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Introduction by the Organisers

The meeting continued the biannual conference series Differentialgeometrie im
Großen at the MFO which was established in the 60’s by Klingenberg and Chern.
Traditionally, the conference series covers a wide scope of different aspects of global
differential geometry and its connections with geometric analysis, topology and
geometric group theory. The Riemannian aspect is emphasized, but the inter-
actions with the developments in complex geometry, symplectic/contact geome-
try/topology and physics play also an important role. Within this spectrum each
particular conference gives special attention to two or three topics of particular
current relevance.

Whereas in the recent previous conferences 22 (almost) one hour talks were
delivered, the scientific program consisted this time of only 17 one hour talks
allowing a less pressured schedule and leaving ample time for informal discussions.
Apparently, not only the organizers but also many of the participants were quite
satisfied with this modified approach.



1944 Oberwolfach Report 35/2009

A prominent theme of the workshop were geometric structures and discrete
subgroups of Lie groups, represented by five talks concerned with hyperbolic and
projective structures on manifolds and their deformations, representation varieties
of surface groups, lattices and ergodic theory.

Another focus was the geometry of singular spaces, that is, metric spaces with
upper or lower sectional curvature bounds (in the sense of Aleksandrov), includ-
ing building theory from the perspective of comparison geometry, and Gromov-
hyperbolic spaces with connections to geometric group theory.

An important role was again played by geometric evolution equations and, mo-
tivated by the desire to understand the degenerations of the Ricci flow, the study
of the topology and geometry of collapsing Riemannian metrics in dimension three
and higher subject to various kinds of curvature control.

Other talks presented results about conformal geometry, minimal surfaces and
manifolds with positive sectional curvature.

There were 47 participants from 8 countries, more specifically, 19 participants
from Germany, 16 from the United States of America, 5 from France, 5 from
other European countries, and 2 from Canada. 13% of the participants (6) were
women. 30% of the participants (14) were young researchers (less than 10 years
after diploma or B.A.), both on doctoral and postdoctoral level.

The organizers would like to thank the institute staff for their great hospital-
ity and support before and during the conference. The financial support by the
new programme Oberwolfach Leibniz Graduate Students for young participants is
gratefully acknowledged.
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Abstracts

Fatness and beyond

Wolfgang Ziller

A Kaluza Klein metric, or connection metric, is a metric on a principal G-bundle
π : P → B of the form

〈U, V 〉 = gB(π∗(U), π∗(V )) +Q(θ(U), θ(V ))

where gB is a metric on the base, θ a principle connection, and Q a fixed biinvariant
metric on the Lie algebra of G. We will use also this terminology in the more
general context of orbifold principle bundles, although we will assume that P is a
manifold. This includes the case where G acts on P with finite isotropy groups.
Such a connection metric makes the projection π into a Riemannian submersion
with totally geodesic fibers.

Weinstein coined the concept of fatness for a general Riemannian submersion
with totally geodesic fibers. A bundle is called fat if all vertizontal curvatures, i.e.
all sectional curvature spanned by a horizontal and vertical vector are positive. In
the case of a connection metric this turns out to be equivalent to a strong condition
on the curvature Ω of θ:

Ωu = Q(Ω, u) is non-degenerate on ker θ for all u ∈ g

which is a condition on the principle connection alone. Following an idea of We-
instein, we exhibit obstructions to the existence of a fat connection in terms of
characteristic classes (joint work with Luis Florit). E.g., when G = U(n) and
dimB = 2m, the existence of a fact connection implies the nonvanishing of the
characteristic numbers

∑

n≥λ1≥···≥λm≥0

i=m
∏

i=1

(n+m−i−λi)! det (σλi+j−i(y))1≤i,j≤m
det (cλi+j−i)1≤i,j≤m

6= 0,

for all 0 6= y = (y1, . . . , yn), where |λ| = m, σi(y) = σi(y1, . . . , yn) is the elemen-
tary symmetric polynomial of degree i, and ci ∈ H2i(B) are the Chern classes of
the bundle.

We say that a connection is hyperfat if all sectional curvatures of the connection
metric on P are positive, as long as the metric is scaled with a sufficiently small
real number in the direction of the fibers. This condition is equivalent to:

(∇xΩu) (x, y)
2 < |ixΩu|2kB(x, y),

for all orthonormal x, y ∈ ker θ and 0 6= u ∈ g. In joint work with Karsten Grove
and Luigi Verdiani we showed that:

There exists an orbifold bundle SU(2) → P 7 → S4 with a hyperfat connection
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In particular, P 7 is a new example with positive sectional curvature. We also
observed that P is homeomorphic to the unit tangent bundle of S4, although we
do not know if it diffeonmorphic to it or not.

Equivariant classification of nonnegatively curved 4-manifolds with an
isometric S

1-action

Burkhard Wilking

Hsiang-Kleiner and Kleiner showed that a nonnegatively curved 4-manifold which
is compact, simply connected and has a nontrivial isometric S1-action is homeo-
morphic to S4, CP 2, S2 × S2 or CP 2#±CP 2. Using purely topological methods
Kim improved the conclusion to diffeomorphic.
On the other hand it is well known that each of these 4-manifolds admits lots of
exotic S1-action.
In joint work with K.Grove, I was able to show that in the above theorem the
conclusion can be improved to equivariant diffeomorphic.
The basic problem arises if M4/S1 is a homotopy sphere containing a closed sin-
gular curve.
Combining the ellipticization conjecture with Alexandrov geometry we are able to
show that such a curve cannot be knotted.

Locally collapsed 3-manifolds

John Lott

(joint work with Bruce Kleiner)

We give a proof of a result stated by Perelman, concerning closed 3-manifolds M
that are locally volume-collapsed with respect to a local lower sectional curvature
bound [3, Theorem 7.4].

Definition 0.1. Fix w̄ ∈ (0, 4π3 ). Given p ∈ M , the w̄-volume scale at p is

rp(w̄) = inf{r > 0 : vol(B(p, r)) = w̄ r3}.

If there is no such r then we say that the w̄-volume scale is infinite.

Definition 0.2. Given p ∈ M , the curvature scale at p is the (unique) number
r > 0, if it exists, such that the infimum of the sectional curvatures on B(p, r)
equals −r−2. Otherwise, we say that the curvature scale at p is infinite.

Theorem 0.3. Let (Mα, gα) be a sequence of closed connected Riemannian 3-
manifolds. Let K ≥ 10 be a fixed integer. Suppose that for each w′ ∈ (0, 4π

3 ),

(1) As α → ∞, the infimum of (the curvature scale divided by the w′-volume
scale) tends to infinity.
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(2) For each C < ∞, there is a number A(C,w′) < ∞ with the following
property. Given p ∈ Mα, let rp(w

′) denote the w′-volume scale at p. Then
for each integer k ∈ [0,K],

|∇k Rm | ≤ A(C,w′) rp(w
′)−(k+2)

on B(p, Crp(w
′)).

Then for large α, Mα is a graph manifold.

There is also a version of Theorem 0.3 for manifolds-with-boundary.
Theorem 0.3 is used in Perelman’s proof of the geometrization conjecture. It

gives the nonhyperbolic pieces in the Thurston decomposition of the 3-manifold.
Other proofs of Theorem 0.3 appear in [1, 2, 4].

In the talk we described three ideas in the proof :

(1) Stratification of the 3-manifold.
(2) Fake volume scale.
(3) Cloudy manifolds.

References
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N
∗-Bundles and Almost Ricci Flat Spaces

Aaron Naber

(joint work with Gamg Tian)

In this talk we study collapsing sequences Mi
GH→ X of Riemannian manifolds

with curvature bounded or curvature bounded away from a controlled subset. We
introduce a structure over X which in an appropriate sense is dual to the N -
structure of Cheeger, Dukaya and Gromov. As opposed to the N -structure, which
lives over the Mi themselves and takes the form of a sheaf over vector fields, the
N∗-bundle is an equivariant vector bundle V T → X over the limit space. This
point of view allows for a convenient notion of global convergence as well as the
appropriate background structure for doing analysis on X .

Topologically the N∗-bundle V T → X is defined by the property that if fi :
Mi → X are the equivariantly smooth Gromov-Hausdorff maps then, after passing
to a subsequence, the pullback vector bundles f∗V T over Mi are all isomorphic
to the tangent bundles TMi.This is particularly interesting because it is perfectly
possible for no two of the Mi to even be homotopic, and yet their tangent bundles
are all pullbacks of the same bundle.
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As a more concrete application of this structure we give a generalization of
Gromov’s Almost Flat Theorem and prove new Ricci pinching theorems which
extend those known in the noncollapsed setting. The key point of both theorems

is the following lemma: Let (Mi, gi)
GH→ X with the Mi closed n-manifolds with

diami ≤ 1, |seci| ≤ 1 and |Rci| → 0. Then we have that X is a Ricci flat orbifold.
The assumptions of the theorem are sharp in that if any are dropped then

we know very little about the limit space X . The lemma can be viewed as a
generalization of a theorem of Fukaya, which makes the statement that X is a flat
orbifold if further |seci| → 0. Notice also that the conclusion is not just geometric
in nature, but also restricts the type of topological singularities that can exist in
X . As a consequence we prove the following Almost Ricci Flat Theorem: Let
(Mn, g) be a closed n-manifold with |sec| ≤ K. Then there exists a constant
ǫ = ǫ(n,K) > 0 such that if |Rc| ≤ ǫ then M is an orbifold bundle over a Rici flat
orbifold X whose fibers are infranil. Further |secX | ≤ K and infranil fibers are
almost totally geodesic.

References

[1] A. Naber; G. Tian, Geometric Structures of Collapsing Riemannian Manifolds II: N∗-

bundles and Almost Ricci Flat Spaces, preprint

Space of Ricci Flows

Xiu-Xiong Chen

Inspired by the canonical neighborhood theorem of G. Perelman in 3 dimensional,
we study the weak compactness of sequence of ricci flow with scalar curvature
bound, Kappa non-collapsing and integral curvature bound.

All of these constraints are natural in the Kahler ricci flow in Fano surface.
In particular, we prove the 2-dimensional Hamilton-Tian conjecture that, KRf
sequentially converges to Kahler Ricci Soliton except a finite number of points.
As an application, we give a ricci flow based proof to the Calabi conjecture in
Fano surface.

Deforming projective structures on hyperbolic three-manifolds

Joan Porti

(joint work with Michael Heusener)

A hyperbolic manifold is equipped with a canonical projective structure, and
we ask whether it can be deformed or not. The situation in dimension two is well
understood independently by Choi-Goldman [1], Labourie [5] and Loftin [6]. In
dimension three there are examples that can be deformed and examples that are
locally rigid [2, 3].

The goal of this talk is to give a result that constructs infinitely many hyperbolic
three manifolds whose projective structure is locally rigid.
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Those manifolds are constructed by means of Dehn filling. Let M3 be a ori-
entable hyperbolic 3-manifold of finite volume and with one cusp. It has a compact
core M̄3 with boundary a torus. A Dehn filling means gluing a solid torus D2×S1

to M̄3 along the boundary, in order to get a closed manifold. The homeomorphism
type of the manifold only depends on the homotopy class in ∂M̄3 of the curve at-
tached to the meridian ∂D2 × {∗}. By Thurston’s hyperbolic Dehn filling, all but
finitely many Dehn fillings are hyperbolic manifolds.

Instead of local rigidity we shall prove infinitesimal rigidity, a stronger notion.
For this we look at the variety of representations Hom(π1(M,PGL(4)) to param-
eterize local deformations, by the theorem of Ereshman-Thurston.

The Zariski tangent space to Hom(π1(M,PGL(4)) quotiented out by the tan-
gent space of the orbit by conjugation is the first cohomology group:

H1(M, sl(4))

where the coefficients are taken in the lie algebra twisted by the holonomy repre-
sentation.

Definition. A closed hyperbolic three manifold N3 is called infinitesimally pro-
jectively rigid if

H1(N3; sl(4)) = 0.

Infinitesimal rigidity implies local rigidity, but the converse is false, as the ex-
amples of [2, 3] show.

For cusped manifolds of finite volume M3, we consider its compact core M̄3

Definition. A cusped hyperbolic manifold of finite volume M3 is called infinites-
imally projectively rigid if the natural map induces an injection

H1(M3; sl(4)) →֒ H1(∂M̄3; sl(4))

In this case, infinitesimal rigidity implies local rigidity relative to the boundary.
We have checked that the figure eighth knot exterior an the Whitehead link exterior
are both infinitesimally projectively rigid cusped manifolds.

Our main result is the following:

Theorem 0.1. Let M3 be a cusped hyperbolic manifold of finite volume. If M3

is infinitesimally projectively rigid, then infinitely many Dehn fillings on M3 are
also infinitesimally projectively rigid.

The proof uses the analycity of Thurston’s Dehn filling deformation space. This
space has a complex analytic structure and, in the one cusp case, it is equivalent
to a neighborhood of the origin in the complex plane. The complete structure cor-
responds to the origin, and a countable number of points correspond to incomplete
structures whose completion is the Dehn filling. This countable set accumulates
at the origin. The idea of the proof is to provide conditions for these parame-
ters that guarantee that the Dehn filling is infinitesimally rigid, and to prove that
these conditions hold away from a proper real analytic subset. The structures cor-
responding to Dehn filling accumulate at the complete structures (the origin) in
such way that they cannot lie all of them in a proper real analytic subset (cf. [4]).
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Invariant subsets of finite volume homogeneous spaces

Yves Benoist

(joint work with Jean François Quint)

The main result of this talk is:

Theorem. Let G be a simple real Lie group, Λ be a lattice of G and µ be a
probability measure on G whose support is compact and generates a Zariski dense
subgroup of G. Then every µ-ergodic µ-stationary probability measure on G/Λ
either has finite support or is the Haar probability measure.

Corollary. Let G be a simple real Lie group, Λ a lattice of G, and Γ a Zariski
dense semigroup of G. Every Γ-ergodic Γ-invariant probability measure on X
either has finite support or is the Haar measure.

a) Every Γ-invariant infinite closed subset of X is equal to X.
b) Every sequence of distinct finite Γ-orbit becomes equidistributed in X with

respect to the Haar measure.

The simplest example to which this theorem and its corollary apply is G =
PSL(2,R), Λ = PSL(2,Z), µ = 1

2 (δg1 + δg2) and Γ the semigroup generated by g1
and g2 as soon as it is non solvable.

These statements extend previous results of Eskin and Margulis, of Clozel, Oh
and Ullmo and of Bourgain, Furman, Lindenstrauss and Mozes.
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On Tits’ Center Conjecture

Carlos Ramos Cuevas

A sphere S with the round metric of radius 1 has only small proper convex subsets.
Namely, a convex subset of S is contained in a closed ball of radius π

2 , or it is the
sphere itself.

A spherical building is a CAT(1)-space with the following rigidity property: any
two points are contained in a top-dimensional convex subset isometric to a round
sphere of radius 1. A natural question is whether the convex subsets of a spherical
building are more flexible than those in the sphere. (cf. [2, Question 1.5]).

Question 0.1. Let C ⊂ B be a closed convex subset of a spherical building B. If
C is not a subbuilding, is it true that radC(C) ≤ π

2 ?

If dim(C) ≤ 1, then it is easy to see that the answer is yes.
A result in [1] says that in a CAT(1)-space X of finite dimension and radius

≤ π
2 the convex set Z of circumcenters of X is non-empty and has radius < π

2 .
In particular, the group of isometries of X must fix the unique circumcenter of Z.
Regarding isometric actions on spherical buildings and their fixed points, we have
a weaker version of Question 0.1:

Question 0.2. If C is not a subbuilding, is it true that the group of isometries of
C has a fixed point?

If dim(C) ≤ 2, Question 0.2 has a positive answer. This was proven in [1].
A spherical building carries a natural structure of a polyhedral complex. If we

restrict our attention to convex subsets that are also subcomplexes of the building,
then a weaker version of Question 0.2 becomes Tits’ Center Conjecture (compare
[4] and [6, Conjecture 2.8]):

Conjecture 0.3 (Tits’ Center Conjecture). Let K ⊂ B be a convex subcomplex
of a spherical building. Then K is a subbuilding or the group StabAut(B)(K) of
building automorphisms of B preserving K has a fixed point in K.

A building automorphism is an isometry preserving the polyhedral structure.
This conjecture has been proven for thick spherical buildings without factors of

type F4, E6, E7 or E8 in [4]. The case of buildings of type F4 was announced in
a talk at Oberwolfach by Parker and Tent [5]. Both approaches use the incidence
geometries associated with the different buildings.

Our approach to these questions is of differential-geometric nature, using meth-
ods of the theory of metric spaces with curvature bounded above. We are able to
obtain the following results:

Theorem 0.4 (with B. Leeb [3]). The Center Conjecture 0.3 holds for spherical
buildings of type F4 and E6.

Theorem 0.5. The Center Conjecture 0.3 holds for spherical buildings of type E7

and E8

This completes the proof of the Center Conjecture for arbitrary thick spherical
buildings.
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Domains of Discontinuity for Surface Groups

Olivier Guichard

(joint work with Anna Wienhard)

In [4] F. Labourie introduced the notion of Anosov structures and their holonomy
representations, so called Anosov representations, to study the Hitchin component
for SL(n,R). Anosov representations are in some sense a dynamical analogue of
holonomy representations of geometric structures (in the sense of Ehresmann), but
the concept of Anosov representations is more flexible. Anosov representations
have been proven to be a key tool in the study of higher Teichmüller spaces. In
this note we show that Anosov representations of surface groups actually give rise
to geometric structures on compact manifolds.

Theorem 0.2. Let Σ be a closed connected orientable surface of negative Eu-
ler characteristic, and let G be a semisimple Lie group not locally isomorphic to
SL(2,R).

Suppose that ρ : π1(Σ) → G is an Anosov representation, then there exist a
parabolic subgroup Q < G and a non-empty open set Ω ⊂ G/Q such that ρ(π1(Σ))
preserves Ω and acts on it freely, properly discontinuously and with compact quo-
tient.

Note that Anosov representations are easily seen to be faithful with discrete im-
age [4, 2]. In particular, Anosov representations into SL(2,R) are exactly Fuchsian
representations, thus their action on the projective line is minimal.

The proof of Theorem 0.2 is constructive, i.e. we construct an explicit Q < G
and a domain Ω ⊂ G/Q (see Section 3 for examples). The construction uses the
equivariant curve ξ : ∂π1(Σ) → G/P associated to an Anosov representation (see
Proposition 1.2), and the parabolic group Q depends on P .

1. Anosov Representations

Let P+, P− be a pair of opposite parabolic subgroups of G and denote by F± =
G/P± the flag variety associated to P±. There is a unique open G-orbit X ⊂
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F+ × F−. We have X = G/(P+ ∩ P−), and as an open subset of F+ × F− it
inherits two foliations E± whose corresponding distributions are denoted by E±,
(E±)(f+,f−)

∼= Tf±F±.
Given a representation ρ : π1(Σ) → G we consider the corresponding flat G-

bundle P over T 1Σ. Via the flat connection, the flow φt lifts to P .

Definition 1.1 ([4]). A representation ρ : π1(Σ) → G is called a P+-Anosov
representation if the associated bundle P ×G X

(1) admits a section σ that is flat along flow lines, and
(2) the action of the flow φt on σ∗E+ (resp. σ∗E−) is contracting (resp.

dilating), i.e. there exist constants A, a > 0 such that for any e in σ∗(E±)m
and for any t > 0 one has

‖φ±te‖φ±tm ≤ A exp(−at)‖e‖m.

The set of P+-Anosov representations is open in Hom(π1(Σ), G) [4].

Proposition 1.2 ([4]). Let Σ, G and P+ be as above. Let ρ be a P+-Anosov
representation. Then

(1) there are two ρ-equivariant continuous maps ξ± : ∂π1(Σ) → F±,
(2) for every t+ 6= t− ∈ ∂π1(Σ) we have (ξ+(t+), ξ

−(t−)) ∈ X ,
(3) for every γ ∈ π1(Σ) − {e}, the element ρ(γ) is conjugate to an element

in P+ ∩ P−, having a unique attracting fix point in G/P+ and a unique
repelling fix point in G/P−.

2. A Special Case

Let V be a real vector space and F a non-degenerate bilinear form on V
which we assume to be either skew-symmetric or symmetric indefinite of signature
(p, q) (with p ≤ q). Let GF = {g ∈ GL(V ) | g∗F = F}, let F0 = GF /Q0 =
{l ∈ P(V ) |F |l = 0} be the set of isotropic lines and F1 = GF /Q1 = {W ∈
Grp(V ) |F |W = 0} be the set of maximal isotropic suspaces (p = dimV/2 when F
is skew-symmetric). Let also F0,1 = {(l,W ) ∈ F0×F1 | l ⊂ W} and πi : F0,1 → Fi,
i = 0, 1, be the projections. Given a subset A ⊂ F0 we define the subset

KA := π1(π
−1
0 (A)) ⊂ F1.

For an isotropic line l ∈ F0, Kl ⊂ F1 is the set of maximal isotropic subspaces
containing l, and KA =

⋃

l∈A Kl. Similarily, given B ⊂ F1 we define KB ⊂ F0.

Theorem 2.1. Let Σ be as in Theorem 0.2 and let V , F and GF as above with
dimV ≥ 4. Suppose ρ : π1(Σ) → GF is a Qi-Anosov representation, with i = 0
or 1, and let ξi : ∂π1(Σ) → Fi be the corresponding equivariant map. Define
Ωρ := F1−i −Kξi(∂π1(Σ)) ⊂ F1−i.

Then Ωρ is non-empty, open and preserved by ρ(π1(Σ)). Furthermore, the ac-
tion of ρ(π1(Σ)) on Ωρ is free, properly discontinuous and the quotient Ωρ/ρ(π1(Σ))
is compact.

The set Kξi(∂π1(Σ)) is closed and (because dimV ≥ 4) of codimension at least
1 in F1−i; by ρ-equivariance of ξi it is preserved by ρ(π1(Σ)), hence Ωρ is a
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ρ(π1(Σ))-invariant non-empty open subset of F1−i. That the action is free and
properly discontinuous follows from the contraction estimates one can deduce from
the representation ρ being Qi-Anosov.

To prove compactness of the quotient Ωρ/ρ(π1(Σ)), we need to prove that
Hn(Ωρ/ρ(π1(Σ));F2) does not vanish. This is achieved by using algebraic topology
tools (spectral sequence, Alexander duality, etc.).

The proof of the general situation (Theorem 0.2)

3. Examples

3.1. Maximal Representations into Sp(2n,R). Any maximal representation
ρ : π1(Σ) → Sp(2n,R) is P -Anosov where P is the stabilizer of a Lagrangian
subspace in R2n (see [1] for definitions and proofs). Thus Theorem 2.1 applies
and gives a domain of discontinuity Ωρ ⊂ RP

2n−1.

3.2. Hitchin Representations into SL(n,R). Let ρ : π1(Σ) → SL(n,R) be
a Pmin-Anosov representation, and let ξ = (ξ1, · · · , ξn−1) : ∂π1(Σ) → F(Rn)
be the equivariant map into the flag variety. Examples of such representations
are Hitchin representations [3, 4], but the construction applies also to other such
representations.

The trace defines a non-degenerate bilinear form F on V = End(Rn). Apply-
ing Theorem 2.1 to the Q1-Anosov representation Ad ◦ ρ : π1(Σ) → GL(V ) we
obtain a domain of discontinuity ΩAd◦ρ in GF /Q0 which gives rise to a domain of
discontinuity Ωρ,Ad ⊂ F1,n−1(R

n) in the space of partial flags consisting of a line
and a hyperplane. Ωρ,Ad is the complement of

{

(p,H) ∈ F1,n−1(R
n) | ∃t ∈ ∂π1(Σ), ∃ 1 ≤ k ≤ n such that p ⊂ ξk(t) ⊂ H

}

.

3.3. Deformations of π1(Σ) → SO(2, 1) → SO(n, 1). Let ρ : π1(Σ) → SO(n, 1),
n ≥ 3, be a (small enough) deformation of the embedding π1(Σ) → SO(2, 1) →
SO(n, 1). Then the domain of discontinuity Ωρ constructed in Section 2 is the
complement of the limit set of ρ in Sn−1 and the quotient Ωρ/ρ(π1(Σ) is homeo-
morphic to an Sn−3-bundle over Σ.
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Surfaces, SL(3) and an equation of Tzitzéica

John Loftin

(joint work with Ian McIntosh)

On a Riemann surface Σ equipped with a holomorphic cubic differential Q, we
consider four equations of Tzitzéica type (depending on the choices of sign)

(0.1) ∆u ± 4‖Q‖2e−2u ± 4eu − 2κ = 0,

for ∆ and κ respectively the Laplacian and curvature of a background metric. Each
equation is an integrability condition of an immersed surface whose geometry is
governed by a real form G of SL(3,C). In each case, a solution to Tzitzéica’s
equation determines a representation of the surface group π1Σ into G. We recount
the geometry of all four equations, three of the four already in the literature, and
the last one being work in progress with Ian McIntosh.

Equation (0.1) with signs (−,+) corresponds to minimal Lagrangian tori into
CP

2, with group SU(3). This equation has been well studied using integrable
systems techniques by Sharipov [9], Joyce [3], Haskins [2], Ma-Ma [7], McIntosh
[8], Carberry-McIntosh [1], and others, with applications to special Lagrangian
cones in C3. Solutions on tori which “close up” to tori in CP

2 are studied by these
authors.

Equation (0.1) with signs (+,+) and (+,−) correspond respectively to elliptic
and hyperbolic affine spheres in R3, whose geometry is invariant under the action
of SL(3,R). These equations have been studied by Wang [10], Labourie [4], Loftin,
and Loftin-Yau-Zaslow [6]. Applications are given to the Strominger-Yau-Zaslow
conjecture in mirror symmetry and to the space Hom(π1Σ, SL(3,R))/SL(3,R).

Finally, in work in progress with McIntosh, we study solutions to (0.1) with
signs (−,−). Such solutions correspond to integrability conditions of minimal La-
grangian surfaces in the complex hyperbolic plane CH2. Solutions for cubic differ-
ential Q = 0 give rise to the standard Lagrangian RH

2 ⊂ CH
2. We are able to pro-

duce solutions for all Q which are small enough. We conjecture that these solutions
parametrize a portion of the representation space Hom(π1Σ, SU(2, 1))/SU(2, 1)
similar to the subset of the representation space into PSL(2,C) given by the
quasi-Fuchsian representations.

References

[1] E. Carberry and I. McIntosh, Minimal Lagrangian 2-tori in CP
2 come in real families of

every dimension, J. London Math. Soc. 69 (2004), 531–544.
[2] M. Haskins, Special Lagrangian cones, Amer. J. Math. 126 (2004), 845–871.

[3] D. Joyce, Special Lagrangian 3-folds and integrable systems. Surveys on geometry and
integrable systems, 189–233, Adv. Stud. Pure Math., 51, Math. Soc. Japan, Tokyo, 2008.

[4] F. Labourie, Flat projective structures on surfaces and cubic holomorphic differentials,
Pure Appl. Math. Q. 3 4 (2007), no. 4, part 1, 1057–1099. 1057–1099.

[5] J. Loftin Affine spheres and convex RP
n-manifolds, Amer. J. Math. 123 (2001), 255–274.

[6] J. Loftin, S.-T. Yau and E. Zaslow, Affine manifolds, SYZ geometry and the “Y” vertex,
J. Diff. Geom. 71 (2005), 129–158, erratum at arXiv:math/0405061.

[7] H. Ma and Y. Ma, Totally real minimal tori in CP2, Math. Z. 249 (2005), 241–267.



1958 Oberwolfach Report 35/2009

[8] I. McIntosh, Special Lagrangian cones in C3 and primitive harmonic maps, J. London Math.
Soc. 67 (2003), 769–789.

[9] R. Sharipov, Minimal tori in the five-dimensional sphere in C3, Theoret. Math. Phys. 87
(1991), 363–369.

[10] C.-P. Wang, Some Examples of Complete Hyperbolic Affine 2-Spheres in R3, Global differ-
ential geometry and global analysis (Berlin, 1990), 271–280, Lecture Notes in Math., 1481,
Springer, Berlin, 1991.

Gromov hyperbolicity and CAT(−1)-spaces

Viktor Schroeder

(joint work with Thomas Foertsch)

In this talk we discussed the relation between Gromov hyperbolic spaces and
CAT(−1)-spaces. A CAT(−1)-space is always Gromov hyperbolic and we are
interested in the question to what extend the opposite holds.

A space X is called Gromov hyperbolic, if there exists a constant δ ≥ 0 such
that for any quadruple of points (x, y, z, w) ∈ X4 the two largest of the following
three numbers

|xy| + |zw| , |xz| + |yw| , |xw| + |yz|
differ by at most 2δ. Here |xy|, |zw| etc. denotes the distances. It is surprising that
this simple property catches some important properties of the classical hyperbolic
space Hn but is flexible enough in order to apply it for a broad class of spaces.

The classical hyperbolic space has an ideal boundary ∂∞Hn which is Sn−1 in
the unit ball and Rn−1 ∪{∞} in the upper half space model. In a similar way one
can define an ideal boundary of a gromov hyperbolic space. One can also define a
kind of metric structure on the boundary, which depends on a choosen basepoint
o ∈ X or a basepoint ω ∈ ∂∞X . Actually for o ∈ X respectively ω ∈ ∂∞X one
can define quasi-metrics ρo, respectively ρω on Y = ∂∞X .

In the case that the space is actually a CAT(−1)-space, the quasi-metrics ρo
respectively ρω are indeed metrics. This was proved by Bourdon [1], [2] respectively
follows from result of Hamenstädt [4].

Our main observation is that the ideal boundary Y of a CAT(−1)-space X
endowed with the Bourdon or Hamenstädt metric satisfies the so calle Ptolemy
inequality,i.e. let y1, y2, y3, y4 ∈ Y , then

|y1y3||y2y4| ≤ |y1y2||y3y4|+ |y2y3||y4y1|.
Equality holds if and only if the convex hull of the four points is isometric to

an ideal quadrilateral in the hyperbolic plane H2 such that the geodesics y1y3 and
y2y4 are the diagonals.

Using the Ptolemy property we can give partial answers to the question, to
what extend gromov hyperbolic spaces can be roughly isometrically embedded
into CAT(−1)-spaces.
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Gradient flow in Alexandrov geometry

Anton Petrunin

I will give a quick introduction to the gradient flow technique and discuss at
least the following applications:

1. Collapsing with lower curvature bound (an older work joint with Kapovitch
and Tuschmann)

2. Compatibility of Alexandrov’s definition with the definition of generalized
lower curvature bound of Lott, Villani and Sturm

3. Existance of bi-Lipschitz distance embedding for Alexandrov space.
4. Maybe one more if time allows.

Lagrangian mean curvature flow for entire Lipchitz graphs

Jingyi Chen

(joint work with Albert Chau, Weiyong He, Chao Pang)

We consider the fully nonlinear parabolic equation du/dt =
∑

arctanλj(u)
where λj(u) are the eigenvalues of the Hessian D2u for u : Rn → R. The graphs
(x,Du(x, t)) are Lagrangian submanifolds in Rn ×Rn and evolve by the standard
mean curvature flow. We [1] show that if D2u ∈ L∞,−(1− δ)I ≤ D2u ≤ (1− δ)I,
then there is a longtime smooth solution and sup |Dlu| < C(δ, l)/tl−2, l ≥ 3.
The solution is unique and in fact for any C0 initial data u0 there is a unique
C0 viscosity solution [3]. Translating solitons, self-shrinkers, self-expanders are
classified [2].
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The deformation theory of hyperbolic cone-3-manifolds with
cone-angles less than 2π

Hartmut Weiss

LetX be a hyperbolic cone-3-manifold with cone-angles less than 2π, i.e. contained
in the interval (0, 2π). Let Σ ⊂ X denote the singular locus and M = X \ Σ the
smooth part of X . The singular locus Σ is an embedded geodesic graph. The
smooth partM carries a smooth Riemannian metric of constant sectional curvature
−1 which has conical singularities transverse to Σ. Let {e1, . . . , eN} denote the
edges and {v1, . . . , vk} the vertices contained in Σ. We call the homeomorphism
type of the pair (X,Σ) the topological type of X . Let C−1(X,Σ) denote the space
of hyperbolic cone-manifold structures on X of fixed topological type (X,Σ). We
are interested in properties of the map

α = (α1, . . . , αN ) : C−1(X,Σ) → R
N
+

which assigns the vector of cone-angles to a hyperbolic cone-manifold structure.
C.D. Hodgson and S.P. Kerckhoff showed in [1] that α is a local homeomorphism

at the given structure if the cone-angles are < 2π and Σ is not allowed to contain
vertices. The author showed in [4] that the same conclusion holds true if the cone-
angles are ≤ π without any restrictions on Σ. The current work [5] bridges the
gap between these two results, namely we address the general case of cone-angles
being less than 2π without restrictions on Σ.

As in [1] and [4], the main technical result is a vanishing theorem for (a substan-
tial part of) the first L2-cohomology group of M with values in some flat bundle E .
To be more precise, let hol : π1M → SL2(C) denote the holonomy representation

of the hyperbolic structure on M . Then the bundle E = M̃×Ad ◦ holsl2(C) carries a
flat connection ∇E and, since it it isomorphic as a vector bundle to so(TM)⊕TM ,
a metric hE . Hence the L2-cohomology group H1

L2(M ; E) is defined. Let Nj be
the smooth part of the link of the vertex vj . Since hol |π1Nj

fixes a point pj ∈ H3,

there is a splitting E|Nj
= E1

j ⊕ E2
j . The first factor corresponds to infinitesimal

rotations and the second to infinitesimal translations at pj.

Theorem 1. Let c ∈ H1
L2(M ; E) be a class with the property that for all vertices

vj ∈ Σ (j = 1, . . . , k) the following holds:

c|H1

L2
(Nj ;E1

j
) = 0 or c|H1

L2
(Nj ;E2

j
) = 0.

Then c = 0.

The proof of Theorem 1 uses aWeitzenböck formula relating different Laplacians
acting on differential forms with values in E and tools from analysis on singular
spaces. In order to apply the Bochner method on the noncompact manifold M
one has to ensure that one can integrate by parts. This is the main difficulty.

The deformation space of incomplete hyperbolic strucutures on M is locally
homeomorphic to the space X(π1M, SL2(C)) = R(π1M, SL2(C))/ SL2(C), where
SL2(C) acts by conjugation. Equivalence classes of holonomy representations of
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hyperbolic cone-manifold structures of fixed topological type (X,Σ) lie in the
subspace

X0(π1M, SL2(C)) = {[ρ] : ρ|π1Nj
fixes a point pj ∈ H

3 ∀ j = 1, . . . , k}.

Let χ0 = [hol]. The tangent space Tχ0
X(π1M, SL2(C)) may be identified with

H1(π1M ; sl2(C)Ad ◦ hol) via Weil’s construction. This latter group in turn may be
identified with H1(M ; E). Hence Theorem 1 provides us with infinitesimal infor-
mation about the spaces X(π1M, SL2(C)) and X0(π1M, SL2(C)). Using transver-
sality arguments and Theorem 1 we obtain:

Theorem 2. dimR X0(π1M, SL2(C)) = N and the map

tµ = (tµ1
, . . . , tµN

) : X0(π1M, SL2(C)) → R
N

is a local diffeomorphism at χ0.

From this one easily deduces the main result:

Theorem 3. Let X be a hyperbolic cone-3-manifold with cone-angles less than

2π. Then the map

α = (α1, . . . , αN ) : C−1(X,Σ) → R
N
+

is a local homeomorphism at the given structure.

It remains to establish a good local parametrization for X(π1M, SL2(C)) and
to identify the corresponding deformations geometrically. This is the subject of
ongoing joint work with G. Montcouquiol.

An alternative approach to these questions – based on the deformation theory
of Einstein metrics – has been developed by R. Mazzeo and G. Montcouquiol,
cf. [2] and [3].
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On renormalized volume of conformally compact Einstein manifold

Alice Chang

(joint work with Chang-J. Qing-P. Yang; Chang-H. Fang and R. Graham)

Renormalized volume is a concept introduced in conformal field theory by Malda-
cena and well studied by mathematicians and people in mathematical physicists.
In this talk I will discuss an integral formula of the renormalized volume in terms
of curvature invariants on conformally compact Einstein manifolds with conformal
infinity an odd dimensional compact manifold. The formula was known in the case
of a four manifold by M. Anderson (2002), but here we will present a new proof
(joint work with J.Qing and P. Yang) by exploring properties of the ”Q-curvature”
–a curvature of order the same as the dimension of the manifold and whose integral
is a conformal invariant–of the formula, the proof has the advantage being gener-
alized to arbitrary even dimensional conformally compact Einstein manifolds. In
the second part of the talk, I will discuss a recent joint work with H. Fang and R.
Graham of the precise integrand of the formula when the dimension is bigger than
5.
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Geometric aspects of the Allen-Cahn equation

Frank Pacard

(joint work with M. del Pino, M. Kowalczyk and J. Wei)

We are interested in the understanding of entire solutions in RN , of the semilinear
elliptic equation

(0.1) ∆u+ (1− u2)u = 0 ,

known as the Allen-Cahn equation. This problem has its origin in the gradient
theory of phase transitions [1] where one considers critical points of the energy

Eε(u) :=
ε

2

∫

M

|∇gu|2g dvolg +
1

4ε

∫

M

(1 − u2)2 dvolg,

where (M, g) is a N -dimensional compact Riemannian manifold. The critical
points of Eε satisfy the Euler-Lagrange equation

(0.2) ε2∆gu+ (1 − u2)u = 0 ,

in M . Working in local coordinates and changing x into x/ε, it is easy to see that
(0.1) appears as the limit problem in the blow up analysis of (0.2) as ε tends to 0.
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The relation between minimal interfaces and critical points of Eε was first es-
tablished by Modica in [12]. Let us briefly recall the main results in this direction.
If uε is a family of local minimizers of Eε for which supε>0 Eε(uε) < +∞, then,
up to a subsequence, uε converges in L1 to 1Λ − 1Λc , as ε tends to 0, where ∂Λ is
a critical point of the volume functional. Here 1Λ (resp. 1Λc) is the characteristic
function of the set Λ (resp. Λc = M − Λ). Moreover, Eε(uε) −→ 1√

2
HN−1(∂Λ).

For critical points of Eε with uniformly bounded energy, a related assertion is
proven in [11]. In this case, the convergence of the interface holds with certain
integer multiplicity to take into account the possibility of multiple transition layers
converging to the same minimal hypersurface.

These results provide a link between solutions of (0.1) and the theory of minimal
hypersurfaces which has been widely explored in the literature. Sequences of
solutions concentrating along non-degenerate, minimal hypersurfaces of a compact
manifold were found in [14]. More precisely, assume that Γ ⊂ M is an oriented
minimal hypersurface such that M \ Γ = M+ ∪M− and n the unit normal vector
field to Γ which is compatible with the orientation points towards M+ and −n
points towards M−. The Jacobi operator about Γ is given by

JΓ := ∆g̊ +Ricg (n, n) + |AΓ|2g̊ ,

where ∆g̊ is the Laplacian on (Γ, ḡ) for g̊ the induced metric on Γ, Ricg denotes
the Ricci tensor on (M, g) and |AΓ|2g̊ denotes the square of the norm of the shape

operator. Assuming that Γ is non degenerate (namely, that JΓ has no nontrivial
kernel), it is proven in [14] that for all ε > 0 small enough, there exists uε, a
critical point of Eε, such that uε converges uniformly to 1 on compacts subsets of
M+ (resp. to −1 on compacts subsets of M−) and Eε(uε) −→ 1√

2
HN−1(Γ) , as ε

tends to 0.
As far as multiple transition layers are concerned, given a non degenerate min-

imal hypersurface Γ such that Ricg (n, n) + |AΓ|2g̊ > 0 along Γ, it is proven in [8]

that sequences of solutions of (0.2) with multiple transitions layers near Γ do exist.
In dimension N = 1, solutions of (0.1) which have finite energy are given by

translations of the function H which is the unique solution of the problem

(0.3) H ′′ + (1 −H2)H = 0, with H(±∞) = ±1 and H(0) = 0 .

which is explicitly given by

H(y) = tanh

(

y√
2

)

.

Then, for all a ∈ RN with |a| = 1 and for all b ∈ R, the function u(x) = H(a·x+b)
solves 0.1. A celebrated conjecture due to de Giorgi states that, in dimension
N ≤ 8, these solutions are the only ones which are bounded and monotone in
one direction. In other words, if u is a (smooth) bounded solution of (0.1) and
if ∂x1

u > 0 then u−1(λ) is either a hyperplane or the empty set. In dimensions
N = 2, 3, De Giorgi’s conjecture has been proven in [10], [2] and (under some extra
assumption) in the remaining dimensions in [16].
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In view of de Giorgi’s conjecture, it is natural to study the set of entire solutions
of 0.1, namely, solutions which are defined in the entire RN . The functions u(x) =
H(a · x + b) are obvious solutions. In dimension N = 2, nontrivial examples
(whose nodal set is the union of two perpendicular lines) were built in [5]. This
construction can easily be generalised to obtain solutions with dihedral symmetry.
X. Cabre and J. Terra [3] have obtained a higher dimensional version of this
construction (using similar arguments) and they are able to find solutions in R2m

whose zero set is the minimal cone {(x, y) ∈ R2m : |x| = |y|}.
Recently, there has been some important progress on the existence of solutions

of (0.1) which are defined in the entire space. All these new solutions are conter-
parts, in the noncompact setting, of the solutions obtained in [14] and rely on the
knowledge of complete noncompact minimal hypersurfaces which are not invariant
by dilations. Let us mention two deep results along these lines.

There is a rich family of minimal surfaces in R3 which are complete, embedded
and have finite total curvature. Among these surfaces there is the catenoid, Costa’s
surface [4] and all k-ended surfaces and the embedded surfaces studied by J. Perez
and A. Ros [15]. The main result in [9] asserts there exists solutions of (0.1) whose
nodal set is close to a dilated version of any such minimal surface. More orecisely,
if one consider the equation with scaling

(0.4) ε2 ∆u+ u− u3 = 0 ,

then, given Γ, a nondegenerate (i.e. all bounded Jacobi fields about Γ come from
the action of rigid motions) complete, noncompact minismal surface with finite
total curvature, for all ε > 0 small enough, there exists exists uε solution of (0.4),
such that u−1

ε (0) converges uniformly on compacts to Γ.
Thanks to the result of Bombieri-de Giorgi-Giusti, it is known that there exists

minimal graphs which are not hyperplanes in dimension N ≥ 9. Following similar
ideas, entire solutions of (0.1) which are monotone in one direction but whose level
sets are not hyperplanes have been constructed in [7], provided the dimension of
the ambient space is N ≥ 9.

We assume from now on that the dimension is equal to N = 2. We say that u,
solution of (0.1), has 2k-ends if, away from a compact set, its nodal set is given by
2k connected curves which are asymptotic to 2k oriented half lines aj ·x+ bj = 0,
j = 1, . . . , 2k (for some choice of aj ∈ R2, |aj | = 1 and bj ∈ R) and if, along these
curves, the solution is asymptotic to either H(aj · x+ bj) or −H(aj · x+ bj).

Given any k ≥ 1, we prove in [6] the existence of a wealth of 2k-ended solutions
of (0.1). To state our result in precise way, we assume that we are given q1, . . . , qk
solutions of the Toda system

(0.5) c0 q
′′
j = e

√
2(qj−1−qj) − e

√
2(qj−qj+1) ,

for j = 1, . . . , k, where c0 =
√
2

24 and where we agree that q0 ≡ −∞ and qk+1 ≡ +∞.
The Toda system (0.5) is a classical example of integrable system which has been
extensively studied [13]. It models the dynamics of finitely many mass points on
the line under the influence of an exponential potential.
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Given ε > 0, we define

(0.6) qj,ε(x) := qj(ε x)−
√
2
(

j − k + 1

2

)

log ε .

It is easy to check that the qj,ε are again solutions of (0.5).
We agree that χ+ (resp. χ−) is a smooth cutoff function defined on R which

is identically equal to 1 for x > 1 (resp. for x < −1) and identically equal to 0
for x < −1 (resp. for x > 1) and additionally χ− + χ+ ≡ 1. With these cutoff
functions at hand, we define the 4 dimensional space

(0.7) D := Span {x 7−→ χ±(x), x 7−→ xχ±(x)} ,
and, for all µ ∈ (0, 1) and all τ ∈ R, we define the space C2,µ

τ (R) of C2,µ functions
h which satisfy

‖h‖C2,µ
τ (R) := ‖(coshx)τ h‖C2,µ(R) < ∞ .

Keeping in mind the above notations, we have the :

Theorem 0.1. [6] For all ε > 0 sufficiently small, there exists an entire solution uε

of (0.1) (here N = 2) whose nodal set is the union of k disjoint curves Γ1,ε, . . . ,Γk,ε

which are the graphs of the functions

x 7−→ qj,ε(x) + hj,ε(ε x) ,

for some functions hj,ε ∈ C2,µ
τ (R)⊕D satisfying

‖hj,ε‖C2,µ
τ (R)⊕D ≤ C εα .

for some constants C,α, τ, µ > 0 independent of ε > 0.

In other words, given a solution of the Toda system, we can find a one parameter
family of 2k-ended solutions of (0.1) which depend on a small parameter ε > 0.
As ε tends to 0, the nodal sets of the solutions we construct become close to the
graphs of the functions qj,ε.
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Recent Progress on Minimal Surfaces with Low Genus

Matthias Weber

Let X be a complete minimal surfaces of finite genus embedded in R
3.

1. Examples with Genus 0

There are the catenoid, the helicoid, and a 1-parameter family of translation in-
variant minimal surfaces with infinitely many planar ends, discovered by Riemann
[6]. He found them while classifying minimal surfaces that are foliated by circles
in horizontal planes. Riemann’s family limits on one side in the catenoid, and on
the other in the helicoid.

2. Classification Genus 0

Meeks-Pérez-Ros [5], building on previous work by Meeks-Rosenberg and Colding-
Minicozzi, prove:

Theorem 2.1. A properly embedded, complete minimal surface of genus 0 in R3

is the catenoid, the helicoid, or one of Riemann’s examples.

Remark 2.2. It is conjectured that the properness assumption can be removed. By
Colding-Minicozzi, this is true if we assume finite topology (excluding the Riemann
family)

3. Examples Genus 1

3.1. The Costa Surface. Discovered by Costa, this surface has two catenoidal
and one planar end. Hoffman-Meeks proved that it is embedded and were able to
deform it so that the planar end becomes catenoidal.
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3.2. The Genus One Helicoid. Hoffman-Karcher-Wei [2] proved the existence
of a properly immersed minimal surface of genus 1 with one helicoidal end. Hoffman-
Wei conjectured the existence of an embedded 1-parameter family of screw-motion
invariant helicoids with handles, and of genus one in the quotient. Hoffman-Weber-
Wolf [3] established this conjecture (see also Hoffman-White [4] for a different
proof), thus proving that the genus one helicoid is embedded.

3.3. The Costa-Riemann Surface. Hauswirth-Pacard [1] succeeded in con-
structing a minimal surface by replacing a horizontal slab near a planar end of
Riemann with a slightly tilted version of the Costa surface. The result is a 1-
parameter family of properly embedded minimal surfaces of genus one with infin-
itely many ends.

3.4. Riemann with a Handle. Similarly, we conjecture that there is a 1-parame-
ter family of Riemann-like minimal surfaces with just one handle added between
two consecutive planar ends.

4. Classification of Genus 1

Conjecture 4.1. A properly embedded minimal surface of genus 1 is one of the
above examples.

This conjecture is related to two other outstanding open problems:

Conjecture 4.2 (Genus One Helicoid Conjecture). A complete, embedded mini-
mal surface of genus one with one end is the genus one helicoid.

It is known by work of Bernstein-Breiner that the end of such a surface must
be asymptotic to the helicoid and that the space of examples is compact.

Conjecture 4.3 (Hoffman-Meeks Conjecture). A complete, embedded minimal
surface of finite total curvature and genus g has at most g + 2 ends.

If both these conjectures were true, one could prove the classification of embed-
ded minimal surfaces of genus one in the finite genus case as follows:

By Colding-Minicozzi, any such surface is proper. By Collin, it has either one
end, or finite total curvature. In the first case, the Genus One Helicoid conjecture
applies. In the second case, the Hoffman-Meeks conjecture tells us that the surface
has at most three ends. By Schoen, it cannot have less than three. By Costa, a
3-ended, complete, embedded minimal surface of finite total curvature, belongs to
the Hoffman-Meeks family.

5. Higher Genus Examples

A classification of higher genus minimal surfaces appears very much out of reach
at this point. In the finite total curvature point, the only known obstructions are
the López-Ros theorem and the Hoffman-Meeks conjecture.

For the one-ended case, Meeks conjectures that there is precisely one genus g
helicoid for any g.
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For infinitely many ends, it is likely that any embedded finite total curvature
example can be used for the Hauswirth-Pacard construction.

6. Motivation for the Conjectures

There is some good reason why the Hoffman-Meeks conjecture and the Genus-
One Helicoid conjecture should be true. This reason comes from a construction
method of Traizet [7], that describes the space of minimal surfaces near that part
of its boundary where the surface limits in a noded surface all of whose components
have genus 0. In this case, the period conditions can be expressed as a system
of algebraic equations. At least for low genus, the solutions to these equations
show that there are no counterexamples to the Hoffman-Meeks conjecture or the
Helicoid conjecture, provided any such counterexample could be deformed to a
noded limit.
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