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Introduction by the Organisers

This meeting brought together an interesting and inspiring mix of mathemati-
cians, physicists and material scientists, both theoreticians and experimentalists,
to discuss new challenges for mathematics arising from materials science and the
use of mathematical ideas in materials science. The talks and extensive informal
discussions covered phenomena on all the relevant length scales, atomistic, meso-
scopic and macroscopic, with particular emphasis and rigorous bridges between
these scales.
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Abstracts

The Evolution of a Crystal Surface Below the Roughening
Temperature: Steps, PDE, and Self-similar Asymptotics

Robert V. Kohn

(joint work with Hala Al Hajj Shehadeh and Jonathan Weare)

Crystalline films are often grown or annealed below the roughening temperature.
The microscopic physics involves attachment and detachment of atoms at steps,
and diffusion of atoms across terraces. The macroscopic consequences of these
mechanisms are still poorly understood. In particular, we wish to know

(a) why steps seem in many cases to self-organize, creating height profiles that
are asymptotically self-similar; and

(b) whether there is a PDE that represents the large-time, large-scale behavior
of a surface with many steps.

My talk addressed these questions in what is perhaps the simplest possible set-
ting: the evolution of a monotone, one-dimensional step train separating two semi-
infinite facets, in the “attachment-detachment-limited” regime [1].

The step equations. Consider N steps, located at positions x1, . . . , xN . Each
step has height 1/N ; therefore the associated surface consists of N − 1 “terraces”
(of width xi+1−xi, i = 1, . . . , N−1) separating two semi-infinite “facets” at height
0 (to the left of x1) and 1 (to the right of xN ).

There is a well-established mean-field model for the evolution of the steps. Its
roots lie in the work of Burton, Cabrera, and Frank [2]; see e.g. [4] for a more
recent review, and [3, 5] for treatments of one-dimensional problems similar to the
one considered here. In the “attachment-detachment-limited” regime the velocity
of the ith step is

(1) ẋi = µi+1 − 2µi + µi−1 where µi = (xi+1 − xi)
−3 − (xi − xi−1)

−3

except at the extremes. At the left extreme ẋ2 = µ3 − 2µ2 +µ1 and ẋ1 = µ2 −µ1,
where µ1 = (x2 − x1)

−3. At the right extreme, ẋN−1 = µN − 2µN−1 + µN−2 and
ẋN = −µN + µN−1, where µN = −(xN − xN−1)

−3. The physical origin of these
equations will be discussed in a moment.

A convenient viewpoint. It is convenient to focus on the “slopes”

ui =
1/N

xi+1 − xi
, defined for i = 1, . . . , N − 1.

The step equations can then be written (by mere algebraic manipulation) as

(2) u̇i = −u2i∆i(∆u
3) for i = 1, . . . , N − 1

with the conventions

u0 = uN = 0 and (∆u3)0 = (∆u3)N = 0.

Here ∆i is the finite-difference Laplacian ∆iz = N2(zi+1 − 2zi + zi−1).
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Physical origin of the step equations. Briefly: the step equations come from
the standard Burton-Cabrera-Frank framework, using the step interaction energy∑ 1

(xi+1−xi)2
and specializing to the attachment-detachment-limited regime. In

more detail: let ci be the concentration of atoms on the terrace between xi and
xi+1. Then (using the quasistatic approximation) ci solves D∂xxci = 0 for xi <
x < xi+1 with

D∂xci = k(ci − ceqi ) at x = xi and −D∂xci = k(ci − ceqi+1) at x = xi+1.

Here ceqi (the equilibrium concentration at xi) is a constant times the first variation
of the step interaction energy

∑ 1
(xi+1−xi)2

; D is the terrace diffusion constant;

and k is a “sticking constant.” The motion of each step is then governed by

conservation of mass, which gives ẋi = a
(
D ∂ci

∂x

∣∣
x=xi

−D ∂ci−1

∂x

∣∣
x=xi

)
where a =

1/N is the step height. After manipulation and nondimensionalization, one finds

that the slopes ui =
1/N

xi+1−xi
solve

u̇i = −u2i∆i

[
u

1 + 2D
ka u

∆u3

]
for i = 1, . . . , N − 1

with the same conventions as above. The “attachment-detachment-limited” regime
is the limiting behavior when 2D

ka ui ≫ 1, i.e. when 2D
k ≫ xi+1 − xi for each i. In

this case we recover (2) (after a suitable rescaling of time).

Steepest descent structure, estimates, and an associated PDE. One ver-
ifies that (2) represents ℓ2-steepest descent for the functional

1

6N

N−1∑

i=1

(∆iu
3)2.

This makes the continuum analogue of our step law quite clear, at least formally:
it is the PDE

(3) ut = −u2∆∆(u3)

with boundary conditions u(0, t) = u(1, t) = 0 and (u3)hh(0, t) = (u3)hh(1, t) = 0.
In fact, (3) represents L2-steepest-descent for the functional

1

6

∫ 1

0

(u3)2hh dh

subject to u(0, t) = u(1, t) = 0. (The condition (u3)hh = 0 at h = 0, 1 is not a
constraint, but rather a “natural” boundary condition.)

To prove that the step evolution law has a solution for all t, one must show
that steps don’t collide, and don’t go to infinity in finite time. It is sufficient to
show that “slopes” ui stay positive and finite. We do this using two energy-type
estimates. The first, more elementary one is:

d

dt

∑
u2i = −2

∑
|∆i(u

3)|2 ≤ 0.
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It follows that each ui stays bounded, so the steps do not collide. The second
estimate asserts that

∑(
∆−1 1

u

)2

i

≤ (At+B)2.

where A and B are suitable constants, and ∆−1 is the inverse of the finite-difference
Laplacian with a Dirichlet boundary condition. It follows that no step goes to
infinity in finite time.

Our energy estimates have obvious continuum analogues. But in the continuum
setting we can’t conclude from these estimates that u(h, t) or u−1(h, t) is uniformly
bounded.

Asymptotic self-similarity. The profile of the evolving surface is asymptotically
self-similar. In the continuous setting this means that u(h, t) ∼ t−1/4φ(h) for some
function φ; in the discrete setting it means that

ui(t) ∼ t−1/4φi.

To prove this, we introduce “similarity variables.” In the continuous case this
means considering w(h, s) = t1/4u(h, t) where s = log t; in the discrete setting it
means considering

wi(s) = t1/4ui(t) where s = log t.

Asymptotic self-similarity means that w becomes independent of s as s→ ∞.
Our proof is only complete for the discrete case. It rests on the observation

that the equation for w is also a steepest descent; in the discrete setting it is ℓ2

steepest descent for ∑ 1

6
(∆iw

3)2 − 1

8
w2
i .

This functional has a unique positive critical point (in fact, it is convex when
viewed as a function of w3

i ). Moreover one can show that wi remains strictly
positive and uniformly bounded as s → ∞ (more energy inequalities!). It follows
by a standard ODE argument that wi is asymptotically stationary. The argument
just sketched would work in the continuous setting too, if we could show that
w(h, s) stayed positive and bounded as s→ ∞.
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Dislocations in graphene

Michael Ortiz

(joint work with M. P. Ariza )

1. Eigendeformation theory of discrete lattice dislocations

Following [1], we regard a graphene lattice as a cell-complex C, i. e., as a collec-
tion of interconnected atoms, atomic bonds and elementary areas. When regarded
as members of the cell complex, we shall refer to those objects as p-cells, where
p is the dimension of the cell. Thus, an atom is a 0-cell e0, an atomic bond is a
1-cell e1, and each of the hexagonal cells of graphene defines a 2-cell e2. We shall
denote by Ep the set of p-cells of the lattice. We recall that, by invariance under
translations, the energy of a harmonic lattice can be expressed in the form [1]

(1) E(u) =
1

2

∑

e1∈E1

∑

e′1∈E1

Bij(e1, e
′
1)dui(e1)duj(e

′
1) ≡

1

2
〈Bdu, du〉

where Bij(e1, e
′
1) are bondwise force constants giving the interaction energy result-

ing from a unit differential displacement in the jth coordinate direction at bond e′1
and a unit differential displacement in the ith coordinate direction at bond e1 (see
[4] for details). The main difference between the discrete differential representation
of a harmonic lattice energy and the conventional force-constant representation is
that the former exploits the invariance of the energy under translations in order
to express it in terms of bondwise force-constants and the differential du of the
displacement field. Within an eigendeformation framework [3], the energy of a
defective lattice is assumed to take the form

(2) E(u, β) =
1

2
〈B(du − β), (du − β)〉

A straightforward calculation further reduces the energy to the form

(3) E(α) =
1

2
〈Bδ∆−1α, δ∆−1α〉 − 1

2
〈A−1δBδ∆−1α, δBδ∆−1α〉 ≡ 1

2
〈Γ ∗ α, α〉

where α = dβ is the discrete dislocation density, ∆ is the discrete Laplacian of
the lattice, A is the matrix of interatomic force constants, determined by the
identity 〈Bdu, du〉 = 〈Au, u〉, and Γ(l) is twice the interaction energy between a
unit dislocation at the origin e2(0) and another unit dislocation at e2(l) and ∗
denotes discrete convolution.

2. Quadrupolar arrangement

As a validation example we consider a periodic arrangement of discrete disloca-
tion quadrupoles of increasing size embedded in periodic cells of graphene also of
increasing size. In this example, the bondwise force constants B are obtained from
the harmonic model of Aizawa et al. [2]. The distribution of eigendeformations
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βi(e1) that defines one quadrupole consists of two constant and opposite Burg-
ers vectors supported on two zig-zag chain of 1-cells, Fig. 1a. The corresponding
dislocation density αi(e2) is shown in Fig. 1b.

(a) (b)

Figure 1. Periodic quadrupolar arrangement of discrete dislocations,
unit periodic cell. a) Distribution of eigendeformations βi(e1) defin-
ing one quadrupole, consisting of two constant and opposite Burgers
vectors over a zig-zag chain of 1-cells. b) Dislocation density αi(e2)
describing the resulting quadrupole.

(a) (b)

Figure 2. a) Deformed configuration of 1144-atom periodic
quadrupolar arrangement of discrete dislocations in graphene exhibit-
ing pentagon-heptagon ring (5-7) core structures periodic. b) Energy
of periodic dislocation quadrupoles in [2]-graphene as a function of dis-
location separation and unit-cell size.

Deformed configuration corresponding to 1144-atom periodic cell is shown in
Fig. 2a. The discrete-dislocation cores exhibit pentagon-heptagon ring (5-7) core
structures consistent with the observations of Hashimoto et al. [5] of pairs of
pentagon-heptagons attached to a missing row of atoms in a zig-zag chain in
electron-beam irradiated single-walled carbon nanotube of large diameter. The
energy of the periodic quadrupole arrangement per unit periodic cell, which may
be regarded as an energy per dipole, is shown in Fig. 2b as a function of the
dislocation separation and unit-cell size. For dislocation separations much smaller
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than the cell size the energy per quadrupole is ostensibly independent of the cell
size and depends on the size of the quadrupole only. Except for the smallest
quadrupoles, the quadrupole energy depends logarithmically on quadrupole size,
in agreement with the asymptotic analysis of Section 3.

3. Dilute limit

An appealing aspect of the eigendeformation theory of discrete lattice defects is
that it lends itself to mathematical analysis within the calculus of variations. For
instance, we may wish to ascertain the asymptotic behavior of the energy when a
fixed dislocation mass becomes increasingly dilute. For purposes of analysis it is
convenient to identify discrete dislocation distributions with functions α : Z2 → A,
obtained by representing the set E2 of hexagonal cells as a simple Bravais lattice.
Here A is the lattice spanned by the three Burgers vectors of graphene. The
asymptotic behavior of the energy in the dilute limit is described by the following
lemma (see [4] for details).

Lemma [Dilute limit] Suppose that Γ̂(θ) is real-valued and smooth in [−π, π]2\{0}
and Γ̂(θ)−Γ̂0(θ) is bounded in [−π, π]2, where Γ̂0(θ) is the long-wavelength limit of

Γ̂(θ). Let α ∈ l2(Z2) have finite energy and let αh be the sequence of increasingly

dilute dislocation densities

(4) αh(l) =

{
α(l/h), if l ∈ hZ2,
0, otherwise,

Then

(5) lim
h→∞

E(αh)

log h
=

1

4π
〈Kα,α〉l2(Z2)

where

(6) K =

∫

∂[−π,π]2
Γ̂0(θ) dθ.

is the prelogarithmic energy tensor.

In the statement of the lemma, Γ̂(θ) denotes the discrete Fourier transform of

Γ(l) and Γ̂0(θ) = limǫ→0 ǫ
2Γ̂(ǫθ). The proof of the lemma is a direct calculation

that uses the discrete Fourier transform and the properties of weak-limits of rapidly
oscillatory L1-functions.
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Instability of an elastic knot

Basile Audoly

We study the elasticity of an (open) knot tied on an infinite elastic rod, and sub-
jected to combined tension and twist. Numerical simulation [2] and experiments
with a string reveal the existence of an instability for sufficiently large applied
twist. This instability leads to qualitatively different final shapes, depending on
the sign of the applied moment, relative to the orientation of the knot. We present
a theory for this instability in the limit of a loose knot, that is when the applied
force is small enough that a loop with a radius much larger than the rod thickness
is formed. This instability is related to the classical helical buckling of a straight
rod, with the added twist of the presence of an imperfection (the knot). Equilib-
ria of the knotted rod are derived analytically by means of matched asymptotic
solutions of the Kirchhoff equations for elastic rods, in the range of parameters rel-
evant to the analysis of the instability. These solutions generalize those obtained
in previous work [1, 3] by including nonlinear effects in the tail.

Let α be the bending rigidity of the rod, h its thickness, T the applied tension,
U the applied twist. We define the auxiliary quantities R, and U by

R =

√
α

2T
, U =

U√
αT

, ǫ =

√
h

R
.

Here, R can be interpreted as the radius of the loop for a perfectly thin rod, U is
the dimensionless parameter appearing in the classical analysis of linear stability
of the tails (see e. g. [4]), and ǫ is a small parameter by assumption. For an
infinite, unknotted rod the threshold of linear stability is

U c = ±2

while for a circle of radius R it is

U
loop

c = ±
√
6.

This suggests that for a infinite, knotted rod, the tails become unstable before
the loop. As a result, a simple picture of the instability can be drawn, whereby
the braided part of the knot and the loop undergo together a rigid-body motion
(rotation with angle ϕ about the axis of symmetry and translation along this axis).
Deformation of the tails is non-rigid, and can be described by a weakly non-linear
analysis (see for instance [4]).

Let the parameter η measuring the proximity of the loading parameter U to
threshold:

(1) η =

√
2− |U c|.

In the limit of a loose knot, ǫ → 0, simple scaling arguments suggest that the
instability takes place when

η ∼ ǫ1/2.
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A more detailed study yields an implicit relation between the rotation ϕ and the
loading parameter η in the form

(2) (Π′
n)

2 = t2 − t4

4 s2
,

where

t =
η ϕ

ǫ
, s =

2− |U |
ǫ

and Π′
n is a constant depending on the knot type n, introduced in reference [3],

whose value is

(3) Π′
1 =

Π1√
2
= 1.477,

for a simple knot.

References

[1] B. Audoly, N. Clauvelin, and S. Neukirch, Elastic knots, Physical Review Letters 99 (2007),
164301, 2007.

[2] M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun Discrete elastic rods,
ACM Transactions on Graphics 27 (2008) 63.

[3] N. Clauvelin, B. Audoly, and S. Neukirch, Matched asymptotic expansions for twisted elastic
knots: a self-contact problem with non-trivial contact topology, Journal of the Mechanics
and Physics of Solids 57 (2009), 1623—1656.

[4] G. H. M. van der Heijden and J. M. T. Thompson., Helical and localised buckling in twisted
rods: A unified analysis of the symmetric case, Nonlinear Dynamics 21 (2000), 71–99.

Mechanical stabilization of single crystals of shape memory alloys:
Open questions

Hanuš Seiner

(joint work with Michal Landa and Ondřej Glatz)

The shape memory materials are able to undergo fully reversible (thermoelas-
tic) martensitic transitions between high–temperature, highly symmetric phase
(austenite) and low–temperature phase (martensite) with lower crystallographic
symmetry. The theoretical description of these transitions can be done within
the frame of continuum mechanics [1, 2], representing individual phases coming
into play by deformation gradients and the compatible interfaces between them
by rank-1 connections. This description is sufficient for qualitative explanation
of the effect of mechanical stabilization of martensite [3], which is a phenomenon
occurring in single crystals of the shape memory alloys. Due to this effect, the
reverse transition from martensite to austenite (the shape recovery process) does
not start at any given transition temperature. Instead, the critical temperature
for this transition depends on the initial martensitic microstructure and possibly
also on the dimensions or the shape of the specimen. Detailed and quantitative
analysis of this phenomenon is still missing, as far as both the experimental ob-
servations and mathematical modeling are concerned. The stabilization itself rises
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a plenty of interesting (from the thermodynamical point of view) and still open
questions, originating from the multiscale character of the problem (see Fig.1). For
example: Is there any understandable relation between the temperature shift and
the initial martensitic microstructure? Which thermodynamic principles govern
the formation and propagation of the interfacial microstructures (microstructural
objects enabling compatible connection between the initial martensitic microstruc-
ture and austenite, [4])? What is the mechanism of nucleation of austenite in the
stabilized martensitic microstructure? Is it possible to obtain a fully stabilized
marteniste, i.e. to tune the microstructure, the crystallographic orientation and
the dimensions of the specimen such that the austenite phase cannot nucleate at all
(i.e. to shift the critical temperature e.g. above the melting point of martensite)?

L
A
T
E

N
T

H
E

A
T

(b)

(c)

(a)

Figure 1. Multiscale character of the shape recovery process:
The compatibility conditions at the atomistic scale (a) constrains
the macroscopic Stefan’s problem (b) such that it leads to forma-
tion of interfacial microstructures (X–interfaces) at the mesoscale
(c).

The given talk illustrated the effect of the mechanical stabilization on the single
crystals of the Cu-Al-Ni alloy. Above all, it was shown that this material can
be mechanically stabilized by a stress–induced transition into the 2H-martensite,
and that this stabilization shifts the transition temperature As by several degrees
upward (this was documented by acoustic-emission measurements). Results of
several experimental observations were presented, from which the most essential
were:
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(1) The shear softening of the mechanically stabilized martensite was analyzed
by ultrasonic methods.

(2) The kinetics of the shape recovery process in a thermal gradient was ob-
served by optical and infrared microscopy. The dependence of the phase
front velocity on the magnitude of the gradient was discussed and signif-
icant decrease of the temperature around the moving interface was docu-
mented.

(3) The kinematic compatibility of the observed interfacial microstructure (the
X-interface) was analyzed, whereby a FEM model (see [5] for more details)
was used to determine the elastic strain fields enabling the existence of this
microstructure.

(4) Using the optical microscopy and the white light interferometry, it was
shown that some of the twinned-to-detwinned interfaces occurring during
the shape recovery process are not sharp, but have, instead, a smooth char-
acter given by a continuous disappearance of thin needles of one marten-
sitic variant in another.

(5) It was shown that the examined material is able to form non-classical in-
terfaces (interfaces between austenite and a crossing–twins microstructure
of four martensitic variants).

(6) The fact that the nucleation of austenite preferably occurs in the corners
of the specimen was illustrated by a simple experiment.

The lack of today’s theoretical understanding of the phenomenon of the mechanical
stabilization was highlighted. It can be clearly concluded that the open questions
raised within the talk cannot be answered without deeper analysis of the interplay
between the geometry (the kinematic compatibility, the anisotropy of elastic prop-
erties) and thermodynamics driving the transitions in the SMA single crystals.
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Variational modelling of cavitation and fracture

Duvan Henao Manrique

(joint work with Carlos Mora-Corral)

Motivated by experiments of Petrinic et al. [10, 11] on the mechanism of ductile
fracture by void growth and coalescence, we consider the problem of formulating a
variational model in nonlinear elasticity compatible with both cavitation and the
appearance of discontinuities across two-dimensional surfaces. In particular, we
consider whether the ideas of the model of cavitation of Müller and Spector [9]
can be incorporated into the model of brittle fracture of Francfort and Marigo [4],
which treats the propagation of cracks as a De Giorgi free-discontinuity problem.

When the formation of cracks and cavities are taken into account, it is necessary
to include the energy due to fracture in the total energy of a deformation. In the
classical conception of Griffith [6], the energy due to the breaking of bonds is
proportional to the area of the cracks created, as they are seen in the reference
configuration. In the formulation (due to Francfort and Marigo [4], see [3] and
the references therein) using deformations u ∈ SBV (Ω,R3), where Ω denotes
the reference configuration of the elastic body undergoing the deformation (and
SBV (Ω,R3) denotes the set of special functions with bounded variation), this
quantity is given by H2(Ju), where Ju is the set of jump discontinuities of u. This
energy, however, is inadequate for cavitation, since in this case fracture is confined
to the microscopic scale and becomes visible only in the deformed configuration.
Supported on the observation by Gent and Wang [5] that a second surface energy,
due to the stretching of a fracture surface, must be taken into account, Müller and
Spector [9] suggested the addition of a term E(u) that gives the area of the surface
created by u, as it is seen after the deformation takes place. We look, therefore,
for minimizers of

(1) I(u) :=

∫

Ω

W (x,∇u(x)) dx + λ1H2(Ju) + λ2E(u),

where W denotes the stored-energy function of the body and ∇u denotes the ap-
proximate gradient of u, among the class of deformations in SBV (Ω,R3) that are
one-to-one a.e. and satisfy det∇u > 0 a.e., as well as suitable boundary conditions.

As is costumary in nonlinear elasticity, we assume W to be polyconvex. To ob-
tain the existence of minimizers under this assumption reduces to proving that
det∇uj ⇀ det∇u in L1(Ω), provided {uj}j∈N is a weakly convergent mini-
mizing sequence (in the appropriate topology), and u is its weak limit. When
the coerciveness of W on the deformation gradient is sufficiently strong (if, e.g.,
W (x,F) ≥ C|F|p with p > 3, or W (x,F) ≥ C(|F|p + | cof F|q) with p ≥ 2 and
q > p

p−1 ), the result follows from the classical works by Reshetnyak [12] and Ball

[1]. In contrast, when cavitation is allowed (which requiresW to have slow growth
at infinity), the result is not true in general, as was shown by Ball and Murat
[2]. The example of Ball and Murat, however, consists of a sequence in which
an arbitrarily large amount of new surface is created. This provided Müller and
Spector [9] with a further motivation for the addition of a surface energy, and, by
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Figure 1. Deformation that creates and subsequently interlaces cavities

setting E(u) := Peru(Ω), and by introducing a new notion of invertibility, they
were indeed able to prove the continuity of the determinant and the existence of
minimizers (in the Sobolev case).

The invertibility condition of Müller and Spector [9], called condition INV, plays
a major role in their theory. Roughly speaking, it states that cavities produced in
one part of the body cannot be filled with material from somewhere else. The need
to introduce this condition comes from the fact that in the case of cavitation, apart
from being a physical property that one desires to incorporate into the model, the
invertibility of deformations is fundamental in order to obtain the mathematical
result of existence. In fact, Müller and Spector proved that if ∇uj ⇀ ∇u in
Lp(Ω,R3×3) (for some p > 1), the maps uj are one-to-one a.e., and u is one-to-one
a.e., then det∇uj ⇀ | det∇u| in L1(Ω). At the same time, they constructed an
example (see Figure 1) of a weakly convergent sequence of deformations (in which
cavities are filled with material from somewhere else), for which supj Peruj(Ω) <
∞, which is such that u is not one-to-one a.e. in spite of the fact that uj is one-to-
one a.e. for each j. The stronger condition INV, in contrast, is stable with respect
to weak convergence in W 1,p(Ω,R3), for every p > 2.

While condition INV offers definite advantages to the analysis of cavitation in
the Sobolev setting, it is no longer possible to make use of it when deformations
are in SBV . In turns out that the mere formulation of this condition, which is
based on the topological degree for Sobolev deformations, requires deformations
to be such that their restrictions to almost every surface are continuous. When
two-dimensional fracture occurs this continuity property no longer holds. Instead
of replacing the condition of invertibility a.e., we propose a model in which the
pathological deformations of Figure 1 are allowed to compete in the energy min-
imization. We observe that this counterexample should have been already ruled
out by the addition of a surface energy, for in this sequence (as in the example of
Ball and Murat [2]) an arbitrarily large amount of new surface is being created.
The difference is that in this example there are pieces of created surface that are
in contact with each other. In this situation the contact surface is left surrounded
by matter, and does not form part of the boundary of the body. It becomes,
therefore, invisible, or undetectable to Peru(Ω), the surface energy in [9]. Based
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on geometric and analytic considerations, in [8] we redefine E(u) as follows:

E(u) := sup

{∫

Ω

[(Dxf)(x,u(x)) · cof∇u(x) + (divy f)(x,u(x)) det∇u(x)] dx

}
,

where the supremum is taken over all f ∈ C∞
c (Ω × R

3,R3) such that ‖f‖∞ ≤ 1.
Using this surface energy, which gives correctly the area of the created surface,
even when invisible surface is created (see [7]), we are able to prove that for
sequences with bounded surface energy the condition of invertibility a.e. is stable
under the weak limit. Moreover, we obtain new results on the weak continuity
of the determinant, and establish the existence of minimizers for (1). Finally, we
show that the functional E(u) is related to a well-known object in the theory of
Cartesian currents (namely, the (n − 1) vertical part (∂Gu)(n−1) of the current
carried by the graph of u), and that the condition E(u) < ∞ is connected to the
BV and SBV regularity of the inverses.
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Characterizing Peridynamics for the Dynamic Motion of Martensitic
Interfaces

Kaushik Dayal

(joint work with Kaushik Bhattacharya)

The continuum peridynamic theory of solids was proposed by Silling [1]. The key
idea is to replace the local tractions by long-range interactions (“bonds”) between
every continuum element in the body. This physical picture leads to the balance
of momentum in the form

(1) ρü(x, t) =

∫

Ω

f(u(x′, t)− u(x, t), x, x′) dx′ + b(x, t)

In this equation, ρ is the density, u is the displacement field as a function of
reference position x and time t, b is the body force density, and the body is
denoted by Ω. The function f is the bond force between continuum elements and
depends on the referential positions as well as the relative displacement. Hence, f
is hueristically analogous to pairwise interactions. Generalizations to multibody
interactions have been achieved [2] but we do not consider them here.

Peridynamics is motivated by the fact that the theory does not a priori impose
any continuity on the displacement field. This makes it an attractive alternative
to classical continuum approaches for the modeling of cracks and interfaces and
recent efforts have shown some success. We have characterized the motion of
martensitic interfaces in peridynamics in one and two dimensions.

In one dimension, we formulate a trilinear material with 2 stable branches
and a spinodal, corresponding to a classical nonconvex energy. This is a simple
model for phase transformations. As shown in the seminal work of Abeyaratne
and Knowles [3, 4], the classical continuum theory with nonconvex energies suffers
from a massive loss of uniqueness of dynamic solutions. They propose a method
to obtain uniqueness by specifying additional closure equations. These equations
contain the physical information that specifies the nucleation and kinetics of phase
boundaries.

We examine this question in peridynamics. We begin by explicit time-marching
of IBVP problems corresponding to impact and Riemann problems. The results
indicate that phase boundaries nucleate without difficulty (unlike many regularized
models), and that the motion of phase boundaries resemble traveling waves.

Hence we examine kinetics of phase boundaries directly by searching for trav-
eling waves. We use the ansatz u(x, t) = u(x − vt) and solve numerically the
resulting equation:

(2) ρv2u(x, t) =

∫

Ω

f(u(x′, t)− u(x, t), x, x′) dx′ + b(x, t)

For a given v, we find u(x, t) and from this extract the thermodynamic driving
force that in the classical continuum theory is the conjugate of v [3]. We find that
the relation between v and driving force obtained from traveling waves matches
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well the similar relation that we obtain from the IBVP problems mentioned above.
This suggests that peridynamics has built within it a kinetic relation

We then examine the issue of nucleation. We approach this from the perspective
of stability. We find that this naturally leads to the notion of a critical nucleus
size, and further that the nucleus size is very strongly dependent on the strain
field outside the nucleus. For certain examples, we obtain simple scaling laws that
are found to match very well with corresponding IBVP calculations.

In two dimensions, we see that peridynamics predicts an unusual mechanism for
a twin boundary to pass over an inclusion. The acoustic waves leading the phase
boundary nucleate a pair of new twin boundaries on the far side of the inclusion,
and these new twin boundaries carry forward the transformation while the original
twin boundary comes to rest before the inclusion [5].
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2D & 3D microstructures studied by TEM & SEM

Dominique Schryvers

The presentation covers several recent examples of atomic and microstructures
investigated by transmission electron microscopy (TEM) or scanning electron mi-
croscopy (SEM) in different materials and that do or can possibly relate to the
multitude of PDE approaches available in this community. The topics presented
include (1) shape memory alloys (SMA) with special lattice parameters and mi-
crostructures for low hysteresis: Ti50Ni50−yXy (X=Pd, Au), (2) shape analysis
and 3D distribution of Ni4Ti3 precipitates by FIB/SEM slice-and-view: compar-
ing stress-free and compressed Ni-Ti material, (3) measuring the full 3D strain
field surrounding Ni4Ti3 precipitates and fitting it with the R-phase transforma-
tion strain, (4) pinning of the martensite structure by dislocations in
Cu74.08Al23.13Be2.79, explaining unexpected hardening of the martensite.

The first topic investigates the evolution of microstructure by different TEM
methods, including conventional imaging, selected area diffraction and some atomic
resolution, as the composition of the Ti50Ni50−xPdx system is systemically tuned
to achieve the compatibility condition between austenite and martensite, i.e. λ2 =
1, where λ2 is the middle eigenvalue of the transformation strain matrix [1]. A
sharp drop in hysteresis is observed for SMA satisfying this condition. Changes in
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morphology, twinning density and twinning modes are reported along with twin-
less martensite and exact austenite-martensite interfaces [2]. An in-situ cooling
experiment highlights the twinless character of the martensite as well as the jerky
growth of the plate. A similar series, although less obvious, can be recognized in
the Ti50Ni50−xAux system.

In the second contribution the 3D morphology and distribution of lenticular and
cylindrical Ni4Ti3 precipitates in the austenitic B2 matrix of two different binary
Ni-Ti alloys, one stress-free annealed and one aged under compression, have been
investigated by a slice-and-view procedure in a Dual-Beam FIB/SEM system. Due
to the weak contrast of the precipitates, proper imaging conditions need to be
selected first to allow for semi-automated image treatment [3]. From the volume
fraction of the precipitates a decrease of the Ni-content can be measured. For the
stress-free alloy this resulted in an increase of 125 degrees for the martensitic start
temperature. The 3D shape analysis of the stress-free grown precipitates confirms
the expected lens-shape, but the precipitates in the compressed material take a
more cylindrical shape, probably due to a smaller difference between the lattice
mismatch of the precipitate and the matrix. It can further be concluded that the
single-variant and aligned precipitates in the compressed material are arranged in
pockets of 0.54× 1 × 1µm3 size defining the space for martensite outbursts. The
population of shapes of the stress-free grown precipitates contains more tabular
types whereas the compressed sample shows more bladed cases, possibly due to a
slight misalignment during compression.

The presence of Ni4Ti3 precipitates can introduce an extra transformation step
in the B2 to B19′ martensitic transformation in Ni-Ti SMA, related to the so-called
R-phase. It is believed that the strain field surrounding the precipitates, caused
by the matrix-precipitate lattice mismatch, lies at the origin of this intermediate
transformation step, although the effect of local concentration gradients should
not be forgotten [4]. Atomic-resolution TEM in combination with geometrical
phase analysis (GPA) is used to measure the elastic strain field surrounding these
precipitates. By combining measurements from two different crystallographic di-
rections, the three-dimensional strain matrix is determined from two-dimensional
measurements. Comparison of the measured strain matrix to the eigenstrain of
the R-phase shows that both are very similar and that the introduction of the
R-phase might indeed compensate the elastic strain introduced by the precipitate
[5].

A single crystal of Cu74.08Al23.13Be2.79 undergoes a martensitic phase transition
at 246K and 232K under heating and cooling, respectively. The phase fronts
between the austenite and martensite regions of the sample are weakly mobile with
a power law resonance under external stress fields. Surprisingly, the martensite
phase is elastically much harder than the austenite phase showing that interfaces
between various crystallographic variants are strongly pinned and cannot be moved
by external stress while the phase boundary between the austenite and martensite
regions in the sample remains mobile. Transmission Electron Microscopy shows
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that the pinning is generated by dislocations, which are inherited from the aus-
tenite phase. These dislocations hinder the movement of partial dislocations that
are active in generating the proper stacking sequence of the stable 18R martensite
structure, as could be deduced from still images as well as in situ cooling experi-
ments. The same type of dislocations are also found attached to the martensite
twin boundaries [6].
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Self-Organized Magneto-Electrics

Manfred Wuttig

The presentation given on September 15 at the Oberwolfach workshop on PDE’s
in materials sciences dealt with magnetoelectrics, i.e. materials which are simul-
taneously ferromagnetic and ferroelectric. The presentation concentrated on ways
to synthesize composite magnetoelectrics that are characterized by the high Curie
temperatures of the components. Three different types of syntheses were presented
and the properties of the resulting magnetoelectric composites discussed: spinodal
and pseudo-spinodal decomposition as well as diblock copolymer ordering. The
concepts of the three are shown in Fig. 1 together with the nanostructures which
can be obtained.
Details on the synthesis and properties of these structures follow.
The NFO/PZT composites was produced by crystallizing and spinodally de-

composing a gel in a magnetic field below the Curie temperature of NFO. The
gel had been formed by spinning a sol onto a silicon substrate. The ensuing mi-
crostructure, characterized by atomic force microscopy, magnetic force microscopy,
Lorentz transmission electron microscopy, and scanning electron microscopy, is
nanoscopically periodic and, determined by the direction of magnetic annealing
field, anisotropic as can be seen in Fig. 1, bottom left. The wavelength of the
PZT/NFO alternation, 25 nm, agrees within a factor of 2 with the theoretically
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Figure 1. Principles of Self-Organization of Magnetoelectric
Nanocomposites
Left, top; spinodal decomposition, the composition dependence
of the solute solubility and spinodal are shown in red and blue,
respectively, decomposition below the spinodal results in the en-
circeled blue/red periodic structure; such a structure was syn-
thesized by decomposing a nickel-ferrite (NFO)/lead-zirconium-
titanate (PZT) gel in a magnetic field.
Left, bottom; magnetoelectric NFO/PZT nanostructure as viewed
by AFM.
Center, top; pseudo-spinodal decomposition, the free energies of
CFO (red) and the hexagonal as well as cubic phases of barium
titanate (BTO, blue) are shown as a function of composition; If
the average composition C0 is located at the red/blue intersection
continuous spinodal-like decomposition can occur.
Center, bottom; Pseudo-spinodal decomposition of CFO/BTO.
Right, top; typical phase diagram of a diblock copolymer.
Right, bottom; AFM image of hexagonally short range ordered
(note the Fourier transform in the inset) magnetoelectric nanos-
tructure of a decomposed amphiphilic 65/35 polystyrene- block-
polyethylene oxide doped with CFO and PZT, respectively.

estimated value. The macroscopic ferromagnetic and magnetoelectric responses
correspond qualitatively and semiquantitatively to the features of the nanostruc-
ture. As shown in the inset of Fig. 2, the maximum of the field dependent
magnetoelectric susceptibility equals 1.8 V/cm Oe [1].
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: ME characteristic and ME suscepti-

PS(PZT)

Figure 2. ME characteristic and ME susceptibilities (upper in-
set) of a PZT/NFO film composite annealed for 12 hours at 4800C
in an in- and out-of- plane, red and black line, respectively. The
inset on the lower right indicates the placement of the electrodes
used to apply the electric field.
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sample. The electric 
Figure 3. left, schematic of an electroded [PS(PZT)]65-block-
[PEO(CFO)]35 sample. The electric field E1 was applied at the
electrodes marked ”+” and ”−”. Right, ferromagnetic and ME
characteristics of the hexagonal CFO cylinder array embedded in
the PZT matrix magnetized parallel and perpendicularly to their
axes, H3, red, and H1, black, and, with an applied magnetic, H3

plus electric field, E1, blue. The permeability of the nanostructure
can be changed by the application of an electric field. The ratio
of the initial permeabilities, µ(H3)/µ(H3 + E1) ≈ 500% .

The magnetoelectric (ME) composite shown at the center of Fig. 1 was syn-
thesized using coassembly of two inorganic precursors with a block copolymer.
This solution processed material consists of hexagonally arranged ferromagnetic
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cobalt ferrite (CoFe2O4 , CFO) nano cylinders within a matrix of ferroelectric lead
zirconium titanate (Pb1.1Zr0.53Ti0.47O3, PZT) when thin films were prepared by
spin coating. The initial magnetic permeability of the self-assembled CFO/PZT
nanocomposite changes by a factor of 5 by the application of 2.5 V, see Fig. 3.
Hence, a block copolymer can be used to simultaneously template two inorganic
phases to form a nanoscale composite [2].
The spinel-perovskite BaTiO3-CoFe2O4 nanolamellar bicrystal shown at the bot-
tom center of Fig. 1 was also fabricated using sol/gel techniques. (1 − 10) in-
terfaces join the BaTiO3 and CoFe2O4 single crystalline periodically arranged
lamellae that have a common [111] direction. The superlattice of approximately 2
nm wavelength is magnetoelectric with a frequency dependent coupling coefficient
of 20mV/Oe cm at 100Hz, see Fig. 4, which is the largest currently known in a
crystal at room temperature. The BaTiO3 component is a ferroelectric relaxor
with a Vogel-Fulcher temperature of 311 K. The relaxor behavior gives rise to a
magnetic tunability of the relative dielectric constant < ǫr >

−1 dǫr/dH ≈ 10−2.
Since the material can be produced by standard ceramic processing methods, the
discovery represents great potential for magnetoelectric devices [3].
Electric and magnetic fields have drastic effects on the formation of amphiphyli-
cally doped magnetoelectric diblock copolymer nanostructures. Perfectly long
range ordered lamellar structures are formed when [PS(PZT)]50-block-[PEO(CFO)]50
is formed in an electric field while onion-like structures are formed when a magnetic
field is applied. The electrically induced order is facilitated by the large difference
in the dielectric constants of the magnetically and electrically doped blocks. A
Lorentz force is likely responsible for the magnetically induced onion structure [4].

Figure 4. Magnetic properties of a [BaTiO3]50 − [CoFe2O4]50
Bi-Crystal.
Left, room temperature magnetic hysteresis loop;
Right, magnetoelectric coupling constant, αME , determined with
a magnetic AC field of 100Hz as a function of the normalized
magnetic bias field, the maximum occurs at a bias field of 10 Oe.
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How many conditions are there on a phase boundary

Yury Grabovsky and Lev Truskinovsky

1. General theory

Consider strong local minimizers of

E(y) =

∫

Ω

W (∇y)dx−
∫

∂Ω

(t,y)dS(x).

where W : R
m×d → R is smooth and highly non-convex energy density. The

specific boundary conditions will be of no importance for the purposes of this
talk. In the absence of quasiconvexity the existence of global minimizers is not
assured and it is possible that no strong local minimizers exist as well. However,
the mechanics literature is full of examples of equilibrium configurations featuring
smooth surfaces of strain discontinuity Σ (e.g. [2, 3, 4, 5, 10, 12, 13] and the
references therein). In other words for every x0 ∈ Σ

(1) lim
ǫ→0

F (x0 + ǫz) = F (z) =

{
F+, if z · n > 0,
F−, if z · n < 0.

Classical jump conditions that consist of kinematic compatibility

(2) [[F ]] = a⊗ n,

where [[F ]] = F+ − F−, continuity of tractions

(3) [[P ]]n = 0,

where P =WF is the Piola-Kirchhoff stress tensor, and the Maxwell relation [1, 9]

(4) [[W ]]− ({{P }}, [[F ]]) = 0,

where {{P }} = (P+ + P−)/2 are well-known restrictions on the values F± defined
in (1). But is this the complete list? Let us examine the jump conditions from the
geometric point of view.

Definition 1. The set of matrices F− ∈ R
m×d such that there exists a counterpart

F+ satisfying the classical jump conditions is called the Maxwell set M.
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There are 2md+m+ d− 1 unknowns F+, F−, a, n in md +m+ 1 equations
(2)–(4). Hence, if one fixes F− ∈ M there will be a d− 2-parametric family of F+

satisfying all jump conditions. In other words, For F− ∈ M we can construct a
d− 2-parametric family of configurations of the type

−F

−F

+F

n

Observations suggest that such solutions exist only for special values of F− and
when they do exist they do not appear as a continuous family. Therefore, some
jump conditions appear to be missing. The new condition is very simple

(5) [[P ]]T [[F ]]n = 0.

It appeared before in special cases in the works of Gurtin [7] Silling [15] and Šilhavý
[14].

If the continuity of tractions (3) expresses equilibrium with respect to perturba-
tions of deformation, keeping the surface of discontinuity immobile in Lagrangian
coordinates, the Maxwell condition expresses equilibrium with respect to smooth
perturbations of the shape of the surface Σ, the new condition expresses equi-
librium with respect to the roughening of Σ schematically depicted in the figure
below

n~

δ >>h
F+

F−
h

n

We refer to [6] for the formal proof. Condition (5) leads to the notion of the jump
set.

Definition 2. The set of matrices F− ∈ M such that there exists a counterpart
F+ satisfying the classical jump conditions and [[P ]]Ta = 0 is called the jump set
J

The jump set and the Maxwell set are related geometrically.

Theorem 1. If the acoustic tensor is non-singular then ∂M ⊂ J.

Proof. Suppose (F0,a0,n0) is a solution. Solve WF (F +a⊗n)n−WF (F )n = 0
for a near (F0,a0,n0)

p∗(F ,n) =W (F + a⊗ n)−W (F )− (WF (F )a,n)

p∗(F ,n) = 0 has a solution n for all F ≈ F0 if there is ṅ ⊥ n s.t. ṗ∗ = 0.

ṗ∗ = ([[P ]]Ta0, ṅ) + ([[P ]]n0, ȧ) = ([[P ]]Ta0, ṅ).

�
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Now we can answer the question in the title of the paper. As before we have
2md + m + d − 1 unknowns F+, F−, a, n and md + m + d equations (2)–(5).
Indeed, the vanishing of the dot product of the left-hand side of (5) with n is the
well-known Hill orthogonality relation [8]. Hence out of the d equations (5) no
more than d− 1 can be independent. The examples in the next section show that
the jump set is indeed md− 1-dimensional, indicating that the d− 1 equations in
(5) are indeed independent. We conclude that the set of admissible pairs F± at
the interface is a md− 1-parametric family parameterized by F− ∈ J.

2. Examples

Our first example is antiplane shear. This example was studied by Silling [15],
who computed the jump set and used to show non-existence of classical solutions
to certain boundary value problems. Consider the energy density

W : R2 → R, W (F ) = min{1
2
µ+|F |2 + w+,

1

2
µ−|F |2 + w−},

where µ+ > µ− > 0 — shear moduli of the phases, w+ < w−. The Maxwell set
and the jump set are shown in the figure below.

F − plane

domain

Jump set

Maxwell set

Convexity
rank−one
connections

The second example is plane elasticity with the energy density given by

Ŵ (ε) = min{1
2
(C+(ε− ε◦+), ε− ε◦+) + ŵ+,

1

2
(C−(ε− ε◦−), ε− ε◦−) + ŵ−}

If [[C]] is invertible, the energy density can be simplified to

W (ε) = min{1
2
(C+ε, ε) + ŵ+,

1

2
(C−ε, ε) + ŵ−}

via a simple affine transformation (see for instance [11])

Ŵ (ε) =W (ε− ε) + (σ◦, ε)− 1

2
(σ◦, ε),

where

ε = [[C]]−1[[Cε◦]], σ◦ = {{C}}ε− {{Cε◦}} = C±(ε− ε◦±),

w± = ŵ± − 1

2
(σ◦, ε◦±).

Assuming that C+ > C− and isotropic we obtain the following picture of the jump
set and the Maxwell set
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The left figure corresponds to the positive definite case and the left figure to
the elliptic, non positive definite case. The picture is drawn in the (X,Y )-plane,
where

X =
ε1 + ε2√

2
, Y =

ε2 − ε1√
2

,

since the membership in M and J depend only on the eigenvalues ε1 and ε2 of
ε = (F + F T )/2. The blue color corresponds to ε− and the red to ε+, where it
is assumed that C+ > C−. If in the case of the antiplane shear the jump set was
exactly the boundary of the Maxwell set, then in the case of plane strain elasticity
the inclusion ∂M ⊂ J is strict.
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Sub-linear scaling methods for electronic structure computations in
materials

Carlos J. Garćıa-Cervera

(joint work with Jianfeng Lu, Weinan E)

We discuss the class of sub-linear scaling algorithms for analyzing the electronic
structure of crystalline solids with isolated defects introduced in [1], in the context
of Kohn-Sham Density-Functional Theory (DFT) [2].

1. Kohn-Sham DFT

The rescaled energy functional for the Kohn-Sham density functional theory
model is [2]

(1) Iε({ψk}) =
ε2

2

∑

k

∫

R3

|∇ψk(y)|2 dy +
∫

R3

ǫxc(ε
3ρ)ρ(y) dy

+
ε

2

∫∫

R3×R3

(ρ−m)(y)(ρ−m)(y′)

|y − y′| dy dy′,

where the wave functions {ψj} are orthogonal. The electron density is defined
as ρ(x) = 2

∑
j |ψj(x)|2, and ε is a dimensionless interatomic lengthscale. In (1)

we have adopted the local density approximation for the exchange and correlation
energy [2]. The ionic function m defines the molecular environment. For simplicity
of presentation the nonlocal pseudopotential is not included here. Similar results
can be obtained when it is included.

The associated Euler-Lagrange equations are

(2) −ε
2

2
∆ψk + Vxc(ε

3ρ)ψk − φψk +
∑

k′

λkk′ψk′ = 0; −∆φ = 4πε(m− ρ).

Here the λ’s are the Lagrange multipliers for the orthonormality constraints, φ
is the Coulombic potential generated by the charge distribution of electrons and
ions, and Vxc(ε

3ρ) = ǫxc(ε
3ρ) + ǫ′xc(ε

3ρ)ε3ρ.
The wave functions {ψk} are far from being unique. We will assume that the

collection of {ψk} can be chosen as {ψα(yi, (x − xi)/ε)}, where α, which ranges
from 1 to n0/2, is the index for the occupied states. ψα(y, ·) is localized at 0, i.e.,
it decays away from the origin. Thus ψα(yi, (x− xi)/ε) is localized at the atomic
position xi. If the system is in equilibrium or under homogeneous deformation,
{ψα(yi, (x − xi)/ε)} can be chosen as the well-known Wannier function [3] of the
α-th energy band centered at xi.

We take the following ansatz:

(3) ψα(y, z) =
1

ε3/2
ψα,0(y, z) +

1

ε1/2
ψα,1(y, z) + ε1/2ψα,2(y, z) + · · · .

As discussed above, ψα(y, z) decays when z becomes large, ρ(y, z) and φ(y, z) are
periodic in z. In the limit as ε → 0, by the decay property, we obtain, at leading
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order ρ0(y, z) = 2
∑
α

∑
zj∈L

|ψα,0(y, z − zj)|2. Similarly, for the orthonormality

constraint, we have

(4)

∫

R3

ψ∗
α,0(y, z − zi)ψα′,0(y, z − zj) dz = δαα′δij/ det((I +∇u)(x)),

with (I +∇u)(x) the local deformation gradient. Taking these into consideration
and expanding the Euler-Lagrange equations, we get the leading order equations:

− 1

2
∆x

2ψα,0(y, z) + Vxc(ρ0)ψα,0(y, z)− φ0(y, z)ψα,0(y, z)

+
∑

α′,zj∈L

λαα′,zj0ψα′,0(y, z − zj) = 0;(5)

−∆x
2φ0(y, z) = 4π(m0 − ρ0)(y, z).(6)

Here the λ’s are Lagrange multipliers. Higher order equations can also be obtained
[1]. Notice that the problem becomes effectively local, which means that the local
electronic structure at different macro-scale locations are essentially independent
of each other and can be solved independently [4, 1].

2. Sublinear scaling algorithm

We divide the localized orbitals of the electrons into two sets: One set associated
with the atoms in the region where the deformation of the material is smooth
(smooth region), and other set associated with the atoms around the defects (non-
smooth region). The orbitals associated with atoms in the smooth region can be
approximated accurately using asymptotic analysis. The results can then be used
in the original formulation to find the orbitals in the non-smooth region.

Let K, Ks and Kns denote the collection of indices for the wave functions
associated with the whole domain, atoms in the smooth region and atoms in the
non-smooth region respectively. Note that K = Ks ∪Kns, and Ks ∩Kns = ∅. As
before, the electronic structure in the non-smooth region is solved by minimizing
the original energy functional, but with the orbitals associated with the atoms in
the smooth region already given:

(7) inf
{ψk}k∈Kns

1

2

∑

k∈K

∑

j∈K

(∫

R3

(∇ψk)T(S−1)kj∇ψj dy

+

∫

R3

ǫxc(ρ)ρ(y) dy +
1

2

∫∫

R3×R3

(ρ−m)(y)(ρ−m)(y′)

|y − y′| dy dy′

Here, we have adopted the non-orthogonal formulation [5, 6], so that ρ is defined
as

(8) ρ(y) = 2
∑

ij

ψi(y)(S
−1)ijψj(y).

The problem is to determine the electronic structure for the non-smooth region
given the environment of the smooth region, i.e. given {ψk}k∈Ks , we need to find
{ψk}k∈Kns .
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We define an environment region, with indices Kenv ⊂ Ks. This environment
region contains the indices of the wave functions that overlap with the non-smooth
region. Due to the localization of the orbitals, we can approximate the density by

(9) ρns(y) = 2
∑

i,j∈Kns∪Kenv

ψi(S̃
−1)ijψj(y), y ∈ Ωns,

where we have truncated the overlap matrix, and only consider the wave functions
in the non-smooth region, and the environment region:

(10) S̃ij =

∫

R3

ψi(y)ψj(y) dy, i, j ∈ Kns ∪Kenv.

Let y(Ω′
ns) be a domain that contains the support of the orbitals associated with

atoms in the non-smooth region. The functional in (7) can now be simplified to:

(11)

inf
{ψk}k∈Kns

1

2

∑

k∈K

∑

j∈K

(∫

R3

(∇ψk)T(S−1)kj∇ψj dy +
∫

R3

(Vpsψk)(S
−1)kjψj dy

)

+

∫

y(Ω′
ns)

ǫxc(ρ)ρ(y) dy +
1

2

∫∫

y(Ω′
ns)×R3

(ρ−m)(y)(ρ−m)(y′)

|y − y′| dy dy′

There are several interaction terms that have to be considered. The first is the
the Coulomb term. This situation is identical to the TFW case, and we treat the
long range interactions (like the nonlocal pseudopotential) in the same way. Other
than these long range interactions, the overlap between the wave functions in the
smooth region and the wave functions in the non-smooth region also needs to be
taken into consideration. It may seem at a first sight that to evaluate (11), for
terms like ∫

R3

(∇ψk)T(S−1)kj∇ψj dy,
all the wave functions should be included, which will make the calculation impossi-
ble. Fortunately, since we are working with localized wave functions, only a small
number of wave functions in the smooth region need to be taken into account.
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Force-based atomistic/continuum hybrid models

Christoph Ortner

(joint work with Matthew Dobson, Mitchell Luskin, Endre Süli)

The motivation for multiphysics coupling methods is that the accuracy of a
fine scale model is often only needed in localized regions of the computational
domain, but only through a course-grained model can the simulation of large
enough systems to include long-range effects be achieved. Despite several creative
attempts [1, 2], significant obstacles remain to the development of efficient and
accurate hybrid coupling energies. The force-based approach has become very
popular because it provides a simple and efficient method for coupling two physics
models without the development of a consistent coupling energy: the equilibrium
equations at each degree of freedom are obtained from one of the physics models.

In this talk, which is based on the preprints [3, 4], and on ongoing work with E.
Süli [6], I discuss the unusual stability properties of the force-based quasicontinuum
(QCF) approximation, in the simplest possible setting.

Consider a simple atomistic energy functional

E(y) = ε

N∑

ℓ=−N+1

[
φ(y′ℓ) + φ(y′ℓ + y′ℓ+1)− fℓyℓ

]
,

where the displacement u = y − x (x = (xℓ) = (εℓ)) is 2N -periodic and has zero
mean, ε = 1/N , and y′ℓ = ε−1(yℓ − yℓ−1). The local QC approximation of E is the
short-ranged functional

Ec(y) = ε

N∑

ℓ=−N+1

[
φ(y′ℓ) + φ(2y′ℓ)− fℓyℓ

]
.

Thus, a non-local second neighbour interaction is replaced by a local nearest-
neighbour interaction, which subsequently makes it possible to remove degrees of
freedom for an efficient computational algorithm.

The QCF operator is defined as

Fℓ(y) =
{
− 1
ε
∂E(y)
∂yℓ

, ℓ = −K, . . . ,K,
− 1
ε
∂Ec(y)
∂yℓ

, otherwise,

where the index set {−K, . . . ,K} is the atomistic region. A linearization about
the reference state x leads to the linear system

Lu = f,

where

(Lu)ℓ = φ′′(1)
−uℓ+1 + 2uℓ − uℓ−1

ε2
+ 4φ′′(2)

{
−uℓ+2+2uℓ−uℓ−2

4ε2 , ℓ = −K, . . . ,K,
−uℓ+1+2uℓ−uℓ−1

ε2 , otherwise.

The linearized QCF operator L, especially its stability properties, was the subject
of detailed studies in [3, 4].
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We begin by noting that the hessians of E and Ec at the reference state x are
positive definite, uniformly as N → ∞, if and only if φ′′(1) + 4φ′′(2) > 0. Thus,
the natural question is whether the QCF operator inherits this property. The
answer is unfortunately negatory. As a matter of fact, it is shown in [3, 4] that, if
φ′′(2) 6= 0, then

inf
‖u′‖ℓ2ε

=1
〈Lu, u〉 ∼ −N1/2 as N → ∞.

Moreover, if we try to directly establish operator stability of L in discrete Sobolev
spaces Uk,p, which are natural variants of the usual Sobolev spaces W k,p, then we
find that

‖L‖L(U1,p,U−1,p) ∼ N1/p as N → ∞,

that is, L is not uniformly stable in U1,p, in the system size. These results warrant
significant doubt regarding the stability and accuracy of the QCF method, and
they pose particular challenges for the development of iterative solution methods
[5].

While we were able to prove stronger stability results in the spaces U1,∞ and
U2,∞, leading to optimal error estimates, due to the nature of these spaces, it is
highly unlikely that results of this type can be generalized to application relevant
2D and 3D models.

In response to this situation, a stabilization procedure for the QCF equations
is proposed in [6]. By identifying the precise origin of the instability, a variational
variant of the QCF equations,

〈Lsu, v〉 := 〈Lu, v〉+ αε〈u′′, v′′〉I = 〈f, v〉 ∀v,
where α is a stabilization parameter, and 〈·, ·〉I denotes an inner product over
a suitably chosen interface region. For this stabilized method, we obtain the
following result:

inf
‖u′‖ℓ2ε

=1
〈Lsu, v〉 ≥ φ′′(1) + 4φ′′(2)− C

α
.

A generalization of these ideas to fully nonlinear models and higher dimensions is
in progress [6].
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Viscous flow with moving triple point

Hans Knüpfer

(joint work with Nader Masmoudi)

We consider the spreading of a thin-liquid viscous droplet on a plate. At the
triple point where air and liquid meet the solid substrate, the liquid assumes a con-
stant, non–zero contact angle (partial wetting). For the case of a Darcy flow, we
show well–posedness of this free boundary problem describing the evolution of the
free boundary and the velocity of this co–dimension two boundary where air–liquid
and solid intersect. In the limit of thin films, the so called lubrication approxima-
tion regime, we show convergence to the solution of a one-dimensional model, the
so called thin–film equation (TFE). Two–dimensional Darcy flows describe the flow
through porous media and the flow between the plates of a Hele–Shaw cell (the
supporting plate in this case describes a barrier between the plates of the cell).
We also consider the Darcy flow as model problem for the Stokes flow which is
work in progress.

We first introduce the Darcy flow: Consider a fluid described by its velocity
u = (v, w) in Eulerian coordinates. The region occupied by the liquid is described
by its height profile h(t, x). The usual kinetic conditions hold: Mass conservation
∇ · u = 0, the motion of the free boundary equals the normal velocity V of the
liquid. Furthermore, the following dynamic conditions are satisfied: The velocity
is given by the gradient of the pressure p. Furthermore, the pressure equals the
curvature κ at the air–liquid interface. At the moving triple point, the contact
angle is determined by the balance between the surface tension of air, liquid and
solid. We are interested in the case of small contact angles of order ǫ. We get:





u = −∇p, ∇ · u = 0 for 0 < y < h(t, x)

p = κ, V = u · ν for y = h(t, x)

py = 0 for y = 0

hx = ǫ, ṡ(t) = −px at ∂{h > 0} × {0}.
The first lubrication approximation on the basis of formal asymptotics has been
introduced already in 1886 by Reynolds [10]. He formally derives a reduced TFE
from the Stokes flow. The corresponding reduced model for the Darcy flow, the
TFE with linear mobility, is given by

{
ht + (h hxxx)x = 0 in {h > 0}
h = 0, hx = 1, ṡ(t) = hxxx at ∂{h > 0}.

In the following, we present our main results and also give a brief review on related
analysis. We first consider the blow–up situtation near a (say left) moving triple
point. In this case, the initial data approximate the infinite cone with opening
angle ǫ. The problem can then be transformed to a nonlocal evolution equation
on the half-space R+ := [0,∞). The evolution is described in terms of the single
unknown ǫf(t, x) := ∂xh(t, x − s(t)) where s(t) is the movement of the triple
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point. Our analysis is based on weighted Sobolev norms on R+. For every j ∈ N,
let [f ]2W j,β :=

∫∞

0
r2β |∂jxf |2 dx. The solution f is controlled in terms of:

‖f‖Xk
ǫ

:= ‖f‖Xk
ǫ,++ǫkXk

ǫ,−
= inf
f=f−+f+

(
‖f+‖Xk

ǫ,+
+

1

ǫk
‖f−‖Xk

ǫ,−

)
,

where ‖f‖2Xk
ǫ,+

:=

k∑

ℓ=0

[f ]2W 4ℓ,ℓ , ‖f‖2Xk
ǫ,−

:=

k∑

ℓ=0

[f ]2W 3ℓ,0 .

The above norms describe the transition from a operator of third order (Darcy
flow) to a fourth order operator (TFE) in the limit ǫ → 0. Corresponding norms
‖ · ‖Y k for the pressure are also defined. Our first main result is well-posedness
and uniform bounds for the Darcy flow:

Theorem 0.1 (Existence, uniqueness, uniform bounds for Darcy). Let k be suf-
ficiently large. Let ‖f0‖Xk

ǫ
≤ α for some (small) universal α > 0 satisfying some

compatibility condition. Then there is a unique global in time solution f of the
(transformed) Darcy flow with initial data f0. Uniformly in ǫ, we have

∑

i+j=k+1

‖f‖Hi(Xj
ǫ )

≤ Cα ‖f0‖Xk
ǫ
.

The pressure is also uniformly controlled

‖pǫ ◦Ψ‖L2(Y k+1) ≤ Cα ‖f0‖Xk
ǫ
,

where Ψǫ is some uniformly controlled pull–back on the fixed domain.

We only know about one previous result on well–posedness of (non–stationary)
evolution of a fluid on a non–smooth domain. In [2], well–posedness of the Darcy
flow is shown. However, the result is based on stronger regularity assumptions
on the initial data than we need. In particular, their assumptions exclude the
movement of the triple point (and hence propagation of the droplet). Furthermore,
the analysis in [2] does not include uniform bounds in the limit ǫ → 0 and hence
is not suited for the lubrication approximation.

As a consequence of the uniform bounds in Theorem 0.1, we get convergence of
solutions of the Darcy flow to solutions of the TFE. Furthermore, we show that in
the limit, we have p = p(t, x) (independent of the vertical direction):

Theorem 0.2 (Convergence from Darcy to TFE). Suppose that f0 ∈ X
k+1/2
ǫ

satisfies some compatibility condition and ‖f0‖Xk+1/2
ǫ

≤ α for some small universal

α > 0. Then the corresponding solutions fǫ of the (transformed) Darcy flow with
initial data f0 and contact angle ǫ converge to a function f , global solution of the
(transformed) TFE with initial data f0. Furthermore, pǫ → p where p = p(t, x).

We also have corresponding short–time existence and convergence results in the
case of a droplet as initial data. Convergence of the Darcy flow to the TFE in
the framework of weak solutions has been already shown in [1]. The authors show
convergence in the supremum norm to a weak solution of the thin–film equation.
In contrary to our result, the analysis in [1] does not include an existence proof
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for the initial model. Furthermore their solutions are not regular enough to treat
the free boundary explicitly. In particular, their analysis cannot be extended to
the case of non–zero contact angle.

We also prove existence and regularity for classical solutions of the TFE:

Theorem 0.3 (Existence, regularity & uniqueness for TFE). Let k be sufficiently

large. Suppose that f0 ∈ X
k+1/2
0 satisfies some compatibility condition and fur-

thermore ‖f0‖Xk
0
≤ α for some (small) universal α > 0. Then there is a unique

global in time solution f of the (transformed) TFE with initial data f0. We have
∑

i+j=k+1

‖f‖Hi(Xj
0)

≤ Cα ‖f0‖Xk+1/2
0

.

Existence results on the TFE with zero contact angle are well established: Exis-
tence of weak solutions has been shown in [12, 9, 11], uniqueness of weak solutions
is unknown. Existence and uniqueness of classical solutions has been shown in
[8]. All the above results address the case where the liquid attains a zero contact
angle at the triple point. There is only one result for the partial wetting regime
where existence (but not uniqueness) of weak solutions is proved [13]. Hence, this
is the first existence and uniqueness result for classical solutions of the TFE with
non–zero contact angle.
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Influence of driving mechanism on avalanche criticality in first-order
phase transitions

Antoni Planes

(joint work with D. Soto-Parra, E. Vives, L. Mañosa and R. Romero)

Many ferroic and multiferroic materials undergo first-order phase transitions which
occur through a sequence of discontinuous steps or avalanches of the order param-
eter. These avalanches are acknowledged to reflect the fact that, when slowly
driven, these systems relax from a (marginally stable) metastable state towards
another metastable state with associated energy dissipation responsible for hys-
teresis. Usually, since metastable minima are separated by very high energy bar-
riers, the transition kinetics is not dominated by thermal fluctuations (athermal
behaviour). The configuration of metastable minima is determined by the intrinsic
distribution of disorder in the system. This yields a complex free-energy landscape
that is at the origin of the noisy nature of the response to the driving field and
of mesoscale phase separation reflected in a complex multidomain structure [1].
Martensitic materials are typical examples of this class of systems. In these fer-
roelastic materials avalanches are related to sudden changes in the local strain
field which give rise to the emission of high-frequency acoustic waves. This is the
so-called acoustic emission (AE) [2] which is the analogue of Barkhausen noise in
magnetic materials (associated with sudden changes of the local magnetization)
[3]. In addition to magnetic and structural systems, a similar phenomenology has
been reported in systems such as ferroelectrics [4] and superconductors [5, 6]. In
all these materials, the distributions of size and duration of the avalanches often
display power law behaviour which reveals a tendency to reach a critical point
characterized by the absence of size and time scales [7]. Models accounting for
avalanche criticality assume some kind of interplay between disorder and transi-
tion variables and field-driven athermal dynamics. These models can be classified
into the following two general classes [3]; lattice models of the random-field Ising
type and domain wall models. In the former case, nucleation regimes dominate
and critical behaviour requires fine tuning of the amount of disorder. In the sec-
ond class, criticality is related to a pinning-depinning transition and fine tuning of
disorder is not required. Therefore, classical order-disorder criticality is predicted
in the first case, while self-organized criticality is expected to occur in domain wall
models.

The driving mechanism has been argued to strongly influence avalanche criti-
cality. The two important extreme driving situations consist of controlling either
the externally applied field or its corresponding generalized displacement (thermo-
dynamically conjugated variable). In the first case, driving is soft in the sense that
displacement is free to fluctuate, while it is hard in the second case since displace-
ment is constrained by the driving device [8, 9, 10]. Recently, this problem has
been theoretically addressed by Pérez-Reche et al. [11] who predicted a crossover
from classical to self-organized criticality when moving from soft- to hard-driving.
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From an experimental point of view, reliable control of the generalized displace-
ment (i.e., magnetization in magnetic systems or polarization in ferroelectrics)
in the transition region where systems display non-linear behaviour is difficult.
Commonly, the field is the variable which is easy to control (soft-driving), while
it is difficult to induce the transition by controlling the corresponding conjugated
displacement (hard-driving), as it needs a complicated feedback mechanism. In
systems undergoing structural transitions, where a component of the strain ten-
sor is the order parameter, the two conjugated variables are strain and stress
which are respectively related to the elongation of the system and the applied
force. Since it is quite easy to control both force and elongation, we have de-
cided to analyse the effect of driving mechanism on avalanche criticality in the
case of a structural transition by comparing results in force-controlled (soft) and
elongation-controlled (hard) conditions. We have used a standard (screw-driven)
tensile machine for hard-driven experiments and a specially designed machine [10]
that enables an increasing/decreasing dead load (force) hanging from the sample
to be controlled for soft-driven experiments. The same sample, grips, strain gauge
and load cell were used in both driving devices. In both cases, avalanches were
quantified from the AE generated during the martensitic transition. The stud-
ied sample was a Cu68.13Zn15.74Al16.13 single crystal that exhibits a cubic (L21)
to monoclinic (18R) transition. The sample has cylindrical heads and a 35 mm
(long) × 1.4 mm × 3.95 mm body. Prior to the sequences of load-unload cycles
performed in soft- and hard-driven modes, an appropriate heat treatment was per-
formed so that the sample was in the ordered state, free from internal stresses and
the vacancy concentration was a minimum at room temperature (clean sample).

The following results were obtained. (i) The distributions of amplitude and
energy of the avalanches show power law behaviour in both soft- and hard-driving
experiments. (ii) In the case of soft-driving, when starting with a clean sample, the
exponents that characterize the amplitude and energy distributions evolves during
transition cycling and tend to stabilize after a given number of cycles (about 7
cycles). (iii) Instead, within the experimental error, no evolution occurs in simi-
lar hard-driven experiments. Since it is well known that disorder (in the form of
dislocations) increases during cycling with a tendency to reach saturation after a
few cycles [12], the evolution of the critical exponents in soft-driven experiments
is consistent with the prediction [11] that fine tuning of the amount of disorder is
needed in order to reach criticality, while it is not needed in hard-driven experi-
ments (where no evolution of the exponents is detected). The fact that exponents
(in the stationary regime) are larger for soft-driving than for hard-driving is also in
agreement with these theoretical predictions. It is worth noticing that quantitative
comparison of experimental exponents with theoretical estimation is difficult since
it is not yet clear what the exact relation is between the energy and amplitude of
AE signals and the energy released, size or duration of the avalanches.
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Elastic free energies, lattice based Hamiltonians, and gradient
Gibbs-Young measures

Stephan Luckhaus

(joint work with R. Kotecký)

The aim is to give a description of elastic behaviour in the framework of positive
temperature equilibrium mechanics. This means that we start from a lattice based
particle model with an interaction potential U that is invariant under rigid mo-
tion. For this potential we define the finite volume Gibbs measure, with clamped
boundary conditions, and under rescaling we look at the two scale limit of this
measure.

In this way we try to capture at the same time the macroscopic behaviour
of the rescaled function and the local picture of relative positions of particles in
the lattice. What results is a gradient Gibbs measure µx,v parametrized over the
macroscopic Lagrangian variable x and the possible macroscopic deformation v.
The possible deformations v are minimizers of a stored energy functional

∫
W (∇v)

which, in statistical mechanics terms, is the large deviation rate functional of the
theory. The expected strain under µx,v is ∇v(x).
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To be more precise, the particle configurations are

X : Zd ∩ 1
ǫΩ → R

m,

the potential is given as

U : (Rm)A → R, where A ⊂ Z
d is finite,

and the Hamiltonian is

H(X |u) =
∑

j∈Zd∩
1
ǫΩ

U(Xu|A+j)

where

Xu(i) =

{
X(i) for ǫi ∈ Ω
1
ǫu(ǫi) otherwise.

The scaling is such that it leaves the gradient invariant, which is the reason why
we end up with the first order elasticity theory.

In this context and supposing, e.g., that U fulfils the assumption

1

c

∑

j : |j|=1

|X(0)−X(j)|p −N ≤ U(XA) ≤ c
∑

j : |j|=1

|X(0)−X(j)|p +N,

we can show that there exists a free energy

−W (L) = lim
ǫ→0

ǫd

β|Ω| log
(∫

exp
{
−βH(X |uL)

} ∏

i∈Zd∩
1
ǫΩ

dX(i)
)
,

where uL(x) = Lx with a linear map L.
If one looks at any reasonable interpolation Πǫ(X) of ǫX(⌊xǫ ⌋), then the two

scale convergence of the measure

µǫ(M) =
1

Z

∫

M

exp
{
−βH(X |u)

} ∏

i∈Zd∩
1
ǫΩ

dX(i),

where Z is the normalising constant, is described via the cylinder test functions

ϕ(X, v, x) = ϕ̃(Xi1 , . . . , Xik , α
(v)
1 , . . . , α

(v)
k , x)

where ϕ̃ is continuous with at most linear growth and α
(v)
ℓ ∈ H−1

p . For these test
functions, one has∫

ϕ(X(·+ ⌊xǫ ⌋),Πǫ(X), x)dµǫ →
∫

C

∫

Ω

∫

(Rm)Zd
ϕ(X, v, x)dµx,v(X)dγ(v)dx.

Here, µx,v is a Gibbs measure (on gradients), γ is a probability measure on the

weakly compact set C = {v ∈ u +
0

H1
p |
∫
W (∇v) = min} (i.e. a Radon measure

on this set equipped with weak topology).
Crucial tools are the following observations:

1. Exponential tightness:

µǫ({X | H(X) > K}) ≤ exp(−cKǫ−d) for K large.
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2. Equivalence of free energies:

lim ǫd log logZ 1
ǫΩ,uL

= lim
κ→0

lim
ǫ→0

ǫd logZ 1
ǫΩ

(Np(uL, κ)),

where ZΛ,uL =
∫
exp(−βH(X |uL))

∏
i∈Λ dX(i), and

ZΛ(Np(uL, κ)) =

∫

Np(uL,κ)

exp(−βH(X))
∏

i∈Λ

dX(i)

with Np(uL, κ) = {X |
∫
|uL−Πǫ(X)|p < κ} (and H(X) =

∑
j+A⊂ 1

ǫΩ
U(X |j+A)).

The second claim is proved via an interpolation lemma for the Gibbs measure
with different boundary conditions.

Challenges in modelling TCP formation in Ni-based superalloys

Ralf Drautz

(joint work with Bernhard Seiser, Thomas Hammerschmidt, David G. Pettifor)

Refractory elements like Re and W are added to Ni-based superalloys to improve
the creep resistance of the alloys. It is observed that too large concentrations
of refractory elements induce the formation of topologically close-packed (TCP)
phases.

The TCP phases destroy the single crystalline lattice of the Ni-based superalloys
and are detrimental to the mechanical properties of the alloy. Empirical models
that aim to predict the formation of TCP phases as a function of the average
valence electron count are found to be not reliable.

We use analytic bond-order potentials [1] to predict the stability of TCP phases.
The bond-order potentials are derived through coarse-graining the electronic struc-
ture at two levels of approximation. First, the Kohn-Sham equations of density-
functional theory are simplified to the tight-binding bond model by using a mini-
mal basis set of atomic-like orbitals and by parametizing the Hamiltonian matrix-
elements using analytic functions and the two-centre approximation. The total
energy within density-functional theory is further approximated by its second-
order expansion with respect to charge fluctuations.

Second, using the moments theorem that relates the crystal structure to the
electronic density of states, analytic interatomic bond-order potentials are ob-
tained by expanding the density of states in terms of response functions that only
depend on the Fermi energy and moments of the density of states that are given
as functions of the local atomic environment.

With the help of the analytic bond-order potentials the structural stability of
TCP phases is then characterized as a function of the number of valence electrons
and the lattice structure. For example, at the fourth moment level we observe a
distinct separation of the TCP phases in two groups, (σ, A15, χ) and (µ, Laves
phases). The µ phase and the Laves phases are stabilized by the size differences
of the constituent atoms, while the A15, σ and χ phases are stablilized by the
average electron count even if the constituent atoms are of similiar size.
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Based on the analysis of the stability of the TCP phases as a function of size
difference and valence electron count, we propose a new, 2-dimensional structure
map. We hope that the new structure map will be useful for alloy developers for
guiding the design of new alloys.
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Domain boundary engineering

Ekhard Salje

We review the idea that domain boundaries, rather than domains, can carry infor-
mation and act as memory devices. Domains are bulk objects; their large response
to changing external fields is related to their change in volume, which implies the
movement of domain boundaries. In many cases, the design of ’optimal’ domain
structures corresponds to ’optimal’ domain boundaries with parameters such as
the domain boundary mobility, pinning properties and the formation of specific
boundaries such as curved boundaries or needle domains. This argument is en-
hanced further in this review: domain boundaries themselves can host properties
which are absent in the bulk, they can be multiferroic, superor semi-conductors
while the matrix shows none of these properties. It is agued that multiferroic walls
can be described formally as chiral whereby the chirality relates to state-vectors
such as polarisation and magnetic moment and their (non-linear) coupling. Once
such walls can be generated reliably, a new generation of devices with much higher
storage density than ever produced before can be envisaged.
Before we investigate the intrinsic changes of the crystal structure inside twin
walls, we focus on their chemical modifications. Chemical transport along twin
walls and grain boundaries is well understood to be different from that of the bulk.
In general, transport is faster along twin walls (or grain boundaries) so that any
modification of the twin wall composition is relatively easily achieved when the
sample is exposed to external chemical agents. These can then diffuse and equi-
librate along the walls while the bulk remains relatively unaffected. In material
sciences of ferroic materials we have examples where small amounts of Na were
injected into WO3. As a result, the composition of the twin walls changed from
WO3 to NaxWO3 or WO3−x which are for certain values of x superconducting
phases. Indeed, these twin walls became superconducting while the bulk remained
an insulator.
It is important to note that transport can also be reduced in twin walls for spe-
cific materials. Such a case is related to the transport of Na and Li through
a quartz crystal with {100} Dauphine twinning. Computer simulation showed
that the transport rate along the twin walls was reduced for the [0 0 1] channels.
This effect is related to the local structure of quartz at the twin boundary; struc-
tural continuity across the twin boundary requires that the [0 0 1] channels are
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more distorted in the twin wall than in the bulk material while the volume of the
channels increases. This increase goes together with a decrease of the minimum
diameter of the channels which, ultimately, limits the transport. The probably
most common doping in perovskite oxides relates to oxygen vacancies. Significant
pinning of the movement of twin boundaries by oxygen vacancies occurs in poly-
crystalline Ca1−xSrxTiO3 and LaAlO3 single crystals. The activation energy for
domain wall motion (determined from the temperature and frequency dependence
of the storage modulus and loss tangent), is of the order of 0.88−1.09 eV, which is
comparable with the activation energy for O-atom diffusion through a perovskite
structure. The accumulation of defects influences the thickness of the domain.
Before we discuss the modification of twin walls when two order parameters in-
teract, we recur to a recent study Goncalves-Ferreira et al. [1]. These authors
explored the idea that all TiO6-based perovskite structure may have a tendency
to possess polar walls even when the bulk of the material is non-polar. The funda-
mental idea relates simply to the instability of Ti inside any oxygen octahedron of
sufficient size to remain in the centre of the octahedron. It is easy to visualise that
an energy minimum exists in such structures in which Ti forms bonds with a subset
of oxygen atoms at the expense of the remaining atoms. If Ti forms a bond with
one oxygen atom the octahedron suffers tetragonal deformation. Equivalently,
bonding with 2 (3) oxygen would lead to an orthorhombic (trigonal) deformation.
In a structure this tendency can be compensated by the next nearest neighbour
interactions and, while the details of the force balance for Ti can be complex, it
may lead to a high symmetry phase at high temperatures.

In domain walls, on the other hand, such constraints are limited because the
local symmetry is broken anyway and new secondary order parameters become
possible. This scenario goes beyond the order parameter/strain coupling as dis-
cussed so far and requires two structural instabilities which couple according to
their respective symmetry rules. This coupling is best visualised in the so-called
order parameter vector space which has been used for several cases. A convenient
way to depicture such mixed state of multiferroics or degenerate order parameter
is to construct the order parameter vector space [2]. In this construction, each
state parameter defines a subspace of dimension n (the degeneracy of the order
parameter, i.e. the dimensionality of the active representation) in which this state
is described. Fig.2 (below) shows results of numerical studies of the off-centering
of Ti in octahedral coordination from the centre of symmetry and the compress-
ibility of the unit cell as represented by the distance between two Ti positions.
The lower curve represents the bulk, the upper curve shows the domain wall. The
domain wall is widenend with larger units cells and slightly more compressible.
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Figure 1. Resistivity of a twinned crystal of WO3 as measured
along a twin wall over an extended temperature interval. The
onset of superconductivity in the walls is at 3.2 K. The mag-
netic fields are 0T (crosses), 6T (open squares) and 13T (filled
diamonds). The inset shows the temperature dependence of Hc2.

Finite temperature coarse-graining of atomistic models: some simple
cases

Frédéric Legoll

(joint work with Xavier Blanc, Claude Le Bris and Carsten Patz)

In this work, we consider atomistic models for materials at constant finite tem-
perature, in a one-dimensional setting. Our aim is to derive a reduced model
providing the macroscopic constitutive law relating strain and stress. Building on
standard asymptotic tools of probability (such as Large Deviations Principles), we
design an efficient, and apparently new, computational strategy.

Consider an atomistic system consisting of N particles, at positions X =(
X1, . . . , XN

)
∈ R

N . Provide this system with an energy V (X) = V
(
X1, . . . , XN

)

and allow the particles to sample R. The finite temperature thermodynamical
properties of the material are obtained from canonical ensemble averages,

(1) 〈Φ〉 =

∫

RN

Φ(X) exp(−βV (X)) dX
∫

RN

exp(−βV (X)) dX

,

where Φ is the observable of interest and β is proportional to the inverse temper-
ature. Computing such canonical averages is a standard task of computational
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Figure 2.

materials science. Of course, the major difficulty comes from the N -fold integral,
where N , the number of particles, is extremely large. One possible method is to
compute (1) as a long-time average

(2) 〈Φ〉 = lim
T→+∞

1

T

∫ T

0

Φ(Xt) dt

along the trajectory generated by the stochastic differential equation

(3) dXt = −∇V (Xt) dt+
√
2β−1 dWt,

where Wt is a standard N -dimensional Brownian motion.
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It turns out that the derivation of macroscopic constitutive laws is closely related
to a seemingly different question, that we describe now. Assume that, in (1),
observables of interest do not depend on the positions of all the atoms, but only
on some of them (for instance, because these atoms are located in a region of
interest, where some particular phenomenon occurs). We assume that this set of
interesting atoms (also called repatoms) is given a priori, and we denote by Xr

their positions. We hence write

X =
(
X1, . . . , XN

)
= (Xr, Xc), Xr ∈ R

Nr , Xc ∈ R
Nc , N = Nr +Nc,

and our aim is to compute (1) for such observables, that is

(4) 〈Φ〉 = Z−1

∫

RN

Φ(Xr) exp(−βV (X)) dX

where Z =

∫

RN

exp(−βV (X)) dX, by a cheaper method than (2)-(3).

Another question of interest concerns the free energy of the reduced system,

A(Xr) = − 1

β
ln

∫

RNc

exp(−βV (Xr, Xc)) dXc.

When Nc → +∞, this energy diverges. The meaningful quantity is the free energy
per (removed) particle, A(Xr)/Nc. Can this quantity be efficiently computed, in
the limit Nc → +∞?

In [1], we have addressed these questions using a thermodynamic limit approach
(that is, we consider the limit Nc → +∞), and we have outlined their link with
the derivation of a macroscopic strain-stress relation. We consider the case of
next-to-nearest-neighbour interactions:

(5) V (X) =

N−1∑

i=0

U1

(
X i+1 −X i

h

)
+

N−2∑

i=0

U2

(
X i+2 −X i

h

)
,

where we have rescaled all distances by h = 1/N . Here, we focus on the case of a
unique repatom, namely the last atom of the chain (generalization to the case of
several repatoms is easy). To remove translation invariance, we set X0 = 0.

In that setting, the average (4) reads

(6) 〈Φ〉N = Z−1

∫

RN

Φ(XN ) exp(−βV (X)) dX,

and it turns out that it can be recast as an expectation value:

〈Φ〉N = E

[
Φ

(
1

N

N∑

i=1

Yi

)]

for random variables Yi that are a realization of a Markov chain. Hence, using a
Law of Large Numbers argument, we can compute a good approximation of the
average (6), in the limit N → ∞. In the specific case when Φ(XN) = XN , the
quantity (6) is nothing else than the macroscopic elongation of the chain (i.e.
strain) for stress-free boundary conditions.
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Assume now that, instead of prescribing stress-free boundary conditions, we
prescribe the microscopic strain ℓ (i.e. the elongation of the chain), and that we
wish to compute the macroscopic stress. Since this setting is technically more
involved than the previous one, we restrict ourselves here to the simple case of
nearest-neighbour interactions (U2 ≡ 0 in (5)). For a chain of N atoms, the
macroscopic stress is the canonical average of the force between two consecutive
atoms:

σN (ℓ) =

∫

RN−1

U ′
1

(
X i+1 −X i

h

)
dµℓ(X) =

∫

RN−1

U ′
1

(
ℓ−XN−1

h

)
dµℓ(X),

where

dµℓ(X) = Z−1
ℓ exp

(
−βV

(
X1, . . . , XN−1, ℓ

))
dX1 . . . dXN−1

is the canonical measure associated to the system with fixed XN = ℓ, and where
Zℓ is a normalizing constant. We observe here that σN (ℓ) = A′

N (ℓ), where AN is
the free energy per removed particle:

AN (XN) = − 1

Nβ
ln

∫

RN−1

exp(−βV (X1, . . . , XN)) dX1 . . . dXN−1.

Limits of free energies can be handled with classical Large Deviations arguments.
We obtain the limit, when N → ∞, of AN and hence of σN , in a closed form
amenable to numerical computations.

Note that only the structure of the physical system actually needs to be one-
dimensional: the space in which the atoms vary may be R

d, d ≥ 1. Our strategy
hence applies to chain-like systems, such as polymers.

Such an approach may also be considered as a first step toward the numerical
analysis of methods commonly used in practice [2], and the assessment of the
simplifying assumptions upon which they rely.
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Selection in Models for Stage Structured Populations. Example:
Alignment.

Angela Stevens

(joint work with Kyungkeun Kang, Benoit Perthame, Ivano Primi, Juan J.L.
Velázquez)
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1. Introduction

Age structured population models are long established in epidemiology. Often,
age and time dynamics are analyzed, less often also space dependencies. We
want to explore, if the basic type of mathematical model for stage/age structured
populations is also suitable to describe processes of cell differentiation. So far, cell
differentiation is mostly modeled hierarchically, e.g. first one ’species’ of cells is
described and analyzed, then a model for two ’species’ is taken into account.

Usually cells vary concerning a specific cellular function e.g. in the develop-
mental cell cycle of the cellular slime mold Dictyostelium discoideum. During
so-called mound formation, chemotactically more active cells can be found at the
top of the mound and chemotactically less active cells at the bottom. Later, these
differentially sorted cells differentiate into two cell types, pre-stalk and pre-spore
cells.

We suggest the following modeling ansatz. Describe the variability w.r.t. a
specific cellular function via a stage parameter, similar to the age parameter in
epidemiological models. If the process of cell differentiation is related to this
cellular function, then the long time dynamics of the model should select for a finite
number of stages from the initial continuum of stages. Thus pre-differentiation can
take place.

2. An Example

To get a first insight into the suggested mathematical approach we consider the spe-
cific problem of angular alignment of cells and filaments. Examples are myxobac-
teria and actin filaments. Experimentally the formation of oriented aggregates is
observed: for myxobacteria a quasi one-dimensional parallel alignment, [1], and
for filaments within the cytoskeleton several oriented bundles. Here, in a first step,
we do not focus on problems of cell differentiation, but rather on a phenomenon,
where a model with a continuum of stage parameters – here orientation – shows a
finite number of stages as long time dynamics. We also want to understand, how
orientational aggregation and the final number of oriented bundles depend on the
details of cellular interaction.

3. The Model Equations

We consider

∂tf(t, γ) = −
∫
I
T [f ](γ, γ′)f(t, γ)dγ′ +

∫
I
T [f ](γ′, γ)f(t, γ′)dγ′

where T [f ](γ, γ′) =
∫
I
Gσ(γ

′ − γ − V (w − γ))f(t, w)dw with I = [− 1
2 ,

1
2 ]. Here V

is the orientational angle, an odd function and 1-periodic, and Gσ measures the
accuracy of reorientation and can be chosen as the standard periodic Gaussian.

Bundles of cells or filaments attract each other if they are close in orien-
tation. Depending on the initial distribution, one, two or multiple peaks de-
velop. The shorter the range of optimal turning is, the more likely is the de-
velopment of many peaks. An example for a k-directional orientational angle is
V (θ) > 0 in (0, 1/2k), V (θ) = 0 in [1/2k, 1/2].
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In the case of myxobacteria if the angle between bacteria is small, they at-
tract each other. If the angle between myxobacteria is larger, they act repulsive,
respectively they are attracted to the ends of their interaction partners.

4. Peak Solutions for the Limiting Equation

Consider Gσ with σ = 0, the Dirac mass δ0, which describes deterministic turn-
ing. Convergence of solutions of our equation for Gσ to solutions for δ0, for σ
small enough, was proved by E. Geigant, [2]. Consider a first simple setting for
uni-directional alignment: Assume the above mentioned conditions for V and let
suppf0 = A1 with e.g. A1 = (−1/4, 1/4). Then the first moment of f is preserved

∫

I

γf(t, γ)dγ =

∫

I

γf(0, γ)dγ .

The mean of the first moment is

ξ =

∫
I
γf(t, γ)dγ∫
I
f(t, γ)dγ

,

and the following general types of second moments of f are decreasing in time

d

dt

∫

I

(γ − ξ)2f(t, γ)dγ ≤ 0 .

Equality only holds in case f(t, γ) = mδ{γ=ξ}. For continuously varying initial
distributions an exchange of mass and generalized momenta takes place and the
arguments get more involved. In case of attractive and repulsive optimal orienta-
tion one has to define suitable partial masses m1(t),m2(t) as well as ξ1(t), ξ2(t).
In [3] it could be proved for initially two slightly asymmetric oriented peaks, that

two oriented peaks develop at two exactly opposite orientations ξ̃1, ξ̃2 as long time
dynamics. Their final masses m̃1, m̃2 can be different. The initial peaks may dif-
fer in size but should both be of higher order of magnitude than the rest of the
initial distribution. So we obtained local stability for alignment into two opposite
directions, but no selection of mass.

In [4] we had a closer look at the case σ > 0. If the orientation angle V is very
small the kinetic equation can be approximated by

∂tf =
σ2m

2
∂xxf + ∂x

(
f(x)

∫

I

V (x − y)f(y)dy

)
.

We are interested in the steady states. An equivalent formulation for these is

σ2

2
∂xf(x) + f(x)

∫

I

V (x− y)f(y)dy = 0

∫

I

f(x)dx = 1 and f(x+ 1) = f(x) .
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5. Heuristics for the Selection Mechanism

Let σ = 0, then the above equation reduces to

f(x)

∫

I

V (x− y)f(y)dy = 0 .

Any function of the form f(x) = αδ0(x) + βδ0(x − 1
2 ) is a solution, for arbitrary

choice of α, β. For σ > 0 this is not the case. Suppose fσ → αδ0(x) + βδ 1
2
(x) for

σ → 0. For σ << 1, fσ can then be approximated by the solution of

σ2

2
∂xf(x) + f(x)Vα,β(x) = 0 ,

∫

I

f(x)dx = 1

where Vα,β = αV (x) + βV (x− 1
2 ). This equation can be solved explicitly

f(x) =
exp(− 2

σ2 [αφ(x) + βφ(x − 1
2 )])∫

I exp(− 2
σ2 [αφ(y) + βφ(y − 1

2 )])dy

with φ(x) =
∫
I V (z)dz, so φ(x) = φ(−x).

Assume φ(12 ) 6= 0, which is generally the case. The condition for having two

peaks concentrated at x = 0 and x = 1
2 is that αφ(x) + βφ(x − 1

2 ) reaches its

minimum at these points. In particular αφ(0) + βφ(− 1
2 ) = αφ(12 ) + βφ(0). This

can only happen for α = β = 1
2 .

What are the conditions on V for either one or two peaks of equal size to occur?
Suppose for σ << 1 exists a peak-like smooth function f , mainly concentrated at
0, which solves

σ2

2
∂xf(x) + f(x)

∫

I

V (x− y)f(y)dy = 0 ,

∫

I

f(x)dx = 1

and converges to δ0 for σ → 0. This function may be approximated by the solution
of

σ2

2
∂xf(x) + f(x)V (x) = 0 ,

∫

I

f(x)dx = 1 .

Therefore

f(x) =
exp(− 2

σ2 [
∫ x
0
V (z)dz])∫

I
exp(− 2

σ2 [
∫ y
0
V (z)dz])dy

.

For
∫ 1

2

0
V (x)dx > 0 we have a main concentration around 0. For

∫ 1
2

0
V (x)dx < 0

the peak is located at ± 1
2 , which is a contradiction. Similar conditions for N -peaks

like steady states can be obtained.

6. Stability/Instability of N-Peaks Like Steady States

This analysis was done by numerical simulations with a robust code

• Taking V such, that a 1-peak like steady state can be constructed, it
follows, that the 2-peaks like steady state is unstable.

• Otherwise, the 2-peaks like steady state is stable.
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• The 4-peaks like steady state seems unstable, independent of V .
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Interfaces moving through random obstacles

Nicolas Dirr

(joint work with J. Côville, S. Luckhaus, P. Dondl, M. Scheutzow)

We consider the following so-called Random Obstacle Model: An interface, mod-
elled as the graph (x, u(x, t)) of a function u : Rn×R

+ → R moves through a field
of (soft) random obstacles, driven by a constant driving force. More precisely, we
consider the following semi-linear PDE with random coefficients.

∂tu(x, t, ω) = ∆u(x, t, ω) + f(x, u(x, t, ω), ω) + F on R
n(1)

u(x, 0) = 0(2)

The random nonlinearity f(x, u, ω) : R
n × R × Ω → R is constructed in the

follwing way: Let φ be the mollification of a cylindrical obstacle of height and
radius 0 < δ < 1/4 centered at zero, i.e. Φ smooth and nonnegative,

1[−(3δ)/4,(3δ)/4]×B(3δ)/4(0)(x, u) ≤ Φ(x, u) ≤ 1[−δ,δ]×Bδ(0)(x, u).

f(x, u) =
∑

(i,j)∈Zn×(Z+ 1
2 )
(E(ℓij)− ℓi,j(ω))φ(x − i, u− j).

Here the random obstacles (ℓi,j(ω))(i,j)∈Zn×(Z+ 1
2 )

are a family of independent iden-

tically distributed exponential random variables. (i.e. there exists λ0 > 0 such
that P{ℓ(i, j)(ω) > r} = e−λ0r for r ≥ 0 ) and the constant F > 0 is the driving
force. Typically f(x, u, ω) + F ≤ 0 (interface pushed down) on the obstacles and
f(x, u, ω)+F ≥ 0 (interface pushed up) away from the obstacles. Note that there
are no obstacles on {(x, u) : |u| < 1/4}.

In the physics literature, a parabolic semi-linear equations with random coeffi-
cients like (1) is sometimes called Quenched Edwards Wilkinson model.

It is motivated in the following way: A very basic model for an interface (phase
boundary, dislocation line in its slip plane etc) moving through an array of random
obstacles (e.g. impurities, other dislocation lines) in an over-damped limit (inertial
effects are neglected) is the gradient flow of the area functional plus a random
bulk term. If so-called inner variations are considered, the resulting evolution
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law is forced mean curvature flow, where the forcing is random. For forced mean
curvature flow and applications, in particular in the case of periodic forcing, we
refer to [1], [2], [3]. If the interface is a graph and the gradient is sufficiently small,
the evolution by forced mean curvature flow for the graph can be approximated
heuristically by a semi-linear parabolic PDE as (1).

Related problems have found considerable interest in the physics community,
see e.g. [5].

The forcing F pushes the interface up, while the obstacles (which are not uni-
formly bounded) try to keep the interface down. Which effect wins? For periodic
f(x, u) this is completely understood (see [4]). We ask whether, depending on F,
limt→∞ u(x, t) is finite (pinning) or infinite (no pinning). (Note that there are by
construction no obstacles on {u = 0} so it is easy to see that always ∂tu ≥ 0) By
the comparison principle for (1), any global non-negative stationary solution acts
as barrier for (1,2), so it it is sufficient to consider existence or non-existence of
solutions for

(3)

{
0 = ∆u(x, ω) + f(x, u(x, ω), ω) + F on R

n

u(x) ≥ 0
.

Theorem 1 [N.D., J. Coville, S. Luckhaus] Let the space dimension n = 1 and
let u solve (3) on [−N,N ] with u(−N) = u(N) = 0. Then there exist F0 > 0, C
and K such that for F > F0

(4) P

(
u(x) ≥ KN −K|x| for all x ∈ [−N,N ]

)
≥ 1− Ce−

N
C

Corollary 1 [n = 1] There is almost surely no global non-negative stationary
solution of (3).

Theorem 2 [N.D., P. Dondl, M. Scheutzow] Let n = 1, 2. There ex. 0 < F1

such that for 0 < F < F1, (3) has almost surely a solution with E[u(x, ω)] = c <∞
for all x ∈ R

n.
Sketch of Proof of Theorem 1

Using that stationary solutions solve uxx = −F away from the obstacles, we define
a discretization yielding a discretized path v̄δ : Z → δZ. Then we estimate the
discrete Laplacian of v̄δ(i) against the obstacle that sits above i and is close to
the path, i.e. ∆d(i) + F ≤ Cℓi,[v̄δ(i)[(ω). A technical problem is posed by the fact
that a path with large gradients may pass through more than one of the obstacles
sharing the same u-coordinate.

The estimate allows to bound the probability of a discrete path being ”compat-
ible” with the random environment against an auxiliary random product measure
on discrete paths, i.e. independence is artificially introduced:

P
({
ω : u(ω) compatible with v̄δ(i)

})
≤ C2N

P̂
(
{∆dv̄

δ(i)}Ni=−N

)
,

P̂
(
{∆dv̄

δ(i)}Ni=−N

)
:= Z−1e

−C
∑

i(∆dv̄
δ(i)+F)

+ ,

where Z is a normalization (corresponding to the partition function is statistical
mechanics).
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Notice that under the auxiliary measure, the discrete Laplacians are indepen-
dent random variables with exponential tails. Paths that are in the complement
of the set estimated in (4) have an average of discrete Laplacians which is different

from the expectation under P̂. Such an event has exponentially small probability.
Sketch of Proof of Corollary 1
This follows from the Borel-Cantelli Lemma and the fact that, by the compar-

ison principle for the parabolic equation (1), any global non-negative stationary
solution has to remain above the solution of the Dirichlet problems considered in
Theorem 1.

Sketch of Proof of Theorem 2 The aim is to contruct a stationary nonnegative
supersolution.

We decompose R
n × R

+ in large cubes of sidelength L and height h and call
a cube open if it contains an obstacle with strength larger than an approriately
chosen cut-off. We would like to construct a Lipschitz-path w with Lipschitz
constant depending on h/L, which crosses only open cubes. Mapping the cubes
to sites on the integer lattice, this corresponds to asking whether the percolating
cluster of open sites contains a Lipschitz graph. We construct the graph explicitly
by an iterative procedure and show, using properties of branching processes, that
the iteration terminates, if open sites are sufficiently frequent. The latter property
depends on the choice of the cut-off, h, L and the tail of the distribution of obstacle
strengths.

From w we construct a function v ≥ 0 with Lipschitz-constant C(F, h/L) which
solves ∆v = −F outside the strong obstacles and equals w on the boundary of
strong obstacles. The choice of C(F, h, L) allows to estimate the normal derivative
on the boundary of the obstacles, which in turn allows to extend the construction
of a supersolution inside the obstacles by paraboloids.
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About a derivation of boundary layer energies by Γ-convergence
methods

Anja Schlömerkemper

(joint work with Lucia Scardia, Chiara Zanini)

Let a crack occur in a solid body. Then new surface is created. Our aim is
to rigorously derive the energy needed to create this surface. We call this energy
boundary layer energy and study a one-dimensional model case which shows elastic
behavior as well as fracture depending on the overall deformation of the system
[2]. The starting point of the analysis is a chain of atoms with nearest and next-
to-nearest neighbor interactions of Lennard-Jones type. We pass to the continuum
limit by using Γ-convergence methods. While the Γ-limit yields the bulk energy,
the first-order Γ-limit yields the boundary layer energies.
Our work extends an earlier article by Braides and Cicalese [1]. In addition to the
Dirichlet boundary conditions which fix the positions of the first and last atoms
we also prescribe the positions of the second and last but one atoms. This results
in new Γ-limits of first order and in new results related to the location of cracks,
which are outlined below.

For simplicity of this presentation let J1 and J2 be Lennard-Jones potentials,
i.e., let J1(z) as well as J2(z) be of the form k1

z12 − k2
z6 for positive constants k1, k2.

See [2] for more general potentials. Set λn = 1
n , n ∈ N and let u : λnZ∩ [0, 1] → R

describe the deformation of the atoms with respect to the reference configuration
λnZ ∩ [0, 1]. Set ui = u(λni) and identify u with its piecewise affine interpolation,

u ∈ An(0, 1). Let ℓ, u
(1)
0 , u

(1)
1 > 0 be given. Then we consider the boundary

conditions u0 = 0, u1 = λnu
(1)
0 , un−1 = ℓ−λnu(1)1 , un = ℓ and the energy functional

Hℓ
n : An(0, 1) → (−∞,∞] which is defined as

Hℓ
n(u) =

n−1∑

i=0

λnJ1

(
ui+1 − ui

λn

)
+

n−2∑

i=0

λnJ2

(
ui+2 − ui

2λn

)

if u satisfies the boundary conditions and is infinite else. The Γ-limit of this
functional as n→ ∞ involves the convexification J∗∗

0 of the effective potential

J0(z) = J2(z) +
1

2
inf
{
J1(z1) + J1(z2) : z1 + z2 = 2z

}
.

Theorem 0.1. Let J1 and J2 be Lennard-Jones potentials. Then the Γ-limit of
Hℓ
n with respect to the L1(0, 1)-topology exists and is given, on L1(0, 1), by

Hℓ(u) =

∫ 1

0

J∗∗
0 (u′(t)) dt

if u ∈ BV (0, 1) satisfies u(0) = 0, u(1) = ℓ and [u] > 0 on Su, and infinity else.

The minimum of Hℓ is J∗∗
0 (ℓ). This enters in the calculation of the first-order

Γ-limit. The first-order Γ-limit of Hℓ
n is the Γ-limit of Hℓ

1,n : An(0, 1) → (−∞,∞]

defined by Hℓ
1,n(u) =

1
λn

(
Hℓ
n(u)−minHℓ

)
.
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From the assumptions on the interaction potentials J1 and J2 it turns out that
J0 has a unique minimum point. This is denoted by γ and acts as a threshold
for the overall deformation ℓ, determining whether we are in the case of elasticity
(ℓ ≤ γ) or in the case of fracture (ℓ > γ). In the case of elasticity we obtain

Theorem 0.2. Let 0 < ℓ ≤ γ and u
(1)
0 , u

(1)
1 > 0; let J1, J2 be Lennard-Jones

potentials. Then Hℓ
1,n Γ-converges with respect to the L∞(0, 1)-topology to Hℓ

1

defined on W 1,∞(0, 1) by

Hℓ
1(u) = B

(
u
(1)
0 , ℓ

)
+B

(
u
(1)
1 , ℓ

)
− J0(ℓ)− J ′

0(ℓ)

(
u
(1)
0 + u

(1)
1

2
− ℓ

)

if u(t) = ℓt, t ∈ [0, 1] and infinity else, where, for θ > 0,

B (θ, ℓ) = inf
N∈N

min

{
1

2
J1 (θ) +

∑

i≥0

{
J2

(
vi+2 − vi

2

)
+

1

2
J1
(
vi+2 − vi+1

)

+
1

2
J1
(
vi+1 − vi

)
− J0(ℓ)− J ′

0(ℓ)

(
vi+2 − vi

2
− ℓ

)}
:

v : N → R, v0 = 0, v1 = θ, vi+1 − vi = ℓ if i ≥ N

}

is the boundary layer energy which occurs at the end points of [0, 1].

The case of fracture involves the formation of new surface, which translates in
the presence of some boundary layer energies. If the fracture is located at the
boundary, this involves, for θ > 0, a boundary layer energy of the form

Bb (θ) = inf
k∈N

min

{
1

2
J1
(
v̂1 − v̂0

)
+

k−1∑

i=0

{
J2

(
v̂i+2 − v̂i

2

)

+
1

2

(
J1
(
v̂i+2 − v̂i+1

)
+ J1

(
v̂i+1 − v̂i

))
− J0(γ)

}
:

v̂ : N → R, v̂k+1 = 0, v̂k+1 − v̂k = −v̂k = θ

}
.

This boundary layer energy reflects the position of the crack at the atomistic scale.
The boundary layer energy of a free surface was introduced in [1], and reads

B(γ) = inf
N∈N

min

{
1

2
J1
(
u1 − u0

)
+
∑

i≥0

{
J2

(
ui+2 − ui

2

)

+
1

2

(
J1
(
ui+2 − ui+1

)
+ J1

(
ui+1 − ui

))
− J0(γ)

}
:

u : N → R, u0 = 0, ui+1 − ui = γ if i ≥ N

}
.

In the case of fracture the first-order Γ-limit is as follows.
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Theorem 0.3. Let ℓ > γ and u
(1)
0 , u

(1)
1 > 0; let J1, J2 be Lennard-Jones poten-

tials. Then Hℓ
1,n Γ-converges with respect to the L1(0, 1)-topology to Hℓ

1 defined

on L1(0, 1) by

Hℓ
1(u) =B

(
u
(1)
0 , γ

)
(1−#(Su ∩ {0})) +B

(
u
(1)
1 , γ

)
(1−#(Su ∩ {1}))

+BBJ

(
u
(1)
0

)
#(Su ∩ {0}) +BBJ

(
u
(1)
1

)
#(Su ∩ {1})

+BIJ#(Su ∩ ]0, 1[)− J0(γ)

if u ∈ SBV (0, 1) such that u(0−) = 0, u(1+) = ℓ, 0 < #Su < ∞, [u] > 0 on Su
and u′ = γ a.e., and infinity else, where

BBJ (θ) =
1

2
J1 (θ) +Bb (θ) +B(γ)− 2J0(γ)

BIJ = 2B(γ)− 2J0(γ).

While, in the model considered in [1], the energetically favourable location
of a crack is at the boundary of the chain, our model shows that the optimal
deformation can exhibit an internal crack.

Proposition 0.4. Let ℓ > γ and J1, J2 be Lennard-Jones potentials.

(1) If u
(1)
0 = u

(1)
1 = γ, then it is energetically as favorable to break in the

interior as at the boundary of the chain.

(2) If u
(1)
0 or u

(1)
1 is equal to δ1, the minimum point of J1, then the chain

breaks at the boundary.

By studying the infimum in the definitions of the boundary layer energies, we
obtain information on the “depth” of the boundary layer. For instance, in the case

of a crack in 0 with u
(1)
0 = δ1 we prove that the microscopic location of the crack is

just next to the prescribed boundary atoms since the infimum in Bb(δ1) is attained

for k = 0. Similarly, if u
(1)
0 = γ, the infimum in the elastic boundary layer energy

B(γ, γ) at 0 is attained for N = 0, meaning that prescribing the slope γ at the
boundary forces the optimal deformation to have slope γ close to the boundary
also at the atomic scale. On the other hand, the infimum in B(γ) is obtained for
N → ∞. Therefore in the case of a free surface, the discrete system adjusts to
the optimal slope γ after infinitely many atoms. Similarly, the infimum in Bb(γ)
is obtained for k → ∞. That is, even if there is a crack at 0 in the continuum
framework, microscopically, the crack occurs after infinitely many atoms.
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A quantitative rigidity result for the cubic-to-tetragonal phase
transition in the geometrically linear theory with interfacial energy

Felix Otto

(joint work with Antonio Capella-Kort)

In geometrically linear elasticity, the strain e generated by a displacement u is
approximated by e = 1

2 (∇u + ∇tu). In the cubic-to-tetragonal phase transition
in a shape memory alloy, there are three different stress-free strains (which we
normalize)

e(1) :=















−2 0 0
0 1 0
0 0 1















, e(2) :=















1 0 0
0 −2 0
0 0 1















, e(3) :=















1 0 0
0 1 0
0 0 −2















.

In this framework, Dolzmann and Müller [2, Theorem 3.1] have shown the following
rigidity result: The only stress-free configurations are (locally) twins. A twin is
a configuration where e only depends on a single variable and only assumes two
values. In a cubic-to-tetragonal phase transition, there are six types of twins: If e
assumes the values e(1) and e(2), say, then e must be either locally constant along
the planes x1 + x2 = const or along the planes x1 − x2 = const. The two other
cases are similar by cubic symmetry.

It is well-known that rigidity results of this type are vulnerable under pertur-
bation: Indeed, consider a piecewise quadratic elastic energy (with normalized
moduli), which can be written as

Eelast :=

∫

B1

|e− χ1e
(1) − χ2e

(2) − χ3e
(3)|2dx,

where

χ1, χ2, χ3 ∈ {0, 1} and χ0 := 1 − χ1 − χ2 − χ3 ∈ {0, 1},
so that the characteristic functions χ0, χ1, χ2, and χ3 can be interpreted as the
indicator functions of the Austenite phase (which here is assumed to be also stress-
free) and the three Martensitic phases, respectively. The best-studied rigidity
result is related to a mixture of Austenite andMartensite: There is no displacement
u with a stress-free strain e assuming the value zero and at least one of the three
values e(1), e(2), and e(3). In particular, there is no exactly stress-free interface
between a Martensitic twin (with twin plane x1+x2 = const, say) on the one side
and Austenite on the other side. However, the elastic energy of such a configuration
can be made arbitrarily small by forming a microstructure, i. e. 1) by letting the
twin width ℓ tend to zero, and 2) by choosing the twin volume fraction λ (i. e. the
relative width of one layer w. r. t. the other layer) appropriately (i. e. λ = 1

3 or

λ = 2
3 ), and 3) by choosing the habit plane (i. e. the plane between the Martensitic

twin and the Austenite) appropriately (i. e. x1 + x3 = const, x1 − x3 = const,
x2 + x3 = const, or x2 − x3 = const).
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This degeneracy of the elastic energy can be compensated by an interfacial
energy between the phases:

Einterf :=

∫

B1

(|∇χ0|+ |∇χ1|+ |∇χ2|+ |∇χ3|)dx,

whose role is to penalize the microstructure. The introduction of an interfacial
energy next to the elastic energy introduces a (material) length scale; together
with the length scale given by the sample size (unity in our case), it gives rise to
a nondimensional parameter η ≪ 1. Theorem 1 below shows that the scaling of
η1/3Einterf + η−2/3Eelast discriminates between configurations that are close to
configurations with exactly vanishing elastic energy (that is, pure Austenite or one
of the six Martensitic twins) and the other configurations. In this sense, we may
say that the interfacial energy unfolds the degenerate elastic energy.

The pair of exponents 2
3 , 1 − 2

3 = 1
3 in η1/3Einterf + η−2/3Eelast already ap-

peared in Kohn and Müller’s study of the interface between a twinned Martensite
and an Austenite phase on the level of a simplified, in particular scalar and two-
dimensional model [3, 4]. Naively, one would expect that the minimal energy is
found by optimizing the twin width ℓ, which would lead to the pair of exponents
1
2 , 1− 1

2 = 1
2 . This however is not the optimal energy scaling: A small twin width ℓ

is only required near the Austenite-Martensite interface. Hence it is advantageous
to refine ℓ by twin branching when approaching this interface. Such a branched
construction indeed leads to the better pair of exponents 1

3 , 1− 1
3 = 2

2 . By proving
an Ansatz-free lower bound [4, Theorem 1.1], Kohn and Müller show that this pair
of exponents cannot be improved.

Hence Theorem 1 combines the qualitative treatment (rigidity) of the full model
in [2] with the quantitative treatment (Ansatz-free lower bounds optimal in scaling)
of the reduced model in [4]. It improves our result in [1] in the sense that Theorem
1 includes the Austenite phase and that it is a local statement.

Theorem 1. There exists a small but universal radius r > 0 and a universal
constant C such that we have for any parameter η ≤ r: If χ0, χ1, χ2, χ3, e,
Einterf and Eelast are as above and we use the abbreviation

E := η1/3Einterf + η−2/3Eelast,

then the following three dichotomies hold:

i) We have
∫

Br

|1− χ0|dx ≤ C E or

∫

Br

|χ0|dx ≤ C E.

ii) In case of
∫
Br

|χ0|dx ≤ C E, we have

∫

Br

|χ1|dx ≤ C E1/2 or

∫

Br

|χ2|dx ≤ C E1/2 or

∫

Br

|χ3|dx ≤ C E1/2.
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iii) In case of
∫
Br

|χ3|dx ≤ C E1/2, we have
∫

Br

|χ1 − f(110)|dx ≤ C E1/4 or

∫

Br

|χ1 − f(11̄0)|dx ≤ C E1/4,

where f(110), f(11̄0) denote functions only depending on x · (110) = x1 + x2
and x · (11̄0) = x1 − x2, respectively. In the two other cases, the analogue
statement holds.
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Evolution in dilute diblock-copolymer systems

Barbara Niethammer

(joint work with M. Helmers, Y. Oshita, X. Ren)

Diblock copolymers molecules consist of two subchains of A- and B-monomers,
which repel each other below a critical temperature. However, due to a chemi-
cal bond between the subchains, complete phase-separation between A- and B-
monomers can not take place. Instead molecules rearrange themselves to form
domains rich of A- and B-monomers respectively, a phenomenon known as micro
phase separation.

In a sharp interface version of the Ohta-Kawasaki theory energetically favor-
able configurations are characterized as minimizers of an energy functional that is
defined on subsets G ⊂ Ω ⊂ R

3 with given volume fraction ρ, that represent the
domains covered by, say, A-monomers. Then

E(G) = H2(∂G) +
σ

2
‖χG − ρ‖2H−1(Ω), ,

with a material parameter σ. The first term in the energy, the surface area of
∂G, favors phase separation, whereas the second one prefers fine structures and
the competition between the two terms leads to pattern formation. The type of
pattern that is observed is essentially determined by the volume fraction ρ and
ranges from droplet patterns, over cylindrical structures to layers.

In this talk we are interested in a dynamic model that describes the evolution
of systems towards their equilibrium configuration. One way to set up such an
evolutionary model is to consider the H−1 gradient flow of E(G) on the manifold
of domains G with given volume fraction. This leads to a nonlocal version of the
so-called Mullins-Sekerka free boundary problem.
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Here we consider the regime that the volume fraction of A-monomers is small.
Then micro phase separation results in an ensemble of small spheres of one com-
ponent. It is then natural to study the gradient flow evolution restricted to the
submanifold that consists of a collection of non-overlapping balls. We consider the
setting that balls of radiusR with average spacing d are set in a box of length L. An
important intrinsic length scale is given by the screening length Lsc ∼ (d3/R)1/2,
that describes the effective interaction range between particles. In the regime that
ρ≪ 1 we can then set up the gradient flow equation for the evolution of radii and
centers of these balls. By superposition of monopoles we can express energy and
metric explicitly in terms of the radii and centers of the balls and form this derive
explicit expressions for the velocities of radii and centers respectively [2] (see also
[1] for a related result). The regime L ≪ Lsc is particularly simple: the energy
depends to leading order not on the positions of the centers and the metric tensor
is to leading order diagonal. Then, particle centers do not move in this regime,
whereas the radii obey a relatively simple nonlocal ODE. This ODE predicts that
the balls first undergo coarsening, before settling around one stable radius. The
regime L ∼ Lsc is more interesting in the sense, that one also obtains a non-trivial
equation for the centre velocities. However, the centers move on a slower time scale
than the radii. Hence, we observe first coarsening of radii, then stabilization of
radii around one radius, and then rearrangement of particle centers. One observes
in numerical simulations that the latter results in a periodic pattern of the balls,
but a rigorous analysis of this effect is not yet available.

One can also derive corresponding mean-field models that describe the evolution
of a density of particle radii and centers. I indicate how this can be made rigorous
by passing to a homogenization limit within the Rayleigh principle associated to
each gradient flow [3]. This generalizes a result obtained in [4] for σ = 0 to the
case σ > 0. The main new ingredient is an a-priori estimate on the velocities of
particle centers, that ensures that if particles are initially well-separated then they
remain well-separated during the evolution over the time scales we consider.
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On single-slip plasticity in the limit of rigid elasticity

Sergio Conti

(joint work with Georg Dolzmann, Carolin Klust, Stefan Müller)

Variational models which combine energetic and dissipative terms are often used in
finite plasticity to study the formation of microstructure under monotonic loading
conditions [12, 9, 2]. The simplest model, proposed and first studied in [12], treats
one active slip system with rigid elasticity, in the sense that the only admissible
elastic deformations of the material are (locally) rigid body motions. It consists
in the minimization of

∫
ΩWR(∇u), where the condensed energy density takes the

form

WR(F ) =

{
|γ|p if F = Q(Id + γs⊗m) ,
∞ otherwise .

(1)

Here p ≥ 1 and s, m are a pair of orthonormal vectors describing the slip direction
and the slip-plane normal. Based on this model, the formation of microstructure
(with p = 1) was predicted, and the phenomenon of geometrical softening [12] was
explained. Related models were discussed in [2, 8, 1]. The quasiconvex envelope
of the rigid model WR could be determined in closed form for several values of the
hardening exponent p:

Theorem 1 (From [7, 3, 4]). For n = 2, p = 1, the quasiconvex envelope of WR

is given by

W qc
R (F ) =

{ √
|F |2 − 2 detF , if F ∈ N ,

∞ , otherwise ,
(2)

where

N =
{
F : detF = 1, |Fs| ≤ 1

}
.(3)

If n = 2 and p ≥ 2, then

W qc
R (F ) =

{ (
|Fm|2 − 1

)p/2
, if F ∈ N ,

∞ , otherwise ,

with N defined in (3).
If n = 3, then WR is quasiconvex.

We address here the approximation ofWR by a sequence of energy densities with
increasingly hard elasticity, in the two-dimensional case. Precisely, we consider

Wε(F ) = inf
γ∈R

{1
ε
dist2

(
F (Id− γs⊗m), SO(2)

)
+ |γ|p

}
.

It is easy to show that Wε converges for ε→ 0 to W pointwise. This convergence,
however, is not directly related to convergence of the corresponding functionals.

If the exponent p is below 2, then the variational problem degenerates:

Theorem 2 (From [5]). For all p ∈ [1, 2), one has W qc
ε (F ) = 0 for all F ∈ N .
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This is in remarkable contrast with the relaxation of the limiting energy for
p = 1 given in (2).

A different picture arises for p = 2. Indeed, we obtain convergence of the
variational problems Iε[u] =

∫
Ω
Wε(∇u) to the limit

I0[u] =





∫

Ω

W qc
R (∇u)dx , if u ∈W 1,2(Ω;R2), ∇u ∈ N a.e. in Ω ,

∞ , otherwise.

The limiting problem is defined on a subset of W 1,2, but the appropriate conver-
gence is weak W 1,1 convergence (after subtracting translations). This is related
to the anisotropic growth of the potentials Wε.

Theorem 3 (From [4]). Let Ω ⊂ R
2 be a bounded and open Lipschitz domain,

p = q = 2. Then the functionals Iε[u] =
∫
Ω
Wε(∇u) converge in the sense of Γ–

convergence with respect to weak convergence in W 1,1 to I0. That is, the following
assertions hold true:

Compactness and lower bound: Suppose that uε ∈W 1,1(Ω;R2) is a sequence with
bounded energy, in the sense that there is B < ∞ such that Iε[uε] < B for all
ε > 0. Then there exists a subsequence εk → 0, a sequence ak ∈ R

2, and a
function u ∈W 1,2(Ω;R2) with ∇u ∈ N almost everywhere such that uεk − ak ⇀ u
weakly in W 1,1(Ω;R2). Moreover,

I0[u] =

∫

Ω

W qc
R (∇u) ≤ lim inf

k→∞

∫

Ω

Wεk(∇uεk) = lim inf
k→∞

Iεk [uεk ] .

Upper bound: For all u ∈ W 1,2(Ω;R2) with ∇u ∈ N almost everywhere and all
sequences εk → 0, εk > 0, there exists a sequence of functions uεk ∈ W 1,1(Ω;R2)
with uεk → u in L1(Ω;R2) such that

lim
k→∞

Iεk [uεk ] = I0[u] .

One key difficulty in the proof resides in the anisotropic growth conditions of
Wε. In particular, the sequence of gradients ∇uε is bounded in L1 but not in L2,
although the limit ∇u belongs to L2. In order to show that det∇uε converges to
det∇u, and hence that the latter equals one, we use the following generalization
of the classical div-curl lemma [10, 11, 13, 14]

Theorem 4 (From [6]). Let Ω ⊂ R
n be an open and bounded domain with Lipschitz

boundary and let p, q ∈ (1,∞) with 1/p + 1/q = 1. Suppose uk ∈ Lp(Ω;Rn),
vk ∈ Lq(Ω;Rn) are sequences such that

uk ⇀ u weakly in Lp(Ω;Rn) and vk ⇀ v weakly in Lq(Ω;Rn) ,

and

uk · vk is equi-integrable.

Finally assume that

div uk → div u in W−1,1(Ω) and curl vk → curl v in W−1,1(Ω;Rn×n) .
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Then

uk · vk ⇀ u · v weakly in L1(Ω) .
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Uniform energy distribution for a model of pattern formation

Giovanni Alberti

(joint work with Rustum Choksi and Felix Otto)

In [1] we studied the qualitative behaviour of minimizers of the energy

(1) I(u) := S(u) +
∥∥(−∆)−1/2(u −m)

∥∥2
2
,

where m is a parameter in (−1, 1), u is a function on a “large” n-dimensional
domain – typically the cube QL := (−L/2, L/2)n – taking only the values ±1 and
with average m, S(u) is the area of the interface separating the phases {u = +1}
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and {u = −1}, and (−∆)−1 is the inverse of the Laplace operator with, say,
Neumann boundary conditions. (In the end it turns out that boundary conditions
do not really matter in this problem.)

More precisely, u belongs to the space BV (QL,±1) and S(u) is the (n − 1)-
dimensional Hausdorff measure of the (measure theoretic) discontinuity set of u,
or, equivalently,

S(u) =
1

2

∫

QL

|Du|

where Du is the distributional derivative of u. Moreover the second term in the
right-hand side of (1) is given by the (non-local) double integral

∫ ∫

QL×QL

G(x, x′) (u(x)−m) (u(x′)−m) dx dx′ ,

where G is the Green function associated to (−∆)−1.
The energy in (1) can be obtained as the sharp-interface limit of the free-

energy derived in [3] within a model of phase segregation for di-block copolymer
melts; however its one-dimensional equivalent already attracted some attention in
the mathematical community after [2] (for more details see [1] and the references
therein).

While the first term at the right-hand side of (1) favours small interfaces, and
therefore large phases, the second one favours fine phase-mixing with average den-
sity close to m (the latter effect can be easily seen in dimension one: in that case
the second term can be written as

∫
b2 where b is the antiderivative of u−m with

value 0 at the boundary).
As a result of the competition of these two terms, minimizers of I(u) exhibit

a fairly regular pattern on a fixed scale which is independent of the size of the
domain L. In particular, numerical computations in dimension two and three
display a variety of (essentially) periodic patterns, whose geometric shape and
period depend only on the choice of the parameter m, and not on L.

In terms of rigorous results, the periodicity of minimizers in dimension one was
established long time ago in [2] directly for the diffuse-interface counterpart of
I(u). Obtaining similar results in higher dimension proved to be more difficult; in
[1] we aimed in that direction by proving the uniform distribution of energy for
minimizers of I(u) in every dimension.

In order to state our result we must formulate the problem in a different and
more local way. The key observation is that the non-local term in I(u) can be
rewritten as

inf

∫

QL

|b|2 ,

where the infimum is taken over all vectorfields b which satisfy

(2) ∇ · b = u−m on QL and ν · b = 0 on ∂QL.
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Accordingly, the minimization of the non-local energy I(u) turns into the mini-
mization of the local energy

(3) E(u, b,QL) := S(u) +

∫

QL

|b|2

over all couples (u, b) such that u takes the values ±1 and has average m in QL,
and b satisfies (2).

Our main result reads as follows: if (u0, b0) solves this minimum problem, then
the average energy density in every subcube Qℓ(a) with center a and side ℓ gets
closer and closer to an optimal density σ∗ as ℓ gets larger. More precisely there
exist constants c1, c2 – independent of L, u0 and b0 – such that

(4)

∣∣∣∣
1

ℓn
E(u0, b0, Qℓ(a))− σ∗

∣∣∣∣ ≤
c1
ℓ

for ℓ ≥ c2,

where the energy density σ∗ is given by

σ∗ := lim
L→+∞

{
inf
(u,b)

1

Ln
E(u, b,QL)

}

(clearly the infimum is taken over all (u, b) satisfying the conditions above).

I conclude with some remarks. (i) Note that σ∗ should be the energy density of
the ground state (optimal pattern), except that it is defined without assuming the
existence of a ground state. Using (4) we can easily show that there exists a couple
(u∗, b∗) defined on the entire space Rd which minimize the energy E with respect
to every perturbation with compact support and satisfies E(u∗, b∗, QL)/L

n → σ∗
as L→ +∞. But we are not able prove that this “ground state” is periodic.

(ii) The decay rate in (4) cannot be improved even assuming the existence of
a periodic ground state, and yet it is not such a strong indication of periodicity
by itself, in that it is not sufficient to exclude truly non-periodic behaviours of
(u0, b0), such as random checkerboard patterns.

(iii) A slightly stronger indication of periodicity can be obtained by looking
at the deviation of the average of u0 on large balls from the expected value m:
denoting by Br(a) any ball of radius r contained in QL, we can prove that

∣∣∣∣∣
1

|Br(a)|

∫

Br(a)

u0 −m

∣∣∣∣∣ = O

(
1

r2

)
as r → ∞,

and indeed this decay rate is better than that of a random checkerboard pattern,
at least in dimensions two and three. On the other hand periodicity would imply
a decay rate of order o(1/rp) for every p < +∞, and therefore there is still a
substantial gap.
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