
Mathematisches Forschungsinstitut Oberwolfach

Report No. 44/2009

DOI: 10.4171/OWR/2009/44

Complex Algebraic Geometry

Organised by
Fabrizio Catanese, Bayreuth
Yujiro Kawamata, Tokyo
Gang Tian, Princeton

Eckart Viehweg, Essen

September 27th – October 3rd, 2009

Abstract. The Conference focused on several classical and novel theories in
the realm of complex algebraic geometry, such as Algebraic surfaces, Moduli
theory, Minimal Model Program, Abelian Varieties, Holomorphic Symplectic
Varieties, Homological algebra, Kähler manifolds theory, Holomorphic dy-
namics, Quantum cohomology.

Mathematics Subject Classification (2000): 14xx, 18xx, 32xx, 53xx.

Introduction by the Organisers

The Workshop Komplexe algebraische Geometrie, organized by Fabrizio Catanese
(Bayreuth), Yujiro Kawamata (Tokyo), Gang Tian (Princeton), and Eckart Viehweg
(Essen), drew together 49 participants in spite of the ghost of the swine flue.

There were several PhD students and other young PostDocs in their 20 ‘s and
early 30 ‘s, together with established leaders of the fields related to the thematic
title of the workshop. There were 21 talks which lasted 50 minutes, and other 4
talks by junior participants which lasted 30 minutes. All the talks were followed
by a lively 10 minutes discussion. The schedule left sufficiently ample time for the
exchange of mathematical ideas.

As usual at an Oberwolfach Meeting, the mathematical discussions continued
outside the lecture room throughout the day and the night.

The Conference was fully successful in setting in contact younger researchers
with elder ones. There were fruitful exchanges between mathematicians with dif-
ferent specializations and backgrounds.
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New fashionable topics were presented, alongside with new insights on long
standing classical open problems, and also cross-fertilizations with other research
topics: as algebraic geometry in positive characteristic and D- modules (talk by
Esnault), quantum cohomology and enumerative geometry (talk by Jun Li), and
application of the Ricci flow techniques to Minimal Model Program (talk by Zhou).

A central role was occupied by the recent developments around the Minimal
Model Program: a simpler proof of the finite generation of canonical rings (Corti),
progress towards Shokurov’s ACC conjecture (Ein, Mustata), and the Zariski de-
composition problem (Birkar).

Moduli spaces and their compactifications were a central theme too: compacti-
fied moduli spaces of stable varieties appeared from a theoretical viewpoint in the
new results presented by Kovacs, and more concretely in the talks by Pardini and
Rollenske.

Moduli spaces also played a dominant role: as in the talks by Farkas (moduli
of curves) and Bauer (moduli spaces of ’special’ surfaces of general type).

Algebraic surfaces, of special and of general type, appeared throughout in sev-
eral talks, by Bauer, Li, Mukai, Pardini, Pignatelli, Rollenske.

Homological algebra and derived categories, with applications to classification
theory, were covered by talks by Schreyer, Ishii, Nakaoka, Lazarsfeld.

The talk by Lazarsfeld built a new bridge between homological algebra and
Kähler manifold theory, applying the Bernstein-Gelfand-Gelfand correspondence
to obtain powerful new extensions of the classical inequalities by Castelnuovo for
irregular varieties.

In the classical theory of Abelian and Modular varieties there were interesting
expositions of new results by van der Geer and Hulek.

There were also other very interesting topics treated:

• Holomorphic dynamics: Siegel disks on rational and K3 surfaces (Oguiso);
• Hyperdiscriminants, Chow forms and Mabuchi energy of Kähler manifolds
(Paul);
• Mori theory and Fano varieties (Totaro);
• holomorphic symplectic varieties (Debarre and Namikawa).

The variety of striking results and the very interesting and challenging proposals
made the participation in the workshop very rewarding. We hope that these
abstracts will convey our enthusiasm to the readers, and we are sure that they will
be quite useful to the mathematical community.
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Abstracts

Surfaces with geometric genus zero: their fundamental groups and
moduli spaces

Ingrid Bauer

(joint work with Fabrizio Catanese, Fritz Grunewald, Roberto Pignatelli)

Surfaces of general type with vanishing geometric genus (i.e., pg(S) = h0(S,Ω2
S))

had a remarkable revival in the past few years yielding many new constructions
and examples of such surfaces. In our joint papers [4], [5] we contribute to the
current knowledge giving many new examples of surfaces of general type with
pg = 0.
In loc. cit. we analyze the following situation:

- C1, C2 compact complex curves of respective genera g1, g2 ≥ 2;
- G a finite group acting faithfully on each Ci;
- X := (C1 × C2)/G the quotient by the diagonal action;
- S → X the minimal resolution of the singularities of X .

We call surfaces as above product-quotient surfaces. For the details of the system-
atic computer aided search for these surfaces under the additional hypothesis that
pg(S) = q(S) = 0 and the obtained classification results we refer to [9].
The main tool for distinguishing the constructed surfaces (among themselves and
from old examples) is the following structure theorem on the fundamental group
of product-quotient surfaces.

Theorem 1. ([5]) Let S be a product-quotient surface. Then π1(S) contains a
normal subgroup of finite index isomorphic to Πg ×Πg′ , g, g′ ≥ 0, where Πg, Πg′

are the fundamental groups of a smooth curve of genus g resp. g′.

The proof of the above theorem is algebraically and indirect. E.g., we cannot
keep track of the index of the normal subgroup isomorphic to a product of surface
groups.
We would like to explain in the sequel in a concrete case that a geometric under-
standing of the fundamental group can give rise to a complete understanding of
the corresponding connected component in the moduli space of surfaces of general
type.

We reproduce below an excerpt of the classification table (of quotients as above
by a non free action of G, but with canonical singularities) in [5].

K2 Sing X T1 T2 G N H1(S,Z) π1(S)

4 1/24 25 25 Z3
2 1 Z3

2 × Z4 1 → Z4
→ π1 → Z2

2 → 1

4 1/24 22, 42 22, 42 Z2 × Z4 1 Z3
2 × Z4 1 → Z4

→ π1 → Z2
2 → 1

Once we found out that the fundamental groups of the above two families were
isomorphic to the fundamental groups of surfaces constructed by Keum and Naie
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([6], [8]), the most natural question was whether all these surfaces would belong
to a unique irreducible component of the moduli space.
This turns out to be correct, but a good understanding of the fundamental group
allows to prove more. In fact, the main theorem of [1] is the following:

Theorem 2. Let S be a smooth complex projective surface which is homotopically
equivalent to a Keum - Naie surface. Then S is a Keum - Naie surface. The
connected component of the Gieseker moduli space corresponding to Keum - Naie
surfaces is irreducible, normal, unirational of dimension six.

In order to prove this, we resort first of all to a slightly different construction of
Keum - Naie surfaces.
We start with a (Z/2Z)2 - action on the product of two elliptic curves E′

1 × E′
2.

This action has 16 fixed points and the quotient is an 8 - nodal Enriques surface.
Instead of constructing S as the double cover of the Enriques surface (as done by

Keum and Naie), we consider an étale (Z/2Z)2 - covering Ŝ of S, whose existence

is guaranteed from the structure of the fundamental group of S. Ŝ is obtained as
a double cover of E′

1 ×E′
2 branched in a (Z/2Z)2 - invariant divisor of type (4, 4),

and S is recovered as the quotient of Ŝ by the action of (Z/2Z)2 on it.

The structure of this (Z/2Z)2-action and the geometry of the covering Ŝ of S
is essentially encoded in the fundamental group π1(S), which is described as an

affine group Γ ∈ A(2,C). In particular, it follows that the Albanese map of Ŝ is

the above double cover α̂ : Ŝ → E′
1 × E′

2.
If S′ is now homotopically equivalent to a Keum - Naie surface S, then we have

a corresponding étale (Z/2Z)2 - covering Ŝ′ which is homotopically equivalent to

Ŝ. Since we know that the degree of the Albanese map of Ŝ is equal to two (by

construction), we can conclude the same for the Albanese map of Ŝ′ and this allows

to deduce that also Ŝ′ is a double cover of a product of elliptic curves branched in
a (Z/2Z)2 - invariant divisor of type (4, 4).
It was surprising for us that the same method works for Burniat-Inoue surfaces
with K2 = 6 (primary Burniat surfaces). The main result of [2] is the following

Theorem 3. Let S be a smooth complex projective surface which is homotopically
equivalent to a primary Burniat surface. Then S is a Burniat surface.

We can then use this result to give an alternative, and less involved proof of the
following result due to Mendes-Lopes and Pardini ([7]).

Theorem 4. The subset of the Gieseker moduli space corresponding to primary
Burniat surfaces is an irreducible connected component, normal, unirational and
of dimension equal to 4.

At this point we got interested to describe the irreducible (or even connected)
components of the moduli space of surfaces of general type corresponding to Bur-
niat surfaces with 2 ≤ K2 ≤ 5. It turns out that there is one Burniat surface with
K2 = 2, which is a standard Campedelli surface with torsion (Z/2Z)3, so this case
is well known.
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For Burniat surfaces with 4 ≤ K2 ≤ 5 instead we can prove the following two
results (cf. [3]):

Theorem 5. The subset of the Gieseker moduli space corresponding to secondary
Burniat surfaces with K2 = 5 is an irreducible connected component, normal,
unirational and of dimension equal to 3.

For the case K2 = 4 there are two cases: the non nodal case and the nodal case.
Burniat surfaces with K2 = 4 are described as smooth bidouble covers of a weak
Del Pezzo surface Y of degree 4. In the non nodal case, Y is in fact a Del Pezzo
surface, whereas in the nodal case Y contains a rational (−2)-curve.
Theorem 6. The subset of the Gieseker moduli space corresponding to secondary
Burniat surfaces with K2 = 4 consists of two irreducible connected components,
each of dimension equal to 2. One connected component corresponds to Burniat
surfaces with K2 = 4 of non nodal type and the other one to Burniat surfaces with
K2 = 4 of nodal type.

The techniques to prove the last two theorems are different from those to prove
theorems 3,4.
The openness of the components corresponding to secondary Burniat surfaces is
shown by local deformation theory. The arguments are quite standard, except in
the case K2 = 4 of nodal type.
For the closedness, the essential arguments are the following:

1) the (Z/2Z)2-action on Burniat surfaces Xt, t 6= 0, can be extended to the
limit X0;

2) letX0 be the limit of (the canonical model of a ) secondary Burniat surface,
then consider Y0 := X0/(Z/2Z)2; Y0 is a normal Gorenstein Del Pezzo
surface;

3) use a combinatorial argument on the number of lines in the branch locus
to show that Y0 cannot have worse singularities as Yt for t 6= 0;

4) this shows that X0 is again a secondary Burniat surface of the same type
as Xt, for t 6= 0.
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On the Zariski decomposition problem

Caucher Birkar

We work over an algebraically closed field k of characteristic zero, and in the
relative situation, that is, when we have a projective morphism X → Z of normal
quasi-projective varieties written as X/Z.

There have been many attempts to generalise the Zariski decomposition for
surfaces to higher dimensions. Here we mention two of them.

Fujita-Zariski decomposition. Let D be an R-Cartier divisor on a normal
variety X/Z. A Fujita-Zariski decomposition/Z for D is an expression D = P +N
such that

(1) P and N are R-Cartier divisors,
(2) P is nef/Z, N ≥ 0, and
(3) if f : W → X is a projective birational morphism from a normal variety,

and f∗D = P ′ +N ′ with P ′ nef /Z and N ′ ≥ 0, then P ′ ≤ f∗P .

CKM-Zariski decomposition. Let D be an R-Cartier divisor on a normal
variety X/Z. A Cutkosky-Kawamata-Moriwaki-Zariski (CKM-Zariski for short)
decomposition/Z for D is an expression D = P +N such that

(1) P and N are R-Cartier divisors,
(2) P is nef/Z, N ≥ 0, and
(3) the morphisms π∗OX(xmPy) → π∗OX(xmDy) are isomorphisms for all

m ∈ N where π is the fixed given morphism X → Z.

Let (X/Z,B) be a lc pair. It is well-known that if we have a log minimal
model for this pair, then birationally there is a Zariski decomposition for KX +B
according to both definitions of Zariski decomposition. However, the converse is
known only in some special cases. Based on works of Moriwaki [3], Kawamata
[2] proved that for a klt pair (X/Z,B) with KX + B being Q-Cartier and big/Z,
existence of a CKM-Zariski decomposition for KX + B implies existence of a log
canonical model for (X/Z,B).

The problem with both definitions is that it is frequently very hard to construct
such decompositions because of condition (3). To deal with this issue we introduce
a very weak type of Zariski decomposition.

Weak Zariski decomposition. Let D be an R-Cartier divisor on a normal
variety X/Z. A weak Zariski decomposition/Z for D consists of a projective bira-
tional morphism f : W → X from a normal variety, and a numerical equivalence
f∗D ≡ P +N/Z such that
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(1) P and N are R-Cartier divisors,
(2) P is nef/Z, and N ≥ 0.

Note that this is much weaker than the other definitions. For example, if D ≥ 0,
then by taking f to be the identity, P = 0 and N = D we already have a weak
Zariski decomposition. Of course, a natural thing to ask is the following:

Question. Does every pseudo-effective/Z R-Cartier divisor D on a normal va-
riety X/Z have a weak Zariski decomposition/Z?

The main result concerning the relation between Zariski decompositions and
existence of minimal models is the following theorem which is proved in [1].

Theorem 1. Assume the log minimal model program for Q-factorial dlt pairs in
dimension d − 1. Let (X/Z,B) be a lc pair of dimension d. Then, the following
are equivalent:

(1) KX +B has a weak Zariski decomposition/Z,
(2) KX +B birationally has a CKM-Zariski decomposition/Z,
(3) KX +B birationally has a Fujita-Zariski decomposition/Z,
(4) (X/Z,B) has a log minimal model.
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Finite generation of the canonical ring after V. Lazić

Alessio Corti

The finite generation of the canonical ring of (nonsingular, projective) algebraic
varieties in characteristic 0 is now a theorem [1]. In this talk I outline a new direct
proof by Lazić [2], based on the hyperplane section principle and induction on
dimension.

Let X be a nonsingular projective variety, Λ a finitely generated abelian semi-
group and D : Λ → DivX an additive map to the space of (integral, say, or
rational) divisors on X . A divisorial ring on X is a Λ-graded ring of the form

R(X,D) =
⊕

λ∈Λ

H0
(
X,D(λ)

)
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A divisorial ring is a klt adjoint ring if

D(λ) = r(λ)
(
K +B(λ)

)

where r : Λ → Q+ is an additive map and B : Λ → DivX is a map such that
the pair

(
X,B(λ)

)
is klt for all λ ∈ Λ. Note that the function B : Λ → DivX is

homogeneous of degree zero; that is, B(rλ) = B(λ) for all λ ∈ Λ and r ∈ N.

Theorem 1. [1], [2] Let R = R(X ;D) be a klt adjoint ring. If B(λ) is big for
every λ ∈ Λ, then R is finitely generated.

In [2], this theorem is proved by induction on the dimension of X together with
the following:

Theorem 2. Let X be a nonsingular projective variety and B =
∑
Bi ⊂ X a

snc divisor on X. Also fix an ample Q-divisor A on X, such that the pair (X,A)
is klt and A meets transversally every component of B. denote by B the “box”
{Θ =

∑
biBi | 0 ≤ bi ≤ 1}. Then, for every component G of B:

(1) PG
A = {Θ ∈ B | G 6⊂ B(K + A + Θ)} is a finite rational polyhedron.

(Where, for a divisor D, B(D) denotes the stable base locus.)
(2) Θ ∈PG

A (Q) if and only if the ‘Lelong number:’

νG||K +A+Θ|| := lim
n→∞

1

n
multG |n(K +A+Θ)| = 0.

The proof of both theorems is a transparent (though not easy) induction on
the dimension. Hence, these ideas constitute a new approach to finite generation
not relying on the detailed machinery of the minimal model program. Statements
closely related to Theorem B can be found in [1] and in the work of Mihai Paun
[3].
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A new family of symplectic fourfolds

Olivier Debarre

(joint work with Claire Voisin)

It follows from work of Beauville ([1]) and Bogomolov that any smooth complex
compact Kähler manifold M with c1(M) = 0 has a finite étale cover which is a
product of (Kähler) manifolds of one of the following types:

• complex tori;
• Calabi-Yau manifolds, i.e., simply connected projective manifolds X with
H0(X,Ωp

X) = 0 for 0 < p < dim(X);
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• irreducible symplectic manifolds, i.e., (simply connected) compact even-
dimensional Kähler manifolds X with an everywhere non-degenerate 2-
form ω such that H0(X,Ωp

X) is 0 for p odd and generated by ωp/2 for p
even.

It is very easy to construct Calabi-Yau manifolds, for example by taking complete
intersections in Fano manifolds. Irreducible symplectic manifolds are much rarer.
Beauville constructed in [1], in each dimension 2n, two series of such varieties:

• the n-th punctual Hilbert scheme S[n] for a K3 surface S (it has b2 = 23);
• the inverse image Kn(A) of the origin by the sum morphism A[n+1] → A,
where A is a 2-dimensional torus (it has b2 = 7);

and O’Grady constructed two other families in dimensions 6 and 10.
Beauville’s examples all have, in dimension at least 4, Picard number ≥ 2, while

a very general algebraic deformation has Picard number 1, hence is not of the same
type. There are very few explicit geometric descriptions for these deformations:
only three such families are explicitly described, each of which is 20-dimensional
and parametrizes general polarized deformations of the second punctual Hilbert
scheme of a K3 surface:

(1) Beauville and Donagi proved in [2] that the variety of lines F (X) on a
smooth cubic hypersurface X ⊂ P5 is an algebraic symplectic fourfold.
This gives a 20-dimensional moduli space of fourfolds, and along an explic-
itly described hypersurface in this moduli space (corresponding to “Pfaf-
fian” cubics), F (X) is isomorphic to the second punctual Hilbert scheme
of a general K3 surface S of genus 8.

(2) Iliev and Ranestad proved in [7] that the variety V (X) of sum of powers of
a general cubic X ⊂ P5 as above is another algebraic symplectic fourfold,
with 20 moduli. Along another hypersurface in the moduli space (corre-
sponding to “apolar” cubics), V (X) is also isomorphic to S[2]. However,
it is shown in [8] that the polarization on V (X) is in general numerically
different from the Plücker polarization on F (X). This guarantees that we
have two different families of deformations of S[2].

(3) O’Grady constructed in [12] a 20-parameter family of symplectic algebraic
fourfolds. They are quasi-étale double covers of certain sextic hypersur-
faces constructed by Eisenbud, Popescu, and Walter, and are deformations
of the second punctual Hilbert scheme of a general K3 surface of genus 6.

We construct another family of symplectic fourfolds, which is close in spirit
to the Beauville-Donagi family: it is related to the geometry of Grassmannians,
and there is an associated Fano hypersurface which plays the role of the cubic
hypersurface in [2].

The Grassmannian considered here is G(6, V10), which parametrizes vector sub-
spaces of dimension 6 of a fixed complex vector space V10 of dimension 10. Our
starting point, which came to us following a discussion with Peskine, is a 3-form

σ ∈ ∧3
V ∗
10. A dimension count shows that the moduli space of such σ is 20-

dimensional.
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We associate with σ the variety

Yσ = {[W6] ∈ G(6, V10) | σ|W6 ≡ 0}.

Theorem 1. For σ general, Yσ is an irreducible symplectic fourfold.

Unfortunately, unlike Beauville and Donagi, we were unable to identify special
σ for which Yσ is actually isomorphic to an S[2]. Instead, we prove the following
result, using ideas of Huybrechts ([6]).

Theorem 2. The polarized manifolds (Yσ,OYσ
(1)) are the general deformations

of S[2], where S is a general K3 surface of genus 12 with an explicit line bundle.

Gritsenko, Hulek, and Sankaran proved in [4] that polarized irreducible sym-
plectic fourfolds which are deformation equivalent to an S[2] with some polarization
h admit a quasi-projective coarse moduli space Mh which is finite over a dense
open subset of a locally symmetric modular variety Sh. There are two “types” of
polarizations; when h is “of split type,” Sh (hence also every component of Mh)
is of general type for d := 1

2q(h) ≥ 12 and of nonnegative Kodaira dimension for
d = 9 or 11 (q is the Beauville-Bogomolov quadratic form; [1]). In our case, h is
of “nonsplit type” and d = 11, and our construction proves that one component
of Mh (hence also Sh) is unirational.

Problem 1. Find specific σ for which Yσ is actually isomorphic to an S[2].

Problem 2. Find other globally generated homogeneous vector bundles on rational
homogeneous spaces for which the zero-set of a general section is an irreducible
symplectic manifold.
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Shokurov’s ACC Conjecture for log canonical thresholds on smooth
varieties

Lawrence Ein

(joint work with Tommaso de Fernex, Mircea Mustaţă)

Let k be an algebraically closed field of characteristic zero. Log canonical va-
rieties are varieties with mild singularities that provide the most general context
for the Minimal Model Program. More generally, one considers the log canonicity
condition on pairs (X, at), where a is a proper ideal sheaf on X (most of the times,
it is the ideal of an effective Cartier divisor), and t is a nonnegative real number.
Given a log canonical variety X over k, and a proper nonzero ideal sheaf a on X ,
one defines the log canonical threshold lct(a) of the pair (X, a). This is the largest
number t such that the pair (X, at) is log canonical. One makes the convention
lct(0) = 0 and lct(OX) = ∞. One also defines a local version of the log canon-
ical threshold at a point p ∈ X , which we denote by lctp(a). The log canonical
threshold is a fundamental invariant in birational geometry. It plays an important
role in the studying birational rigidity of smooth hyper-surfaces of degree n in Pn,
in the study of Bernstein polynomial from D−module theory and in the study of
space of arcs [10] and [11]. See also [7], [6], or [9].

Shokurov’s ACC Conjecture [12] says that the set of all log canonical thresholds
on varieties of any fixed dimension satisfies the ascending chain condition, that is,
it contains no infinite strictly increasing sequences. This conjecture attracted con-
siderable interest due to its implications to the Termination of Flips Conjecture
(see [1] for a result in this direction).

Consider the following set.

T sm
n := {lct(a) | X is smooth, dimX = n, a ( OX}

Using ultra-filters and nonstandard model theory, deFernex and Mustaţǎ proved
that Tn is a closed subset of the real numbers [5]. Kollár replaces the nonstandard
techniques in [5] by more traditional methods and reproved the result. Further
using the powerful results of [2]. he shows that the set of accumulation points in
Tn is precisely Tn−1 [8]. In a recent preprint, deFernex, Mustaţǎ and the PI are
able to prove the ACC conjecture for smooth varieties using relatively elementary
methods. It also provides a simpler proof for the accumulation result of Kollár.

Theorem 1. [3] For every n, the set

T sm
n := {lct(a) | X is smooth, dimX = n, a ( OX}

of log canonical thresholds on smooth varieties of dimension n satisfies the ascend-
ing chain condition.
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Log canonical threshold on a variety with quotient singularities can be written
as a log canonical threshold on a smooth variety of the same dimension. Therefore
for every n the set

T quot
n := {lct(a) | X has quotient singularities, dimX = n, a ( OX}

is equal to T sm
n , and thus the ascending chain condition also holds for log canonical

thresholds on varieties with quotient singularities.
Using inversion of adjunction for local complete intersection [6], we are also able

to prove a similar result for local complete intersection varieties.

Theorem 2. [3] For every n, the set

T l.c.i.
n := {lct(a) | X is l.c.i., dimX = n, a ( OX}

of log canonical thresholds on l.c.i. varieties of dimension n satisfies the ascending
chain condition.

Let ai be a sequence of ideals in the formal power series ring of n−variables.
Generalizing a construction of Kollár for principal ideals, in [3] the PI and his
coworker construct a generalized limit of this sequence of ideals, which play a
similar role of the limit of a converging sequence of numbers of a given sequence of
numbers. The generalized limit a is an ideal in a formal power series of n variable
over an extension field of k. If limi lct(ai) = c, then lct(a) = c.

A key ingredient is the following effective m-adic semi-continuity property for
log canonical thresholds.

Theorem 3. Let X be a log canonical variety, and let a ( OX be a proper ideal.
Suppose that E is a prime divisor over X computing lct(a), and consider the ideal
sheaf q := {h ∈ OX | ordE(h) > ordE(a)}. If b ⊆ OX is an ideal such that
b+ q = a+ q, then after possibly restricting to an open neighborhood of the center
of E we have lct(b) = lct(a).
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Relation between the étale fundamental group and OX-coherent
DX-modules

Hélène Esnault

If X is a complex smooth algebraic variety, its C-valued points X(C) define a

topological manifold, and one has the topological fundamental group πtop
1 (X, x)

based in a complex point x. This an abstract group, which moreover is of fi-

nite type. Its profinite completion ̂πet
1 (X, x) is identified via Riemann existence

theorem with Grothendieck’s étale fundamental group πet
1 (X, x). The homo-

morphism πtop
1 (X, x) → πet

1 (X, x) factors through the proalgebraic completion(
πtop
1 (X, x)

)alg
= lim←−H , where H is the Zariski closure of the monodromy group

of a complex linear representation πtop
1 (X, x)→ GL(n,C). This yields a surjective

homomorphism
(
πtop(X, x)

)alg
։ πet

1 (X, x). The classical Malcev-Grothendieck
theorem ([5], [4]) asserts that if the profinite completion of an abstract group Γ
of finite type is trivial, so is its algebraic completion. Using the Riemann-Hilbert
correspondence [1], the theorem implies for Γ = πtop

1 (X, x) that if πet
1 (X, x) = {1},

then
(
πtop(X, x)

)alg
= {1}, so there are no nontrivial algebraic bundles with an in-

tegrable connection, or, what is equivalent, no nontrivial OX -coherent DX -module
(with regular singularities at ∞ if X is not proper).

Gieseker conjectured in [3], p. 8, that the same should hold true in characteristic
p > 0. We show

Theorem 1. ([2, Theorem 1,1]) Let X be a smooth projective variety defined over
a perfect field k of characteristic p > 0. If πet

1 (X ⊗k k̄, x) = {1}, then there are
non nontrivial OX -coherent DX -modules.
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Rational maps between moduli spaces of curves and Gieseker-Petri
divisors

Gavril Farkas

The main issue we address is a detailed intersection theoretic study of a rational
map between two different moduli spaces of curves. We fix g := 2s+ 1 ≥ 3. Since
ρ(2s+1, 1, s+2) = 1 we can define a rational map between moduli spaces of curves

φ : M 2s+1 −− > M 1+ s
s+1 (

2s+2
s ), φ([C]) := [W 1

s+2(C)],

where W 1
s+2(C) := {L ∈ Pics+2(C) : h0(C,L) ≥ 2} is the so-called Brill-Noether

curve of C. It is known that φ is generically injective (cf. [10], [1]). Since φ is the
only-known rational map between two moduli spaces of curves and one of the very
few natural examples of a rational map admitted by M g, its study is clearly of
independent interest. We carry out a detailed enumerative study of φ and among
other things, we determine the pull-back map φ∗ : Pic(M g′)→ Pic(M g):

Theorem 1. We consider the rational map φ : M g − − > M g′ , φ[C] =
[W 1

s+2(C)], where

g := 2s+ 1 and g′ := 1 +
s

s+ 1

(
2s+ 2

s

)
.

We then have the following description of the map φ∗ : Pic(M g′)→ Pic(M g):

φ∗(λ′) = n0

(6s4 + 20s3 − s2 − 20s− 2

(s+ 2)(2s− 1)
λ− s(s2 − 1)

2s− 1
δ0−

−2s(s− 1)(6s2 + 10s+ 1)

(s+ 2)(4s− 2)
δ1 −

[g′/2]∑

i=2

biδi

)
,

where bi ≥ s(s2−1)
2s−1 for 2 ≤ i ≤ [g/2],

φ∗(δ′0) = n0·δ0+[GP
1

2s+1,s+2], φ
∗(δ′1) = n0·δ1 and φ∗(δ′j) = 0 for 2 ≤ j ≤ [g′/2].

Here n0 denotes the Catalan number of linear series g1s+1 on a general curve of
genus 2s.

In particular we have the following formula concerning slopes of divisor classes
pulled back from M g′ (For the definition of the slope function s : Eff(M g) →
R ∪ {∞} on the cone of effective divisors we refer to [8] or [5]):

Theorem 2. We set g := 2s+ 1 and g′ := 1 + s
s+1

(
2s+2
s

)
. For any divisor class

D ∈ Pic(M g′) having slope s(D) = c, we have the following formula for the slope

of φ∗(D) ∈ Pic(M g):

s(φ∗(D)) = 6 +
8s3(c− 4) + 5cs2 − 30s2 + 20s− 8cs− 2c+ 24

s(s+ 2)(cs2 − 4s2 − c− s+ 6)
.
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We use this formula to describe the cone Mov(M g) of moving divisors1 inside

the cone Eff(M g) of effective divisors. The cone Mov(M g) parametrizes rational

maps from M g in the projective category while the cone Nef(M g) of numerically

effective divisors, parametrizes regular maps from M g. A fundamental question

is to estimate the following slope invariants associated to M g:

s(M g) := infD∈Eff(Mg)
s(D) and s′(M g) := infD∈Mov(Mg)

s(D).

The formula of the class of Brill-Noether divisors M
r

g,d when ρ(g, r, d) = −1 shows

that limg→∞s(M g) ≤ 6 (cf. [3]). In [4] we provided an infinite sequence of genera

of the form g = a(2a + 1) with a ≥ 2 for which s(M g) < 6 + 12/(g + 1), thus
contradicting the Slope Conjecture [8]. There is no known example of a genus g
such that s(M g) < 6. We have the following estimate of the moving cone:

Theorem 3. s′(M g) < 6 + 16/(g − 1).
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The Limit of the Fourier-Mukai Transform

Gerard van der Geer

(joint work with Alexis Kouvidakis)

This is a report on joint work ([3, 4]) with Alexis Kouvidakis (University of
Crete). The Chow ring CH∗

Q(X) of a principally polarized abelian variety X of

dimension g over an algebraically closed field is graded by codimension CH∗
Q(X) =

⊕g
i=0CH

i
Q(X) and carries an intersection product (x, y) 7→ x · y that makes it a

1Recall that an effective Q-Cartier divisor D on a normal projective variety X is said to be
moving, if the stable base locus

⋂
n≥1 Bs|OX(nD)| has codimension at least 2 in X.
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commutative ring. But it is also provided with a second structure of commutative
ring via the Pontryagin product (x, y) 7→ x ⋆ y. The relation is given by the
Fourier-Mukai transform

F : CH∗
Q(X)←→ CH∗

Q(Xt)

with Xt the dual abelian variety that we identify with X using the principal
polarization. The map F is defined by

x 7→ p2∗(e
c1(P ) · p∗1(x)),

where p1 and p2 are the two projections X×X → X and P is the Poincaré bundle
on X × X . The Fourier-Mukai transform is a bijection transforming the usual
intersection product into the Pontryagin product: F (x · y) = F (x) ⋆ F (y). This
Fourier-Mukai transform is a powerful tool for probing the structure of the Chow
ring. Using it Beauville constructed in [1] a second grading

CH∗
Q(X) = ⊕i,jCH

i
(j)(X),

where
CHi

(j)(X) = {x ∈ CHi(X) : n∗(x) = n2i−j x for all n ∈ Z}.
We have F (CHi

(j)(X)) = CHg−i+j
(j) (X).

The quotient ring A∗(X) of CH∗
Q(X) modulo algebraic equivalence inherits this

double grading from CH∗
Q(X).

We now look at a degenerating abelian variety X → S over a discrete valuation
ring with residue field k so that the generic fibre is a ppav and the special fibre
X0 is a semi-abelian variety of torus rank 1:

1→ Gm → X0 → B → 0,

where B is a g−1-dimensional principally polarized abelian variety and the exten-
sion class is β ∈ B. We assume that X has a compactification X̄ whose special
fibre X̄0 has as normalization a P1-bundle P = P(OB ⊕J) over B with J the line
bundle O(Θ − Θβ) with Θ defining the polarization on B. Then X̄0 is obtained
by gluing the two natural sections of the P1-bundle by a translations over β.

If cη is an algebraic cycle on Xη we can take the Fourier-Mukai transform
ϕη := F (cη) and consider the limit cycle (specialization) ϕ0 of ϕη. A natural
question is:

Question 1. What is the limit ϕ0 of ϕη?

If q : P→ B denotes the natural projection of the P1-bundle, the Chow ring of
P is the extension CH∗(B)[λ]/(λ2 − λ · q∗c1(J)) with λ = c1(OP(1)). We denote
by c0 the specialization of the cycle cη on X̄0. We can write c0 as ν∗(γ) with
γ = q∗z + q∗w · λ, where ν : P→ X̄0 is the normalization map.

Theorem 1. Let cη be a cycle on Xη with c0 = ν∗(q
∗z + q∗w · λ). The limit ϕ0

is up to algebraic equivalence given by

ϕ0
a
= ν∗(q

∗FB(w) − q∗FB(z) · λ) .
with FB the Fourier-Mukai transform of B.
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Modulo rational equivalence the answer is more involved. The limit ϕ0 of the
Fourier-Mukai transform ϕη = F (cη) is given by ϕ0 = ν∗(q

∗a+ q∗b · λ) with

a = FB(w) +

2g−2∑

n=0

n∑

m=0

(−1)m
(n+ 2)!

FB [(z + w · c1(J)) · cm1 (J)] · cn−m+1
1 (J)

and

b =

2g−2∑

n=0

n∑

m=0

(−1)m
(n+ 2)!

FB[(((−1)n+1 − 1)z − w · c1(J)) · cm1 (J)] · cn−m
1 (J) ,

One can apply this to prove non-vanishing results. For example, suppose that
cη =

∑
c(j) with c(j) ∈ Ai

(j)(X) with corresponding decomposition ϕη =
∑
ϕ(j)

with ϕ(j) ∈ Ag−i+j(X).

Corollary 1. Suppose ϕ
(j)
0 6= 0 with ϕ

(j)
0 the codimension g − i + j-part of ϕ0.

Then c(j) 6= 0 (modulo algebraic equivalence).

For example, one can take for the degenerating abelian variety the Picard variety
of the Fano surface of lines on a cubic threefold that degenerates to a generic one-
nodal cubic threefold. In this case the special fibre is the Gm-extension of the
Jacobian of a general curve C of genus 4 and the extension class β is given by the
difference of the two g13 ’s on C. We can embed the Fano surface Σ in Pic0(Σ) by
choosing a base point s0 and sending s to [Ds −Ds0 ] with Ds the divisor of lines
on the cubic threefold that intersect the line corresponding to s. The cycle class of
the Fano surface Σ of the general fibre in Pic0(Σ) has a Beauville decomposition

[Σ] = Σ(0) +Σ(1) +Σ(2)

with Σ(j) ∈ A3
(j)(X). Then the claim is that Σ(1) is not algebraically equivalent

to 0 because it degenerates to the class with Fourier-Mukai transform

ϕ
(1)
0 = ν∗(q

∗[(FB(C
(0)) · FB(C

(1))]− q∗FB(C
(1)) · λ)

with C = C(0) +C(1) the Beauville decomposition of C in A∗(Jac(C)) and this is
not zero since we know by Ceresa’s classical result [2] that for sufficiently general
C the class C(1) is not zero.

But maybe the reader can come up with more important applications of this
limit.
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Characters of orthogonal groups and the fundamental group of
modular varieties

Klaus Hulek

(joint work with Valeri Gritsenko, Gregory Kumar Sankaran)

1. Introduction

The main question considered in this talk is the following: what can one say
about the abelianisation of arithmetic groups, in particular of orthogonal type?
This question has applications to the existence of possible characters of automor-
phic forms and to the fundamental group of modular varieties.

A first example is the group SL(2,Z) = Sp(1,Z). It is well known that the
abelianisation of this group is cyclic of order 12, i.e. SL(2,Z)ab = Z/12Z. The
generator of this group is the character of the square η2 of the Dedekind η-function.
Related to this, Mumford has shown that this is also the Picard group of the moduli
stack of elliptic curves, i.e. Pic(A 1) = Z/12Z.

2. Directory of groups

We denote by L an even non-degenerate integral lattice and by O(L) its group
of orthogonal transformations. Examples which are of relevance for us include

• LK3 = 3U ⊕ 2E8(−1), the K3-lattice, where U denotes the hyperbolic
plane and E8(−1) is the unique negative definite, even unimodular lattice
of rank 8.
• L2d = 2U⊕2E8(−1)⊕〈−2d〉, the lattice which arises in the moduli problem
for degree 2d-polarised K3-surfaces.

• Lnon-split
2d = 2U ⊕ 2E8(−1) ⊕

(
−(d+ 1)/2 1

1 −2

)
(here d ≡ −1 mod 4),

a lattice which arises in the moduli problem of polarised irreducible sym-
plectic manifolds of non-split type (see the talk of Debarre in this report).
• M = U⊕U(2)⊕E8(−2), a lattice which plays an important role for moduli
of Enriques surfaces.

Let L∨ be the dual lattice of L. The discriminant D(L) = L∨/L carries a

quadratic form with values in Q/2Z. The kernel Õ(L) of the natural map O(L)→
O(D(L)) is called the stable orthogonal group and we set S̃O(L) = Õ(L)∩SO(L).
We denote the group of orthogonal transformations of real spinor norm 1 (for
a definition see [2, Section 1]) by O+(L) and set SO+(L) = O+(L) ∩ SO(L),

Õ
+
(L) = Õ(L) ∩ O+(L) and S̃O

+
(L) = S̃O(L) ∩ O+(L). Finally we define the

spinorial kernel O′(L) to be the group of transformations in SO(L) of rational
spinor norm 1. Note that every root a ∈ L (i.e., element of length −2) defines a

reflection σa ∈ Õ
+
(L) by setting σa(x) = x+ (a, x)a.
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3. A result of Kneser

The following result of Kneser is important for our considerations.

Theorem 1 (Kneser). Let L be an even lattice which satisfies Kneser’s conditions
i.e.,

(i) The real Witt rank WittR(L) ≥ 2,
(ii) L represents −2,
(iii) rank2(L) ≥ 6 and rank3(L) ≥ 5 where rankp(L) denotes the p-rank of L.

Then

O′(L) = 〈σaσb | a2 = b2 = −2〉.
From this it is not hard to conclude the following

Theorem 2. Let L be an even lattice satisfying Kneser’s conditions. Then Õ
+
(L)ab

and S̃O
+
(L)ab are 2-groups whose order divides 2N resp. 2N−1 where N is the

number of orbits of roots with respect to the groups Õ
+
(L) and S̃O

+
(L) respectively.

Using this and Eichler’s criterion one obtains

Corollary 1. Let L be an even unimodular lattice of rank at least 6 containing
two hyperbolic planes. Then

S̃O
+
(L)ab = {1}, Õ

+
(L)ab = Z/2Z = 〈det〉.

4. The main theorem

In many geometric applications the lattices in question are not unimodular.
This was the main motivation for our main result which can be seen as both a
strengthening of Theorem 2 and a generalisation of Corollary 1.

Theorem 3. Let L be an even lattice containing at least two hyperbolic planes
such that rank2(L) ≥ 6 and rank3(L) ≥ 5. Then

S̃O
+
(L)ab = {1}, Õ

+
(L)ab = Z/2Z = 〈det〉.

This result is indeed stronger than Theorem 2 as can be seen from the example
of the lattice L2d = 2U ⊕ 2E8(−1) ⊕ 〈−2d〉, which plays an important role in
the theory of polarised K3-surfaces. I d ≡ 1 mod 4 then the number N of orbits

of roots is 2. Hence Theorem 2 gives that the order |Õ+
(L2d)

ab| equals 2 or 4,

whereas Theorem 4 gives |Õ+
(L2d)

ab| = 2.
Examples show that the conditions on the 2- and 3-rank are necessary. For

example the lattice L = 2U ⊕A2(−3) does not fulfill the condition on the 3-rank
and indeed has a character of order 3 as shown by Desreumaux [1].

The proof of the main theorem uses the following tools: Eichler transvections,
Kneser’s solution of the principal congruence subgroup problem and strong ap-
proximation.
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5. Application to fundamental groups

Let D be a homogeneous domain on which an arithmetic group Γ acts properly
discontinuously with quotient X = Γ\D . It is well known that there is an epi-
morphism ρ : Γ ։ π1(X) and that every element γ ∈ Γ which has a fixed point is

contained in the kernel of ρ. Moreover, if X̃ is a smooth projective model of the
quasi-projective variety X , then ρ factors as ρ : Γ ։ π1(X̃) ։ π1(X).

Now let L be a lattice of signature (2, n). This defines a homogeneous domain
consisting of two connected components

ΩL = {[x] ∈ P(L⊗ C) | (x, x) = 0, (x, x̄) > 0} = DL ∪D ′
L.

One defines

F (L) = Õ
+
(L)\DL, S F (L) = S̃O

+
(L)\DL.

In many cases such modular varieties have an interpretation as a moduli space.

Theorem 4. Let L be as in the main theorem. Then F (L) and S F (L) as well
as all smooth projective models of these varieties are simply connected.

The proof of this theorem follows easily from the fact that the arithmetic groups
in questions are generated by reflections (which have fixed points).

To illustrate this example we consider the following two cases. First let L =

L2d = 2U ⊕ 2E8(−1) ⊕ 〈−2d〉 and F2d = F (L2d) = Õ
+
(L2d)\DL2d

. This is
the moduli space of degree 2d pseudo-polarised K3-surfaces. By Theorem 4 this
moduli space as well as any smooth projective model is simply connected. Another
example is given by the lattices M = U ⊕ U(2) ⊕ E8(−2), resp. M ′ = U(2) ⊕
U ⊕ E8(−1). It is not hard to see that M = O+(M)\DM = O+(M ′)\DM ′ . By
the Torelli theorem for Enriques surfaces this is the union of the moduli space of
Enriques surfaces, which is an open subset of M , and a divisor, the discriminant,
i.e.,

M = MEnriques ∪∆.

The group O(M ′) is also generated by elements with non-empty fixed locus and
hence it follows from Theorem 4 that M as well as any smooth model is simply
connected. The latter fact can also be deduced from the rationality of the moduli
space of Enriques surfaces as proved by Kondo.

Similar applications exist for moduli spaces of non-principally polarised abelian
surfaces, cubic fourfolds and modular varieties related to moduli spaces of polarised
irreducible symplectic manifolds.
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Dimer models and tilting bundles

Akira Ishii

(joint work with Kazushi Ueda)

1. Dimer models

A dimer model is a bicolored graph on a torus T = R2/Z2 consisting of a set
B ⊂ T of black nodes, another set W ⊂ T of white nodes, and a set E of edges
consisting of embedded line segments connecting vertices of different colors.

A connected component of the complement T \E is called a face of the graph.
A bicolored graph on T is said to be a dimer model if any face is simply-connected.

A dimer model (B,W,E) encodes the information of a quiver (=oriented graph)
Γ as in Figure 2: the vertices are the faces and the arrows are the edges. The
directions of the arrows are determined by the colors of the vertices of the graph,
so that the white vertex w ∈ W is on the right of the arrow. In other words, the
quiver is the dual graph of the dimer model equipped with an orientation given
by rotating the white-to-black flow on the edges of the dimer model by minus 90
degrees.

Γ is naturally equipped with relations: For an arrow a ∈ A, there exist two
paths p+(a) and p−(a) from the target of a to the source of a, the former going
around the white vertex connected to a ∈ E clockwise and the latter going around
the black vertex connected to a counterclockwise. Then the relation of Γ is the
two-sided ideal I of the path algebra generated by p+(a) − p−(a) for all a ∈ A.
As an example, consider the dimer model in Figure 1. The corresponding quiver
is shown in Figure 2, whose relations are given by

I = (dbc− cbd, dac− cad, adb− bda, acb− bca).

Figure 1. A
dimer model

a

b

c

d

d

a

b

c

Figure 2. The cor-
responding quiver
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2. Tilting bundles on crepant resolutions

We can consider the moduli space Mθ of θ-stable representations of the associ-
ated quiver with relations with dimension vector (1, . . . , 1), where θ is a parameter
for stability.

A perfect matching of a dimer model is a set D of edges such that every node is
contained in exactly one edge in D. It corresponds to a torus invariant divisor on
Mθ for some θ. Considering all the perfect matchings, we can construct a lattice
polygon ∆. We say a dimer model is non-degenerate if every edge is contained in
some perfect matching.

Theorem 1 ([6]). If a dimer model is non-degenerate, then Mθ is a crepant
resolution of the three-dimensional affine toric variety associated with the cone
over ∆.

There is a universal representation parameterized by Mθ, which is given by line
bundles corresponding to vertices and their maps corresponding to arrows. We
call these line bundles the tautological bundles on Mθ. We can define the notion
of consistency for a dimer model in a combinatorial way [5], which is stronger than
non-degeneracy. See also [8, 3, 2] for more about consistency conditions on dimer
models. A tilting bundle on a smooth variety X is a vector bundle E such that
Db(cohX) is equivalent to Db(modEnd(E )).

Theorem 2 ([5]). If a dimer model is consistent, then the direct sum of the
tautological bundles is a tilting bundle. The endomorphism algebra of the direct
sum is isomorphic to the path algebra of the quiver with relations.

This implies that Mθ is derived equivalent to the path algebra of the quiver
with relations. The following shows that consistency is not a too strong condition:

Theorem 3 ([5]). For any lattice polygon ∆, there is a consistent dimer model
corresponding to it.

To obtain these results, we use the ‘special McKay correspondence’ for 2-
dimensional cyclic quotient singularities.

3. Exceptional collections on toric weak Fano stacks

Let X be a smooth variety (or a Deligne-Mumford stack). An object E ∈
Db(cohX) is exceptional if it satisfies

Extp(E , E ) =

{
0 p 6= 0

C p = 0.

A sequence of exceptional objects (E1, . . . , En) is an exceptional collection if
Extp(Ei, Ej) = 0 for any p and for any i > j. It is strong if it further satis-
fies Extp(Ei, Ej) = 0 for any p 6= 0 and for any i 6= j. An exceptional collection
is full if it generates Db(cohX). If (E1, . . . , En) is a full strong exceptional collec-
tion, then E :=

⊕
i Ei is a tilting object on X , i.e., Db(cohX) is equivalent to the

bounded derived category of finitely generated modules over End(E ).
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It is proved by Kawamata that for any projective smooth toric Deligne-Mumford
stack X , there is a full exceptional collection consisting of sheaves. King [7] con-
jectured that every smooth complete toric variety has a full strong exceptional
collection consisting of line bundles, which turned out to be false [4]. The conjec-
ture might still be true if we further impose Fano condition.

Let Σ be a stacky fan in N = Zd, i.e., a rational simplicial fan together with
a lattice point for each ray. Σ determines a d-dimensional smooth toric Deligne-
Mumford stack XΣ. It is Fano if such lattice points are vertices of a simplicial
convex polytope. It is weak Fano (nef-Fano) if they are on the boundary of their
convex hull.

Conjecture 1 ([1]). Every smooth toric weak Fano stack has a full strong excep-
tional collection consisting of line bundles.

Borisov and Hua [1] prove that for a smooth toric Fano stack of dimension two
or of Picard number at most two, there exists a full strong exceptional collection
consisting of line bundles. Dimer models allow us to prove a slightly stronger
statement in two-dimensional cases:

Theorem 4. There is a full strong exceptional collection of line bundles on any
two dimensional toric weak Fano stack. We can describe the endomorphism algebra
End(E ) in terms of quiver with relations by using dimer models.

The above description of End(E ) should be relevant to describing the homolog-
ical mirror symmetry for these stacks.
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Deformations of Du Bois singularities and applications

Sándor Kovács

(joint work with János Kollár)

Classification of algebraic varieties is one of the most fundamental questions
in algebraic geometry. It is far from being completed, but we have a relatively
detailed plan on how to proceed.
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First, one obtains a canonical model in order to find a natural polarization on a
birational model of the given variety. This is usually done via the Minimal Model
Program, first producing a minimal model and then its canonical model using base
point freeness. There have been spectacular advances in this theory recently, the
main example being [1]. There are other approaches to constructing the canonical
model, e.g., [3, 4], but in any case the purpose of this note is to discuss something
else, so I will leave it to the reader to explore the details.

Once the canonical model is found, it may be embedded into a projective space
via some power of the canonical bundle. The necessary power only depends on
the Hilbert polynomial due to Matsusaka’s Big Theorem [5, 6, 7] (for smooth
canonical models). Then the moduli space is constructed by taking a quotient of
an appropriate subscheme of the corresponding Hilbert scheme.

One may consider the produced moduli space and the procedure to determine
the moduli point of any given variety the answer to the classification problem.
The moduli space is, in some sense, a (non-discrete) “list” of preferred models in
a class of varieties one aims to classify.

A major technical difficulty arises from the fact that the canonical model of
a smooth projective variety is usually singular. But even if one restricted to
the study of smooth models, a meaningful theory should include information on
degenerations. In other words, one would like to obtain a compact moduli space.
In this case there is no way out; one must work with singular spaces.

Fortunately, the singularities that are necessary to consider can be controlled
and stay relatively “mild”. Nevertheless, it makes the treatment technical and to
some extent perhaps even threatening for a newcomer.

The main purpose of this talk was to discuss some of the singularities that occur
in this program, their relationships and significance. One of the main applications
discussed was the following joint result with János Kollár proved in [2]:

Theorem 1. Let φ : X → B be a flat projective morphism such that all fibers
are log canonical. Then the cohomology sheaves hi(ωφ ) are flat over B, where ωφ

denotes the relative dualizing complex of φ.

Corollary 1. Under the same hypothesis, assume that one of the fibers of φ is
Cohen-Macaulay. Then so are all the fibers.
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BGG correspondence and the cohomology of compact Kähler
manifolds

Robert Lazarsfeld

(joint work with Mihnea Popa)

Let X be a compact Kähler manifold of dimension d, and consider the cohomology

QX = H∗
(
X,ωX

)
= ⊕Hi

(
X,ωX

)

of the canonical bundle of X . Via cup product, we may view this as a graded
module over the exterior algebra E = Λ∗H1

(
X,OX

)
on H1

(
X,OX

)
. In recent

years, there has been considerable interest in the study of graded modules over the
exterior algebra of a vector space, and the so-called Bernstein-Gel’fand-Gel’fand
(BGG) correspondence between these and linear complexes over a symmetric al-
gebra ([1],[2]). I discussed some results from [6] showing that a body of work
involving generic vanishing theorems ([3], [4], [5],[7], [8]) implies that this picture
takes a particularly clean form in the case of QX , and that it allows one to deduce
some surprising connections between the algebraic properties of this module and
the geometry of X . Furthermore, a vector bundle arising from the BGG corre-
spondence to establish, under mild additional hypotheses, a number of inequalities
on Hodge numbers and the holomorphic Euler characteristic of X .

Turning to details, we grade E and QX by declaring that E is generated in
degree −1, and that Hi

(
X,ωX

)
has degree = −i. We say that QX is k-regular

if it is generated in degrees 0, . . . ,−k, and the pth syzygies among the generators
appears in degrees −p, . . . ,−p− k.

Our first main result asserts that the regularity of QX is governed by the generic
fibre dimension of the Albanese mapping aX : X −→ Alb(X) of X .

Theorem 1. Set

k = k(X) = dimX − dim aX(X).

Then QX is k-regular as an E-module. In particular, if X has maximal Albanese
dimension (i.e. k = 0), then QX is generated in degree 0 and has a linear free
resolution.

It is natural to ask what additional geometric data QX determines. Of course
the dimensions of its graded pieces are the Hodge numbers hd,i(X) of X , but
the module in question turns out to contain also more subtle information. Recall
that in classical terminology, a paracanonical divisor on X is an effective divisor
algebraically equivalent to a canonical divisor. The set of all such is parametrized
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by the Hilbert scheme (or Douady space) Div{ω}(X), which admits an Abel-Jacobi
mapping

u : Div{ω}(X) −→ Pic{ω}(X)

to the corresponding component of the Picard torus of X . The projective space

|ωX | parametrizing all canonical divisors sits as a subvariety of Div{ω}(X): it is

the fibre of u over the point [ωX ] ∈ Pic{ω}(X). Our second result asserts that

QX dictates the infinitesimal geometry of Div{ω}(X) along |ωX |.
Theorem 2. One can read off from QX (and its structure as an E-module) the

projectivized normal cone to |ωX | inside Div{ω}(X).

In fact, QX determines via the BGG-correspondence a coherent sheaf F on the

projectivized tangent space P to Pic{ω}(X) at [ωX ], and we show that the normal
cone in question is identified with P(F ).

Under additional hypotheses the BGG sheaf F is locally free. We discussed
finally how one could then use the geometry of vector bundles on projective space
to obtain some inequalities on certain numerical invariants of X .
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Degeneration of Hilbert schemes of ideal sheaves and a proof of
Goettsche conjecture

Jun Li

Degeneration is a powerful tool in algebraic geometry; equally so in the study
of moduli spaces. In this talk, I outlined the recent construction of ideal de-
generations of Hilbert scheme of ideal sheaves by Wu and the author [8, 5], and
its application to prove Geottsche’s conjecture on enumerating nodal curves on
surfaces by Tzeng [7].

Let X → C be a simple degeneration of smooth projective varieties, meaning
that X is smooth; π is projective and is smooth over C∗ = C − 0; the central
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fiber X0 has normal crossing singularity with smooth singular loci D ⊂ X0. We
fix a polynomial p(·), and denote X∗ = X ×C C

∗. Our goal is to extend the usual

relative Hilbert scheme Hilb
p(·)
X∗/C∗ to an ideal degeneration Hilb

p(·)
X/C .

Here is the principle of an ideal degeneration:

(1) the family Hilb
p(·)
X/C is an extension of Hilb

p(·)
X∗/C∗ , and is proper over C; its

total space has the same complexity as Hilb
p(·)
Xt

for t 6= 0;

(2) the central fiber Hilb
p(·)
X0

of Hilb
p(·)
X/C has the complexity that is a combina-

tion of normal crossing singularity and the complexity of Hilb
p(·)
Xt

;

(3) let X̃0 be the normalization of X0 and D̃0 ⊂ X̃0 be the preimage of the
singular loci of X0. Then there is a similarly constructed relative Hilbert

scheme Hilb
q(·)

(X̃,D̃)
such that Hilb

p(·)
X0

= ∪q(·)Hilbq(·)(X̃0,D̃)
/gluing, where the

sum is the irreducible components decomposition modulo the complexity

of Hilb
p(·)
Xt

.

Some further clarifications are in order. Since in general Hilbert schemes of
ideal sheaves are singular, it is difficult to phrase in general how ideal degenera-

tions should satisfy. In the writing above, I used a vague “complexity of Hilb
p(·)
Xt

”

indicate the general behavior of Hilb
p(·)
Xt

. For instance, in case X/C is a family of

surfaces and p(·) = p is an integer. Then HilbpXt
is smooth. Thus an ideal degener-

ation should have smooth total space Hilb
p
X/C , local complete intersection central

fibers and that each irreducible component of HilbpX0
can be reconstructed using

the gluing of relative Hilbert schemes Hilb
q1,q2
(X̃0,D̃)

, where p = q1 + q2 are ordered

partitions of p.
The main result of Wu and the author [5] is

Theorem 1. Let X/C be as stated. Then there is an ideal degeneration Hilb
p(·)
X/C

extending the family of relative Hilbert schemes Hilb
p(·)
X∗/C∗ . The family Hilb

p(·)
X/C is

proper and of finite type over C

For more precise statement of the theorem, please see [8, 5]. We comment
that the theorem is proved for dimX/C ≤ 3 in [8]. The construction follows the
construction of degeneration of relative stable morphisms by the author [4].

It will be useful to describe the closed points of the central fiber Hilb
p(·)
X0

. For
simplicity, we consider the case X0 is the union of two smooth varieties Y1 and Y2
intersecting transversally along a smooth divisor D. Toward our goal, we form a
ruled variety ∆ = P(ND/Y1

⊕ 1) with two distinguished sections σ± so that the
degree of the normal bundle to σ+ (resp. σ−) is the same as the degree of the
normal bundle to D ⊂ Y1 (resp. D ⊂ Y2). We form X [k]0 that is the gluing of Y1
with ∆ along D ∼= σ−, gluing the σ+ of this ∆ to the σ− of a new (the second) ∆,
repeating this procedure, and lastly gluing the σ+ of the k-th ∆ to D ⊂ Y2.

Closed points of Hilb
p(·)
X0

are subschemes z ⊂ X [k]0 for some k that satisfy the
following three conditions. The first is that z is flat along the normal directions
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of the singular loci of X [k]0 in X [k]0; the second is that the polynomial χ(Oz ⊗
π∗Hn) = p(n), where π : X [k]0 → X0 is the projection and H is the ample line
bundle on X/C. Given two such subschemes z ⊂ X [k]0 and z′ ⊂ X [k′]0, they are
equivalent if k = k′ and there is an isomorphism ξ : X [k]0 ∼= X [k′]0 that commutes
with X [k]0 and X [k′]0 → X0 so that ξ(z) = z′. The equivalence relations of z
with itself defines the automorphism group of z. The third condition is that z has
finite automorphism group.

We remark that requiring z ⊂ X [k]0 flat along the normal directions of the

singular loci of X [k]0 guarantees that the complexity of Hilb
p(·)
X/C is similar to that

of Hilb
p(·)
Xt

. The freedom to add arbitrarily many ∆’s makes Hilb
p(·)
X/C proper over

C. Finally, the requirement that the automorphism group of z is finite ensures that
for the fixed p(·), the number of ∆’s appearing in this construction is universally

bounded, which implies that Hilb
p(·)
X/C if of finite type over C.

This construction by adding ruled varieties was used earlier by Gieseker [1]
in his degeneration of moduli of vector bundles, by Harris-Mumford [2] in their
admissible cover construction, and in gauge theory using degenerations.

Applying this degeneration theory, Tzeng [7] provided an algebro-geometric
proof of a folklore conjecture on enumerating nodal curves in a linear series of a
surface. (cf. for symplectic approach see [6].)

Theorem 2. For every integer r, there exist universal polynomials Tr(x, y, z, t)
of degree r with the following property: given r and a pair of a sufficiently ample
line bundle L on a smooth surface S, a general r-dimensional sublinear system in
|L| contains exactly Tr(L

2, LK, c1(S)
2, c2(S)) many r-nodal curves.

Based on this, she proved the Goettsche-Yau-Zaslow formula, which was moti-
vated by the work of Yau-Zaslow on enumerating rational curves on K3 surfaces
and originally conjectured by Goettsche.

Theorem 3.

∑

r∈Z

Tr(L
2, LKS, c1(S)

2, c2(S))(DG2(τ)
r =

(DG2(τ)/q)
χ(L)B1(q)

K2
SB1(q)

LKS

(∆(τ)D2G2(τ)/q2)χ(OS)/2
.

HereD = q d
dq , G2 is the weight 2 quasi-modular form and ∆ is the discriminant.

Tzeng proved theorem B by first worked out the cobordism theory of pairs
(S,L), following the algebraic cobordism theory of Levine-Pandharipande [3]. She
then defined a homomorphism from Z{(S,L)} to Q[[t]]× that sends (S,L) to the
generating function γLS (t) =

∑
r≥1 dr(S,L)t

r, where dr(S,L) is an integration over

the Hilbert scheme of points on S that enumerating r-nodal curves in |L| when
L is sufficiently ample. Applying degeneration of Hilbert schemes constructed in
Theorem A, she proved that this homomorphism factors through a quotient

Z{(S,L)} −→ Q⊕4,

where Q⊕4 is spanned by L2, LKS, c1(S)
2 and c2(S). This implies the Theorem

B. Theorem C follows.
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Numerically reflective involutions of Enriques surfaces

Shigeru Mukai

A (holomorphic) automorphism of an Enriques surface S is numerically reflective
(resp. numerically trivial) if it acts on the Q-cohomology group H2(S,Q)(≃ Q10)
by reflection (resp. trivially). For K3 surfaces we have

• a numerically trivial automorphism is trivial, and
• no automorphisms are numerically reflective.

But these are no more true for Enriques surfaces. In my talk I summarized the
classification and gave a very rough sketch of the proof. The details will be pub-
lished elsewhere.

1. Numerically trivial involutions

Let XBP be the minimal model of the function field

(1) C

(
x, y,

√
a(x+

1

x
) + b(y +

1

y
) + 2c

)

of two variables, where a, b ∈ C× and c ∈ C are constants. XBP is the minimal res-
olution of the double P1×P1 with branch the union of the coordinate quadrilateral
and the curve

(2) Γ0 : a(x2 + 1)y + bx(y2 + 1) + 2cxy = 0

of bidegree (2, 2).

y =∞

y = 0

x = 0 x =∞

Γ0
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Assume further that a ± b ± c 6= 0. Then the involution ε : (x, y,
√

) 7→
(1/x, 1/y,−√ ) has no fixed points on XBP . Hence the quotient SBP = XBP /ε is

an Enriques surface. Let σBP be the involution of SBP induced from the covering
involution

√ 7→ −√ of XBP . Then σBP is homologically trivial, that is, its acts

on the Z-homology group H2(SBP ,Z) trivially ([1, (4.8)], [4, Exmaple 2]).

Theorem 1 Every homologically trivial automorphism of an Enriques surface
is either trivial or the above involution σBP y SBP .

Theorem 2 ([2]) Let σ be a numerically trivial involution of an Enriques
surface, and assume that σ is neither trivial nor σBP . Then the universal cover
is a Kummer surface Km(E1 × E2) of product type and σ is either of Liberman
type ([4, Exmaple 1]) or Kondo-Mukai type ([4, Exmaple 2], see also §2).

2. Numerically reflective involutions

Let XGBP be the minimal model of the field

(3) C

(
x, y,

√
a(x+

1

x
) + b(y +

1

y
) + c(

x

y
+
y

x
) + 2d

)
,

where a, b, c ∈ C× and d ∈ C are constants. XGBP is the minimal resolution of the
double P2 with branch the union of the coordinate triangle and the cubic curve

(4) Γ1 : a(x2 + 1)y + bx(y2 + 1) + c(x2 + y2) + 2dxyz = 0.

Assume further that

(5) (a+ b+ c+ d)(a+ b− c− d)(a− b+ c− d)(a− b− c+ d) 6= 0.

Then the involution ε : (x, y,
√

) 7→ (1/x, 1/y,−√ ) has no fixed points and we

obtain the Enriques quotient SGBP := XGBP /ε. The involution σGBP of SGBP

induced from the covering involution is numerically reflective if (4) is irreducible
and numerically trivial otherwise. By [2, Remark 9], σGBP is equivalent to [2,
Example 2] in the latter case.

Let C be a curve of genus 2 and G a Göpel subgroup of the 2-torsion group of
its Jacobian J(C). For a non-bielliptic pair (C,G), we constructed an Enriques
surface Km(C)/εG and a numerically reflective involution σG y Km(C)/εG in
[3], where Km(C) is the Kummer surface of J(C).

Theorem 3 Let σ be a numerically reflective involution of an Enriques surface
S. Then either

(1) σ is isomorphic to the involution σGBP , or
(2) the universal cover of S is isomorphic to the Jacobian Kummer surface

Km(C) and (S, σ) is isomorphic to (Km(C)/εG, σG) for a curve C of
genus 2 and a Göpel subgroup G.
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Asymptotic invariants of graded sequences of ideals

Mircea Mustaţă

(joint work with Mattias Jonsson, Robert Lazarsfeld)

We study asymptotic versions of invariants of singularities such as the log canonical
threshold, or more generally, the jumping numbers for the multiplier ideals. Let X
be a fixed smooth variety over an algebraically closed field of characteristic zero.
Recall that if a is a nonzero ideal on X , then one defines the log canonical threshold
lct(a) of a in terms of a log resolution of singularities of the pair (X, a). In terms of
the multiplier ideals J (aλ) of a, this can be described as the smallest λ such that
J (aλ) 6= OX (with the convention that lct(a) = ∞ if a = OX). More generally,
if q is an auxiliary ideal, then lctq(a) is the smallest λ such that q 6⊆ J (aλ). If
we let q vary, then the numbers obtained in this way are precisely the jumping
numbers for the multiplier ideals of a.
Given a prime divisor E over X , we have an associated valuation ordE of the
function field of X . The log discrepancy A(valE) of this valuation is the coefficient
of E in KY/X , plus one (here Y is a model such that E is a divisor on Y ). It
follows from definition that

lctq(a) = min
E

A(ordE) + ordE(q)

ordE(a)
.

In fact, the minimum is achieved by some divisor E on a log resolution of a · q.
Suppose now that a• = (ap)p is a graded sequence of ideals on X , that is, ap ·aq ⊆
ap+q for all p, q > 0. The main geometric example is the following: X is projective,
and am is the ideal defining the base locus of Lm, where L ∈ Pic(X) is a line bundle
with h0(L) ≥ 1. It is easy to see that if ν is a valuation of the function field of X ,
then

ν(a•) := inf
m

ν(am)

m
= lim

m→∞

ν(am)

m
.

Similarly, if q is a fixed ideal, then

lctq(a•) := sup
m
m · lctq(am) = lim

m→∞
m · lctq(am).
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One can show using the asymptotic multiplier ideals discussed below that we have

lctq(a•) = inf
E

A(ordE) + ordE(q)

ordE(a•)
.

However, it is easy to see that in this setting the above infimum might not be
achieved. It turns out that the right notion in this setting is that of quasi-monomial
valuation (also called Abhyankar valuation) of the function field of X . One can
check that we may alternatively take the above infimum over the quasi-monomial
valuations. In this work in progress, our main interest is in the following
Conjecture. Given a• and q as above, there is a quasi-monomial valuation ν of
the function field of X such that

lctq(a•) =
A(ν) + ν(q)

ν(a•)
.

The conjecture follows when dim(X) = 2 from the work of Favre and Jonsson [3].

A key tool in the study of graded sequences is given by the asymptotic multiplier
ideals of a•: one puts

bm = J (am• ) := J (a1/pmp ),

for p divisible enough. These ideals satisfy the following subadditivity property,
due to Demailly, Ein and Lazarsfeld:

(1) bmp ⊆ bpm for allm, p > 0.

As in the case of graded sequences, one can show that if ν is a valuation of the
function field of X , then

ν(b•) := sup
m

ν(bm)

m
= lim

m→∞

ν(bm)

m
.

One can easily deduce from the definition of multiplier ideals that for every quasi-
monomial valuation ν and every m, the following holds

(2) ν(a•)−
A(ν)

m
<
ν(bm)

m
.

This immediately implies that ν(a•) = ν(b•). Furthermore, one deduces that if

lctq(b•) := inf
m
m · lctq(bm),

then lctq(b•) = lctq(a•).
Given a sequence of ideals b• satisfying (1) and (2), and such that bp ⊆ bq for
p > q, one can make an analogue of the above conjecture for b•. This version (for
ideals in C[[x1, . . . , xn]]) would give a positive answer to a conjecture of Demailly
and Kollár from [2] on integrability exponents of plurisubharmonic functions.
At this point, we can reduce the above conjecture to the case when the graded
sequence of ideals a• satisfies

mpN ⊆ ap for someN ≥ 1, and for all p > 0,
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where m is the ideal of a point x ∈ X . The advantage once we are in this setting
is that one can use the valuation space from [1] to construct a valuation ν of the
function field of X centered at x, and having the property that

lctq(a•) =
A(ν) + ν(q)

ν(a•)
.

A basic question is whether any such ν would automatically be quasi-monomial
(this is the case in dimension two, by the work of Favre and Jonsson). One can
rephrase this as follows:
Question. Let ν be a valuation of the function field of X centered at x, such
that for every other such valuation µ (that can be taken quasi-monomial) with the

property that ν(f) ≤ µ(f) for all f ∈ ÔX,x, we have

A(ν) + ν(q) ≤ A(µ) + µ(q).

Does it follow that ν is a quasi-monomial valuation ?
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General heart construction on a triangulated category

Hiroyuki Nakaoka

As shown in [4] (or [3], in 2-CY case), the quotient of a triangulated category by
a cluster tilting subcategory becomes an abelian category. On the other hand, as
is well known since 1980s, the heart of any t-structure is abelian. To unify these
two constructions, we construct an abelian category from any torsion pair without
shift condition.

We fix a triangulated category C . Throughout this note, (U ,V ) denotes a pair
of full additive thick subcategories of C , satisfying the following conditions. These
are saying that (U ,V [1]) is a torsion pair without the shift-closedness ([2]).

(1) Ext1(U ,V ) = 0.
(2) For any C ∈ Ob(C ), there exists a (not necessarily unique) distinguished

triangle

U → C → V [1]→ U [1]

satisfying U ∈ Ob(U ), V ∈ Ob(V ).

Two extremal cases of such pairs are t-structures and cluster tilting subcate-
gories:

(t) V ⊆ V [1] if and only if (U ,V ) = (T ≤−1,T ≥1) for a t-structure
(T ≤0,T ≥0).
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(c) V = U if and only if (U ,V ) = (T ,T ) for a cluster tilting subcategory
T .

Also, there are examples of such pairs arising from n-cluster tilting subcate-
gories. By definition ([3]), an n-cluster tilting subcategory T ⊆ C is a full additive
thick subcategory satisfying

• T is functorially finite,
• An object C belongs to T if and only if Extℓ(C,T ) = 0 (0 < ∀ℓ < n),

• An object C belongs to T if and only if Extℓ(T , C) = 0 (0 < ∀ℓ < n).

For any (n + 1)-cluster tilting subcategory T and for any integer ̟ satisfying
0 ≤ ̟ ≤ n− 1, define full additive subcategories T̟ and T ̟ of C by

Ob(T̟) = {C ∈ Ob(C ) | Extℓ(C,T ) = 0 (̟ + 1 ≤ ∀ℓ ≤ n)},
Ob(T ̟) = {C ∈ Ob(C ) | Extℓ(T , C) = 0 (1 −̟ ≤ ∀ℓ ≤ 1)}.

Then it can be shown that the pair (T̟,T ̟) satisfies the conditions (1) and (2)
(cf. Theorem 3.1 in [2]).

As a main theorem, we associate an abelian category H to any pair (U ,V ).
We call H the heart of (U ,V ). First, we define full subcategories C± of C as
follows. Put W := U ∩ V .

(+) C ∈ Ob(C +) if and only if any distinguished triangle

U → C → V [1]→ U [1] (U ∈ Ob(U ), V ∈ Ob(V ))

satisfies U ∈ Ob(W ).
(−) C ∈ Ob(C −) if and only if any distinguished triangle

V [−1]→ U [−1]→ C → V (U ∈ Ob(U ), V ∈ Ob(V ))

satisfies V ∈ Ob(W ).

Put H := C + ∩ C−. Since H ⊇ W , we have an additive category

H := H /W .

In the case of t-structures and cluster tilting subcategories, this gives back the
following abelian categories:

(t) If (U ,V ) = (T ≤−1,T ≥1) where (T ≤0,T ≥0) is a t-structure, then we
have

C− = U [−1] = T ≤0,

C+ = V [1] = T ≥0,

H = H = T ≤0 ∩ T ≥0.

Thus the definition of the heart agrees with that of t-structure (T ≤0,T ≥0),
and thus it is abelian (cf. [1]).

(c) If U = V = T is a cluster tilting subcategory of C , then we have

C+ = C− = H = C ,

H = C /T .



Complex Algebraic Geometry 2519

Thus H becomes an abelian category also in this case by [4].

Generalizing these two cases, we can show the following by a purely diagram-
matic argument.

Theorem 1. For each pair (U ,V ), its heart H is an abelian category.

Additionally, as for the existence of enough projectives or injectives in this
abelian category, we can show:

(p) If (U ,V ) satisfies U ⊆ V , then H has enough projectives.
(i) If (U ,V ) satisfies V ⊆ U , then H has enough injectives.

This generalizes 1. and 2. of Theorem 4.3 in [4].
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Math. France, Paris, 1982.

[2] Iyama, O.; Yoshino, Y.: Mutation in triangulated categories and rigid Cohen-Macaulay
modules (English summary), Invent. Math. 172 (2008), no. 1, 117–168.

[3] Keller, B.; Reiten, I.: Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv.
Math. 211 (2007), no. 1, 123–151.

[4] Koenig, S.; Zhu, B.: From triangulated categories to abelian categories: cluster tilting in a
general framework (English summary), Math. Z. 258 (2008), no. 1, 143–160.

[5] Nakaoka, H.: General heart construction on triangulated categories (I): Unifying t-
structures and cluster tilting subcategories, arXiv:0907.2080.

Poisson deformations of symplectic varieties

Yoshinori Namikawa

A symplectic variety (X,ω) is a pair of a normal algebraic variety X and a
holomorphic symplectic 2-form ω on the regular partXreg ofX such that ω extends

to a (not necessarily non-degenerate) holomorphic 2-form on a resolution X̃ of X .
Then Xreg admits a natural Poisson structure induced by ω. By the normality
of X , this Poisson structure uniquely extends to a Poisson structure on X . In
this lecture, I talked on the Poisson deformation of (X, { , }) obtained from a
symplectic variety (X,ω). One can define the Poisson deformation functor PDX

from the category of local Artin C-algebras with residue field C to the category
of sets. The first main theorem is:

Theorem 1. Let (X,ω) be an affine symplectic variety. Then PDX is unob-
structed.

Let (X,ω) be the same as in Theorem 1. By Birkar, Cascini, Hacon and McK-
ernan, one can take a Q-factorial terminalization π : Y → X . By definition, Y
has only Q-factorial terminal singularities and π is a birational, crepant, projec-
tive morphism. The symplectic 2-form ω is pulled-back to a symplectic 2-form
on π−1(Xreg). Note that π−1(Xreg) is contained in the rular locus Yreg of Y .
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Since π is semi-small, π∗(ω) further extends to a holomorphic symplectic 2-form
ω′ on Yreg and (Y, ω′) becomes a symplectic variety. Therefore, Y has a Poisson
structure, and we get the Poisson deformation functor PDY . It is relatively easy
to prove that PDY is unobstructed. Since X has rational singularities, there is a
natural blowing-down map of functors π∗;PDY → PDX . The map π∗ is a finite
Galois covering. Let R and S be the pro-representable hulls of PDX and PDY

respectively. Then there are formal universal Poisson deformations Xformal and
Yformal over the base spaces Spec(R) and Spec(S) respectively. The birational
map π induces a birational map Yformal → Xformal. It is not clear at all that
these are algebraizable. So, we assume the following condition

(*): X has a C∗-action with positive weights and ω is also positively weighted
with respect to the action.

Then everything can be algebraized. As a corollary of this construction, we
have the following remarkable result:

Theorem 2. Under the assumption (*), the following are equivalent:
(a): X has a crepant resolution.
(b): X has a smoothing by a Poisson deformation.

Salem numbers, Siegel disks and automorphisms

Keiji Oguiso

In the talk, I remarked the following two new phenomena in complex dynamics of
automorphisms of compact complex surfaces. These results and their proofs are
entirely inspired by impressive works of McMullen [3], [4], [5], [1] and Mathematica
programs.

Theorem 1. There is a pair (S, g) of a complex K3 surface S and its automor-
phism g such that:

(1) The topological entropy h(g) is the logarithm of the third smallest known
Salem number

h(g) = log 1.200026523... ;

(2) The fixed point set Sg consists of one smooth rational curve and 8 isolated
points, say Qi (1 ≤ i ≤ 7) and Q. The 7 points Qi are in the union of all the
complete curves ∪7k=0Ck on S but Q is not in ∪7k=0Ck, and g has a Siegel disk at
Q and g has no Siegel disk at any other point.

Theorem 2. There does not exist a pair (S, g) of a complex Enriques surface S
and its automorphism g such that

h(g) = log 1.17628081... .

Here, the right hand side is the logarithm of the Lehmer number, i.e., the logarithm
of the smallest known Salem number.
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See e.g. [7] for the terms in these Theorems. In the rest, we shall remark a
few differences between our results and some of preceding known results and more
recent results.

In [4], McMullen constructed the first examples of surface automorphisms with
Siegel disks. They are K3 surface automorphisms arising from certain Salem num-
bers of degree 22, including the 9-th smallest known one. In his construction, the
resulting K3 surfaces are of Picard number 0. So, they have no complete curve,
whence, no pointwise fixed curve as well. the first theorem tells us that it is also
possible to have both a Siegel disk and a pointwise fixed curve, necessarily smooth
rational, at the same time.

Let S be a rational surface obtained by blowing up at n points onP2 and g be an
automorphism of S. Then, g∗(KS) = KS and g naturally acts on the orthogonal
complement K⊥

S of the canonical class in H2(S,Z). The lattice K⊥
S is isomorphic

to the lattice En(−1), i.e., the lattice represented by the Dynkin diagram with n
vertices sk (0 ≤ k ≤ n− 1) of self-intersection −2 such that n− 1 vertices s1, s2,
· · · , sn−1 form Dynkin diagram of type An−1(−1) in this order and the remaining
vertex s0 is joined to only the vertex s3 by a simple line. (See [5], Section 2, Figure
2.) The lattice En(−1) is of signature (1, n− 1) when n ≥ 10. Then, g naturally
induces an orthogonal action g∗|En(−1) (after fixing a marking). By Nagata
(see e.g. [5], Theorem (12.4) for the statement), g∗|En(−1) is an element of the
Weyl group W (En(−1)), i.e., the group generated by the reflections rk (0 ≤ k ≤
n−1) corresponding to the vertices sk. The Weyl groupW (En(−1)) has a special
conjugacy class called the Coxeter class. It is the conjugacy class of the product (in
any order in this case) of the reflections Πn−1

k=0rk. McMullen ([5], Theorem (1.1))
shows that, when n ≥ 10, the Coxeter class is realized geometrically by a rational
surface automorphism. That is, Πn−1

k=0rk = g∗|En(−1) (under a suitable marking)
for an automorphism g of S with suitably chosen n blown up points. When n = 10,
i.e., for E10(−1), the characteristic polynomial of the Coxeter class is exactly the
Lehmer polynomial, i.e., the minimal polynomial of the Lehmer number over Z. In
this way, McMullen realized the logarithm of the Lehmer number as the topological
entropy of some rational surface automorphisms with K⊥

S ≃ E10(−1). Note that
the Lehmer number is the smallest known Salem number. See [2] and the home
page quoted there, for the list of the smallest 47 known Salem numbers. Being
also based on his preceding result [3], Theorem (1.1), McMullen ([5], Theorem
(A.1)) also shows that the logarithm of the Lehmer number is in fact the minimal
positive entropy of automorphisms of complex surfaces. So, the Lehmer number
plays a very special role in automorphisms of compact complex surfaces.

On the other hand, lattice E10(−1) is also isomorphic to the free part of
H2(S,Z) of an Enriques surface S. So, it is natural to ask if the logarithm of
the Lehmer number can also be realized as the topological entropy of an Enriques
surface automorphism or not. The second Theorem says that it is not. This may
sound negative. However, I believe that such an impossibility result is also of its
own interest.
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Later, in [6], McMullen realized the Lehmer number as the exponential of the
topological entropy of an automorphism of a non-projective K3 surface. In [8], we
also show, as the first example in dimension ≥ 3, that there are higher dimensional
rational manifolds with automorphisms of positive entropy having arbitrarily high
number of/exactly one Siegel disk(s).
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Some components of the compactified moduli space of surfaces of
general type

Rita Pardini

(joint work with Valery Alexeev)

The coarse moduli space MK2,χ of canonical models of surfaces of general type
X with fixed numerical invariants K2

X = K2 and χ(OX) = χ is a quasi projective

scheme ([9]). The existence of a modular compactification MK2,χ ⊂ MK2,χ was
shown at the beginning of the 1990’s as a result of the work of several authors
([10], [1], [2], see also [3]). Roughly speaking, MK2,χ is obtained from MK2,χ

by adding points corresponding to smoothable stable surfaces, i.e. surfaces with
semilogcanonical (“slc”) singularities and ample canonical class. The singularities
that can occur on these surfaces are listed in [10].

However, up to now no component of MK2,χ had been described explicitly,
apart from trivial cases such as rigid surfaces or products of curves. Only very
recently some examples, also related to the moduli space of curves, have been
studied in [15].

In [5] we describe explicitly the stable surfaces occurring as boundary points

in the closure in MK2,χ of some irreducible components U of MK2,χ. In all our
examples U is a family of Zr

2-covers of (a blow up) of P2 branched on a union of
lines. The closure U is constructed explicitly using (a variation of) the construc-
tion of the compactification of the moduli space of weighted slc arrangements of
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hyperplanes in Pn ([4]) and a generalization to the non normal case ([6]) of the
theory of abelian covers ([14]).

The families of surfaces we study are:
(1) Campedelli surfaces with π1 = Z3

2: by definition, a Campedelli surface is a min-

imal surface of general type with K2 = 2 and pg = q = 0 (and so χ = 1). By [13]
(cf. also [12]) all Campedelli surfaces with π1 = Z3

2 are Z3
2-covers of P

2 branched
on 7 lines. The covering map is induced by the bicanonical system. These surfaces
give an irreducible 6-dimensional open subset of the moduli space.

(2) Uniform Line covers: this is a generalization of (1). For r ≥ 4 we consider

Zr
2-covers of P

2 branched on the union of 2r − 1 lines.

(3) Burniat surfaces with K2 = 6: these are the minimal desingularizations of cer-

tain Z2
2-covers of the plane branched on a union of 9 lines with three 4-tuple points

(see [8] for a precise description, cf. also [11] or [5]). The covering map pulls back
to a Z2

2-cover of the smooth Del Pezzo surface of degree 6, which is induced by
the bicanonical system. The numerical invariants are K2 = 6, pg = q = 0. These
surfaces give an irreducible 4-dimensional open subset of the moduli space.

In cases (1) and (3) we describe explicitly the stable surfaces occurring on the
boundary. Since the construction of the compactification is purely combinatorial,
in principle it is possible to do the same also for the families of surfaces in case
(2). In case (1), all surfaces on the boundary are Z3

2-covers of the plane, while in
case (3) one gets also Z2

2-covers of reducible surfaces with up to 6 components. All
the singularities that occur have index 2, and we get examples for all the classes of
index 2 singularities listed in [10]. In case (3) some of the surfaces on the boundary
can be deformed to reducible stable surfaces that are not limits of Burniat surfaces.
We do not know whether these reducible surfaces admit a smoothing.

Finally, as a byproduct of our method of construction, we are able to show the
following:

Theorem 1. All the families of surfaces in (1), (2) and (3) give connected com-
ponents of the moduli space of surfaces of general type.

This was known for Campedelli surfaces with π1 = Z3
2 ([13]) and Burniat sur-

faces with K2 = 6 ([11], reproven in [7] by a different method), but it is a new
result in the case (2) of Uniform Line covers.
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Hyperdiscriminant Polytopes, Chow Polytopes, and Mabuchi Energy
Asymptotics

Sean Timothy Paul

Let Xn −→ PN be a smooth complex projective variety of degree d ≥ 2 embedded
by a very ample complete linear system. Fix any Hermitian metric on CN+1 and
let ωFS denote the associated Fubini-Study Kähler form. We set ω := ωFS |X . To
σ ∈ G ( the automorphism group of PN ) we associate the Bergman potential
ϕσ ∈ C∞(X)

σ∗ω = ω +

√
−1
2π

∂∂ϕσ > 0 .

Let νω denote the Mabuchi energy of (X,ω). For any σ ∈ G we define

νω(σ) := νω(ϕσ) .

Let λ : C∗ −→ G be an algebraic one parameter subgroup of G. We shall refer to
such maps, and their associated potentials ϕλ(t) , as degenerations. Three basic
problems in the field of Kähler geometry are the following.

Problem 1. Give a complete description of the behavior of the Mabuchi en-
ergy along all degenerations. That is, describe

lim
|t|−→0

νω(λ(t)) t ∈ C∗ .

Problem 2. Provide necessary and sufficient conditions in terms of the geometry
of the embedding X −→ PN which insure that νω is bounded below along all
degenerations.
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Problem 3. Provide necessary and sufficient conditions in terms of the geometry
of the embedding which insure that νω is proper along all degenerations.

The talk described the solution to all of these problems. The solution is
given in terms of the X-resultant (the Cayley-Chow form of X) and the X-
hyperdiscriminant of format (n − 1) (the defining polynomial of the variety of
tangent hyperplanes to X×Pn−1 in the Segre embedding ). That the X-resultant
appears in the K-energy is not new and is due to Gang Tian . The author’s orig-
inal contribution is the discovery that the X-hyperdiscriminant also appears in
the Mabuchi energy of an algebraic manifold . In fact, it is the hyperdiscriminant
that reflects the presence of the Ricci curvature. The Chow form does not.

Theorem 1. Let Xn →֒ PN be a smooth, linearly normal complex algebraic variety
of degree d ≥ 2 . Let RX denote the X-resultant (the Cayley-Chow form of X)
. Let ∆X×Pn−1 denote the X-hyperdiscriminant of format (n− 1) (the defining
polynomial for the dual of X × Pn−1 in the Segre embedding ) Then the Mabuchi
energy restricted to the Bergman metrics is given as follows

νω(ϕσ) = deg(RX) log
||σ ·∆X×Pn−1 ||2

||∆X×Pn−1||2
− deg(∆X×Pn−1) log

||σ · RX ||2
||RX ||2

.(1)

Remark 1. The Mabuchi energy restricted to G is not manifestly, and most likely
not, a convex function .

It follows from Theorem 1 that the asymptotic expansion of the Mabuchi energy
along any algebraic one parameter subgroup of H (a maximal algebraic torus of G
)1 is completely determined by the Chow polytope N (RX) and the hyperdiscrim-
inant polytope N (∆X×Pn−1) . We remark that these are compact convex lattice
polytopes inside MR :=MZ(H)⊗ZR ∼= RN , whereMZ =MZ(H) denotes the rank
N lattice of rational characters of H . In the statement of 2 below lλ denotes the
integral linear functional onMR corresponding to the degeneration λ ∈ NZ :=M∨

Z

(dual lattice) .

Theorem 2. There is an asymptotic expansion as |t| → 0

νω(λ(t)) = FP (λ) log(|t|2) +O(1) ,

FP (λ) := deg(RX)min{x∈N (∆
X×Pn−1)}lλ(x)− deg(∆X×Pn−1)min{x∈N (RX )}lλ(x).

(2)

In particular, νω(λ(t)) has a logarithmic singularity as |t| → 0, and the coefficient
of blow up is an integer.

1G always denotes SL(N + 1,C).
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Theorem 2 provides a complete solution to Problem 1 .

Theorem 3. The Mabuchi energy of (X,ωFS |X) is bounded from below along all
degenerations in G if and only if for all maximal tori H the hyperdiscriminant
polytope dominates the Chow polytope

deg(∆X×Pn−1)N (RX) ⊆ deg(RX)N (∆X×Pn−1) .(3)

Theorem 3 provides a complete solution to Problem 2 .

Theorem 4. The Mabuchi energy of (X,ωFS |X) is proper along all degenerations
in G if and only if for all 0 < ε << 1 and all maximal tori H we have

(1 − δε) deg(∆X×Pn−1)N (RX) + εd2(n+ 1)SN ⊆ deg(RX)N (∆X×Pn−1) .(4)

Theorem 4 provides a complete solution to Problem 3 .

In the statement of Theorem 4 we have defined δ := d/deg(∆X×Pn−1) and SN

is the standard N -simplex in RN . The addition on the left side of (4) denotes
Minkowski summation of polyhedra .

The next result provides a weak form of the numerical criterion for the Mabuchi
K-energy map.

Theorem 5. Let H be any maximal algebraic torus of G. Assume that there is a
sequence {τi} ⊂ H such that

lim inf
i−→∞

νω(ϕτi) = −∞ .

Then there exists a one parameter subgroup λ : C∗ −→ G such that

lim
|t|−→0

νω(λ(t)) = −∞ .

Applications of Theorem 1 to canonical Kähler metrics are as follows, the precise
definition of K-(semi)stability is new and due to the speaker .

Corollary 1. (i) If a polarized manifold (X,L) admits a metric of constant
scalar curvature in the class c1(L) then it is K-semistable with respect to

all embeddings X
Lm

−→ PNm .
(ii) In particular a Fano manifold (X,−KX) admits a Kähler Einstein metric

only if all pluri-anticanonical models are K-semistable.
(iii) If (X,−KX) has a discrete symmetry group and admits a Kähler Einstein

metric then it is K-stable.

We single out the following special cases.

Corollary 2. (i) Any canonically polarized manifold (X,KX) is K-stable
with respect to its pluricanonical embeddings.
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(ii) Any polarized Calabi-Yau manifold (X,L) is K-stable with respect to all

embeddings X
Lm

−→ PNm.
(iii) Any compact homogeneous Kähler manifold is K-semistable with respect to

its plurianticanonical embeddings.
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Surfaces with pg = 0: computer aided constructions

Roberto Pignatelli

(joint work with Ingrid Bauer, Fabrizio Catanese, Fritz Grunewald)

The surfaces of general type with pg = 0 have been recently object of intensive
research since they arise naturally from many different directions, as (e.g.) the
Chow groups (because of the Bloch conjecture) and the analysis of the “excep-
tional” behaviors of the pluricanonical maps of the surfaces of general type.
We are interested in the following situation (#):

- C1, C2 be compact complex curves of respective genera g1, g2 ≥ 2;
- G be a finite group acting faithfully on each Ci;
- X := (C1 × C2)/G be the quotient by the diagonal action;
- S → X be the minimal resolution of the singularities of X .

We have constructed many new surfaces of general type S with pg(S) = 0 by
performing a systematic search of surfaces as in (#). It is remarkable that by a
result of Kimura for all these surfaces the Bloch conjecture holds.

Theorem 1. ([2]) There are exactly 17 families of smooth surfaces of general type
X = C1×C2/G, with G finite and pg(X) = 0. They form 17 connected components
of the moduli space of the surfaces of general type.

Theorem 2. ([3]) There are exactly 27 families of surfaces as in (#) such that S
is of g.t. with pg(S) = 0, X is singular and has canonical singularities.

Theorem 3. ([4]) There are exactly 32 families of surfaces as in (#) such that S
is minimal of g.t. with pg(S) = 0, and X has at least a non-canonical singularity.

We use the following algebraic recipe.
Let C be a curve and p1, . . . , pr be the branching points of a G-cover ξ : C → C′ :=
C/G of respective branching indices m1, . . . ,mr. We assume C′ ∼= P1, although
the argument works with minor modifications when g(C′) > 0, which is relevant
for constructing irregular surfaces (cf. [5], [6], [7]).
ξ has a monodromy representation ψ : π1(P1 \ {p1, . . . , pr}) → G, which factors
through the map ϕ : Π(0;m1, . . . ,mr) := 〈c1, . . . , cr|cmi

i , c1 · · · cr〉 → G defined by
ϕ(ci) := ai := ψ(γi) where the γi are geometric loops around the pi chosen so
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that
∏
γi = 1. The ai generate G,

∏
ai = 1 and each ai has order mi: for short

[a1, . . . , ar] is a sequence of spherical generators of G of signature (m1, . . . ,mr).
By the Riemann Existence Theorem ξ is determined by the pi, the γi and the ai.
Therefore the surfaces as in (#) are given by two finite subsets of P1, loops around
these points as above, and two sequences of spherical generators [a1, . . . , ar] and
[b1, . . . , bs] (of respective signatures, say, (m1, . . . ,mr) and (n1, . . . , ns)).

Lemma 1. There are numbers D2, M , R and B, explicit functions (only) of the
singularities of X such that

i) if χ(OS) = 1, then K2
S = 8−B;

ii) r ≤ R and ∀i, mi ≤M ;

iii) |G| = K2
S−D2

2
(

−2+
∑

r
1

(

1− 1
mi

))

(−2+
∑

s
1(1− 1

ns
))
.

It follows an algorithm to compute all surfaces S as in (#) with pg(S) = q(S) = 0
and a given fixed value of K2

S :

1) find all possible baskets of singularities with B = 8−K2
S ;

2) for each basket list all signatures respecting the inequalities in ii);
3) for each pair of signatures, search all groups of the order predicted by iii)

for sequences of spherical generators of the prescribed signatures;
4) check the resulting surfaces: most of them will be too singular, and not

even of general type!

Some remarks:

- In few dozens of cases, the computer can’t perform step 3) since the pre-
dicted |G| is too big, and no database contains all the necessary groups:
we proved theoretically that these cases do not occur.

- The algorithm is heavy and in this form there is little chance that a com-
puter can complete it for small values of K2

S . We proved and inserted in
the algorithm much stronger conditions on Sing X and on the signatures,
to obtain the full list of surfaces with K2

S ≥ 1.
- If X has a non-canonical singularity, KS may be not nef, and therefore
K2

S may be nonpositive: we may have missed some nonminimal surfaces.

To understand if these surfaces are topologically pairwise distinct, we compute
their fundamental groups. We proved the following theorem.

Theorem 4. ([3]) For every surface S as in (#), π1(S) contains a normal sub-
group of finite index isomorphic to Πg × Πg′ , where Πg, Πg′ are the fundamental
groups of a smooth curve of genus g resp. g′ (here g, g′ ≥ 0).

The proof is purely algebraic and indirect. Theorem 4 suggests a geometrical
description of π1(S) (as in table 1) which can be used to study the deformations
of these surfaces. This has been already done in a case: see [1].
We listed in table 1, for each family from Theorem 2 or 3, K2

S , the singularities
(where q/nk means “k points of type 1/n(1,q)”) the signatures Ti (with an analo-
gous exponential notation), G, the number N of different families we obtain with
these data, H1(S,Z) and π1(S). More details are in [3] and [4].
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K2 Sing X T1 T2 G N H1(S, Z) π1(S)

6 1/22 23, 4 24, 4 Z2 × D4 1 Z
2
2 × Z

2
4 1 → Z

2 × Π2 → π1 → Z
2
2 → 1

6 1/22 24, 4 2, 4, 6 Z2 × S4 1 Z
3
2 × Z4 1 → Π2 → π1 → Z2 × Z4 → 1

6 1/22 2, 52 2, 33 A5 1 Z3 × Z15 Z
2
⋊ Z15

6 1/22 2, 4, 10 2, 4, 6 Z2 × S5 1 Z2 × Z4 S3 × D4,5,−1

6 1/22 2, 72 32, 4 PSL(2,7) 2 Z21 Z7 × A4

6 1/22 2, 52 32, 4 A6 2 Z15 Z5 × A4

5 1/3, 2/3 2, 4, 6 24, 3 Z2 × S4 1 Z
2
2 × Z4 1 → Z

2 → π1 → D2,8,3 → 1

5 1/3, 2/3 24, 3 3, 42 S4 1 Z
2
2 × Z8 1 → Z

2 → π1 → Z8 → 1

5 1/3, 2/3 42, 6 23, 3 Z2 × S4 1 Z2 × Z8 1 → Z
2 → π1 → Z8 → 1

5 1/3, 2/3 2, 5, 6 3, 42 S5 1 Z8 D8,5,−1

5 1/3, 2/3 3, 52 23, 3 A5 1 Z2 × Z10 Z5 × Q8

5 1/3, 2/3 23, 3 3, 42 Z
4
2 ⋊ S3 1 Z2 × Z8 D8,4,3

5 1/3, 2/3 3, 52 23, 3 A5 1 Z2 × Z10 Z2 × Z10

4 1/24 25 25 Z
3
2 1 Z

3
2 × Z4 1 → Z

4 → π1 → Z
2
2 → 1

4 1/24 22, 42 22, 42 Z2 × Z4 1 Z
3
2 × Z4 1 → Z

4 → π1 → Z
2
2 → 1

4 1/24 25 23, 4 Z2 × D4 1 Z
2
2 × Z4 1 → Z

2 → π1 → Z2 × Z4 → 1

4 1/24 3, 62 22, 32 Z3 × S3 1 Z
2
3 Z

2
⋊ Z3

4 1/24 3, 62 2, 4, 5 S5 1 Z
2
3 Z

2
⋊ Z3

4 1/24 25 2, 4, 6 Z2 × S4 1 Z
3
2 Z

2
⋊ Z2

4 1/24 22, 42 2, 4, 6 Z2 × S4 1 Z
2
2 × Z4 Z

2
⋊ Z4

4 1/24 25 3, 42 S4 1 Z
2
2 × Z4 Z

2
⋊ Z4

4 1/24 23, 4 23, 4 Z
4
2 ⋊ Z2 1 Z

2
4 G(32, 2)

4 1/24 2, 52 22, 32 A5 1 Z15 Z15

4 1/24 22, 32 22, 32 Z
2
3 ⋊ Z2 1 Z

3
3 Z

3
3

4 2/52 23, 5 32, 5 A5 1 Z2 × Z6 Z2 × Z6

4 2/52 2, 4, 5 42, 5 Z
4
2 ⋊ D5 3 Z8 Z8

4 2/52 2, 4, 5 32, 5 A6 1 Z6 Z6

3 1/5, 4/5 23, 5 32, 5 A5 1 Z2 × Z6 Z2 × Z6

3 1/5, 4/5 2, 4, 5 42, 5 Z
4
2 ⋊ D5 3 Z8 Z8

3 1/3, 1/22, 2/3 22, 3, 4 2, 4, 6 Z2 × S4 1 Z2 × Z4 Z2 × Z4

3 1/5, 4/5 2, 4, 5 32, 5 A6 1 Z6 Z6

2 1/32, 2/32 2, 62 22, 32 Z
3
2 ⋊ Z3 1 Z

2
2 Q8

2 1/26 43 43 Z
2
4 1 Z

3
2 Z

3
2

2 1/26 23, 4 23, 4 Z2 × D4 1 Z2 × Z4 Z2 × Z4

2 1/32, 2/32 22, 32 3, 42 S4 1 Z8 Z8

2 1/32, 2/32 32, 5 32, 5 Z
2
5 ⋊ Z3 2 Z5 Z5

2 1/26 2, 52 23, 3 A5 1 Z5 Z5

2 1/26 23, 4 2, 4, 6 Z2 × S4 1 Z
2
2 Z

2
2

2 1/32, 2/32 32, 5 23, 3 A5 1 Z
2
2 Z

2
2

2 1/26 2, 3, 7 43 PSL(2,7) 2 Z
2
2 Z

2
2

2 1/26 2, 62 23, 3 S3 × S3 1 Z3 Z3

2 1/26 2, 62 2, 4, 5 S5 1 Z3 Z3

2 1/4, 1/22, 3/4 2, 4, 7 32, 4 PSL(2,7) 2 Z3 Z3

2 1/4, 1/22, 3/4 2, 4, 5 32, 4 A6 2 Z3 Z3

2 1/4, 1/22, 3/4 2, 4, 6 2, 4, 5 S5 2 Z3 Z3

1 1/3, 1/24, 2/3 23, 3 3, 42 S4 1 Z4 Z4

1 1/3, 1/24, 2/3 2, 3, 7 3, 42 PSL(2,7) 1 Z2 Z2

1 1/3, 1/24, 2/3 2, 4, 6 23, 3 Z2 × S4 1 Z2 Z2

Table 1. The minimal surfaces of general type S as in (#) with
pg(S) = 0 and X singular
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Compact moduli for certain Kodaira fibrations

Sönke Rollenske

It is a general fact that moduli spaces of nice objects in algebraic geometry, say
smooth varieties, are often non-compact. But usually there is a modular compact-
ification where the boundary points correspond to related but more complicated
objects.

Such a modular compactification has been known for the moduli space Mg of
smooth curves of genus g for a long time and in [6] Kollár and Shepherd-Barron
made the first step towards the construction of a modular compactification M̄ for
the moduli space M of surfaces of general type via so called stable surfaces; the
boundary points arise from a stable reduction procedure. An overview over the
technical issues arising in the construction can be found in [5]; it has later been
extended to pairs and and stable maps (see [2]).

But even 20 years later very few explicit descriptions of compact components of
M̄ have been published. The main idea in all approaches is to relate the component
of the moduli space one wishes to study to some other moduli space, where a
suitable compactification is known. Products of curves and surfaces isogenous to
a product of curves have been treated by van Opstall [8, 9] and a recent paper of
Alexeev and Pardini [3] studies Burniat and Campedelli surfaces relating them to
hyperplane arrangements in (a blow-up of) P2.

Our aim was to explicitly construct the stable surfaces in M̄ that arise as stable
degenerations of very simple Galois double Kodaira fibrations: let S be a compact
complex surface of general type such that a finite group G acts on S and

• S/G ∼= C × C for a smooth curve of genus at least 2,
• the quotient map ψ : S → C × C is a ramified covering,
• there exist a set of automorphisms S ⊂ Aut(C) such that the branch
divisor is union of their graphs

B =
∑

σ∈S

Γσ ⊂ C × C

and Γσ ∩ Γσ′ = ∅ for σ 6= σ′.
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On the first glance these surfaces seem quite special but in joint work with
Fabrizio Catanese we gave in [4] an effective method of construction, proving in
addition the following:

Theorem 1 ([4], Theorem 6.5). Let ψ : S → C × C be a very simple Kodaira
fibration, S ⊂ Aut(C) as above. Let H be the subgroup of Aut(C) generated by
S . Then the connected component N of the moduli space of surfaces of general
type containing S contains only very simple Kodaira fibrations and is isomorphic
(as a set) to the moduli space of curves with automorphisms Mg(C)(H).

We show that the structure as ramified covers extends also to the stable degen-
erations of such surfaces. This enables us to give an explicit description of their
stable degeneration:

Theorem 2. Let N be the closure of N in the moduli space of stable surfaces and
[S0] ∈ N \N. Then there are maps ψ0 : S0 → Y and π : Y → X such that

• X = C0 × C0 for a stable curve C0,
• π is birational replacing some explicitly determined degenerate cusps of X

with smooth P1’s in Y ,
• S0 → Y is a ramified Galois covering with group G.

Moreover, S0 is a local complete intersection and its normalisation is smooth.

More details can be found in [7]. Starting from this description it would now
be very interesting to know if N is a connected component of the moduli space of
stable surfaces or if the degenerations have unexpected deformations.
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Cohomology of sheaves and numerical invariants of free resolutions

Frank-Olaf Schreyer

(joint work with David Eisenbud)

Let M be a graded module over the polynomial ring S = K[x0, . . . , xn]. The
Hilbert polynomial pM (d) ∈ Q[d] is an important numerical invariant which can
be computed from the minimal free resolution

M ← F0 ← F1 ← . . .← Fn+1 ← 0

where Fi = ⊕S(−j)βij as

pM (d) =

n+1∑

i=0

(−1)iβij
(
d− j + n

n

)
.

Thus we may regard the collection of Betti numbers

β(M) = (βij) ∈
∞⊕

j=−∞

Qn+2

as a refined numerical invariant. If we consider the associated sheaf E = M̃ on Pn

then the dimensions of the cohomology groups

hE : Z× {0, . . . , n} → Q, (d, i) 7→ hiE (a)

form a perhaps even more natural refinement of pM (d) = χF (d).
Which Betti tables are possible for graded modules? Which cohomology tables

are possible for coherent sheaves?
Boij and Söderberg [1] discovered that relaxed versions of these questions might

have a complete answer. Consider the rational cone B ⊂⊕∞
j=−∞ Qn+2 generated

by Betti tables, and similarly the cone generated by cohomology tables of coherent
sheaves. Both cones are described in terms of extremal rays.

Definition 1. A free resolution F0 ← F1 ← . . . ← Fc ← 0 is called pure, if
M = coker (F1 → F0) is a Cohen-Macaulay module (with support of codimension
c) and each Fi is generated in a single degree:

Fi = S(−di)βi with βi = βi,di

We call d0, . . . , dc the type of the pure resolution.

Herzog and Kühl [11] observed that the Betti numbers βi of a pure resolution
are determined by the type up to a common factor

βi = r
∏

k 6=i

1

| dk − di |

Theorem 1. [5],[2].

(1) Each type d0 < d1 < . . . < dc is realized by some pure resolution.
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(2) The Betti tables of pure resolutions generate all extremal rays of the cone
Betti tables. More precisely: For every module there exist a unique chain
of degree sequence such that β(M) is a unique positive rational linear com-
bination of corresponding pure resolutions.

Here ‘chain of degree sequences refers to the natural order defined by

(d0, . . . , dc) ≤ (d′0, . . . , d
′
c′)⇔ c ≥ c′ and di ≤ d′i ∀ i ≤ c′.

The extremal rays in the cone of cohomology tables come from what we call
supernatural sheaves.

Definition 2. A coherent sheaf E on Pn has natural cohomology if for each d
at most one of the groups HiE (d) 6= 0. It has supernatural cohomology if in
addition the Hilbert polynomial

χE (d) =
rankE

s!

s∏

j=1

(d− zj)

has s distinct integral roots z1, . . . , zs where s = dimE .

Theorem 2. [5].

(1) Each integral zero sequence z0 > z1 > . . . > zs occurs as root sequence of
a supernatural sheaf on Pn.

(2) The cone of cohomology tables of vector bundles is spanned by the coho-
mology tables of supernatural vector bundles.

The proof of both Theorems has two parts:

(1) Existence of pure resolutions and existence of supernatural sheaves.
(2) Description of the facets of the cones.

The equations defining facets of the cones are derived from the following function-
als. For β = (βi,k) ∈ ⊕kQn+2 a Betti table and γ = (γj,k) = (hjE (k)) ∈ ∏

Qn+1

a cohomology table we define

〈β, γ〉 =
∑

i≤j

(−1)j−i
∑

k

βi,kγj,−k

Theorem 3. [5],[6]. For arbitrary free resolutions F and arbitrary coherent
sheaves E

〈β(F ), γ(F )〉 ≥ 0

Modification of these functionals for certain supernatural sheaves define the
facets of the cone of Betti tables, and conversely, a modification for certain pure
resolutions of zero dimensional modules defines the cone of cohomology tables of
vector bundles.

For arbitrary sheaves it is no longer true that the cohomology table is a finite
linear combination of cohomology tables of supernatural sheaves. Instead one has
to consider infinite series of tables and the closure of the cone in

∏
k R

n+1 with its
weak topology. Let γz denote the cohomology table of a supernatural sheaf with
Hilbert polynomial

∏s
i=1(d− zi). Then we have
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Theorem 4. [6]. For each coherent sheaf E on Pn there exists a unique chain
Z = {z} of degree sequences and unique sequence (qz)z∈Z of positive numbers such
that

γ(E ) =
∑

z∈Z

qzγ
z.

If E is a torsion free sheaf then all γz are Hilbert polynomials of supernatural
vector bundles and all qz are rational.

We do not know whether conversely if all γz are Hilbert polynomials of vector
bundles, E is necessarily torsion free. Also we have no example where irrational
coefficients qz occur.
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Jumping of the nef cone for Fano varieties

Burt Totaro

Throughout we consider Q-factorial varieties over the complex numbers. A divisor
D on a projective variety X is said to be movable if the base locus of the linear
system |D| has codimension at least 2 in X . Let N1(X) denote the Néron-Severi
vector space, that is, the space of divisors with real coefficients on X modulo
numerical equivalence. This is a finite-dimensional real vector space, which can be
identified with the subspace of H2(X,R) spanned by divisors. Define the movable
cone Mov(X) in N1(X) to be the closed convex cone spanned by movable divisors.

Define a modification of a projective variety X to be another Q-factorial projec-
tive variety Y together with a birational map X 99K Y which is an isomorphism in
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codimension 1. That is, we are given an isomorphism from X minus some closed
subset of codimension at least 2 to Y minus some closed subset of codimension
at least 2. Nontrivial modifications only occur in dimension at least 3. Some
examples of modifications are the flips and flops used in minimal model theory.
A modification determines a canonical identification N1(X) = N1(Y ) which pre-
serves the movable cones, Mov(X) = Mov(Y ). Moreover, we have a canonical
identification H0(X,O(D)) = H0(Y,O(D)) for all Weil divisors D on X , which is
compatible with multiplication of sections.

For any projective variety X , the cone Nef(X) of nef divisors is a closed convex
subcone of the movable cone. But for a nontrivial modification X 99K Y , the nef
cones Nef(X) and Nef(Y ) are different subcones of Mov(X); in fact, the interiors
of Nef(X) and Nef(Y ) are disjoint. To see this, we use Kleiman’s theorem that the
interior of the nef cone is the ample cone. So suppose we have an ample divisor D
on X which is also ample on the modified variety Y . Then we would have

X = ProjR(X,O(D)) = ProjR(Y,O(D)) = Y,

a contradiction. Thus, as emphasized by Kawamata, the modifications of a pro-
jective variety X are in one-to-one correspondence with a collection of subcones
of Mov(X) whose interiors are disjoint, the nef cones of the modifications.

Birkar, Cascini, Hacon, and McKernan showed that the picture is particularly
simple for a Fano variety X , meaning that −KX is ample [1]. Assume that X is
klt (for example, smooth). Then:

(1) The movable cone of X is rational polyhedral. That is, Mov(X) is the
convex cone in N1(X) spanned by finitely many Cartier divisors.

(2) X has only finitely many modifications, X = X1, . . . , Xr.
(3) For i = 1, . . . , r, the nef cone of Xi is rational polyhedral.
(4) Mov(X) = ∪ri=1Nef(Xi).
Thus, many properties of a Fano variety X are encoded by some combinatorial

data: a rational polyhedral cone (the movable cone) with a chamber decomposition
(the nef cones of X and its modifications). The faces of the nef cone parametrize
all contractions of X (morphisms from X onto other projective varieties), while
the rest of the movable cone describes all rational contractions of X (rational maps
from X which do not extract any divisors), as Hu and Keel described [3].

Using extension theorems building on those of Hacon-McKernan and Siu, de
Fernex and Hacon showed that the movable cone of a Q-factorial terminal Fano
varietyX0 remains constant under deformations ofX0 [2]. They asked whether the
chamber decomposition of the movable cone remains constant under deformations
of a Q-factorial terminal Fano variety. They proved this for X0 of dimension at
most 3, and when X0 is also Gorenstein in dimension 4.

The question by de Fernex and Hacon would say in particular that the nef
cone of a Q-factorial terminal Fano variety remains constant under deformations.
Wísniewski showed that the nef cone of a smooth Fano variety of any dimension
remains constant under deformations [7, 8]. Dually, the cone of curves of a smooth
Fano variety remains constant under deformations. For example, in dimension 2
this is the classical fact that the set of (−1)-curves on a del Pezzo surface X does
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not change in N1(X) = H2(X,R) as we vary the surface. Geometrically, the (−1)-
curves (for example, the 27 lines on a cubic surface) vary continuously as we vary
the surface.

We give a negative answer to de Fernex and Hacon’s question, as follows [6].
Theorem. There is a variety X and a flat projective morphism t : X → A1

with the following properties. The fibers Xt for t 6= 0 are isomorphic to the blow-
up of P4 along a line, and the nef cone of X0 is a proper subset of the nef cone of
Xt. The fiber X0 is a Q-factorial terminal Fano 4-fold.

Therefore the results by de Fernex and Hacon on deformations of 3-dimensional
Fanos are best possible. The example is based on the existence of high-dimensional
flips which deform to isomorphisms, generalizing the Mukai flop [4, 5]. This phe-
nomenon will be common, and we give a family of examples in various dimensions,
including a Gorenstein example in dimension 5. The examples also disprove the
“volume criterion for ampleness” on Q-factorial terminal Fano varieties [2, Ques-
tion 5.5].
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Kähler-Ricci Flow with applications in Algebraic Geometry

Zhou Zhang

(joint work with Xiuxiong Chen and Gang Tian)

1. Set-up

The differential manifold X is compact without boundary. Ricci flow is, as
introduced by R. Hamilton in [2],

(1)
∂g(t)

∂t
= −2Ric(g(t)), g(0) = g0,

with g0 being a Riemannian metric over X . If g0 is Kähler w.r.t (X, J), the
manifold X with a complex structure J , then the flow metric g(t) stays Kähler
w.r.t. (X, J). Hence, Kähler-Ricci flow is nothing but Ricci flow with the initial
metric being Kähler.
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1.1. Evolution of cohomology class and optimal existence result. The
following scaled version of the flow is the most convenient for our purpose,

(2)
∂ω̃t

∂t
= −Ric(ω̃t)− ω̃t, ω̃0 = ω0.

By studying an ODE in H1,1(X ;C) ∩ H2(X ;R), one can see that [ω̃t], i.e. the
cohomology class of ω̃t, would be the same as [ωt] for

ωt = ω∞ + e−t(ω0 − ω∞)

where ω∞ is a real, smooth, closed (1, 1)-form such that [ω∞] = KX . Let’s point
out that [ωt] = e−tω0 + (1 − e−t)KX , i.e. convex combination of the initial class
[ω0] andKX . Using this, the Kähler-Ricci flow can be reduced to a scalar potential
flow, which is the parabolic version of complex Monge-Ampère equation. We begin
with the optimal existence result in [5].

Theorem 1 (Cascini-La Nave, Tian-Z.) The Kähler-Ricci flow exists as long as
the class [ω̃t] = [ωt] remains to be Kähler.

This result has the following important implication, i.e. we now know exactly
when the Kähler-Ricci flow meets singularity. The information is contained com-
pletely in (finitely dimensional) cohomology data. Needlessly to say, the flow sin-
gularity should have close relation with the degeneration of the cohomology class
(as a Kähler class). On the other hand, we have a more detailed picture about
the cohomology degeneration, i.e. a metric picture, which comes from a natural
geometric construction, Ricci flow. This nice intersection of fields in mathematics
has been providing interesting problems and motivating powerful techniques.

1.2. Non-degenerate situation. We have the following result might convince
people that we are not trying something too wild.

Theorem 2 (Tian-Z.) If KX is Kähler, then with any choice of initial Kähler
metric, the Kähler-Ricci flow (2) exists forever and converges exponentially fast in
the smooth topology to the unique Kähler-Einstein metric at infinity.

1.3. Kähler-Ricci flow for general class. H. Tsuji observed that Kähler-Ricci
flow can also be applied to analyze general classes. In [5], we also looked at

(3)
∂ω̃t

∂t
= −Ric(ω̃t)− ω̃t +Ric(Ω) + L, ω̃0 = ω0,

where L is a real, smooth and closed (1, 1)-form over X . Set ωt = L+ e−t(ω0−L)
and we still have [ω̃t] = [ωt]. In fact, (2) is the special case of (3) when L =
−Ric(Ω). For this flow, we have [ω∞] = [L], which can be any class we want to
study in principle. Theorem 1 still holds for this flow. Theorem 2 also holds with
the limit not being Kähler-Einstein in general.

2. Main interest: degenerate case

The major advantage by allowing the Kähler class to evolve along Kähler-Ricci
flow is to be able to study the boundary of Kähler cone.
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2.1. Infinite time singularity. We have infinite time singularity if [ω∞] is on
the boundary of Kähler cone. In this case, we have the following result in [5] and
continuation.

Theorem 3 (Tian-Z.) Suppose KX nef. and big, i.e. X being minimal and of
general type. Then (2) exists forever and ω̃t → ω̃∞ locally as t→∞ out of E, the
stable base locus set of KX , in C∞-topology to a smooth metric ω̃∞ satisfying

−Ric(ω̃∞)− ω̃∞ = 0.

Over X , the convergence is weak in the sense of current and the limiting current
overX , still denoted by ω̃∞, is a real, closed and positive (1, 1)-current representing
the class [ω∞] = KX and having Lelong number 0. This limit is canonical and
has continuous local over X . Furthermore, scalar curvature is uniformly bounded
along the flow.

Later, Yuguang Zhang applied this to give an alternative proof of the classic
Miyaoka-Yao Inequality for minimal manifold of general type.

2.2. Finite time singularity. There is also this case that the flow meets singu-
larity at some finite time T < ∞ where [ωT ] is on the boundary of Kähler cone.
We have the following result as in [5] and continuation.

Theorem 4 (Tian-Z.) Suppose KX is not nef. but still big (i.e. X is of general
type). Then Kähler-Ricci flow (2 exists in [0, T ) for some finite maximal time
interval and ω̃t → ω̃T locally as t→ T out of E, the stable base locus set of [ωT ],
in C∞-topology to a smooth metric ω̃T . Over X , the convergence is weak in the
sense of current and the limiting current over X , still denoted by ω̃T , is a real,
closed and positive (1, 1)-current representing the class [ωT ] and having Lelong
number 0. If [ωT ] is semi-ample, then the limit ω̃T has continuous local potential
over X . In this case, the scalar curvature would have to blow up.

This situation of not being nef. and having finite time singularity is not very
satisfying from either algebraic geometry or geometry analysis standing points. So
the discussion below comes up very naturally.

3. Algebraic surgery and weak flow

In the finite time singularity case, the limit doesn’t satisfy a geometric identity
(as Kähler-Einstein equation). The limit would depend on the initial metric. This
provides the motivation to ”continue” the flow to time infinity. As for Ricci flow,
we need to do surgery. In the current setting, the surgery should be of more
algebraic geometry flavor, i.e. blow-up, flip and so on. There are two types of
work for this purpose. One is to learn more about the flow metric singularity.
This helps to come up better way to continue the flow in some weak sense. There
are some related results regarding this direction. For example, in the setting of
Theorem 3, we already know the scalar curvature is uniformly controlled for all
time ([6]), while in the finite time singularity case, the scalar curvature always
blows up ([7]). The other direction is to construct weak Kähler-Ricci flow in
general. The following result is obtained in ([1]).
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Theorem 5 (Chen-Tian-Z.) For ϕ0 ∈ PSHω0(X) ∩ L∞(X) with volume form in
Lp(X)(p ≥ 3), there is a unique smooth solution g(t) of (2) for t ∈ (0, T ) such that
ωn

g(t)

ωn →
ωn

ϕ0

ωn as t→ 0 in L2-topology.

We can already give a nice description for the case of minimal surface of general
type, which is a very special case of G. Tian’s program ([4]): for any initial metric
ω0, Kähler-Ricci flow (2) has a (possibly singular) solution ω̃t which converges to
a (possibly singular) metric in a suitable sense as t→∞. Moreover, this limiting
metric may be singular but should be independent of the choice of the initial metric.
In fact, it is further expected that all singularities of this limiting metric are of
rational type. See [3] for related discussion.
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