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Introduction by the Organisers

The workshop Partial differential equations, organised by Tom Ilmanen (ETH
Zürich), Reiner Schätzle (Universität Tübingen), Neil Trudinger (Australian Na-
tional University Canberra) and Georg S. Weiss (University of Tokyo) was held
August 2-8, 2009. This meeting was well attended by 46 participants, including 3
females, with broad geographic representation. The program consisted of 17 talks
and 6 shorter contributions and left sufficient time for discussions.
New results combining partial differential equations and geometric problems were
presented in the area of minimal surfaces, free boundaries and singular limits. Also
there were several contributions to regularity of solutions of partial differential
equations.
A major part of the leading experts of partial differential equations with conformal
invariance attended the workshop. Here new results were presented in conformal
geometry, for the Yamabe problem, Q-curvature and the Willmore functional.
The organisers and the participants are grateful to the Oberwolfach Institute for
presenting the opportunity and the resources to arrange this interesting meeting.
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Abstracts

Degenerate problems with irregular obstacles

Verena Bögelein

(joint work with F. Duzaar and G. Mingione)

In this talk we establish the natural Calderón & Zygmund theory for solutions
of elliptic and parabolic obstacle problems involving possibly degenerate operators
in divergence form, proving that the gradient of solutions is as integrable as that of
the assigned obstacles. More precisely, we are interested in functions u : ΩT → R

belonging to the class

K =
{
v ∈ C0([0, T ];L2(Ω)) ∩ Lp(0, T ;W 1,p

0 (Ω)) : v ≥ ψ a.e. on ΩT

}

and satisfying the variational inequality

(1)

∫ T

0

〈∂tv, v − u〉 dt+
∫

ΩT

a(Du) ·D(v − u) dz + 1
2‖v(·, 0)− u0‖2L2(Ω) ≥ 0 ,

for all v ∈ K such that ∂tv ∈ Lp
′

(0, T ;W−1,p′(Ω)), where p′ = p/(p−1). Here, 〈·, ·〉
denotes the duality pairing betweenW−1,p′ andW 1,p and ΩT := Ω×(0, T ) ⊂ Rn+1

the parabolic cylinder over a domain Ω ⊂ R
n and ψ : ΩT → R is a given obstacle

function with

ψ ∈ C0([0, T ];L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)) and ∂tψ ∈ Lp

′

(ΩT ).(2)

For the initial values u0 of u we shall assume that

(3) u(·, 0) = u0 ∈W 1,p
0 (Ω) and u0 ≥ ψ(·, 0).

The vector field a : Rn → Rn is supposed to be of class C1, satisfying the following
- possibly degenerate - growth and ellipticity assumptions:

|a(w)| +
(
µ2 + |w|2

) 1
2 |∂wa(w)| ≤ L

(
µ2 + |w|2

) p−1
2 ,(4)

∂wa(w)w̃ · w̃ ≥ ν
(
µ2 + |w|2

) p−2
2 |w̃|2 ,(5)

for all w, w̃ ∈ R
n and some constants 0 < ν ≤ 1 ≤ L and µ ∈ [0, 1]. The

simplest model we have in mind and which is included by our assumptions is
the variational inequality associated to the p-Laplacean operator, i.e. the case
a(Du) = |Du|p−2Du.

Remark 1. There is a general difference compared to the treatment of parabolic
equations, since weak solutions belong to W 1,p′(0, T ;W−1,p′(Ω)). But this is in
general not known for parabolic variational inequalities. For that reason we have
to formulate the problem in (1) in its weak form not involving the derivative
in time ∂tu and which is obtained by an integration by parts. This is also the
reason for the presence of the term involving the initial datum u0 in (1). On the
other hand, when the obstacle is more regular, then the solution indeed lies in
W 1,p′(0, T ;W−1,p′(Ω)) and the strong form makes sense.
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Let us now state our main result.

Theorem 2. Let u ∈ K be a solution of the variational inequality (1) under the
assumptions (2) - (5) with

(6) p >
2n

n+ 2
,

and suppose that

|Dψ|p ∈ Lqloc(ΩT ) and |ψt|
p

p−1 ∈ Lqloc(ΩT ) ,

for some q > 1. Then |Du|p ∈ Lqloc(ΩT ). Moreover, there exists a constant
c ≡ c(n, ν, L, p, q) such that for any parabolic cylinder Qz0(R) := Bx0(R) × (t0 −
R2, t0 +R2) with Qz0(2R) ⊆ ΩT there holds

[
−
∫

Qz0(R)

|Du|pq dz
] 1

q

≤ c

[
−
∫

Qz0(2R)

|Du|p dz + 1

+

[
−
∫

Qz0(2R)

(
|Dψ|pq + |ψt|

pq
p−1
)
dz

] 1
q

]d
,(7)

where

d :=

{
p
2 if p ≥ 2

2p
p(n+2)−2n if p < 2 .

Note that assumption (6) is unavoidable, since - even in the absence of obstacles
- solutions cannot enjoy the regularity prescribed by Theorem 2. The a priori
estimate (7) fails in being a reverse type homogeneous inequality in the case p 6= 2,
by the presence of the natural exponent d, which has to be interpreted as the scaling
deficit of the problem. This quantity already appears in the a priori estimates
relative to the homogeneous parabolic p-Laplacean equation

∂tu− div
(
|Du|p−2Du

)
= 0 .

The peculiarity of this equation is that the diffusive and the evolutionary parts
possess a different scaling unless p = 2. Indeed, it is easily seen that multiplying
a solution by a constant does not produce a solution of a similar equation and
this clearly reflects in the fact that the a priori estimates available cannot be
homogeneous, exactly as in (7). We also observe that when p > 2 the scaling deficit
d is exactly given by the ratio between the scaling exponents of the evolutionary
and the elliptic part, that is p/2. In the case p < 2, we have that d → ∞ as
p approaches the lower bound in (6) and this reflects the failure of estimates as
(7) for p ≤ 2n/(n + 2). On the other hand, for elliptic variational inequalities,
that is for the stationary case, the corresponding estimate we obtain indeed is
homogeneous and takes the form
[
−
∫

Bx0(R)

|Du|pq dx
] 1

q

≤ c−
∫

Bx0(2R)

(|Du|+ µ)p dx+ c

[
−
∫

Bx0(2R)

|Dψ|pq dx
] 1

q

.
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Note that also the additive constant 1 is replaced by µ coming from the growth
and ellipticity (4) and (5) of the vector field a(·).

Let us emphasize that we do not impose any growth assumption in time on the
obstacle ψ. This is typically needed in the literature when dealing with irregular
obstacles; for instance the obstacle is not allowed to increase in time. We also have
proved an existence theorem for irregular obstacles including the ones considered
above; particularly obstacles are not necessarily considered to be non-increasing
in time.

The results presented are joint work with F. Duzaar and G. Mingione.

Inequalities on CR Manifolds and Nilpotent Groups

Sagun Chanillo

We first describe the results in [1] obtained jointly with J. Van Schaftingen and
concerns sub-elliptic analogs of the Bourgain-Brezis inequalities. The Bourgain-
Brezis inequalities we are concerned with are as follows.

Let Γ be a smooth, closed curve in Rn. Let T denote the unit tangent vector
to Γ. Then for any vector field f we have

|
∫

Γ

f ·Tds| ≤ c(n)|Γ| ||∇f ||n (1)

(1) is actually an elementary consequence of another remarkable inequality ob-
tained by Bourgain-Brezis. This inequality states:

Let g have vanishing distributional divergence. That is for all φ ∈ C∞
0 (Rn),

assume, ∫

Rn

g · ∇φ = 0

Then,

|
∫

Rn

f · g| ≤ c(n)||g||1 ||∇f ||n (2)

A consequence of (2) is:

Let g have vanishing distributional divergence. Furthermore let,

∆u = g.

Then,

||∇u||n/(n−1) ≤ c(n)||g||1.
We now describe the results in [1]. We shall consider a connected, nilpotent Lie
group G with Lie algebra G, satisfying the properties that,

(a) G = ⊕pi=1Vi

(b) [Vi, Vj ] ⊆ Vi+j , i+ j ≤ p, [Vi, Vj ] = {0}, i + j > p.

(c) V1 generates G via Lie brackets.
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We also introduce the homogeneous dimension Q,

Q =

p∑

j=1

j dim Vj .

Set dim V1 = m and select a basis {Y1, . . . , Ym} for V1. Let g = (g1, g2, . . . , gm)
and f = (f1, f2, . . . , fm). Assume furthermore that f has vanishing distributional
divergence, that is ∫

G

m∑

i=1

fiYiφ = 0 (3)

for all test functions φ on G. Then,

|
∫

G

f · g| ≤ c||f ||1 ||
p∑

i,j=1

|Yigj |||Q (4)

A consequence of (4) is as follows. Consider the Hörmander sums of squares
operator ∆b, where

∆b =
m∑

i=1

Y 2
i .

Then for any f satisfying the vanishing divergence condition (3), if

∆bu = f

we have,

||
m∑

i,j=1

|Yiuj| ||Q/(Q−1) ≤ c||f ||1.

We next describe joint work with Paul Yang [2]. We consider a smooth manifold
M3, equipped with a contact form θ, which satisfies the condition

θ ∧ dθ 6= 0.

We assume that the distribution Ξ = ker θ, which is the contact plane has an
almost complex structure defined on it. We then have the Levi metric formed by
using dθ and a connection introduced by Webster and Tanaka. These manifolds
are called CR manifolds. Using this connection we have the notion of Webster
curvature W . Our work [2] starts by studying the eqn. of geodesics introduced
by Rumin. We first compute the Jacobi field eqns. associated with varying the
geodesics. Then we can use our Jacobi fields to compare the volumes of balls in
arbitrary manifolds with the volumes of balls on manifolds with constant Webster
curvature. The constant curvature spaces being, W = −1 which is SL(2,R),
W = 0 which is the Heisenberg group and W = 1 which is the sphere S3. As an
application of our volume comparison results we have an isoperimetric inequality.
To state our inequality we need some definitions. The volume element for our CR
manifold is given by:

θ ∧ dθ
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Next given a boundary ∂Ω of a domain Ω, we denote by e1 the unit tangent vector
to both ∂Ω and Ξ. Let e1 denote the dual to e1 in the duality bracket between
tangent vectors and co-tangent vectors. Then the area element for ∂Ω is given by

θ ∧ e1.

Theorem 2: LetM3 be a simply-connected, complete CRmanifold with vanishing
torsion tensor. Assume the Webster curvature is non-positive, i.e W ≤ 0. Then
for any domain Ω ⊆M , we have,

vol(Ω) ≤ c|∂Ω|4/3.

References

[1] Chanillo,S. and Van Schaftingen, J., Sub-elliptic Bourgain-Brezis Estimates on Groups,
Math. Research Letters, 16 (3), (2009), 487-501.

[2] Chanillo, S. and Yang, P. C., Isoperimetric Inequalities and Volume Comparison theorems
on CR manifolds, Annali Della Scuola Norm. Sup. Pisa, 8 (2009), 279-307.

On the stability of small crystals under exterior potentials

Alessio Figalli

The anisotropic isoperimetric inequality arises in connection with a natural
generalization of the Euclidean notion of perimeter: given an open, bounded,
convex set K of Rn containing the origin, define a “dual norm” on Rn by ‖ν‖∗ :=
sup {x · ν : x ∈ K}. Then, given a (smooth for simplicity) open set E ⊂ Rn, its
anisotropic perimeter is defined as

PK(E) :=

∫

∂E

‖νE(x)‖∗dHn−1(x).

Apart from its intrinsic geometric interest, the anisotropic perimeter PK arises as a
model for surface tension in the study of equilibrium configurations of solid crystals
with sufficiently small grains, and constitutes the basic model for surface energies
in phase transitions. In the former setting, one is naturally led to minimize PK(E)
under a volume constraint. This is of course equivalent to study the isoperimetric
problem (also called Wulff problem [3])

(1) inf

{
PK(E)

|E|(n−1)/n
: 0 < |E| <∞

}
.

Introduce the isoperimetric deficit of E

δK(E) :=
PK(E)

n|K|1/n|E|(n−1)/n
− 1.

This functional measures, in terms of the relative size of the perimeter and of the
measure of E, the deviation of E itself from being optimal in (1). The stability
problem consists in quantitatively relating this deviation to a more direct notion
of distance from the family of optimal sets, which are know to be translations
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and dilations of K and on which δK = 0. In collaboration with F. Maggi and A.
Pratelli, we proved the following sharp stability result [2]: if |E| = |K|, then

C(n)δK(E) ≥ inf
x∈Rn

( |E∆(x +K)|
|E|

)2

.

Here C(n) is an explicit constant, with C(n) ≈ n7.
Then, in a joint work with F. Maggi [1] we apply the above improved version of

the anisotropic isoperimetric inequality to understand properties of minima arising
from the minimization problem

E 7→ PK(E) +

∫

E

g, |E| = m,

where g : Rn → R is a given potential. The idea is that for small massm the surface
energy PK dominates, and so one may apply the stability of the isoperimetric
problem so say that a minimum F is (quantitatively) close in L1 to a dilation
of K. By combining this starting point with the minimality of F , we show that
closedness holds in a quantitative way in some stronger norms: L∞ for general K,
and Ck,α if K is smooth and uniformly convex.

A further property that one would like to show is that, for small masses, all
minima are actually convex (with no regularity assumptions on g). This last
result is shown to be true in two dimension. Moreover, always in two dimensions
we proved that if K is polyhedral, then for m small all minima are polyhedral, and
their faces are parallels to the ones of K. This (quite surprising) stability property
shows that two dimensional crystals are actually very rigid objects.

References

[1] A. Figalli, F. Maggi. Small crystals in external fields. In preparation.
[2] A. Figalli, F. Maggi, A. Pratelli. A mass transportation approach to quantitative isoperi-

metric inequalities. Submitted.
[3] G. Wulff. Zur Frage der Geschwindigkeit des Wachsturms und der Auflösung der

Kristallflächen. Z. Kristallogr., 34, 449-530.

Equilibrium configurations of epitaxially strained crystalline films

Nicola Fusco

We present some recent results on the equilibrium configurations of a variational
model for the epitaxial growth of a thin film on a thick substrate introduced by
Bonnetier–Chambolle in [1]. In the model only two dimensional morphologies
are considered corresponding to three-dimensional configurations. The reference
configuration of the film is

Ωh =
{
z = (x, y) ∈ R

2 : 0 < x < b, 0 < y < h(x)
}
,

where h : [0, b] → [0,∞) and its graph Γh represents the free profile of the film.
Denoting by u : Ωh → R2 the planar displacement of the film with respect to the
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reference configuration, the strain is given by

E(u) =
1

2
(∇u+∇Tu)

and the energy associated to a smooth configuration (h, u) is

G(h, u) =

∫

Ωh

[
µ
∣∣E(u)|2 + λ

2
(divu)2

]
dz + σH1(Γh) ,

where µ and λ represent the Lamé coefficients of the film, σ is the surface tension
on the profile (which up to to a rescaling we may assume to be equal to 1) and H1

denotes the one-dimensional Hausdorff measure. One seeks to minimize G among
all configurations (h, u) such that h(0) = h(b), u(x, 0) = e0(x, 0), for 0 < x < b,
e0 > 0, u(b, y) = u(0, y) + e0(b, 0) for 0 < y < b, satisfying the volume constraint
|Ωh| = d > 0.
However, smooth minimizing sequences may converge to irregular configurations,
where the profile h is just a lower semicontinuous function of bounded variation.
In particular, the extended graph of h may contain vertical segments and cuts.
Let us denote by X the class of all reachable configurations (h, u), i.e. the class
of all configurations such that h : R → [0,∞) is a b-periodic lower semicontinuous
function of finite total variation in (0, b) and u ∈ H1

loc(Ωh;R
2) satisfies the Dirichlet

boundary condition u(x, 0) = e0(x, 0) and the periodicity assumption u(b, y) =
u(0, y)+ e0(b, 0). It has been proved in [1] (see also [2] for a variant of the model)
that the relaxed energy associated to any pair (h, u) ∈ X is given by

F (h, u) =

∫

Ωh

[
µ
∣∣E(u)|2 + λ

2
(divu)2

]
dz +H1(Γh) + 2H1(Σh) ,

where
Γh = {(x, y) : 0 ≤ x < b, h−(x) ≤ y ≤ h+(x)},
Σh = {(x, y) : 0 ≤ x < b, h(x) ≤ y < h−(x)}.

Here, h−(x) = min{h(x−), h(x+)}, h+(x) = max{h(x−), h(x+)}, and h(x±) de-
note the right and left limit at x. Notice that in the representation formula for F
the vertical cracks (contained in Σh) are counted twice since they arise as limit of
regular profiles. With this formula at hand one has (see [1]) the following existence
result.

Theorem 1. The minimum problem

(1) min
{
F (g, v) : (g, v) ∈ X, |Ωg| = d}

has always a solution for any d > 0.

Let us now discuss the regularity properties of absolute (or local) minimizers for the
constrained problem (1). First, we say that an admissible configuration (h, u) ∈ X
is a local minimizer for F if there exists δ > 0 such that

F (h, u) < F (g, v)

for all pairs (g, v) ∈ X , with |Ωg| = |Ωh|, such that 0 < dH(Γh ∪Σh,Γg ∪Σg) < δ.
Here, for any two subsets A,B in R2, dH(A,B) = inf{ε > 0 : B ⊂ Nε(A) andA ⊂
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Nε(B)}, where Nε(A) denotes the ε-neighborhood of A. The use of dH in measur-
ing how far g is from h is due to the presence of the vertical cracks which are not
seen by other kinds of possible distances such as the L1 or the L∞ one. However,
if h is continuous, requiring that dH(Γh ∪ Σh,Γg ∪ Σg) is small is equivalent to
requiring that sup{|h(x)− g(x)| : 0 ≤ x ≤ b} is small.
In order to state the regularity result proved in [2] we need another definition. We
say that (x, h−(x)), x ∈ [0, b), is an inward cusp point if, either g−(x) = g+(x) and
g′(x+) = −g′(x−) = +∞, or g−(x) < g+(x) and g−(x) = g(x+), g′(x+) = +∞,
or g−(x) < g+(x) and g−(x) = g(x−), g′(x−) = −∞. The set of all cusp points
in [0, b) will be denoted by Σh,c.

Theorem 2. Let (h, u) ∈ X be a local minimizer for F . Then

(i) cusp points and vertical cracks are at most finite in [0, b), i.e.,

card
(
{x ∈ [0, b) : (x, y) ∈ Σh ∪ Σh,c for some y ≥ 0}

)
< +∞ ;

(ii) the curve Γh is of class C1 away from Σh ∪ Σh,c;
(iii) Γh ∩ {h > 0} is of class C1,α away from Σh ∪Σh,c for all α ∈ (0, 1/2);
(iv) let A := {x ∈ R : h(x) > 0 and h is continuous at x}. Then A is an open

set of full measure in {h > 0} and h is analytic in A.

Notice that statement (ii) of Theorem 2 implies in particular the so-called zero
contact angle condition (that is h′ = 0) between the film and the substrate. We
remark also that the regularity results in [2] refer to a slightly different model
than the one considered here and to a slightly stronger notion of local minimality.
However they apply also to the model under discussion.
We come now to the qualitative properties of solutions. The results presented here
will appear in the forthcoming paper [3]. A first issue that will be discussed in the
paper is to find sufficient conditions, based on a suitable notion of second variation
for F , for an admissible configuration to be a local minimizer. To this aim, given
a pair (h, u) ∈ X , with h ∈ C2([0, b]), we say that (h, u) is a critical point for F if
it satisfies the following set of Euler-Lagrange equation:

(2)





µ∆u+ (λ+ µ)∇(divu) = 0 in Ωh,

N(u)[ν] = 0 on Γh ∩ {y > 0},
N(u)(0, y)[ν] = −N(u)(b, y)[ν] for 0 < y < h(0) = h(b),

k + µ
∣∣E(u)|2 + λ

2 (divu)
2 = const on Γh ∩ {y > 0} ,

where N(u) = µ
(
∇u+∇Tu

)
+ λdivu, ν is the exterior normal to Ωh and k is the

curvature of Γh. From the definition of F one has immediately that any sufficiently
smooth local minimizer satisfies (2), hence is a critical point. Notice also that the
flat configuration (h, u0) of volume d, where

h ≡ d

b
, u0(x, y) = e0

(
x,

−λ
2µ+ λ

y
)
,

is always a critical point, i.e., satisfies (2). The first result proved in [3] deals
with the local minimality of the flat configuration. In order to state it we need to
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introduce the Grinfeld function K defined (see [4]) for y ≥ 0 as

(3) K(y) = max
n∈N

1

n
J(ny) , where J(y) :=

y + (3− 4νp) sinh y cosh y

4(1− νp)2 + y2 + (3− 4νp) sinh
2 y

,

νp being the Poisson modulus of the elastic material, i.e., νp =
λ

2(λ+µ) .

Theorem 3. Let dloc : (0,+∞) → (0,+∞] be defined as dloc(b) := +∞, if

0 < b ≤ π
4

2µ+λ
e20µ(µ+λ)

, and as the solution to

(4) K
(2πdloc(b)

b2

)
=
π

4

2µ+ λ

e20µ(µ+ λ)

1

b
,

otherwise. Then the flat configuration (d/b, u0) is a local minimizer for F if 0 <
d < dloc(b).
The threshold dloc is critical: indeed, for d > dloc(b) there exists (g, v) ∈ X, with
|Ωg| = d, and dH(Γd/b,Γg ∪Σg) arbitrarily small such that F (g, v) < F (d/b, u0).

In particular, if 0 < b ≤ π
4

2µ+λ
e20µ(µ+λ)

then the flat configuration is always a local

minimizer.
A crucial point in the proof of Theorem 3 is a local minimality criterion, based
on the positive definiteness of a suitable notion of second variation of F . To
define it, let us consider a critical point (h, u) ∈ X , with h ∈ C∞([0, b]), h > 0.

Given a variation ψ ∈ H1(0, b), ψ(0) = ψ(b), with
∫ b
0
ψ dx = 0, for |t| small we

set ht = h + tψ and ut the corresponding minimizer of the elastic energy in Ωht

under the usual Dirichlet and periodicity assumptions. Thus (ht, ut) ∈ X and
|Ωh| = |Ωht |. The second variation of F at (h, u) along the direction ψ is then
defined as

(5)
d2

dt2
F (ht, ut)|t=0 .

We say that the second variation at (h, u) is positive definite if (5) is positive for
all ψ 6= 0.

Theorem 4. Let (h, u) ∈ X be a critical point for F , with h ∈ C∞([0, b]) and
h > 0, and assume that the second variation of F at (h, u) is positive definite.
Then (h, u) is a local minimizer.

To the best of our knowledge, this result is the first example of a local minimality
criterion based on the second variation in the framework of free boundary problems
and we believe that many of the ideas introduced in [3] can be used in a large
number of similar variational problems.
To conclude, we state a result dealing with the global minimality properties of the
flat configuration. This theorem, as well as other qualitative properties of non-flat
minimizers, is also contained in the forthcoming paper [3].

Theorem 5. The following two statements hold.

(i) For every b > 0, there exists 0 < dglob(b) ≤ dloc(b) (see Theorem 3)
such that the flat configuration (d/b, u0) is a global minimizer if and only



1986 Oberwolfach Report 36/2009

0 < d ≤ dglob(b). Moreover, if 0 < d < dglob(b), then (d/b, u0) is the
unique global minimizer.

(ii) There exists 0 < bcrit ≤ π
4

2µ+λ
e20µ(µ+λ)

such that dglob(b) = +∞ if and only

if 0 < b ≤ bcrit, i.e., the flat configuration (d/b, u0) is the unique global
minimizer for all d > 0 if and only if 0 < b ≤ bcrit.
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New results on elliptic and parabolic diagonal systems

Jens Frehse

We consider systems

(1) (uνt )−Di(a
ν
ikDku

ν) + F ν(x, u,∇u)uν = Hν(x, u,∇u) in Ω ⊂ R
n

where F ν ≥ 0, |F ν | ≤ K + K|∇u|2, (u ∈ L∞), and |Hν | ≤ K|∇u||∇uν | +∑ν
i=1K|∇ui|2 +K.
Boundary conditions and uniform ellipticity is assumed, further aik ∈ H1,∞.
Such systems arise from stachastic differential games with discount control.

They are characterized by a controllable discount factor e−tc(v) in the costfunc-
tional of the players and give rise to the term F νuν .

For n > 3 there is no existence theory (neither regularity) up to now; for n = 2 a
paper of the author and Bensoussan (Stampacchia-memory-volume) is presented.
We outline the prove of the theorem u ∈ L∞ ⇒ u ∈ Cα ∩H1 under the conditions
above for arbitrary u and indicate how this is used to reduce the system (1) to
the case of a principle part not depending on ν (locally) (Up to now, the latter
condition was assumed in the literature). We present an example of a non diagonal
2-d-system of type (1), Hν = 0, which has a bounded irregular solution. Up to
now, there was a theorem of the author that there exists a smooth solution, but
it was open whether every solution is regular (even under the condition Fν = 0).



Partielle Differentialgleichungen 1987

Relative Minimizers of Energy are Relative Minimizers of Area

Stefan Hildebrandt

(joint work with Friedrich Sauvigny)

Let Γ be a closed, regular Jordan curve in R3 of class C1,µ, 0 < µ < 1, and denote
by C(Γ) the class of disk-type surfaces X : B → R3 with X ∈ H1,2(B,R3) ∩
C0(∂B,R3) and B = {w = (u, v) ∈ R2 : |w| < 1} such that the ”Sobolev trace”
X
∣∣
∂B

maps ∂B monotonically onto Γ. A mapping X ∈ C2(B,R3) is said to be a
minimal surface if it satisfies the equations

(1.1) ∆X = 0

and

(1.2) |Xu|2 = |Xv|2, 〈Xu, Xv〉 = 0 ,

where 〈·, ·〉 denotes the scalar product in R3 with the norm | · |.
Let M(Γ) be the set of minimal surfaces X ∈ C(Γ). It is well known that

Γ ∈ C1,µ implies

(1.3) M(Γ) ⊂ C1,µ .

Let Mim(Γ) be the subclass of immersed minimal surfaces X ∈ C(Γ). For any
such X there is a constant δ0(X) > 0 with

(1.4) Λ(X) := |Xu|2 =
1

2
|∇X |2 ≥ δ0(X) .

For X ∈ H1,2(B,R3) we define the area A(X) and the Dirichlet integral D(X)
respectively by

A(X) :=

∫

B

|Xu ∧Xv|du dv

and

D(X) :=
1

2

∫

B

(|Xu|2 + |Xv|2)du dv .

We have

(1.5) A(X) ≤ D(X) for all X ∈ H1,2(B;R3) ,

and the equality sign holds if and only if the equations (1.2) are satisfied a.e. on
B. It is well known that

(1.6) infC(Γ)A = infC(Γ)D .

A simple functional-analytic proof of this relation is given in [4]; cf. also [1],
Section 4.10.

From (1.6) one infers:

Any minimizer of D in C(Γ) is a minimal surface that minimizes A in C(Γ),
and conversely: any minimizer of A in C(Γ) satisfying (1.2) is a minimal surface
which minimizes D in C(Γ).
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This well-known fundamental result raises the question whether a similar result
holds for relative minimizers of A and D. In fact, one direction is fairly obvious:

If X ∈ M(Γ) is a relative minimizer of A in C(Γ), i.e.
(1.7) A(X) ≤ A(Y ) for all Y ∈ C(Γ) with ||X − Y || < ǫ

and for some ǫ > 0, then

D(X) ≤ D(Y ) for all Y ∈ C(Γ) with ||X − Y || < ǫ .

The proof follows immediately from the relations

D(X)
(1.2)
= A(X)

(1.7)

≤ A(Y )
(1.5)

≤ D(Y ) for ||X − Y || < ǫ .

Here we can choose any suitable norm for || · ||, say,
|| · ||C0 +

√
D(·), || · ||C1 , or || · ||C1,ν with 0 < ν ≤ µ ,

where C0 stands for C0(B,R3), C1,ν for C1,ν(B,R3), etc.
The converse is not at all clear; indeed, we do not know whether or not it is true

in full generality. We can prove it only for immersed X ∈ M(Γ) which are relative
minimizers of D in C(Γ), and for || · || we can only take the pair {|| · ||C1 , || · ||C1,µ}
as described in Theorem 1. Our proof does not work for the norms || · ||C1,µ or

even || · ||C1 or || · ||C0 +
√
D(·) alone, and it is an interesting question what is true

in these cases.
Let us now state our main result:

Theorem 1. Let X ∈ Mim(Γ) be a relative minimizer of D in the following sense:
There is an ǫ > 0 such that

(1.8) D(X) ≤ D(Z) for all Z ∈ C(Γ) ∩ C1(B,R3) with ||Z −X ||C1 < ǫ .

Then there exists a δ(ǫ) > 0 such that

(1.9)
A(X) ≤ A(Y ) for all Y ∈ C(Γ) ∩ C1,µ(B,R3)

with ||Y −X ||C1,µ < δ(ǫ) ,

i.e. X is a relative minimizer of A.

Remark 1. We can rephrase this result as follows: A relative minimizer X of D
with respect to the C1-norm is a relative minimizer of A with respect to the C1,µ-
norm. Note that the C1-minimum property is stronger than the C1,µ-minimum
property since the C1-norm is weaker than the C1,µ-norm.

Similarly one can prove

Theorem 2. Suppose that the immersed minimal surface X ∈ C(Γ) is of the class
C2(B,R2), and assume that X is a relative minimizer of D with respect to the
C1,µ-norm for some µ ∈ (0, 1). Then it is also a relative minimizer of A with
respect to the C2-norm.
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Remark 2. The second variations of A and D coincide even for possibly branched
minimal surfaces in Rn, n ≥ 3 (cf. Section 1 in [7]).

This paper will be published in one of the forthcoming issues of Calc. Var.

On linear elliptic and parabolic equations with growing drift in

Sobolev spaces without weights

Nikolai Krylov

In this talk we concentrate on problems in the whole space for uniformly elliptic
and parabolic second-order equations with bounded leading and zeroth-order co-
efficients and possibly growing first-order coefficients. We look for solutions which
are summable to the p-th power with respect to the usual Lebesgue measure along
with their first- and second-order derivatives with respect to the spatial variables.

Here for brevity we only give the results for elliptic case.
Let Rd be a Euclidean space of points x = (x1, ..., xd). We consider the following

second-order operator L:

Lu(x) = aij(x)Diju(x) + bi(x)Diu(x)− c(x)u(t, x),

acting on functions defined on Rd (the summation convention is enforced through-
out). Here

Di =
∂

∂xi
, Dij = DiDj .

We are dealing with the elliptic equation

(1) Lu(x) = f(x), x ∈ R
d.

The solutions of (1) are sought in W 2
p (R

d), usual Sobolev space.
Our main result for elliptic case is Theorem 1 saying that under appropriate

conditions the elliptic equation Lu−λu = f is uniquely solvable in W 2
p (R

d) if λ is
large enough. Its proof is based on a corresponding result for parabolic equations.
Interestingly enough, even if b is constant we do not know any other proof of
Theorem 1 not using the parabolic theory.

For p ∈ (1,∞), p 6= d, define

q = d ∨ p,
and if p = d let q be a fixed number such that q > d.

Assumption 1. (i) The functions aij , bi, c are measurable, aij = aji, c ≥ 0.
(ii) There exist constants K, δ > 0 such that for all values of arguments and

ξ ∈ Rd

δ|ξ|2 ≤ aijξiξj ≤ K|ξ|2, c ≤ K.

(iii) The function |b|q is locally integrable on Rd.

The following assumptions contain parameters γa, γb ∈ (0, 1] whose value will
be specified later. For α > 0 we denote Bα = {x ∈ Rd : |x| < α}.
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Assumption 2 (γb). There exists an α ∈ (0, 1] such that on R
d

α−d

∫

Bα

∫

Bα

|b(x+ y)− b(x+ z)|q dydz ≤ γb.

It is easy to check that Assumption 2 is satisfied with any γb > 0 if, for instance,
b is such that |b(x) − b(y)| ≤ K if |x − y| ≤ 1. We see that |b(x)| can grow to
infinity as |x| → ∞.

Assumption 3 (γa). There exists an ε0 > 0 such that for any ε ∈ (0, ε0], x ∈ Rd,
and i, j = 1, ..., d we have

(2) ε−2d

∫

Bε

∫

Bε

|aij(x+ y)− aij(x+ z)| dydz ≤ γa.

Obviously, the left-hand side of (2) is less than

N(d) sup
|x−y|≤2ε

|aij(x) − aij(y)|,

which implies that Assumption 3 is satisfied with any γa > 0 if, for instance, a is
a uniformly continuous function. Recall that if Assumption 3 is satisfied with any
γa > 0, then one says that a is in VMO.

Here is one of the main results.

Theorem 1. There exist constants

γa = γa(d, δ,K, p) > 0, γb = γbb(d, δ,K, p, ε0) > 0,

N = N(d, δ,K, p, ε0), λ0 = λ0(d, δ,K, p, ε0, α) ≥ 0

such that, if the above assumptions are satisfied, then for any u ∈ W 2
p (R

d) and
λ ≥ λ0 we have

(3) λ‖u‖Lp(Rd) + ‖D2u‖Lp(Rd) ≤ N‖Lu− λu‖Lp(Rd).

Furthermore, for any f ∈ Lp(Rd) and λ ≥ λ0 there is a unique u ∈ W 2
p (R

d) such
that Lu− λu = f .

One of surprising features of (3) is that N is independent of b if b is constant.
Another one is that the set (L − λ)W 2

p (R
d) may not coincide with Lp(Rd) if |b|

grows and yet it always contains Lp(Rd). It is also worth noting that generally
the constant λ0 cannot be taken small.
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The large genus limit of the infimum of the Willmore energy

Ernst Kuwert

(joint work with Yuxiang Li and Reiner Schätzle)

This is a report on joint work with Yuxiang Li (Tsinghua University, Beijing) and
Reiner Schätzle (Universität Tübingen). The research was supported by the DFG
research unit 469 and by the Humboldt fellowship of Yuxiang Li.

The Willmore energy of an immersed surface Σ →֒ Rn with mean curvature vector
~H and induced area measure µ is given by

W(Σ) =
1

4

∫

Σ

| ~H |2 dµ.

Let C(n, p) be the class of oriented, closed (i.e. compact without boundary),
smoothly immersed surfaces Σ with genus (Σ) = p, and put

(1) βnp = inf{W(Σ)|f ∈ C(n, p)}.
It is well-known that W(Σ) ≥ 4π for any closed immersed surface, with equality
only for round spheres [Wil82]. In [Sim93] L. Simon proved the existence of smooth
minimizers in C(n, p) under the Douglas-type condition

(2) βnp < 4π +min
{ r∑

i=1

(βnpi − 4π) : 1 ≤ pi < p,

r∑

i=1

pi = p
}
=: β̃np .

In particular he obtained the existence for p = 1. The inequality (2) was proved
later in [BaKu03], so βnp is attained for all n, p and βnp > 4π for p ≥ 1. By conformal

invariance the area of a minimal surface in S3 equals the Willmore energy of the
surface in R

3 obtained by stereographic projection [Wei78], which leads to an upper
bound for βnp . Namely, Pinkall [KP86] and independently Kusner [Kus87, Kus89]

observed that the minimal surfaces ξp,1 in S3 described by Lawson in [Lw70] have
area less than 8π. In summary we know that

(3) 4π < βnp < 8π for p ≥ 1.

An important consequence of the upper bound is that minimizers are automatically
embedded, due to an inequality of Li and Yau [LY82]. It was conjectured that the
βnp might be monotonically increasing in p, see [KP86, p. 446], and that the
projected ξp,1 could in fact be minimizers for their genus [Kus89, p. 318 and p.
344]. For large p these surfaces look like two spheres connected by minimal handles,
see [Wil93, p. 293] for p = 5, in particular their Willmore energy converges to 8π
as p→ ∞ [Kus87]. Here we prove the following.

Theorem. Let βnp be the infimum of the Willmore energy among oriented, closed
surfaces of genus p immersed into Rn. Then

(4) lim
p→∞

βnp = 8π.

We would like to thank Tom Ilmanen for asking the question addressed in this
paper when one of us gave a talk in Zürich.
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A fully nonlinear version of the Yamabe problem on manifolds with

umbilic boundary

Yanyan Li

In this talk I have recalled some results on the existence and compactness of solu-
tions of the Yamabe problem, the Yamabe problem on manifolds with boundary, a
fully nonlinear version of the Yamabe problem as well as the problem on manifolds
with boundary. At the end of the talk, I have presented the following result with
Luc Nguyen:

Theorem: Let (Mn, g) be a locally conformally flat Riemannian manifold with
umbilic boundary of dimension n ≥ 3. Assume that the Schouten tensor

Ag =
1

n− 2

(
Ricg −

Rg
2(n− 1)

g
)

satisfies, for some 2 ≤ k ≤ n,

λ(Ag) ∈ Γk, on M̄,
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where
Γk = {λ ∈ Rn : σl(λ) > 0, 1 ≤ l ≤ k},

σl(λ) =
∑

1≤i1<...<il≤n

λi1 . . . λil

is the l−th elementary symmetric function, and λ(Ag) denotes the eigenvalues of
Ag with respect to the metric g. Assume also that hg, the mean curvature of g
on ∂M (with respect to the inner normal), is ≥ 0. Then for every real number c,

there exists a conformal metric g̃ = u
4

n−2 g such that

σk(λ(Ag̃)) = 1, λ(Ag̃) ∈ Γk, on M̄

and
hg̃ = c on ∂M.

The c = 0 case was proved in [Chen, Szu-yu Sophie Boundary value problems
for some fully nonlinear elliptic equations. (English summary) Calc. Var. Partial
Differential Equations 30 (2007), no. 1, 1–15] and in [Jin, Qinian; Li, Aobing; Li,
Yan Yan Estimates and existence results for a fully nonlinear Yamabe problem on
manifolds with boundary. Calc. Var. Partial Differential Equations 28 (2007), no.
4, 509–543].

The k = 1 case corresponds to the Yamabe problem, which was solved for c = 0
in [Escobar, Jose F. Conformal deformation of a Riemannian metric to a scalar
flat metric with constant mean curvature on the boundary. Ann. of Math. (2) 136
(1992), no. 1, 1–50] and for c 6= 0 in [Han, Zheng-Chao; Li, Yanyan The Yamabe
problem on manifolds with boundary: existence and compactness results. Duke
Math. J. 99 (1999), no. 3, 489–542].

Regularity in Optimal Transportation

Jiakun Liu

(joint work with Neil S. Trudinger and Xu-Jia Wang)

1. Introduction

In this talk, we give some estimates for solutions to the Monge-Ampère equation
arising in optimal transportation. The Monge-Ampère equation under considera-
tion has the following type

(1) det{D2u(x)−A(x,Du)} = f(x) in Ω,

where Ω ⊂ Rn is a bounded domain, A = {Aij} is an n × n symmetric matrix
defined in Ω× R

n.
In optimal transportation, u is the potential function, the matrix A and the

right hand side f are given by

A(x,Du) = D2
xc(x, Tu(x)),(2)

f = |det{D2
xyc}|

ρ

ρ∗ ◦ Tu
,(3)
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where c(·, ·) is the cost function, Tu : x → y is the optimal mapping determined
by Du(x) = Dxc(x, y), and ρ, ρ

∗ are mass distributions respectively in the initial
domain Ω and the target domain Ω∗.

We assume that the cost function c ∈ C∞(Rn ×Rn) and satisfies the following
conditions:

(A1) For any x, p ∈ Rn, there is a unique y ∈ Rn such that Dxc(x, y) = p; and
for any y, q ∈ R

n, there is a unique x ∈ R
n such that Dyc(x, y) = q.

(A2) For any (x, y) ∈ Rn × Rn, det{D2
xyc(x, y)} 6= 0,

(A3) For any x, p ∈ R
n, and any ξ, η ∈ R

n with ξ ⊥ η,

(4) Aij,kl(x, p)ξiξjηkηl > c0|ξ|2|η|2,
where Aij,kl = D2

pkpl
Aij and A is given by (1.2).

Under above conditions on the cost function, the optimal mapping is uniquely
determined by the corresponding potential function. Therefore, it suffices to study
the regularity of potential functions, i.e. regularity of elliptic solutions of (1.1).

2. Regularity results

In the special case when the cost function is the Euclidean distance squared,
the regularity of potential functions has been obtained by Caffarelli, Urbas and
many other mathematicians. Our goal is to establish the corresponding regularity
results for general cost functions satisfying conditions (A1)–(A3), assuming the
mass distributions are merely measurable or Hölder continuous, [1, 2, 3].

The first one is the C1,α regularity for potentials, [1]. The similar result was
previously obtained by Loeper. We give a completely different proof and our
exponent is optimal when the inhomogeneous term f ∈ L∞.

Theorem 1. Let u be a potential function to the optimal transportation problem.
Assume the cost function c satisfies conditions A1, A2, A3, Ω∗ is c-convex with
respect to Ω, and f ≥ 0, f ∈ Lp(Ω) for some p ∈ (n+1

2 ,+∞]. Then u ∈ C1,α(Ω̄),

where α = β(n+1)
2n2+β(n−1) and β = 1− n+1

2p .

Especially when p = ∞, our Hölder exponent α = 1
2n−1 is optimal.

The second result is the Hölder and more general continuity estimates for second
derivatives, when the inhomogeneous term is Hölder and Dini continuous, together
with corresponding regularity results for potentials, [2].

Theorem 2. Assume the cost function c satisfies (A1)–(A3) and f satisfies C1 ≤
f ≤ C2 for some positive constants C1, C2 > 0. Let u ∈ C2(Ω) be an elliptic
solution of (1.1). Then for all x, y ∈ Ωδ, we have the estimate

(5) |D2u(x)−D2u(y)| ≤ C

[
d+

∫ d

0

ωf (r)

r
+ d

∫ 1

d

ωf (r)

r2

]
,

where d = |x − y|, Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}, C > 0 depends only on
n, δ, C1, C2, A, sup|Du|, and the modulus of continuity of Du. It follows that:
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(i) If f is Dini continuous, then the modulus of continuity of D2u can be
estimated by (5) above;

(ii) If f ∈ Cα(Ω) for some α ∈ (0, 1), then

(6) ‖u‖C2,α(Ωδ) ≤ C

[
1 +

‖f‖Cα(Ω)

α(1 − α)

]
;

(iii) If f ∈ C0,1(Ω), then

(7) |D2u(x)−D2u(y)| ≤ Cd[1 + ‖f‖C0,1| log d|] ∀x, y ∈ Ωδ.

From the estimates in Theorem 2.2, we conclude the corresponding regularity
results for potentials, which are semi-convex, almost everywhere elliptic solutions
of equation (1.1).

Corollary 2.1. Assume the cost function c satisfies (A1)–(A3) and ρ, ρ∗ are Dini
continuous, and uniformly bounded and positive, in Ω,Ω∗ respectively. Then if the
target domain Ω∗ is c∗-convex, with respect to Ω, any potential function u ∈ C2(Ω)
and is an elliptic solution of (1.1), satisfying the estimates (5), (6) and (7), with
f given by (1.3), where C depends on n, δ, C1, C2,Ω,Ω

∗ and c. Consequently if the
densities ρ, ρ∗ are Hölder continuous and Ω,Ω∗ are c, c∗- convex with respect to
each other, then the optimal mapping Tu is a C1,α diffeomorphism from Ω to Ω∗

for some α > 0.

The last result is the following W 2,p estimate, which we have been working on
most currently, [3].

Theorem 3. Assume the cost function c satisfies (A1)–(A3). Let u be a (elliptic)
weak solution of (1.1) on the domain Ω := S0

h,u(x0) defined by a sub-level set, and

u = ϕ+ h on ∂Ω, where ϕ is the c-support of u at x0 (see the definitions in [3]).
Then if f is continuous and pinched by two positive constants C1, C2 > 0 such

that C1 ≤ f ≤ C2. We have D2u ∈ Lp(Ω1/4) for any 1 ≤ p <∞ and

‖u‖W 2,p(Ω1/4) ≤ C(p, σ)

with σ the modulus of continuity of f and Ω1/4 is the 1/4-dilation of Ω with respect
to its center of mass.
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Variational theory for an equation in self-dual gauge theory

Andrea Malchiodi

(joint work with David Ruiz)

We consider a compact orientable surface Σ with metric g and the equation

(1) −∆gu = ρ

(
h(x)e2u∫

Σ
h(x)e2udVg

− 1

)
− 2π

m∑

i=1

αj
(
δpj − 1

)
.

Here ρ is a positive parameter, h : Σ → R a smooth positive function, αj ≥
0 and pj ∈ Σ. This equation arises from physical models such as the abelian
Chern-Simons-Higgs theory and the Electroweak theory, see e.g. [1], [2] and the
bibliographies therein for a recent and complete description of the subject.

Concerning (1), there is in literature some work concerning compactness and
blow-up properties of solutions, while there are so far few existence results, which
mostly rely on perturbative techniques. We mentions some program by C.S. Lin
and some coauthors which aims to compute the Leray-Schauder degree of the
equation.

Using some new improved version of the Moser-Trudinger inequality combined
with global variational techniques, we obtain several existence results for the above
equation for the case in which all the coefficient αj belong to (0, 1]. To give an
idea of our results we state this simple version only, when only one singularity
is present: we call p the singular point, and α the corresponding coefficient. We
notice that the standard Moser-Trudinger inequality gives immediately existence
in the case ρ < 4π.

Theorem 1. Suppose α ∈ (0, 1] and that ρ ∈ (4π, 4π(1 + α)). Then, if Σ is
not homeomorphic to the sphere, (1) has a solution. If α ∈ (0, 1) and if ρ ∈
(4π(1 + α), 8π), then (1) has solutions for every surface Σ.

To prove the above theorem we use a min-max scheme which uses a topological
set homeomorphic respectively to Σ \ {p} and Σ respectively. To show existence,
we need this set to be non contractible, and that is why we cannot cover the case
of the sphere in the first situation. However, we point out that our assumptions
are somehow natural. Indeed, in a work in progress by D.Bartolucci, C.S. Lin and
G.Tarantello, it is shown that on the standard sphere, for ρ ∈ (4π, 4π(1 + α)), (1)
has no solution.
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An application of Q-curvature to an embedding of critical type

Luca Martinazzi

Let Ω ⊂ R2m be open, bounded and with smooth boundary, and let a sequence
λk → 0+ be given. Consider a sequence (uk)k∈N of positive smooth solutions to

(1)

{
(−∆)muk = λkuke

mu2
k in Ω

uk = ∂νuk = . . . = ∂m−1
ν uk = 0 on ∂Ω.

Problem (1) arises from the Adams-Moser-Trudinger inequality [1, 10, 13]:

(2) sup
u∈Hm

0 (Ω), ‖u‖2
Hm

0
≤Λ1

1

|Ω|

∫

Ω

emu
2

dx = c0(m) < +∞,

where c0(m) is a dimensional constant, Λ1 := (2m − 1)!vol(S2m), and Hm
0 (Ω) is

the Beppo-Levi space defined as the completion of C∞
c (Ω) with respect to the

norm

(3) ‖u‖Hm
0

:= ‖∆m
2 u‖L2 =

(∫

Ω

|∆m
2 u|2dx

) 1
2

,

where ∆
m
2 u := ∇∆

m−1
2 u for m odd. In fact critical points of (2) under the

constraint ‖u‖2Hm
0

= Λ1 solve (1). Then we have the following concentration-

compactness result:

Theorem 1 ([9]). Let (uk) be a sequence of solutions to (1) such that

(4) lim sup
k→∞

‖uk‖2Hm
0

= lim sup
k→∞

∫

Ω

λku
2
ke
mu2

kdx = Λ <∞.

Then up to a subsequence either

(i) Λ = 0 and uk → 0 in C2m−1,α(Ω), or

(ii) There exists a positive integer I such that Λ ≥ IΛ1, and there is a finite set
S = {x(1), . . . , x(I)} such that

uk → 0 in C2m−1,α
loc (Ω\S),

and

λku
2
ke
mu2

k ⇀
I∑

i=1

αiδx(i) , αi ≥ Λ1,

weakly in the sense of measures.

Theorem 1 was proven by Adimurthi and M. Struwe [3] and Adimurthi and O.
Druet [2] in the case m = 1, and by F. Robert and M. Struwe [11] for m = 2.
Recently O. Druet [6] for the case m = 1, and M. Struwe [12] for m = 2 improved
the previous results by showing that in case (ii) of Theorem 1 we have Λ = LΛ1

for some positive L ∈ N. Whether the same holds true for m > 2 is still an open
question.
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Part (ii) of the theorem shows an interesting threshold phenomenon: below the
critical energy level Λ1 we always have compactness. Moreover Λ1 is the total
Q-curvature of the sphere (see [8] for a short discussion of Q-curvature). We shall
briefly explain how this remarkable connection with Riemannian geometry arises.
It is easy to see that if we are not in case (i) of the theorem, then supΩ uk → ∞
as k → ∞. Then one can blow up, i.e. define the scaled functions

ηk(x) := uk(xk)(uk(xk + rkx)− uk(xk)) for x ∈ r−1
k Ω− xk,

where xk is such that uk(xk) = maxΩ uk and rk → 0 is a suitably chosen scaling
factor. Then it turns out that

(5) ηk(x) → η0(x) in C2m−1
loc (R2m), as k → ∞,

where η0 is a solution of the Liouville-type equation

(6) (−∆)mη = (2m− 1)!e2mη on R
2m,

∫

R2m

e2mηdx <∞.

We recall (see e.g. [8]) that if η solves (−∆)mη = V e2mη on R2m, then the confor-
mal metric gη := e2η|dx|2 has Q-curvature V , where |dx|2 denotes the Euclidean
metric. Now the problem is to understand what is the solution η0 or (equivalently)
what is the conformal metric gη0 .

A bunch of solution to (6) is given by the so-called standard solutions

ηλ,x0(x) = log
2λ

1 + λ2|x− x0|2
, λ > 0, x0 ∈ R

2m.

These are “spherical” solutions, as the metric e2ηλ,x0 |dx|2 can be obtained by
pulling-back the metric of the round sphere S2m onto R2m via the stereographic
projection and a Möbius diffeomorphism.

While Chen and Li [5] proved that in the case m = 1 the only solutions to
(6) are the standard solutions, Chang and Chen [4] showed that for m > 1 (6)
possesses many other solutions. Therefore the problem of understanding η0 starts
to appear quite subtle, and the following classification result, due to the author
[8], turns out to be crucial.

Theorem 2. Let η be a solution to (6) and set

v(x) :=
(2m− 1)!

γm

∫

R2m

log

( |y|
|x− y|e

2mu(y)

)
dy,

where γm is such that (−∆)m
[

1
γm

log 1
|x|

]
= δ0. Then η = v + p, where p is a

polynomial of degree at most 2m− 2 and

lim
|x|→∞

∆jv(x) = 0, 1 ≤ j ≤ m− 1.

Moreover the following are equivalent:

(i) η is a standard solution,
(ii) p is constant.
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Finally if η is not a standard solution there exist 1 ≤ j ≤ m − 1 and a constant
α 6= 0 such that

(7) lim
|x|→∞

∆jη(x) = α.

Now the idea is to use Theorem 2 to prove the following proposition.

Proposition 3. The function η0 given by (5) is a standard solution to (6).

Proposition 3 yields

lim
k→∞

∫

Ω

λku
2
ke
mu2

kdx ≥ (2m− 1)!

∫

R2m

e2mη0dx

= (2m− 1)!

∫

R2m

QS2mdvolgS2m = Λ1,

This is the basic reason why αi ≥ Λ1 in case (ii) of Theorem 1.
In order to apply Theorem 2, one has to have a better understanding of the

asymptotic behavior of the functions ηk and their derivatives. This is achieved in
the following proposition, which is central to our argument.

Proposition 4. For any R > 0, 1 ≤ ℓ ≤ 2m− 1 there exists k0 such that

(8) uk(xk)

∫

BRrk
(xk)

|∇ℓuk|dx ≤ C(Rrk)
2m−ℓ, for all k ≥ k0.

Equivalently

(9)

∫

BR(0)

|∇ℓηk|dx ≤ CR2m−ℓ, for all k ≥ k0.

Observe that taking the limit in (9) one gets

(10)

∫

BR(0)

|∇ℓη0|dx ≤ CR2m−ℓ, k ≥ k0(R),

and η0 has to be a standard solution because (10) is not compatible with (7).

Finally, let us also comment on the proof of Proposition 4. The key idea is to
prove that

(11) ‖∆m(u2k)‖L1(Ω) ≤ C.

This is an easy consequence of the following Lorentz-space estimate.

Proposition 5. For every 1 ≤ ℓ ≤ 2m − 1, ∇ℓuk belongs to the Lorentz space
L(2m/ℓ,2)(Ω) and

‖∇ℓuk‖(2m/ℓ,2) ≤ C.

This can be proven by interpolation observing that (4) implies that ∆muk is

bounded in the Zygmund space L(logL)
1
2 . Interestingly if we decide to be a bit

sloppy and consider that (4) gives bounds for ∆muk in L1(Ω), then we get the
bounds ‖∇ℓuk‖(2m/ℓ,∞) ≤ C (here L(p,∞) is the Marcinkievicz space). On the
other hand these bounds are too weak to prove (11), hence Proposition 4. This
also shows that (8), (9) and (10) are in some sense “sharp”.
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Gradient estimates via non-linear potentials

Giuseppe Mingione

For the Poisson equation −△u = µ , here considered in the whole Rn and where
µ is in the most general case a Radon measure with finite total mass, it is well-
known that it is possible to get pointwise bounds for solutions via the use of Riesz
potential

(1) Iβ(µ)(x) :=

∫

Rn

dµ(y)

|x− y|n−β , β ∈ (0, n]

such as

(2) |u(x)| ≤ cI2(|µ|)(x) , and |Du(x)| ≤ cI1(|µ|)(x) .
Similar local estimates ca be obtained using the localized version of the Riesz
potential Iβ(µ)(x) is given by the linear potential

(3) I
µ
β(x0, R) :=

∫ R

0

µ(B(x0, ̺))

̺n−β
d̺

̺
, β ∈ (0, n]

with B(x0, ̺) being the open ball centered at x0, with radius ̺. A question is now,
is it possible to give an analogue of estimates (2) in the case of general quasilinear
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equations such as for instance, the degenerate p-Laplacean equation with measure
data

(4) −div (|Du|p−2Du) = µ ?

A fundamental result is in the papers [10, 16], where - for suitably defined solutions
to (4) - the authors give a first affirmative answer proving the following pointwise
zero order estimate - i.e. for u - when p ≤ n, via non-linear Wolff potentials:

(5) |u(x0)| ≤ c

(
−
∫

B(x0,R)

|u|p−1 dx

) 1
p−1

+ cWµ
1,p(x0, 2R) ,

where the constant c depends on the quantities n, p, and

(6) W
µ
β,p(x0, R) :=

∫ R

0

( |µ|(B(x0, ̺))

̺n−βp

) 1
p−1 d̺

̺
β ∈ (0, n/p] ,

is the non-linear Wolff potential of µ; here −
∫
B
denotes the integral average over B.

Estimate (5), which extends to a whole family of general quasi-linear equations,
and which is commonly considered as a basic result in the theory of quasi-linear
equations, is the natural non-linear analogue of the first linear estimate appear-
ing in (2). Here we present the non-linear analogue of the second estimate in
(2), thereby giving a pointwise gradient estimate via non-linear potentials which
upgrades (6) up to the gradient/maximal level.

To state the result in greater generality let us we shall consider p ≥ 2, we shall
therefore treat possibly degenerate elliptic equations when p 6= 2. Specifically, we
shall consider general non-linear, possibly degenerate equations with p-growth of
the type

(7) −div a(x,Du) = µ ,

whenever µ is a Radon measure with finite total mass defined on Ω; eventually
letting µ(Rn \Ω) = 0, without loss of generality we may assume that µ is defined
on the whole Rn. The continuous vector field a : Ω × Rn → Rn is assumed to be
C1-regular in the gradient variable z, with az(·) being Carathéodory regular and
satisfying the following growth, ellipticity and continuity assumptions:

(8)





|a(x, z)|+ |az(x, z)|(|z|2 + s2)
1
2 ≤ L(|z|2 + s2)

p−1
2

ν−1(|z|2 + s2)
p−2
2 |λ|2 ≤ 〈az(x, z)λ, λ〉

|a(x, z)− a(x0, z)| ≤ L1ω(|x− x0|)(|z|2 + s2)
p−1
2 ,

whenever x, x0 ∈ Ω and z, λ ∈ Rn, where 0 < ν ≤ 1 ≤ L and s ≥ 0, L1 ≥ 1
are fixed parameters. Here ω : [0,∞) → [0,∞) is a modulus of continuity i.e. a
non-decreasing function such that ω(0) = 0 and ω(·) ≤ 1. On such a function
we impose a natural decay property, which is essentially optimal for the result we
are going to have, and prescribes a Dini continuous dependence of the partial map
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x 7→ a(x, z)/(|z|+ s)p−1:

(9)

∫ R

0

[ω(̺)]
2
p
d̺

̺
:= d(R) <∞ ,

for some R > 0. For the sake of simplicity we shall present our results in the
form of a priori estimates - i.e. when solutions and data are taken to be more
regular than needed, for instance u ∈ C1(Ω) and µ ∈ L1(Ω) - but they actually
hold, via a standard approximation argument, for general weak and very weak
solutions - i.e. distributional solutions which are not in the natural spaceW 1,p(Ω)
- to measure data problems such as −div a(x,Du) = µ where µ is a general Radon
measure with finite total mass, defined on Ω. The reason for such a choice is that
the approximation argument in question leads to different notions of solutions,
according to the regularity/integrability properties of the right hand side µ. If the

right hand side of (7) is integrable enough to deduce that µ ∈ W−1,p′(Ω), then
our results apply to general weak energy solutions u ∈ W 1,p(Ω) to (7).

Theorem 1 ([6, 14]). Let u ∈ C1(Ω), be a weak solution to (7) with µ ∈ L1(Ω),
under the assumptions (8). Then there exists a constant c ≡ c(n, p, L/ν, L1) >
1, and a positive radius R0 depending only on n, p, L/ν, L1, ω(·), such that the
pointwise estimate

(10) |Du(x0)| ≤ c

(
−
∫

B(x0,R)

(|Du|+ s)
p
2 dx

) 2
p

+ cWµ
1/p,p(x0, 2R)

holds whenever B(x0, 2R) ⊆ Ω, and R ≤ R0. Moreover, when the vector field a(·)
is independent of x - and in particular for the p-Laplacean operator (4) - estimate
(10) holds with no restriction on R.

Theorem 1 solves in the positive an old conjecture of Verbitsky. In the case
p = 2 estimate (10) is exactly the local version of the second inequality in (2):

|Du(x0)| ≤ c −
∫

B(x0,R)

(|Du|+ s) dx+ cI
|µ|
1 (x0, 2R) .

A non-local, level set version of (10) was previously obtained in [13]. Beside their
intrinsic theoretical interest, the pointwise estimate (10) allows to unify and recast
essentially all the known gradient estimates for quasilinear equations in rearrange-
ment invariant function spaces. Indeed, by (10) it is clear that the behavior of Du
can be controlled by that Wµ

1/p,p, which is in turn known via the behavior of Riesz

potentials; this is a consequence of the pointwise bound of the Wolff potential via
the Havin-Maz’ja non linear potential, that is

(11) W
µ
1/p,p(x0,∞) =

∫ ∞

0

( |µ|(B(x0, ̺))

̺n−1

) 1
p−1 d̺

̺
≤ cI 1

p

{[
I 1

p
(|µ|)

] 1
p−1

}
(x0) .

Ultimately, thanks to (11) and to the well-known properties of the Riesz potentials,

we have µ ∈ Lq =⇒ W
µ
1/p,p ∈ L

nq(p−1)
n−q for q ∈ (1, n) , while Marcikiewicz spaces

must be introduced for the borderline case q = 1. Inequality (10) immediately
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allows to recast for the model case equation (4), all the classical gradient estimates
for solutions such as those due to Boccardo & Gallöuet [3] - when q is “small” -
and Iwaniec [12] and DiBenedetto & Manfredi [4] - when q is “large” - that is, for

solutions to (4) it holds that µ ∈ Lq =⇒ Du ∈ L
nq(p−1)

n−q where q ∈ (1, n) . Delicate
borderline regularity cases as the Marcinkiewicz spaces estimates for p = n - see
[5] - also follows as a corollary (note that [4, 5] deal with the p-Laplacean system).
Further results for parabolic equations can be found in [8, 10]. Moreover, since
the operator µ 7→ W

µ
1/p,p is obviously sub-linear, using the estimates related to

(11) and classical interpolation theorems for sub-linear operators one immediately
gets estimates in refined scales of spaces such Lorentz or Orlicz spaces, recovering
some estimates of Talenti [15], but directly for the gradient of solutions, rather
than for solutions themselves. As an example, an immediate corollary allows to
establish a delicate borderline case in Lorentz spaces, i.e for p < n we have that
µ ∈ L(np/(np−n+p), q) implies Du ∈ L(p, q(p−1)). This solves an open problem
stated several times in the literature ([1], [2], [9]).
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Singular Solutions to Fully Nonlinear Elliptic Equations

Nikolai Nadirashvili

We study a fully nonlinear second-order elliptic equations of the form (where
h ∈ R)

(1) Fh(D
2u) = det(D2u)− Tr(D2u) + hσ2(D

2u)− h = 0

defined in a smooth-bordered domain of Ω ⊂ R3, σ2(D
2u) = λ1λ2 + λ2λ3 + λ1λ3

being the second symmetric function of the eigenvalues λ1, λ2, λ3 of D2u. Here
D2u denotes the Hessian of the function u. This equation is equivalent to the
Special Lagrangian potential equation [HL1]:

SLEθ : Im{e−iθ det(I + iD2u)} = 0

for h := − tan(θ) which can be re-written as

Fθ = arctanλ1 + arctanλ2 + arctanλ3 − θ = 0.

The set
{A ∈ Sym2(R3) : Fh(A) = 0} ⊂ Sym2(R3)

has three connected components, Ci, i = 1, 2, 3 which correspond to the values
θ1 = − arctan(h)− π, θ2 = − arctan(h), θ3 = − arctan(h) + π.

We study the Dirichlet problem
{
Fθ(D

2u) = 0 inΩ

u = ϕ on∂Ω ,

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω and ϕ is a contin-
uous function on ∂Ω.

For θ1 = − arctan(h)− π and θ3 = − arctan(h) + π the operator Fθ is concave
or convex, and the Dirichlet problem in these cases was treated in [CNS]; smooth
solutions are established there for smooth boundary data on appropriately convex
domains.

The middle branch C2, θ2 = − arctan(h) is never convex (neither concave), and
the classical solvability of the Dirichlet problem remained open.

In the case of uniformly elliptic equations a theory of weak (viscosity) solu-
tions for the Dirichlet problem gives the uniqueness of such solutions, see [CIL],
moreover these solutions lie in C1,ε by [CC],[T1],[T2]. However, the recent results
[NV1],[NV2],[NV3] show that at least in 12 and more dimensions the viscosity
solution of the Dirichlet problem for a uniformly elliptic equation can be singular,
even in the case when the operator depends only on eigenvalues of the Hessian.

One can define viscosity solutions for non-uniformly elliptic equations (such as
SLEθ) as well, but in this case the uniqueness of viscosity solution is not known
which makes the use of these solutions less convenient.

Recently a new very interesting approach to degenerate elliptic equations was
suggested by Harvey and Lawson [HL2]. They introduced a new notion of a weak
solution for the Dirichlet problem for such equations and proved the existence, the
continuity and the uniqueness of these solutions.
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We show that the classical solvability for Special Lagrangian Equations does
not hold.

More precisely, we show the existence for any θ ∈] − π/2, π/2[ of a small ball
B ⊂ R3 and of an analytic function φ on ∂B for which the unique Harvey-Lawson
solution uθ of the Dirichlet problem satisfies :

(i) uθ ∈ C1,1/3;

(ii) uθ /∈ C1,δ for ∀δ > 1/3.

Our construction use the Legendre transform for solutions of F 1
h
(D2u) = 0

which gives solutions of Fh(D
2u) = 0; in particular, for h = 0 it transforms

solutions of σ2(D
2u) = 1 into solutions of det(D2u) = Tr(D2u). This construction

could be of interest by itself.

Finally, we think that the following conjecture is quite plausible:

Conjecture. Any Harvey-Lawson solution of SLEθ on a ball B lies in C1(B)
(if ϕ is sufficiently smooth).

In the case θ = 0 these solutions lie in C0,1(B) by Corollary 1.2 in [T3].
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Joint minimization of Dirichlet and Willmore functionals

Pavel Igorevich Plotnikov

Let S∞(M) be a class of periodic surfaces S ⊂ R3 satisfying the following condi-
tions. A surface S ∈ S∞ admits a C∞ parametrization r = u(X), X = (X1, X2)
such that

u(X +ml1 + nl2) = (m,n, 0) + u(X) ∀(m,n) ∈ Z
2. (1)

where the vectors l1 = (T, 0) and l2 = (−α, T−1) generate the translation lattice
Γ. Moreover, the inequality∫

R2/Γ

Tr a(X) dX +

∫

S/Z2

|A|2 dS < M <∞,

holds true for any S ∈ S∞(M). Here a and A are the first and second fundamental
forms of S. We say that a surface S = {r = u(X)} belongs to the class S(M) if
there exists a sequence Sk = {r = uk} ∈ S∞(M) such that

uk → u weakly in H1,2(D) for any disk D ⊂ R
2.

Denote by Ω ⊂ R3 the domain below S and by Φ : Ω → R a harmonic function
satisfying the conditions

∂n(x
1 +Φ) = 0 on S, Φ

(
x+ (m,n, 0)

)
= Φ(x) ∀(m,n) ∈ Z

2,

lim
x3→−∞

Φ(x) = 0.

The function Φ is completely determined by S. Introduce a renormalized ”kinetic
energy”

D(S) =

∫

Ω/Z2

|∇Φ|2 dx− 2

∫

S/Z2

Φn1 dS,

and take the total energy associated with S in the form

E(S,u) =
∫

R2/Γ

Tr a(X) dX +

∫

S/Z2

H2 dS +D(S) +

∫

S/Z2

g(x3)n3 dS. (2)

Here g is an arbitrary smooth function and n is the outward normal vector to S.
The aim of the work is to study qualitative properties of solutions to the variational
problem

E(S,u) = min
S(M)

E (3)

This problem has its origin in the theory of hydroelastic nonlinear waves on the
surface of an ice ocean, see [1]. The first two integrals in the right hand side of (2)
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represent the elastic energy of the ice, D is the kinetic energy of a fluid, and the
last integral in (2) is a potential energy of the fluid. In our framework the lattice
Γ is unknown and can be regarded as an integral part of solution. It is worthy
to note that for any solution to problem (3), the mapping u : R2/Γ → S/Z2 is
conformal, and we can reformulate the problem as follows.

For any S ∈ S∞, we denote by r = u(X) a conformal parametrization of surface
S satisfying periodicity conditions (1) and set

a11(X) = a22(X) = e2f(X), ei = e−f∂Xiu, n = e3 = e1 × e2. (4)

For any δ > 0, we denote by M∞(δ) the set of all surfaces

S ∈
⋃

M>0

S∞(M)

such that ∫

S/Z2

|A|2 dS < 16π/3− δ, ‖df‖L2(R2/Γ) ≤
(
8π/3

)1/2
.

We say that a surface S belongs to the class M(δ) if there exists a sequence

Sk = {r = uk} ∈ M∞(M, δ) such that uk → u weakly in H1,2
loc (R

2). The following
lemma gives bounds for the conformal characteristics of elements of the classM(δ).
Lemma 1. The following inequalities hold true for any S ∈ M(δ),

‖df‖L2(R2/Γ) ≤
(
8π/3

)1/2
−
√
δ/2, (5)

‖de1‖2L2(R2/Γ) + ‖de2‖2L2(R2/Γ) ≤ 16π (6)

‖f‖C(R2) ≤ C(δ). (7)

The proof of inequalities (5)-(6)is obtained by using the moving frame method,
developed in [3], and the modified Wente inequalities. Inequality (7) follows from
the Wente inequality and the simple observation that the surface S/Z2 is bounded
in the horizontal direction.

The second lemma which is a consequence of the famous result by Li and Yau,
see liYau, shows that for a suitable δ, elements of M(δ) have no self-intersections
and are physically admissible.
Lemma 2. If S ∈ ⋃

M>0

S∞(M) and

1

4

∫

S/Z2

|A|2 dS < 8π − 2π2, (8)

then S have no self-intersections
It follows from Lemmas 1,2 that the conformal characteristics of surfaces S ∈

M(δ) are completely controlled by the Willmore energy. The following theorem
is the main result of this work.
Theorem 3. Let for some δ > 0,

E(S,u) = inf
S̃∈M(δ)

E
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and S satisfies (8). Then S ∈ C∞.
The proof is based on the Simon biharmonic approximation method, [2], and

the following auxiliary lemma.
Lemma 4. Let r = u(X) be a smooth conformal embedding of the unit disk
D1 = {|X | ≤ 1} into R3 and f , ei are defined by (4). Furthermore assume that
they satisfy the inequalities

‖df‖L2(D) ≤ ε, ‖dei‖L2(D) ≤ ε,

0 < λ−1 ≤ ef ≤ λ <∞, 1 < λ <∞.

Then there exist constants ε0 and c, depending only on λ, such that for each
ε ∈ (0, ε0), there are unit orthogonal vectors (bi)i=1,2,3, a number ef0 ∈ (λ−1, λ),
and compact set F ⊂ D1 with the following properties. The one-dimensional
Hausdorff measure of F is less than cε and

|bi − ei(X)|+ |f(X)− f0| ≤
√
ε ∀X ∈ D1 \ F .

Choose the Cartesian coordinates (xi) in R3 such that the directions of the axes xi

coincide with directions of the vectors bi. Then there is a set T ⊂
(
(3λ)−1, (2λ)−1

)

with meas T > 1/(9λ) such that for every t ∈ T , the level set Ct = {X :
(u1)2 + (u2)2 = t2} consists of finite number of smooth Jordan curves . Each
connected component γ ⊂ Ct admits the parametrization

X = ρ(ϑ)(cosϑ, sinϑ), ϑ ∈ [0, 2π],

where

|ρ(ϑ)− e−f0t| ≤ c
√
ε, |ρ′(ϑ)| ≤ C

√
ε.

The mapping (x1, x2) = (u1, u2)(X) establishes the diffeomorphism between γ and
the circumference Ct = {(x1)2 + (x2)

2 = t2}. Moreover, there is a neighborhood
O of γ such that the surface {x = u(X), X ∈ O} is a graph of a smooth function
x3 = η(x1, x2) defined in some vicinity of Ct . The restrictions of η on Ct admit
the estimates

|η|+ |Dη| ≤ c
√
ε on Ct, ‖D2η‖L2(Ct) ≤ c‖A‖L2(Sλ)

where the annulus Sλ = u
(
D1 \D1/3λ

)
.
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Critical points of the Moser-Trudinger energy in the super-critical

regime

Michael Struwe

On any bounded domain Ω ⊂ R2 the energy functional

E(u) =
1

2

∫

Ω

(eu
2 − 1) dx

studied by Trudinger [13] and Moser [10] for any α ≤ 4π admits a maximizer in
the space

(1) Mα = {u ∈ H1
0 (Ω); u ≥ 0, ||∇u||2L2 = α},

corresponding to a solution 0 < u ∈Mα of the equation

(2) −∆u = λueu
2

in Ω

for some λ > 0; see [3] and [6]. For α > 4π the functional E is unbounded on
Mα, but E still admits a relative maximizer in Mα when α > 4π is sufficiently
small. One therefore may expect to see also critical points of saddle-type for such
α; indeed, when Ω is a ball this conjecture is strongly supported by numerical
evidence [9]. However, standard variational techniques fail in this “super-critical”
range of energies and ad hoc methods devised to remedy the situation so far have
only been partially succesful; compare [11].

In recent joint work [8] with Tobias Lamm and Frederic Robert we approach
the problem by means of the following flow. Given a smooth function u0 ∈ Mα,
we consider smooth solutions u = u(t, x) to the equation

(3) ute
u2

= ∆u+ λueu
2

in [0,∞[×Ω

with initial and boundary data

(4) u(0) = u0, u = 0 on [0,∞[×∂Ω,
and with a function λ = λ(t) > 0 determined so that the Dirichlet integral of u is
preserved along the flow; that is, so that

(5)

∫

Ω

|∇u(t)|2 dx =

∫

Ω

|∇u0|2 dx = α for all t ≥ 0 .

Upon multiplying (3) by ut and integrating, we then also obtain the relation

(6)

∫

Ω

u2t e
u2

dx = λ
d

dt
E(u(t)) ;

that is, (3), (4), (5) is the L2-gradient flow associated with E on Mα (with respect

to the metric g = eu
2

gR2).
Note that our equation (3) is similar to the equation for scalar curvature flow;

in the case of 2 space dimensions the scalar curvature flow is the Ricci flow studied
by Hamilton [7] and Chow [4].

Then we obtain the following result.
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Theorem 1. For any α > 0 and any smooth u0 ∈Mα the evolution problem (3),
(4), (5) admits a unique smooth solution u > 0 for small t > 0. The solution u
may be continued smoothly for all t > 0, provided that E(u(t)) remains bounded.

In this case, for a suitable sequence tk → ∞ the functions u(tk)
w
⇁ u∞ weakly

in H1
0 (Ω), where u∞ ∈ H1

0 (Ω) is a solution to the problem (2) for some constant
λ∞ ≥ 0. Moreover, either i) u(tk) → u∞ strongly in H1

0 (Ω), λ∞ > 0, and 0 < u∞
is a critical point of E in Mα, or ii) there exist i∗ ∈ N and points x(i) ∈ Ω, li ∈ N,
1 ≤ i ≤ i∗, such that as k → ∞ we have

|∇u(tk)|2dx w∗

⇁ |∇u∞|2dx+

i∗∑

i=1

4πliδx(i)

weakly in the sense of measures. By (5) then necessarily 4π
∑i∗
i=1 li ≤ α.

The above quantization result for (3), (4), (5) in the case of divergence is
in complete analogy with the results of Adimurthi-Struwe [2] and Druet [5] for
concentrating solutions of the corresponding elliptic equation (2), or the results

of Struwe [12] for solutions uk
w
⇁ 0 in H2 of the related fourth order equation

∆2uk = λkuke
2u2

k on a domain in R4. Our proof builds on these results.
Coupling Theorem 1 with a standard mountain-pass type construction we now

are able to rigorously establish the existence of saddle-points of E in Mα for
(sufficiently small) numbers α > 4π.

Theorem 2. There exists a number α1 ∈]4π, 8π] such that for any 4π < α < α1

there exists a pair of solutions u, u ∈Mα of (2) with 0 < E(u) < E(u).

Theorem 1 completes Theorem 1.8 from [11], where the existence of a pair of
solutions of (2) only was shown for almost every 4π < α < α1.
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Anal. Non Linéaire, 5 (1988), 425-464.
[12] M. Struwe: Quantization for a fourth order equation with critical exponential growth, Math.

Z. 256 (2007), 397–424.
[13] N.S. Trudinger: On embeddings into Orlicz spaces and some applications, J. Math. Mech.

17 (1967), 473–484.

Existence of mean curvature flow with non-smooth transport term

Yoshihiro Tonegawa

The study of time-global existence of mean curvature flow (MCF) was pioneered
in the work of Brakke in 1978 using the theory of varifold. In the late 80’s and
early 90’s various alternative existence theories were proposed such as the level
set method, the phase field method and others. The level set method generally
requires structures which allow the comparison theorem among solutions. Thus
while having the nice uniqueness property, the applicability is limited within the
scalar problems. The phase field method is more robust in general in that it
can accommodate any number of unknown functions. In the talk I discuss the
wide possibility of phase field approach as a tool to establish various time-global
existence results of MCF-type in view of the recent rapid progress such as the
resolution of ‘Modified conjecture of De Giorgi’ due to Matthias Röger and Reiner
Schätzle. To illustrate the applicability we discuss the two-phase fluid flow problem
coupled with the MCF equation.

Let Ω = (0, L)d ⊂ Rd and suppose that Ω at time t is separated into two disjoint
sets Ω±(t) which represent the domains of occupation of each phases, and suppose
Γ(t) is the (d − 1)-dimensional interface separating Ω±(t). Suppose that on each
domain ∪t∈(0,T )Ω

±(t)× {t}, v satisfies a non-Newtonian Navier-Stokes equation

vt + v · ∇v = div ((1 + |e(v)|2) p−2
2 e(v))−∇P, div v = 0

where e(v) = ∇v+∇vt

2 is the symmetric part of ∇v and P is the pressure. In case
p = 2 this is the standard Navier-Stokes equation. On the interface Γ(t) we assume
that the surface tension force acts on the fluid so the balance of force materializes
as

n ·
[
(1 + |e(v)|2) p−2

2 e(v)− pI
]
jump

= κ2H

where n is the unit normal of Γ(t), I is the d × d identity matrix, κ2 > 0 is a
positive constant and H is the mean curvature vector of Γ(t). We also assume
that the normal velocity V of the interface Γ(t) is given by V = (n · v)n + κ1H ,
thus the conventional kinematic condition (κ1 = 0) is modified by the diffusive
factor given by κ1H . The problem has the energy law:

d

dt

(
1

2

∫
|v|2 + κ2Hd−1(Γ(t))

)
= −

∫
((1 + |e(v)|2) p

2 − κ1κ2

∫

Γ(t)

|H |2.
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We present the approximation scheme of this problem using the phase field method:





vt + v · ∇v = div ((1 + |e(v)|2) p−2
2 e(v))−∇p− εκ2

σ div (∇φ⊗∇φ) ∗ η,
div v = 0,

φt + (v ∗ η) · ∇φ = κ1

(
∆φ− W ′(φ)

ε2

)
.

The suitable initial data are supplemented along with the periodic boundary con-
ditions. Here σ is the normalizing constant determined by W . ∗η is a convolution
of mollifying function η which smooths out the interaction terms (particularly
v) over the ball of radius εq, 0 < q < 1/d. This smoothing of v is technically
motivated, but it is interesting to note that such smoothing is regularly done in
numerical simulations of turbulent flow in the Large Eddy Simulation. We chose
q so that the resulting |v ∗ η| is bounded by ε−γ , γ < 1

2 . Due to the energy law
the solutions vε and φε satisfy (where we now set κ1 = κ2 = 1 for simplicity)

sup[0,T ]

∫
Ω

(
ε|∇φε|

2

2 + W (φε)
ε

)
+
∫
[0,T ]×Ω

1
ε

(
ε∆φε − W ′(φε)

ε

)2
≤ C,

sup[0,T ]

∫
Ω

|vε|
2

2 +
∫
[0,T ]×Ω

|∇vε|p + εγ‖vε‖L∞([0,T ]×Ω) ≤ C

where C is a constant depending only on the initial data but not on ε. From the
property of the fluid equation we may also assume that vε converges to v strongly
in L2([0, T ]× Ω) as ε→ 0. Under those condition we prove the following.
Theorem (Chun Liu, Norifumi Sato, T. in preparation)
Let d = 2, 3 and p > d+2

2 . There exists a subsequential limit of measures

dµεt =

(
ε|∇φε|2

2
+
W (φε)

ε

)∣∣∣∣
t

dx→ dµt

for all t ∈ [0, T ] such that

(a) 1
σµt is integral,

(b) µt satisfies Brakke’s inequality with transport: for 0 ≤ ∀t1 < ∀t2 ≤ T and
∀ψ ∈ C2

c (R
d;R+),

∫
ψ dµt2 −

∫
ψ dµt1 ≤

∫ t2

t1

∫
(−Hψ +∇ψ) · (H + (Txµt)

⊥v) dµtdt.

(c) The function v is defined as the trace in (b) and belongs to L2(dt⊗ dµt).

Note that (b) is the integral form of Brakke’s formulation. The construction of
such weak solution would be extremely complex (and likely be intractable) if one
tries to follow Brakke’s original construction of MCF. I discuss the idea of the
proof and future outlook of the problem in the talk.



Partielle Differentialgleichungen 2013

Isoperimetric inequalities for linear and nonlinear eigenvalues

Cristina Trombetti

(joint work with Barbara Brandolini and Carlo Nitsch)

The Faber-Krahn inequality states that among all domains with given measure
the first eigenvalue of −∆ is minimum on balls. It is also clear that it is not
possible to bound it from above among all domains with given measure. In [1] we
prove a reverse Faber-Krahn inequality for the eigenvalue of the Monge-Ampère
operator. We show that, contrary to what happens for the operator −∆, this
eigenvalue, among all convex sets with given measure, is bounded from above and
it is maximum on the ellipsoids. In [2] we prove a kind of stability result for the first
eigenvalue of −∆p (p-Laplace operator), p > 1. More precisely, if λp(Ω) denotes
the first eigenvalue of −∆p in a bounded, convex domain Ω ⊂ R

n and λp(Ω
⋆)

denotes the first eigenvalue of −∆p in the ball Ω⋆ having the same perimeter as
Ω, then we prove

0 ≤ λp(Ω)− λp(Ω
⋆)

λp(Ω)
≤ C(n, p)δ(Ω),

for some positive constant C(n, p). Here δ(Ω) is the isoperimetric deficit of Ω
defined as

δ(Ω) =
P (Ω)

n
n−1 − n

n
n−1ω

1
n−1
n |Ω|

P (Ω)
n

n−1
,

where P (Ω) and |Ω| are the perimeter and the measure of Ω, and ωn is the measure
of the unit ball in Rn.
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Large amplitude nonlinear water waves with vorticity

Eugen Varvaruca

(joint work with Ovidiu Savin and Georg Weiss)

We study periodic travelling-wave solutions for the two-dimensional Euler equa-
tions describing the dynamics of an incompressible, inviscid, heavy fluid over a
flat bottom and with a free surface. The corresponding mathematical problem
is to find a domain Ω in the (X,Y )-plane, which lies above a horizontal line
BF := {(X,F ) : X ∈ R}, where F is a constant, and below some a priori unknown
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curve S := {(X, η(X)) : X ∈ R}, where η : R → R is 2L-periodic, and a function
ψ in Ω which satisfies the following equations and boundary conditions:

∆ψ = −γ(ψ) in Ω,

ψ = B on BF ,
ψ = 0 on S,
|∇ψ|2 + 2gY = Q on S,
ψ(X + 2L, Y ) = ψ(X,Y ) for all (X,Y ) ∈ Ω,

where B, g, L are given positive constants, γ ∈ C1,α([0, B]) is a given vorticity
function andQ,F are parameters. By a vertical translation, we may always assume
either that Q = 0 or that F = 0.

In most of what follows we consider solutions of type (SMG) (symmetric mono-
tone graphs), for which S := {(X, η(X)) : X ∈ R}, where η is even, η′(X) < 0
on (0, L), and ψY < 0 in Ω. We are interested in the existence and properties of
extreme waves, which are waves with stagnation points (∇ψ = (0, 0)) on the free
surface S. At such points S need not be smooth, and we are interested in the
shape of S close to such points. A famous conjecture of Stokes (1880) claims that
(at least in the case of zero vorticity) the profile of any extreme wave has corners
with included angle of 120◦ at stagnation points. Note however that for certain
vorticity functions γ : [0, B] → R there exist trivial extreme waves, whose free
surface is a horizontal line all of whose points are stagnation points.

The first global theory of waves with general vorticity γ : [0, B] → R was given
by Constantin and Strauss (2004). Many authors have since then contributed to
this theory. Constantin and Strauss (2004) proved, under very general assumptions
on γ, the existence of almost extreme waves : a sequence of regular waves of type
(SMG) {(Sj ,B0, ψ

j , Qj)}j≥1 for which

max
Ωj

ψj
Y
→ 0 as j → ∞.

(Being of type (SMG), they satisfy ψj
Y
< 0 everywhere in Ωj .) Numerical evidence

suggests that this sequence converges either to an extreme wave which satisfies
the Stokes conjecture, or to a smooth wave with a stagnation point on the bottom
directly below the crest. Rigorous results on the existence of extreme waves and
the Stokes conjecture had been known previously only in the case of zero vorticity.

The following theorem proves the existence of extreme waves for any nonpositive
vorticity function.

Theorem 1 (Savin and Varvaruca (2009)). Suppose that γ(r) ≤ 0 for all r ∈
[0, B]. Let {(Sj ,B0, ψ

j , Qj)}j≥1 be a sequence of regular waves of type (SMG)
such that

max
Ωj

ψj
Y
→ 0 as j → ∞.
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Then {(Sj ,B0, ψ
j , Qj)}j≥1 ‘converges’ along a subsequence to an extreme wave

(S̃,B0, ψ̃, Q̃) with stagnation points at its crests, and for which the crests are the
only stagnation points.

The extreme wave obtained Theorem 1 is a weak solution of the problem, and
the convergence obtained is in a weak sense, once new a priori estimates have been
derived for the sequence of regular waves by using the maximum principle.

The following theorem proves a version of the Stokes conjecture which is in a
certain sense optimal.

Theorem 2 (Varvaruca and Weiss (2009)). Let (S, ψ) be an extreme wave, with
Q = 0. Suppose that S := {(X, η(X)) : X ∈ R}, where η : R → R is continuous
and locally of bounded variation. Suppose also that ψ

Y
< 0 in Ω. Let (X0, η(X0))

be a stagnation point, i.e. η(X0) = 0. Then

either lim
X→X0±

η(X)

X −X0
= ∓ 1√

3
or lim

X→X0±

η(X)

X −X0
= 0.

Moreover, if γ(r) ≥ 0 for all r ∈ [0, δ], for some δ ∈ (0, B], then

lim
X→X0±

η(X)

X −X0
= ∓ 1√

3
.

Note that, in the situation of the second part of Theorem 2, any stagnation
point is isolated and hence there can be at most finitely many stagnation points
on a period of the wave. This settles an open problem raised by Shargorodsky and
Toland.

In the proof of Theorem 2, the behaviour close to any stagnation point of the
curve S and the function ψ is studied by means of blow-up sequences. Suppose
with no loss of generality that X0 = 0. Let {εj}j≥1 be a sequence such that εj ց 0
as j → ∞, and let us consider the sequence {ψj}j≥1 given by

ψj(X,Y ) := ε
−3/2
j ψ(εjX, εjY ).

It is expected that any weak limit ψ̃ of {ψj}j≥1 along a subsequence satisfies

a limiting problem: find a locally rectifiable curve S̃ and a function ψ̃ in the

unbounded domain Ω̃ below S̃, such that

∆ψ̃ = 0 in Ω̃,

ψ̃ = 0 on S̃,
|∇ψ̃|2 + 2gY = 0 H1-almost everywhere on S̃.

This has a trivial solution (S̃0, ψ̃0), where S̃0 := {(X, 0) : X ∈ R} and ψ̃0 ≡ 0
in R2

−. Another solution, originally discovered by Stokes and nowadays called the

Stokes corner flow, is the following: let S̃∗ := {(X, η∗(X)) : X ∈ R}, where

η∗(X) := − 1√
3
|X | for all X ∈ R,
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let Ω̃∗ be the domain below S̃∗, and let the function ψ̃∗ in Ω̃∗ be given, for all

(X,Y ) ∈ Ω̃∗, by

ψ̃∗(X,Y ) :=
2

3
g1/2 Im

(
i(iZ)3/2

)
where Z = X + iY.

The key to the proof of Theorem 2 is the following uniqueness result.

Theorem 3 (Varvaruca and Weiss (2009)). Any blow-up limit of a solution of
the original problem is necessarily homogeneous of degree 3/2, and therefore is the
Stokes corner flow.

The proof uses a new ingredient, the Monotonicity Formula: the function

Φ(r) := r−3

∫

Br(0)

(
|∇ψ|2 − 2Γ(ψ)− 2gY χ{ψ>0}

)
dL2

− 3

2
r−4

∫

∂Br(0)

ψ2dH1 +

∫ r

0

s−4

∫

Bs(0)

(2Γ(ψ)− 3γ(ψ)ψ) dL2 ds

satisfies, for almost every r sufficiently small,

d

dr
Φ(r) = r−3

∫

∂Br(0)

2

(
∇ψ · ν − 3

2

ψ

r

)2

dH1.

(The function Γ : [0, B] → R is defined by Γ(t) :=
∫ t
0 γ(s) ds for all t ∈ [0, B].)

The proof of this formula is by direct verification, using a Pohozaev-type identity.
Let {ψj}j≥1 be the blow-up sequence

ψj(X,Y ) := ε
−3/2
j ψ(εjX, εjY ).

It is immediate from the Monotonicity Formula that any weak limit ψ̃ of {ψj}j≥1

along a subsequence is a function homogeneous of degree 3/2, and hence it is either
identically 0 or coincides with the Stokes corner flow.

Landau damping

Cédric Villani

1. Introduction

A cornerstone of plasma physics, Landau damping predicts the stability of
certain “stable” homogeneous equilibria of the Vlasov–Poisson equation. Well-
understood at the linear level, it has remained elusive in the nonlinear regime
for fifty years — except for some heuristic arguments in the quasilinear regime.
One of the main difficulties, as outlined by Backus in 1960, is to check that the
rapidly oscillating nonlinear terms, entailing a degradation of the smoothness as
time goes by, will not destroy the linear damping. Another main challenge is to
understand the robustness of the energy cascade from low to high velocity modes,
under nonlinear perturbation.



Partielle Differentialgleichungen 2017

In a recent work, Clément Mouhot and myself “solved” this problem; on that
occasion we introduced several new tools (functional spaces, scattering control,
functional inequalities) which may also prove useful in related issues. Here I shall
only state the main result and refer to our preprint Landau damping (available on
my Web page) for a more precise commented short presentation with comments;
or to the full version of our article, On Landau damping.

2. Fourier transform

As in the classical theory of Landau damping, Fourier transform plays a crucial
role in our study, It is important to distinguish between the Fourier transforms
in the position and velocity variables. We consider periodic boundary conditions,
which are simple and still retain the main physical issues.

For x ∈ Td = Rd/Zd, v ∈ Rd, let

f̂(k, v) =

∫
e−2iπk·xf(x, v) dx, k ∈ Z

d,

f̃(k, η) =

∫ ∫
e−2iπk·x e−2iπη·v f(x, v) dx dv, k ∈ Z

d, η ∈ R
d.

Using the Fourier transform, we also introduce a norm measuring analyticity
and decay (the latter only in velocity space):

‖f‖λ,µ,β = sup
k,η

∣∣f̃(k, η)
∣∣ e2πλ|η| e2πµ|k| +

∫ ∫
|f(x, v)| e2πβ|v| dv dx.

3. Main result

Let W : Td → R be an interaction potential, f0 = f0(v) ≥ 0 be an analytic
distribution (to be thought of as a stable equilibrium), and fi = fi(x, v) ≥ 0 be
another analytic distribution (to be thought of as a perturbation of f0). For ξ ∈ C,
k ∈ Zd, let

L(ξ, k) = −4π2 Ŵ (k)

∫ ∞

0

e2π|k|ξ
∗t |f̃0(kt)| |k|2 t dt.

Assume that f̃0(η) decays exponentially fast as |η| → ∞. Further assume that for
some positive parameters λ, µ, β,

(i) inf
k∈Zd

inf
0≤ℜξ<λ

∣∣L(ξ, k)− 1
∣∣ > 0 [linear stability of f0]

(ii) |Ŵ (k)| = O

(
1

|k|1+γ
)
, γ > 1 [interaction potential not too singular]

(iii) ‖fi − f0‖λ,µ,β ≤ ε≪ 1 [initial datum close to the stable equilibrium]

(Here ε depends on the other parameters in the problem.) Let f = f(t, x, v)
solve the nonlinear Vlasov–Poisson equation with initial datum fi and interaction
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potential W :





∂f

∂t
+ v · ∇xf + F [f ](t, x) · ∇vf = 0

f(0, · ) = fi,

where

F [f ](t, x) = −
∫ ∫

∇W (x − y) f(t, y, w) dy dw

is the force induced by the distribution f . Then

(a) F [f ](t, · ) −→ 0 exponentially fast as t→ ±∞ (in analytic norms);

(b) f(t, ·, ·) −→ f±∞ exponentially fast as t→ ±∞ (in the weak topology).

4. Coulomb or Newton potential

The physically most relevant case of Coulomb or Newton interactions are not
covered by the previous theorem. However, in that situation we can adapt the
proof to get damping over extremely large (exponential in 1/ε) time scales. This
can be considered as the reply to the objection formulated by Backus. We refer
to the original works for more information.

Convex solutions to the mean curvature flow

Xu-jia Wang

We consider convex solutions u to the equation

(∗)
n∑

i,j=1

(δij −
uiuj

σ + |Du|2 )uij = 1,

where σ ∈ [0, 1] is a constant. If σ = 0, the level sets of u satisfy the mean
curvature flow equation. When σ = 1, u is a translation solution to the mean
curvature flow.

It was proved by Huisken-Sinestrari that if M is a mean convex flow, namely
a mean curvature flow for hypersurfaces with positive mean convex, then the
limit flow obtained by a proper blow-up near type II singular points is a convex
translating solution. Separately White proved that a limit flow to the mean convex
flow is an ancient convex solution. To classify the convex translating solutions of
Huisken-Sinestrari and the convex solutions of White, one needs to classify convex
solutions to the above equation (*) for σ = 0 or σ = 1. Our results can be
summarized in the following theorems.

Theorem 1.1. If n = 2, then any entire convex solution to (*) must be rotationally
symmetric in an appropriate coordinate system.

From Theorem 1.1 we obtain
Corollary 1.1. A convex translating solution to the mean curvature flow must be
rotationally symmetric if it is a limit flow to a mean convex flow in R3.
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Theorem 1.2. For any dimension n ≥ 3 and 1 ≤ k ≤ n, there exist entire convex
solutions to (*) which are not k-rotationally symmetric.

Theorem 1.3. Let u be an entire convex solution of (1.2). Let uh(x) = h−1u
√
hx).

Then there is an integer 2 ≤ k ≤ n such that after a rotation of the coordinate
system for each h, uh converges to

ηk(x) =
1

2(k − 1)

k∑

i=1

x2i .

We say a solution to the mean curvature flow is ancient if it exists from time
−∞, and u is an entire solution if it is defined in the whole space Rn. We say u is
k-rotationally symmetric if there exists an integer 1 ≤ k ≤ n such that u is rota-
tionally symmetric with respect to x1, · · · , xk and is independent of xk+1, · · · , xn.
The above results are proved in

Xu-Jia Wang, Convex solutions to the mean curvature flow,
arXiv:math.DG/0404326..

Pseudo-hermitian geometry in 3-D

Paul Yang

In this talk, I summarize recent work on two topics in the study of CR invariants
in dimension three.

A three manifold M with a contact 1-form θ satisfying θ ∧ dθ 6= 0, carries a
distribution ξ given by the kernel of θ, and an almost complex structure J on ξ.
There is a connection defined by Webster and Tanaka that solves the equivalence
problem. The basic local invariants in this geometry are the torsion and the
Webster scalar curvature R.

The first topic concerns the equation of mean curvature for a surface in this
geometry. A particular example is the equation for a graph in the Heisenberg
group,

H =
(uy + x)2uxx − 2(uy + x)(ux − y)uxy + (ux − y)2uyy

D3

where D is the area element D =
√
(uy + x)2 + (ux − y)2. Intrisically, let e1

denote the unit vector tangent to the surface as well as to the contact plane, the
equation may be written as

∇e1e1 = HJe1 = He2.

For a C2 smooth surface, it is easy to construct a characteristic coordinate
system (s, t) ∈ R2 so that ∂s = fe1, ∂t = gDJe1, then easy computation leads to
the following analogue of the Codazzi equation:

D”D = 2(D′ − 1)(D′ − 2) + (H2 + e2(H))D2.
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In a series of joint work with Jih -Hsin Cheng, Jenn-Fann Hwang, and Andrea
Malchiodi we formulate the notion of weak solution and proved this condition to
be equivalent to the notion of minimizer.

Let Σ be a C1 surface in M , a singular point is one where the tangent plane
coincides with the contact point. For a C1 weak solution of the mean curvature
equation, we then derive enough regularity of the characteristic coordinates to
recover the validity of the Codazzi equation. As a consequence, we can describe
the structure of singular set in such a surface: it consists of isolated points and
piecewise C1 tree. We also determine the index of the line field e1 near the singular
points so that the Hopf index formula continues to hold.

The second topic is concerned with the analogue of the Yamabe equation to
prescribe the Webster scalar curvature: To find a contact form θ′ = u2θ for which
the equation holds

Lu = −∆bu+ (1/4)Ru = (1/4)R′u3,

where R′ is a constant. Previously, Gamara and Yacoub showed the existence of
solutions using the theory of critical points at infinity. It was not known whether
these are minimizing solutions.

To find minimizing solutions, we introduce the notion of an asymptotically
Heisenberg 3-manifold, and define a notion of mass for such a structure.

In a joint work in progress with Jih-Hsin Cheng, Hung-Lin Chiu, and Andrea
Malchiodi, we provide a criteria for this mass to be positive under two positivity
assumptions. The positivity of the operators L (already defined above) and that
of the operator P which is the analogue of the Paneitz operator:

Pu = ∆2
bu+ T 2u− 2i{u11A1̄1̄ − u1̄1̄ + u1A1̄1̄,1 − u1̄A11,1̄}.

It is necessary to remark that kernel of P contains the set of all plurisubharmonic
functions, and hence is rather large.

This positive mass result allows the construction of test functions to provide for
compactness in a minimizing sequence as in the case of the conformally invarint
Yamabe problem.

Reporter: Simon Blatt
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Universitätsstr. 1
40225 Düsseldorf

Amos Koeller

Mathematisches Institut
Universität Tübingen
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