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Abstract. The workshop was devoted to discussions of recent developments
and possible future directions of research in the field of mathematical hydro-
dynamics. Many of the leading experts in the theory of PDE’s arising in fluid
dynamics participated in this event. The topics included:

• Regularity, uniqueness and well-posedness problems for the Navier-
Stokes equations

• Stability of Navier-Stokes solutions
• Open problems concerning the steady-state Navier-Stokes solutions
• Statistical approach to 2d hydrodynamics
• Inviscid limits of Navier-Stokes solutions
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• Finding physically reasonable classes of weak solutions of Euler’s equa-
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• Local well-posedness of Euler’s equations in optimal spaces
• Stability of solutions of Euler’s equations
• Water waves
• Model equations
• Geometric approach to hydromechanical equations
• Selected compressible flow problems
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Introduction by the Organisers

The workshop Mathematical Aspects of Hydrodynamics, organized by Gregory
Seregin (Oxford - St. Petersburg) and Vladimir Šverák (Minneapolis) was held
July 19th – July 25th, 2009. The meeting was well attended, more than 45 math-
ematicians participated. The program of the workshop consisted of 23 talks pre-
sented by leading researchers in Mathematical Fluid Mechanics coming from all
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around the world. The main topics covered by the workshop lectures, addressed
2D and 3D Euler and Navier-Stokes equations (stationary and non-stationary),
Quasi-Geostrophic Equation, Hydrostatic Boussinesq equation and other model
equations (Euler-α, Navier-Stokes-Voight etc.).

The lectures stimulated many interesting discussions and exchanges of ideas.
Many participants appreciated the opportunity to learn more about a variety of
approaches and points of views.

In addition to the scientific program, there were two events which might be
worth mentioning. The first one was the traditional Wednesday afternoon hike to
Oberwolfach-Kirche. The second event was an outstanding informal concert on
Friday evening by Charles Doering (guitar) and László Székelyhidi (violin).

Many participants suggested that a conference devoted to mathematical aspects
of fluid mechanics become a regular Oberwolfach workshop.

The unique atmosphere of the Institute was a significant factor in the success of
the meeting. As always, the Oberwolfach staff contributed greatly by the perfect
organizational work. The organizers would like to express once more their thanks
to the Institute for the support and the flawless organization.
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Abstracts

New information provided by the shear flow for the 3d Euler equation

Claude Bardos

(joint work with Edriss S. Titi)

The ”shear flow” is one of the most classical (or almost explicit) solutions of the
3d incompressible Euler equation. Analysis of this example leads to simple but
may be important remarks on the Euler equation:

1. Existence of very unstable solutions (this was already observed by Di Perna
and Lions).

2. Existence of initial data in C0,α with solution in C0,α2

this implies that
in the Holder spaces the class C0,α is not only sufficient but compulsory for well
posedness.

3. All these pathological examples conserve the energy and this shows that
relation between loss of regularity and energy decay for weak solution (the Onsager
conjecture) is not completely true (regularity implies conservation of energy but
conversely conservation of energy does not implies Holder regularity).

4. Existence of solution of the 3d Kelvin Helmholtz problem with (non analytic)
singular interface. This statement is not true in 2d and comes from the fact that
in 3d the linearized Kelvin Helmhlotz equation is no more elliptic.

References

[1] Claude Bardos, Edriss S. Titi, Loss of smoothness and energy conserving rough weak solu-
tions for the 3d Euler equations, preprint arXiv:0906.2029.

Stokes and Navier-Stokes equations under Navier type Boundary

conditions. Regularity and inviscid limit

Hugo Beirão da Veiga

(joint work with Francesca Crispo)

We consider the evolutionary Navier-Stokes equations with a Navier slip-type
boundary condition, and study the convergence of the solutions, as the viscosity
goes to zero, to the solution of the Euler equations under the zero-flux boundary
condition. We obtain quite sharp results in the 2-D and 3-D cases. However, in
the 3-D case, we need to assume that the boundary is flat. Convergence is proved
in L∞(0, T ;W k,p(Ω)), for arbitrarily large values of k and p.
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References

[1] H. Beirão da Veiga, F. Crispo, Sharp inviscid limit results under Navier type bound-
ary conditions. An Lp theory, Journal of Mathematical Fluid Mechanics (in press), DOI
10.1007/s00021-009-0295-4.

[2] H. Beirão da Veiga, F. Crispo, Concerning the W k,p(Ω)- inviscid limit for 3-D flows un-
der a slip boundary condition, Journal of Mathematical Fluid Mechanics (in press), DOI
10.1007/s00021-009-0012-3.

[3] Y. Xiao and Z. Xin, On the vanishing viscosity limit for the 3-D Navier-Stokes equations
with a slip boundary condition, Comm. Pure Appl. Math., 60 (2007), 1027-1055.

Hydrostatic Boussinesq equations and Optimal Transport Theory

Yann Brenier

(joint work with Mike Cullen)

We establish a connection between Optimal Transport Theory and classical Con-
vection Theory for geophysical flows. Our starting point is the model designed
few years ago by Angenent, Haker and Tannenbaum [AHT] to solve some Op-
timal Transport problems. This model can be seen as a generalization of the
Darcy-Boussinesq equations, which is a degenerate version of the Navier-Stokes-
Boussinesq (NSB) equations. In a unified framework, we relate different variants
of the NSB equations (in particular what we call the generalized Hydrostatic-
Boussinesq equations) to various models involving Optimal Transport (and the re-
lated Monge-Amp‘ere equation). This includes the 2D semi-geostrophic equations
and some fully non-linear versions of the so-called high-field limit of the Vlasov-
Poisson system [NPS] and of the Keller-Segel for Chemotaxis. Mathematically
speaking, we establish some existence theorems for local smooth, global smooth
or global weak solutions of the different models. We also justify that the inertia
terms can be rigorously neglected under appropriate scaling assumptions in the
Generalized Navier-Stokes-Boussinesq equations.

We show how a ”stringy” generalization of the AHT model can be related to
the magnetic relaxation model studied by Arnold and Moffatt to obtain stationary
solutions of the Euler equations with prescribed topology.

We prove that smooth solutions of the semigeostrophic equations in the incom-
pressible x − z setting can be derived from the Navier-Stokes equations with the
Boussinesq approximation.

References

[1] Y. Brenier, M. Cullen, Rigorous derivation of the x−z semigeostrophic equations, to appear
in CMS 2009.

[2] Y. Brenier, Optimal Transport, Convection, Magnetic Relaxation and Generalized Boussi-
nesq Equations, to appear in JNLS 2009.
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Inviscid limit for damped and driven incompressible Navier-Stokes

equations in R
2

Peter Constantin

We consider the zero viscosity limit of long time averages of solutions of damped
and driven Navier-Stokes equations in R

2. We prove that the rate of dissipation
of enstrophy vanishes. Stationary statistical solutions of the damped and driven
Navier-Stokes equations converge to renormalized stationary statistical solutions
of the damped and driven Euler equations. These solutions obey the enstrophy
balance.

References

[1] P. Constantin and F. Ramos, Inviscid limit for damped and driven incompressible
Navier-Stokes equations in R2, submitted to Comm. Math. Phys. http://arxiv.org/PS
cache/math/pdf/0611/0611782.pdf

[2] R. DiPerna, P-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces,
Invent. Math. 98 (1989) 511-547.

[3] C. Foias, Statistical study of the Navier-Stokes equations I, Rend. Sem. Mat. Univ. Padova
48 (1972), 219-348.

[4] C. Foias, Statistical study of the Navier-Stokes equations II, Rend. Sem. Mat. Univ. Padova
49 (1973), 9-123.

Transport and Dissipation in Turbulent Fluid Flows

Charles R. Doering

The relation between the shape of the force driving a turbulent ow and the upper
bound on the dimensionless dissipation factor β is presented. We are interested in
non-trivial (more than two wave numbers) forcing functions in a three dimensional
domain periodic in all directions. A comparative analysis between results given
by the optimization problem and the results of Direct Numerical Simulations is
performed. We report that the bound on the dissipation factor in the case of
infinite Reynolds numbers have the same qualitative behavior as for the dissipation
factor at finite Reynolds number. As predicted by the analysis, the dissipation
factor depends strongly on the force shape. However, the optimization problem
does not predict accurately the quantitative behavior. We complete our study by
analyzing the mean ow profile in relation to the Stokes ow profile and the optimal
multiplier profile shape for different force-shapes. We observe that in our 3D-
periodic domain, the mean velocity profile and the Stokes flow profile reproduce
all the characteristic features of the force-shape. The optimal multiplier proves to
be linked to the intensity of the wave numbers of the forcing function.

References

[1] B. Rolling, Y. Dubief, C.R. Doering, Variation on the Kolmogorov Forcing: Asymptotic
Dissipation Rate Driven by Harmonic Forcing, preprint arXiv:0903.1897

[2] Thomas H. van den Berg, Charles R. Doering, Detlef Lohse, Daniel P. Lathrop, Smooth and
rough boundaries in turbulent Taylor-Couette flow
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[3] B. Gallet, C. Doering, E. Spiegel Instability theory of swirling flows with suction
[4] Doering, Charles R.; Spiegel, Edward A. Energy dissipation in a shear layer with suction,

Physics of Fluids, Volume 12, Issue 8, pp. 1955-1968 (2000).
[5] C. Doering and P. Constantin, Energy dissipation in shear driven turbulence, Phys. Rev.

Lett. 69, 1648 (1992).
[6] D. Lathrop, J. Feinberg, and H. Swinney, Transition to shear-driven turbulence in Couette-

Taylor flow, Phys. Rev. A 46, 6390 (1992).
[7] O. Cadot, Y. Couder, A. Daerr, S. Douady, and A. Tsinober, Energy injection in closed

turbulent flows: Stirring through boundary layers versus inertial stirring, Phys. Rev. E56,
427 (1997).

[8] P. Constantin and C. Doering, Variational bounds on energy dissipation in incompressible
flows: II. Channel flow, Physica D 82, 221 (1995).

L
p-estimates for stationary compressible fluids

Jens Frehse

(joint work with Mark Steinhauer, Wladimir Weigant)

We consider the Navier-Stokes equations for compressible isothermal flow in the
steady two dimensional case and show the existence of a weak solution in the case of
periodic and of mixed boundary conditions. Also we consider the three dimensional
case and show the existence of a weak solution for homogeneous Dirichlet (no-slip)
boundary conditions under the assumption that the adiabatic exponent satisfies
some restriction. In particular we cover with our existence result the cases of a
monoatomic gas and of air.

References

[1] J. Frehse, M. Steinhauer, W. Weigant The Dirichlet Problem for Steady Viscous
Compressible Flow in 3-D, preprint University of Bonn, SFB 611, No. 347 (2007),
http://www.iam.uni-bonn.de/sfb611/.

[2] J. Frehse, M. Steinhauer, W. Weigant, The Dirichlet Problem for Viscous Compressible
Isothermal Navier-Stokes Equations in Two-Dimensions, preprint University of Bonn, SFB
611, No. 337 (2007), http://www.iam.uni-bonn.de/sfb611/.

[3] J. Frehse, M. Steinhauer, W. Weigant, On Stationary Solutions for 2-D Viscous Compress-
ible Isothermal Navier-Stokes Equations, preprint University of Bonn, SFB 611, No. 330
(2007), http://www.iam.uni-bonn.de/sfb611/

Some large initial data to the Navier-Stokes equations giving rise to a

global solution

Isabelle Gallagher

(joint work with Jean-Yves Chemin, Marius Paicu)

Classes of initial data to the three dimensional, incompressible Navier-Stokes equa-
tions were presented, generating a global smooth solution although the norm of
the initial data (periodic or defined in the whole space) may be chosen arbitrarily
large. Such initial data giving rise to global solutions have particular oscillatory
properties or varies slowly in one direction or the norm blows up as the small
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parameter goes to zero. The proof uses the special structure of the nonlinear term
of the equation.

References

[1] J.-Y. Chemin and I. Gallagher, On the global wellposedness of the 3-D Navier-Stokes equa-
tions with large initial data, Annales de l’ Ecole Normale Superieure, 39, 2006, pages 679-698.

[2] J.-Y. Chemin and I. Gallagher, Wellposedness and stability results for the Navier-Stokes
equations in R3 to appear in Annales de l’Institut Henri Poincare, Analyse Non Lineaire.

[3] J.-Y. Chemin and I. Gallagher, Large, global solutions to the Navier-Stokes equations, slowly
varying in one direction, to appear in Transactions of the Americal Mathematical Society.

[4] J.-Y. Chemin, I. Gallagher and M. Paicu Global regularity for some classes of large solutions
to the Navier-Stokes equations, preprint arXiv:0807.1265.

Three-dimensional Stability of Burgers Vortices

Thierry Gallay

(joint work with Yasunori Maekawa)

Although the two dimensional stability of the Burgers vortex has been well studied
by now, its stability with respect to three dimensional perturbations has been less
understood since the linearized equation becomes much more complicated in this
case. In Gallay-Wayne [1-2] it is mathematically proved that the Burgers vortex
is locally stable for three dimensional perturbations at least for sufficiently small
circulation numbers. New results concerning stability of Burgers Vortices in the
symmetric and non-symmetric case are discussed. The talk is focused on this three
dimensional stability problem in the case of arbitrary circulation numbers.

References

[1] Th. Gallay and C.E. Wayne. Global stability of vortex solutions of the two-dimensional
Navier-Stokes equation, Comm. Math. Phys. 255 (2005), 97-129.

[2] Th. Gallay and C.E. Wayne, Existence and stability of asymmetric Burgers vortices, J.
Math. Fluid Mech. 9 (2007), 243-261.

[3] Y. Maekawa, Spectral properties of the linearization at the Burgers vortex in the high rota-
tion limit, J. Math. Fluid Mech., to appear.

[4] Y. Maekawa, On the existence of Burgers vortices for high Reynolds numbers, J. Math.
Analysis and Applications 349 (2009), 181-200.

[5] Y. Maekawa, Existence of asymmetric Burgers vortices and their asymptotic behavior at
large circulations Math. Models Methods Appl. Sci. 19 (2009), 669-705.
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Strong L
p solutions to fluid-solid interaction problems

Matthias Hieber

(joint work with Matthias Geissert, Karoline Goetze)

In this talk we consider the movement of a rigid body in a Newtonian or Non-
Newtonian fluid under the influence of gravitation. We show that in the first case
the system consisting of the Navier-Stokes equations coupled with the balance
laws for the momentum and the angular momentum admits a unique, local, strong
solution in the Lp-setting. Note that the fluid-solid interface is a moving one and
has to be found as part of the solution process. Our result will then be extended
to the case of certain Non-Newtonian fluids. This is joint work with Matthias
Geissert and Karoline Goetze.

A variation on a theme of Caffarelli and Vasseur

Alexander Kiselev

(joint work with Fedor Nazarov)

The 2D surface quasi-geostrophic (SQG) equation has recently been a focus of
significant research effort. This equation appears in geophysics, emerging under
certain assumptions from Boussinesq approximation equations describing fluid in
a three dimensional strongly rotating half-space. Part of the recent interest to the
SQG equation may be due to the fact that it is the simplest-looking equation of
fluid dynamics for which the question of global existence of smooth solutions is
still open. Recently, there has been a progress in understanding SQG equation
with critical dissipation. There are two very different proofs of global regularity
in this case: a nonlocal modulus of continuity approach by Kiselev, Nazarov and
Volberg and a method of Caffarelli and Vasseur, based on DiGiorgi-type itera-
tive techniques. The KNV approach is shorter, while the CV approach is more
general, showing Hölder regularization of solution to drift-diffusion equation with
BMO norm estimate on the drift. The SQG equation result is then a particular
consequence. In this talk, I will outline a third approach which allows to under-
stand and recover some of Caffarelli-Vasseur results by more elementary means.
This is a joint work with F. Nazarov.

References

[1] L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the
quasi-geostrophic equation, preprint arXiv:math/0608447, 25 pages.

[2] A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative
quasi-geostrophic equation, Inventiones Math. 167 (2007) 445-453.

[3] A. Kiselev, F. Nazarov, A variation on a theme of Caffarelli and Vasseur, preprint
arxiv:math/0908.0923, 9 pages.
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Leray’s inequality in 3D multi-connected domains

Hideo Kozono

(joint work with Taku Yanagisawa)

We consider the stationary Navier-Stokes equations in 3D bounded domains the
boundary of which consists of several connected surfaces. It is known that if the
given boundary data satisfies the ”restricted” flux condition which means that the
flux on each component of the boundary vanishes, then we have an existence the-
orem. However, it has been an open question whether or not the same existence
result does hold under the ”general” flux condition which implies that the total
sum of each flux on the boundary component is zero. This problem was proposed
by Leray in 1933 who had established the former existence theorem by means of
the Leray inequality. Roughly speaking, we may regard the Leray inequality as the
quadratic estimate of the nonlinear convection term in terms of the Dirichlet inte-
gral. In this talk, we will see that, in many cases, the Leray inequality necessarily
yields the restricted flux condition.

References

[1] H. Kozono, T. Yanagisawa, Global Div-Curl lemma on bounded domains in R3, Journal of
Functional Analysis Volume 256, Issue 11, 1 June 2009, Pages 3847-3859,

[2] H. Kozono, T. Yanagisawa, Leray’s problem on the stationary Navier-Stokes equations with
inhomogeneous boundary data, Mathematische Zeitschrift Volume 262, Number 1, 2009,
pages 27-39.

Some Remarks on Euler Equation and Triebel-Lizorkin Spaces

Pierre-Gilles Lemarié-Rieusset

The solvability of the Cauchy problem for the non-stationary Euler equations in
Triebel-Lizorkin Spaces is discussed.

References

[1] D. Chae, On the well-posedness of the Euler equations in the Triebel-Lizorkin spaces, Comm.
Pure Appl. Math 55 (2002), p. 654-678,

[2] Y. Zhou Local well-posedness for the incompressible Euler equations in the critical Besov
spaces Annales de l’institut Fourier, 54 no. 3 (2004), p. 773-786
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Behavior of solutions to Navier-Stokes equations in the scaling

invariant spaces

Nataša Pavlović

(joint work with Jean Bourgain, Pierre Germain and Gigliola Staffilani)

In this talk we will discuss the Navier-Stokes equations in scaling invariant spaces.
In particular, we will briefly recall regularity of so called ”mild” solutions to the
Navier-Stokes equations evolving from small initial data in a critical space in R

n

(joint work with Pierre Germain and Gigliola Staffilani). Then we will describe a
result on ill-posedness of the Navier-Stokes equations in the largest critical space
in 3D (joint work with Jean Bourgain).

References

[1] Pierre Germain, Natasa Pavlovic, Gigliola Staffilani, Regularity of solutions to the Navier-
Stokes equations evolving from small data in BMO−1, preprint arxiv:math/0609781,

[2] Jean Bourgain, Natasa Pavlovic, Ill-posedness of the Navier-Stokes equations in a critical
space in 3D, preprint arxiv:math/0807.0882.

2-D Navier-Stokes Equation and Intermediate Asymptotics

Mario Pulvirenti

(joint work with Emanuele Caglioti, Frederic Rousset)

We introduce a modified version of the two-dimensional Navier-Stokes equation,
preserving energy and momentum of inertia, which is motivated by the occurrence
of different dissipation time scales and related to the gradient flow structure of the
2-D Navier-Stokes equation. The hope is to understand intermediate asymptotics.

References

[1] E. Caglioti, M. Pulvirenti, F. Rousset, 2-D constrained Navier-Stokes equation and inter-
mediate asymptotics, preprint arxiv:math/0807.2197

Liquid crystals and Weil-Petersson geodesics

Tudor S. Ratiu

(joint work with François Gay-Balmaz, Jerrold E. Marsden)

The approach develops the theory of affine Euler-Poincaré and affine Lie-Poisson
reductions and applies these processes to various examples of complex fluids, in-
cluding Yang-Mills and Hall magnetohydrodynamics for fluids and superfluids,
spin glasses, microfluids, and liquid crystals. As a consequence of the Lagrangian
approach, the variational formulation of the equations is determined. On the
Hamiltonian side, the associated Poisson brackets are obtained by reduction of a
canonical cotangent bundle. A Kelvin-Noether circulation theorem is presented
and is applied to these examples.
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[1] Francois Gay-Balmaz, Tudor S. Ratiu, The Geometric Structure of Complex Fluids, preprint
arxiv:math/0903.4294
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Well-posedness for the free-boundary 3-D compressible Euler

equations in physical vacuum

Steve Shkoller

(joint work with Daniel Coutand, Hans Lindblad)

We prove a priori estimates for the three-dimensional compressible Euler equa-
tions with moving physical vacuum boundary, with an equation of state given by
p(ρ) = Cγρ

γ for γ > 1. The vacuum condition necessitates the vanishing of the
pressure, and hence density, on the dynamic boundary, which creates a degenerate
and characteristic hyperbolic free-boundary system to which standard methods of
symmetrizable hyperbolic equations cannot be applied.

References

[1] Daniel Coutand, Hans Lindblad, Steve Shkoller, A priori estimates for the free-boundary
3-D compressible Euler equations in physical vacuum, preprint arxiv:math0906.0289.

What is a weak solution of the Euler Equation?

Alexander Shnirelman

I am going to discuss the construction of a more realistic 3-dim weak solution,
whose kinetic energy monotonically decreases in time. This solution is also ev-
erywhere discontinuous and unbounded, while has some realistic features. The
construction starts from a simple mechanical system having the property that the
kinetic energy decreases, while there is no explicit friction; it requires Generalized
Flows, introduced by Y. Brenier. At last, I am going to discuss the ways to the
construction and theory of true, physically reasonable weak solutions of the Euler
equations.

References

[1] Alexander I. Shnirelman, Weak solutions of incompressible Euler equations with decreasing

energy, Seminaire Equations aux derivees partielles (Polytechnique) (1996-1997), Exp. No.
16, 9 p.

[2] Shnirelman, A. Microglobal Analysis of the Euler Equations, Journal of Mathematical Fluid
Mechanics, Volume 7, Supplement 3, pp S387-S396

[3] Scheffer, V. An inviscid flow with compact support in space-time, J. Geom. Anal. 3, 4 (1993),
343-401.

[4] Shnirelman, A. On the nonuniqueness of weak solution of the Euler equation, Comm. Pure
Appl. Math. 50, 12 (1997), 1261-1286.
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[5] Shnirelman, A. Weak solutions with decreasing energy of incompressible Euler equations,
Comm. Math. Phys. 210, 3 (2000), 541-603.

Recent results on strong and weak colutions of the Navier-Stokes

Equations

Hermann Sohr

(joint work with Reinhard Farwig)

The first part of this talk yields the optimal initial value condition for the exis-
tence of a local (in time) unique strong solution of the Navier-Stokes equations in
a smooth bounded domain. This condition is not only sufficient - there are several
well-known sufficient conditions in this context - but also necessary, yielding there-
fore the largest possible class of such local strong solutions. A restricted result
holds for completely general domains. In the second part, the well-known class of
(global in time) Leray-Hopf weak solutions with zero boundary conditions and zero
divergence will be extended to a larger class with corresponding nonzero conditions
where boundary values and divergence are given satisfying certain compatibility
conditions.
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On a problem of magneto-hydrodynamics in multi-connected domains

Vsevolod A. Solonnikov

A proof of the solvability for the initial boundary value problem arising in magneto-
hydrodynamics in multi-connected domains is presented.
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Weak solutions of the Euler Equations: Non-uniqeness and dissipation

László Székelyhidi Jr.

(joint work with Camillo De Lellis)

In this paper we propose a new point of view on weak solutions of the Euler
equations, describing the motion of an ideal incompressible fluid in R

n with n ≥

2. We give a reformulation of the Euler equations as a differential inclusion,
and in this way we obtain transparent proofs of several celebrated results of V.
Scheffer and A. Shnirelman concerning the non-uniqueness of weak solutions and
the existence of energy–decreasing solutions. Our results are stronger because they
work in any dimension and yield bounded velocity and pressure.
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Inviscid Regularization of Hydrodynamics Equations: Global

Regularity, Numerical Analysis and Statistical Behavior

Edriss S. Titi

Inviscid Regularization of Hydrodynamics Equations is described. Some results
on solvability and regularity of the corresponding solutions and their numerical
analysis and statistical behavior are discussed.
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Recent results in fluid mechanics

Alexis F. Vasseur

We will present, in this talk, new applications of De Giorgi’s methods and blow-up
techniques to fluid mechanics problems. Those techniques have been successfully
applied to show full regularity of the solutions to the surface quasi-geostrophic
equation in the critical case.

We will present, also, a new nonlinear family of spaces allowing to control
higher derivatives of solutions to the 3D Navier-Stokes equation. Finally, we will
present a regularity result for a reaction-diffusion system which has almost the
same supercriticality than the 3D Navier-Stokes equation.
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Is free surface potential Hydrodynamics integrable?

Vladimir E. Zakharov

If the spectral density of ocean wave is narrow in comparison with steepness,
the modulation instability occurs. We have studied the nonlinear shape of this
instability by performing massive numerical simulations of the Euler equations for
ideal fluid with free surface. Our conclusion is the following - the modulational
instability generates rogue waves.

We started with the exact Euler equation for potential flow of infinitely deep
incompressible fluid in two dimensions and performed canonical map of the do-
main filled by fluid onto the lower half-plane. Under this map, the hydrodynamic
equations are transformed to the elegant Dyachenko equations, which are suit-
able for numerical solution by implementation of the standard spectral code. We
used the code with adjusting time step and adjusting number of spectral modes.
This number varied within the limits 104/106. All experiments were done in the
standard wave tank of the length 2π.

In the first group of experiments we studied the development of modulational
instability of slightly perturbed Stokes wave. Both steepness and wave numbers
of the initial wave could be essentially varied. The most impressive results are
obtained for the Stokes with wave number n = 100 and µ ∼= 0.1. In this case the
modulational instability is a slow process. On the initial stage we observed expo-
nential growth of perturbation followed by formation of a kind of one-dimensional
turbulence. After more than ten inverse growth rates of the instability (two or
more periods of initial wave) the process ends up by formation of the freak wave of
an amplitude exceeding initial average level of surface elevation in four-five times.
Onset of the freak wave is a catastrophic event taking only a few wave periods.
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In the second group of experiments we studied the formation of freak waves
from envelope quasisolitons. The quasisolitons of small steepness, µ < 0.1, prop-
agate peacefully and could be fairly approximated by the Nonlinear Schrodinger
equation (NLSE). Quasisolitons of a moderate amplitude, 0.1 < µ < 0.14, still
propagate without changing their form, however, they are essentially asymmetric.
The quasisolitons of high steepness, µ > 0.1, are unstable. Their evolution leads
to a formation of freak wave. The freak waves appear also in collisions of relatively
small amplitude solitons.

In the third group of experiments we generated stochastic quasi-monochromatic
waves from the white noise by including into equations of the narrow-band weak
instability (so far in the range of wave numbers 30/40). At a certain level of
nonlinearity, the growth of instability is arrested by a sporadic wave breaking. On
this background we saw rare events of rogue wave formation.
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