a finite field, modulo generally accepted
conjectures we can express ζ∗(X,n) as the Euler characteristic of the Weil-étale
version of the motivic complex of sheaves Z(n) multiplied by an alternating product
of Euler characteristics of coherent sheaves. The order of the zero is given by the
generalized rank of the motivic complex.
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Our goal is to find analogous formulas when X is SpecOF , and OF is the
ring of integers in a number field F , and to discuss their relations with the usual
functional equation, We close by pointing out that the coherent contribution to
ζ∗(X,n) in the case of a projective smooth curve X over the finite field with q
elements is given by

qnχ(X,OX )−(n−1)χ(X,Ω).

This is replaced in the number field case by

(χ(OF )n)(χ(D(−1))−(n−1)),

where D−1 is the inverse different. In the geometric case the coherent cohomology
groups are finite and so do not contribute anything toward the order of the zero,
but in the number field case these groups are only finitely generated, and so their
ranks must be taken into account.

Reporter: Matthias Wendt
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