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Introduction by the Organisers

The workshop Scaling Limits in Models of Statistical Mechanics was organized
by Kenneth Alexander (USC), Marek Biskup (UCLA), Remco van der Hofstad
(Eindhoven) and Vladas Sidoravicius (CWI Amsterdam/IMPA Rio de Janeiro).
Nearly fifty participants attended which included senior researchers as well as
mid-career and junior scientists, including a number of graduate students.

The aim of the meeting was to allow leading figures in the field, including
graduate students, to report on their progress in the study of limit laws of vari-
ous spatial random processes. We proceed by summarizing the highlights of the
meeting; more detailed descriptions can be found in the abstracts that follow.

Two-dimensional critical models : A great deal of attention was paid to the rapidly
developing area of two-dimensional critical models. Here, P. Nolin reported on his
progress in analyzing monochromatic crossing exponents in 2D critical percolation,
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M. Damron discussed the relation between the incipient infinite cluster and inva-
sion percolation in 2D. C. Hongler explained a rigorous calculation of the energy
density in 2D critical Ising model, H. Duminil-Copin announced a proof of an RSW
theorem for the same system. H. Lei outlined an axiomatic approach to a proof of
the full scaling limit in critical 2D percolation. G. Grimmett elucidated the role
of the sharp threshold phenomenon in a number of statistical mechanical models.
Finally, J. van den Berg showed how to establish sharpness of a percolation transi-
tion in 2D contact process. These recent results strengthen rigorously the relation
between two-dimensional statistical physical models and the Schramm-Loewner
Evolution. It can be expected that, in the coming years, considerable important
progress will be made in this exciting area.

Random walk in random environment : Another quite active area where results
were reported was that of random walks in random environment. Here M. Holmes
studied various foundational facts concerning degenerate random environments,
where the usual ellipticity condition fails and therefore, little is rigorously known.
N. Gantert outlined her recent proof of the Einstein relation for symmetric diffu-
sions in random environment relating the variance in the central limit theorem to
the derivative of the speed with respect to a variable measuring the tilting of the
transition probabilities. N. Berger explained an approach to a quenched local CLT
for space-time random walks in random environment. T. Kumagai discussed con-
vergence of discrete Markov chains (related to RWRE) to jump processes. Finally,
A. Ramirez talked about conditions for ballisticity for RWRE. While tremendous
progress is being made in the area of RWRE, the question what the precise con-
ditions are to ensure ballisticity remains open. Also, RWREs away from the usual
ellipticity conditions are still rather poorly understood, and we hope that progress
will be made in this area.

Random fields and renormalization: A third area that received a lot of attention
was random fields and their scaling limits. Here J.-D. Deuschel outlined a number
of results that can be proved for gradient models with non-convex potentials at suf-
ficiently high temperatures, while R. Kotecký addressed a similar problem at very
low temperatures by means of a multiscale analysis related to the renormalization
group approach. Ideas of renormalization appeared in a talk of F. den Hollander
who used it to describe a scaling limit of a system of interacting diffusions on a
hierarchical lattice. Another talk that belongs both to the category of random
fields and to 2D critical models is that by C. Newman who studied a scaling limit
of the magnetization-profile random field in the critical 2D Ising model.

High-dimensional problems : A fourth area represented at the meeting was that of
high-dimensional and mean-field models. Here D. Ioffe outlined a proof of a very
sharp metastability phenomenon for Glauber dynamics in disordered complete
graph Ising model. A. Sakai showed how to control the gyration radius for high-
dimensional self-avoiding random walk and oriented percolation. M. Heydenreich
explained how the scaling behavior of the critical percolation on high-dimensional
tori is related to percolation on a random graph in the absence of geometry.
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Statistical mechanics and interacting particle systems : The remainder of the talks
dealt with a diverse selection of problems in statistical mechanics and interacting
particle systems. Here O. Angel discussed the speed process in the asymmet-
ric simple exclusion model. F. Redig presented a beautiful connection between
a (quantum) heat-conduction model and an inclusion process. T. Bodineau dis-
cussed large deviations for stochastic particle systems. L. Rolla presented results
on activated random walks. N. Zygouras discussed a phase transition in a ran-
domly pinned polymer. Finally, T. Sasamoto talked about superdiffusivity for the
one-dimensional KPZ problem.

General comments on the workshop: We have specifically chosen for each of the
above topics to hold the talks on the same day of the workshop. We also placed an
emphasis on the younger generation of researchers who presented exciting devel-
opments in our active field of research. With organisers from both Europe and the
U.S. the aim was further to exchange information between these active research
communities, while also giving the chance to researchers from Japan and South
America to present their recent work. The atmosphere during the meeting was
very positive indeed, and the participants used all opportunities to extensively
discuss recent approaches and ideas, both during and after the lectures. We have
specifically left room in the schedule for the meeting to allow for these informal
discussions, and we are quite happy with how this worked out.

The organizers wish to thank the ‘Mathematisches Forschungsinstitut Oberwol-
fach’ for help in running the workshop, and for providing us with a friendly and
encouraging environment throughout the entire meeting. Encouraged by the posi-
tive feedback from participants, and the lively atmosphere in the area of statistical
mechanics, the organisers have taken the opportunity to discuss the possibility of
a follow-up (i.e., a third) meeting in this area in about three years.
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Abstracts

Monochromatic Arm Exponents for 2D Percolation

Pierre Nolin

(joint work with V. Beffara)

We investigate the so-called monochromatic arm exponents for two-dimensional
critical percolation [1]. Arm events are exceptional events that turned out to be
instrumental to describe critical and near-critical percolation. They refer to the
existence in annuli of a fixed number j of monochromatic crossings, with colors
(black or white) prescribed in cyclic order.

A simple and nice combinatorial trick shows that the particular sequence of col-
ors does not affect the asymptotic behavior of their probabilities – as the modulus
of the annulus gets larger and larger – as long as the sequence is non-constant
(ie both colors are present). In this case, they can be described by exponents
αj = (j2−1)/12, known as the polychromatic arm exponents : for any non-constant
sequence of colors σ,

P(j arms of colors σ up to distance n) = n−αj+o(1)

as n → ∞. This result was proved by Smirnov and Werner [7], using the precise
knowledge of interfaces in the scaling limit, based on previous work by Smirnov
[6] and Lawler-Schramm-Werner [4, 5]. The exponent for 1 arm is also known
to be equal to α′

1 = 5/48 (note that it does not fit in the previous family). By
using Kesten’s scaling relations [3], it then allows to derive most critical exponents
usually associated with standard percolation (β, ν, γ . . .).

However, the previously-mentioned arguments do not seem to apply in the
monochromatic case, and a natural question is whether the corresponding prob-
abilities still follow power laws, and then, if this is the case, how the associated
exponents are related to the polychromatic ones, in particular if they constitute a
different set of exponents.

We first prove the existence of monochromatic exponents: there exist exponents
α′
j such that for each j ≥ 1,

P(j arms of colors σ up to distance n) = n−α′

j+o(1).

Our main tool to establish this result is the full scaling limit of percolation, that
was constructed by Camia and Newman [2].

We then relate these new exponents to the polychromatic exponents αj : we
show that for each j,

αj < α′
j < αj+1.

The right-hand inequality is essentially trivial, while the left-hand one is more in-
tricate and can be obtained by using an “entropy vs energy” argument. Roughly
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speaking, the number of arm configurations that one can choose on a “typical”
configuration with j arms is much larger in the monochromatic case than in the
polychromatic case, while the expected number of such configurations is the same
in the two cases. However, making this remark rigorous is not completely direct
and we use the winding angles of the arms as a way of distinguishing arm configu-
rations. We also use a particular correlation inequality, that was an intermediate
step in the proof of the Van den Berg-Kesten-Reimer (BKR) inequality. We fi-
nally present a “suggestion” on the value of the monochromatic exponents, based
on numerical simulations.
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Invasion Percolation and Incipient Infinite Clusters in 2D

Michael Damron

(joint work with A. Sapozhnikov and B. Vágvölgyi)

The first part of this thesis centers on the two-dimensional invasion percolation
model. It is a great example of self-organized criticality; in other words, it requires
no parameter, yet some characteristics of the model resemble those at criticality
of a parametric model with a phase transition. The work described here [2, 3] on
invasion percolation concerns comparing its properties to those of other critical
objects, such as critical percolation and the incipient infinite cluster.

The definition of the invasion model is as follows. We consider the lattice Zd

and associate with each nearest-neighbor edge e a random number τ(e) (a weight).
The weights are i.i.d. from edge to edge and are uniformly distributed in [0, 1].
The invasion graph of the origin is defined as the limit of a recursively-defined
sequence of graphs: we first let

G0 = (V0, E0) with V0 = {(0, 0)} and E0 = {}.
For any n ≥ 1, we define

Gn = (Vn, En) with Vn = Vn−1 ∪ {vn} and En = En−1 ∪ {en},
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where en is the least-weight edge on the boundary of Gn−1 (that is, it has at least
one vertex in Gn−1 but is not in En−1) and vn is the vertex not in Vn−1 which is
an endpoint of en (if one such exists). Last, we define

S = lim
n→∞

Gn

to be the invasion percolation cluster (IPC) of the origin.
Much of the work will serve to to compare the IPC to independent Bernoulli

percolation; therefore, we use a definition of Bernoulli percolation that makes
the coupling with invasion percolation immediate. We consider the same i.i.d.
weights {τe} on the edges of Ed that were introduced in the previous paragraph.
For any p ∈ [0, 1] we say that an edge e ∈ Ed is p-open if τe < p and p-closed
otherwise. It is obvious that the resulting random graph of p-open edges has the
same distribution as the one obtained by declaring each edge of Ed open with
probability p and closed with probability 1 − p, independently of the states of all
other edges. The percolation probability θ(p) is the probability that the origin is
in the (unique) infinite cluster of p-open edges. There is a critical probability

pc = inf{p : θ(p) > 0} ∈ (0, 1).

From here, we restrict to two dimensions. We study the so-called pond con-
struction of the invasion, introduced first in [6], and which we now describe. It
was shown in [5], under the assumption that the critical parameter for slab per-
colation in Zd equals that for all of Zd, that for all p > pc the invasion intersects
the infinite p-open cluster with probability one. Furthermore, the definition of the
invasion mechanism implies that if the invasion reaches the p-open infinite cluster
for some p, then if will never leave this cluster. Combining these facts yields that
if ei is the edge added at time i then lim supi→∞ τei = pc. It is well-known in two
dimensions that θ(pc) = 0, which implies that for every t > 0 there is an edge e(t)
such that e(t) is invaded after step t and τe(t) > pc. The last two results give that
τ̂1 = max{τe : e ∈ E∞} exists and is greater than pc. Let ê1 denote the edge
at which the maximum value of τ is taken and assume that ê1 is invaded at step
i1+1. Following the terminology of [6], we call the graph Gi1 the first pond of the

invasion, and we denote it V̂1. The edge ê1 is called the first outlet. The second
pond of the invasion is defined similarly. Note that the same argument as above
implies that τ̂2 = max{τei : ei ∈ E∞, i > i1} exists and is greater than pc. If
we assume that τ̂2 is taken on the edge ê2 (the second outlet) at step i2 + 1, we

call the graph Gi2 \Gi1 the second pond of the invasion, and we denote it V̂2. The

further ponds V̂k can be defined analogously.
In [2], we compute the exact decay rate of the distribution of R̂k, the radius of

the kth pond. Unlike the decay rate of the distibution of the radius of the first
pond [1], it is strictly different from that of the radius of the critical cluster of the

origin. Furthermore, in [3], we compute the exact decay rate of V̂k, the volume of
the kth pond. This result can be also seen as a statement about the sequence of
steps ik at which êk are invaded. Specifically, the results are the following:



2124 Oberwolfach Report 38/2009

Theorem 1. Let k ≥ 1. There exist constants c1 − c4 > 0 such that for all n,

c1 P(R̂k > n) ≤ (logn)k−1Pcr(0↔ ∂B(n)) ≤ c2 P(R̂k > n),

c3 P(V̂k > n) ≤ Pcr(|C(0)| > n) ≤ c4 P(V̂k > n).

We compare invasion percolation to the incipient infinite cluster (IIC). For this,
we need to define the latter object. Using the notation that Pcr is the critical
percolation measure, it was shown in [4] that the limit

ν(E) = lim
N→∞

Pcr(E | 0↔ ∂B(N))

exists for any event E that depends on the state of finitely many edges in E2. The
unique extension of ν to a probability measure on configurations of open and closed
edges exists. Under this measure, the open cluster of the origin is a.s. infinite. It
is called the incipient infinite cluster (IIC). The following result is in [2].

Theorem 2. The laws of IPC and IIC are mutually singular.
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The Energy Density in the 2D Ising Model

Clément Hongler

(joint work with S. Smirnov)

We study the Ising model in two dimensions at criticality. Let us consider a Jor-
dan domain Ω and discretize it by taking Ωδ, the largest connected component of its
intersection with δZ2, the square grid of mesh size δ > 0. The Ising model on Ωδ is
a random assignment of ±1 spins to the vertices V

(

Ωδ
)

of Ωδ, with the probability

of each spin configuration σ ∈ {±1}V(Ω
δ) given by P {σ} := exp (−βH (σ)) /Zβ ,

where β > 0 is the so-called inverse temperature, where the energy H of σ is equal
to minus the sum over all edges of Ωδ of the product of the spins at the edpoints
of each edge (i.e. H (σ) := −∑〈x,y〉∈E(Ωδ) σxσy) and the so-called partition func-

tion Zβ is defined by Zβ :=
∑

σ∈{±1}V(Ωδ) exp (−βH(σ)). In our setup, we will

consider the Ising model with + boundary conditions, that is, we add +1 spins on
the boundary of Ωδ.
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We are interested in describing the δ → 0 limit at the so-called critical value of
β, which is equal to ln

(√
2 + 1

)

/2. More precisely, we would like to describe the
effect of the shape of the domain Ω on local quantities. We want to understand
here how the energy of the system distributes across the domain: the contributions
to the energy are given by the edges, so we want to compute how much each edge
contributes to the energy of the system.

Let us fix an edge a in the bulk of the domain, with endvertices x and y. What
is the probability that the product of the spins at the endvertices of e is equal to
1 or −1? We have the following result:

Theorem 1. As δ → 0, we have

P {σx = σy} −
√
2+2
2

δ
→ 1

2π
lΩ (a) ,

where lΩ (a) is the element of the hyperbolic metric of Ω at a (a shrinks to a point
as δ → 0), defined in the following way: for ψ : Ω→ D (0, 1) a conformal mapping
to the unit disc D (0, 1) mapping a to 0, we have lΩ (a) = |ψ′ (a)|.

We now give a sketch of the proof of this result.

(1) We first express the probability P {σx = σy} in terms of a statistics over
families of contours, using the so-called low-temperature expansion of the
Ising model.

(2) We then perform a discrete holomorphic deformation of this statistics.
More precisely, we define an observable, which is a function f δa : Ωδ → C

with f δa (a)= P {σx = σy}. Using combinatorial techniques, we show the
following properties:
(a) We show that f δa is discrete holomorphic in a certain sense on Ωδ\{a}.
(b) We show that f δa has a discrete singularity at a.
(c) We study the values of f δa on the boundary of the domain Ω: f δa solves

a so-called Riemann-Hilbert boundary value problem.
(3) We pass then to the δ → 0 limit, and show that we obtain a continuous

holomorphic deformation in the limit.
(a) We first show precompactness of the family of functions

(

f δa
)

δ>0
.

(b) We then identify uniquely the limit fa, which is given by fa (z) =
1
2π

ψa(z)+1
ψa(z)

√

ψ′
a (z)

√

ψ′
a (a) where ψa : Ω → D (0, 1) is the unique

conformal mapping from Ω to D (0, 1) that maps a to 0 and has
positive derivative at a.

(c) We finally recover limδ→0

(

P {σx = σy} −
√
2+2
2

)

/δ as the constant

term in the Laurent expansion of fa at a.
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Sharp-thresholds and Box-crossings

Geoffrey Grimmett

(joint work with B. Graham)

Let X1, X2, . . . , XN be independent Bernoulli random variables with parameter
1
2 . Let A be an event in the sample space Ω = {0, 1}N , and define the absolute
influence of the index e on the event A by

IA(e) = P
(

1A(ω
e) 6= 1A(ωe)

)

,

where 1A is the indicator function of A, and ωe (respectively, ωe) is the configu-
ration ω with ω(e) set to 1 (respectively, 0).

It has effectively been proved by Kahn, Kalai, and Linial [5] and Talagrand [6]
that there exists an absolute positive constant c such that

∑

e

IA(e) ≥ cP (A)P (A) log[1/M ]

where M = max{IA(e) : 1 ≤ e ≤ N}. Note the absence of any assumption of
symmetry in the inequality.

When the Xj have parameter p, Russo’s formula gives that

d

dp
Pp(A) ≥ cPp(A)Pp(A) log[1/Mp],

a formula that has found several applications.
The above two inequalities have been extended to families generated by includ-

ing an external-field term within a measure satisfying the FKG lattice condition,
see [2, 3].

Four applications are given, as reported in [3]. Firstly, it is shown how to
shorten the proof of [1] that pc = 1

2 for bond percolation on the square lattice.
The method is to bound Mp from above with A the event of a left–right crossing
of a box with dimensions n by n+ 1.

The same approach is effective with the box-crossing probability in a random-
cluster process on Z2. This results in a proof that the box-crossing probability
increases steeply from near 0 to near 1 over a short interval containing the self-
dual point psd =

√
q/(1 +

√
q). This falls short of a proof of the conjecture that

psd equals the critical point, since no RSW-type argument is yet known for this
system.

The third application is to box-crossings by + paths in the Ising model on Z2

with external field. It turns out that such probabilities have sharp thresholds at
the critical value hc(β) discussed by Higuchi [4]. This was of course known already,
but the current proof is very short once one has the influence inequality.

The final application is to the ‘coloured random-cluster model’, obtained from
a random-cluster measure by assigning one of two possible colours to each cluster,
and then perturbing the measure with an external field. The proof is more com-
plicated in this case, since the spin measure is not generally a nearest-neighbour
Gibbs state.
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The lecture ended with a statement of two open problems for the two-dimensional
Ising model.

References

[1] B. Bollobás and O. Riordan. A short proof of the Harris–Kesten theorem. Bull. London Math.
Soc., 38:470–484, 2006.

[2] B. T. Graham and G. R. Grimmett. Influence and sharp threshold theorems for monotonic
measures. Ann. Probab., 34:1726–1745, 2006.

[3] B. T. Graham and G. R. Grimmett. Sharp thresholds for the random-cluster and Ising models.
2009. arxiv:0903.1501.

[4] Y. Higuchi. A sharp transition for the two-dimensional Ising percolation. Probab. Th. Rel.
Fields, 97:489–514, 1993.

[5] J. Kahn, G. Kalai, and N. Linial. The influence of variables on Boolean functions. In Proceed-
ings of 29th Symposium on the Foundations of Computer Science, pages 68–80. Computer
Science Press, 1988.

[6] M. Talagrand. On Russo’s approximate zero–one law. Ann. Probab., 22:1576–1587, 1994.

Convergence to SLE6 for Percolation Models

Helen K. Lei

(joint work with I. Binder and L. Chayes)

In this talk we explain one way to obtain convergence to SLE6 for percolation
models satisfying fairly general assumptions, provided Cardy’s Formula for cross-
ing probability can be established. We start with some domain Ω ⊂ R2 with
boundary Minkowski dimension less than two, with two boundary prime ends a
and c. We then tile Ω with some lattice at scale ε and perform percolation at the
critical value. Given any percolation configuration, there is an interface running
from a to c which separates the largest occupied cluster connected to the boundary
[a, c] from the largest vacant cluster connected to the boundary [c, a]. We equip
the space of curves with a weighted version of the supremum norm; and we let
µε denote the probability measure on random curves generated by the percola-
tion interface described. We then prove, under fairly general conditions, that µε
converges in law to SLE6.

Our proof of convergence works for percolation models with the following prop-
erties:

(1) Russo–Seymour–Welsh (RSW) theory: Uniform estimates for probabili-
ties of crossings (of either type) on all scales plus the ability to stitch
smaller crossings together without substantial degradation of the estimates
– FKG–type inequalities.

(2) BK–type inequalities whereby probabilities of separated path type events
can be estimated in terms of the individual probabilities.

(3) Explicit (“superuniversal”) “bounds” on full–space multiple colored five–
arm events and half–space multiple colored three–arm events: The prob-
ability of observing disjoint crossings of an annulus with aspect ratio a is,
on all scales, bounded above by a constant times a−2.
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(4) A self–replicating definition of an Exploration Process and a class of ad-
missible domains with the property that this class is preserved under the
operation of deleting the beginning of a typical explorer path in an admis-
sible domain.

(5) The validity of Cardy’s Formula for the above–mentioned admissible do-
mains, i.e., the crossing probability converges to the so–called Cardy’s
Formula as the lattice spacing tends to zero.

Let us now elaborate on item 4. What we really mean by Exploration Process
is that there exists a way to parametrize all possible interfaces so that a Markov
identity is valid for crossing probabilities. More precisely, let us add two boundary
points b and d so that we now have a conformal rectangle. We then let Cε denote
the probability of an occupied crossing from [a, b] to [c, d]. What we require then
is that the following display is valid:

(1) Cε

(

Ω \ Xε[0,t],Xεt , b, c, d
)

= Cε

(

Ω, a, b, c, d | Xε[0,t]
)

.

In the case of hexagonal tiling (equivalently, site percolation on the triangular
lattice), this parametrization is realizable as a simple Exploration Process where a
random sample of the interface is drawn by starting a path at a (aiming towards c)
with each subsequent step(s) indicated by flipping a fair coin. For other percolation
models, the precise way in which such an Exploration Process should be defined
will depend on lattice mechanics and the definition of the model; the details for
the triangular type model studied in [3] are spelled out in [4]. We should also
note that as implied by the display, we have to consider domains which are formed
by deleting a portion of the interface, which a posteriori we know converges to
SLE6, and hence we actually need to consider a fairly general class of domains
(i.e., with boundary dimension in excess of one); this is the source of one set of
technical difficulties in [4]. Further, Cardy’s Formula needs to be established for
such domains (this we accomplish in [4] for the triangular type models introduced
in [3], where Cardy’s Formula was only established for piecewise smooth domains).

The reason for requiring (1) is because thanks to Schramm’s Principle ([7, 10]),
random curves are described by SLE if and only if the law is conformally invariant
and satisfies the Domain Markov Property, i.e.

µ(Ω, a, c) |γ′= µ(Ω \ γ′, a′, c)
(here a′ is the tip of γ′), and therefore to prove convergence to SLE, we must
retrieve both properties in the continuum limit. For percolation, conformal in-
variance is encoded by Cardy’s Formula and the Domain Markov Property should
follow by taking the ε→ 0 limit of

(2) Eµε

[

Cε

(

Ω \ Xε[0,t],Xεt , b, c, d
)

| Xε[0,s]
]

= Cε

(

Ω \ Xε[0,s],Xεs, b, c, d
)

,

where t > s > 0 are two fixed times ([10]).
The general scheme for proving convergence consist of roughly a three step

process ([7, 10]). The first step is to obtain a weak limit of µε which is supported
on Loewner curves. This requires the result of [1], which takes as input estimates on
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the probability of multiple crossings of an annulus by the interface (more precisely,
the probability of n such crossings tends to zero as n tends to infinity; here is where
BK–inequality would come in handy). Further, appropriate upper bounds on the
probability of having three long arms in the half space and five long arms in the full
space are required to show that in fact the limit is supported on Loewner curves
(some of this requires results and arguments of [5, 6]).

The second step is to take the ε tends to zero limit of (2), after which a Taylor
expansion “at infinity” using the precise form of Cardy’s Formula shows that we
have SLE6. To accomplish this we establish some equicontinuity of the Cε’s, which
can be loosely stated as follows

Proposition 1. Given θ > 0, ∃η > 0 such that for all ε small enough (ε ≪ η)
and for all curves γ1, γ2 (starting from a and aimed at c) outside a set of small
(uniform in ε) measure, for T not too large (so that the curves are not too close
to c) and assuming b, c, d are all in the same connected component in the domains
Ω \ γ1[0, T ] and Ω \ γ2[0, T ]

|Cε(Ω \ γ1[0, T ], γ1(T ), b, c, d)− Cε(Ω \ γ2[0, T ], γ2(T ), b, c, d)| < θ,

provided that γ1 and γ2 are η–close in the weighted sup–norm distance.
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LLN in ASEP and the ASEP Speed Process

Omer Angel

I present several results from recent works with Holroyd-Romik, Amir-Valkó and
Balázs-Seppäläinen concerning the asymptotic speeds of particles in the TASEP
and ASEP.

1. Results

The (T)ASEP dynamics. The multi-type TASEP on Z is a Markov process
{Yt} with state space RZ. This is interpreted as having a particle at every site of
Z, with a real-valued class: Yt(n) is the state of the particle at n at time t. For each
n, if Yt(n) < Yt(n+ 1) then the two swap at rate 1. (Holes may be implemented
as particles of class ∞.) In the ASEP dynamics the same holds, and additionally,
if Yt(n+ 1) > Yt(n) then the two swap at rate q ∈ (0, 1). It is straightforward to
write the generator.

The relation to the classical (T)ASEP is as follows: Let ξt(n) = 1{Yt(n)≤k}.
Then ξt evolves as (T)ASEP, i.e., the set of particles with labels at most k perform
biased random walks with exclusion: any jump to an occupied site is forbidden.

It is well known that there is a unique ergodic distribution on RZ that is sta-
tionary to the ASEP dynamics and has marginals uniform on [−1, 1]. We denote
this distribution by µ (depending implicitly on q). There is nothing special about
the uniform distribution.

The permutation process and speeds. Consider the ASEP with Y0(n) = n,
i.e. Y0 is the identity permutation. Clearly Yt is a permutation on Z. Denote its
inverse by Xt = Y −1

t , so that Xt(n) is the location of particle n at time t. Let
γ = 1− q be the maximal possible speed of a particle.

Theorem 1 (A.-Balázs-Seppäläinen). There are uniform [−1, 1] variables Un so
that

Xt(n)

γt

a.s.−−−→
t→∞

Un.

In the case of the TASEP this was proved by Mountford and Guiol [6]. Strength-
ening weaker forms of this convergence shown by Rost [7] and by Ferrari and Kipnis
[5].

Theorem 2 (Amir-A.-Valko, [1]). The joint law of the limiting Un above is µ.

The following is a key tool for proving Theorem 2

Theorem 3. Fix t. With the notations above, Xt has the same law as Yt.

This is proved in [2] in the case of the TASEP, and in [1] for the ASEP.
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Hydrodynamic limits. Let ξt(n) = 1{Yt(n)≤0}, so that Then ξt evolves as a
TASEP. Let ξ′ = 1{Yt<0}. It follows that ξt−ξ′t = δXt(0). However, in distribution
ξ′t is a translation of ξt, and therefore P(Xt(0) = m) = Eξt(m)− xit(m+ 1).

What is Eξt(m)? The hydrodynamic limit roughly states it is close to ft(m), a
function that decays linearly from 1 to 0 over [−t, t].
Theorem 4 (Rost [7]). With high probability

bt
∑

at

ξt(i) = t

∫ bt

at

ft(x)dx + o(t).

This is enough to deduce convergence in distribution of Xt(n)/t. However, it
does not imply joint convergence in distribution for several n’s.

Strong hydrodynamics. A key element in the proof of Theorem 1 is the follow-
ing result: Start an ASEP with particles at n < 0 and holes at n ≥ 0. Let Lm(t)
be the location of the m’th rightmost particle at time t.

Lemma 1. For any ε > 0 there is a C so that for 0 ≤ m ≤ t,

P

(

∣

∣

∣
Xm(t/γ)− t+

√
4mt

∣

∣

∣
> t1/3+ε

)

≤ Ct−1/3.

In comparison, the regular hydrodynamic limit for ASEP implies only that
with high probability Xm(t/γ) = t −

√
4mt + o(t). The above strengthens the

hydrodynamic limit in two ways. First, it improves the fluctuation bound from
o(t) to t1/3+ε. Secondly, this gives an estimate on the rate of decay of the failure
probability.

Lemma 1 is (nearly) optimal in terms of the exponent t1/3+ε, due to the t1/3 fluc-
tuations of Xm(t) (with Tracy-Widom F2 limit distribution. If the Tracy-Widom
limit holds also for large deviations this would imply a stretched exponential bound
on the probability above.

Corollary 1. Let I be an interval of length |I| > t1/3+ε, then the number of
particles in I at time t has probability at most O(t−1/3) of deviating from its
expectation by more than t1/3+ε.

This is a third strengthening of classical hydrodynamic limits, which only im-
plies an estimate for intervals of length Θ(t). It is very plausible that such estimates
hold already for much smaller intervals, since locally sites are close to independent.

2. Proofs

Symmetry and Stationary. Theorem 2 has a particularly elegant proof in the
case of the TASEP. Hammersley’s graphical construction of the TASEP has a
Poisson point process on Z × R+ as a source of randomness. Extend this to a
Poisson process on Z×R, which is clearly invariant to shifting by any s (along the
R-direction). Let Us(n) be the resulting speed of particle n after this shift. Direct
observation (or manipulation of generators) shows that Us evolves as a TASEP,
but on the other hand it is clearly stationary.
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In the general case, Theorem 2 follows from Theorem 3, with the idea being
as follows: For some large t, the speed process {Un}n is close in distribution to
{Xt(n)/t}n, and by symmetry also to {Yt(n)/t}n. Applying ASEP dynamics for
some small time s results in {Yt+s(n)/t}n with the same law as {Xt+s(n)/t}n ≈
{Xt+s(n)/(t + s)}n. This in turn is again close to the disrtibution of the speed
process, and therefore it’s law is µ.

Theorem 3 has a elementary combinatorial/algebraic proof. At its core is the
fact that applying a sequence of transpositions in reverse order yields the reverse
permutation. This must be comined with Matsumoto’s lemma, and in the case of
the ASEP some algebraic relations between involved operators (see [1])

LLN. Theorem 1 is proved by careful analysis of a coupling of three TASEP
processes, following [3, 4]. Consider the standard coupling of three particle sys-
tems with initial condition given by ξ−0 (n) = 1n<0, ξ

+
0 (n) = 1n≤0, and η0 i.i.d.

Bernoulli(ρ). At any given time t at any position, the possible values of the three
lines (ξ−, ξ+, η) are

hole = (0, 0, 0) ↑ = (1, 1, 0) Q↑ = (1, 0, 1)

particle = (1, 1, 1) ↓ = (0, 0, 1) Q↓ = (1, 0, 0)

These line evolve roughly as an ASEP with class order hole <↑< Q <↓< particle,
(both types of Q are the same) except that an ↑ and a ↓ interact and transform to
a particle and hole. Of these, there is always a single Q, and its position evolves
as Xt(0), in which we are interested. Moreover, all ↑’s are always to the left of all
↓’s.

If Xt(0)/t < 2ρ− 1, (where ρ is the density of η) then with high probability the
second class particle (Q) is to the left of many ↑’s. From this we deduce that the
same is likely to hold at tme 2t, so that the speed does not increase too much. To
quantify both of these claims we use the strong hydrodynamic estimate.

Strong hydrodynamics are proved using recent formulae discovered by Tracy
and Widom [8].
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Metastability via Coupling in Potential Wells

Dmitry Ioffe

(joint work with A. Bianchi and A. Bovier)

Roughly speaking, metastable systems are characterized by the fact that the
state space can be decomposed into several disjoint subsets, with the property
that transition times between subspaces are long compared to characteristic mixing
times within each subspace. In the sequelN will be a large parameter. We consider
(families of) Markov processes, σ(t), with finite state spaces, SN ≡ {−1, 1}N ,
and transition probabilities pN that are reversible w.r.t. a (Gibbs) measure, µN .
Transition probabilities pN always have the following structure: At each step a
site x ∈ Λ is chosen with uniform probability 1/N . Then the spin at x is set to
±1 with probabilities p±x (σ); p

+
x (σ) + p−x (σ) ≡ 1. In the sequel we shall assume

that there exists α ∈ (0, 1) such that

max
x,σ,±

p±x (σ) ≤ α.

A key hypothesis is the existence of a family of “good” mesoscopic approximations
of our processes. By this we mean the following: There is a sequence of disjoint
partitions, {Λ1, . . . ,Λn}, of Λ ≡ {1, . . . , N}, and maps family of maps, m(n) :
SN → Γn ⊂ Rn, satisfying, where

mn
i (σ) =

1

N

∑

x∈Λi

σx

It will be convenient to introduce the notation SnN [m] ⊂ SN for the set-valued
inverse images of mn. We think of the maps mn as some block averages of our
“microscopic variables σi over blocks of decreasing (in n) “mesoscopic” sizes.

As it is well known, the image process, mn(σ(t)), is in general not Markovian.
However, there is a canonical Markov process, mn(t), with state space Γn and the
very same reversible measure µN . For all m,m′ ∈ Γn, the transition probabilities
of this chain are given by

rN (m,m′) ≡ 1

µN (m)

∑

σ∈Sn
N
[m]

∑

σ′∈Sn
N
[m′]

µN (σ)pN (σ, σ′).

By “good approximations” we will mean that the following two conditions hold:

(A.1) the sequence of chains mn(t) approximates mn(σ(t)) in the strong sense
that that there exists ǫ(n) ↓ 0, as n ↑ ∞, such that for any m,m′ ∈ Γn,

max
σ∈Sn[m],σ′∈Sn[m′]

∣

∣

∣

∣

pN(σ, σ
′)|SnN [m′]|

rN (m,m′)
− 1

∣

∣

∣

∣

≤ ǫ(n).

(A.2) The microscopic flip rates satisfy: If m(σ) = m(η) and σx = ηx, then
p±x (σ) = p±x (η).

Finally, we need to place us in a “metastable” situation. Specifically, we will
assume that there are two disjoint sets A = {σ ∈ SN : mn0(σ) ∈ A} and B =
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{σ ∈ SN : mn0(σ) ∈ B}, for some n0 and sets A,B ∈ Γn0 , there exists a constant
C > 0 such that, for all n ≥ n0 large enough and for all σ, σ′ ∈ A,

(1) Pσ′

[

τB < τmn(σ)

]

≤ e−CN ,

where, with a little abuse of notation, we denoted by τmn(σ) the first hitting time
of the set SnN [mn(σ)].

In this setting we will prove the following theorem.

Theorem 1. Consider a Markov process as described above, and let A,B be such
that (1) holds. Then,

max
σ,σ′∈A

∣

∣

∣

∣

EστB
Eσ′τB

− 1

∣

∣

∣

∣

≤ e−CN/2.

The proof of Theorem 1 is based on a rather far reaching adaptation of coupling
ideas introduced in [2]. One application we had in mind was the Random Field
Curie-Weiss Model, with the random Hamiltonian, HN , being defined as

HN (σ) ≡ −N
2

(

1

N

∑

x∈Λ

σx

)2

−
∑

x∈Λ

hxσx,

where as before Λ ≡ {1, . . . , N} and hx, x ∈ Λ, are i.i.d. random variables.
Accordingly, the random Gibbs measure µN is given by

µN (σ) = Z−1
N exp (−βHN (σ)) ,

The corresponding macroscopic landscape has a multi-well structure for a variety of
distributions of h and inverse temperatures β. In [1] we have studied asymptotics of
metastable hitting times for processes which start from equilibrium distributions.
Theorem 1 enables to upgrade these asymptotics to microscopic starting points.
Furthermore,

Theorem 2. In the random field Curie-Weiss model, under the hypothesis of
Theorem 1,

Pσ (τB/EστB > t)→ e−t, as N ↑ ∞,
for all σ ∈ A and for all t ∈ R+, almost surely with respect to the environment.
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Duality and Exact Correlations in a Model of Heat Conduction

Frank Redig

(joint work with C. Giardina, J.Kurchan, and K. Vafayi)

In this talk we introduce an interacting diffusion model of heat conduction.
We show that the model has a particle system dual which we call the “inclusion
process”. The inclusion process itself is self-dual, and the duality functions can be
derived from and underlying SU(1, 1) symmetry.

We first define the bulk diffusion process in the heat conduction model, directly
on a general countable set. Let S be a countable set and p(i, j) a symmetric
irreducible random walk kernel on S. The Brownian momentum process (BMP)
associated to p(i, j) is the process on RS with generator

(1) L =
∑

i,j∈S
p(i, j)

(

xi
∂

∂xj
− xj

∂

∂xi

)

To define the dual process, we introduce particle configurations ξ : S → N. A

particle configuration is finite if
∑

i∈S ξi <∞. For x ∈ RZ
d

and ξ a finite particle
configuration we define the duality function

(2) D(ξ, x) =
∏

i∈S
D(ξi, xi)

where for k ∈ N, a ∈ R,

D(k, a) =
a2k

(2k − 1)!!

The dual process is a process on NS with generator

(3) Lf(ξ) =
∑

i,j∈S
p(i, j)2ξi(1 + 2ξj)(f(ξ

i,j)− f(ξ))

where ξi,j denotes the particle configuration that arises by removing a particle in
ξ from the site i and putting it at site j.

The process ξt with generator L is called the symmetric inclusion process (SIP)
associated to the kernel p(i, j).

The duality relation between the SIP and the BMP then reads

(4) Ex(D(ξ, xt)) = Eξ(D(ξt, x))
The SIP is a process of its own interest, and can be generalized easily by intro-

ducing a parameter m ∈ [0,∞), and introducing the generator

(5) Lmf(ξ) =
∑

i,j∈S
p(i, j)ξi

(m

2
+ ξj

)

(f(ξi,j)− f(ξ))

The process with generator Lm is called the SIP (m).
For m = 1 this corresponds to the SIP (up to a global factor of 4 in the

rates), and for general integer m, this process is the dual of a system of interacting
diffusions, generalizing the BMP, where at every site one considers m momenta.
We refer to [2] for precise definitions and more details.
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The SIP is a natural “bosonic” analogue of the symmetric exclusion process
(which is of fermionic nature). The interpretation of the rates ξi

(

m
2 + ξj

)

is as
follows. Every site i has a random walk clock of rate m, and an “inclusion” clock
of rate 1, different clocks are independent. When the random walk clock runs at i,
a particle at i makes a random walk jump according to p(i, j). When the inclusion
clock runs at i, a particle from j is selected with probability p(j, i) = p(i, j) and
that particle moves to i. The inclusion jumps induce a “attractive” interaction
between particles (sites with many particles attract new particles at high rate),
contrary to the exclusion process where particles have an effective repulsion (due
to exclusion).

The SIP (m) is self-dual in the following sense. Define for k, n ∈ N, k ≤ n

d(k, n) =
n!

(n− k)!
Γ
(

m
2

)

Γ
(

m
2 + k

)

and d(k, n) = 1 for k > n. For ξ ∈ NS a finite particle configuration, and η ∈ NS

we define

(6) D(ξ, η) =
∏

i∈S
d(ξi, ηi)

The self-duality of the SIP (m) then reads

(7) EηD(ξ, ηt) = EξD(ξt, η)

The expectation in the lhs of (7) is over the infinite particle system ηt (if the set
S is infinite), whereas the expectation in the rhs of (7) is over the finite particle
system ξt. Therefore, the duality relation (7) represents a serious simplification:
all relevant expectations in the infinite SIP (m) reduce to expectation in the finite
SIP (m).

The duality between the SIP and the BMP, as well as the self-duality of the
SIP (m) can be easily obtained by rewriting the generator of the BMP in terms
of generators of the SU(1, 1) algebra.

Going from the BMP to the SIP corresponds to a change of representation,
whereas the self-duality of the SIP (m) corresponds to using a symmetry. We
refer to [2] for more details on the SU(1, 1) symmetry and more generally, the
one-to-one correspondence between symmetries (operators that commute with the
generator) and duality functions.
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Multiscale Analysis of Gradient Fields

Roman Kotecký

(joint work with S. Adams and S. Müller)

Consider a random field ϕ : Λ → R, on a finite lattice Λ ⊂ Zd with fixed
boundary conditions ψ and with the gradient Gibbs distribution µΛ,ψ defined as

µΛ,ψ(dϕ) =
1

ZΛ,ψ
exp
(

−βHΛ(∇ϕ |ψ)
)

νΛ(dϕ).

Here, HΛ(∇ϕ |ψ) =
∑

(x,x+e)
x,x+e∈Λ∪∂Λ

U(∇eϕ(x)) with ϕ(x) = ψ(x) for x ∈ ∂Λ,

∇eϕ(x) is the discrete derivative in the direction of the unit coordinate vector e,
ZΛ,ψ =

∫

RΛ/R exp
(

−βHΛ(∇ϕ |ψ)
)

νΛ(dϕ), and νΛ(dϕ) is the a priori measure on

gradient fields generated by Lebesgue measure
∏

x∈Λ dϕ(x). One is particularly

interested in tilted boundary conditions Ψu(x) = 〈x, u〉 for a tilt u ∈ Rd. An object
of basic relevance in this context is the surface energy (or free energy) defined by
the limit

σ(u) = − lim
Λ↑Zd

1

β|Λ| logZΛ,Ψu
.

The properties of the corresponding random field are well understood in the
case of a strictly convex potential U . In particular, Funaki and Spohn [1] have
shown that σ is convex as function of the tilt (strict convexity of the surface tension
was then proven in [2]) and that, for each u ∈ Rd, there is a unique ergodic Gibbs
state with tilt u.

More realistic non-convex potentials allow phase transitions (coexistence of sev-
eral Gibbs states with the same value of the tilt) [3]. Nevertheless, for high temper-
atures (in the small β regime), the proof of strict convexity of the surface tension
was recently extended [4] to a class of non-convex potentials.

Here, we address the strict convexity of the surface tension for large β (low
temperatures) and sufficiently small tilt. The simplest case to consider is a non-
convex perturbation of a gradient Gaussian field, U(z) = 1

2z
2 + V (z). Instead

of enforcing the tilt by boundary conditions ψu, we follow Funaki and Spohn by
considering a lattice torus (well adapted for our multiscale analysis is the torus

TN =
(

Z/LNZ
)d

with a fixed L ∈ N), and replace the gradient ∇eϕ(x) in all
definitions above by ∇eϕ(x) − 〈u, e〉.

Mayer expanding the perturbative terms
∏

x,e exp{V (∇eϕ(x))}, the integral for
the partition function can be rewritten in terms of a polymer representation

ZTN ,u =
∑

X⊂TN

∫

exp{−H0(TN \X,ϕ)}K0(X,ϕ)µ(dϕ)

with suitable quadratic functions H0(Y, ϕ) and a Gaussian measure µ. (The func-
tions H0, K0, as well as the measure µ depend on β and u). Even though the
“polymer weights” K0(X,ϕ) can be split into the product

∏

jK0(Xj , ϕ) over the

components Xj of X , and the weights K0(Xj , ϕ) are suppressed with the size of
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Xj , they are strongly correlated in the underlying Gaussian measure µ and the
standard cluster expansion cannot be used.

Instead, we rely on multiscale techniques based on a finite range decomposition
of the Gaussian measure µ = µ1 ∗ · · · ∗ µN ∗ µN+1 (as proposed in [6] and [5] and
extended and modified for our needs in [7]) and the renormalisation group approach
as introduced by Brydges and his collaborators (see [8] for the original paper and
[9] for a recent exposition). Eventually, we get an expanding sequence of quadratic
functions Hk and contracting sequence of polymer weights Kk, k = 0, . . . , N , both
of them “living” on sets X ⊂ TN consisting of blocks of size Lk, so that for each
k = 0, . . . , N − 1 one has

∑

X⊂TN

∫

exp{−Hk(TN \X,ϕ+ ξ)}Kk(X,ϕ+ ξ)µk+1(dϕ) =

=
∑

X⊂TN

exp{−Hk+1(TN \X,ϕ)}Kk+1(X,ϕ)

and thus, finally,

ZTN ,u =

∫

(

exp{−HN(TN , ϕ)}+KN (TN , ϕ)
)

µN+1(dϕ).

Using the flexibility in the choice of H0 (tradeoff between H0 and µ) and the
(difficult) fact that all the construction depends smoothly on H0, we can tune it
in such a way that the resulting HN vanishes.

The final expression ZTN ,u =
∫

(1 +KN (TN , ϕ))µN+1(dϕ) then allows to read
off the strict convexity (for small u) in a rather straightforward way once the
perturbation V is sufficiently small; an assumption that is stated in terms of an

appropriate norm of the function fV,β,u(z) = exp
{

−β∑d
i=1 V

(

zi√
β
− ui

)}

− 1.
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Large Deviations for Stochastic Particle Systems

Thierry Bodineau

(joint work with B. Derrida, J. Lebowitz, V. Lecomte, and F. van Wijland)

In the scaling limit, stochastic dynamics can be described by hydrodynamic
equations which record the evolution of the density [8, 10]. The large deviations
of the density from the typical hydrodynamic scaling have been analyzed in [9, 7].
In this talk, we report on generalization to the joint large deviations of the current
and the density [1]-[6].

We consider the Symmetric Simple Exclusion Process (SSEP), in a periodic
domain with N sites. After rescaling the time by N2 and the space by N , the
typical density trajectory ρ̄(x, t) follows a hydrodynamic equation of the form

∀x ∈ [0, 1], ∂tρ̄(x, t) = −∂xq(x, t), with, q̄(x, t) = −∂xρ̄(x, t)(1)

where q̄(x, t) is the local current (at time t and position x).
The probability of observing during the time interval [0, T ] an atypical trajec-

tory (ρ(x, t), q(x, t)) satisfying the relation ∂tρ(x, t) = −∂xq(x, t) has an exponen-
tially small cost given by the functional

F (ρ, q) =

∫ T

0

dt

∫ 1

0

dx

(

q(x, t) + ∂xρ(x, t)
)2

2σ(ρ(x, t))
,(2)

where σ(u) = 2u(1 − u). The formula can be understood heuristically as the
summation of the local Gaussian deviations of the current q(x, t) from the typical
local current given by −∂xρ(x, t) (see (1)) with a variance determined by the
conductivity σ(ρ(x, t)). Using (2), one can predict [1]-[3] the cost of observing

an atypical current J = 1
T

∫ T

0
dt
∫ 1

0
dxq(x, t) over a very long time T and it is

exponentially decaying with a rate

T inf
ρ

{

∫ 1

0

dx

(

J + ∂xρ(x)
)2

2σ(ρ(x))

}

,(3)

where one has to optimize over the densities ρ which are only space dependent.

The same hydrodynamic approach applies also to currents in higher dimension.
However this approach does not always catch the correct scaling of the large devia-
tions or of the cumulants of the current in higher dimensions. To illustrate this, we
consider the SSEP on a square lattice of size L, with periodic boundary conditions
and study the current flowing through a vertical slit of length ℓ < L. One reason
for considering the fluctuations of this partial current is that in experiments it is
often only possible to measure the fluctuations of local quantities and not of global
quantities.

In two dimensions, when ℓ = L, i.e. when one considers the total current flowing
through the system, the large deviation function derived from the hydrodynamic
theory satisfies a scaling similar to the one of the one-dimensional case (3). If one
keeps the ratio h = ℓ/L fixed, then for all 0 < h < 1 the large deviation cost
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is 0 for the hydrodynamic scaling considered in (3). This can be understood by
the occurrence of vortices at the edge of the slit which carry the excess current.
This shows that the current large fluctuations through a slit must have a different
scaling from the current through a section of the system. In particular, this can
be seen by an anomalously large variance of the current flowing through a slit. For
the SSEP at mean density ρ̄ on a periodic square domain, an explicit calculation
shows a logarithmic divergence of the second cumulant for a slit of size ℓ = Lh
and 0 < h < 1

lim
τ→∞

〈Q(h)(τ)2〉c
τ

∼ 2ρ̄(1− ρ̄)
π

logL as L→∞,

where Q(h)(τ) is the flux of particles through the slit during time τ .

Another interesting aspect is the occurrence of phase transitions for the current
large deviations [1]-[5]. The divergence of the two-point correlations when the
system approaches the critical point has been analyzed in [6].
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Asymptotic Behavior of the Gyration Radius for Long-range
Self-avoiding Walk and Long-range Oriented Percolation

Akira Sakai

(joint work with L.-C. Chen)

Let α > 0 and suppose that the 1-step distribution D for random walk on Zd

decays asD(x) ≈ |x|−d−α such that its Fourier transform D̂(k) =
∑

x∈Zd eik·xD(x)
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satisfies

1− D̂(k) = vα|k|α∧2 ×
{

1 +O(|k|ǫ) (α 6= 2),

log 1
|k| +O(1) (α = 2),

(1)

for some vα ∈ (0,∞) and ǫ > 0. The following long-range Kac potential, for any
L ∈ [1,∞), satisfies the above property [3]:

D(x) =
h(y/L)

∑

y∈Zd h(y/L)
(x ∈ Zd),(2)

where h(x) ≡ |x|−d−α(1 +O(|x|ǫ)) is a rotation-invariant function on Rd.
Let ϕt(x) denote the two-point functions for random walk and self-avoiding walk

whose 1-step distribution is given by the above D and for oriented percolation on
Zd × Z+ whose bond-occupation probability for each bond ((u, s), (v, s + 1)) is
given by pD(v − u), independently of s ∈ Z+. More precisely,

ϕt(x) =











































∑

ω:o→x
|ω|=t

t
∏

s=1

D(ωs − ωs−1) (RW),

∑

ω:o→x
|ω|=t

t
∏

s=1

D(ωs − ωs−1)
∏

0≤i<j≤t
(1− δωi,ωj

) (SAW),

Pp
(

(o, 0) −→ (x, t)
)

(OP).

(3)

The order-r gyration radius ξ(r)

t , defined as

ξ(r)

t =

(
∑

x∈Zd |x|rϕt(x)
∑

x∈Zd ϕt(x)

)1/r

,(4)

represents a typical spatial size of a linear polymer or a cluster at time t. It has
been expected (and is certainly true for random walk for any dimension) that,
above the common upper-critical dimension dc = 2(α ∧ 2) for self-avoiding walk
and oriented percolation, for every r ∈ (0, α),

ξ(r)

t =

{

O(t
1

α∧2 ) (α 6= 2),

O(
√
t log t) (α = 2).

(5)

The conjecture was proved to be affirmative for self-avoiding walk, but only for
small r < α ∧ 2 [4].

In my recent joint work with L.-C. Chen [3], we have proved the following sharp
asymptotics:

Theorem 1 ([3]). Consider the above three models defined by the long-range Kac
potential. For random walk in any dimension with any L, and for self-avoiding
walk and critical/subcritical oriented percolation for d > 2(α ∧ 2) with L ≫ 1,
the following holds for every r ∈ (0, α): there are constants C1, C2 = 1 + O(L−d)
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(C1 = C2 = 1 for random walk) and ǫ > 0 such that, as mր mc,

∞
∑

t=0

∑

x∈Zd

|x1|rϕt(x)mn =
2 sin rπ

α∨2

(α ∧ 2) sin rπ
α

Γ(r + 1)
C1(C2vα)

r
α∧2

(1 − m
mc

)1+
r

α∧2
(6)

×











1 +O
(

(1− m
mc

)ǫ
)

(α 6= 2),
(

log 1√
1− m

mc

)r/2

+O(1) (α = 2).

where mc is the radius of convergence for the sequence
∑

x∈Zd ϕt(x).

In fact, the above C1, C2 are the following model-dependent constants [1, 2, 4]:

∑

x∈Zd

ϕt(x) ∼
t↑∞

C1m
−t
c ,

∑

x∈Zd eikt·xϕt(x)
∑

x∈Zd ϕt(x)
∼
t↑∞

e−C2|k|α∧2

.(7)

Theorem 2 ([3]). Under the same condition as in Theorem 1,
∑

x∈Zd |x1|rϕt(x)
∑

x∈Zd ϕt(x)
∼
t↑∞

2 sin rπ
α∨2

(α ∧ 2) sin rπ
α

Γ(r + 1)

Γ( r
α∧2 + 1)

(C2vα)
r

α∧2(8)

×
{

t
r

α∧2 (α 6= 2),

(t log
√
t)r/2 (α = 2).

This immediately proves the conjecture (5) for all r ∈ (0, α).
As far as we notice, the sharp asymptotics for random walk in the above two

theorems are new.
The proof is based on the derivatives of the lace expansion and the new fractional-

moment analysis for the derivatives of the lace-expansion coefficients, initiated in
[2]. It is worth emphasizing that the same proof applies to finite-range models, for
which α is regarded as infinity.

In the talk, I explain the general framework to treat all three models simulta-
neously and show some complex analysis for the derivation of the right constants
in the asymptotics.
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Degenerate Random Environments

Mark Holmes

(joint work with T. Salisbury)

For fixed d ≥ 2 let E = {±ei : i = 1, . . . , d} be the set of unit vectors in Zd,
and let P denote the power set of E . For any set A, let |A| denote the cardinality
of A. Let µ be a probability measure on P . A degenerate random environment

is an element G = {Gx}x∈Zd of PZ
d

, equipped with the product σ-algebra and

the product measure ν = µ⊗Z
d

. Site percolation, oriented site percolation and
oriented bond percolation are examples of previously-studied models which fall
into this more general class.

We say that the environment is 2-valued when µ charges exactly two points,
i.e. there exist A1, A2 ⊂ P and p ∈ (0, 1) such that µ({A1}) = p, µ({A2}) = 1− p.
In [1] we study the connectivity structure of the resulting random directed graphs,
with particular emphasis on 2-dimensional 2-valued environments.

Given an environment G:
• x is connected to y, (x → y) if: ∃ n ≥ 0, x = x0 x1, . . . , xn = y such that
xi+1 − xi ∈ Gxi

for i = 0, . . . , n− 1
• Cx = {y ∈ Zd : x→ y}
• By = {x ∈ Zd : x→ y}
• x and y are mutually connected, or communicate, (x ↔ y) if x → y and
y → x
• Mx = {y ∈ Zd : x↔ y} = Bx ∩ Cx.

Note that these models in general do not have the usual monotonicity properties
present in percolation theory (where switching an unoccupied site to an occupied
site cannot break connections). There is however a model to model monotonicity
property of the following form: if a connection exists with probability ρ in some
degenerate random environment model, then it occurs with probability at least
ρ for any degenerate random environment model that can be obtained from the
original one (under some natural coupling) by adding arrows.

Since our interest is primarily in asymptotic properties of random walks in these
random environments, as in [2], we want to rule out environments where the walk
gets stuck on a finite set of sites. This is equivalent to the restriction that

ν(|Co| =∞) = 1 .

Remark 1. If ∃ an orthogonal set V ⊂ E such that µ({A : A ∩ V 6= ∅}) = 1
then |Co| =∞, ν-almost surely. This implies that, among many other models, the
2-dimensional 2-valued environments defined by

(*) µ({↑,→}) = p = 1− µ({↓,←}) and
(**) µ({↑, ↓}) = p = 1− µ({←,→})

are among those satsifying the above condition.

Remark 2. By translation invariance we have that ν(o → x) = ν(−x → o) so
that ν(x ∈ Co) = ν(−x ∈ Bo). There is also a simple proof of the fact that
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ν(|Co| = ∞) = pν(|Bo| =∞) in the “percolation” setting µ(A) = p = 1 − µ({∅}).
This will not be true in most of the situations that we are interested in, where
ν(|Co| =∞) = 1 and ν(|Bo| =∞) < 1. However, based on the x 7→ −x symmetry
apparent in many pictures, we are investigating some more general kind of duality
between the shapes of Co and Bo.

Many of the models that we are interested in, e.g. (**), fall into the class of
those environments discussed in the following proposition (or a variant of it, in
the case of (*)).

Proposition 1. Fix d = 2. If ν-almost surely every site has [↑ or →] and every
site has [↑ or ←], and each arrow [↑,→,←, ↓] is possible, then the following ν-a.s.
exhaust the possibilities for Bo:

(i) Bo is finite;
(ii) Bo = Z2;
(iii) ∃ W : Z→ Z such that Bo = {y : y[2] ≤W (y[1])};
(iv) ∃ W : Z→ Z such that Bo = {y : y[2] ≥W (y[1])}.

Only one of (ii), (iii), (iv) can have positive probability.

A consequence of the above, using the symmetry in the model (**) we see that
either Bo is finite (this has positive probability for any p) or it is all of Z2 in this
case. It turns out that there are interesting phase transitions in some models, such
as (∗), where (ii) has positive probability for p sufficiently close (determined by
the critical pc for some oriented site percolation model on a particular lattice) to
0.5, whereas (iii) or (iv) have positive probability otherwise.

Turning to the mutually connected cluster Mo, we have the following result,
which implies ν-almost sure finiteness of this cluster under rather strong assump-
tions:

Proposition 2. For each d ≥ 2 there exists ǫd such that the following holds: If
there exists an orthogonal set V of unit vectors such that µ({A : ∅ 6= A ⊂ V }) >
1− ǫd, then E[|Mo|] <∞.

The proof gives explicit values (certainly not sharp) for ǫd in terms of self-
avoiding walk connective constants. The proposition applies for example to the
model (*). We give additional constructive proofs in some cases, including model
(**) for all p and model (*) for p sufficiently close to 0.5 that ν(|Mo| = ∞) > 0,
and moreover that the clusterMo is giant when this occurs.

Members of the audience at this workshop gave suggestions for references (to
work on related but different models). Although not including in this abstract,
some of these may appear in the paper.
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Random Graph Asymptotics on High-dimensional Tori

Markus Heydenreich

(joint work with R. van der Hofstad)

It is well-known that Bernoulli bond percolation on the hypercubic lattice Zd

in dimension d ≥ 2 obeys a phase transition whose transition point can be char-
acterized as

pc = inf
{

p : PZ,p(|C(0)| =∞) > 0
}

= sup
{

p : EZ,p|C(0)| <∞
}

,

where

• every bond {x, y} with x, y ∈ Zd, |x− y| = 1 is occupied with probability
p ∈ [0, 1], independently of each other, and the corresponding product
measure and expectation are denoted PZ,p and EZ,p;
• C(x) denotes the (unique) connected component of the random subgraph
of occupied bonds containing vertex x, and |C(x)| is the number of vertices
in C(x).

The basic question to be addressed in this work is the following: What is the
behavior of critical percolation (i.e., p = pc) on a finite box? We give an answer
for the high-dimensional case, where Zd-percolation is fairly well understood.

More precisely, we consider bond percolation on the d-dimensional torus Tdr =
(Z/rZ)d, that is, percolation on a d-dimensional box of side length r with periodic
boundary conditions. The corresponding probability measure is denoted PT,p, and
we write V for the number of vertices in the torus, V = rd.

Our first result concerns the size of the largest cluster on the torus, |Cmax|.

Theorem 1 ([7, 8]). There is d0 ≥ 6, such that for any d > d0 the following holds
for percolation on the d-dimensional torus Tdr . There exists a constant b > 0, such
that for all ω ≥ 1,

(1) PT,pc

(

ω−1V 2/3 ≤ |Cmax| ≤ ωV 2/3
)

≥ 1− b

ω
uniformly in r.

Moreover, |Cmax|V −2/3 is not concentrated as V →∞.

It should be noted that periodic boundary conditions are essential for the result.
Indeed, the combined results of Aizenman [1] and Hara [5] show that in dimension
d ≥ 19 under bulk boundary conditions, |Cmax| is of the order r4, which is much
smaller than V 2/3. The case of free boundary conditions is an open problem.

The V 2/3-asymptotic of |Cmax| is known as random graph asymptotic since the
same is observed for critical Erdős-Rényi random graphs, that is, percolation on
the complete graph with V vertices and percolation probability p = V −1. In
other words, the high dimensional spatial model shows the same behavior as the
non-spatial model. This, on the other hand, is expected to be false when d < 6.

The proof of Theorem 1 is based on the one hand on the work of Borgs et al.
[2, 3], which develops lace expansion for various high-dimensional tori but for a



2146 Oberwolfach Report 38/2009

different notion of criticality. On the other hand, a number of results for the high-
dimensional infinite lattice are needed, e.g. [4, 5, 6]. Finally, in [7] we construct a
coupling of Zd- and Tdr-percolation that provides a link between the two regimes.

We shall now present further results where critical percolation on the high-
dimensional torus and on the complete graph show the same qualitative behavior.
To this end, we denote by C(i) the ith largest cluster of the torus (i.e., C(1) = Cmax).

Theorem 2 ([8]). There is d0 ≥ 6, such that for any d > d0 the following holds
for percolation on the d-dimensional torus Tdr . For every m = 1, 2, . . . there exist
constants b1, . . . , bm > 0, such that for all ω ≥ 1, and all i = 1, . . . ,m,

(2) PT,pc

(

ω−1V 2/3 ≤ |C(i)| ≤ ωV 2/3
)

≥ 1− bi
ω

uniformly in r.

Finally, it is possible to identify asymptotics for the diameter of the cluster C(i),
diam(C(i)), and for the mixing time of lazy simple random walk, Tmix(C(i)). Lazy
simple randomwalk on a (finite) graph G = (V , E) is a Markov chain with transition
probability p(x, x) = 1/2, x ∈ V , and p(x, y) = (2 degree(x))−1 whenever {x, y} ∈
E . The stationary distribution π(x) is proportional to the degree of x, and the
mixing time of lazy simple random walk on G is defined as

Tmix(G) = min
{

n : ‖pn(x, ·) − π(·)‖TV ≤ 1/4 for all x ∈ V
}

,

with ‖ · ‖TV being the total variation norm.

Theorem 3 ([8, 9, 10]). There is d0 ≥ 6, such that for any d > d0 the following
holds for percolation on the d-dimensional torus Tdr . For every m = 1, 2, . . . there
exist constants c1, . . . , cm > 0, such that for all ω ≥ 1, and all i = 1, . . . ,m,

(3) PT,pc

(

ω−1V 1/3 ≤ diam(C(i)) ≤ ωV 1/3
)

≥ 1− ci
ω1/3

,

(4) PT,pc

(

ω−1V ≤ Tmix(C(i)) ≤ ωV
)

≥ 1− ci
ω1/34

uniformly in r.

The core of Theorem 3 is a criterion developed by Nachmias and Peres [10]
in the context of Erdős-Rényi random graphs. The prerequisites for the criterion
are related to the one-arm exponent in the intrinsic metric, and these are recently
proved by Kozma and Nachmias [9] for the high-dimensional infinite lattice Zd.
In [8] we adapt the latter argument to the case of finite tori.

It is expected that all our theorems hold with d0 = 6, however the technique of
proving these results, the lace expansion, does not show this. Nevertheless, there is
strong support for the conjecture that d0 = 6 by considering a spread-out version
of the model where any two vertices x, y ∈ Tdr are linked by a bond whenever the
distance between x and y (modulo r) is less than L. Indeed, (1)–(4) hold with
d0 = 6 whenever L is sufficiently large.
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Einstein Relation for Symmetric Diffusions in Random Environment

Nina Gantert

(joint work with P. Mathieu and A. Piatnitski)

We shall be dealing with diffusion processes in Rd whose generators are of the
form

(1) Lωf(x) = 1

2
e2V

ω(x) div(e−2V ω

aω∇f)(x) ,
where aω and V ω are realizations of a random environment with finite range of
dependence.

More precisely, our assumptions are as follows.
Let (Ω,A,Q) be a probability space equipped with a group action of Rd through

measure preserving maps that we denote with (x, ω)→ x.ω. We also assume that
the map (x, ω)→ x.ω is (Bd ×A,A)-measurable, where Bd is the Borel σ-field on
Rd.

Assumption 1: the action (x, ω)→ x.ω is ergodic.
Let V be a measurable real-valued function on Ω and let σ be a measurable

function on Ω taking its values in the set of real d× d symmetric matrices. Define

V ω(x) = V (x.ω) , σω(x) = σ(x.ω) .

We also introduce the notation

aω = (σω)2 and bω =
1

2
divaω − aω∇V ω .

Assumption 2: for any environment ω, the functions x → V ω(x) and x →
σω(x) are smooth. To avoid triviality, we also assume that at least one of them is
not constant.
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Assumption 3: V is bounded and aω is uniformly elliptic, namely there exists
a constant κ such that, for all ω, x and y,

(2) κ|y|2 ≤ |σω(x)y|2 ≤ κ−1|y|2 .
For a Borel subset F ⊂ Rd, we define the σ-field

HF = σ{V (x.ω), σ(x.ω) : x ∈ F}
and we assume the following independence condition:

Assumption 4: there exists R such that for any Borel subsets F and G such
that d(F,G) > R (where d(F,G) = inf{|x − y| : x ∈ F, y ∈ G} is the distance
between F and G) then

(3) HF and HG are independent .

Let (Wt : t ≥ 0) be a Brownian motion defined on some probability space
(W ,F , P ). We denote expectation with respect to P by E. By diffusion in the
environment ω we mean the solution of the stochastic differential equation

(4) dXω(t) = bω(Xω(t)) dt+ σω(Xω(t)) dWt ; X
ω(0) = x .

Then Xω is indeed the Markov process generated by the operator Lω in equation
(1). We shall denote with Pωx the law of Xω on the path space C(R+,R

d). It is
usually refered to as the quenched law of the diffusion in a random environment.
We will also need the so-called averaged law:

(5) Px[A] :=

∫

dQ(ω)

∫

dPωx (w)1A(ω,w) ,

for any measurable subset A ⊂ Ω × C(R+,R
d). Expectation with respect to Pωx

will be denoted with Eωx and expectation with respect to Px will be denoted with
Ex.

We use the notation X(t) for the coordinate process on path space C(R+,R
d).

Definition 1. Let Σ be the effective diffusivity matrix defined by

(6) e · Σ e := lim
t→+∞

1

t
E0[(e ·X(t))2] ,

where e is any vector in Rd and x · y denotes the scalar product of the two vectors
x and y.

The fact that the limit in (6) exists is (almost) a consequence of the Central
Limit Theorem for the process X under P0. More is actually known: X satisfies a
full invariance principle. Namely: for almost any realization of the environment ω,
the laws of the sequence of rescaled processes (Xε(t) = εX(t/ε2) ; t ≥ 0) under Pω0
weakly converge as ε goes to 0 to the law of a Brownian motion with covariance
matrix Σ. References on this Theorem include [3], [10], [13], [16], [17] among
others. The convergence of the variance of the process to Σ is explicitely stated
in [3] formula (2.44).
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The invariance principle also has a PDE counterpart in terms of homogenization
theory, see for instance the book [9]. The generator of the process Xε under Pωx
is the rescaled operator

1

2
aω(

.

ε
)∆ +

1

2ε
bω(

.

ε
)∇ .

As one can see this is an elliptic operator with rapidly oscillating coefficients. Its
limit, in the sense of homogenization theory, is the elliptic operator with constant
coefficient

1

2
div(Σ∇) ,

where Σ is the same matrix as in (6).
The effective diffusivity Σ is a symmetric matrix. As a consequence of Assump-

tion 1 on ergodicity, Σ is deterministic (i.e. Σ does not depend on ω). Furthermore,
due to the ellipticity Assumption 3, Σ is also known to be positive definite.

We shall now consider perturbations of the process X obtained by inserting a
drift in equation (4).

We use the following notation. Let e1 be a non-zero vector and λ > 0. We

define λ̂ to be the vector λ̂ = λe1. We think of e1 as being fixed while λ is due to
tend to 0.

Let us consider the perturbed stochastic differential equation:
(7)

dXλ, ω(t) = bω(Xλ, ω(t)) dt+ aω(Xλ, ω(t))λ̂ dt+ σω(Xλ, ω(t)) dWt ; X
λ,ω(0) = x .

The process Xλ,ω is now a Markov process with generator

Lλ, ωf(x) =
1

2
e2V

ω(x) div(e−2V ω

aω∇f)(x) + aω(x)λ̂∇f(x)

=
1

2
e2V

λ, ω(x) div(e−2V λ, ω

aω∇f)(x) ,(8)

where V λ, ω(x) = V ω(x) − λ̂ · x. We shall use the notation Pλ, ωx for the law
of Xλ, ω, Eλ, ωx for the corresponding expectation as well as Pλx and Eλx for the
averaged probability and expectation.

Our model is a special case of diffusions with drifts considered by L. Shen in [19]
and for which the author proved a law of large numbers: for almost any environ-
ment ω, the ratio Xλ, ω(t)/t has an almost sure limit, say ℓ(λ). The convergence

also holds in L1(Pλ0 ). Moreover ℓ(λ) is deterministic and λ̂ · ℓ(λ) 6= 0. Note that
the proof strongly relies on the independence property Assumption 4. We thus
define the velocity:

Definition 2. Let λ > 0. Let ℓ(λ) be the effective drift vector defined by

(9) ℓ(λ) = lim
t→+∞

1

t
Eλ0 [X(t)] .

By convention ℓ(0) = 0.

Definition 3. Call mobility of the process Xω in the direction e2 the derivative
at λ = 0 of the velocity e2 · ℓ(λ) (if it exists).
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This definition is justified by the following version of the Einstein relation, which
is our main result.

Theorem 1. For any vector e2, the function λ → e2 · ℓ(λ) has a derivative at
λ = 0 and the mobility satisfies

(10) lim
λ→0

1

λ
e2 · ℓ(λ) = e2 · Σ e1 .

The proof combines different ingredients: homogenization arguments and Gir-
sanov transforms, PDE estimates and a-priori bounds on hitting times for per-
turbed diffusions and renewal arguments.

We hope that our strategy can eventually be applied to other models of diffu-
sions and random walks in random environments.
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Quenched Local Limit Theorem for Space-time Random Walk in
Random Environment

Noam Berger

Space time random walk in random environment is a model of random envi-
ronment for which after each step, the entire environment is resampled. It is
equivalent to a regular RWRE such that in each step the first coordinate has to
increase by 1.

This model is easier to handle than other RWRE models since, in the averaged
sense, each step is independent of any other step. Indeed, the averaged measure
of the space-time RWRE is that of a (possibly biased) simple random walk.

Thus the main challenge in this model is to understand its quenched behavior.
The space-time model may also serve as a toy model for the more complicated
ballistic case.

We introduce the following notation: P is the averaged distribution, and for
every environment ω, we use Pω for the quenched distribution. P is the distribution
of environments.

We prove the following result:

Theorem 1. Consider a space-time RWRE which is i.i.d. nearest neighbor and
elliptic, in dimension 1 + d with d ≥ 2. Let {MN}∞N=0 be a sequence going to

infinity, and let ǫ > 0. For every N , let {Q(N)
i }∞i=1 be a partition of Z into cubes

of side-length MN . Then

P

(

ω :
∞
∑

i=1

∣

∣

∣
P
(

XN ∈ Q(N)
i

)

− Pω
(

XN ∈ Q(N)
i

)

∣

∣

∣
> ǫ

)

goes to zero faster than any polynomial in N .

Conjecture 1. The same does not hold for d = 1.

Remark 1. Using the same techniques, one can prove the same result for any
RWRE satisfying Sznitman’s condition (T ′), under some quantitative requirements
for the rate of growth of {MN}.
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The proof technique involves several ideas. the main idea is an adaptation of
Bolthausen and Sznitman’s exposing neighborhood technique [1], coupled with a
bootstrap argument. The second moment method from [1] is replaced by using
the following variant of the Azuma-Hoefding inequality:

Lemma 1. Let {Mk}nk=1 be a zero mean martingale with respect to a filtration
{Fk}nk=1 on the probability space (Ω,B, µ). Assume that M0 = 0 and F0 = {∅,Ω}.
for k = 1, . . . , n, let Dk =Mk −Mk−1. Define

Uk = esssup(|Dk| | Fk−1) = lim
p→∞

[

E(|Dk|p|Fk−1)
]

1
p

and we define the essential variance of the martingale to be

U := esssup

(

n
∑

k=1

U2
k

)

.

Then for every K,

µ(|Mn| > K) ≤ 2e−
K2

2U .
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Russo-Seymour-Welsh Theory for the FK-Ising Model in Dimension 2

Hugo Duminil-Copin

(joint work with C. Hongler and P. Nolin)

Arguments coming from statistical physics show that 2D critical lattice mod-
els should be conformally invariant at criticality. Great progresses have been
made in this field during the last decade: in the specific case of the Ising model,
Stanislav Smirnov proved the conformal invariance of the random cluster represen-
tation of the Ising model while the convergence of the so-called exploration path
to SLE(16/3) has been achieved by S. Smirnov and A. Kemppainen very recently.
These results open new possibilities of computations for the 2D Ising model by
identifying the continuum scaling limit. Our theorem is instrumental for coming
back to the discrete case since it mainly deal with boundary conditions. It also
gives a very short proof of the critical temperature for the Ising model.

The probability measure Pbp,q,G denotes the random cluster model with param-
eters p and q on the graph G with boundary conditions b. Consider the random
cluster model with parameters q = 2 and p = pc on the two-dimensional square
lattice. For a rectangle R, we define Cv(R) to be the event that there is an open
path linking the bottom edge to the top edge (an open path is a sequence of
open edges such that two adjacent edges share a vertex of the graph). With these
notations, the theorem can be stated as follows:
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Theorem 1. (H. D-C, C. Hongler, P. Nolin) For any α > 0, there exist
0 < c(α) ≤ d(α) < 1 such that for any n ≥ 1 and any boundary condition b,

cα < Pb2,pc,Rn
(Cv(Rn)) < dα

where Rn is a rectangle with dimensions (αn, n).

The important fact is that the result does not depend on boundary conditions.
The proof strongly relies on the so-called parafermionic observable. The goal
of this talk is to give a precise definition of the parafermionic observable for 2-
dimensional random cluster models. This random variable is employed in order
to prove estimates on crossing probabilities of rectangles with various boundary
conditions.

Roughly speaking, consider the random cluster model on a finite graph with
boundary conditions wired on one part of the boundary and free on the other part.
It is possible to define the interface between the primal open cluster linked to the
wired arc and the dual open cluster linked to the free arc; this interface is called
the exploration path γ. The parafermionic observable is a modification of the
probability that one edge of the medial lattice belongs to γ.

In the end of the talk, we will briefly show how the parafermionic observable
can be employed in other contexts to find new proofs of already known results and
new strategies for old conjectures. This is partly joint work with S. Smirnov and
V. Beffara.

Convergence of Discrete Markov Chains to Jump Processes and
Applications to Random Conductance Models

Takashi Kumagai

(joint work with P. Kim and Z.-Q. Chen)

We give general criteria concerning weak convergence of Markov chains to jump
processes and we apply the results to some random conductance models. We first
give an example that can be deduced from our main results (Theorem 1 and 2).

Example: For d ≥ 2, let {ξxy}x,y∈Zd be i.i.d. on (Ω,F ,P) such that 0 ≤ ξxy,
M := E[ξxy] ∈ (0,∞) and Var [ξxy] <∞. Define random conductance C(·, ·) as

C(x, y) :=
ξxy

|x− y|d+α , x, y ∈ Zd, x 6= y, 0 < α < 2.

Let X(1) be the corresponding continuous time Markov chain on Zd, namely X(1)

stays at x for an exponential length of time with parameter
∑

z 6=x C(x, z) and then

jumps to y with probability C(x, y)/
∑

z 6=x C(x, z). Then X
(k)
t = k−1X

(1)
kαt con-

verges to ZαMt in the f.d.d. sense P-a.s. (quenched), where Zαt is the rotationally

invariant α-stable process. Further, if ξxy ≤ C1, {(X(k), P
(k)
ϕ ); k ≥ 1} converges

weakly to (ZαM ·, Pϕ) P-a.s., where P
(k)
ϕ ,Pϕ are defined in (2).
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1. Background and known results
For a Hunt process X on Rd, consider the following question:

(Q1) Can we approximate X by a family of Markov chains X(n) on n−1Zd?

A closely related question is the following. Let X(n) be a sequence of Markov
chains on n−1Zd.

(Q2) When does X(n) converge weakly to a ‘nice’ Hunt process X as n→∞?

We discuss these questions when X is a symmetric pure jump process.
Let us briefly mention some works on these problems when X is a diffusion.

When X is a diffusion corresponding to an operator in nondivergence form, these
problems were considered for example in the book of Stroock-Varadhan ([6, Chap-
ter 11]) by solving the corresponding martingale problem. When X is a symmet-
ric diffusion that corresponding to a uniform elliptic divergence form, (Q1) was

solved completely by Stroock-Zheng [7]. Let X
(n)
t be a continuous time symmetric

Markov chain on n−1Zd and conductances C(n)(x, y). In [7], they also answered
(Q2) when C(n)(·, ·) was of finite range (i.e. C(n)(x, y) = 0 if |x − y| ≥ R0/n for
some R0 > 0) and it had some uniform regularity. The core of the paper was to
establish the discrete version of the De Giorgi-Moser-Nash theory. Recently, in [3]
the theorem in [7] was extended in two ways: chains with unbounded range was
allowed and the strong uniform regularity conditions in [7] was weakened. This
was further extended in [4] so that the limiting process X had a continuous part
and a jump part. For both [3, 4], one of the key part was to obtain apriori esti-
mates of the solution of the heat equation, which was enabled thanks to the recent
developments of the De Giorgi-Moser-Nash theory for jump processes.

Now consider the case where X is a pure jump symmetric Hunt process. We
will consider the corresponding Dirichlet form (E ,F) on L2(Rd;m) where

(1) E(u, v) := 1

2

∫

Rd×Rd\d
(u(x)− u(y))(v(x) − v(y))j(x, y)m(dx)m(dy),

for u, v ∈ F := {u ∈ L2(Rd,m) : E(u, u) <∞} (m is the Lebesgue measure). Here
j(·, ·) is a symmetric non-negative function on R × Rd \ d, and we put a suitable
assumption to make (E ,F) regular. The paper [5] considered (Q1)–(Q2) when
j(x, y) ≍ |x − y|−d−α for some 0 < α < 2. This was considerably extended in
[2] to some class of the Dirichlet form (E ,F). Again, for both [5, 2], the crucial
point was to obtain apriori Hölder estimates of the solution of the heat equation,
However, the approach of obtaining apriori estimates of the heat kernel does not
work in general. Indeed, even in the case c1|x−y|−d−α1 ≤ j(x, y) ≤ c2|x−y|−d−α2

for |x − y| < 1 where α1 < α2, one can construct an example where there is a
bounded harmonic function that is not continuous (see [1, Theorem 1.9]).

We will answer (Q1) affirmatively for a very general Dirichlet form of the shape
of (1) (Theorem 3), and give answer to (Q2) when X(n), X satisfy conditions
(A1)–(A4) below (Theorem 2). We do not rely on the apriori estimates of the
heat kernel, instead use various techniques from the theory of Dirichlet forms such
as the Lyons-Zheng decomposition and the Mosco convergence. The drawback is
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we can only obtain tightness when the initial distribution is in a sense ‘smooth’.

2. The model and tightness
Let Vk = k−1Zd, mk(x) = k−d for x ∈ Vk and Bj = B(0, j). Let {C(k)(x, y), x, y

∈ Vk} be a family of conductance so that C(k)(x, y) = C(k)(y, x) ≥ 0. We assume
C(k)(x, x) = 0. Define a Dirichlet form (E(k),F (k)) on L2(Vk,mk) by

E(k)(u, v) := 1

2

∑

x,y∈Vk

(u(x)− u(y))(v(x) − v(y))C(k)(x, y)mk(x)mk(y),

for all u, v ∈ F (k) := {u ∈ L2(Vk;mk) ; E(k)(u, u) <∞}. We assume the following.
(A1). There exists k0 ≥ 1 such that for all j ≥ 1,

sup
k≥k0

sup
x∈Bj∩Vk

∑

y∈Vk

C(k)(x, y)
(

|x− y|2 ∧ 1
)

mk(y) <∞,

sup
k≥k0

sup
x∈Bc

j+2∩Vk

∑

y∈Bj∩Vk

C(k)(x, y)mk(y) <∞.

Note that under (A1), (E(k),F (k)) is regular. Define {{X(k)
t }t≥0, {P(k)

x }x∈Vk
} as

the corresponding symmetric Markov chain. Now for all ϕ ∈ C+
c (R

d), define

(2) P(k)
ϕ ( · ) :=

∑

x∈Vk

P(k)
x ( · )ϕ(x)mk(x) and Pϕ( · ) :=

∫

Rd

Px( · )ϕ(x)m(dx).

Let ζ(k) be the lifetime of the process X(k). Then the following holds.

Proposition 1. Assume (A1). Then for all ϕ ∈ C+
c (R

d) the laws of {X(k)
t }t∈[0,T ]

on {ζ(k) > T } with initial distribution ϕ(x)mk(dx) is tight in D([0,∞),Rd).

We don’t know tightness when the initial distribution is concentrated on a point.

3. Main theorem: weak convergence and discrete approximation
(A2). Let j : Rd × Rd → R+ be the symmetric measurable function such that

(3) sup
x∈K

∫

Rd

(|x− y| ∧ 1)2j(x, y)m(dy) <∞, ∀K : compact.

Let (E ,F) be the Dirichlet form on L2(Rd,m) defined by (1). Note that from (3),
we have Lipc(R

d) ⊂ F .

(A3). (i) Lipc(R
d) is dense in (F , E(·, ·) + ‖ · ‖22).

(ii) Lj,δf is continuous for all f ∈ Lipc(R
d) where Lj,δ is defined below.

Note that under (A2) and (A3)(i), (E ,F) is regular. Let {{Xt}t≥0, {Px}x∈Rd} be
the corresponding symmetric Hunt process.
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Below, we extend {C(k)(x, y) : x, y ∈ Vk} to {C(k)(x, y) : x, y ∈ Rd} in a natural
way. Set

Lj,δu(x) =
∫

Bj

(u(y)− u(x))1{|x−y|>δ}j(x, y)m(dy) ∀x ∈ Bj ,

and define L(k)j,δ u similarly by changing j(x, y) to C(k)(x, y).

(A4). (i) For any compact subset K ⊂ Rd,

lim
η→0

lim sup
k→∞

∫ ∫

{(x,y)∈K×K:|x−y|≤η}
|x− y|2C(k)(x, y)m(dx)m(dy) = 0,

lim
j→∞

lim sup
k→∞

∫

K

∫

Bc
j

C(k)(x, y)m(dx)m(dy) = lim
j→∞

sup
x∈K

j(x,Bcj ) = 0.

(ii) limk→∞ ‖L
(k)

j,δ f‖22,Bj
= ‖Lj,δf‖22,Bj

, ∀f ∈ Lipc(R
d), ∀δ > 0 and ∀j ∈ N.

(iii) C(k)(x, y)m(dx)m(dy)
weakly−→ j(x, y)m(dx)m(dy) on Bj ×Bj \ {|x− y| > δ}.

Define πk : L2(Rd,m) → L2(Vk,mk) and Ek : L2(Vk,mk) → L2(Rd,m) as
follows:

πkf(x) =
1

mk(x)

∫

Uk(x)

f(y)m(dy), Ekg(z) = g(x) for z ∈ Uk(x), x ∈ Vk.

Let Ptf(x) := Ex[f(Xt)] and P
(k)
t g(x) := E

(k)
x [g(X

(k)
t )]. Then we have the

following main theorems.

Theorem 1. Assume that (A2)-(A4) hold.

Then EkP
(k)
t πk converges to Pt strongly (and uniformly for t ≤ T ) in L2(Rd,m).

Theorem 2. Assume (A1)–(A4) and that X is conservative. Then, for all ϕ ∈
C+
c (R

d), {(X(k), P
(k)
ϕ ); k ≥ 1} converges weakly to (X, Pϕ).

Remark 1. i) All the above results hold in a class of metric measure space with
volume doubling condition.
ii) We have another version of the results that does not require (A3)(ii).

The above example can be obtained by checking (A1)–(A4) and applying the
above theorems.

For x = (x1, · · · , xd), let Uk(x) = Πdi=1[xi − (2k)−1, xi + (2k)−1]. We finally
state our theorem on the discrete approximation.

Theorem 3. Let j(x, y) : Rd × Rd → R+ be such that

j(x, y)1{|x−y|≥1} ≤M0 <∞ ∀x, y ∈ Rd, lim
j→∞

sup
x∈K

j(x,Bcj ) = 0 ∀K ⊂⊂ Rd.

Assume that the Dirichlet form (E ,F) determined by j(x, y) satisfies (A2)–(A3) (i)
and it is conservative. For x, y ∈ Vk, define

C(k)(x, y) := 1{|x−y|≥c1/k}
1

mk(x)mk(y)

∫

Uk(x)

∫

Uk(y)

j(ξ, η)m(dξ)m(dη).
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Then, the corresponding (E(k),F (k)) is a regular Dirichlet form on L2(Vk,mk).

Let X(k) be the associated Markov chain. Then, {(X(2k), P
(2k)
ϕ ); k ≥ 1} converges

weakly to (X, Pϕ) for all ϕ ∈ C+
c (R

d).
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Absorbing-State Phase Transition for Stochastic Sandpiles and
Activated Random Walks

Leonardo Trivellato Rolla

(joint work with V. Sidoravicius)

We study the long-time behavior of conservative interacting particle systems
in Z: The Activated Random Walk Model for reaction-diffusion systems and the
Stochastic Sandpile. Our main result states that both systems locally fixate when
the initial density of particles is small enough, establishing the existence of a
non-trivial phase transition in the density parameter. This fact is predicted by
theoretical physics arguments and supported by numerical analysis.

1. Introduction

Modern Statistical Mechanics offers large and important class of driven dissipa-
tive systems that naturally evolve to a critical state, characterized by power-law
distributions of relaxation events. Among concepts and theories which attempt
to explain long-ranged spatio-temporal correlations the physical paradigm called
‘self-organized criticality’ takes its particular place. It refers to systems that are
attracted to a stationary critical state without being tuned to a critical point. This
phenomenon is believed to be behind random fluctuations at the macroscopic scale,
self-similar shapes, and huge avalanches caused by small perturbations.

When it refers to non-equilibrium steady states, now it is understood at theoret-
ical level that self-organized criticality (further SOC) is related to a conventional
phase transition. It concerns a system whose natural dynamics drives it towards,
and then maintains it, at the edge of stability. The known examples are related
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to underlying non-equilibrium systems which actually do have a parameter and
exhibit critical phenomena, the so-called absorbing-state phase transitions. Such
phase transitions arise from a conflict between spread of activity, and a tendency
for this activity to die out, or between creation and annihilation processes. The
transition point separates an active phase and an absorbing phase in which the
dynamics gets eventually frozen.

The Stochastic Sandpile Model (SSM) is a continuous-time evolution corre-
sponding to a sandpile model. In this evolution, sites are stable when they bare 0
or 1 grain and unstable if at least 2 grains are present. Each unstable site topples
at rate 1, sending 2 grains to neighbors chosen independently at random.

The Activated Random Walks (ARW) is a reaction-diffusion model given by the
following conservative particle dynamics in Zd. Each particle can be in one of two
states: an active A-state, and a passive (or sleepy) S-state. A-particles perform
continuous-time random walk with jump rate DA = 1 without interacting. S-
particles do not move, that is, DS = 0. Each particle changes its state A→ S at
some halting rate λ > 0 and the reaction A+ S → 2A happens immediately. The
catalyzed transition A+S → 2A and the spontaneous transition A→ S represent
the spread of activity versus a tendency of this activity to die out.

We prove phase transition for both the ARW and the SSM in the one-dimensional
case. The core of our approach is to use the Diaconis-Fulton representation for
each model and state local fixation in terms of total number of jumps.

2. The models and results

The Stochastic Sandpile Model evolves as follows. When a site x has at least
2 particles, it is called unstable and topples at rate 1. When it topples it sends 2
grains to neighboring sites chosen independently at random, that is, according to
the distribution p(y − x), where p(z) = 1

2d if ‖z‖ = 1 and 0 otherwise.

The state of the SSM at each time t ≥ 0 is given by ηt ∈ (N0)
Z
d

, where N0 =
N∪{0} and ηt(x) denotes the number of particles found at site x at time t. For each
site x ∈ Zd, the transitions η → τxyτxwη happen at rate A

(

ηt(x)
)

p(y−x)p(w−x),
where

τxyη(z) =











η(x) − 1, z = x

η(y) + 1, z = y

η(z), otherwise,

and A(k) = 1k≥2 indicates whether site x is unstable. If ν denotes the distribution
of η0, let P

ν denote the law of (ηt)t≥0. This evolution is well defined because the
jump rates are bounded.

We say that the system locally fixates if ηt(x) is eventually constant for each x,
otherwise we say that the system stays active.

Theorem 1. Consider the Stochastic Sandpile Model in the one-dimensional lat-
tice Z, with initial distribution ν given by i.i.d. Poisson random variables with
parameter µ. There exists µc ∈

[

1
4 , 1
]

, such that the system locally fixates a.s. if
µ < µc, and stays active a.s. if µ > µc.
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We now turn to the description of the Activated Random Walk model. Each
particle in the A-state performs a continuous-time random walk with jump rate
DA = 1. The jumps are distributed as p(·), and we assume that p(0) = 0, p(z) ≥ 0,
and

∑

z∈Zd p(z) = 1. Independently of anything else, each A-particle turns to the
S-state at a halting rate λ > 0. Once a particle is in the S-state, it stops moving,
i.e., its jump rate is DS = 0, and it remains in the S-state until the instant when
another particle is present at the same vertex. At such an instant the particle
which is in S-state flips to the A-state, giving the transition A + S → 2A. An
S-particle stays still forever if no other particle ever visits the vertex where it is
located. According to these rules, the transition A → S effectively occurs if and
only if, at the instant of such transition, the particle does not share the vertex
with another particle (the innocuous instantaneous transition 2A→ A+ S → 2A
is not observed). A-particles do not interact among themselves.

The state of the ARW at time t ≥ 0 is given by ηt ∈ Σ = (N0̺)
Z
d

, where
N0̺ = N0 ∪{̺}. In this setting ηt(x) denotes the number of particles found at site
x at time t, and ̺ means one passive particle. We make N0̺ be an ordered set by
setting 0 < ̺ < 1 < 2 < · · · , and let |̺| = 1. We define the addition by setting
̺+0 = 0+̺ = ̺ and ̺+n = n+̺ = 1+n for n > 0, that is, the addition already
contains the A + S → 2A transition. We also define ̺ · 1 = ̺ and ̺ · n = n for
n > 1, the A→ S transition.

The process evolves as follows. For each site x, denoting by A(k) = k1k≥1,
so A

(

ηt(x)
)

is the number of active particles at site x at time t, we have the

transitions η → τxyη at rate A
(

ηt(x)
)

p(y − x) and η → τx̺η at rate λA
(

ηt(x)
)

,
where

τx̺η(z) =

{

̺ · η(x), z = x

η(z), otherwise.

Theorem 2. Consider the Activated Random Walk Model with nearest-neighbor
jumps in the one-dimensional lattice Z with fixed halting rate λ. Suppose the η0(x)
are i.i.d. random variables in N0, having a Poisson distribution with parameter µ.
There exists µc ∈

[

λ
1+λ , 1

]

such that the system locally fixates a.s. if µ < µc and
stays active a.s. if µ > µc. In the particular case of λ = +∞ we have µc = 1.

3. Comment on the proof

For the proof we use an equivalence between fixation for the dynamic stochastic
evolution in infinite volume and stabilizability of configurations in the discrete,
commutative Diaconis-Fulton setting. We introduce semi-legal operations, as well
as some replacements in the Diaconis-Fulton instructions, which as we show give
upper bounds for the amount of activity. Later we explore the instructions, looking
ahead in the future, but in a careful way in order not to explore too much, so that
the subsequent steps would always find fresh randomness. After the exploration,
we performe some semi-legal operations, or replace some of the instructions, in
meticulously chosen locations, so that the particles were settled at convenient
locations, at one hand packed together as much as possible, in order to leave free
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space for the next steps, and on the other hand making sure they would neither
distrub previously settled partilces nor move into regions with explored-but-unused
instructions.

In one dimension, the volume of the convex envelope of the sites where the
particles are settled in our construction, together with the sites where instructions
are explored but not used, is proportional to the number of such particles, and this
does not seem to have a straightforward analogous in higher dimensions. So, even
though this general method is promising for other settings, the proof of fixation is
so far restricted to this case.
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Phase Transitions in the Random Pinning Polymer.

Nikos Zygouras

(joint work with K. S. Alexander)

A polymer pinning model is described by a Markov chain (Xn)n≥0 on a state
state space Σ, containing a special point 0 where the polymer interacts with a
potential. The space-time trajectory of the Markov chain represents the physical
configuration of the polymer, with the nth monomer of the polymer chain located
at (n,Xn). We denote the distribution of the Markov chain in the absence of the
potential, started from 0, by PX and we assume that it is recurrent and has an
excursion length distribution (from the 0 state) with power-law decay:

PX(E = n) =
ϕ(n)

nc
, n ≥ 1.(1)

Here E denotes the length of an excursion from 0, c ≥ 1, and ϕ(·) is a slowly
varying function, that is, a function satisfying ϕ(κn)/ϕ(n) → 1 as n tends to
infinity, for all κ > 0.

When the chain visits 0 at some time n, it encounters a potential of form
u+ Vn, with the values Vn typically modeling variation in monomer species. This
(quenched) pinning model is described by the Gibbs measure

dµβ,u,VN (x) =
1

ZN
eβH

u
N (x,V) dPX(x)(2)

where x = (xn)n≥0 is a path, V = (Vn)n≥0 is a realization of the disorder, and

(3) Hu
N (x,V) =

N
∑

n=0

(u+ Vn)δ0(xn)

and the normalization

ZN = ZN (β, u,V) = EX
[

eβH
u
N (x,V)

]
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is the partition function. The disorder V is a sequence of i.i.d. random variables
with mean zero, variance one and finite exponential moments. Often it is consid-
ered to be standard Gaussian. We denote the distribution of the sequence V by
PV . The parameter u ∈ R is thus the mean value of the potential, and β > 0 is
the inverse temperature.

One would like to understand how the presence of the random potential affects
the path properties of the Markov chain, and in particular how the case with
disorder differs from the homogeneous case Vn ≡ 0, or the annealed case, i.e.
when an average over the disorder is performed. These effects can be quantified
via the free energy fq(β, u) given by

(4) βfq(β, u) = lim
N→∞

1

N
logZN (β, u,V);

the fact that the free energy exists and is nonrandom (off a null set of disorders) is
proved in [2]. The free energy is 0 if u < uqc(β) and strictly positive if u > uqc(β),
where u > uqc(β) is the critical point of the phase transition.

There is a rich phenomenology in this model related to different phase diagrams
and path behaviors in the case where the exponent c < 3/2 or c > 3/2. The critical
case c = 3/2 is particularly interesting since the phase diagram depends on the
slowly varying function ϕ(·).

In this talk we will review the study of the phase diagram that has been obtained
recently in a series of papers [1], [2], [3], [4], [5] etc.
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Superdiffusivity of 1D Lattice KPZ Equation

Tomohiro Sasamoto

(joint work with H. Spohn)

To describe one-dimensional stochastic surface growth phenomena, Kardar,
Parisi and Zhang introduced in 1986 a nonlinear stochastic differential equation,

(1) ∂th(x, t) =
1
2λ0(∂xh(x, t))

2 + ν0∂
2
xh(x, t) +

√

D0ξ(x, t),

where ξ(x, t) is white noise with covariance 〈ξ(x, t)ξ(x′, t′)〉 = δ(x − x′)δ(t − t′).
Applying the dynamical renormalization group analysis, they showed that the
exponent β for the height fluctuations is 1/3. This is characteristic of non-Gaussian
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nature of the fluctuations of the phenomena. The equation (1) is called the KPZ
equation and the universality class related to the KPZ equation is refered to as
the KPZ universality class.

Recently there have been a lot of new information available for the KPZ uni-
versality class due to the explicit computations using the techniques of random
matrices, Bethe ansatz and so on. They are obtained for other growth models like
PNG model and ASEP. There have been only few analysis of the KPZ equation
itself. One reason is the singular behavior of the noise term in the KPZ equation.
In this talk we avoid this difficulty by discretizing space. The equation we study
is

d

dt
uj =

1
6λ0(u

2
j+1 + ujuj+1 − uj−1uj − u2j−1)

+ ν0(uj+1 − 2uj + uj−1) +D
1/2
0 (ξj − ξj−1)

where j ∈ Z and {ξj} is independent white noise. There is an ambiguity for the
discretization but our special choise allows us to obtain explictly the translationay
invariant stationary measures, which is jsut the product of independent Gaussians.
The quantity of our interest is the stationary two-point function defined by

S(j, t) = 〈uj(t)u0(0)〉 − 〈u0(0)〉2.
Here 〈· · · 〉 is the average wrt stationary measure. We prove 1

4 ≤ β ≤ 1
2 using a

method due to Landim et al applied to ASEP. We also show the “relaxation time
approximation” gives β = 1/3.

After a ground state transformation one can rewrite the generator (which we
call the Hamiltonian) in the form,

H = H0 + λ(A∗ −A)
with

H0 =
∑

j∈Z

(aj+1 − aj)∗(aj+1 − aj),

A =
∑

j∈Z

(aja
∗
j+1aj+1 + ajaja

∗
j+1 − a∗jaj+1aj+1 − a∗jajaj+1).

Here aj , a
∗
j satisfy [ai, a

∗
j ] = δij .

After some computations one finds that the main part of the Laplace transform
of the second moment of the two point function is given by

〈ĝ0, (ζ +H)−1ĝ0〉0

where ĝ0 is a certain vector in Fock space. From the KPZ scaling it is expected
this quantity behaves like

〈ĝ0, (ζ +H)−1ĝ0〉0
ζ→0∼= 3−2/3Γ(7/3)(λ2ζ)−1/3

∫

dxx2fKPZ(x)

when ζ → 0. Here fKPZ is the scaling function of the two point function in the
KPZ universality class.
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To get bounds of this quantity we employ the method of Landim, Quastel,
Salmhofer and Yau applied to ASEP. We truncate the resolvent equation associated
with H up to the n-particle subspace of the Fock space. By taking n = 2, 3 we
prove
Theorem. In the limit ζ → 0, the following bounds are valid

λ−12−5/43−3/2ζ−1/4 ≤ 〈ĝ0, (ζ +H)−1ĝ0〉0 ≤ 2−3/2ζ−1/2

By using the relaxation time approximation applied to this scheme we also obtain
the true KPZ exponent 1/3. More details can be found in arXiv: 0908.2096.

Ballisticity Conditions for Random Walk in Random Environment

Alejandro F. Raḿırez

(joint work with A. Drewitz)

For x ∈ Zd define w(x) := {w(e, x) : |e| = 1} where w(e, x) ∈ [0, 1] and
∑

ew(e, x) = 1. The quantity w := {w(x) : x ∈ Zd} is called the environment

and it takes values on the space Ω := PZ
d

, where P = {{p(e) : |e| = 1} : p(e) ≥
0,
∑

e p(e) = 1}. We define a random walk {Xn : n ≥ 0} on the environment w
as the Markov chain which jumps form site y to the nearest neighbor y + e with

probability w(e, y). We denote by Px,w its law on (Zd)
N
. Let µ be a probability

measure on the space Ω with its Borel σ-algebra so that the environment w is
random. If X0 = x, Pw,x is then called the quenched law and Px :=

∫

Pw,xdµ
the averaged or annealed law of the random walk in random environment (RWRE)
{Xn : n ≥ 0}. When for every x and e, µ(w(e, x) > 0) = 1, one says that the
RWRE is elliptic, while if there is a constant κ > 0 such that µ(w(e, x) ≥ κ) = 1
one says that it is uniformly elliptic. We will consider the case in which µ is
a product measure, so that {w(x) : x ∈ Zd} are i.i.d. This model, has origins
in phenomena from biology, crystallography and metal physics. Chernov in [1],
introduced it as simplified model for the replication of DNA chain (see also [14]).
Some reviews on the state of the art of the subject have been given in [12], [17],
[18] and [16].

In dimension d = 1, Solomon established [9] well known recurrence-transience
and ballisticity criteria for an RWRE. Furthermore, in the one-dimensional recur-
rent case, known as Sinai’s random walk [7], the walk moves anomalously slowly
and some refined results have been obtained (see [5] and [3] for a description of
the limiting law; [2] for results related to the local time asymptotics and [8] for
a review). Later, with a series of works during the 2000’s, the one-dimensional
RWRE acquired a high level of mathematical maturity.

Several fundamental problems remain open for the RWRE in dimensions d ≥ 2.
A basic one is to understand under which conditions on the environment, is the
walk transient or ballistic in a given direction given by a non-zero vector l ∈ Sd:
one says that the RWRE is transient in the direction l, if P0-a.s.
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lim
n→∞

Xn · l =∞;

one says that it is ballistic in the direction l if

lim
n→∞

Xn · l
n

> 0.

Using regeneration times, it can be shown that ballisticity on a given direction
implies a law of large numbers limn→∞Xn/n = v, P0-a.s., where v is a determin-
istic speed. Recently, examples of RWRE on elliptic i.i.d. environments which are
transient but not ballistic in a given direction have been given (see for example
[6] and [15] ). The following is one of the basic fundamental open problems in the
field.

Conjecture 1. (Transience implies ballisticity). Consider an RWRE on a
uniformly elliptic i.i.d. environment in dimensions d ≥ 2, which is transient in
the direction l. Then it is ballistic in the direction l.

In 1981, Kalikow [4] studied sufficient conditions which imply transience, proving
in particular the so called Kalikow’s zero-one law, which states that for every
l ∈ Sd, the probability P0(Al ∪ A−l) can have only the values 0 or 1. In 1999,
Sznitman and Zerner [13], proved that any RWRE on dimensions d ≥ 2, on a
uniformly elliptic i.i.d. environment satisfying Kalikow’s condition (see [4]), is
ballistic. Sznitman introduced the ballisticity conditions (T ) in [10] and (T ′) in
[11], weaker than Kalikow’s condition, which also imply ballistic behavior and an
averaged functional central limit theorem so that

n−1/2(X[nt] − [nt]v)

converges in P0-law to a Brownian motion with positive variance. Let γ ∈ (0, 1)
and l ∈ Sd. We say that condition (T )γ is satisfied relative to the direction l
(written in shorthand as (T )γ |l) if for every l′ in a neighborhood of l one has that

lim
n→∞

L−γ logP0(XTU
l′,b,L

· l′ > 0) < 0,

for all b > 0 and Ul′,b,L := {x ∈ Zd : −bL < x · l′ < L} with TUl′,b,L
denoting the

first exit time from Ul′,b,L. One says that condition (T ′) is satisfied relative to l
(written as (T ′)|l) if for every γ ∈ (0, 1), (T )γ |l holds. The following is conjectured.
Conjecture 2. (Equivalence of ballisticity conditions). Consider an RWRE
in a uniformly elliptic i.i.d. environment in dimensions d ≥ 2. Then, for every
γ ∈ (0, 1), (T )γ |l and (T ′)|l are equivalent.

Sznitman proved in [11] the above equivalence for each γ ∈ (0.5, 1). Here we
present the following result.

Theorem 1. (Drewitz-Ramı́rez). Let d ≥ 2 and

γd :=

√
3d2 − d− d
2d− 1

.

Then, for each γ ∈ (γd, 1) and l ∈ Sd−1, (T )γ |l is equivalent to (T ′)|l.
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It can be observed that γd is monotonically decreasing in d. Therefore, γ∞ :=

limd→∞ γd =
√
3−1
2 and

0.366 ≈ γ∞ < γd ≤ γ2 ≈ 0.387.

The proof of Theorem 1 follows [11] and is based on showing that (T )γ |l and
(T ′)|l are equivalent to the so called effective criterion, introduced by Sznitman in
[11]. The effective criterion in direction l, is a condition which somehow mimics
Solomon’s one-dimensional ballisticity condition [9]. A crucial ingredient in the
proof of Theorem 1, is the introduction of control estimates for the occurrence of
atypical quenched exit distributions through boxes B of side L as L→∞:

P0

(

P0,w(XTB
· l ≥ L) ≤ e−Lβ

)

,

Here TB is the first exit time of the random walk from this box and β is an
appropriately chosen parameter. These controls are obtained via renormalization
methods. These estimates have then to be used carefully to obtain a good upper
bound for the probability that the random walk exits large boxes oriented towards
the direction l, starting from itse center, through the side in the direction −l.
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Sharpness of the Percolation Transition in the Two-Dimensional
Contact Process

Jacob van den Berg

The contact process was introduced as a stochastic model for the spread of an
infection in a population with a geometric structure, usually represented by the d-
dimensional cubic lattice. (See [14] for background, many results, and references).

Each vertex x of this lattice represents a location (or individual), of which the
state, 1 (occupied, infected) or 0, (vacant, healthy) at time t is denoted by σx(t).
The dynamics in this model is as follows: A vertex in state 0 goes to state 1 at
a rate equal to λ times the number of neighbours of that vertex that are in state
1. A vertex in state 1 goes to state 0 at rate 1. Here λ is the parameter of the
model, called the infection rate. In this talk we restrict to the case d = 2.

The configuration at time t is denoted by σ(t) := (σx(t), x ∈ Z2). Let µt denote
the distribution of σt when we start at time 0 with all vertices occupied. It is
well-known that µt converges weakly as t→∞. We denote the limit distribution
by ν (=νλ). This measure ν is called the upper invariant measure. The occupied
cluster of a vertex x (that is, the maximal connected component which contains x
and of which every vertex is occupied) is denoted by Cx. (If x is the origin, 0, we
omit the subscript).

We study the sizes of occupied clusters under the measure ν. Motivation comes
from work by Liggett and Steif ([15]) who showed that for λ sufficiently large perco-
lation occurs (that is, νλ(|C| =∞) > 0), and from work by biologists and agricul-
tural researchers. In this latter work (see [12]), limit distributions of contact-like
processes (more complicated than the ‘basic process’ described above) were used to
model vegetation patterns in arid regions in Spain and North-Africa. For some of
these models it was claimed in [12] that simulations suggest power law behaviour
of the cluster size distribution in an interval of some parameter.

In ordinary percolation models it is known that below the percolation thresh-
old the distribution of the cluster size has exponential decay, and that power-law
behaviour can only occur at the percolation threshold. Triggered by the above
mentioned claim by biologists and agricultural researchers concerning very differ-
ent behaviour in ‘their’ contact-like processes, we study this question for νλ.

The proof of exponential decay for ordinary (independent) two-dimensional per-
colation goes back to the celebrated paper [13] by Kesten. A crucial step in that
paper is, somewhat informally and in ‘modern’ terminology, that if the probability
of the event A that there is an occupied crossing of a given, large, box (square) is
neither close to 0 nor close to 1, the expected number of so-called pivotal vertices
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(or, for bond percolation, pivotal edges) is large. (These are vertices with the
property that flipping the state of the vertex, flips the occurrence/non-occurrence
of the event A). This step was proved in a ‘constructive’ way, with a ‘geometric’
flavour. The above mentioned large expectation of pivotal vertices implies that
the derivative (w.r.t. the parameter p) of the probability of A is large. Hence,
once the probability of A is not very small, a small increase of p makes it close to
1. (This property would now be called a ‘sharp-threshold’ phenomenon’).

Moreover, by separate arguments, so-called finite-size criteria hold: if the prob-
ability of A is smaller than some absolute constant ǫ, the cluster size is finite a.s.
(and its distribution has exponential decay), while if it is larger than 1 − ǫ the
system percolates. Combining these things gives exponential decay of the cluster
size for all p smaller than pc.

Russo ([17]) proved a very general ‘approximate zero-one law’ and showed that
the above mentioned sharp-threshold phenomenon can be obtained from this more
general law, using only a minimum of percolation arguments. In particular, in this
way Kesten’s ‘constructive, geometric’ arguments could be avoided, which is very
useful because carrying out such arguments turns out to be (too) hard in many
dependent models. (We should note, however, that for independent percolation
the ‘constructive’ argument still gives the shortest self-contained proof, and that
in some dependent models, see [2], it gives the only currently known proof).

Unfortunately, the above-mentioned finite-size criteria involved a so-called RSW
result of which no (‘reasonably general’) extension to dependent models was known.
This explains why, for a long time, Russo’s approximate zero-one law did not re-
ceive much attention in the percolation community. In the meantime, results
related to Russo’s approximate zero-one law, but considerably sharper and more
explicit, were obtained (in other areas of probability and mathematics in general)
by Kahn, Kalai and Linial ([11]), Talagrand ([18]) and Friedgut and Kalai ([8]).

The importance for percolation of threse sharp-theshold results became clear
much later, when Bollobás and Riordan ([5]) proved a more robust version of the
RSW theorem which, combined with a clever use of the sharp-theshold results,
led to the proof of the long-standing conjecture that the critical probability for
random Voronoi percolation in the plane is 1/2 (and that below 1/2 this model
has exponential decay). The robustness of these arguments led to similar results
for several other two-dimensional percolation models (see [6], [7] and [3]).

The last mentioned paper proved, for 2D lattice models, exponential decay
below the percolation threshold under the quite general condition that, informally
speaking, the model has a ‘nice finitary representation’ (in a well-defined sense) in
terms of finite-valued independent random variables. It turned out that under that
condition only a weak (not explicitly quantitative) form, close to that of Russo’s
([17]), of the sharp-threshold results was needed. As an example it was shown
that the Ising model (with fixed β < βc and external field parameter h) belongs to
this class (thus giving an alternative, more streamlined, proof of the main result in
Higuchi’s paper [10]). Here the role of finite-valued independent random variables
was played by the ‘independent updates’ in a suitable discrete-time dynamics.
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Such a dynamics was possible by (among other things) the nearest-neighbour Gibbs
property of the Ising model. This is a big difference with the contact process, for
which we don’t know a suitable discrete-time dynamics. Therefore, we were not
able to derive exponential decay for this model from Theorem 2.2 in [3], but instead
exploited the full quantitative nature of the sharp-threshold results from [11] and
[18] and followed more closely the route used in [5] and [7] for the Voronoi model
and the Johnson-Mehl model (which, like the Voronoi model, is a model of planar
tessellations, but more complicated than te Voronoi model). (Yet another route,
namely by using results in [9], might work if ν would satisfy the strong FKG
condition, which however (as has been shown by Liggett) it does not. We should
also note here that the exponential-decay arguments in [1] and [16], which for
ordinary percolation work in all dimensions, so far have (even in 2D) no suitable
analog for dependent percolation).

Our main result is the following:

Theorem 1. Let λ be such that

νλ(|C| =∞) = 0.

Then, for every λ′ < λ there exist C1, C2 > 0 such that for all n ≥ 1

(1) νλ′(|C| ≥ n) ≤ C1 exp(−C2n).

The proof follows the main strategy of [5] and [7]. However, the model-specific
properties of the contact process lead to many non-trivial differences in the steps.
Therefore, and because the contact process is one of the main random spatial
models, the proof (in [4]) is given in detail. During the talk we highlight some of
the steps.
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Renormalization of Interacting Diffusions

Frank den Hollander

(joint work with J.-B. Baillon, Ph. Clément, D. Dawson, A. Greven, R. Sun, J.
Swart, and L. Xu)

Systems of hierarchically interacting diffusions allow for a rigorous renormaliza-
tion analysis. By bringing into play the powerful machineries of stochastic analysis
and functional analysis, it is possible to arrive at a complete classification of the
large space-time behavior of these systems into universality classes.

In this talk we describe a renormalization program that was put forward by
D. Dawson and A. Greven in 1993, and present an overview of what has been
achieved so far. The object of interest is a system of coupled SDE’s labelled
by the hierarchical lattice ΩN of order N . The components of this system take
values in a non-empty convex state space S ⊂ Rd, d ≥ 1, each perform a diffusion
according to a local diffusion function g : S → [0,∞), drawn from a suitable
class H, and mutually interact according to a random walk transition kernel on
ΩN that is critically recurrent, with weights that are functions of the hierarchical
distance only. The initial condition is taken to be constant. This system arises
as the continuum limit of discrete evolution equations from population dynamics,
where individuals of different types are organized into colonies and are subject to
resampling within a colony and migration between colonies.

Choices of S that are of interest are:

(1) S = d-dimensional simplex (describing the total fractions of individuals of
d+ 1 different types in the colony);

(2) S = [0,∞)d (describing the total masses of individuals of d different types
in the colony).
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The main focus is on block averages on space-time scale k, i.e., sums of components
over blocks of hierarchical radius k whose time is multiplied by Nk, where k ∈
N ∪ {0}. The goal is to show that:

• For each k and in the limit as N → ∞ (the so-called hierarchical mean-
field limit), a block average of order k evolves according to an autonomous
SDE whose diffusion function is given by F kg, where F is a renormalization
transformation acting on g within the class H.
• As k →∞, F kg converges after appropriate scaling to a limiting diffusion
function g∗ in H.

For d = 1 the renormalization program has been fully carried through. In
example (1), the Wright-Fisher diffusion with g∗(x) = x(1 − x), x ∈ [0, 1], is the
global attractor with a scaling that is independent of g. In example (2), the Feller
diffusion with g∗(x) = x, x ∈ [0,∞), is the global attractor with a scaling that
depends on the asymptotic behavior of g at infinity.

For d ≥ 2 the renormalization program has been partially carried through. In
example (1), the global attractor g∗ is the solution of the equation ∆g∗ = −2 on
int(S) and g∗ = 0 on ∂S, with a scaling that is independent of g. In example (2),
there is a 3-parameter family of attracting fixed points g∗, corresponding to the
branching, catalytic branching, respectively, mutually catalytic branching diffusion,
with a scaling that depends on the asymptotic behavior of g at infinity.

Euclidean Field Scaling Limits of Ising Models and Measure Ensembles

Charles M. Newman

(joint work with F. Camia)

We discuss here joint work with Federico Camia [1], and at the end joint work
in progress with Federico Camia and Christophe Garban, which provides a repre-
sentation for the scaling limit of the critical Ising magnetization field in dimension
d = 2 as a (conformal) random field Φ0, by using Fortuin-Kasteleyn (FK) clusters
and their rescaled area measures.

Φ0 is a limit as a → 0 of Θa
∑

x∈Z2 Sxδ(z − ax), where Sx (x ∈ Z2) are the

±1 spin variables in the critical Ising model and Θa
−1 is the standard deviation

of M̂a, the sum of Sx with ax in the unit square Λ1 = [0, 1]2. The representation
is

(1) Φ0 =
∑

j

ηjµ
0
j(dz),

where the ηj ’s are uniformly random plus or minus signs and {µ0
j} is an en-

semble of finite positive measures with bounded support on the plane such that
∑

j [µ
0
j(Λ)]

2 < ∞ for bounded Λ. Convergence of the sum in (1) is in L2 as a cutoff

parameter ε, corresponding to deleting those µ0
j ’s whose support has diameter less

than ε, tends to zero.
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An elementary consequence of the FK representation and a key feature in our
analysis is the identity,

(2) E(M̂2
a ) = E(

∑

i

|Ĉai |2),

where Ĉai are the critical FK clusters (in aZ2) intersected with the unit square Λ1,

and |Ĉai | are their areas (numbers of sites). Our published results [1] are primarily
tightness and the representation (1) for any subsequence limit Φ0. Two key parts
of the proofs are showing that (i) there are O(1) (as a → 0) clusters touching
Λ1 whose macroscopic diameter is greater than any fixed ε > 0 and (ii) other

clusters contribute negligibly to E(
∑

i |Ĉai |2) for small ε. An important technical
tool in the proofs is the validity for the critical FK model of Russo-Seymour-Welsh
type inequalities, as were recently proved by H. Duminil-Copin, C. Hongler and
P. Nolin.

Work in progress includes uniqueness and conformal covariance of {µ0
j} and

showing that this measure ensemble is a functional of the conformal loop ensem-
ble CLE16/3. This loop ensemble, related to the Schramm-Loewner Evolution
(SLE) [2] with the same parameter 16/3, is the scaling limit of the collection of
critical FK cluster boundary loops, as announced by Smirnov [3]. Other work
in progress or planned includes near-critical scaling limit representations for the
massive (i.e., with exponentially decaying correlations) Euclidean fields that should
accompany the massless critical field Φ0. An interesting aspect of measure ensem-
ble representations is that in principle they should be valid also for Ising model
scaling limits in dimension d = 3 and for q-state Potts models in d = 2 with q = 3
or 4 (so that the critical point corresponds to a second order phase transition).
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Decay of Covariances, Uniqueness of Ergodic Component and Scaling
Limit for a Class of Gradient Systems with Non-convex Potential

Jean-Dominique Deuschel

(joint work with C. Cotar)

Phase separation in Rd+1 can be described by effective interface models. In this
setting we ignore overhangs and for x ∈ Zd, we denote by φ(x) ∈ R the height of
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the interface above or below the site x. Let Λ be a finite set in with boundary

(1) ∂Λ := {x /∈ Λ, ||x− y|| = 1 for some y ∈ Λ}, where ‖x− y‖=
d
∑

i=1

|xi − yi|

and with given boundary condition ψ such that φ(x) = ψ(x) for x ∈ ∂Λ. Let
Λ̄ := Λ ∪ ∂Λ and let dφΛ =

∏

x∈Λ dφ(x) be the Lebesgue measure over RΛ. For a

finite region Λ ⊂ Zd, the finite Gibbs measure νψΛ on RZ
d

with boundary condition
ψ for the field of height variables (φ(x))x∈Zd over Λ is defined by

(2) νψΛ (dφ) =
1

ZψΛ
exp

{

−βHψ
Λ (φ)

}

dφΛδψ(dφZd\Λ)

with

ZψΛ =

∫

RZd
exp

{

−βHψ
Λ (φ)

}

dφΛδψ(dφZd\Λ),

where δψ(dφZd\Λ) =
∏

x∈Zd\Λ δψ(x)(dφ(x)); ν
ψ
Λ is characterized by the inverse tem-

perature β > 0 and the Hamiltonian Hψ
Λ on Λ, which we assume to be of gradient

type:

Hψ
Λ (φ) =

∑

x∈Λ,y∈Λ∪∂Λ
U(φ(x) − φ(y)),(3)

that is, the interaction between two neighboring sites x, y depends only on the
discrete gradient ∇φ(x, y) = φ(x) − φ(y). We thus have a massless model with a
continuous symmetry. U ∈ C2(R) is a function with quadratic growth at infinity:

(4) U(η) ≥ A|η|2 −B, η ∈ R

for some A > 0, B ∈ R. Our state space RZ
d

being unbounded, such models
are facing delocalization in lower dimensions d = 1, 2, and no infinite Gibbs
state exists in these dimensions. Instead of looking at the Gibbs measures of
the (φ(x))x∈Zd , Funaki and Spohn proposed to consider the distribution of the
gradients (∇φ(x, y))x,y∈Zd under ν in the so-called gradient Gibbs measures,

which in view of the Hamiltonian (3), can also be given in terms of a Dobrushin-
Landford-Ruelle description.

Assuming strict convexity of U :

(5) 0 < C1 ≤ U ′′ ≤ C2 <∞
Funaki and Spohn showed in [6], the existence and uniqueness of ergodic gradient
Gibbs measures for every tilt u ∈ Rd. Moreover, they also proved that the corre-
sponding free energy, or surface tension, σ ∈ C1(Rd) is convex. Both results are
essential for the derivation of the hydrodynamical limit of the Ginzburg Landau
model.

In fact under the strict convexity assumption (5) of U , much is known for the
gradient field. At large scales it behaves much like the harmonic crystal or gradient
free fields which is a Gaussian field with quadratic U . In particular Naddaf and
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Spencer [8] showed that the rescaled gradient field converges weakly as ǫց 0 to a
continuous homogeneous Gaussian field, that is for f ∈ C∞

0 (Rd;Rd),

Sǫ(f) = ǫd/2
∑

x∈Zd

d
∑

i=1

(∇φ(x, x + ei)− ui)fi(ǫx)→ N(0, σ2
u(f)) as ǫ→ 0.

where the convergence takes place under ergodic ν with tilt u (see also Giacomin
et al. [7] and Biskup and Spohn [3] for similar results). This scaling limit theorem
derived at standard scaling ǫd/2, is far from trivial, since, as shown in Delmotte
and Deuschel [5], the gradient field has slowly decaying, non absolutely summable
covariances, of the algebraic order

(6) |covν(∇φ(x, x + ei),∇φ(y, y + ej))| ∼
C

1 + ‖x− y‖d , i, j ∈ {1, . . . d}.

The aim of this paper is to relax the strict convexity assumption (5). Our potential
is of the form

U(∇φ(x, y)) = V (∇φ(x, y)) + g(∇φ(x, y))
where V, g ∈ C2(R) are such that

(7) C1 ≤ V ′′ ≤ C2, 0 < C1 < C2 and − C0 ≤ g′′ ≤ 0, with C0 > C2

and

(8) ‖g′′‖L1(R) <∞ or ‖g′′‖L2(R) <∞ or ‖g′‖L1(R) <∞.
Our main result shows that if the inverse temperature β is sufficiently small, that
is if:

(9)

√

β

C1
‖g′′‖L1(R) ≤

C1

2C2

√
d
,

or

(10) (β)1/4||g′′||L2(R) <
(C1)

3/2

2(C2)3/4d1/4

or

(11) (β)3/4||g′||L2(R) ≤
(C1)

3/2

2(C2)5/4
1

(2d)3/4
,

then the results known in the strict convex case hold. In particular we have
uniqueness of the ergodic component at every tilt u ∈ Rd, strict convexity of the
surface tension, scaling limit theorem and decay of covariances. As stated above,
the hydrodynamical limit for the corresponding Ginzburg-Landau model, should
then essentially follow from these results.

Note that uniqueness of the ergodic measures is not true at any β for this type
of models: Biskup and Kotecky give an example of non convex U which can be
described as the mixture of two Gaussians with two different variances, where two
ergodic gradient Gibbs measures coexists at u = 0 tilt, cf. Biskup and Kotecky
[2]. The situation at lower temperature (i.e. large β) is again quite different: using
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renormalization group techniques, Adams et al. show the strict convexity for small
tilt u, cf. [1].

In a previous paper with S. Mueller, cf. [4], we have proved strict convexity of
the surface tension for moderate β in a regime similar to (9). The method used in
[4], based on two scale decomposition of the free field, gives less sharp estimates for
the temperature, however it is more general and could be applied to non bipartite
graphs. In this paper we use a different technique, which relies on the bipartite
property of our model. We consider the distribution of the even gradient (that is
of φ(y)− φ(x) where both x, y are even): which is again a gradient field and show
that under the condition (9), that the resulting Hamiltonian is strictly convex.
The main idea, similar to [4], is that convexity can be gained via integration; In
fact we show more: the Hamiltonian associated to the even variables admits an
random walk representation, which is the key tool in deriving covariance estimates
such as (6) and scaling limit theorems. The other ingredient is the fact, that given
the even gradients, the conditional law of the odd variables is simply a product
law. Of course this is a special feature of our bipartite model, in particular it would
be quite challenging to iterate the procedure, a scheme which could possibly lower
the temperature towards the transition βc.
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