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Abstract. Technological developments have created a constant incoming
stream of complex new data structures that need analysis. Modern statistics
therefore means mathematically sophisticated new statistical theory that gen-
erates or supports innovative data-analytic methodologies for complex data
structures. Inherent in many of these methodologies are challenging numeri-
cal optimization methods. The proposed workshop intends to bring together
experts from mathematical statistics as well as statisticians involved in serious
modern applications and computing. The primary goal of this meeting was
to advance the mathematical and methodological underpinnings of modern
statistics for complex data. Particular focus was given to the advancement of
theory and methods under non-stationarity and complex dependence struc-
tures including (multivariate) financial time series, scientific data analysis in
neurosciences and bio-physics, estimation under shape constraints, and high-
dimensional discrimination/classification.
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Introduction by the Organisers

The workshop Challenges in statistical theory: Complex data structures and algo-
rithmic optimization, organised by Rudolf Beran (Davis, CA), Claudia Klüppelberg
(TU München) and Wolfgang Polonik (Davis, CA) was held August 23rd – Au-
gust 29th, 2009. This meeting was well attended by 49 participants with diverse
geographic, demographic and disciplinary representation.
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The theme of the conference addressed the challenges to modern Statistics cre-
ated by the ongoing emergence of novel, large, and complex data types. Human
ability to collect data through sophisticated electronic technologies has outstripped
human ability to distill information from the data. Resolving the situation re-
quires, among other things, fundamental new developments in statistical theory
and algorithms. Traditional probabilistic studies of statistical procedures remain
an important tool but no longer suffice. Data is arguably not random in the sense
of probability theory; data may reside naturally on a manifold or other algebraic
structure; the procedure under study may be very complicated; and probability
modeling in some modern problems, such as classification of highly structured
data, has not been effective. Emerging new types of data include: single molecule
observations; complex simultaneous recording of several neurons; the outcomes of
computer experiments; high dimensional observations of brain waves that need to
be processed in real time (if possible); or high-frequency financial data.

To date, the most powerful statistical methodologies have been developed for
data that resides in a Euclidean space. Emerging data types pose a variety of
questions that include: On what algebraic structure does the data naturally re-
side? On this algebraic structure, can we develop statistical methodologies that
address the questions posed by those who collected the data? In particular, can we
devise for such data analogs of successful statistical methodologies for Euclidean
data? Meeting such challenges requires communication among those most involved
with the new types of data, those with the expertise to identify suitable mathe-
matical formulations, those who have thought deeply about abstract statistical
inference, and those who seek to devise new paradigms for statistical reasoning
beyond probability modeling of the data.

Thus, a fundamental task for Statistics is to develop powerful theoretical tools
that engender and validate effective methodologies for the analysis of modern data
types arising in a variety of fields. To do so first requires gaining sufficient disci-
plinary and mathematical insight into the new underlying data structures. The
workshop brought together experts from mathematical statistics and the statistical
sciences. The primary goal was to address the foregoing challenges by broadening
the mathematical underpinnings of modern statistics. The secondary goal was to
foster cross-fertilization between the core of statistics and the statistical sciences.

Workshop participants presented a range of novel data structures and of method-
ologies proposed for their analysis. Mathematical advances were exhibited, for
instance in the area of model selection for functions in high dimensional spaces,
in estimation under heavy tails, or in estimation under shape restrictions. Tools,
such as Malliavin calculus, for the large sample analysis of certain statistics were
discussed. Methodological advances in the areas of modeling of nonstationarity,
the construction of confidence intervals for classification error, or the testing of
functional autoregression were treated. Algorithmic and/or computational issues
are inherent in many of these challenges, and many of the presentations addressed
this aspect.
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Summary: Complex high dimensional data is rather the norm than the excep-
tion in modern statistics, and modeling or analyzing such complex data is a huge
challenge. In order to properly understand these approaches effective mathemati-
cal techniques are necessary. Making advanced methodology feasible in practical
applications usually also requires devising sophisticated optimization/algorithmic
methodologies. New paradigms beyond probability modeling are needed to val-
idate complicated statistical procedures. Balancing all of these ingredients is a
fundamental challenge. Substantial progress in these directions requires input
from various sides. The workshop brought out the issues and made significant
contributions to the program outlined.
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Abstracts

Modeling Nonstationarity using Deformed Random Fields

Ethan B. Anderes

This talk will present work on using non-linear spatial transformations to model
certain types of nonstationarity. The use of deformations for modeling nonstation-
ary processes has been applied in diverse fields from geophysics to image analysis.
These models are natural extensions of stationary processes that are simple to
understand but give rise to a diverse range of behavior. Even though these models
seem a good choice when modeling nonstationary random fields they are generally
difficult to work with because of the complex restrictions on the deformations like
invertablility. We will begin the talk by discussing general approaches to model-
ing nonstationarity, then focus attention to the deformation approach. Finally we
review some open problems for classifying nonstationary random fields.

The use of deformations to model nonstationary processes was first introduced
to the spatial statistics literature by Sampson and Guttorp [5]. Their work, as
well as that of subsequent authors consider estimating the deformation f when
observing a deformed random field Z ◦f at sparse observation locations with inde-
pendent replicates of the random field. Three recent papers ([4], [2],[3]) study the
different problem of estimating a deformation f from dense observations of a single
realization of a deformed isotropic random field Z ◦ f in two dimensions. These
deformed isotropic random fields provide a flexible semi-parametric model of non-
stationarity for random fields. In addition, this observation scenario is becoming
increasingly important with the abundance of high resolution digital imagery and
remote sensing. One of the more recent motivations for the deformation model un-
der the one-realization observation scenario is gravitational lensing of the cosmic
microwave background (CMB). The gravitational effect from intervening matter
distort the CMB images to produce deformed random eld observations. In the
hope of improving estimates of cosmological parameters and the mass distribution
in the universe (including dark matter) there is considerable interest in detecting
and measuring the lensing of the CMB

We present recent work on establishing the strong consistency for the estimation
of the deformation f when observing Z ◦ f on a dense grid in a bounded simply
connected domain in R2, as the grid spacing goes to zero [2]. We also present fixed
domain asymptotic results that establish consistent estimates of the variance and
scale parameters for a Gaussian random field with a geometric anisotropic Matérn
autocovariance in dimension d > 4 (see [1]). When d < 4 this is impossible
due to the mutual absolute continuity of Matérn Gaussian random fields with
different scale and variance (see Zhang [6]). Informally, when d > 4, we show
that one can estimate the coefficient on the principle irregular term accurately
enough to get a consistent estimate of the coefficient on the second irregular term.
These two coefficients can then be used to separate the scale and variance. We
extend our results to the general problem of estimating a variance and geometric
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anisotropy for more general autocovariance functions. Our results illustrate the
interaction between the accuracy of estimation, the smoothness of the random
field, the dimension of the observation space, and the number of increments used
for estimation. As a corollary, our results establish the orthogonality of Matérn
Gaussian random fields with different parameters when d > 4. The case d = 4 is
still open.
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Model selection for functions on high-dimensional spaces

Lucien Birgé

(joint work with Yannick Baraud)

We observe some random object X with distribution P (s, τ) which depends on
an unknown parameter s ∈ S and a known information parameter τ > 0 which
converges to zero when the amount of information goes to infinity. For instance
τ = n−1 when X is an i.i.d. sample of size n, and τ = σ2 when X is a white noise
with variance σ2. For simplicity, we assume here that τ < 1/2. We also assume
that S is a subset of L2(µ) with µ a probability on E = [−1, 1]k and we measure
the risk R (s, ŝ, τ) of an estimator ŝ(X) at s using the quadratic loss, i.e.

R (s, ŝ, τ) = E

[
‖ŝ(X)− s‖2

]
.

When k = 1 and we assume that s is smooth, for instance s ∈ H1(β), the space
of Hölderian functions on [−1, 1] with smoothness β, we can build estimators
with a risk bounded by C(s, β)τ2β/(2β+1). In this case we get a reasonable rate
(for instance τ2/3 for Lipschitz functions) unless β is small. But the situation
changes drastically when k gets large, the assumption that s ∈ Hk(β) leading to
the conclusion that one can only get a risk bounded by C(s, β)τ2β/(2β+k). This
is a very weak bound when k is large, unless β is also very large, which is often
unrealistic. Smoothness assumptions are useful in low dimensions but not any
more in large dimensions (a phenomenon which is often refered to as the “curse
of dimensionality”). They have therefore to be replaced by more useful ones. A
simple choice is to assume a parametric model for s but since this is quite a strong
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assumption, more flexible structural assumptions on s have been considered in the
past like additive models, the single index model, artificial neural networks, etc.
Many such structural assumptions amount to write s as g ◦u where u is a bounded
function on E with a rather simple structure and g is a function on the line. In
this case, the simple structure of u allows to estimate it at a high rate and the
estimation difficulty is concentrated on g which is a function on a one-dimensional
space. Thus we avoid to mix a complicated structure with a high dimension.

Recently, some attempts have been made to compute risk bounds for the esti-
mation of parameters of the form g ◦u. The first one is [4] (already announced by
O. Lepski in a conference at the CIRM and available to the authors several years
ago) but it only deals with the white-noise framework and the L∞-loss which hap-
pens to lead to quite different results. The second one [3] is closer to our approach
but focuses on some special cases of composite functions and the regression frame-
work. Our approach, based on model selection has actually more general purposes:

• It applies to various statistical models including density estimation, es-
timation of a regression function or the intensity of a Poisson process,
estimation for Gaussian sequences, etc.
• It is completely adaptive to various smoothness or structural assumptions.
• It is robust in the sense that we only assume that g◦u is an approximation
for s.

Unfortunately, such a level of generality has a price and our construction leads
to very complex estimators which are unlikely to be computed in a reasonable
amount of time.

The main ingredient for our construction is the following theorem that applies
to various statistical frameworks as indicated above and proved in [1] and [2].

Theorem 1. Let S be a countable family of subsets S of L2(µ), each S being a
subset of some finite-dimensional linear space with dimension D(S) ≥ 1, and let
π be some probability on S. There exists an estimator ŝ = ŝ(X) with values in⋃

S∈S
S satisfying, for all s ∈ S,

(1) E

[
‖ŝ− s‖2

]
≤ C inf

S∈S

{
inf
t∈S
‖t− s‖2 + τ

[
D(S) − log

(
π(S)

)]}
,

for some universal constant C.
Starting from this theorem and assuming that g is continuous, we introduce

families of subsets of finite-dimensional linear spaces, F and T, to approximate g
in L∞(µ)-norm and u in L2(µ)-norm respectively. We use these two families to
build a new family S of models which approximate g ◦ u and we apply Theorem 1
to S to get an estimator ŝ for s with a risk bound of the form (1). Apart from an
unavoidable bias term of the order of ‖s−g◦u‖2, the bound involves the properties
of the families of models F and T and the modulus of continuity of g. To be more
specific, when s = g ◦ u and g is Lipschitz, the resulting risk bound is the same
(up to an extra log(τ−1) factor) as the sum of the risks for estimating g with the
family F and u with the family T by the method of Theorem 1. One possible
illustration is the estimation of g ◦ u when u takes its values in [−1, 1]l, l < k, and
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both u and g have isotropic Hölderian smoothnesses of order α and β respectively,
with α > max{β; 1}. Then, the overall smoothness of s = g ◦ u is β which results
in a risk bound of order τ2β/(2β+k) when we consider classical methods based on
smoothness assumptions to estimate s. Our strategy which uses the fact that s is
a composite function results in a risk bound of order

max
{
τ2β/(2β+l);

[
τ log(τ−1)

]2θ/(2θ+k)
}

with θ = α(min{β; 1}).
It is easy to see that, under our assumption on α, this bound provides a better
rate of convergence to zero than τ2β/(2β+k) when τ → 0. Moreover we need not
know in advance the values of l, α and β to build our estimator.

The method actually also applies to approximations of s by additive (or gener-
alized additive) models, the single or multiple index model, artificial neural net-
works and we may actually design an estimator which automatically finds the best
of these structures to approximate s.
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mators, Ann. Inst. Henri Poincaré, Probab. et Statist., 42 (2006), 273–325.
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Estimation of high-dimensional intervention and causal effects

Peter Bühlmann

We assume that we have observational data, generated from an unknown underly-
ing directed acyclic graph (DAG) model. A DAG is typically not identifiable from
observational data, but it is possible to consistently estimate the equivalence class
of a DAG. Moreover, for any given DAG, causal effects can be estimated using
intervention calculus. Here, we combine these two parts. For each DAG in the
estimated equivalence class, we use intervention calculus to estimate the causal ef-
fects of the covariates on the response. This yields a collection of estimated causal
effects for each covariate. We show that the distinct values in this set can be
consistently estimated by a new algorithm that uses only local information of the
graph. Sparsity and so-called faithfulness for the distribution are the two key as-
sumptions for the asymptotic analysis which also covers the framework with many
more variables than sample size. Our local approach is computationally fast and
feasible in high-dimensional problems.We demonstrate the merits of our methods
on two large-scale biological systems.

Our work is motivated by the following problem in biology. We want to know
which genes play a role in a certain phenotype, say a disease status or, in one of our
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cases, a continuous value of riboflavin (vitamin B2) production in the bacterium
Bacillus Subtilis. To be more precise, our goal is to infer which genes have an effect
on the phenotype in terms of an intervention: if we knocked down single genes,
which of them would show a relevant or important effect on the phenotype? The
difficulty is, however, that the available data are only observational. Using such
observational data, we want to infer all (single gene) intervention effects. This
task coincides with inferring causal effects, a well-established area in statistics, cf.
[3] or [4]. We emphasize that in our applications, it is exactly the intervention or
causal effect which is of interest, rather than a regression-type effect of association.

[3, p.285] formulates the distinction between associational and causal concepts
as follows: An associational concept is any relationship that can be defined in terms
of a joint distribution of observed variables, and a causal concept is any relationship
that cannot be defined from the distribution alone. (...) Every claim invoking
causal concepts must be traced to some premises that invoke such concepts; it
cannot be inferred or derived from statistical associations alone. Thus, in order to
obtain causal statements from observational data, one needs to make additional
assumptions. One possibility is to assume that the data were generated by a
directed acyclic graph (DAG) which is known beforehand. DAGs describe causal
concepts, since they code potential causal relationships between variables: the
existence of a directed edge x → y means that x may have a direct causal effect
on y, and the absence of a directed edge x→ y means that x cannot have a direct
causal effect on y.

Given a set of conditional dependencies from observational data and a corre-
sponding DAG model, one can compute causal effects using intervention calculus
([3]).

Here, we consider the problem of inferring causal information from observational
data, under the assumption that the data were generated by an unknown DAG.
This is a more realistic assumption, since in many practical problems, one does not
know the DAG. In this scenario, the causal effect is typically not defined uniquely,
and that is not surprising given the description of causality by [3] above.

A DAG is typically not identifiable from observational data, because conditional
dependencies only determine the skeleton and the so-called v-structures of the
graph. The skeleton and v-structures determine an equivalence class of DAGs
that all correspond to the same probability distribution. This equivalence class,
which is identifiable from observational data, can be described by a completed
partially directed acyclic graph (CPDAG).

We describe a new, computationally feasible algorithm, even if the number of
variables (i.e. nodes in the graph) is large, which uses the CPDAG as input for
inferring lower bounds on intervention or causal effects. Furthermore, we show
that in the case of noise and estimation error, we can still asymptotically infer the
CPDAG and the lower bounds for causal effects even if the number of variables p
(number of nodes in the graph) is much larger than sample size n, p ≫ n. Such
a consistency result relies on sparsity of the (causal) DAG and the so-called faith-
fulness assumption for the data-generating probability distribution with respect
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to the underlying DAG. Details are given in [2] and some of the results there rely
on [1]. Furthermore, we demonstrate the method to predict the most important
intervention effects in two large-scale biological systems from Bacillus Subtilis and
S.Cerevisiae.
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Distilled Sensing: Active Sensing for Sparse Signal Recovery

Rui M. Castro

(joint work with Jarvis D. Haupt, Robert D. Nowak)

The study and use of sparse representations in data-rich applications has garnered
significant attention in the signal processing, statistics, and machine learning com-
munities. In the present work we develop a novel sensing procedure called Distilled
Sensing (DS), which is a sequential and adaptive approach for recovering sparse
signals in noise.

Passive sensing approaches, currently the most widespread data collection meth-
ods, involve non-adaptive data collection procedures that are completely specified
before any data is observed. In contrast, DS collects data in a sequential and
adaptive manner. Often such procedures are known as active sensing or sequen-
tial experimental design, and allow the use of data observed in earlier stages to
guide the collection of future data. The added flexibility of active sensing, to-
gether with a sparsity assumption, has the potential to enable extremely efficient
and accurate inference.

In essence, DS exploits the fact that it is often easier to rule out locations where
the signal is absent than it is to precisely detect the location of non-zero signal com-
ponents. Following each observation of the sequential DS procedure, a coarse-level
significance test is performed to effectively identify a lower-dimensional subspace
containing the unknown signal. This allows the sensing procedure to carefully
focus on the relevant signal subspace, gradually distilling the observations be-
ing made, and resulting in rather dramatic improvements in the recoverability of
sparse signals compared to that of passive sensing methods. Similar sensing strate-
gies have been previously proposed in the bio-statistics literature, and the work of
Zehetmayer et al is representative of those approaches. The main contribution of
our work is the formal quantification of the gains attained by such procedures.

Specifically, we consider the following observation model, which is suitable for
a variety of applications including the monitoring of the radio spectrum for op-
portunistic transmission and astronomical surveying. Let x = (x1, . . . , xn) ∈ Rn
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be a sparse vector, such that most entries are zero. We cannot observe x directly,
but instead make observations of the form

Y
(j)
i = xi +

(
γ
(j)
i

)−1/2

Z
(j)
i , j = 1, . . . , k

where Z
(j)
i

i.i.d.∼ N (0, 1) are Gaussian random variables with mean zero and variance

one, and γ
(j)
i is the precision associated with the jth measurement of the ith entry

of x (by convention if γ
(j)
i = 0 the entry is not measured). In addition we impose

a restriction on the total precision, namely
∑k

j=1

∑n
i=1 γ

(j)
i ≤ n.

In the work of Donoho and Jin the authors considered a very particular in-
stance of this model, where k = 1 and therefore only a single measurement step

X(1) is taken, with γ
(1)
i = 1 for all i. They show the following result in that setting:

Theorem [Donoho and Jin 2004]: Let k = 1 and x ≥ 0 be a sparse vector such
that only n1−β of the entries are non-zero (β ∈ (0, 1)). Let S = {i : xi 6= 0} denote
the support of the signal. If the non-zero entries of x are larger than

√
2β logn

then there is a support set estimator Ŝ obtained by thresholding the observations

Y (1) such that

FDP(Ŝ)
P→ 0 and NDP(Ŝ)

P→ 0, as n→∞ ,

where FDR(Ŝ) = |Ŝ \ S|/|Ŝ| is the False Discovery Proportion and NDR(Ŝ) =

|S \ Ŝ|/|S| is the Non Discovery Proportion. Conversely if the non-zero entries
of x are smaller than

√
2β logn no procedure can simultaneously control the FDP

and NDP.

This result shows that the signal support can only be reliably recovered if the
signal magnitude is larger than

√
2β log n. Contrasting with this, we show that if

multiple measurement steps are allowed (under a total precision budget) a much
better result is achievable. This improvement is only possible when γ(j) are allowed

to depend explicitly on past observations {Y (ℓ),γ(ℓ)}ℓ<j. If such dependence in
not allowed there is no advantage of taking multiple measurements, and the earlier
result the best possible. For the proposed measurement model we show that:

Theorem: [Haupt, Castro and Nowak 2009]: Let x ≥ 0 with n1−β non-zero
components of amplitude µ(n) (β ∈ (0, 1)). There exists a sequential measurement
procedure (called Distilled Sensing) using k = 1+ log logn measurement steps and

satisfying the precision budget
∑k

j=1

∑n
i=1 γ

(j)
i ≤ n, yielding a support estimate

ŜDS such that if µ(n) > log . . . logn for some finite iteration of the logarithm then

FDP(ŜDS)
P→ 0, NDP(ŜDS)

P→ 0, as n→∞ .

Furthermore the performance gains above are achievable only when allowing adap-
tation of the measurement procedure based on previous observations.
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This result shows that by using a sequential experimental design approach it
is possible to greatly enlarge the class of signals that can be reliably recovered.
Similar results can also be stated for detection of sparse signals, in the spirit of
the work of Ingster (2007). A preliminary version of this work has appeared in
Haupt et al 2009.
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Application of Heteroskedastic Spatial Models to Computer
Experiments

Richard A. Davis

(joint work with Jay Breidt, Wenying Huang, Ke Wang)

We consider modeling a deterministic computer response as a realization from a
stochastic heteroskedastic process (SHP), which incorporates a spatially-correlated
volatility process into the traditional spatially-correlated Gaussian process (GP)
model. Unconditionally, the SHP is a stationary non-Gaussian process, with sta-
tionary GP as a special case. Conditional on a latent process, the SHP is a
non-stationary GP. The sample paths of this process offer more modeling flexi-
bility than those produced by a traditional GP, and can better reflect prediction
uncertainty. GP prediction error variances depend only on the locations of inputs,
while SHP can reflect local inhomogeneities in a response surface through predic-
tion error variances that depend on both input locations and output responses.

We use maximum likelihood for inference, which is complicated by the high
dimensionality of the latent process. Accordingly, we develop an importance sam-
pling method for likelihood computation and use a low-rank kriging approxima-
tion to reconstruct the latent process. Responses at unobserved locations can be
predicted using empirical best predictors or by empirical best linear unbiased pre-
dictors. Prediction error variances are also obtained. In examples with simulated
and real computer experiment data, the SHP model is superior to traditional GP
models.
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On the Behavior of Marginal and Conditional Akaike Information
Criteria in Linear Mixed Models

Sonja Greven

(joint work with Thomas Kneib)

Linear mixed models are a powerful inferential tool in modern statistics and have
been used in a wide range of areas. Using penalized splines, they are employed
in nonparametric regression to model smooth functions, varying coefficients or
surfaces. In functional data analysis, they have been used in functional principal
component analysis. They allow for simple additive extension of such models
as well as the extension to multilevel or longitudinal data. Moreover, they are
computationally attractive for large and complex data sets. We consider the linear
mixed model

y = Xβ + Zb+ ε,

where X and Z are known design matrices, β is a fixed parameter vector, b and
ε are assumed to be independent, b ∼ N(0,D) and ε ∼ N(0,σ2In).

As linear mixed models offer large flexibility in modeling, model selection be-
comes increasingly important. Selection here includes the selection of random
effects, such as those modeling nonlinearity of a smooth function in the penalized
splines approach. In standard settings, the Akaike information criterion (AIC) is
defined as minus twice the maximized log-likelihood, plus 2k, two times the num-
ber of estimable parameters in the model. The AIC is asymptotically unbiased
for twice the expected relative Kullback-Leibler distance, and minimizing the AIC
thus can be seen as minimizing the average distance between an approximating
model and the underlying truth. In the linear mixed model, two versions of the
AIC have been used for model selection.

The marginal AIC (mAIC) is based on the marginal likelihood derived from
y ∼ N (Xβ, σ2In + ZDZ ′), and uses the number of fixed effects plus the number
of variance components as the number of parameters. Note that this is the AIC
returned by standard software such as R and SAS. We show that the marginal AIC
is not asymptotically unbiased for twice the expected relative Kullback-Leibler
distance. It favors smaller models without random effects. This is due to standard
regularity conditions not being fulfilled in mixed models. First, the parameter
space is not (a transformation of) Rk, as the space for the variance components is
restricted to ensure that D is positive semi-definite. Second, observations are not
independent, as the random effects induce a correlation structure in y.

The conditional AIC (cAIC) was introduced by Vaida and Blanchard [3] as more
appropriate when the focus is on the random rather than on the fixed effects. The
cAIC uses the conditional likelihood based on y|b ∼ N (Xβ + Zb, σ2In), as well
as the effective degrees of freedom, i.e the trace of the hat matrix. Under the
assumption that σ−2D = D∗ is known, they show that the cAIC is unbiased for
the conditional Akaike information, a conditional version of twice the expected
relative Kullback-Leibler distance. They propose to use the cAIC with estimated
D∗ when it is not known. We show that ignoring the estimation uncertainty in



2196 Oberwolfach Report 39/2009

D̂∗ leads to the following peculiar behavior: the cAIC always chooses inclusion of
an additional random effect, as long as the random effect is not predicted to be
exactly zero.

A corrected version of the conditional AIC taking into account the estimation
uncertainty has been proposed by Liang et al [2]. However, this corrected cAIC
had not been available in closed form so far. Numerical approximations were
intractable for large data sets. We now derive a closed form representation of the
corrected cAIC, which can be computed efficiently.

Theorem 1 For the cAIC in the linear mixed model with unknown D∗(θ∗), the
effective degrees of freedom Φ0 can be written as

Φ0 = trace

(
∂ŷ

∂y

)
= n− trace(Â∗) +

s∑

j=1

e′jB̂
−1
∗ Ĝ∗Â∗Ŵ∗,jÂ∗y,

assuming that (after reordering) θ∗ = (θ′s, θ
′
t, θ

′
q−s−t)

′ for some 0 ≤ s, t ≤ q, such

that Θ = {θ∗|θs ∈ Θs ⊆ Rs, θt ∈ C ⊂ Rt, θq−s−t ∈ F (θs, θt) ⊂ Rq−s−t}, θ̂s is in
the interior of Θs, C is a cone with vertex at some θ0, F (θs, θ0) = θ1 for all θs for

some θ1, and (θ̂t, θ̂q−s−t) = (θ0, θ1).

A∗ = V −1
∗ − V −1

∗ X(X ′V −1
∗ X)−1X ′V −1

∗ ,

W∗,j =
∂

∂θ∗,j
V∗, U∗,jl =

∂

∂θ∗,l
W∗,j , j, l = 1, . . . , s,

ej is the jth unit vector, V∗ = σ−2Cov(y), B̂∗ is negative definite, and the entries
in G∗ and B∗ involve simple expressions in y, A∗, W∗,j and U∗,jl, j, l = 1, . . . , s.
Hats denote matrices as functions of θ∗ evaluated at the (restricted) maximum

likelihood estimator θ̂∗.

We illustrate all results in simulation studies and in an application of additive
mixed models to the analysis of childhood malnutrition in Zambia.

A longer technical report is available at [1].
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A fast and memory-efficient boosting implementation for generalized
linear and additive models

Torsten Hothorn

Boosting can be seen as a very general functional approach to statistical model
fitting. Its flexibility is extremely attractive also from a computational point of
view, since a huge class of classical and modern statistical models can be fitted by
such a procedure.

Two model classes are especially interesting; generalized linear models and gen-
eralized additive models. [3] introduced boosting as a means for fitting additive
models. For each model component, one base-learner is specified and only one
base-learner is selected and updated in each iteration of the algorithm. For linear
models, the same idea can be applied [1]. [2] give an overview on these and related
issues. The generality of the additive modelling framework lead to boosting algo-
rithms for structured additive models, especially useful for modelling space-time
data and geoadditive regression [5].

The conceptual tools for boosting well-defined statistical models are now in
place. However, there is always a trade-off between computational flexibility, gen-
erality and efficiency of a specific implementation of such models. Here, we focus
on generalized linear and additive models for problems where both the number of
observations and exploratory variables may be in the millions. We present tech-
niques to speed up computations and to reduce the memory footprint considerably.

For smooth model components, P -splines (univariate) or tensor-product P -
splines (interaction surfaces) are used as base-learners. This choice is computation-
ally attractive because the B-spline design matrices are sparse by definition. Thus,
fitting such base-learners can make use of sparse matrix functionality. Moreover, it
is possible to remove tied observations before iteratively fitting these base-learners.
Thus, fitting a smooth base-learner only requires fitting a rather low-dimensional
system of equations.

Experiments suggest that high-dimensional linear models can be fitted by a
component-wise boosting algorithm really fast (even faster than the lasso or elastic-
net). Additive models for millions of observations can be fitted on standard desk-
top computers. Bootstrapping for model tuning and model inference benefits from
these improvements as well. The corresponding R package mboost [4] is available
from R-forge.R-project.org.
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[3] Peter Bühlmann and Bin Yu. Boosting with L2 loss: Regression and classification. Journal

of the American Statistical Association, 98(462):324–338, 2003.
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Asymptotically Optimal Spatially Adaptive Splines

Xiaoming Huo

(joint work with Heeyoung Kim)

In penalized splines [1], generalized cross validation (GCV) is widely used to choose
the algorithmic parameter. It is known that GCV is asymptotically optimal (AO):
under certain conditions, when the sample size goes to infinity, the estimates that
corresponds to GCV is as good as the best estimates; Because its inefficiency con-
verges to the best possible (which is one) [2]. Classical GCV consider a univariate
penalizing parameter; while spatially adaptive GCV (SA-GCV) considers varying
penalty parameters over the space [3, 4]. We give a sufficient condition on the AO
of SA-GCV. Our work automatically leads to some design guidelines. We name
the resulting splines the asymptotically optimal spatially adaptive splines. The key
mathematical ingredient in this work is to work out conditions, under which the
coefficient of variations of the reciprocals of the eigenvalues of a design matrix goes
to infinite when the sample size goes to infinity.
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Testing the stability of the functional autoregressive process

Marie Hušková

(joint work with Lájos Horváth, Piotr Kokoszka)

The talk concerns test procedures for detection of a changes in a functional au-
toregressive process. We consider the functional autoregressive process defined by
the equation

Xn+1 = ΨnXn + εn+1, n = 1, . . . , N,

where Xn ∈ L2([0, 1]) are observed curves, εn are independent identically dis-
tributed (iid) mean zero innovations in L2([0, 1]) and Ψn are operators. We pro-
pose a method for testing the constancy of the operators Ψn:

H0 : Ψ1 = . . . = ΨN
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against a change point alternative

H1 : there is k∗ < N : Ψ1 = . . . = Ψk∗ 6= Ψk∗+1 = . . . = ΨN .

The developed test procedures are based on the differences of the sample auto-
covariances of projections of the functional observations on estimated principal
components(PCs). The limit distribution can be derived by replacing the esti-
mated PCs by their population counterparts and using a functional central limit
theorem for ergodic sequences. But in the functional setting, this replacement
introduces asymptotically nonnegligible terms, which cancel because of the special
form of the test statistic. The estimated PCs are determined only up to a sign,
and our statistic is invariant to these random signs. Finally, to show that the
remaining terms due to the estimation of the PCs are asymptotically negligible,
we develop a new technique which involves the truncation at lag O(logN) of the
moving average representation of the ARH(1) process , a blocking technique that
utilizes this truncation (and Mensovs inequality). We think that these tools will
prove useful in other inference problems related to the functional ARH(1) model.
Limit behavior of the developed test statistic is investigated.
Finite sample performance is examined by an application to a data set.
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On Riesz and Wishart Distributions Associated with Decomposable
Undirected Graphs

Thomas Klein

(joint work with Steen A. Andersson)

Classical Wishart distributions on the open convex cones of positive definite matri-
ces and their fundamental features are extended to generalized Riesz and Wishart
distributions associated with decomposable undirected graphs using the basic the-
ory of exponential families. The families of these distributions are parameterized
by their expectations/natural parameter and multivariate shape parameter and
have a non-trivial overlap with the generalized Wishart distributions defined in
[1, 2]. This work also gives an explicit description of the “Hyper Wishart laws”
introduced in [3] and extends the “Wishart distributions of type I” from [4]. We
shall emphasize that our main motivation for defining and investigating generalized
Riesz/Wishart distributions lies in the fact that they form a natural, flexible, and
tractable distribution family adapted to the structure of the underlying sample
space and well-suited for likelihood inference. Moreover, we present various ex-
amples of how generalized Riesz/Wishart distributions appear naturally in certain
settings derived from Gaussian graphical models.
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Statistical challenges in nanoscale biophysics

Samuel Kou

The renowned physicist Richard Feynman once said that “everything that living
things can do can be understood in terms of the jigglings and wigglings of atoms.”
Advances in nanotechnology of the last two decades have brought scientists closer
to this “holy grail” than ever before. For the first time scientists were able to
study biological processes on an unprecedented nanoscale molecule-by-molecule
basis, opening the door to addressing many problems that were inaccessible just
a few decades ago.

The new field of nanoscale single-molecule biophysics has attracted much atten-
tion from biologists, chemists and biophysicists because nanoscale single-molecule
experiments offer many advantages over the traditional experiments involving a
population of molecules. First, by “zooming in” on individual molecules, single-
molecule experiments provide data with more accuracy and higher resolution. Sec-
ond, by isolating, tracking and manipulating individual molecules, single-molecule
experiments capture transient intermediates and detailed dynamics of a biologi-
cal process, the type of information rarely available from traditional population
experiments. Third, by following single molecules, scientists can study biological
processes directly on the individual molecule level, instead of relying on the ex-
tremely difficult task of synchronizing the actions of a population of biomolecules.
Fourth, since many important biological functions in a living cell are carried out by
single molecules, understanding the behavior of individual biomolecules is a crucial
task, for which single-molecule experiments are specifically designed. Many new
scientific discoveries have emerged from the nanoscale single-molecule studies.

Advances in nanoscale single-molecule biophysics also bring opportunities and
challenges for statisticians and stochastic modelers because of the stochastic nature
of single-molecule experiments. First, on the single-molecule level, the laws of
statistical and quantum mechanics fundamentally dictate the underlying biological
dynamics/processes to be stochastic; their characterization thus requires stochastic
models. Second, since the experiments focus on and study only one molecule at a
time, the data from single-molecule experiments tend to be much noisier than those
from the traditional population experiments because one cannot use the actions
of thousands of molecules to average out the noise. Third, in most biophysical
experiments, single-molecule experiments in particular, inference of the underlying
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stochastic dynamics is usually complicated by the presence of latent processes,
which are unobserved but affect the data collection. Fourth, in addition to the
preference of analytical tractability, it is important that the stochastic models
constructed for biophysical processes should agree with fundamental physical laws
and have a sound physical foundation.

In this talk, to illustrate the stochastic modeling and inference problems in the
field, we will look at a couple of selected cases, ranging from the utilization of sto-
chastic networks to model single-enzyme reaction dynamics, to likelihood inference
of single-molecule fluorescence experiments and to Bayesian data augmentation to
handle latent processes.

Adaptive confidence intervals for the test error in classification

Eric B. Laber

(joint work with Susan A. Murphy)

The estimated test error of a learned classification rule is the most commonly
reported measure of classifier performance. However, estimating the test error ac-
curately has been established as a nearly hopeless task. Therefore it is crucial that
measures of confidence be reported as well. Measures of confidence are typically
computed by resampling the estimated test error. However, these approaches do
not reliably deliver nominal coverage. We conjecture that the poor performance
is partially due to the fact that the test error is a non-smooth functional of the
learned classifier. In this article, we present a method for constructing a confidence
interval that adapts to amount of non-smoothness in the test error. The proposed
method makes no assumptions about the correctness of the model space. We show
that the proposed method is consistent under fixed and local alternatives. More-
over, the method provides nominal coverage on a suite of test problems using a
range of classification algorithms and sample sizes.

On the sample autocorrelation function of Lévy driven continuous
time moving average processes

Alexander Lindner

(joint work with Serge Cohen)

Let L = (Lt)t∈R be a two-sided Lévy process with expectation 0 and finite variance
σ2, let f : R → R be an L2-function and let µ ∈ R. Then the process (Xt)t∈R

given by

(1) Xt = µ+

∫

R

f(t− s) dLs, t ∈ R,

where the integral is defined in the L2-sense, is called a continuous time moving
average process with mean µ and kernel function f , driven by L. It is the natural
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continuous time analogue of discrete time moving average processes of the form

(2) X̃t = µ+
∑

i∈Z

ψt−iZi

for a square summable sequence (ψi)i∈Z of coefficients and i.i.d. noise (Zi)i∈Z.
Now consider the process (Xt)t∈R as defined in (1) when sampled at integer

times t = 1, 2, 3, . . . For the corresponding sample mean Xn := n−1
∑n

t=1Xt, it

is shown that Xn is asymptotically normal as n → ∞ with mean µ and variance

σ2
∫ 1

0 (
∑∞

j=−∞ f(u + j))2 du, provided the function u 7→ ∑∞
j=−∞ |f(u + j)| is in

L2[0, 1]. Now suppose that µ = 0 and define

γ∗n(h) := n−1
n∑

t=1

XtXt+h, ρ∗n(h) :=
γ∗n(h)

γ∗n(0)
, h ∈ N0,

which are specific forms of the sample autocovariance and sample autocorrelation
at lag h. Under the condition that L1 has finite fourth moment and some further
conditions on the kernel function f , which in particular assume that the function
u 7→∑∞

j=−∞ f(u+j)2 is in L2[0, 1] and that the sequence (γ(k) = Cov(X0, Xk))k∈Z

of autocovariance functions is square summable, it is shown that (γ∗n(0), . . . , γ
∗
n(h))

and (ρ∗n(1), . . . , ρ
∗
n(h)) are asymptotically normal with a certain asymptotic vari-

ance. The elements of the asymptotic covariance matrix of (ρ∗n(1), . . . , ρ
∗
n(h)) are

of the form

wij = w̃ij + vij ,

where w̃ij is given by Bartlett’s formula (cf. Brockwell and Davis [1], Theo-
rem 7.2.1), and vij is an additional term which depends on the fourth moment
of L1 and further properties of the kernel function f . This is in sharp contrast
to the well known asymptotic behaviour of the sample autocorrelation function of
discrete time moving average processes with i.i.d. noise as in (2), where this extra
term does not appear (e.g. Brockwell and Davis [1], Theorem 7.2.1).

The results can be applied to show asymptotic normality of a moment estimator
of the Hurst index of fractional Lévy processes. For this, let L be a Lévy process
with finite variance and expectation zero and consider for d ∈ (0, 1/2) the fractional
Lévy processMd(t) :=

1
Γ(d+1)

∫∞

−∞[t−s)d+−(−s)d+] dLs as defined in Marquardt [3].

The corresponding fractional Lévy noise based on increments of length 1 is given
by

Xt =Md(t)−Md(t− 1) =
1

Γ(d+ 1)

∫ ∞

−∞

[(t− s)d+ − (t− s− 1)d+] dLs.

An application of the results of the asymptotic normality of the autocorrelation
function for continuous time moving average processes then shows that the moment
estimator

Ĥn :=
1

2

(
1 +

log(ρ∗(1) + 1)

log 2

)

for the Hurst parameter H := d+1/2 is asymptotically normal if d ∈ (0, 1/4) and
L1 has finite fourth moment. Since fractional Lévy noise is shown to be generally
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not strongly mixing, this cannot be deduced from standard results on strongly
mixing time series. The moment estimator is however strongly consistent for each
d ∈ (0, 1/2), since the fractional Lévy noise is mixing in the ergodic theoretic sense.
An asymptotically normal estimator for general d ∈ (0, 1/2) can also be obtained
by applying the results to differenced fractional Lévy noise.

The results of the talk are based on [2].
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Proving consistency of non-standard kernel estimators

David M. Mason

Here is our basic setup. Let X,X1, X2, . . . , be i.i.d. random variables from a
probability space (Ω,A, P ) to a measure space (S,S), and let G denote a class of
measurable real valued functions

g of (u, h) ∈ S × (0, 1].

We study classes of statistics of the following form: For any n ≥ 1, g ∈ G and
0 < h ≤ 1 define,

gn,h := n−1
n∑

i=1

g (Xi, h) .

We describe a general result that says that under suitable regularity conditions,
with probability one,

lim sup
n→∞

sup
an≤h≤h0

sup
g∈G

√
n |gn,h −Egn,h|√

h (| log h| ∨ log logn)
<∞.

Numerous applications of this result to function estimation are given.

This talk is partially based upon joint work with Julia Dony, Uwe Einmahl and
Jan Swanepoel. The list of references given below contains papers relevant to our
talk as well as the large sample theory facts used to prove our results.
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The extremogram – a correlogram for extremal events

Thomas Mikosch

(joint work with R.A. Davis)

We consider a strictly stationary sequence of random vectors whose finite-dimen-
sional distributions are jointly regularly varying (regvar) with some positive index.
This class of processes includes among others ARMA processes with regvar noise,
GARCH processes with normal or student noise, and stochastic volatility mod-
els with regvar multiplicative noise. We define an analog of the autocorrelation
function, the extremogram, which only depends on the extreme values in the se-
quence. We also propose a natural estimator for the extremogram and study its
asymptotic properties under α-mixing. We show asymptotic normality, calculate
the extremogram for various examples and consider spectral analysis related to
the extremogram. Finally, we propose to use the stationary bootstrap to generate
confidence bounds.

The paper is available under www.math.ku.dk/∼mikosch and will appear in
Bernoulli.

Bayesian inference for D-vine pair-copula constructions: Estimation
and model selection

Aleksey Min

(joint work with Claudia Czado)

Copulas are nowadays a standard tool for stochastic modeling in different fields
of applied science. Therefore the construction of flexible multivariate copulas as
well as the right choice of a copula family, i.e. model selection for copulas, have
become extremely important. Recently Aas, Czado, Frigessi and Bakken (2009)
have advocated pair-copula constructions (PCC) which have been found as a most
successful way of construction of multivariate copulas in many empirical studies. In
this talk we first discuss Bayesian estimation in PCC’s. Further using pair-copula
constructions we approach the model selection problem for copulas to identify
(conditional) independence, present in data, in a fully Bayesian framework. For
this problem we derive and implement a reversible jump Markov chain Monte
Carlo (RJ MCMC) algorithm. Building blocks of PCC’s are fixed as bivariate
t-copulas. However the methodology is general and can easily be extended to all
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known bivariate copula families. Our approach with the RJ MCMC solves model
selection and estimation problems for PCC’s simultaneously. The effectiveness of
the developed algorithms is shown in simulations and their usefulness is illustrated
in a real data application.
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Primal and Dual Formulations in Density Estimation: Some
Theoretical Consequences

Ivan Mizera

In the series of papers [3, 4, 5, 6], co-authored with Roger Koenker, we explored
dual formulations (in the sense of convex conjugacy) to nonparametric maximum
likelihood density estimation, both in penalized and shape-constrained settings.
All the cases we considered fall under a general scheme

(P) − 1

n

n∑

i=1

g(Xi) + λJ(Dg) +

∫

Ω

ψ(g(x)) dx # inf
g
!

where Xi denote the observed datapoints, D stands for a differential operator,
the kind that appear in typical regularization formulations (for instance, the first,
second, or third derivative of a univariate function; the Hessian of a bivariate
function), J is a convex function, and ψ is a convex, nondecreasing real function.

If J is an integral L1-norm, or square of the L2-norm, the problem (P) represents
the classical formulation of a penalized maximum likelihood density estimation—
with tuning parameter λ > 0. The L2 choice, for instance, together with D
representing the operator of the third derivative and ψ(z) = ez, yields the classical
proposal [8]; the L1 choice, with the same ψ, and D corresponding to the second
derivative yields the estimator proposed in [3].

The general scheme (P), however, also allows for the accommodation of vari-
ous shape-constrained density estimation prescriptions: for example, keeping the
same ψ, and the same, second derivative operator for D, but taking the indicator
function of the set (−∞, 0] (the indicator function of a set E is defined to assume
0 for all x ∈ E, and +∞ otherwise) for J makes the parameter λ irrelevant, and
(P) then defines one of the log-concave density estimates studied by [9, 7, 2].
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Elaborating on the fact that the “primal” (P) is a convex problem, we derive
its conjugate dual formulation

(D) −
∫

Ω

ψ∗(Pn −D∗u) dx− λJ∗
(u
λ

)
# max

u
!

where Pn is the empirical probability supported by the datapoints, ψ∗ and J∗

denote functions conjugate to ψ and J , respectively, andD∗ stands for the operator
adjoint to D (the tuning parameter λ stays the same). For suitable ψ, (D) can be
interpreted as a specific forms of maximum entropy formulation—as is apparent
for ψ(z) = ez, where ψ∗(u) = u log u − u and (D) then maximizes the Shannon
entropy of Pn − D∗u, the quantity that turns out to be equal to the estimated
density f (unlike g in (P), which is its transformations, its form following from
the specification of ψ).

Formulations (P) and (D) were in [3, 4, 5] considered mostly in the discretized
setting, and utilized there rather for immediate, data-analytic objectives—like
more efficient computation [3], or density estimation under more flexible shape
constraints [6]; of interest was also the connection to the so-called taut string
density estimation method [1], explored in [5]. Our focus now are exact duality
results in the functional, infinite-dimensional setting—in particular, our objective
is to establish the strong duality in this context, a mathematical property that
ensures that the minimal value of the primal is the maximal of the dual—the
fact that consequently links primal and dual formulations via so-called extremal
relations, in this particular case stipulating that f = Pn −D∗u = ψ′(g), where u
and g are the solutions of dual and primal, respectively.

We explore theoretical consequences of duality results cast in the functional
setting—those relevant for the choice of the domain for density estimation, and
for the moment-preservation properties of the resulting estimates. In particular, we
obtain that—unlike in classical smoothing spline fitting, where increasing dimen-
sion means adding derivatives of higher orders into the regularization penalty—in
density estimation derivatives of order three are sufficient to keep the problem well-
posed, in arbitrary dimension. This, among other things, vindicates the choice of
third derivative in [8].
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Statistical Aspects of COGARCH Modelling

Gernot Müller

(joint work with Robert Durand, Jean Jacod, Claudia Klüppelberg, Ross Maller)

In this talk we discuss estimation and testing for the COGARCH model. The
COGARCH model was introduced by Klüppelberg et al. (2004) as a continuous
time version of the discrete time GARCH model and is constructed directly from
a single univariate background driving Lévy process L. The model can be defined
by the two stochastic differential equations

dGt = σt−dLt(1)

dσ2
t = β dt− ησ2

t− dt+ ϕσ2
t− d[L,L]

(d)
t(2)

where G is the integrated COGARCH process and σ2 the variance process. The
three parameters β > 0, η > 0, and ϕ ≥ 0 are assumed to be unknown. Note that
the Lévy process L occurs both in Equations (1) and (2), the variance process,
however, is only affected by the discrete part of the quadratic variation of L. In
Maller et al. (2008) it has been shown that it is possible to approximate the
COGARCH with an embedded sequence of discrete time GARCH models which
converges to the continuous time model in a strong sense (in probability, in the
Skorokhod metric), as the discrete approximating grid grows finer. One can use
this result to fit the COGARCH to irregularly spaced time series data.

As an application we confirm Merton’s hypothesis on the risk-return tradeoff
using COGARCH. We find clear evidence of a positive relationship between return
and risk in daily data covering the period from 1953 to 2007, thus providing
empirical verification of Merton’s theorised relationship. Our model estimates a
highly significantly positive risk premium of about 8% p.a., consistent with other
published estimates such as those of Lundblad (2007) who found a significant
relationship using monthly data from 1836 to 2003, but not in monthly data for
the period 1950 to 2003; we conclude in favour of Merton’s theory also for the
period after 1950. As a sidelight, our COGARCH model estimates that, over
a long period, the weekend is equivalent, in terms of volatility, to about 0.3-0.5
regular trading days. This part of the talk is joint work with Robert Durand and
Ross Maller.
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Furthermore, we discuss an asymptotic test for the special feature of CO-
GARCH, that there is a fixed functional relationship between the jumps of the
COGARCH process and the jumps of the corresponding volatility process. The
test only investigates the bigger jumps of the COGARCH (which is, in practice,
identified with a log-price process) and uses local volatility estimates calculated
from observation windows before and after the jumps under consideration. The
null of the test is the fixed relationship conditional on the fact that there is at least
one relevant (i.e. sufficiently big) jump. We apply the test to high-frequency data
from the S&P 500. More precisely, we look at 5 minutes log-returns for the ten
years 1998 to 2007 separately. Using time windows of one hour forward and one
hour backward to estimate the local volatility, we reject the null on a 10% level
only for one of the ten years (for 2005), and even never reject it on a 5% level. This
latter part of the talk is joint work with Jean Jacod and Claudia Klüppelberg.
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Towards Brain Computer Interfacing

Klaus-Robert Müller

(joint work with Benjamin Blankertz, Gabriel Curio)

We outline the Berlin Brain-Computer Interface (BBCI), a system which enables
us to translate brain signals from movements or movement intentions into con-
trol commands [5]. The main contribution of the BBCI, which is a non-invasive
EEG(electroencephalography)-based BCI system, is the first time use of advanced
data analysis methods from statistics, machine learning and signal processing
[6, 7, 5, 9]. These techniques allow to adapt to the specific brain signatures of
each user with literally no training. In BBCI a calibration session of about 20min
is necessary to provide a data basis from which the individualized brain signatures
are inferred (cf. [2, 9, 5]). This is very much in contrast to conventional BCI ap-
proaches that rely on operand conditioning and need extensive subject training
of the order 50-100 hours (cf. [5]). Our machine learning concept thus allows to
achieve high quality feedback already after the very first session [2].
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This talk has reviewed a broad range of investigations and experiments that
have been performed within the BBCI project. Physiologically the BBCI decodes
voluntary modulations of sensorimotor rhythms caused by motor imagery (left
hand vs. right hand vs. foot) which can be readily translated into a continuous
feedback signal.

In addition to these general paradigmatic BCI results, we provided a condensed
outline of the underlying machine learning and signal processing techniques that
make the BBCI succeed: after artifact removal, a subject specific frequency pre-
filtering is performed, the multivariate signal (64 channels at 200hz) is smoothed
in the spatial and spectral domain using the so-called common spatial pattern
approach [3]. Depending on the subject additional to these resulting features dy-
namic components (such as channel-wise AR model fits) or slow variations (cf. [5])
are used finally resulting in up to 1000 dimensional input features that are subse-
quently to be classified in real-time. Note that the available data that is acquired
during the calibration session contains only 200 data points (large p, small N prob-
lem). While the classifiers in use in BBCI are typically linear in nature [6, 7, 5, 9],
it depends strongly on the subject and the physiological paradigm whether a non-
linear method may increase performance. In any case heavy regularisation and
robust (e.g. L1 optimizing) methods are mandatory for successful performance
(cf. [7, 9]). An important challenge that is commonly found in EEG-BCI data
are effects of non-stationarity: from the calibration session to the feedback session
the underlying probability distribution is subject to change. A possible remedy
against this aspect which is rather common for general real-world data are models
that take into account covariate shifts [8], invariant representations or projection
methods that consider only the stationary subspaces of the high dimensional EEG
data stream [4].

Results of a recent feedback study with 6 healthy subjects with no or very little
experience with BCI control: half of the subjects achieved an information transfer
rate above 35 bits per minute (bpm). Furthermore one subject used the BBCI
to operate a mental typewriter in free spelling mode. The overall spelling speed
was 4.5-8 letters per minute including the time needed for the correction of errors.
This opens up a large number of possible applications both in rehabilitation as
well as general man machine interaction for our novel BCI technology.

For further, more detailed information please refer to www.bbci.de where also
a large repository of high quality data is available for further study [1].
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The Estimation of Different Scales in Microstructure Noise Models
from a Nonparametric Regression Perspective

Axel Munk and Johannes Schmidt-Hieber

(joint work with T. Tony Cai)

Introduction and Model. Consider the models

(1) Yi,n =

∫ i/n

0

σ (s) dWs + τ

(
i

n

)
ǫi,n, i = 1, . . . , n,

and

(2) Ỹi,n = σ

(
i

n

)
Wi/n + τ

(
i

n

)
ǫi,n, i = 1, . . . , n,

respectively, where (Wt)t≥0 denotes a Brownian motion and ǫi,n is so called mi-

crostructure noise, i.e. we assume ǫi,n i.i.d., E
(
ǫ2i,n

)
= 1 and E

(
ǫ4i,n

)
< ∞.

(Wt)t≥0 and (ǫ1,n, . . . , ǫn,n) are assumed to be independent, and σ and τ are un-
known, positive and deterministic functions. The problem is to estimate the scale
functions σ and τ , pointwise. Model (1) appears in a more general form in mod-
elling log-returns on frequencies up to one second (see [3]). The measurement
error is induced by market frictions, such as bid-ask spreads and rounding. In this
model σ is the volatility of the asset and is the quantity we are mainly interested
in whereas τ is the noise level and is sometimes considered as a quality measure
of a market.

Estimation of instantaneous volatility and lower bounds.. In a first step
we investigate the case where σ and τ are constants and ǫi,n ∼ N (0, 1) . Then
models (1) and (2) reduce to

Yi,n = σWi/n + τǫi,n, i = 1, . . . , n.

Since Y = (Y1,n, . . . , Yn,n)
′
is multivariate centered Gaussian it is described com-

pletely by its covariance Cov (Y ) = σ2Kn + τ2I, where Kn = (i/n ∧ j/n)i,j=1,...,n
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and In denotes the n × n identity matrix. Let λi,n denote the eigenvalues of Kn

then there is an orthogonal transformation Dn not depending on the unknown
quantities, such that the transformed observation vector Z = DnY has indepen-
dent components Zi ∼ N

(
0, σ2λi + τ2

)
, where λi ∼ n/i2. (see [1]). Adopting the

statistical inverse problem point of view, this suggests that the number of obser-
vation in the spectral domain usable for estimation of σ and τ is of order

√
n and

n, respectively. This suggests n1/4 and n1/2 as the optimal rates of convergence.
To be precise, we can construct estimators τ̂2 and σ̂2 that are minimax sharp, i.e.
they reach the following bound (see [2] and [1])

Theorem 1. For any ǫ > 0

lim
n→∞

inf
τ̂2

sup
σ,τ>ǫ

(στ)−4
(
E
(
n
(
τ̂2 − τ2

)2)− 2τ4
)
= 0,

lim
n→∞

inf
σ̂2

sup
τ,σ>ǫ

(στ)−8
(
E
(
n1/2(σ̂2 − σ2)2

)
− 8τσ3

)
= 0.

Construction of a sharp estimator of τ2 is easy, for estimation of σ2 we introduce
a splitting technique of the spectral observations (see [1]).
In the second part of the talk we extend this technique to the general models (1)
and (2). In a first step we construct n1/4 consistent estimators for

〈
σ2, φk

〉
with re-

spect to the particular basis system {ψk, k = 0, . . .} :=
{
1,
√
2 cos (kπt) , k = 1, . . .

}
.

Further, we introduce the corresponding truncated Sobolev ellipsoid Θb
s(α,C) as

the space of all L2-functions bounded by universal constants 0 < C1, C2 <∞ from
below and above, such that the series coefficients (θk)k≥0 with respect to the basis

system above, satisfy
∑∞

i=1 i
2αθ2i ≤ C.

Theorem 2. Suppose Q, Q̄ > 0 are fixed constants and let β > 5/4. Assume model
(1) and α > 3/4 or model (2) and α > 3/2. Then it holds for N∗ = n1/(4α+2)

sup
τ2∈Θb

s(β,Q̄), σ2∈Θb
s(α,Q)

MISE
(
σ̂2
N∗

)
= O

(
n−α/(2α+1)

)
.

The following lower bound reveals the estimator as rate minimax.

Theorem 3. Assume model (1) or model (2), α ∈ N
∗ and τ > 0. Then there

exists a C > 0, such that

lim inf
n→∞

inf
σ̂2
n

sup
σ2∈Θb

s(α,Q)

E
(
n

α
2α+1

∥∥σ̂2 − σ2
∥∥2
2

)
≥ C.

Hence this shows that nα/(4α+2) is the optimal rate of convergence, which
is“half” of the usual rates obtained in nonparametric regression. This is due to the
additional degree of ill-posedness induced by microstructure noise. The key step
in the proof is a new bound on Kullback-Leibler divergence of two multivariate
normal vectors ([4]).

Computation and Simulation. Monte Carlo simulations show that the pro-
posed estimator of the instantaneous (spot) volatility works quite well, even when
the normality assumption of the microstructure noise does not hold and heavy tails
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are present. Furthermore, for instantaneous volatility which is non deterministic
our simulation shows that the estimator still captures the major features, such as
aprupt changes in size, quite reasonably.
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Generalized Binary Search

Robert Nowak

Consider statistical learning problems of the following form. Consider a finite,
but potentially very large, collection of binary-valued functions H defined on a
domain X (e.g., an ǫ-cover of an uncountable class, with respect to a measure on
X). H will be called the hypothesis space and X will be called the query space.
Each h ∈ H is a mapping from X to {−1, 1}. Assume that the functions in H
are unique and that one function, h∗ ∈ H , produces the correct binary labeling.
For each query x ∈ X , the value h∗(x), corrupted with independently distributed
binary noise, is observed. If the queries are drawn randomly, then this leads to the
standard binary classification problem. Here we assume that we have control over
the selection of queries. The queries can be selected in a sequential fashion, using
past information to guide the selection, and the goal is to determine h∗ through
as few queries from X as possible. If the queries were noiseless, then they are
usually called membership queries to distinguish them from other types of queries
[2]; here we will simply refer to them as queries. Problems of this nature arise
in many applications , including channel coding [8, 17], disease diagnosis [14], job
scheduling [13], image processing [12, 11], computer vision [16, 6], computational
geometry [1], and active learning [4, 3, 15].

Past work has provided a partial characterization of this problem. If the re-
sponses to queries are noiseless, then selecting the optimal sequence of queries from
X is equivalent to determining an optimal binary decision tree, where a sequence
of queries defines a path from the root of the tree (corresponding to H) to a leaf
(corresponding to a single element of H). In general the determination of the
optimal tree is NP-complete [10]. However, there exists a greedy procedure that
yields query sequences that are within an O(log |H |) factor of the optimal search
tree depth [5, 13, 14, 1, 4], where |H | denotes the cardinality of H . The greedy
procedure is referred to as Generalized Binary Search (GBS) [4, 15] or the split-
ting algorithm [13, 14, 5]), and it reduces to classic binary search in special cases
[15]. The GBS algorithm is outlined in Figure . At each step GBS selects a query
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that results in the most even split of the hypotheses under consideration into two
subsets responding +1 and −1, respectively, to the query. The correct response
to the query eliminates one of these two subsets from further consideration. Since
the hypotheses are assumed to be distinct, it is clear that GBS terminates in at
most |H | queries (since it is always possible to find query that eliminates at least
one hypothesis at each step). In fact, there are simple examples demonstrating
that this is the best one can hope to do in general [13, 14, 5, 4, 15]. However,
it is also true that in many cases the performance of GBS can be much better
[1, 15]. In general, the number of queries required can be bounded in terms of a
combinatorial parameter of H called the extended teaching dimension [2, 7] (also
see [9] for related work). Alternatively, there exists a geometric relation between
the pair (X,H), called the neighborly condition, that is sufficient to bound the
number of queries needed [15]. The number of queries an algorithm requires to
confidently identify h∗ is called the sample complexity of the algorithm. Under the
neighborly condition, the sample complexity of GBS is optimal. We also present a
noise-tolerant version of GBS to handle errors. The noise-tolerant GBS algorithm
also achieves the optimal sample complexity, and we are not aware of any other
algorithm with this capability.

Generalized Binary Search (GBS)

initialize: n = 0, H0 = H .
while |Hn| > 1

1) Select xn = argminx∈X |
∑

h∈Hn
h(x)|.

2) Query with xn to obtain response yn = h∗(xn).
3) Set Hn+1 = {h ∈ Hn : h(xn) = yn}, n = n+ 1.

Figure 1. Generalized Binary Search algorithm.
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Statistical challenges in the analysis of neuroscience data

Liam Paninski

(joint work with Yashar Ahmadian, Yuriy Mischchenko, Joshua Vogelstein)

Our primary research focus is the analysis of neural data. A number of very
challenging high-dimensional problems arise in this field; here we summarize three
problems on which we have made some progress recently.

1) Inference of connectivity in large neuronal networks given limited noisy ob-
servations. It has recently become possible to record simultaneously from multiple
neurons in real neuronal networks (not to be confused with artificial neural net-
works), though in many cases the available observations are still quite noisy. A
number of major open questions in neuroscience involve the connectivity in large
neuronal networks. However, reconstructing the connectivity from the available
noisy, incomplete data remains a challenging open problem. We have developed
methods for inferring the connectivity from large-scale recordings, based on a gen-
eralized linear model and sequential Monte Carlo framework [3], and are currently
testing these methods on real data.

2) Optimal filtering and smoothing of high-dimensional voltage signals on den-
dritic trees. Many neurons have highly articulated and geometrically-complex
structures known as “dendrites” which play an important role in neuronal com-
munication and computation. Optimal filtering of noisy voltage signals on these
dendritic trees is a key problem in cellular neuroscience. However, the state vari-
able in this problem — the vector of voltages at every compartment on the tree —
is very high-dimensional: typical realistic multicompartmental models have on the
order of N = 104 degrees of freedom. Standard implementations of the Kalman fil-
ter require O(N3) time and O(N2) space, and are therefore impractical. However,
it is possible to take advantage of three special features of the dendritic filtering
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problem to construct an efficient filter [1]: (1) dendritic dynamics are governed
by a cable equation on a tree, which may be solved using sparse matrix methods
in O(N) time; and current methods for observing dendritic voltage (2) provide
low SNR observations and (3) only image a few compartments (< 100 or so) at
a time. The idea is to approximate the Kalman equations in terms of a low-rank
perturbation of the steady-state (zero-SNR) solution, which may be obtained in
O(N) time using junction-tree methods that exploit the sparse tree structure of
dendritic dynamics. The resulting methods give a very good approximation to the
exact Kalman solution, but only require O(N) time and space.

3) Decoding visual imagery and movies given the responses of large popula-
tions of retinal ganglion cells. A third major problem in systems neuroscience
involves decoding the information encoded in the spiking activity of large neural
populations. The visual system presents a number of interesting challenges, since
the information encoded by the eye (time-varying visual movies) is very high-
dimensional. We have developed fast MAP decoding techniques that make heavy
use of ideas from convex optimization and numerical linear algebra [2]. We are
currently analyzing these decoded movies to better understand what information
the retina sends to the brain about the visual world, and what information is
discarded.
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Application of the Malliavin calculus to statistical problems on
Gaussian fields

Mark Podolskij

In this talk we present some recent techniques for proving central limit theorems
using standard operators of Malliavin calculus and apply them to various statistical
problems.

Quite often people use (discrete or continuous time) Gaussian processes to gen-
erate models for certain phenomena in science. However, when it comes to esti-
mation problems in those models (especially for high frequency data) there is a
need for general central limit theorems, because Gaussian process usually do not
have a nice probabilistic structure (they are neither semimartingales nor Markov
processes).

Let us briefly describe some examples which we have in mind:
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Problem 1: Let (Xi)i≥1 be a stationary sequence of random variables with
Xi ∼ N(0, 1) and rk = cov(X1, X1+k). Under which assumptions on rk do we
have

1√
n

n∑

i=1

g(Xi)⇒ N(0, σ2)

if Eg(X1) = 0?
Problem 2: Let (Gt)t≥0 be a Gaussian process with centered and stationary

increments. What is the weak limit of the functionals

V (G, p)nt =
1√
nτpn

[nt]∑

i=1

(
|∆n

i G|p − E|∆n
i G|p

)
,

where ∆n
i G = G i

n
−G i−1

n
, τ2n = E[|∆n

i G|2]?
Problem 3: A more advanced problem is studied in [1]. Consider a process of

the type

Xt =

∫ t

−∞

g(t− s)σsdWs ,

where g ∈ L2((0,∞)) is a memory function and σ is a stochastic process. Typically
g(x) ∼ xα with α ∈ (− 1

2 ,
1
2 ) (at 0), and thus X is not a semimartingale. The main

interest is the derivation of the asymptotic behaviour (including CLT) of

V (X, p)nt =
1√
nτpn

[nt]∑

i=1

|∆n
i X |p ,

where τ2n = E[|∆n
i G|2] and Gt =

∫ t

−∞
g(t− s)dWs.

While Problem 1 can be solved by classical methods (diagram formula), see
e.g. [2], Problem 2 and Problem 3 are more complicated and require a different
technique.

Recently, [3] and [4] proposed some new methods to prove CLT’s on Gaussian
fields that rely on operators of Malliavin calculus. Recall that any square integrable
variable F on a Gaussian space has a unique Wiener chaos decomposition

F =

∞∑

m=0

Im(fm) ,

where Im is a multiple integral of order m and fm ∈ H⊙m are symmetric kernels.
First of all, we need to understand how to prove a CLT for a fixed chaos.

Theorem ([3],[4]): Let Fn = Im(fn
m) (m ≥ 1) be a sequence of random variables

with

E[F 2
n ]→ 1.

Let D denote the Malliavin derivative and let g ⊗p h be the pth contraction of
g, h ∈ H⊗m. The following conditions are equivalent:

(i) Fn ⇒ N(0, 1).
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(ii) E[F 4
n ]→ 3.

(iii) For all 1 ≤ p ≤ m− 1, ||fn
m ⊗p f

n
m||2H⊗2(m−p) → 0.

(iv) ||DFn||2H → m in L2.

This result can be extended to general sequences of the form Fn =
∑∞

m=d Im(fn
m)

(d ≥ 1). In particular, the condition (iii) gives an easy method for proving CLT’s
in a rather general framework.
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Pointwise adaptive estimation for robust and quantile regression

Markus Reiß

(joint work with Yves Rozenholc, Charles-André Cuenod)

We consider a generalized regression model

Yi = g(xi) + εi, i = 1, . . . , n,

with (εi) i.i.d., x1, . . . , xn in the design space X and g : X → R. The problems
we have in view are those of robust nonparametric estimation of g in the presence
of heavy-tailed noise (εi) and of nonparametric quantile estimation, which is be-
coming more and more popular in applications. One main application is robust
image denoising, in particular for sequences of CT images. In the spirit of classical
M-estimation we consider g(xi) as the location parameter in the observation Yi,
that is

(1) g(xi) = arginfm∈RE[ρ(Yi −m)]

for some convex function ρ : R→ R+ with ρ(0) = 0. Standard examples are ρ(x) =
x2/2 for the classical mean regression model, ρ(x) = |x| for the median regression
model and more generally ρ(x) = |x|+(2α−1)x for the quantile regression model.
The function g is not supposed to satisfy a global smoothness criterion, but we
aim at estimating it locally in each point x ∈ X as efficiently as possible. The
risk will then depend on local regularity properties, which we do not assume to
be known. For spatially inhomogeneous functions, in the presence of jumps or
for image denoising pointwise adaptive methods are much more appropriate than
global smoothing methods. In classical mean regression local adaptivity can be
achieved using wavelet thresholding or kernels with locally varying bandwidths.
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In this ideal situation a data-driven choice among linear empirical quantities is
performed. M-estimators are typically nonlinear and the standard approaches do
not necessarily transfer directly. Here, we develop a generic algorithm to select
optimally among local M-estimators. In contrast to classical model selection, we do
not only rely on the estimator values themselves to define a data-driven selection
criterion. This has significant advantages in the present case of nonlinear base
estimators.

Using Lepski’s approach as a starting point, we argue in a multiple testing
interpretation that our procedure is usually more powerful. Moreover, it is equally
simple to analyze and easy to implement. We derive exact and asymptotic error
bounds and the latter give optimal minimax rates for Hölder classes. Simulations
show convincing finite sample properties. Moreover, they confirm that Lepski’s
classical method applied to local median estimators suffers from oversmoothing
because changes in the signal are not detected early enough due to the robustness
of the median. Finally, a dynamic extension of the procedure shows good results
in denoising DCE-CT image sequences from cancer surveillance.
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Data analysis of and on Dendrite Structures

Naoki Saito

Introduction: In this talk, we reported our preliminary results on a potential
method to characterize dendrite structures of Retinal Ganglion Cells (RGCs) of
mice by systematically extracting their morphological features based on their graph
Laplacian eigenvalues so that we could save human interaction cost usually re-
quired for such feature extraction.

Analysis of Dendrite Structures: The segmentation and tracing software sys-
tem used by our neuroscience collaborators provided us with a sequence of 3D
coordinates that represent points sampled along dendrite arbors of RGCs with the
branching information [2]. One of the most natural and simplest ways to model
such a network-like structure is to construct a graph. Hence, our first task is to
convert such a sequence of 3D points to a connected graph. Let G be a graph rep-
resenting dendrite patterns of an RGC, let V = V (G) = {v1, . . . , vn} be a vertex
set of G where each vk ∈ R

3 is a 3D sample point along dendrite arbors of this
RGC, and let E = E(G) = {e1, . . . , em} be an edge set of G where ek connects
two vertices vi, vj for some 1 ≤ i, j ≤ n. Let dvk be the degree of the vertex vk. In
fact, dendrite pattern of each RGC in our dataset can be converted to a tree rather
than a general graph since it is connected and contains no cycles. We also note
that we only deal with unweighted graphs here. In other words, we examine the
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connectivities and complexity of the dendrite graphs ignoring the physical lengths
of the dendrite arbors.
Once we construct a graph per RGC, we proceed as follows:

Step 1: Construct the Laplacian matrix L(G) := D(G) − A(G) where
D(G) := diag(dv1 , . . . , dvn) and A(G) = (ai,j) is the adjacency matrix
of G, i.e., ai,j = 1 if vi and vj are adjacent; otherwise it is 0.

Step 2: Compute the eigenvalues of L(G);
Step 3: Construct features using these eigenvalues;
Step 4: Repeat the above steps for all the RGCs and feed these feature

vectors to a clustering algorithm of one’s choice.

The Laplacian eigenvalues reflect various intrinsic geometric information about
the graph e.g., connectivity, mean distance, etc.; see, e.g., [1, 3] for the details.
Let |V | = n, and let 0 = λ0 ≤ λ1 · · · ≤ λn−1 be the sorted eigenvalues of L(G).
Let mG(I) be the number of eigenvalues of L(G), multiplicities included, that
belong to a set I ⊂ R. A vertex of degree 1 is called a pendant vertex, and a
vertex adjacent to a pendant vertex is called pendant neighbor. Let p(G) and q(G)
be the number of pendant vertices and the number of pendant neighbors of G,
respectively. Let i(G) be the isoperimetric number of G, which is closely related
to the speed of convergence of a random walk on G to a stationary distribution.
The Wiener index W (G) of a graph G is the sum of the entries in the upper
triangular part of the distance matrix ∆(G) of G, where (∆(G))i,j is the number
of edges in a shortest path from vi to vj . The bounds of q(G) and i(G) as well as
the exact value of W (G) can be computed using the eigenvalues of L(G); see [5].
We now report our preliminary results we obtained recently. The following features
were used to characterize the dendrite patterns of 130 monostratified RGCs.

Feature 1: (p(G) −mG(1))/|V (G)| as a lower bound of the number of the
pendant neighbors q(G) with the normalization by |V (G)| ;

Feature 2: The normalized Wiener index W (G)/|V (G)| ;
Feature 3: mG(4,∞)/|V (G)|, i.e., the number of eigenvalues of L(G) larger

than 4 (normalized) ;
Feature 4: The upper bound of the isoperimetric number i(G) .

[5] explains why these features are used and shows the cross plots of these 4 fea-
tures, from which we observe that sparsely and widely distributed dendrite pat-
terns are well separated from the densely and narrowly distributed ones.

Discussion: We plan to analyze the Laplacian eigenvalues of the weighted graphs
where the weight wk of an edge ek = (vi, vj) is the inverse of the distance, i.e.,
wk = ‖vi − vj‖−1 in our case, which should reflect more faithful geometric config-
uration of RGCs than those of the unweighted graphs. Analysis of such weighted
graphs, however, are expected to be tougher because for example, mG(1) among
the different RGCs does not have the same meaning anymore.
We also plan to analyze data distributed on such dendrite structures, e.g., tem-
perature or density distributions, or ultimately, ionic current propagation. Here,
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the eigenfunctions of the Laplacian will play a fundamental role since such distri-
butions can be expanded into the Laplacian eigenfunctions, which permits one to
do spectral analysis and synthesis of data on dendrite structures.
Finally, we will investigate Poisson’s equation with mixed boundary condition on
a dendrite pattern for characterizing the efficiency of information transmission
of that neuron. It is well known (see, e.g., [4]) that the mean exit time u(x)
of particles released at a point x inside a bounded domain driven by Brownian
motion is the solution of Poisson’s equation ∆u = −1 satisfying the zero Dirichlet
boundary condition. We need to force the mixed boundary condition because the
insulation along dendrites and axons leads to the Neumann boundary condition
while the terminal regions (e.g., synapses and soma) lead to the Dirichlet boundary
condition. Solving this Poisson’s equation on such a domain itself is interesting,
but it would be even more striking if we can extract features from its solution that
are useful for charactering neurons.
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Theoretical properties of the log-concave maximum likelihood
estimator of a multidimensional density

Richard Samworth

(joint work with Madeleine Cule)

Shape-constrained density estimation in general, and log-concave density estima-
tion in particular, have received a great deal of attention in the statistical literature
recently – see, for example, [7], [3], [4], [6], [5], [1]. The following theorem given in
[3] helps to explain this interest:

Theorem 4. Let X1, . . . , Xn be independent with density f0 in Rd, and suppose
that n ≥ d + 1. Then, with probability one, there exists a unique log-concave

maximum likelihood estimator f̂n of f0.

Thus, even though the class of log-concave densities is infinite-dimensional (and
contains many well-known and commonly-used families of densities), there exists
a fully automatic density estimator within this class, with no smoothing param-
eters to choose. To understand the theoretical properties of this estimator, we
begin by noting that when it is known that a sequence of densities is log-concave,



Challenges in Statistical Theory 2221

convergence in weak sesnses in fact implies convergence in much stronger senses
(see [2]):

Proposition 5. Let (fn) be a sequence of log-concave densities on Rd with fn
d→ f

for some density f . Then:

(a) f is log-concave
(b) fn → f , almost everywhere
(c) Let a0 > 0 and b0 ∈ R be such that f(x) ≤ e−a0‖x‖+b0 . Then for every

a < a0, we have
∫
Rd e

a‖x‖|fn(x) − f(x)| dx → 0 and, if f is continuous,

supx∈Rd ea‖x‖|fn(x) − f(x)| → 0.

In order to state our main result, we first require appropriate bounds on the
behaviour of the log-concave maximum likelihood estimator, as illustrated in the
following result that can be found in [2]. Write E for the support of f0.

Lemma 6. Suppose that
∫
Rd ‖x‖f0(x) dx <∞.

(a) There exists a constant C > 0 such that, with probability one,

lim sup
n→∞

sup
x∈Rd

f̂n(x) ≤ C.

(b) Let S be a compact subset of int(E). There exists a constant c > 0 such
that, with probability one,

lim inf
n→∞

inf
x∈convS

f̂n(x) ≥ c.

Our main result establishes establishes desirable performance properties of f̂n.
Recall that the Kullback–Leibler divergence of a density f from f0 is given by
dKL(f0, f) =

∫
Rd f0 log(f0/f). Jensen’s inequality shows that the Kullback–Leibler

divergence is non-negative, and equal to zero if and only if f = f0 (almost every-
where). Thus when f0 is log-concave, Theorem 7 below shows that the log-concave

maximum likelihood estimator f̂n is strongly consistent in certain exponentially
weighted total variation metrics. Convergence in exponentially weighted supre-
mum norms also follows if f0 is continuous.

In the case where the model is misspecified, i.e. f0 is not log-concave, we prove
that the existence and uniqueness of a log-concave density f∗ that minimises the
Kullback–Leibler divergence from f0. Moreover, we show that the log-concave

maximum likelihood estimator f̂n converges in the same senses as in the previous
paragraph to f∗ (see [2] for details). We write log+ x = max(log x, 0).

Theorem 7. Let f0 be any density on Rd with
∫

Rd

‖x‖f0(x) dx <∞,
∫

Rd

f0 log+ f0 <∞ and int(E) 6= ∅.

There exists a log-concave density f∗, unique almost everywhere, that minimises
the Kullback–Leibler divergence of f from f0 over all log-concave densities f . Tak-
ing a0 > 0 and b0 ∈ R such that f∗(x) ≤ e−a0‖x‖+b0 , we have for any a < a0
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that ∫

Rd

ea‖x‖|f̂n(x) − f∗(x)| dx a.s.→ 0,

and, if f∗ is continuous, supx∈Rd ea‖x‖|f̂n(x)− f∗(x)| a.s.→ 0.
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Estimation of convex-transformed densities

Arseni Seregin

(joint work with Jon A. Wellner)

Density estimation with shape or geometric constraints lies between the uncon-
strained (such as kernel or regularized) estimation and parametric estimation, and
has advantages of both. It allows for very large classes of densities and it does
not require a choice of a metaparameter (such as bandwidth in kernel estimation).
In many cases the MLE estimator exists, is consistent and rate-optimal. Finally,
such estimators tend to adapt to the smoothness of the true density.

Our work is an example of shape constrained density estimation where we ex-
ploit convexity as a geometric constraint. We study the properties of the nonpara-
metric maximum likelihood estimator (MLE) of a convex-transformed density i.e.
the density of the form f ◦h0, where h0 is an arbitrary convex function on Rd and
f : R→ R+ is a known monotone transformation which defines the classM(f) of
such densities. We distinguish two types of such classes: decreasing and increasing
models which correspond to decreasing and increasing transformations.

A decreasing model consists of unimodal densities with convex superlevel sets.
Changing the transformation f we can obtain density functions with ’heavy’ or
’light’ tails. On the other hand, changing the convex function h0 we can vary
the geometry of superlevel sets. As an example we can consider the decreasing
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transformation f(y) = exp(−y) which provides the well-known class of log-concave
densities. The global rates and consistency of the MLE for log-concave model when
d = 1 are studied in Dümbgen and Rufibach [2] and Balabdaoui, Rufibach and
Wellner[1] establish the local rates of convergence. However, for the classes with
heavier tails no results about the MLE behavior are known even in one-dimensional
case. As an alternative approach, Koenker and Mizera in the unpublished paper [4]
show the existence and Fisher consistency of regularized estimators for the models
which correspond to our decreasing models with convex transformation f .

One can show that non-degenerate increasing model cannot contain densities
defined on the whole space. In order to define a density in such a model we
first need to define a convex domain of h0. We restrict the domain of h to a
positive orthant Rd

+. As an example of an increasing model we can consider a
one-dimensional model defined by the transformation f(y) = max(y, 0). When
d = 1 this family is equivalent to the family of decreasing convex densities which
was studied in Groeneboom, Jongbloed and Wellner [3].

Under mild conditions on tail behavior the transformation f we prove that the
MLE exists almost surely when the number of observations is large enough for both
decreasing and increasing models. We also prove that the MLE for the decreasing
model is Hellinger and pointwise consistent. Finally, we establish the minimax
lower bounds for the density estimation at a given point and for estimation of the
mode.
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Smoothed absolute loadings principal components analysis

Bernard W. Silverman

A crucial part of genome-wide association studies is the identification of modes of
variability in genome data which do not depend on small parts of the genome. The
basic data we consider is an n×p data matrix X whose rows represent individuals
and columns SNPs (single nucleotide polymorphisms). Each SNP can take values
coded 0−1−2, but for each SNP there is an underlying arbitariness in the direction
of coding. Let Y be the matrix X with column means subtracted.

The natural statistical starting-point is principal components analysis, but in
practice raw principal components produce loadings concentrated on a small num-
ber of SNPs, as shown in the Figure. Therefore some sort of regularization is
required. Methods such as Silverman (1996) work by controlling the amount of
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local variability in the loadings vector u, but this is not appropriate in the current
case, because of the arbitrary coding of the individual SNPs. It only makes sense
to to consider regularization approaches which depend on the absolute values of
the loadings.
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Figure 1. Cumulative sum of squares of loadings of the first
principal component of a 3000 SNP part of Chromosome 22 on
1000 individuals

The simplest approach is to add to standard PCA the constraint that all the
|uj | are equal. This is essentially equivalent to the centroid method, which replaces
the usual constraint ‖u‖2 = 1 by uj = ±1 for all j. The method dates back to
Burt (1917) and Thurstone (1931), but has been the focus of recent attention
by Choulakian and co-authors. For example, Choulakian (2006) shows that a
local optimum of the centroid method is obtained by the simple recursion u ←
sign Y ′Y u iterated to convergence from a suitable starting value.

This approach is an extreme form of smoothing of the absolute loadings. A
more flexible methodology is obtained by enforcing some regularity on the ‖uj‖,
but not forcing them all to be equal. Let B be a space of ‘smooth’ p-vectors b; the
space being considered in current exploratory work is the vector of values at the
integers 0, 1, . . . , p− 1 of functions generated by a B-spline basis on [0, p− 1]. Now
consider the problem

(1) max ‖Y u‖22/‖u‖22 subject to |u| ∈ B
where |u| is the vector whose elements are the absolute values |ui|. Optimization
problem (1) adds to standard PCA the additional requirement that the vector of
absolute loadings falls in the space B of ‘smooth’ vectors.

We approach (1) by an alternating maximization approach. For any given vector
of absolute values of the loadings, an adaptation of the centroid method aims to
choose the signs of the loadings optimally. On the other hand, for suitable spaces B
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we can find the best loadings for any given sequence ǫ = sign u. Each of these two
steps—finding the best signs for given absolute values, or finding the best absolute
values for given signs—increases the value of the objective function ‖Y u‖22/‖u‖22
and hence iterating the alternate maximization leads to a (local) maximum of the
problem (1).

There are many interesting questions raised by this approach. From a theoret-
ical point of view, it would be instructive to investigate the asymptotic properties
of the approach under suitable assumptions, under which all three of n and p and
the order of the B-splines would vary in the limiting regime considered, though
even the centroid method itself does not appear to have been studied in this way.
There are obvious methodological questions; for example, is there a reasonable
cross-validation approach to the choice of the family B via the parameters (degree
and number of knots) in the B-spline basis? Other questions are computational,
for example the appropriate choice of starting vector for the alternating maximisa-
tion algorithm. One fascinating possibility is to use a genetic algorithm where new
starting points are obtained by appropriate ‘breeding’ of current good estimates
of the loading vector. Preliminary experiments suggest this approach is promis-
ing. Another computational challenge is to cast the problem is a form amenable
for parallel computation and very large data sets. In many current applications
we may be looking at millions of SNPs and thousands of individuals, so the data
matrix X is very large indeed, and into the future the size of appropriate genetic
data sets will certainly increase.

Finally, of course, will be the question of whether this approach to extracting
modes of variability in genetic data sets yields a useful input into the pressing
problems for which the data were originally collected.
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Statistical inference for stochastic coefficient regression models

Suhasini Subba Rao

The classical multiple linear regression model is ubiquitous in many fields of re-
search. However, in situations where the response variable {Yt} is observed over
time, it is not always possible to assume that the influence the regressors {xt,j}
exert on the response Yt is constant over time. In order to allow for the influence of
the previous regression coefficient on the current coefficient it is often reasonable
to assume that the underlying unobservable regression coefficients are stationary
processes and each coefficient admits a linear process representation. In other
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words, a plausible model for modelling the varying influence of regressors on the
response variable is

Yt =
n∑

j=1

(aj,0 + αt,j)xt,j + εt =
n∑

j=1

aj,0xt,j +Xt,

where {xt,j} are the deterministic regressors, {aj,0} are the mean regressor
coefficients, E(Xt) = 0 and satisfies Xt =

∑n
j=1 αt,jxt,j + εt, {εt} and {αt,j} are

jointly stationary linear time series with E(αt,j) = 0, E(εt) = 0, E(α2
t,j) <∞ and

E(ε2t ) <∞. We observe that this model includes the classical multiple regression
model as a special case, with E(αt,j) = 0 and var(αt,j) = 0. The above model is
often refered to as a stochastic coefficient regression (SCR) model. Such models
have a long history in statistics (see, for example, Hilderth and Houck (1968)
Burnett and Gutherie (1970), Newbold and Bos (1985) and Franke and Gründer
(1995)).

Before fitting an SCR model to the data, it is of interest to check whether
there is any evidence to suggest the coefficients are random and correlated. Let
us consider the null hypothesis of fixed coefficients H0 : Yt = a0 + a1xt + ǫt where
{ǫt} are iid random variables with E(εt) = 0 and var(εt) = σ2

ǫ < ∞ against
the alternative of random coefficients HA : Yt = a0 + a1xt + ǫt, where ǫt =
αtxt + εt and {αt} and {εt} are iid random variables with E(αt) = 0, E(εt) = 0,
var(αt) = σ2

α <∞ and var(εt) = σ2
ε <∞. We observe if the alternative were true,

then var(ǫt) = x2tσ
2
α + σ2

ε , hence plotting var(ǫt) against xt should give a clear
positive slope. Using this observation, one can construct a test for fixed regression
parameters using a test statistic which is the sample correlation between {x2t}
and the empirical residuals {ǫ̂2t}. A similar test can be constructed to test for
randomness of the coefficients.

We now consider methods for estimating the parameters in the SCR model. In
the aforementioned literature, it is usually assumed that {αt,j} satisfies a para-
metric linear time series model and the Gaussian maximum likelihood (GML) is
used to estimate the unknown parameters. In the case {Yt} is Gaussian, the es-
timators are asymptotically normal and the variance of these estimators can be
obtained from the inverse of the Information matrix. Even in the situation {Yt} is
non-Gaussian, the Gaussian likelihood is usually used as the objective function to
be maximised, in this case the objective function is often called the quasi-Gaussian
likelhood (quasi-GML). The quasi-GML estimator is a consistent estimate of the
parameters (see Caines (1988), Chapter 8.6) but when {Yt} is non-Gaussian, ob-
taining an expression for the standard errors of the quasi-GML estimators seems to
be almost imposible. Therefore implicitly it is usually assumed that {Yt} is Gauss-
ian, and most statistical inference is based on the assumption of Gaussianity. In
several situations the assumption of Gaussianity may not be plausible, and there
is a need for estimators which are free of distributional assumptions. To address
this issue we propose an alternative, in some sense nonparametric estimator. Let
a denote the mean regression parameters and θ the parameters which characterise
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the impulse response sequences of the linear processes of the stochastic coefficients

and error. We use (âT , θ̂T ) = argminL(m)
T (a, θ) as an estimator of (a, θ), where

L(m)
T (a, θ) =

1

T −m

T−m/2∑

t=m/2

∫ π

−π

{ It,m(a, ω)

Ft,m(θ, ω)
+ logFt,m(θ, ω)

}
dω,(1)

m is even,

It,m(a, ω) =
1

2πm
|

m∑

k=1

(Yt−m/2+k −
n∑

j=1

ajxt−m/2+k,j) exp(ikω)|2

and

Ft,m(θ, ω) =

n∑

j=1

σ2
j

∫ π

−π

I
(j)
t,m(λ)fj(θ, ω−λ)dλ+σ2

n+1

∫ π

−π

I(n+1)
m (λ)fn+1(θ, ω−λ)dλ

We also consider a closely related estimator. Both of the proposed methods offer
an alternative perspective of the SCR model based within the frequency domain,
and are free of any distributional assumptions. The asymptotic sampling proper-
ties such as consistency and asymptotic normality can be derived. In particular,

the variance of the asymptotic distribution of (âT , θ̂T ) can be derived when the
distribution of the stochastic coefficients and errors are unknown. A theoretical
comparison of our estimators with the GML estimator, in most cases, is not pos-
sible, this is because it is usually not possible to obtain the asymptotic variance of
the GML estimator. However, in the case that the random coefficients and errors
are Gaussian it is possible to show that GML estimator and our frequency domain
estimator have asymptotically equivalent distributions. Details can be found in
Subba Rao (2009).
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Estimation of Jump Tails

Viktor Todorov

(joint work with Tim Bollerslev)

We consider the estimation of the jump tails of a financial asset price, whose
logarithm is assumed to be an Ito semimartingale with the following dynamics

(1) dpt = αtdt+ σtdWt +

∫

R

κ(x)µ̃(dt, dx) +

∫

R

κ′(x)µ(dt, dx),

where αt, σt are some locally bounded processes and Wt is a Brownian motion;
µ is a one-dimensional measure on [0,∞) × R counting the number of jumps of
given size over a given interval of time; the compensator of the jump measure is
denoted with νt(dx)dt and µ̃(dt, dx) := µ(dt, dx) − νt(dx)dt is the compensated
measure; κ(x) is a bounded continuous function which equals x around the origin
and κ′(x) = x− κ(x).

We assume that the compensator of the jumps νt(x) has the following decom-
position

(2) νt(x) =
[
(k+0 + k+1 σ

2
t )1x>0 + (k−0 + k−1 σ

2
t )1x<0

]
ν(x),

where ν(x) is a Levy measure with regularly varying tails, and some further reg-
ularity assumptions being fulfilled.

On a first step of the analysis we show how to conduct the estimation when
we have a continuous record of the price. The idea of the estimation can be de-
scribed as follows. We first construct moment conditions based on the unobserved
compensated measure νt. For this we use the scores of a generalized Pareto dis-
tribution for the excesses of jumps over a given threshold (which in general goes
to zero asymptotically). The latter are valid scores asymptotically because of our
assumption of regularly varying tails (see e.g. [3]). To make the moment condi-
tions feasible, next we replace the measure νt in the moment conditions with the
measure µ, which we observe: the difference is a martingale that does not affect
the moments. Finally, to identify the constant and time varying part of νt we use

projection on lagged
∫ t+1

t
σ2
sds.

The second part of the analysis consists of extending the above estimation
results to the situation when the data is observed discretely over a grid whose
mesh goes to zero. In particular, we assume that we observe the log-price pt at
times 0,∆n, ..., [T/∆n]∆n, where T is the span of the data set and ∆n is the length
of the high-frequency intervals. To adapt the “infeasible” estimation to the current
discrete setting, we develop estimators from the high-frequency data of integrals
with respect to the jump measure as well as of the integrated volatility.

Our estimator of integrals of the form
∫ t+1

t

∫
R
φ(x)µ(ds, dx) is:

(3)

[1/∆n]∑

i=1

φ(∆n,t
i p)1{|∆n,t

i
p|≥α∆̟

n },
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where ∆n,t
i p := pt+i∆n

− pt+(i−1)∆n
, α > 0, ̟ ∈ (0, 12 ). Similarly, our estimate of∫ t+1

t
σ2
sds is the truncated variance of [2] (see also [1]):

(4)

[1/∆n]∑

i=1

(
∆n,t

i p
)2

1{|∆n,t

i
p|≤α∆̟

n }.

We substitute these estimates from the high-frequency data in the estimation
equations derived for the continuous-record sampling scheme. Then we show that
under certain conditions for the relative speed of ∆n ↓ 0 when compared with T ↑
∞, we have that the estimator based on the high-frequency data is asymptotically
equivalent to the one based on the continuous record. These conditions depend
on: (1) the maximum power p for which E|σt|p, (2) the Blumenthal-Getoor index
of the jumps, and (3) how fat are the jump tails.

We conclude with showing how and when our estimation results can be ex-
tended to the case when the jump compensator νt(x) is given by the more general
specification

(5) νt(dx) =
(
ν0(x) + ν1(x)σ

2
t

)
dx, for every t and x big enough,

where ν0 and ν1 are two valid Levy measures with regularly varying tails. The
conditions limit the possible difference in the tail behavior of ν0 and ν1. These
conditions are stronger, the bigger is the deviation of the tails from power law.
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Feature Variables in High-Dimensional Linear Regression Stepwise
Searching in High-Dimensional Regression

Qiwei Yao

(joint work with Cun-Hui Zhang, Da Huang and Hongzhi An)

We investigate the classical stepwise forward and backward search methods for
selecting sparse models in the context of linear regression with the number of
candidate variables p greater than the number of observations n. Two types of
new information criteria BICP and BICC are proposed to serve as the stopping
rules in the stepwise searches, since the traditional information criteria such as
BIC and AIC are designed for the cases with p < n, and may fail spectacularly
when p is close to or greater than n. The proposed methods are illustrated in a
simulation study which indicates that the new methods outperform a counterpart
LASSO selector with a penalty parameter set at a fixed value. The consistency
of the stepwise search is investigated when both n and p tend to ∞. We show
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that a stepwise forward addition followed by a stepwise backward deletion, both
controlled by a version of BICP, leads to a consistent estimated model under the
sparse Riesz condition.

Reporter: Wolfgang Polonik
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