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Introduction by the Organisers

The computer simulation of problems with various scales is relevant almost ev-
erywhere in applications ranging from material design with microstructures in
engineering to atomistic phenomena in macroscopic simulations in physics and
biology. The Oberwolfach workshop Computational Multiscale Methods brought
together well-established and younger scientists from various communities to study
and discuss an emergence of methods that replace heuristics and empirical obser-
vations in coarse scale physics by direct numerical simulations of more accurate
models defined on finer scales. This is a timely topic since computers are now
powerful enough for these simulations, but it is still far from achievable to just use
microscale computations for most macroscale phenomena. The development of
mathematical analysis and new numerical algorithms that can couple the different
scales are needed to fill in the gap.

Multiple scales in layers-within-layers microstructures in material sciences of
solids were an important topic during the meeting. Georg Dolzmann discussed an
overall algorithm with numerical relaxation on the microscopic scales and the is-
sue of data representation. The computational approaches to time evolving models
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were discussed by Klaus Hackl and Tomas Roubichek with a focus on shape mem-
ory alloys and rate-independent processes as they arise naturally e.g. in elasto-
plasticity. Wolfgang Hackbusch suggested the use of H-matrices in some direct
approximation of some projected inverse on the fine-scale to compute efficiently
on coarser scales. Ralf Kornhuber proposed a hierarchical domain decomposition
algorithm to separate fractures from the porous matrix. Uri Ascher applied fast
multiscale algorithms in the denoising of 3D surface meshes with fine scale textures
and sharp edges.

The efficient computation in multiscale algorithms leads to new directions in the
numerical analysis. Giovanni Samaey illustrated the use of approximate coarse-
scale models in equation-free multiscale algorithms. To run large multiscale prob-
lems on parallel computers, Alfonso Caiazzo set a framework for distributed mul-
tiscale simulations.

A further new aspect is the a posteriori error estimation and the assessment
of computed approximations on all scales. Axel Malquist and Serge Prudhomme
reported on adaptive multiscale modeling via numerical homogenization and adap-
tive variational multiscale methods.

The quasicontinuum approximation is an effective way to compute a large num-
ber of particles, as Ping Lin pointed out for static and dynamic applications. Fred-
eric Legoll justified a reduced model for an effective computation in material sci-
ence by asymptotic tools of probability at constant temperature. Mitchell Luskin
discussed sharp stability estimates for some popular atomistic-to-continuum cou-
pling methods currently used by scientists and engineers. He proposed that these
kind of sharp stability estimates are essential for evaluating the predictive capa-
bility of such atomistic-to-continuum coupling methods for atomistic instabilities
such as fractures, dislocation movement, or crack tip propagation and discussed
several examples. He also discussed the need to distinguish whether the break-
down of an error analysis before atomistic instability is an artifact of the analysis,
or whether the particular quasicontinuum method actually predicts an instability
incorrectly. Pingbing Ming presented a multigrid method for molecular mechanics
based on the Cauchy-Born rule. Besides the huge number of particles, the differ-
ent time-scales are a numerical challenge as pointed out by Petr Plechac during
his presentation of the implicit mass-matrix penalization for the numerical inte-
gration and sampling of large particle systems with dynamics on multiple scales.
Yi Sun investigated the heterogeneous multiscale method for simulating epitax-
ial growth and neuronal network dynamics with kinetic Monte-Carlo simulations.
Anders Szepessy discussed the accuracy of molecular dynamics and accurate ap-
proximations of the time-independent Schrödinger observables named after Born-
Oppenheimer, Smoluchowski, Langevin, and Ehrenfest.

Besides mathematicians, some leading engineers on computational micro-
mechanics presented their vision and algorithms. Peter Wriggers exploited the
FE2 method, which employs one macroscopic finite element mesh and, for each
material point under consideration in some numerical quadrature, some further
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discretisation to model the fine material properties. The computations on the fine
scales are very costly and so Jörg Schöder and Daniel Balzani suggested some fur-
ther approximation of the microscopic material by some substitute computed by
some least-square fit under the constraint of conserving several statistical charac-
teristic quanitities. Each justification of this and the balance of various discretisa-
tion errors on the different levels of the FE2 computation were vividly discussed.
The efficient multiscale analysis for non-linear structural problems was highlighted
by Olivier Allix.

Not only multiscale problems in solids were studied during this week. Weiqing
Ren discussed multiscale problems in complex fluid flow simulation. He suggested
a special coupling of marco- and micro-models in connection with the evolution
of such fluids. The mechanical behaviour of biomembranes in the liquid crystal
phase was discussed by Pingwen Zhang. Some hybrid particle-continuum method
was introduced by Alexander Donev for the hydrodynamics of polymer chains.
Eun-Jae Park studied conservative multiscale methods for Darcy-type equations.

The aforementioned algorithms are essentially based on a separation of scales
and there were also visions beyond that during the workshop. Leonid Berlyand
explained his transfer-property approach to the homogenization of problems with
non-separated scales. Daniel Peterseim responded and presented the first finite ele-
ment analysis of particle reinforced composites with comparable numerical results.

This workshop on Computational Multiscale Methods clearly demonstrated
that the field is very active and currently enjoys great progress with many new
important results. The workshop also demonstrated that further development
of computational multiscale methods strongly benefits from interaction between
mathematical analysts, computational experts, and scientists from the many fields
with multiscale systems. Many promising results were presented and it is clear
that in the future more challenging multiscale processes can be computed with first
principle or microscale accuracy even for system wide or macroscale phenomena.





Computational Multiscale Methods 1601

Workshop: Computational Multiscale Methods

Table of Contents

Uri Ascher (joint with Hui Huang)
Fast denoising of 3D surface meshes with fine scale texture and sharp
features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1603

Daniel Balzani (joint with Jörg Schröder, Dominik Brands)
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Tomáš Roub́ıček
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Abstracts

Fast denoising of 3D surface meshes with fine scale texture and sharp

features

Uri Ascher

(joint work with Hui Huang)

Grahics objects are typically represented in 3D by a triangle surface mesh. We
discuss techniques for faithfully reconstructing such surface models with different
features. Some such objects contain visually meaningful components on different
scales or detail, and typically require very fine meshes to represent them well.
Others consist of large flat regions, long sharp edges and distinct corners, and
the required mesh for adequate representation can often be much coarser. All of
these models may be sampled very irregularly, unlike in typical image processing
applications.
For models of the first class, we methodically develop a fast multiscale anisotropic
Laplacian (MSAL) smoothing algorithm that is capable of retaining fine scale tex-
ture as well as mesh irregularities [1].
To reconstruct a piecewise smooth CAD-like model in the second class, we design
an efficient hybrid algorithm involving the multiscale algorithm of [1] and based
on specific vertex classification, which combines K-means clustering and geometric
a priori information. While denoising, our method simultaneously regularizes over
featureless regions and preserves edge sharpness [2]. Hence we have a set of al-
gorithms that efficiently handle smoothing and regularization of meshes large and
small in a variety of situations.

References

[1] H. Huang and U. Ascher. Fast denoising of surface meshes with intrinsic texture. Inverse
Problems, 24 (3):034003, 2008.

[2] H. Huang and U. Ascher. Surface mesh smoothing, regularization and feature detection.
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Statistically Similar RVEs for FE2-Simulations

Daniel Balzani

(joint work with Jörg Schröder, Dominik Brands)

1. Introduction

A suitable numerical tool for the prediction of the mechanical behavior of micro-
heterogeneous materials, as e.g. advanced high strength steels, is the FE2-method,
see e.g. Smit et al. [7], Miehe et al. [4], Schröder [6]. In this context a mi-
cromechanical boundary value problem is solved at each macroscopic Gauss point,
where the discretization of a representative volume element (RVE) reflecting the
real microstructure is taken into account. In order to obtain an efficient simulation
tool which leads to reduced computational costs less complex RVEs are required.
A method for the determination of substructures that are statistically similar to
more complex two-phase microstructures with fixed inclusion morphologies is pro-
posed in Povirk [5]. There, the author optimizes a periodic statistically similar
substructure by minimizing a least square function considering the power spectral
densities of the real microstructure and the substructure, where only a simple ge-
ometry of the inclusions is considered. Motivated by this work we propose a more
general method for the generation of statistically similar RVEs (SSRVEs) much
smaller than typical RVEs, cf. [1], [3] and where an arbitrary morphology of the
inclusion phase can be taken into account.

2. Construction of Statistically Similar RVEs

Here, the SSRVE is obtained by minimizing a least-square functional accounting
for the volume fraction and the spectral densities (SD’s) of a given random mi-
crostructure (target structure) and the SSRVE to be generated. For this purpose
we consider the objective function

L(γ) :=
1

NxNy

Nx∑

m=1

Ny∑

k=1

(
Preal

SD (m, k) − PSSRV E
SD (m, k,γ)

)2
+

(
1 − PSSRV E

V (γ)

Preal
V

)2

which should become minimal. The statistical measures describing the inclusion
phase of the given (real) microstructure and the SSRVE are denoted by (•)real

and (•)SSRV E . The first statistical measure is the discrete spectral density

PSD(m, k) :=
|F(m, k)|2
2πNxNy

with F =

Nx∑

p=1

Ny∑

q=1

exp

(
2iπmp

Nx

)
exp

(
2iπkq

Ny

)
χ(p, q) ,

wherein the discrete Fourier transform F is mainly governed by the indicator func-
tion χ defined to be equal to one if the position is in the inclusion phase and equal
to zero else. In addition to that we consider the volume fraction PV of the in-
clusion phase as an additional penalty term in the objective function. The vector
γ describes the parameterization of the two-dimensional inclusion phase morphol-
ogy; here it consists of the coordinates of sampling points of splines which are used
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for the parameterization. In order to get reasonable results it may be necessary
not to consider the spectral density at a very fine resolution level. Therefore, first
the SD is computed at a high resolution, then it is rebinned such that a lower
resolution is obtained, then it is normalized and finally a relevant area is extracted
by defining a threshold value, for details see [3].
A specific discrete image resolution is obviously the computation base for the spec-
tral density and the volume fraction. Hence, this leads to a non-smooth function
and precludes the application of standard gradient-based optimization procedures.
To overcome the difficulties arising from the particular minimization problem a
moving frame algorithm is applied, cf. [2].

3. Numerical Example

For a demonstration of the applicability of the previously described method we
consider a randomly generated microstructure as a target structure, where we are
able to calculate virtual experiments as a reference.

Target structure Type I Type IV

a) b) c)
nele = 1888 L = 0.022, nele = 174 L = 0.0055, nele = 496

Figure 1. FE-discretizations with relevant spectral densities for
the a) target structure and the SSRVE b) type I and c) type IV.

In Fig. 1a the Finite-Element discretization by 1888 triangular elements with qua-
dratic ansatz functions and the relevant area of the spectral density is shown for
the chosen target structure. For the generation of the SSRVE we consider four
different types of inclusion morphologies: one inclusion with three sampling points
(type I) leading to convex inclusions, one inclusion with four sampling points (II)
and two inclusions with three (type III) and four (type IV) sampling points each.
Then the optimization process is performed and the resulting microstructures for
type I and IV are shown in Fig. 1b,c. As can be seen the spectral density of type
IV is more similar to the one of the target structure. This is also reflected by
the lower value of the objective function L = 0.0055 compared to type I where
the value is L = 0.022. This is somehow obvious since the complexity of the
microstructure increases for an increasing number of sampling points (degrees of
freedom in the objective function). The increasing complexity is also observable by
the increasing number of finite elements required for the discretization. In order
to study the SSRVEs capability to reflect the mechanical response of the target
structure we compare the stress-strain response of the SSRVEs with the response
of the target structure in three virtual experiments: tension in i) horizontal and
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ii) vertical direction, and iii) shear. Fig. 2 compares the stress-strain curves of the
SSRVEs with the target structure.
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Figure 2. Stress-strain response of the target structure and the
SSRVE types I to IV for the three virtual experiments.

For the vertical tension test all SSRVEs fit the curve accurately. But for the shear
test and especially for the horizontal tension test there is a significant discrepancy
between the results of types I, II, III and IV. In addition, we observe a decreasing
error for increasing degrees of freedom in the SSRVE generation for the horizontal
tension test. Summarizing, type IV leads to the best mechanical results while
having the most complex inclusion morphology.

Acknowledgement: The financial support of the “Deutsche Forschungsgemein-
schaft” (DFG), project no. SCHR 570-8/1, is gratefully acknowledged.
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Homogenization of elasticity equations without scale separation

Leonid Berlyand

1. Homogenization of elasticity equations without scale separation

In this joint work with H. Owhadi (Caltech), we investigate the homogenization of
divergence form elliptic (scalar and vectorial) equations with arbitrary bounded co-
efficients (in particular, in situations where assumptions of scale separation and/or
ergodicity are not satisfied). We prove the existence of an h- basis that is supe-
rior to standard piecewise polynomial bases with the same number of degrees of
freedom. We obtain an explicit error constant for h-basis approximations, which
is independent of the contrast of the material and geometry of its microstructure.
We also discuss minimization of the number of ”cell” (precomputed) problems for
homogenization with arbitrary bounded coefficients and show that this issue is
related to a new class of elliptic inequalities. Finally, we will discuss potential
applications of this work ranging from brain damage and virtual liver surgery to
reservoir modeling and upscaling of atomistic models.

2. Modeling and Analysis of suspensions of active swimmers

This work is devoted to the transition from the well developed modeling and
analysis of passive suspensions to active suspensions (namely, bio-suspensions).
Modeling of bacterial suspensions and, more generally, of suspensions of active
microparticles has recently become an increasingly active area of research. The
focus of our work is on the development and analysis of a mathematical PDE
model for the multiscale problem of bacterial suspensions. In recent works on
the effective viscosity of dilute bacterial suspensions (with Aronson, Haines and
Karpeev) explicit formulas have been obtained for the effective viscosity of such
suspensions in the limit of small concentrations. These formulas includes the two
terms that are found in the Einsteinś classical result for passive suspensions. To
this, our main result added an additional term due to self-propulsion (including
stochastic tumbling) which depends on the physical and geometric properties of the
active suspension. This term explains the experimental observation of a decrease
in effective viscosity in active suspensions. We also performed asymptotic analysis
of the swimming patterns of bacteria (with Aronson, Gyrya and Karpeev). Here
interactions between bacteria are taken into account (unlike in the dilute limit).
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Complex Automata: distributing simulations across scales

Alfonso Caiazzo

(joint work with D.Evans, J.L. Falcone, J.Hegewald, E.Lorenz, B.Stahl, D.Wang,
J.Bersndorf, B.Chopard, R.Hose, M.Krafczyk, A.G.Hoekstra)

1. Introduction

Complex Automata (CxA) has been recently introduced as a paradigm for multi-
scale modeling and simulation (see e.g. [1]) The basic idea behind CxA is that a
multiscale process can be decomposed into a set of single scale interacting mod-
els, each considered as an Automaton, i.e. an independent computational entity
communicating with the others.

To build a Complex Auotmata model, a given multiscale system is represented
on a Scale Separation Map (SSM), a cartesian plane where horizontal and
vertical axes represent the temporal and spatial scales. Within this picture a single
multiscale algorithm can be drawn as a big box, resolving a wide range of scales,
e.g. from micro- to macroscale, and from very fast to very slow processes. The
computational approach consists in decomposing this complex system in several
single scale models, i.e. simpler algorithms, focusing on particular scales (see for
example figure 1).

We further restrict these single scale models to have a common evolution loop,
considering Cellular Automata, lattice Boltzmann, or Agent Based Models. This
assumption is not restrictive, as many physical and biological system can be de-
scribed with those classes of algorithms.

The relevant achievements of this work can be summarized as follows. Starting
from the assumptions on the structure of the single scale models, the theoretical
concepts of CxA have been implemented in multiscale coupling library (MUS-
CLE), a CxA dedicated software environment. This framework will be useful for
realizing complex coupling configurations, allowing flexibility in the use of different
native codes for the single scale solvers, as well as the necessary software ingredi-
ents to implement multiscale coupling templates. From the application point of
view, we investigate an original coupled model for in-stent restenosis (a maladap-
tive response of a blood vessel to injury caused by the deployment of a stent),
a biomechanical process modeled by coupling a Lattice Boltzmann model (blood
flow), Agent Based model (biological tissue) and a Finite Difference Scheme (drug
diffusion). Preliminary simulation results of the CxA setup will be shown.

2. MUSCLE: a multiscale coupling library

The conceptual ideas behind the CxA approach (decomposition in single scale
models, restriction to a common instruction flow and specification of finite number
of coupling templates) have been used to develop MUSCLE (MUltiscale Coupling
Library and Environment, http://developer.berlios.de/projects/muscle/)
a software environment where a CxA can be implemented naturally [2].
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temporal scale

P1

P2

P3

dx1

dx2

dt1 dt2

spatial scale

Figure 1. Example of SSM: a multiscale process (dashed edges
box) has been decomposed in 3 coupled single scale models.

The library is based on JADE (www.jade.tilab.com), a multiagent JAVA plat-
form, where both the kernels of the simulation (i.e. the single scale models) and
the conduits (i.e. the coupling templates) are treated as agents.

This allows a complete independence from native codes (and their programming
languages), which can be replaced with different sources, provided the interface
with respect to the framework remains the same. Furthermore, the fact that
coupling interfaces are computational agents allows the implementation of complex
communications (smart conduits), where multiscale couplings can be performed.

It is important to remark that the single scale models do not need to be aware
of each other, and the information concerning the coupling and the global CxA
setup are held by the framework.

In practice, the CxA setup and the use of multiagent coupling library realizes
a natural distribution of the computational work among the different scales.

In the particular application described below, we implement the mutual cou-
pling of three single scale models written in FORTRAN90, C++ and JAVA.

3. A Multiscale model for in-stent restenosis

A stenosis is a narrowing of a blood vessel lumen due to the presence of an
atherosclerotic plaque. This can be corrected by balloon angioplasty, after which
a stent (metal mesh) is deployed to prevent the vessel from collapsing. The injury
caused by the stent can lead to a maladaptive biological response of the cellular
tissue (mainly smooth muscle cells). The abnormal growth can produce a new
stenosis (re-stenosis). Additionally, stents may be coated with active compounds
which, can prevent proliferation of smooth muscle cells and neointimal growth
(see [3] for a more complete discussion on the multiscience and multiscale nature
of in-stent restenosis).

We describe, showing preliminary simulation results, a simplified two dimen-
sional CxA setup for in-stent restenosis, coupling a lattice Boltzmann blood flow
(BF) solver, an agent based model for the Smooth Muscle Cells (SMC) dynamics
and a Finite Difference scheme for the Drug Diffusion (DD) within the cellular
tissue [4] .
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Figure 2. The Connection Scheme, showing the single scale
models (BF, SMC, DD), the Initialization agent, and the conduits
connectivity. For each single scale models it is specified whether
it is mesh-based (BF, DD) or Agent-based (SMC).

Coupling Relations. The BF is the fastest process (periodic, time scale of
O(s)). It is approximated via an incompressible fluid, undergoing a periodic pulse
(with 1-second period), whose domain needs to be updated after each changes
in smooth muscle cells configuration. The DD process is modeled solving an
anisotropic diffusion equation, with an intermediate time scale (diffusion of com-
mon drugs relaxes to steady state in O(h)), with a FD scheme. As for the BF,
the diffusion domain (the cellular tissue) needs to be updated according to the cell
geometry. SMCs (time scale of cell cycle is of the order of 1 day) are modeled using
an Agent Based solver, where each single cell is an agent, able to react to physical
forces exerted by other agents, and evolving according to a set of biological rules,
which governs cell proliferation. Through these rules, depending on fluid stresses
near the vessel boundary and on drug concentration within the tissue, the agents
are coupled to the rest of the model (figure 2).

Acknowledgements. This research is supported by the European Commis-
sion, through the COAST project (www.complex-automata.org, EU-FP6-IST-
FET Contract 033664). Alfonso Caiazzo is supported by an ERCIM ” Alain
Bensoussan ” fellowship programme.
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A fully discrete scheme for the computation of microstructures in

solids

Georg Dolzmann

(joint work with Sergio Conti)

The computation of microstructures in solids is a challenging problem at the in-
terface between mathematical analysis, algorithmic and numerical methods, and
materials science. Even the characterization of stationary states is a subtle issue
since they frequently do not exist in a classical sense. The fundamental obstacle is
a lack of convexity of the free energy density and correspondingly a failure of weak
lower semi-continuity of the variational integrals. In such a situation one typically
observes that minimizing sequences develop oscillations at finer and finer scales.
The weak limit is not a minimizer of the variational problem, but the gradient
Young measure associated to the sequence of deformation gradients captures the
correct statistical information about the oscillations in the minimizing sequence.

In this talk we propose a fully discrete scheme based on the computation of an
approximation to the relaxed energy density and the minimization of the relaxed
functional; for semi-discrete schemes see [1]. More precisely, we let

I[u] =

∫

Ω

W (Du)dx , Iqc[u] =

∫

Ω

W qc(Du)dx

where W qc is the quasiconvex envelope of the energy density W , see [4] for the
relations between I and Iqc. Only in exceptional cases a closed formula for W qc

has been derived and hence the macroscopic properties of the solution of the
elasticity problem cannot be computed numerically by simply resorting to the
relaxed variational problem Iqc. Therefore we propose a novel algorithm for the
concurrent computation of the relaxed energy density W qc and a finite element
minimizer uh. In order to focus on the aspects concerning the approximation of
the relaxed problem we assume that the finite element scheme is based on Courant
elements (piecewise affine and continuous) on a regular triangulation.

The fundamental approximation step consists of seeking a first order laminate
with center of mass equal to F for the approximation of

W qc(F ) ∼W (1)(F ) = inf
λ,a,n

[
λW

(
F + (λ− 1)a⊗ n

)
+ (1 − λ)W

(
F + λa⊗ n

)]
.

Formally, the laminate can be written as a probability measure

ν = λδF+(λ−1)a⊗n + (1 − λ)δF+λa⊗n(1)

where λ ∈ [0, 1], a ∈ R2 and n ∈ S1 describe the four free parameters for a simple
laminate in 2 × 2 matrices. For simplicity we assume here that n = m = 2, the
generalization to arbitrary dimensions is straightforward.

Our numerical scheme is based on two design principles:
(a) The relaxed energies that are explicitly known in the literature share the

common feature that the formulas giving the relaxed energies via a laminate of
first or second order change smoothly in F and the characteristic features (e.g.
the change from a first order laminate to a second order laminate) happen across
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x

f(x)

Figure 1. Typical situation in the convexification along a rank-
one line: the graph has convex and concave parts. In this case,
the convexification agrees between the two (local) minima of f
with the affine supporting function. This is indicated by the red
segment on this line.

certain hypersurfaces. This suggests that a laminate at a given point F should
provide us with a good initial value for the computation of a laminate at a point
F + ∆F with ∆F small.

(b) If we consider the energy W along a rank-one line, then there are typically
three distinct regions in which the energy is (i) convex and agrees with the convex
envelope along this line, is (ii) convex but does not agree with the convex envelope
along this line, is (iii) concave, see Figure 1. In the concave regions, the energy
is typically significantly larger than the convexification along this line and an
optimization scheme will lead to a good result. On the other hand, in convex
regions where the energy does not agree with the convex envelope, the difference
between these two energies can be quadratically small and optimization algorithms
might not be able to detect this difference. This fact motivates to include in the
algorithmic strategy steps in which information about microstructure is shared on
a more global and less local scale.

The approximation of W (1) is based on a discretization of a box [−L,L]m×n in
the space of all deformation gradients. Note that most of the physically relevant
energies are frame indifferent, that is, W (F ) = W (QF ) for all Q ∈ SO(n). Hence
one only needs to store the symmetric part U of a given deformation gradient.
This discretization is realized as a tree T which is initialized at the center of the
box with a corresponding microstructure. Each node in T contains four values
describing a laminate and 2mn pointers to the subcubes that one obtains with
a dyadic decomposition of the given cube into 2mn congruent ones with half the
length of the one-dimensional edges. Fix a parameter ǫ > 0.

Algorithm: Computation of W qc(F ) and DW qc(F ):

(1) locate the smallest box within T that contains F ; let Z be it’s center;
(2) if |F −Z| < ǫ, use the laminate at Z as an initial value for an optimization

scheme for the minimization over first order laminates at F represented as
in (1) and return

W qc(F ) ∼
∫

Mm×n

W (A)dν(A) , DW qc(F ) ∼
∫

Mm×n

DW (A)dν(A) ;
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F = QU

Figure 2. Sketch of the discretization in matrix space for W (1)

and in Ω for the deformation uh in a finite element space.

(3) if |F − Z| > ǫ, divide the cube into 2mn congruent subcubes, compute a
laminate at the center of the subcube containing F and return to Step 1.

Depending on a global criterion, e.g., a certain number of evaluations of the ap-
proximation of the energy or after a certain number of iterations in the global
minimization for the elasticity problem, one performs at least once and possible
multiple times a global tree improvement step:

(4) for all children in T minimize over first order laminates with all the lam-
inates from neighboring cubes as initial values and pick the optimal one
giving the smallest energy as the new approximation on this cube.

Remarks: (a) This scheme clearly separates the discretization in the finite el-
ement method and the discretization in matrix space. Consequently, the scheme
can be used on a parallel computer.

(b) The global improvement step (4) can be implemented in several ways. One
option is to proceed in the spirit of a multigrid method and use the hierarchical
structure of the dyadic cubes to realize the propagation of information on a more
global basis.

(c) Good benchmark examples are the energy density related to nematic elas-
tomers in [2] for which an explicit formula is known or the energy densities in [3]
which demonstrate the subtle dependence on constraints like incompressibility.

(d) Higher order laminates at a given point F can be realized by recursively
substituting first order laminates for all matrices in the support of the laminate
stored at F .

(e) The tree T is typically sparse since only those subtrees are generated that
contain deformation gradients needed in the solution of the elasticity problem.
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Multiscale Methods for Hydrodynamics of Polymer Chains in Solution

Aleksandar Donev

The hydrodynamics of complex fluids, such as polymer solutions and colloidal
suspensions, has attracted great interest due to recent advances in fabrication of
micro- and nano-fluidic devices. I will first review recent advances in mesoscopic
numerical methods for simulating the interaction between complex fluid flow and
suspended macro molecules and structures. Computational issues at play include
coarse-graining to bridge the large gap in timescales and length scales, coupling
between disparate methods such as molecular dynamics and Navier-Stokes solvers,
the inclusion of thermal fluctuations.

I will then present my recent work at LLNL to develop novel particle methods
for modeling polymer chains in flow. Typically, Molecular Dynamics (MD) is used
for the polymer chains, and the solvent is modeled with a mesoscopic method. In
our algorithm, termed Stochastic Event-Driven Molecular Dynamics (SEDMD) [A.
Donev and A. L. Garcia and B. J. Alder, J. Comp. Phys., 227(4), 2644-2665, 2008],
polymers are modeled as chains of hard spheres and the solvent is modeled using a
dense-fluid generalization of the Direct Simulation Monte Carlo (DSMC) method
[Phys. Rev. Lett., 101, 075902, 2008]. Even with all of the speedup compared
to brute-force MD the algorithm is still time-consuming due to the large number
of solvent particles necessary to fill the computational domain. It is natural to
restrict the particle model only to regions close to a polymer chain and use a
lower-resolution continuum model elsewhere. I will present a hybrid method that
couples an explicit fluctuating compressible Navier-Stokes solver with the particle
method. The coupling is flux-based and generalizes previous work [J. B. Bell and
A. L. Garcia and S. A. Williams, SIAM Multiscale Modeling and Simulation, 6,
1256-1280, 2008] to dense fluids as appropriate for polymer problems.

I will conclude with a look into the challenges of developing a simulation
methodology capable of simulating macroscopic flows of complex fluids with atom-
istic fidelity.

The partial evaluation of the inverse and its relation to multi-scale

problems

Wolfgang Hackbusch

Consider a boundary value problem with the partial differential equation

Lu = f in Ω with L = diva(·)grad

and for instance Dirichlet boundary data u|Γ = g. A fine scale behaviour may be
caused by an oscillatory coefficient a(·) or by a complicated structure of Ω. In the
following we assume that there is a fine grid size h such that the details of a(·) and /
or Ω and consequently of the solution u can be resolved by a discretisation with this
grid size h. On the other hand, in most of the applications one is not interested in
the solution with all its details. Instead one is looking for the meso-scale behaviour,
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i.e., for the (averaged) solution for a meso-scale grid size H (h ≪ H ≪ 1) or one
likes to know several local functionals of the solution.

The classical homogenisation method [1] starts from the operator L and assum-
ing periodic fine-scale behaviour with a period of size ε it produces a homogenised
operator Lhom with constant coefficients. Hence, Lhom can easily be used for a
discretisation Lhom

H with a certain grid size H :

(1)
Lhom → LH → uH := (LH)−1 fH

ր
L → Lcell

h

Note that the computation of the homogenised coefficients of Lhom is usually done
numerically by solving cell problems with step size h < ε. The overall error of the
discrete solution depends on ε (homogenisation error) and H (usual discretisation
error).

In the following we consider the case of a fine-scale behaviour without periodic
structure. A prototype of a solution strategy in this situation is due to T. Hou
([3]),([4]). He proposes a finite element method in a grid of the meso-scale H
from above, but the finite element basis functions bi are (ideally) homogeneous
solutions, i.e. Lbi = 0 in each triangle. Practically, in each triangle one has to
solve boundary value problems by means of a discretisation using a fine grid size
h≪ H. Although the fine scale discretisation Lh of the following diagram is used
only locally, the cost for generating the basis functions bi is at least O(Nh), where
Nh denotes the dimension of the finite element method in the fine grid of size h.

(2)
LH → uH := (LH)

−1
fH

ր
L → Lh

The overall error depends in a special way of both step sizes h and H.
The common property of the approaches (1) and (2) is that they use the fine-

scale discretisation Lh only locally. The introduction of LH produces a further
discretisation error depending of H. The inversion process is done in the end when
the discrete problem LHuH = fH is solved.

Our approach starts again with the fine grid discretisation L → Lh, but the
transition to the meso-scale H is performed on the basis of the inverse matrix
L−1

h :

(3)
Π2,HL

−1
h Π∗

1,H = “L−1
H ”

ր ↑
L → Lh → L−1

h

Formally one can think of projecting L−1
h : V ′

h → Vh (Vh: finite element space

corresponding to h) into Π2,HL
−1
h Π∗

1,H : V ′
H → VH where Πi,H : Vh → VH (i =

1, 2) are the mappings (e.g., projections) of the fine-scale finite element space Vh

into the meso-scale finite element space VH ⊂ Vh. The underlying algorithm does
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not perform the two steps Lh → L−1
h → Π2,HL

−1
h Π∗

1,H , but approximates the map

Lh → Π2,HL
−1
h Π∗

1,H indirectly.
If Π1,H = Π2,H is the interpolation in the coarse-grid nodal points of VH , the

matrix Π2,HL
−1
h Π∗

1,H is of size NH ×NH (NH = dimVH) and coincides with L−1
h

restricted to the row and columns corresponding to the VH nodal points. Hence,
Π2,HL

−1
h Π∗

1,H realised a partial evaluation of the inverse L−1
h . If Ih describes the

index set of all Vh nodal points and IH ⊂ Ih those of VH , another notation of

Π2,HL
−1
h Π∗

1,H is
(
L−1

h,i,j

)
i,j∈IH

.

The numerical algorithm and its cost are explained in detail in Chapter 12

of [2]. In fact, the algorithms yields not only
(
L−1

h,i,j

)
i,j∈IH

from above but
(
L−1

h,i,j

)
i,j∈IH,h

, where IH,h contains all nodal points lying on the boundaries of

the triangles of the VH -finite elements. Differently from (1) and (2), the algo-
rithm directly yields the solution mapping from (f, g), f ∈ VH right-hand side,
g boundary data on Γ, to the restriction (uh,i)i∈IH,h

of the fine-scale solution

uh = L−1
h f. Therefore, the choice of H does not introduce any new discretisation

error. On the hand, the method does not yield a coarse-grid model LH . One may
view Π2,HL

−1
h Π∗

1,H as the inverse of LH as indicated by the quotation marks in

(3). However, then LH :=
(
Π2,HL

−1
h Π∗

1,H

)−1
is a fully populated matrix and not

a sparse finite element matrix. One may ask

• whether there is a sparse L̃H such that Π2,HL
−1
h Π∗

1,H and
(
L̃H

)−1

coincide

up to O(Hσ) (σ: suitable consistency order) in a suitable norm
• or whether there is “homogenised” pde such that the corresponding finite

element discretisation L̃H has the property from above.

To formulate a precise analytic question, one should send h to 0. Then L−1
h

becomes L−1 and Π2,HL
−1
h Π∗

1,H becomes the VH -Galerkin discretisation of the

integral operator Kf(x) :=
∫
Ω
g(x, y)f(y)dy, where g is the exact Green function

of L.
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Multiscale modeling of shape memory alloys

Klaus Hackl

Shape memory alloys posses a natural multiscale structure, starting from different
lattice geometries for the various phases at the atomic scale, continuing with the
specific martensitic microstructures at the microscale up to the polycrystalline
aggregate at the mesoscale. We suggest here a model considering all scales in a
uniform way, based on energetic considerations.

We investigate inelastic materials described by so-called internal or history-
variables. Examples include elastoplastic but also damaged materials or those
undergoing phase-transformations. By investigating associated potentials in a
time-incremental setting it is possible to model the onset of the formation of mi-
crostructures but not their subsequent evolution, [3, 5, 11, 12, 13]. Here, some
general ideas will be presented on how this problem could be treated.

In an isothermal setting and for infinitesimal strains the state of a general in-
elastic material will be defined by its strain tensor ε = 1/2(∇u + ∇uT) and
a collection of internal variables: K. Denoting the specific Helmholtz free en-
ergy by Ψ(ε,K) we introduce thermodynamically conjugate stresses by σ = ∂Ψ

∂ε
,

Q = − ∂Ψ
∂K

. The evolution of K is then governed either by a so-called inelastic po-

tential J(K,Q) or its Legendre-transform, the dissipation functional: ∆(K, K̇) =

sup
{

K̇ : Q − J(K,Q)
∣∣Q

}
. The evolution equations are then given in the two

equivalent forms

(1) K̇ ∈ ∂J

∂Q
, Q ∈ ∂∆

∂K̇
.

The entire evolution problem can now be described in terms of two minimum
principles, where we follow ideas presented in [4, 10, 13]. Considering the Gibbs free

energy of the entire body I(t,u,K) =

∫

Ω

Ψ(∇u,K)dV − ℓ(t,u) the deformation

is given by the principle of minimum potential energy:

(2) u = argmin
{
I(t,u,K)

∣∣ u = u0 on Γu

}
.

Here Ω is the material body, Γu a subset of its boundary and ℓ(t,u) the poten-
tial of external forces. On the other hand introducing the Lagrange functional

L(u,K, K̇) =
d

dt
Ψ(∇u,K) + ∆(K, K̇) we can write the evolution equation (1)

in the form

(3) K̇ = argmin
{
L(u,K, K̇)

∣∣ K̇
}
.

At the level of single crystals we use a partially relaxed energy derived via a
laminate of second order, see [1, 2]. In this sense, the displacement-field on the

microscale u = uhom + upert is decomposed into a homogeneous part uhom =

ε · x and a perturbation-field upert. These perturbations can be mathematically
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expressed by

(4) u
pert
1st =

{
u

pert
A = 1

λA
uA (ξ − i+ 1) , if i− 1 ≤ ξ ≤ i− 1 + λA

u
pert
M = − 1

λM
uA (ξ − i) , else

and

(5) u
pert
I = u

pert
M +

1

λI
(uI − uI−1)

(
x · nM −

I−1∑

k=1

{λk} − (j − 1)λM

)
+ uI−1

(6) u
pert
2nd =





u
pert
1 , if i− 1 + λA ≤ ξ ≤ i ∧ j − 1 ≤ ζ ≤ j − 1 + λ1

u
pert
2 , if i− 1 + λA ≤ ξ ≤ i ∧ j − 1 + λ1 ≤ ζ ≤ j − 1 + λ1 + λ2

...

0 , else

where i = 1, 2, . . . and j = 1, 2, . . . denote the current periodic pattern of 1st order
and second order laminates, respectively. This results in an overall perturbation-
field upert = u

pert
1st + u

pert
2nd . In a straight forward way one obtains

εA = ε +
1

λA
nA ⊗S uA(7)

εI = ε − 1

λM
nA ⊗S uA +

1

λI
nM ⊗S (uI − uI−1) , I = 1 . . .NV(8)

with a ⊗S b = 1
2 (a⊗ b + b⊗ a), u0 = 0, uNV = 0 as strain-states within each

phase-domain.
Here the volume fractions of each martensite-variant λI along with λA =

(1 − λM ), λM =
NV∑
I=1

λI as overall portions of austenite/martensite have been in-

troduced.
Obviously, the perturbed displacement-field is incompatible at the phase-inter-

faces. At this point, however, we assume that the lengthscale of higher order
laminates is infinitely small compared to the one of lower order. Now, compatibility
is satisfied in an averaged sense due to the fact that

(9)

∫

RVE

ε (x) dV = λA εA +

NV∑

I=1

λI εI = ε

holds. With these definitions at hand, the relaxed energy-density can be written
as
(10)

ψ = 1
2ε : C̄ : ε + ε : [(∆C · nA) · uA] + 1

2uA · Ĉ · uA − τ̄ : ε

+ 1
λM

(τ̄ .nA) · uA + C̄ +
NV∑
I=1

{
1

2 λI
(uI − uI−1) · ĈM · (uI − uI−1)

}

−
NV∑
I=1

{τ I · (uI − uI−1)} · nM ,
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where C̄ = λA CA + λM CM , ∆C = CA − CM , C̃ = 1
λA

CA + 1
λM

CM , Ĉ =

nA · C̃ · nA = nA,i C̃ijkl nA,l ej ek, ĈM = nM ·CM · nM = nM,iCM,ijkl nM,l ej ek,

τ̄ =
NV∑
I=1

λI τ I , C̄ = λA CA + λM CM + 1
2

NV∑
I=1

λI τ I : εt
I are used as abbreviations.

Let us generalize the concept introduced now to the polycrystalline case, follow-
ing [9, 7, 8]. An ideal polycrystal will consist of an infinite number of crystallites.
In order to obtain a mathematically more concise and numerically manageable
formulation, we discretize the Young measure over SO3 using a large, but finite
number N of orientations Ri to be chosen randomly and uniformly distributed in
SO3. Consequently, ξi = ξ

(
Ri,x

)
gives the volume fractions of the crystals with

orientation i. This measure is then normalized such that
∑N

i=1 ξ
i = 1.

The rotated transformation strain for the jth variant of crystal i yields

(11) η
ij
t =

(
Ri
)T · ηj

t · Ri

and the elasticity tensor for each orientation may be calculated from

(12) C
ij
pqrs = Ri

tpR
i
uqR

i
vrR

i
wsC

j
tuvw .

Altogether, the energy density of the jth variant within the ith crystal reads

(13) Ψij
(
εij ,ηij

t

)
=

1

2

(
εij − η

ij
t

)
: C

ij :
(
εij − η

ij
t

)
+ αj .

The volume fraction corresponding to this variant within the corresponding crys-
tallite is now denoted as λij . Consequently, mass conservation of each crystal may
be formulated as

(14)

n∑

j=0

λij = 1 for i = 1, . . . , N

and averaging the strains of all variants for all crystal orientations gives the macro-
scopical strain

(15) ε =

N∑

i=1

n∑

j=0

ξiλijεij .

The characteristic flexibility in the material behavior of shape memory alloys
can be explained by their ability to spontaneously transform inbetween austenite
and the different martensitic variants. In a polycrystalline alloy, this effect may
lead to a microstructure of different strains within the different variants and crystal
orientations. The capability of the material to adjust the strains in order to
minimize its specific free energy is mathematically formulated as the relaxation
of the energy for fixed volume fractions λ

(16) Ψrel (ε,λ) = inf
εij





N∑

i=1

n∑

j=0

ξiλijΨij
(
εij ,ηij

t

)
∣∣∣∣∣∣
ε =

N∑

i=1

n∑

j=0

ξiλijεij



 .
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As dissipation functional we choose

(17) ∆(λ̇, |λ0|) = r(λ0)

√√√√
N∑

j=1

ξj

n∑

i=0

(λ̇j
i )

2,

with

(18) |λ0| =

N∑

j=1

ξjλj
0,

with r(λ0) > 0. Simulation results untilizing this approach can be found in [1, 2].
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Subspace Correction for Domains with Mutiple Scales

Ralf Kornhuber

(joint work with H. Yserentant)

Multigrid methods and multiscale finite element methods are closely related in the
sense that in both cases a suitable resolution and decomposition of scales is cruical
for efficiency. In this talk this is illustrated on two examples.

First we consider domains with complicated possibly fractal boundary and ex-
plain how coarse grid basis functions can be suitably adapted by truncation, or,
equivalently, a suitable modification of restriction.

Then we consider a diffusion problem on a multiscale domain involving a net-
work of fractures with width η. The diffusion k0 inside the fractures is much
larger than in the remaining porous matrix. We strive for robustness for η → 0
and k0 → ∞. To this end, we use anisotropic quadrilaterals for the fracture net-
work and usual isotropic triangles in the porous matrix. For the solution of the
resulting discrete problem, we propose a hierachical domain decomposition algo-
rithm seperating fractures from the porous matrix. We prove robust convergence
of the associated subspace correction method and illustrate our theoretical results
by numerical computations.

Finite temperature coarse-graining of atomistic models: a possible

computational approach

Frédéric Legoll

(joint work with Xavier Blanc, Claude Le Bris and Carsten Patz)

In this work, we consider the derivation of reduced models for discrete systems,
along with the design of efficient computational approaches, in a constant temper-
ature setting. In short, our aim is to use standard asymptotic tools of probability
(such as Large Deviations Principles) to design a computational strategy.

Consider an atomistic system consisting of N particles, at positions X =(
X1, . . . . . . , XN

)
∈ R

dN , where d is the space dimension (d=1, 2 or 3). Pro-

vide this system with an energy V (X) = V
(
X1, . . . , XN

)
and allow the particles

to sample Rd. The finite temperature thermodynamical properties of the material
are obtained from canonical ensemble averages,

(1) 〈Φ〉 =

∫

RdN

Φ(X) exp(−βV (X)) dX
∫

RdN

exp(−βV (X)) dX

,

where Φ is the observable of interest and β is proportional to the inverse temper-
ature. Computing such canonical averages is a standard task of computational
materials science. Of course, the major difficulty comes from the N -fold integral,
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where N , the number of particles, is extremely large. One possible method is to
compute (1) as a long-time average

(2) 〈Φ〉 = lim
T→+∞

1

T

∫ T

0

Φ(Xt) dt

along the trajectory generated by the stochastic differential equation

(3) dXt = −∇V (Xt) dt+
√

2β−1 dWt,

where Wt is a standard dN -dimensional Brownian motion.
It is often the case that observables of interest do not depend on the positions

of all the atoms, but only on some of them (for instance, because these atoms are
located in a region of interest, where some particular phenomenon occurs). We
assume that this set of interesting atoms (also called repatoms) is given a priori,
and we denote by Xr their positions. We hence write

X =
(
X1, . . . , XN

)
= (Xr, Xc), Xr ∈ R

dNr , Xc ∈ R
dNc , N = Nr +Nc,

and our aim is to compute (1) for such observables, that is

(4) 〈Φ〉 = Z−1

∫

RdN

Φ(Xr) exp(−βV (X)) dX

where Z =

∫

RdN

exp(−βV (X)) dX , by a cheaper method than (2)-(3).

Another question of interest concerns the free energy of the reduced system,

A(Xr) = − 1

β
ln

∫

RdNc

exp(−βV (Xr, Xc)) dXc.

When Nc → +∞, this energy diverges. The meaningful quantity is the free energy
per (removed) particle, A(Xr)/Nc. Can this quantity be efficiently computed, in
the limit Nc → +∞?

In [1], we have addressed these question in a one-dimensional setting, using
a thermodynamic limit approach (that is, we consider the limit Nc → +∞). It
turns out that actually only the structure of the physical system needs to be one-
dimensional: the space in which the atoms vary may be Rd, d ≥ 1. Our strategy
hence applies to chain-like systems, such as polymers. The output of our study
is an efficient, and apparently new, computational strategy, whose accuracy is
grounded on standard probability theory arguments.

We have considered the case of next-to-nearest-neighbour interactions:

V (X) =

N−1∑

i=1

U1

(
X i+1 −X i

)
+

N−2∑

i=1

U2

(
X i+2 −X i

)
.

The simpler case of nearest-neighbour interactions corresponds to U2 ≡ 0. In the
case of a unique repatom (generalization to the case of several repatoms is easy),
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it turns out that the average (4) can be recast as an expectation value:

〈Φ〉 = E

[
Φ

(
1

N

N∑

i=1

Yi

)]

for random variables Yi that are a realization of a Markov chain. Hence, using a
Law of Large Numbers argument, we can compute a good approximation of the
average (4). In turn, limits of free energies can be handled with classical Large
Deviations arguments.

Such an approach may also be considered as a first step toward the numerical
analysis of methods commonly used in practice [2], and the assessment of the
simplifying assumptions upon which they rely.
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Analysis of Quasicontinuum Approximation: Statics and Dynamics

Ping Lin

We consider that materials are modeled by a large number of atomic particles
where any one of particles interacts with all others. Directly solving the whole
system (the lattice statics) provides a powerful and accurate tool of analysis in
the lattice scale. However, because the number of atomic particles in a material
is huge, it is often impossible to directly solve the whole system to obtain the
material properties. The problem is often simplified by only considering the in-
teraction of one particle with its nearby particles (or even its nearest neighbors).
People believe that the simplified problem is a good approximation to the original
full-interaction problem. But there is no rigorous analysis available. In the 1D
case we provide an estimation of the error between the solution of simplified prob-
lem and the solution of the full-interaction problem for the typical Lennard-Jones
pair interaction potential. The argument applies to other similar pair interaction
potentials as well. From the estimation we can conclude that such simplification
is often good enough for short-range pair interaction potentials.

On the other hand, even for the simplified problem the system is still huge and
impossible to be solved directly. Fortunately in many practical problems defects
only occur in some local, perhaps small, regions. We need to consider the lattice
scale in these small defect regions. This helps with the design of approximation
methods for the simplified problem. Recently quasi-continuum approximation (See
[7, 6]) gains noticeable attention in engineering literatures. The key idea is that
in the region (called local approximation region) where no defects occur we can
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Figure 1. A triangular element in QC

consider it at the macro-scale and the theory of continuum material elasticity may
apply. The QC approximation solves a fully atomistic problem in regions where
the material contains defects and/or has large deformation gradients, but uses
continuum finite elements to effectively integrate out the majority of the atomistic
degrees of freedom in regions of the material where deformation gradients are small.

The QC approximation is incorporated with a computational technique called
nonconforming finite element method. The domain that the material occupied
may be triangulated first. The atomic particles are assumed to deform uniformly
in each triangular element which corresponds to using a piecewise linear function
to approximate the solution in the usual finite element method. We assign a
representative particle in each element. The idea of the quasi-continuum method
is based on the following approximation: the potential energy associated with
any particle in the triangular element is approximately equal to the potential
energy associated with the representative atom (See Figure 1). Note that the
exact solution in a standard finite element error estimate is a solution of continuum
partial differential equations. Here the exact solution is of discrete equations which
are not close to any conventional partial differential equations (See [1, 3]. As an
illustrative example, we consider the system of Figure 1. The total energy reads:

(1) E(z) =
1

2

N∑

i=1

mi∑

k=1

∑

ℓ∈Rk,ℓ 6=k

φ(|zk − zℓ|) +

N∑

i=1

mi∑

k=1

Ef (zk),

where Ef is an energy corresponding to an external force, the letter i is specially
assigned to the index for the i-th triangular element Ei, k is the index for atoms
in the element Ei, atom ki is the representative atom of Ei, mi is the number
of atoms in Ei, and N is the number of triangular elements. | · | represents the
Euclidean length of a vector. The stable configuration (i.e. the “correct” solution)
of the material is identified with the minimizer ẑ of the potential energy E(z):

(2) E(ẑ) = min
z
E(z).
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We assume that in each triangle Ei the atoms are deformed uniformly (piecewise
linear basis functions) and then the QC approximate potential energy reads

(3) Eqc(Z
h) =

1

2

N∑

i=1

mi

∑

ℓ∈Rki

φ(|Zℓ − Zki
|) +

N∑

i=1

mi∑

k=1

Ef (Zk),

where Zh is a vector collecting all positions of atoms at the vertices of triangle
elements, and Zℓ and Zki

are positions of atoms interpolated through positions of
atoms at triangular vertices of Zh. We would like to estimate the error between
the “correct” solution ẑ and the QC solution Ẑh. We recently present a framework
of analysis and for a 2D case we obtain that the discrete error of the QC without

defects is less than C

(
h+

√∑N
i=1

b2i
mi
/M

)
under a few assumptions. Here h is

the element size, M =
∑N

i=1mi is the total number of atoms, mi is the number of
atoms in the triangular element Ei and bi is the number of atoms near at least one
boundary of Ei and is less than a constant times the number of atoms located at
the longest side of Ei. The analysis may also be applied to the case with defects in
a relatively small region. In that case we expect that the discrete error of the QC

is less than C

(
h+

√∑
i∈Ind

b2i
mi
/M +

√
Md/M

)
, where Ind collects all elements

which are not involved with any defects and Md stands for the number of atoms
in those elements involved with defects.

An important direction in multiscale research is the development of algorithms that
allow for dynamic effects to be modeled in an atomistic/continuum framework
without losing the essential philosophy i.e. the systematic removal of a large
fraction of the degrees of freedom and the explicit treatment of only a small subset
of the atoms in the problem. The quasi-continuum and finite element idea may be
applied to approximate material dynamics. This gives a coarse-grained dynamical
model. We realize that the difference between the solutions of the coarse-grained
model and the atomistic model will not generally be small since their frequency
and phase of oscillation are quite different. Then an interesting problem is this:
in what sense may the dynamic QC be good? From the above observation we
expect that the method may possibly be good if there is no oscillatory effect (for
example, in the sense of time average or small damping). We recently relate the
analysis to the theory of conservation laws (p-system) at least for cases with nearest
neighbor interactions (See [2, 5, 4]). The p-system may be of mixed type due to
the nonconvex potential energy. There is no existence and uniqueness theory
available in general. However, it is possible to construct the solution of a Riemann
problem with given admissible conditions (relevant to the small damping term
introduced). We recently sketch an outline of such analysis and present numerical
studies for a very basic nearest neighbour interacting model. We find that the
dynamical solution is the limit of the solution of the damped system if the distance
of any neighboring pair of atoms locates in the convex region of the Lennard-Jones
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potential. Convergence analysis techniques for numerical conservation laws are
fundamental in error analysis of the coarse-grained dynamical model.
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Sharp Stability Estimates for Quasicontinuum Methods: Accuracy

Near Instabilities

Mitchell Luskin

(joint work with Matthew Dobson, Christoph Ortner)

The formation and motion of lattice defects such as cracks, dislocations, or grain
boundaries, occurs when the lattice configuration loses stability, that is, when an
eigenvalue of the Hessian of the lattice energy functional becomes negative. When
the atomistic energy is approximated by a hybrid energy that couples atomistic
and continuum models, the accuracy of the approximation can only be guaranteed
near deformations where both the atomistic energy as well as the hybrid energy
are stable. We propose, therefore, that it is essential for the evaluation of the
predictive capability of atomistic-to-continuum coupling methods near instabilities
that a theoretical analysis be performed, at least for some representative model
problems, that determines whether the hybrid energies remain stable up to the
onset of instability of the atomistic energy.

We formulate a one-dimensional model problem with nearest and next-nearest
neighbor interactions and use rigorous analysis, asymptotic methods, and numer-
ical experiments to obtain such sharp stability estimates for the basic conserva-
tive quasicontinuum (QC) approximations. Our results show that the consistent
quasi-nonlocal QC approximation correctly reproduces the stability of the atom-
istic system, whereas the inconsistent energy-based QC approximation incorrectly
predicts instability at a significantly reduced applied load that we describe by an
analytic criterion in terms of the derivatives of the atomistic potential.

Numerical experiments show that the spectrum of a linearized QCF operator
is identical to the spectrum of a linearized energy-based quasi-nonlocal quasicon-
tinuum operator (QNL), which we know from our previous analyses to be positive
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below the critical load. However, the QCF operator is non-normal and it turns
out that it is not generally positive definite, even when all of its eigenvalues are
positive. Using a combination of rigorous analysis and numerical experiments, we
investigate in detail for which choices of “function spaces” the QCF operator is
stable, uniformly in the size of the atomistic system.

Force-based multi-physics coupling methods are popular techniques to circum-
vent the difficulties faced in formulating consistent energy-based coupling ap-
proaches. Even though the QCF method is possibly the simplest coupling method
of this kind, we anticipate that many of our observations apply more generally.
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Adaptive variational multiscale methods

Axel Malqvist

1. Introduction

The adaptive variational multiscale [2, 3, 4] (AVMS) method is a novel multiscale
method that builds on the combination of:

• The variational multiscale framework [1].
• A systematic technique for numerical approximation of the fine scale part

of the solution based on solving localized subgrid problems on patches.
• A posteriori error estimates and adaptive algorithms that provide control

of numerical error as well as automatic tuning of critical discretization
parameters.

In this abstract we give a condensed presentation of the AVMS method and the en-
ergy norm a posteriori error estimates for an elliptic model problem with multiscale
features in the conductivity, see [3] for further details and numerical examples. A
mixed version of the method is presented in [2] and convection dominated problems
are considered in [4].
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2. The variational multiscale method

We shall study the following model problem: find u such that

(1) −∇ · a∇u = f in Ω, u = 0 on Γ,

where Ω is a polygonal domain in Rd, d = 1, 2, or 3 with boundary Γ, f ∈ L2(Ω),
and a ∈ L∞(Ω) satisfies a(x) ≥ a0 > 0 for all x ∈ Ω has multiscale features.

The variational form of (1) reads: find u ∈ V = H1
0 (Ω) such that

(2) a(u, v) = (f, v) for all v ∈ V ,
with the bilinear form a(u, v) = (a∇u,∇v), for all u, v ∈ V .

The Variational Multiscale method [1] (VMS) is an important framework for
constructing multiscale methods. The idea is to decompose the solution into fine
uf ∈ Vf and coarse uc ∈ Vc scale contributions as follows

(3)
a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,

a(uf , vf ) = (f, vf ) − a(uc, vf ) =: (R(uc), vf ) for all vf ∈ Vf .

The fine scale equation are solved in terms of the coarse scale residual R(uc),
and finally eliminate the fine scale solution from the coarse scale equation. This
procedure leads to the modified coarse scale equation (4) where the modification
accounts for the effect of fine scale behavior on the coarse scales.

(4) a(uc, vc) + a(T R(uc), vc) = (f, vc) for all vc ∈ Vc.

Here T represents an approximate solution operator of the fine scale problem. In
several works various ways of analytical modeling of T are investigated [1].

3. Approximation of fine scales

In the AVMS [2, 3, 4] the fine scale equations in (3) are decoupled and solved
numerically on patches. The idea is to decouple the fine scale equations by includ-
ing a partition of unity in the right hand side of the fine scale part of equation (3)
and then to solve the resulting problems on patches.

We introduce a partition K = {K} of the domain Ω into coarse shape regular
elements K of diameter H and we let N be the set of coarse nodes and let Vc

be the space of continuous piecewise polynomials of degree one defined on K. Let
uf =

∑
i∈N uf,i where

(5) a(uf,i, vf ) = (ϕiR(uc), vf ) for all vf ∈ Vf ,

and {ϕi}i∈N is a partition of unity e.g. the set of Lagrange basis functions in Vc,
be the solution to the decoupled fine scale equations.

We introduce this expansion of uf in the right hand side of the fine scale equa-
tion (3) and get: find uc ∈ Vc and uf =

∑
i∈N uf,i ∈ Vf such that

(6)
a(uc, vc) + a(uf , vc) = (f, vc) for all vc ∈ Vc,

a(uf,i, vf ) = (ϕiR(uc), vf ) for all vf ∈ Vf and i ∈ N .

The next step is to solve the fine scale equations approximately. For each element
in the partition of unity we associate a domain ωi on which we solve Dirichlet
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problems. The local domain ωi contains the support of the element in the partition
of unity and is large enough to give a good approximate solution. The quality of
the solution is controlled by error estimates. We now define the local finite element
space Vh

f (ωi) associated with node i. We refine the coarse mesh on the patch ωi

and let Vh
f (ωi) be the fine part of the hierarchical basis on this mesh.

The resulting method reads: find Uc ∈ Vc and Uf =
∑

i∈N Uf,i where Uf,i ∈
Vh

f (ωi) such that

(7)
a(Uc, vc) + a(Uf , vc) = (f, vc) for all vc ∈ Vc,

a(Uf,i, vf ) = (ϕiR(Uc), vf ) for all vf ∈ Vh
f (ωi) and i ∈ N .

If we just have fine scale features on part of the domain we only solve local problems
for these areas. We denote coarse nodes in these areas F and the rest C. If we
write the method in matrix form we would get,

(8) (A+ T )Uc = b− d,

where A and b are the standard finite element stiffness matrix and load vector and
the T matrix and d vector arises in analogy with equation (4) since T (R(Uc)) is
affine in Uc.

4. A posteriori error estimates

In [2] we present the following a posteriori error estimate for the adaptive vari-
ational multiscale method in the energy norm ‖e‖2

a = a(e, e).

Theorem 4.1. It holds,

‖e‖2
a ≤ C

∑

i∈C

‖HR(Uc)‖2
ωi
‖ 1√

a
‖2

L∞(ωi)
(9)

+ C
∑

i∈F

(
‖
√
HΣ(Uf,i)‖2

∂ωi\Γ
+ ‖hRi(Uf,i)‖2

ωi

)
‖ 1√

a
‖2

L∞(ωi)
,

where

(10) (−Σ(Uf,i), vf )∂ωi
= (ϕiR(Uc), vf )ωi

− a(Uf,i, vf )ωi
, for all vf ∈ V h

f (ω̄i).

Here R(Uc) and Ri(Uf,i) are bounds of the coarse and fine scale residual, Σ(Uf,i)
is a variational approximation [1] of the normal flux ∂nUf,i in L2(∂ωi) , and Vh

f (ω̄i)
is the space of piecewise linear continuous functions defined on a subgrid partition
of ωi that are not required to be zero on the boundary ∂ωi of ωi. We can easily
understand the contributions to the error. If no fine scale equations are solved we
obtain the first term in the estimate; the first part of the second sum measures the
effect of restriction to patches; and finally the second part measures the influence
of the fine scale mesh parameter h. Using these indicators one may construct an
adaptive algorithm for automatic tuning of the size of the patches and the subgrid
resolution, see [3] for details.
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[4] M. G. Larson and A. Målqvist, An adaptive variational multiscale method for convection-
diffusion problems, Comm. Numer. Methods Engrg., 25 (2009), 65–79.

A New Multigrid Method for Molecular Mechanics Model

Pingbing Ming

(joint work with J.R. Chen and W. E)

The total energy of the atomistic model of the crystalline solids can be written as

Etot(y) = V (y1, . . . ,yN ) −
N∑

i=1

fi · yi,

where yi and xi are the positions of the i-th atom in the deformed and undeformed
configurations, respectively, and −fi · yi is the work done by the external force fi

on the i-th atom, The energy V often takes the form:

V (y) =
∑

i,j

V2(yi/ǫ,yj/ǫ) +
∑

i,j,k

V3(yi/ǫ,yj/ǫ,yk/ǫ) + · · · ,

where ǫ is the lattice constant, and V2 is a two-body potential while V3 is a three-
body potential.

The atomic configuration is given by solving the following minimization prob-
lem:

(1) y = argminEtot(y).

The crystal is in equilibrium with applied force f if for any i,

− ∂V

∂yi
+ fi = 0.

Applying the traditional iteration methods to the above minimization problem,
nine out of ten, we either obtain the relevant configurations with high cost or we get
the incorrect configurations. This is mainly due to the fact that the total energy is
nonconvex with respect to the atom positions, which is a natural consequence of the
symmetry of the underlying lattice and the translation invariance of the potential
function [6]. By [4, 5], the elastically deformed state we are looking for is only a
local minimizer instead of a global minimizer. Therefore, once we start with a bad
initial guess, the traditional iteration procedure may lead to either meaningless
local minimizer, or jumps into a local minimizer basin that is far away from the
relevant configuration. Find a good initial guess is of ultra importance to solve (1).
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We have proved in [4, 5] that, under certain stability conditions, around the
solution of the Cauchy-Born elasticity model, there is a local minimizer of the
atomistic model nearby. Motivated by this result, we solve (1) with the solution
of the Cauchy-Born elasticity model as an initial guess.

The Cauchy-Born elasticity model of the crystalline solids can be described as
follows. Let Ω be the domain occupied by the material in the undeformed state.
The displacement field u is determined by the following minimization problem:

u = argmin
v∈X

I(v),

where

(2) I(v) =

∫

Ω

(
W
(
∇v(x)

)
− f(x) · v(x)

)
dx,

where W is obtained from Cauchy-Born rule [1], we refer to [4] for examples of
such stored energy functional W .

Our algorithm can be described as follows:

Step 1: Initialization: solve Cauchy-Born elasticity problem (2) on the 0-th
level with trivial initial guess to obtain ũ0.

Step 2: For i = 1, . . . , l,
(1) Interpolate

ui = Ii
i−1ũi−1,

where Ii
i−1 is the standard finite element interpolation operator.

(2) Solve Cauchy-Born elasticity (2) on the i-th level with initial guess
ui to obtain ũi.

(3) Define the Cauchy-Born state as

yCB = x + ũi(x).

Step 3: Relaxation: solve MM (1) with the Cauchy-Born state yCB as the
initial guess.

We demonstrate the efficiency of this algorithm by test tension in [111] direction
for aluminum (Al). The atoms are interacted with the embedded-atom method
(EAM) potential [3]. We impose the Dirichlet boundary condition on [111] direc-
tion (principal direction), and impose the periodic boundary conditions on both
[112̄] and [1̄10] directions. The hexahedron element with the standard eight-point
Gauss numerical integration scheme is employed to discretize the Cauchy-Born
elasticity problem. We report the stress-strain cure and the log-log plot of CPU
time vs. system size in Figure 1.

In the stress strain curve, at ”.” , linear scaling is preserved; while at ”∇” ,
linear scaling is lost. The elasticity instability firstly occurs at point ”C” since the
macroscopic stability condition [4] does not hold after this critical point. Results
after ”C” are unreliable. The critical strain is about 0.08. By Figure 1, we conclude
that our method is linear scaling. We refer to [2] for other examples that includes
test problems with inhomogeneous deformation.
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Figure 1. Left: Stress-strain curve of Al under tension; Right: CPU
time(Log-log plot).
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Locally conservative multiscale methods for Darcy equations

Eun-Jae Park

This presentation consists of two parts. The first part is based on joint work with
M. Wheeler. We study multiscale mortar mixed finite element discretizations for
model elliptic problems introduced by Arbogast et al. [1]. This approach is based
on domain decomposition theory and mortar finite elements [2]. In this method,
flux continuity is imposed via a mortar finite element space on a coarse grid scale,
while the equations in the coarse elements (or subdomains) are discretized on a
fine grid scale.

We consider an interface problem involving only the mortar pressure which
arises from the mortar mixed formulation. The interface formulation is useful in
deriving a bound on the error in the mortar space. Moreover, it is the basis for
implementation of parallel domain decomposition methods. However, in the previ-
ous work, the mortar pressure error was measured in a semi-norm arising from the
interface formulation. It applies to the case where the model problem is symmetric
positive definite. It should be noted that in many interesting applications, it is
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important to be able to treat more general problems including nonsymmetric ten-
sor coefficients and/or convection-diffusion equations. Moreover, in the nonlinear
case, the use of the superposition principle is not applicable for the error analysis.
Therefore, we introduce a new approach for treating interface problem and prove
various stability estimates based on inf-sup conditions related to the mortar pres-
sure variable. Optimal fine scale convergence is obtained by an appropriate choice
of mortar grid and polynomial space of approximation.

Finally, we discuss recent results treating convection-diffusion equations using
this new approach. We extend the method to treat slightly compressible Darcy
flows in porous media. Parallel numerical simulations on some multiscale bench-
mark problems are given to show the efficiency and effectiveness of the method
[3].

In the second part of the presentation, we introduce so called cell boundary
element (CBE) methods. This part is joint work with Youngmok Jeon. The CBE
method is designed in such a way that they enjoy the mass conservation at the
element level and the normal component of fluxes at inter-element boundaries are
continuous for unstructured triangular meshes. The MsCBE method is based on
recently introduced nonconforming cell boundary element (CBE) methods [7, 6].

Now we introduce a flux preserving elliptic multiscale problem solver (MsCBE).
The multiscale cell boundary element method is a natural extension of the CBE
method to multiscale problems: find vh,ǫ ∈ Vh such that

(1)

∫

ep

[(aǫ∇vh,ǫ · ν] ds = −
∫

ep

[(aǫ∇G) · ν] ds,

where the bubble function G satisfies

(2) −∇ · (aǫ(x) ∇G) = f on T

with the boundary condition G = 0 on ∂T . The finite dimensional multiscale
function space Vh is spanned by functions, which satisfy the homogeneous equation
locally, that is,

(3) −∇ · (aǫ(x) ∇φh,ǫ) = 0 on T

with properly given boundary conditions. We use an oversampling technique to
obtain the local basis (in (3)) as in [8]. Then the MsCBE method yields solution
and its flux conserving flux formula as follows:

(4) uh,ǫ = vh,ǫ +G and aǫ∇uh,ǫ = aǫ∇vh,ǫ + aǫ∇G.
The detailed description and convergence of the CBE and MsCBE methods can
be found in [7, 5].

For comparison purpose, we consider an approximate solution by the multiscale
finite element method (MsFEM, [8]): find ums

h,ǫ ∈ Vh such that

(5)

∫

Ω

aǫ∇ums
h,ǫ · ∇rhdx =

∫

Ω

frhdx, rh ∈ Vh.
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For the MsFEM, the flux-preserving flux recovery formula is not available to the
best of our knowledge. The MsFEM and MsCBE are composed of two processes
to obtain solutions:

• construction of the local basis and bubble function in (3) and (2) (the fine
scale solver)

• the coarse scale FEM or CBE solver ((5), (1)).

It has been observed that fine scale solver as well as coarse grid solver should be
locally mass conservative in order to have flux conservation at the element level.
Moreover, our method is free from the resonance with the mesh size h and ǫ.
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Figure 1. Model domain containing 700 circular inclusions (left)
and high quality triangular mesh with more than 110000 nodes
(right).
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Finite Element Analysis of Particle Reinforced Composites

Daniel Peterseim

Composite materials appear in many practical applications such as the approxima-
tion of effective properties of fiber materials, thermal management in electronics
industry, and optimal design of electric capacitors; to mention only a few. All
these problems have two characteristic features in common: Random microstruc-
tures on multiple scales and high contrast in physical properties. These properties
are already present in the simple 2-dimensional model of a high contrast composite
occupying the domain Q∗ := [−L1, L1] × [−L2, L2]. The (perfectly conducting)
inclusions (filler), denoted by Bi ⊂ Q∗, i = 1, . . . , N , are assumed to be closed
circles of radius ri not intersecting each other. The so-called matrix (the perfo-

rated domain) is denoted by Q := Q∗ \ ⋃N
i=1 Bi. Let Q± := {x | x2 = ±L2} be

the upper/lower boundary of Q and Qlat := ∂Q∗ \ (∂Q+ ∪ ∂Q−) be the lateral
boundary. We are interested in computing the effective conductivity

(1) â := min
v∈V

I[v] :=
1

2|Q∗|

∫

Q

|∇v|2dx,

of the composite, where the space of admissible functions is given by

(2) V := {v ∈ H1(Q) | ∃t ∈ IRN : v(x) = ti on ∂Bi, v(x) = ±1 on ∂Q±}.
A minimizer u ∈ V of (1) fulfills the corresponding Euler-Lagrange equations:

(3)
∆u = 0, in Q, u(x) = ±1, on ∂Q±, ∂u

∂ν
= 0, on Qlat

u(x) = ti, on ∂Bi,
∫

∂Bi

∂u

∂ν
= 0, i = 1, . . . , N.

This model has been introduced in [2] and further been investigated in [3, 1]. Here,
it will serve as a reference example for describing the mathematical challenges
related to composite materials as well as the newly proposed prototype of solution
method.

The main difficulty for a numerical approximation of problem (3) lies in the
complexity of the underlying geometry, i.e. the perforated domain Q. Standard
finite element methods will suffer from the fact that the computation of suitable

Figure 2. A generalized Delaunay mesh (left) and the corre-
sponding generalized finite element approximation indicated by
colors (middle, right).



1636 Oberwolfach Report 29

Figure 3. Construction of the generalized Delaunay mesh (from
left to right): Part of domain Q (equally/non-equally sized inclu-
sions above/below), approximation of Q by regular 6-gons and re-
lated Delaunay partition, approximation of Q by regular 20-gons
and related Delaunay partition, generalized Delaunay partition
and (generalized) Voronoi tessellation of the inclusions.

meshes is expensive, since every hole needs to be resolved by the triangulation in
order to derive satisfactory results from standard finite element approximations;
Figure 1 illustrates the problem for a model situation. This resolution condition
forces even the coarsest available meshes to be very fine, i.e. it forces the mini-
mal mesh size to be of order of the inclusion radii. Due to the shape regularity
requirement the minimal number of nodes in the triangulation will further depend
critically on the distribution of the inclusions and their distances. This is partic-
ularly disadvantageous since problem (3), typically, needs to be solved very often
as a part of a statistical investigation of the material properties.

As a first step towards a new class of finite element models, in [4], we are cur-
rently developing a generalization of triangular meshes which allow to model the
inclusions as weighted vertices. This approach is inspired by the work of Berlyand
[2, 3, 1]. A typical generalized mesh G for equally sized inclusion is depicted in
Figure 2. It is based on the Voronoi tessellation of the inclusions defining a neigh-
borhood relation between the inclusions. G is a subdivision of Q∗ into generalized
vertices (circles), generalized edges (channels) and triangles. The subdivision re-
flects physics in the sense that the potential is mainly determined by fluxes between
neighboring inclusions, whereas fluxes between inclusions of a certain distance can
be neglected (cf. [3]). Such a subdivision can be derived by employing a conver-
gent sequence of polygonal approximations to Q and its corresponding Delaunay
triangulations with respect to the corners as it is illustrated in Figure 3.

Based on these new type of meshes a generalized nodal basis defining a gen-
eralized conforming Courant finite element space is introduced. A representative
shape function is depicted in Figure 2 which shows the related Galerkin approx-
imation to problem (3) for the composite from Figure 2. These shape functions,
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similar the classical P1 finite element shape functions, are uniquely defined by
their values at the vertices and to some extend linearly interpolated in between.

The new approach is optimal in the sense that the number of unknowns in
the discrete problem (and the computational complexity) equals the number of
unknowns ti of the continuous problem (3). Note that additional (0-weighted)
vertices can be introduced in the matrix Q to improve the approximation quality
whereever necessary. Under additional mild assumptions on the hole distribution
the classical a priori error bound on the error of the approximation uG

‖u− uG‖H1(Q) ≤ Cd|u|H2(Q),

is proven in [4]. Here, d denotes the maximal distance between neighboring inclu-
sions. Such an a priori result shows the potential of the new approach but it is
only the very first step. Besides considering the 3-dimensional version of problem
(3) and its approximation, which is rather straight forward, more general geome-
tries with regard to the inclusions and more general differential equations need to
be studied. Furthermore, the model needs to be investigated with respect to its
asymptotic behavior regarding volume fraction and the interparticular distance.
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Exact sampling for highly oscillatory molecular systems

Petr Plecháč

(joint work with Mathias Rousset)

We present a new numerical method called implicit mass-matrix penalization
(IMMP) for numerical integration and sampling large particle systems whose dy-
namics exhibits multiple time scales. The detailed description and numerical anal-
ysis of the IMMP method can be found in [PleRous].

In this contribution we describe the IMMP method applied to Langevin pro-
cesses (Hamiltonian dynamics with stochastically perturbed forces) in order to
obtain an efficient and accurate sampling from the canonical distribution at the in-
verse temperature β = 1/kT associated with the separable Hamiltonian H(p, q) =
1
2p

TM−1p+ V (q). The potential is assumed to be of form V (q) = U(q, ξ(q)) with

the “fast” degrees of freedom (fDOFs) (ξ1, .., ξn) explicitly given, and q ∈ Rd,
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p ∈ R
d. The knowledge of “fast forces” is not required, and the variables ξ can

be chosen arbitrarily. If the fDOFs are not identified the method retains its ap-
proximation properties while not performing efficiently. The method also provides
a good approximation at large temporal scales of the dynamical behavior of the
system.

The IMMP method does not aim at resolving highly oscillatory behaviour (see,
e.g., a review [PP1]) neither it introduces rigid constraints for oscillatory degrees of
freedom ([PP5]). Instead the method replaces direct constraints by implicit mass-
matrix penalization, which integrates fDOFs, but with a tunable mass penalty.
The method designed in this way achieves the two goals: (i) from the dynamical
point of view, the IMMP method amounts to an appropriate interpolation between
exact dynamics and constrained dynamics considered in the second family of the
methods mentioned above. Moreover, a freely tunable trade-off between dynam-
ical modification and stability is obtained; (ii) from the sampling point of view,
the IMMP dynamics preserves the canonical equilibrium distribution, up to time
step errors and an easily computable geometric correcting potential. This leads to
Metropolis Monte Carlo methods that sample exactly the canonical distribution.
When using Metropolis schemes, the forces arising from the geometric correcting
potential need not be computed.

Implicit mass-matrix penalization method. The fDOFs are penalized with
a mass-tensor modification given by Mν(q) = M + ν2∇qξ Mz ∇T

q ξ, where ν de-
notes the penalty intensity, and Mz a “virtual” mass matrix associated with the
fDOFs. The position dependence of the mass-penalization introduces a geomet-
ric bias. This bias is corrected by introducing an effective potential Vfix,ν(q) =
1
2β ln (det (Mν(q))), which turns out to be a ν−1-perturbation of the usual Fix-

man corrector (see [PP3]) associated with the sub-manifold defined by constrain-
ing the fDOFs ξ. The key point is then to use an implicit representation of
the mass penalty with the aid of the extended Hamiltonian HIMMP(p, pz, q, z) =
1
2p

TM−1p+ 1
2p

T
z M

−1
z pz + V (q) + Vfix,ν(q), together with the constraint ξ(q) = z

ν .
The auxiliary degrees of freedom z are endowed with the “virtual” mass-matrix
Mz. The constraints (Cν) are applied in order to identify the auxiliary variables
and the fDOFs ξ with a coupling intensity tuned by ν. The typical time scale of the
fDOFs is thus enforced by the penalty ν. The system is coupled to a thermostat
through a Langevin equation, which yields a stochastically perturbed dynamics
that samples the equilibrium canonical distribution. As it was shown in [PleRous]
the method has the following desirable properties: (i) the associated canonical
equilibrium distribution in position is independent of the penalty ν; (ii) the limit
of vanishing penalization (ν = 0) is the original full dynamics, enabling the con-
struction of dynamically consistent numerical schemes, (iii) the limit of infinite
penalization is a standard effective constrained dynamics on the ”slow” manifold
associated with stiff constraints on ξ; (iv) numerical integrators can be obtained
through a simple modification of standard integrators for effective dynamics with
constraints yielding equivalent computational complexity.
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When the system is thermostatted, i.e., kept at the constant temperature, the
long time distribution of the system in the phase-space is given by the canonical
equilibrium measure at the inverse temperature β (also called the NVT distri-
bution) given by µ(dp dq) = 1

Z e
−βH(p,q)dp dq with the normalization constant

Z < ∞. The standard dynamics used to model thermostatted systems are given
by Langevin processes. The stochastically perturbed equations of motion of the
Langevin type define the dynamics with implicit mass-matrix penalization.

Definition 0.1 (IMMP,[PleRous]). The implicit Langevin process
{qt, zt, pt, (pz)t}t≥0 associated with Hamiltonian HIMMP and constraints (Cν) is
defined by the following equations of motion

(1)





q̇ = M−1p

ż = M−1
z pz

ṗ = −∇qV (q) −∇qVfix,ν(q) − γq̇ + σẆ −∇qξ λ̇

ṗz = −γz ż + σzẆz +
λ̇

ν

ξ(q) =
z

ν
, (Cν)

The process {Wt}t≥0 (resp. {(Wz)t}t≥0 ) is a standard multi-dimensional white

noise, γ (resp. γz) a d×d (resp. n×n) non-negative symmetric dissipation matrix,
σ (resp. σz) is the fluctuation matrix satisfying σσT = 2

β γ (resp. σzσ
T
z = 2

β γz).

The process {λt}t≥0 ∈ Rn compose the Lagrange multipliers associated with the

constraints (Cν) and adapted with the white noise.

This process is naturally equivalent to the explicit mass-penalized Langevin
process in Rd ×Rd associated with Mν . Moreover, when the penalization vanishes
(ν → 0), the evolution law of the process {pt, qt}t≥0 or {(pν)t, qt}t≥0 converges
towards the original dynamics. By construction, statistics of positions q of the
mass penalized Hamiltonian are independent of the penalization, leading to the
exact canonical statistics in position variables.

Numerical schemes. The key ingredient for achieving efficient numerical sim-
ulation is to use an integrator that enforces the constraints associated with the
implicit formulation of the mass penalized dynamics (1). The mass-penalization
introduced here may then be considered as a special method of pre-conditioning for
a stiff ODE system with an “implicit”, in the time evolution sense, structure. Here,
the “implicit” structure amounts to solving the imposed constraints ξ(q) = z/ν
in (1). As an example of numerical schemes we present IMMP with the classi-
cal leapfrog/Verlet scheme that enforces constraints, usually called RATTLE, see,
e.g., [PP2] for numerical methods for constrained mechanical systems.

Scheme 0.1 ([PleRous]). Dynamical integrator:
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Step 1: Integrate the Hamiltonian part with:




pn+1/2 = pn − δt

2
(∇qV + ∇qVfix,ν)(qn) −∇qξ(qn)λn+1/2

pz
n+1/2 = pz

n +
1

ν
λn+1/2

{
qn+1 = qn + δtM−1pn+1/2

zn+1 = zn + δtM−1
z pz

n+1/2

ξ(qn+1) =
zn+1

ν
(C1/2)(2)





pn+1 = pn+1/2 −
δt

2
(∇qV + ∇qVfix,ν)(qn+1) −∇qξ(qn+1)λn+1

pz
n+1 = pz

n+1 +
1

ν
λn+1

∇T
q ξ(qn+1)M

−1pn+1 =
1

ν
M−1

z pz
n+1 (C1) .

Step 2: Integrate if necessary the Gaussian fluctuation/dissipation part with a mid-
point Euler scheme with constraints.

For accurate sampling of the equilibrium distribution, a Metropolis acceptance,
rejection time-step corrector can be added at each time step of the deterministic
integrator leading to Generalized Hybrid Monte Carlo (GHMC) ([PP4]).

Scheme 0.2 ([PleRous]). The IMMP algorithm with Metropolis correction:

Step 1: Compute (qn+1, zn+1, pn+1, p
z
n+1) with the integrator (2), and set

∆Hn+1 = HIMMP(qn+1, zn+1, pn+1, p
z
n+1) −HIMMP(qn, zn, pn, p

z
n) .

If (qn+1, zn+1, pn+1, p
z
n+1) does not belong to Dδt, set ∆Hn+1 = +∞.

Step 2: Accept the step with the probability min(1, e−β∆Hn+1), otherwise reject, flip
momenta, and set

(qn+1, zn+1, pn+1, p
z
n+1) = (qn, zn,−pn,−pz

n) .

Step 3: Integrate the Gaussian fluctuation/dissipation part with a mid-point Euler
scheme.

The efficiency of the IMMP method as compared to the Verlet/Leapfrog inte-
grator is quantified from two different viewpoints.
Dynamics. The critical time step δtdyn

c is defined in such a way that it measures
the average largest time step for which the scheme is stable.
Sampling. When using a Metropolis correction step in the numerical simulation,
as in Scheme 0.2, the critical time step is correlated to the rejection rate of the
Metropolis step, since the larger the former is, the more rejections will occur. Thus
for sampling methods, the time step δtsampl

c is tuned in order to achieve a given
rate of rejection ρ.

A systematic comparison of the efficiency is presented in [PleRous] where the
method is applied to N -alkane chains. As the number N of atoms in the alkane
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chain increases the dynamics exhibit larger and larger number of oscillatory time
scales. The numerical investigation has demonstrated that the IMMP method
allows for increased critical time steps δtdyn

c and δtsampl
c while, at the same time,

the dynamical and statistical properties of the system are approximated. The
improved stability properties of the IMMP time integration algorithm have been
proved rigorously for the harmonic chain. In particular, it has been shown that if ν
is properly scaled with the size of the system N the critical time steps can increase
with the size of the system. Such property does not hold for the Verlet/Leapfrog
scheme where the increasing size of the system requires decreasing integration time
steps. Furthermore, convergence to equilibrium distribution has been investigated
numerically and it has been observed that the decorrelation time for N -alkane
chains decreases with the size of the system N if the penalty ν is scaled with the
size of the system, see [PleRous].
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Adaptive Multiscale Modeling using Numerical Homogenization

Serge Prudhomme

(joint work with C. Jhurani, L. Demkowicz, J.T. Oden, and P.T. Bauman)

Modeling of engineering systems involving complex heterogeneous material struc-
tures at the nanoscale has emerged as an important research area. One application
we are interested in is the analysis and modeling of mechanical properties of poly-
mer structures created during the Step and Flash Imprint Lithography (SFIL)
nanomanufacturing process. SFIL is a novel imprint lithography process designed
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to transfer circuit patterns for fabricating microchips in low-pressure and room-
temperature environments as schematically described by the right diagram of Fig-
ure 1. Since the smallest features in SFIL are only a few molecules across, as shown
in the left picture of Figure 1, approximating them as a continuum is not com-
pletely accurate. Previous research on this subject has dealt with coupling discrete
models with continuum hyperelasticity models (see e.g. [1, 2, 3, 4]). Simulation
of the post-polymerization step actually requires the solution of large nonlinear
energy minimization problems with fast spatial variation in material properties.
An equilibrium configuration is found by minimizing the energy of a heterogeneous
polymeric lattice model. Numerical solution of such a molecular statics base model,
which is assumed to describe the microstructure completely, is computationally
very expensive. This is due to the problem size on the order of millions of degrees
of freedom. Rapid variation in material properties, ill-conditioning, nonlinearity,
and non-convexity make this problem even more challenging to solve.

An alternative approach to the atomic-to-continuum coupling method is de-
veloped in this work for efficient approximation of the equilibrium solution. The
main idea of the proposed approach relies on combining numerical homogenization,
adaptive meshes, and goal-oriented error estimation. Traditionally, a finite element
mesh is designed after obtaining material properties in different regions. In the cur-
rent approach, however, we generate a sequence of coarse meshes and homogenize
material properties on each coarse mesh element using a locally posed constrained
convex quadratic optimization problem (see Figure 2). Upscaling is done using
Moore-Penrose pseudoinverse of the linearized fine-scale element stiffness matrices
and a material independent interpolation operator. Using an adjoint solution, we
compute local error estimates with respect to quantities of interest, following the
methodology described in e.g. [6, 7]. The error estimates also drive the automatic
mesh adaptivity algorithm. Numerical results show that this method uses orders
of magnitude fewer degrees of freedom to give fast and accurate approximate solu-
tions of the original fine-scale problem. Critical to the computational speed of local
homogenization is computing the pseudoinverse of rank-deficient matrices without
using Singular Value Decomposition. To this end, we compare four algorithms,
each having different desirable features. The algorithms are based on Tikhonov
regularization, sparse QR factorization, a priori knowledge of the null-space of
the matrix, and iterative methods based on proper splittings of matrices. These
algorithms can exploit sparsity and thus are fast. We apply the new approach
to a three-dimensional model that depicts part of a SFIL lattice with rectangular
features for imprinting. It consists of approximately 13000 unit cells and 38000
degrees of freedom. The quantity of interest is the distance between the two verti-
cal blocks at the base of the features. The initial mesh, consisting of 120 bi-linear
elements, is shown on the left of Figure 3 while the final configuration following
seven refinement iterations is shown on the right of the figure.
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Figure 1. (Left) Polymeric microstructure obtained by the SFIL
process as seen using a scanning electron microscope. (Right) A
diagram of the SFIL process (not to scale).

Figure 2. A 2-D lattice with fixed bottom layer is approximated
with a coarse mesh. Effective local stiffness is computed on coarse
elements and used to create a global effective lattice.
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Figure 3. (Left) Initial mesh consisting of 120 bi-linear elements
for a three-dimensional SFIL lattice model. (Right) Geometry at
equilibrium and adapted configuration after seven refinement it-
erations.
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A seamless multiscale method and its application to complex fluids

Weiqing Ren

I will present a seamless multiscale method for the study of multiscale problems.
The multiscale method aims at capturing the macroscale behavior of the system
which is modeled by a (incomplete) macroscale model. This is done by coupling
the macro model with a micro model: The macro model provides the necessary
constraint for the micro model and the micro model supplies the missing data (e.g.
the constitutive relation or the boundary conditions) needed in the macro model.
In the multiscale method, the macro and micro models evolve simultaneously using
different time steps, and they exchange data at every step. The micro model uses
its own appropriate (micro) time step. The macro model uses a macro time step
but runs at a slower pace than required by accuracy and stability considerations in
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order for the micro dynamics to have sufficient time to adapt to the environment
provided by the macro state. The method has the advantage that it does not re-
quire the reinitialization of the micro model at each macro time step or each macro
iteration step. The data computed from the micro model is implicitly averaged
over time. In this talk, I will discuss the algorithm of the multiscale method, the
error analysis, and its application to complex fluids. If time allows, I will also
discuss the stability of different coupling schemes in domain-decomposition type
of multiscale methods.

Computational approaches to rate-independent processes: via

Γ-convergence to multiscale modelling

Tomáš Roub́ıček

This contribution addresses the quasistatic initial-value problem for the following
equality/inclusion:

∂uE(t, u, z) = 0,(1a)

∂R
(dz

dt

)
+ ∂zE(t, u, z) ∋ 0,(1b)

z(0) = z0,(1c)

with u ∈ U a “fast” variable, z ∈ Z an “slow” variable with an activated evolution,
U and Z Banach spaces, E : [0, T ]× U ×Z → R ∪ {∞} a stored-energy potential,
R : Z → R+ ∪ {∞} a convex (positively) homogeneous degree-1 dissipation pseu-
dopotential, ”∂” denoting (partial) subdifferentials or Gâteaux differentials. Due
to the mentioned homogeneity degree-1, the problem (1) is rate independent in
the sense that any monotone rescaling of time scale does not influence its (set of)
solution(s). We will briefly refer to (1) as the (U×Z, E ,R, z0)-problem.

If also E(t, ·, ·) is convex, the usual definition of weak solution to (1) is essentially
equivalent (for details see [7]) to the so-called energetic formulation, i.e. (1c) is
accompanied by the energy equality and stability:

E
(
T, u(T ), z(T )

)
+ VarR(z; 0, T ) = E

(
0, u0, z0

)
+

∫ T

0

∂tE(t, u(t), z(t)) dt,(2a)

∀v ∈ Z, t ∈ [0, T ] : E
(
t, u(t), z(t)

)
≤ E

(
t, u(t), v

)
+ R

(
v−z(t)

)
(2b)

with VarR(z; 0, T ) denoting the variation of z : [0, T ] → Z with respect to R de-
fined as sup0≤t0<t1<...<tI≤T

∑
i R(z(ti)−z(ti−1)). The energetic formulation (2),

invented by Mielke at al. [13, 14], works also in the nonconvex case, is derivative-
free, and expresses a competition between minimization of stored energy and max-
imization of dissipation. This is an applicable concept for a lot of activated pro-
cesses occurring in mechanics (as plasticity, damage, phase transformation, or also
e.g. ferromagnetics or ferroelectrics).

Energetic solutions can be obtained by limiting a time step τ↓0 in the implicit
time discretization of (1) provided its solutions are obtained by solving recursively
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for k = 1, ..., T/τ the global-optimization problem:

Minimize E(kτ, uk
τ , z

k
τ ) + R(zk

τ−zk−1
τ ) subject to (uk

τ , z
k
τ ) ∈ U×Z(3)

with z0
τ = z0 from (1c). Important phenomenon related with rate-independency

is that, for any 1 ≤ K ≤ T/τ , the following two-sided energy estimate holds:

K∑

k=0

∂tEτ

(
t, uk

τ , z
k
τ

)
dt ≤ E

(
Kτ, uK

τ , z
K
τ

)
− E

(
0, u0, z0

)
(4)

+ VarR
(
zτ ; 0,Kτ

)
≤

K∑

k=0

∂tEτ

(
t, uk−1

τ , zk−1
τ

)
dt,

where zτ is the piece-affine interpolant of the values (z0
τ , z

1
τ , z

2
τ , ..., z

K
τ ). Violation

of (4) indicates a failure of an optimization algorithm solving (3), and it may be ex-
ploited to return back to previous time level(s) and to optimize the objective in (4)
with a different initial guess, typical this one which was unsuccessfully obtained in
subsequent time levels. This energy-based backtracking, devised and tested in [12]
for a 2D damage problem (and later in [3] for 3D martensitic transformation), may
generally qualitatively help in solving the recursive global optimization problem
(3) which is very nontrivial in cases when E

(
t, ·, ·) is not convex.

Considering of sequences of functionals {En}n∈N and {Rn}n∈N that Γ-converge
to E and R, respectively, it has been observed in [11] that an essential condition for
convergence of the energetic solutions of (U×Z, En,Rn, z0)-problems is the joint-
recovery-sequence condition, i.e. for any sequence (tn, un, zn) → (t, u, z) and for
any (ũ, z̃) ∈ U×Z, to find another sequence {(ũn, z̃n)}n∈N such that

lim sup
n→∞

(
E(tn, ũn, z̃n)+R(z̃n−zn)−E(tn, un, zn)

)
(5)

≤ E(t, ũ, z̃)+R(z̃−z)−E(t, u, z).

Constructing explicitly joint recovery sequences {(ũn, z̃n)}n∈N thus represents the
main task in limiting various problems in mechanics as, e.g., partial damage to
a complete damage as in [4] or elastic delamination [5] to a Griffith-type brittle
delamination as in [20].

Another prominent usage of Γ-convergence is a relaxation of E(t, ·, ·) in case
of lack of its lower semicontinuity in any topology which would yield compact
level sets. The sequence {En} can typically arise by some higher-gradient theory
that vanishes with n→ ∞ and the minimizers typically develop a microstructure
(often modelled by Young measures). Thus multiscale problems can effectively
be solved on a “mesoscopical”-level in the relaxed form and simultaneously jus-
tified from a “microscopical”-level by higher-gradient-type regularizations. This
concerns e.g. isothermal models of shape-memory alloys on microscopical level in
[1, 15] limited to mesoscopical level [6, 9, 18], or models of micromagnetics in [22]
limited to a mesoscopical level [19].

Numerical approximation can be simply fitted into this general scenario by con-
sidering {En} with dom En(t, ·, ·) a finite-dimensional subspace of U×Z (dependent
on n but not on t). Then combination with time-discretization (3) yields an effi-
cient numerical strategy even for nonconvex problems if adopting the energy-based



Computational Multiscale Methods 1647

backtracking strategy based on (4) with En and Rn in place of E and R, respec-
tively. Convergence of such numerical schemes can be proved [10] by a case-by-case
explicit construction of joint recovery sequences. If E(t, ·, ·) is (not far from to be)
quadratic, also rate-of-error estimates are at disposal [8].

A useful extension to rate-dependent systems hosting a rate-independent pro-
cesses only as some sub-system has been devised in [16] by considering iner-
tial/viscosity effects and, in [17], also full thermodynamics. For the latter extension
in a particular case see also [21]. Although the technique of Γ-convergence and
(5) can be adopted and modified to such situations too, any analog of (4) is lost,
however. In the latter anisothermal case, also the variational structure leading to
minimization problems like (3) is lost and some fixed-point arguments or numerical
iterations are to replace the mere direct method, cf. [17] or also [2].
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[17] T.Roub́ıček: Thermodynamics of rate independent processes in viscous solids at small
strains. SIAM J. Math. Anal., to appear.
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Equation-assisted methods for the coarse behaviour of kinetic

equations

Giovanni Samaey

(joint work with Wim Vanroose, Mathias Rousset)

1. Introduction

In traditional modeling, one derives evolution equations at the (macroscopic,
coarse) scale of interest; these are used to perform a variety of tasks (simulation,
bifurcation analysis, optimization) using an arsenal of analytical and numerical
techniques. For many complex systems, however, although one observes evolution
at a macroscopic scale of interest, accurate models are only given at a more de-
tailed (fine-scale, microscopic) level of description. Equation-free methods [8, 2, 3]
bypass the derivation of coarse evolution equations when these equations conceptu-
ally exist but are not available in closed form. The main building block is a coarse
time-stepper, which consists of three steps: (1) lifting, i.e., creation of initial con-
ditions for the fine-scale model, conditioned upon the coarse state; (2) simulation
using the fine-scale model; and (3) restriction, i.e., observation (estimation) of the
coarse state. Coarse-scale solvers (e.g. projective integration or time-stepper based
bifurcation tools) are then wrapped around this coarse time-stepper.

In many systems, however, an approximate coarse model has been derived in
some sort of convenient limit. At first sight, it would appear that this knowledge
is lost in the equation-free framework – a statement that is not true in general.
In this abstract, we discuss two ways in which such approximate coarse mod-
els can increase efficiency and accuracy of equation-free computations. First we
briefly review preconditioning of equation-free Newton–Krylov methods. Here, the
approximate coarse model is used to construct the preconditioner, such that we
can achieve fast Krylov convergence. This is illustrated on a lattice Boltzmann
model for ionization in gases. Second, we discuss variance reduced simulations of
a velocity-jump process for bacterial chemotaxis.
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2. Preconditioning of equation-free Newton–Krylov methods

2.1. Equation-free Newton Krylov methods. A coarse steady state can be
computed as a fixed point of the coarse time-stepper. While the corresponding Ja-
cobian is not available, Jacobian-vector products can be estimated using repeated
calls to the coarse time-stepper from nearby initial conditions, enabling the use
of Krylov methods. The Krylov convergence rate depends heavily on the spec-
tral properties of the Jacobian. For GMRES to converge rapidly, the eigenvalues
should be clustered and bounded away from 0. However, the Jacobian of the fixed
point nonlinear system always contains both eigenvalues close to 0 and close to 1.
Hence, preconditioning will be necessary.

2.2. Lattice Boltzmann model for streamer ionization fronts. Streamers
are sharp, non-linear waves of electrons that propagate through gases in the pres-
ence of strong electric fields. The strong field accelerates the electrons that then
cause ionization reactions during the collisions with the neutral gas particles. This
impact ionization reaction creates additional electrons that are, again, accelerated.
This results in an avalanche at the tip of the wave front.

We consider a D1Q5 (five-speed) lattice Boltzmann model for the electron dis-
tributions, coupled to an equation for the evolution of the electric field, as proposed
in [9]. The unavailable coarse equation would be a system of two coupled PDEs,
one for the electron density and one for the electric field.

This model exhibits coarse traveling fronts with arbitrary speed c ≥ c∗, where
c∗ is called the critical speed, which appear as steady states in comoving frame.

2.3. Preconditioning of Krylov method. In [9], a Chapman–Enskog expan-
sion was performed to derive an approximate equation for the evolution of the
electron density, which was used as a preconditioner in [7]. In [6], we avoided
this derivation by preconditioning with an equivalent operator (an operator of the
same type, of which the coefficients are merely chosen to obtain a good conver-
gence rate and that does not necessarily admit the same type of solutions). We also
analyzed the effects of time discretization in both the preconditioner and coarse
time-stepper [5].

3. Variance reduced simulation of bacterial chemotaxis

3.1. Models for bacterial chemotaxis. We consider bacteria sensitive to the
concentration of chemoattractant, using a slight modification of the model de-
scribed in [1]. Bacteria move with a constant speed v (run), and change direction
at random instances in time (tumble), in an attempt to move towards regions
with high chemoattractant concentrations. We will describe this behavior by a
velocity-jump process, in which the jump intensity depends on some internal state
y ∈ Y ⊂ Rn. The internal state models the memory of the bacterium and is
subject to an evolution mechanism driven by the chemoattractants concentrations
S(x), where x is the present position of the bacterium.

Alternatively, one can model the jump intensity to depend on the chemoattrac-
tant gradient directly, which leads to a simplified process that is exactly equivalent
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to a kinetic equation; this will be called the control process here. In [4], we prove
that, with an appropriate choice of parameters, and in an appropriate diffusive
asymptotics, both processes approach the same advection-diffusion equation in
the limit of vanishing bacterial velocity.

3.2. Coupling between the two processes. We will simulate the density of
bacteria using an ensemble of N particles that evolve according to the process
with internal state. The density can then computed via standard kernel density
estimation. We will reduce the variance of this simulation by using the fact that
there is a strong relation between the process with internal state and the control
process. To this end, we will simulate both processes using the same random num-
bers to obtain a strong correlation between each pair of bacteria. The important
point is that a deterministic solution nc(x, t) for the control process can be ob-
tained much more easily. An improved estimate can then be obtained using the
technique of control variables.

In [4], an analysis of this coupling is presented that justifies the choice of the
control process. The paper also contains some simulation results.

Acknowledgements

The work that is outlined in this abstract is joint with Wim Vanroose and Yannis
Kevrekidis (section 2) and Mathias Rousset (section 3). Part of this work was
performed during a research stay of GS at SIMPAF (INRIA - Lille, France), whose
hospitality is gratefully acknowledged. GS is a Postdoctoral Fellow of the Research
Foundation – Flanders (FWO – Vlaanderen). This work was partially supported
by the Research Foundation – Flanders through Research Project G.0130.03 and
by the Interuniversity Attraction Poles Programme of the Belgian Science Policy
Office through grant IUAP/V/22 (GS). The scientific responsibility rests with its
authors.

References

[1] R. Erban and H.G. Othmer. From individual to collective behavior in bacterial chemotaxis.
SIAM Journal on Applied Mathematics, 65(2):361–391, 2004.

[2] I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis, O. Runborg, and C. Theodoropou-
los. Equation-free, coarse-grained multiscale computation: enabling microscopic simulators
to perform system-level tasks. Comm. Math. Sciences, 1(4):715–762, 2003. An earlier version
can be obtained as physics/0209043 from arXiv.org.

[3] I.G. Kevrekidis and G. Samaey. Equation-free multiscale computation: algorithms and ap-

plications. Annual Review on Physical Chemistry, 60, 2009. In press.
[4] M. Rousset and G. Samaey. Individual-based models for bacterial chemotaxis and variance-

reduced simulations. in preparation, 2009.
[5] G. Samaey and W. Vanroose. An analysis of equivalent operator preconditioning of equation-

free Newton–Krylov computations. Submitted to SIAM Journal on Numerical Analysis, 2008.
[6] G. Samaey, W. Vanroose, and I.G. Kevrekidis. Equivalent operator preconditioning of

equation-free Newton–Krylov computations: a lattice boltzmann example. in preparation,
2009.



Computational Multiscale Methods 1651

[7] G. Samaey, W. Vanroose, D. Roose, and I.G. Kevrekidis. Newton-Krylov solvers for the
equation-free computation of coarse traveling waves. Computer Methods in Applied Mechan-
ics and Engineering, 197:3480–3491, 2008.

[8] C. Theodoropoulos, Y.H. Qian, and I.G. Kevrekidis. Coarse stability and bifurcation analysis
using time-steppers: a reaction-diffusion example. In Proc. Natl. Acad. Sci., volume 97, pages
9840–9845, 2000.

[9] W. Vanroose, G. Samaey, and P. Van Leemput. Coarse-grained analysis of a lattice Boltzmann
model for planar streamer fronts. TW report 479, Dept. of Computer Science, K.U. Leu-
ven. Available from http://www.cs.kuleuven.be/publicaties/rapporten/tw/TW479.abs.html,
2006.

Multiscale methods for simulating epitaxial growth and neuronal

network dynamics

Yi Sun

The heterogeneous multiscale method (HMM) provides a unified framework for
designing efficient numerical methods for problems with multiple scales [1]. When
a macroscale model is not explicitly given or not accurate enough, HMM pro-
vides a general strategy for supplementing the missing data from an explicitly
given microscale model. There are usually two coupling strategies in the data
estimation procedure. It can either be performed on the ”fly” in a concurrent cou-
pling method, where the microscale and the macroscale models are linked together
throughout the computation. Or, the estimation can be done in a pre-processing
step as in a serial coupling method, in which the needed data depends on very few
variables and can be pre-computed. We give two examples with these coupling
strategies as follows.

In [2] we investigate a heterogeneous multiscale method for interface tracking
and apply the technique to the simulation of epitaxial growth. Our method relies
on an efficient concurrent coupling between macroscale and microscale models.
It couples kinetic Monte-Carlo (KMC) simulations on the microscale with the
island dynamics model based on the level set method and a diffusion equation
on the macroscale. Our main interest is to capture the motion of the island
boundary at the macroscopic level in the cases where the computed velocity of the
boundary will require simulation on the microscale. We perform the numerical
simulations for island growth and step edge evolutions on the macroscale domain
while keeping the KMC modeling of the internal boundary conditions. Our goal is
to get comparably accurate solutions at potentially lower computational cost than
for full KMC simulations, especially for step flow problem. Figure 1 shows the
HMM strategy and the comparison results between HMM and KMC. In [3], we
also applied the concurrent coupling strategy for interface tracking of combustion
fronts.

Future work in simulation of epitaxial growth contains several angles. One is
to focus on the nucleation problem. We will perform KMC simulations in the mi-
croscale domains to find the criterion for determining whether the nucleation can
occur or not on the macroscale. The second one is to include both irreversible and
reversible cases, where in the latter case thermal detachment of atoms from island
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Figure 1. (Top left): In each macroscale cell which contains a seg-
ment of island boundaries, we set up a small box as the microscale
domain. (Top right): A typical KMC simulation in a microscale do-
main. The dots in dark blue represent the atoms in the first layer and
the dots in pink are the atoms in the second layer. (Middle): The
evolution of the surface morphology in the HMM simulations during
the total time of t = 1.2sec. (Bottom): The evolution of the surface
morphology in the full KMC simulations. The locations of macroscale
step edges from the HMM simulation match those of the full KMC

result.

edges is allowed. One further direction is to deal with heteroepitaxial growth,
where the effects of lattice mismatch and the strain relaxation must be incorpo-
rated.

For multiscale pre-computed strategy, we present an efficient library-based nu-
merical method for simulating Hodgkin-Huxley (HH) neuronal networks in [4].
Our pre-computed high resolution data library contains typical neuronal trajecto-
ries (i.e., the time-courses of membrane potential and gating variables) during the
interval of an action potential (spike) and it can allow us to avoid resolving the
spikes in detail and to use large numerical time steps for evolving the HH neuron
equations. By using the library-based method, we can evolve the HH networks
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using time steps one order of magnitude larger than the typical time steps used for
resolving the trajectories without the library, while achieving comparable resolu-
tion in statistical quantifications of the network activity. Moreover, our large time
steps using the library method can break the stability requirement of standard
ODE methods for the original dynamics. We compare our library-based method
with Runge-Kutta (RK) methods, and find that our method can capture very
well asynchronous, synchronous, and chaotic dynamics of HH neuronal networks.
Figure 2 shows the comparison results.
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Figure 2. The comparison results of an all-to-all connected network
of 100 HH neurons driven by Poisson spike inputs. (Left): Largest Lya-
punov exponent of the network versus the coupling strengths S. The
library method with large time steps can capture the chaotic regime
(0.26 < S < 0.39) as well as the regular method does with a small
time step. (Right): Average firing rate versus the coupling strength S.
The library method can achieve more than 2 digits of accuracy using
time steps 10 times larger than those used by the regular method for
all values of S.

Future work with this multiscale pre-computed strategy will include the follow-
ing. We will work with more complicated HH-like models which contain other ion
channels and build the data library for the gating variables of these channels. It
may also be applied to other biological networks which evolve stiff dynamics.
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Accuracy of Molecular Dynamics

Anders Szepessy

Born-Oppenheimer, Smoluchowski, Langevin and Ehrenfest dynamics are in this
talk shown to be accurate approximations of time-independent Schrödinger ob-
servables for a molecular system, in the limit of large ratio of nuclei and elec-
tron masses, without assuming that the nuclei are localized to vanishing domains.
The derivation, based on characteristics for the Schrödinger equation, bypasses
the usual separation of nuclei and electron wave functions and gives a different
perspective on initial and boundary conditions, caustics and irreversibility, the
Born-Oppenheimer approximation, computation of observables, stochastic elec-
tron equilibrium states and symplectic numerical simulation in molecular dynamics
modeling.

This extended abstract is a part of the introduction to the paper [1], where
references to related work is included. The time-independent Schrödinger equation

(1) H(x,X)Φ(x,X) = EΦ(x,X),

models nuclei-electron systems and is obtained from minimization of the energy
in the solution space of wave functions. It is an eigenvalue problem for the energy
E ∈ R of the system in the solution space, described by wave functions, Φ :
R3J ×R3N → C, depending on electron coordinates x = (x1, . . . , xJ) ∈ R3J , nuclei
coordinates X = (X1, . . . , XN) ∈ R3N , and a Hamiltonian operator H(x,X)

H(x,X) = V (x,X) − 1

2M

N∑

n=1

∆Xn .

The nuclei masses M are assumed to be large and the interaction potential V ,
independent of M , is in the canonical setting composed by the kinetic energy of
electrons and Coulomb interaction of electrons and nuclei.

An essential feature of the partial differential equation (1) is the high computa-
tional complexity to determine the solution, in an antisymmetric/symmetric sub-
set of the Sobolev space H1(R3(J+N)). An attractive property of the Schrödinger
equation (1) is the precise definition of the Hamiltonian and the solutions space,
without unknown parameters. The agreement with measurements can be further
improved by including relativistic and magnetic effects.

In contrast to the Schrödinger equation, a molecular dynamics model of nuclei
X : [0, T ] → R

3N , with a given potential V0 : R
3N → R, can be computationally

studied also for large N by solving the ordinary differential equation

(2) MẌτ = −∂XV0(Xτ ).

This computational and conceptual simplification motivates the study to deter-
mine the potential and its implied accuracy by a derivation of molecular dynamics
from the Schrödinger equation, as started already in the 1920’s with the seminal
Born-Oppenheimer approximation. The purpose here is to contribute to the cur-
rent understanding of such derivations, by showing improved convergence rates
under new assumptions.
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A useful sub step to derive molecular dynamics from the Schrödinger equa-
tion is Ehrenfest dynamics, for classical ab initio motion of the nuclei coupled to
Schrödinger dynamics for the electrons,

MẌn
τ = −

∫

R3J

φ∗τ (·, Xτ ) ∂XnV (·, Xτ )φτ (·, Xτ ) dx

iφ̇τ = V (·, Xτ )φτ ,

(3)

with the initial normalization
∫

R3J φ
∗
0(·, X0)φ0(·, X0)dx = 1. The Ehrenfest dy-

namics (3) has been derived from the time-dependent Schrödinger equation through
the self consistent field equations, by F.A. Bornemann and C. Schütte. Equation
(3) can be used for ab initio computation of molecular dynamics. A next step
is the Born-Oppenheimer approximation, where Xτ solves the classical ab initio
molecular dynamics (2) with the potential V0 : R

3N → R determined as an eigen-
value of the electron Hamiltonian V (·, X) for a given nuclei position X , that is
V (·, X)ψ0(X) = V0(X)ψ0(X), for instance with the electron ground state ψ0(X).
The Born-Oppenheimer approximation has been derived from the time-dependent
Schrödinger equation, first by G.A. Hagedorn.

The model (2) simulates dynamics at constant energy M |Ẋ|2/2 + V0(X), con-
stant number of particles N and constant volume, i.e. the microcanonical en-
semble. The alternative to simulate with constant number of particles, constant
volume and constant temperature T , i.e. the canonical ensemble, is possible for
instance with the stochastic Langevin dynamics

dXτ = vτdτ

Mdvτ = −∂XV0(Xt)dτ −Kvtdτ + (2TK)1/2dWτ ,
(4)

where Wτ is the standard Brownian process (at time τ) in R3N with independent
components and K is a positive friction parameter. When the observable only
depends on the nuclei positions, i.e. not on the nuclei velocities or the correlation
of positions at different times, the Smoluchowski dynamics

(5) dXτ = −∂XV0(Xτ ) + (2T )1/2dWτ

is a simplified alternative to Langevin dynamics.
The work [1] derives the Ehrenfest dynamics (3) and the Born-Oppenheimer

approximation from the time-independent Schrödinger equation (1) and the main
point here is to establish improved convergence rates for molecular dynamics ap-
proximations of Scrödinger observables under simple assumptions.

The main idea in [1], inspired by work of N.F. Mott and J. Briggs & J.M.
Rost, is to introduce the time-dependence from the classical characteristics in the
Hamilton-Jacobi equation obtained by writing the time-independent eigenfunction
(1) in WKB-form.

Two theorems in [1] present conditions for approximation of observables based
on the Schrödinger equation by observables from the Ehrenfest dynamics and
the Born-Oppenheimer dynamics with error O(M−1) respectively O(M−1/2), us-
ing that these approximate solutions generate approximate eigenstates to the
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Schrödinger equation; studying this stability of the Schrödinger eigenvalue problem
instead of perturbations of solution paths avoids the complications of accumula-
tion of error on infinite time intervals. The derivation does not assume that the
nuclei are supported on small domains; in contrast, derivations based on the time-
dependent self consistent field equations require nuclei to be supported on small
domains. The reason that small support is not needed here comes from the combi-
nation of the characteristics and sampling from an equilibrium density, that is, for
large M the nuclei paths behave classically although they may not be supported
on small domains. The derived approximations improve the previous O(M−1/2)
rate for the Ehrenfest approximation the O(M−1/4) rate for the zero order Born-
Oppeneheimer approximation. A remark in [1] relates the approximation results
to the accuracy of symplectic numerical methods for molecular dynamics.

A section in [1] applies the Ehrenfest approximation result to derive the Langevin
and Smoluchowski dynamics from the Ehrenfest dynamics, when the electron state
is randomly perturbed from its ground state and the observable depends only
on the nuclei positions but not their correlation at different time. The deriva-
tion uses a classical equilibrium Gibbs-Boltzmann distribution for the electron
states and an assumption of a spectral gap, showing a theorem that observables of
Langevin and Smoluchowski dynamics accurately approximate such Schrödinger
observables. The main idea in the theorem is the non-standard view of a classical
Gibbs-Boltzmann equilibrium distribution of electrons states, motivated by nuclei
acting as heat bath for the electrons in the Ehrenfest Hamiltonian system.
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Strategies for the Finite Deformation Analysis of Microheterogeneous

Media: Multiscale Aspects and Adaptivity

Peter Wriggers

(joint work with İlker Temizer)

Homogenization techniques allow an efficient and robust analysis of problems posed
on highly heterogeneous bulk and interface topographies via the introduction of
lower-scale models with predetermined constitutive behavior. The major steps in
such techniques are (i) the construction of a homogenization methodology which
extracts the behavior of the lower-scale model as reflected on the upper-scale and
(ii) the definition of a homogenized problem that employs directly or indirectly the
results of the homogenization methodology, the solution to which constitutes an
approximation to the solution of the originally heterogeneous problem. Theoreti-
cally, the original heterogeneous primary solution field approaches the approximate
homogenized one in the limit of a vanishingly small representative lower-scale di-
mension with respect to a representative upper-scale dimension. This convergence
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behavior has been extensively studied based on the method of asymptotic expan-
sions, particularly in the case of linearized constitutive behavior on periodically
heterogeneous domains, as summarized recently in [1].

Original Heterogeneous Model Resolved Homogenized SolutionModel After Scale Adaptivity

Microstructure
Representation Representation

ExplicitHomogenized Homogenization
Zone

Adaptation
Zone

Figure 1. The scale adaptation approach is depicted.

In the context of purely mechanical bulk problems, which is the focus of this
contribution, one is classically concerned with the analysis of a macrostructure
with an underlying random or periodic microstructure. From an engineering per-
spective, many works have addressed the task of quantifying the degree of quality
with which the original macroscale stress is approximated for such problems via
homogenization techniques, and scale adaptivity strategies for improving the qual-
ity have been suggested where these methodologies perform below a desired level
of accuracy. Sample typical situations of practical interest where the need for such
strategies arise are regions near highly localized contact loads and the material
interfaces in composites which are accompanied by high gradients in the solu-
tion fields associated with stress concentrations. Representative scale adaptivity
strategies include [2, 3, 4].

Figure 2. Strain-gradient field distributions which demon-
strate that critical zones are accompanied by severe gradients near
concentrated contact loads (LEFT) and at material interfaces
(RIGHT). Both figures employ the same scale.
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The scale adaptation technique that is of interest in this contribution employs
an exact homogenized response in a preliminary analysis and subsequently re-
verts directly to an explicit microstructural model within designated critical zones
to obtain a higher-order resolution of the microstructural response without in-
troducing intermediate approximate models (Figure 1). Within this framework,
the fundamental adaptation stage requires the computation of the strain-gradient
tensor distribution, defined as G = ∂F/∂X where F is the deformation gradi-
ent tensor distribution associated with the homogenized solution and X is the
position vector in the reference configuration of the macrostructure. For this pur-
pose, the isoparameteric transform method is employed which can estimate the
gradients of cell-centered data with second-order accuracy on highly non-uniform
and non-orthogonal meshes of quadrilateral and hexahedral elements [5]. Subse-
quently, motivated by the higher-order homogenization scheme in [6], adaptation
zones where homogenization is deemed to perform below the desired accuracy
are identified by monitoring the error quantity ||G||Lmicro. When the error ex-
ceeds a given accuracy tolerance, significant variations in F takes place over length
scales that are comparable to a representative microstructural dimension Lmicro.
This, however, is essentially a violation of the fundamental separation of scales as-
sumption in homogenization. Consequently, the homogenized material description
within these critical zones is replaced by the explicit microstructural representa-
tion and the solution of this scale-adapted model is recomputed. The adaptation
zone size and shape is strongly influenced by microstructural parameters such as
particle morphology and property mismatch ratios as well as by the magnitude
of local loading conditions. The overall approach, which is summarized in Figure
3, remains tractable independent of the size of the microstructural features and
is designed to deliver a locally improved solution quality. For more details, the
interested reader is referred to [7] where efficient multiscale analysis methodologies
based on homogenization are also summarized.

Future work will concentrate on aspects of quantifying solution quality improve-
ment. This a particularly challenging task because small error tolerances induce
large adaptation zones where localized homogenization errors are smoothed out,
whereas large error tolerances induce smaller adaptation zones where homogeniza-
tion does not perform accurately even in the absence of high strain-gradient mag-
nitudes. Additionally, improvements towards the ability to handle thermoelastic
microstructural response will be pursued in the finite deformation regime based on
novel homogenization approaches together with the ability to incorporate random
microstructures.

References

[1] G. A. Pavliotis, A. M. Stuart, Multiscale Methods: Averaging and Homogenization,
Springer-Verlag (2008).

[2] J. Fish, K. Shek, Multiscale analysis of composite materials and structures, Composite
Science and Technology 60 (2000), 2547–2556.

[3] A. Romkes, J. T. Oden, K. Vemaganti, Multi-scale goal-oriented adaptive modeling of ran-
dom heterogeneous materials, Mechanics of Materials 38 (2006), 859–872.



Computational Multiscale Methods 1659

Figure 3. The two stages of the scale adaptation algorithm
are depicted: (Stage 1) the homogenized solution is resolved,
(Stage 2) scale adaptation is applied within an indicated zone.
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Research Report on Liquid Crystal and Membrane

Pingwen Zhang

A liquid crystal (LC) was first reported about 120 years ago by Reinitzer when
he was studying the physical properties of cholesteryl esters. There are many
different liquid crystalline subphases that have been identified and characterized.
The nematic phase possesses the lowest order with only long range molecular
orientational order as well as short range positional and bond orientational order.
The next class of calamitic liquid crystalline phases is the smectic phase, which
possesses layered structures. Depending upon the mesogen orientation within the
layers, they can be smectic A (parallel to the layer normal) or smectic C (tilted
from the layer normal). Liquid crystals can be divided into thermotropic and
lyotropic LCs. Thermotropic LCs exhibit a phase transition into the LC phase
as temperature is changed, whereas lyotropic LCs exhibit phase transitions as a
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function of concentration of the mesogen in a solvent (typically water) as well as
temperature.

The thermodynamic concepts of equilibrium and stability in phases and at
phase transitions are important. The liquid crystal director is used as the order
parameter to describe liquid crystalline phase transitions. Microscopic theoretical
treatment of fluid phases can become quite involved, owing to the high material
density, which means that strong interactions, hard-core repulsions, and many-
body correlations cannot be ignored. In the case of liquid crystals, anisotropy
in all of these interactions further complicates analysis. There are a number of
fairly simple theories, however, that can at least predict the general behavior of
the phase transitions in liquid crystal systems.

A very simple model which predicts lyotropic phase transitions is the hard-
rod model proposed by Lars Onsager. This theory considers the volume excluded
from the center-of-mass of one idealized cylinder as it approaches another. The
fundamental insight here is that, while parallel arrangements of anisotropic objects
leads to a decrease in orientational entropy, there is an increase in positional
entropy. Thus in some case greater positional order will be entropically favorable.
This theory thus predicts that a solution of rod-shaped objects will undergo a
phase transition, at sufficient concentration, into a nematic phase.

The statistical theory, proposed by Dr. Alfred Saupe and Dr. Wilhelm Maier,
includes contributions from an attractive intermolecular potential. The anisotropic
attraction stabilizes parallel alignment of neighboring molecules, and the theory
then considers a mean-field average of the interaction. Solved self-consistently,
this theory predicts thermotropic phase transitions, consistent with experiment.

The existence of orientational order also means that a liquid crystal has cylin-
drical symmetry with the director as the axis of revolutionary symmetry. The
stationary solutions with Maier-Saupe potential for liquid crystal were shown to
be necessarily a set of axially symmetric functions, and a complete classification of
parameters for phase transitions to these stationary solutions is obtained in [1,2].

From the perspective of dynamics, the motions of microscopic particles are
vastly different in different phase structures. This difference introduces questions
concerning how to quantitatively describe these motions and how the motions
of each interacting particle contribute to the macroscopic phase properties. One
needs to view the macroscopic thermodynamic properties of a system as an average
of the microscopic mechanical motions of the particles. Statistical mechanics serves
as a bridge to connect the macroscopic properties with microscopic motions.

The first systematic presentation of the statics of nematics is due to Frank.
The Frank theory deals with orientational distortions, Frank demonstrated that
an arbitrary distortion can be decomposed into three basic ones (splay, twist,
bend). Ericksen and Leslie extended the continuum mechanical approach used
by Frank in statics to encompass the dynamical behavior of nematics. The LE
theory couples the director and the velocity fields via the appropriate choice of a
constitutive equation for the stress tensor.
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The molecular theory of liquid crystal is based on the rigid rod-like model. The
great advantage of the rod-like model is that the molecular conformation is fixed
once for all, and consequently, among the molecular coordinates, only position and
orientation in space remain to be specified. The orientational distribution function
plays a central role in the theory of rod-like molecules, the dynamical equations
of the distribution function were introduced in a book by Doi and Edwards.

Liquid crystals are endowed with continuous symmetries and physical preva-
lence of correlations of positional orientation, thus show a rich and complex vari-
ety of topological defects. Defects in liquid crystals are of various dimensionalities,
not only line defects, but also points, walls and configurations. Although many
aspects of defects in liquid crystals are well understood, there is still a number of
important problems to explore. The molecular theory of liquid crystal is useful to
study the defects [3].

Lyotropic liquid-crystalline phases are abundant in living systems, the study of
which is referred to as polymorphism. Accordingly, lyotropic liquid crystals attract
particular attention in the field of biomimetic chemistry. In particular, biological
membranes and cell membranes are a form of liquid crystal. Their constituent
molecules are perpendicular to the membrane surface, yet the membrane is capable
of a range of elastic stress, leading to some aspects of elastic behaviour to be
exhibited. The constituent molecules can inter-mingle easily, but tend not to leave
the membrane due to the high energy requirement of this process. Lipid molecules
can flip from one side of the membrane to the other, this process being catalysed
by flippases and floppases. These liquid crystal membrane phases can also host
important proteins such as receptors freely ”floating” inside, or partly outside.

The cell membrane is considered as a lipid bilayer where the lipid molecules can
move freely in the membrane surface like fluid, while the proteins are embedded
in the lipid bilayer. Beneath the lipid membrane, the membrane cytoskeleton, a
network of proteins, linking with the proteins in the lipid membrane is neglected in
the fluid mosaic model. Wolfgang Helfrich deduced the expression for the elastic
energy of curvature per unit area of the membrane as

gc =
1

2
κ(c1 + c2 − c0)

2 + κ̃c1c2

where c1, c2 are two principal curvatures of the surface of the membrane, and the
constant c0 is called the spontaneous curvature of the membrane surface. The
total bending energy of the membrane F is often referred to as the total bending
energy of the membrane, is given by

F =

∫
gcdA

The constant c0 can be attributed to the mean curvature of the membrane with
asymmetric chemical composition of layers in bilayer or the environment and is
closely related to the ’spontaneous splay’ of the liquid crystals. The constant κ is
the bending rigidity and κ̃ is the elastic modulus of the Gaussian curvature. By
comparing with the curvature elasticity of liquid crystals, both κ and κ̃ are found
to be in the order of the product of the elastic constants of lipid bilayer and the
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thickness of the membrane. The Helrich free energy of lipid membranes and is
generally recognized as the basic quantity in dealing with the mechanical behavior
of biomembranes in the liquid crystal phase.

The essential idea of Helfrich model is that the spontaneous curvature c0 is
strongly related to the orientational order parameters on both sides of the mem-
brane. In mechanism, c0 is strongly influenced by the changes in chemical struc-
tures of the molecules, the salinity and the temperature in the vesicle.

The extraordinarily beautiful and complex shapes of cells and cell organelles are
fashioned by the physical forces that operate on their membranes. A fundamental
problem of molecular cell biology in conjunction with physics and mathematics
[4] is to understand the evolutionary, developmental and functional rationale for
these shapes, as well as the mechanisms that are used by cells to produce them.
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