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Abstract. Mathematical relativity, the subject of this conference, has re-
cently become more and more devoted to the theory of nonlinear evolution
equations, with global questions becoming ever more accessible. This is re-
flected by the fact that more than half of the talks given were concerned
with the global dynamics of solutions of evolution equations related more or
less directly to the Einstein equations of general relativity. Progress was re-
ported in understanding subjects such as black holes, gravitational radiation,
cosmology and the relation of general relativity to Newtonian gravitational
theory.
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Introduction by the Organisers

The participants of this conference included a good mixture of established workers
in the area of mathematical relativity, promising young researchers in the field and
experts in related subjects.

At a previous Oberwolfach conference with the same title in 2006 there were
two talks related to the question of the stability of black holes. Since then that
subject has developed rapidly and this development, including the most recent
results, was described in the talk of Dafermos. A new influential approach to this
problem using harmonic analysis was presented in the talk of Tataru. A technique
with a stonger input from differential geometry was the subject of the presentation
of Blue. Holzegel talked about work related to black hole stability in the context
of a negative cosmological constant. Other aspects of the theory of black holes
were also discussed at the conference. Alexakis described progress on uniqueness
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theorems for black holes. Rein presented results on the formation of black holes due
to collapse of matter. Hennig’s talk was concerned with the question of whether
the spin of a pair of black holes can balance their gravitational attraction.

The issue of the stability of black holes and other solutions of the Einstein
equations belongs to the global theory of hyperbolic equations. Other talks in
that area, concerning Einstein’s equations or other nonlinear wave equations, were
given by Struwe (analytical) and Bizon (numerical and heuristic). An influential
model in this area is the work of Christodoulou and Klainerman on the nonlinear
stability of Minkowski space. In her talk Bieri explained how she has been able
to extend this result in various directions. A related topic in cosmology is the so-
called ’cosmic no hair theorem’. The work reported in the talk of Speck indicates
that, assuming certain hypotheses, this has now finally attained the status of a
theorem, having been a conjecture for many years. Smulevici presented results
of the dynamics of cosmological models with symmetry including matter and a
positive cosmological constant. Heinzle explained ways in which the choice of a
matter model influences the dynamics of cosmological models.

The topic of the Newtonian limit and post-Newtonian approximations is a
subject of great physical importance which had been resistent to mathematical
progress. In his presentation Oliynyk explained how he has been able to overcome
some of the major difficulties in this subject. Beig talked about some solutions
in scalar gravity which provide a simple model related to gravitational radiation.
Corvino discussed the construction of initial data for the motion of many bodies.
Miao gave a lucid exposition of topics related to the Brown-York quasilocal mass.
Maxwell described his recent studies which show that, at least for certain simple
families of initial data, the conformal methods appear to have difficulties in dealing
with non constant mean curvature solutions of the Einstein constraints. Parabolic
equations were represented by the talk of Mazzeo on the subject of the Ricci flow
on open surfaces.

The number of talks at the conference was limited so as to leave plenty of time
for discussions. On one evening an informal discussion session was arranged where
anyone who wished could give a ten-minute account of a subject of their choice.
This was an opportunity to share ideas not represented in the main talks.
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Abstracts

The black hole stability problem

Mihalis Dafermos

(joint work with I. Rodnianski)

The nonlinear stability of the Kerr family of black holes is one of the great unsolved
problems of classical general relativity. This talk surveyed recent advances in
the underlying linear theory which may be useful for this conjecture’s eventual
resolution.

A rough formulation of the non-linear stability conjecture is given below (see [11]
for an introduction to the relevant concepts):

Conjecture (Non-linear stability of Kerr). Let (Σ, ḡ, K) denote an initial data
set for the Einstein vacuum equations Rµν = 0, the data set assumed sufficiently
close to a Kerr initial data set with parameters ai, Mi,

1 and let (M, g) denote
its maximal development. Then M possesses a complete future null infinity I+,
which can be realised as an ideal boundary of spacetime, where M\ J−(I+) 6= ∅,
and such that g restricted to J−(I+) asymptotically approaches at a sufficiently
fast rate towards the future another Kerr metric with parameters af , Mf , where
af and Mf are close to ai, Mi, respectively.

The reader should compare this conjecture with the stability of Minkowski
space, first proven in 1993 by Christodoulou–Klainerman [5]. See also [3, 14].
As with the statement of stability of Minkowski space, the above conjecture is a
statement of asymptotic stability. In view of the supercriticality of the Einstein
equations, one does not expect to be able to prove weaker forms of stability which
do not include as part of their statement asymptotic stability with quantitative,
sufficiently fast rates of approach to another Kerr solution. As compared with
the problem of stability of Minkowski space, the non-linear stability problem of
Kerr has two additional new features which are already clear from its formulation:
(i) It is now not an individual solution but a two parameter family which one
must show is asymptotically stable. One must thus have a way of picking the
final parameters af , Mf . Moreover, (ii) it is not the entirety of the maximal
development (M, g) which is conjectured to be stable, but the region J−(I+), the
so-called domain of outer communciations, and this region is defined teleologically,
i.e. one cannot identify it a priori from the data. The non-emptyness of the set
M \ J−(I+) is precisely the statement that (M, g) contains a black hole; these
black hole regions are in fact thought to be unstable deep in their interior, in
accordance with another great conjecture of classical relativity, so-called strong
cosmic censorship. See [6, 11].2

1A Kerr initial data set is defined by the induced geometry of a complete asymptotically flat
slice S (with 2 ends) of a Kerr spacetime.

2In the model of [6], the black hole interior is, however, shown to be stable near the event
horizon, on the basis of the red-shift effect, discussed below, in fact, stable until one approaches
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The relation of boundedness and decay of linear equations to non-linear sta-
bility results is well known (see again [5]). Understanding linear equations in a
sufficiently robust setting, indeed, any understanding whatsoever in the case of
Kerr black holes, was only accomplished recently. The state of the art concerning
scalar waves is given by the two theorems stated below together with the general
argument of [12] mentioned here briefly.

The first theorem is a general boundedness theorem for solutions of the wave
equation 2gψ = 0 on axisymmetric stationary spacetimes sufficiently close to
Schwarzschild.

Theorem 1 ( [10]). Let R denote the underlying manifold with stratified boundary
given by the intersection of the closure of a domain of outer communications of a
Schwarzschild spacetime (M, gM ) with the future of a Cauchy surface Σ, where the
latter is chosen to intersect the horizon H to the future of the sphere of bifurcation.
Let g be a Lorentzian metric on R such that

(1) g is C1 close to gM in a weighted sense (see [10]).
(2) The Schwarzschild Killing fields T = ∂t and Φ = ∂φ are Killing with

respect to g.
(3) The boundary H of R is null with respect to g, and T and Φ span the null

generator of H.

Then the following is true: Let φτ denote the 1-parameter group of isometries
generated by T , and let Στ = φτ (Σ), let N be a globally timelike φτ -invariant
vector field on R such that N = T in a neighborhood of spacelike infinity. Then
there exists a constant B depending only on M such that for all solutions ψ of
2gψ = 0, the bound

(1)

∫

Στ

JN
µ [ψ]nµ

Στ
≤ B

∫

Σ

JN
µ [ψ]nµ

Σ

holds, where JN [ψ] denotes the energy current associated to N , and nµ
Στ

denotes
the normal.

The bound (1) also holds when ψ is replaced by Nmψ for any positive integer m,
and, together with elliptic estimates, this implies the uniform boundedness of suit-
able Sobolev norms on Στ of arbitrary order without degeneration on the horizon.
This yields in particular the uniform pointwise estimate

|ψ|2 ≤ B sup
Σ

|ψ|2 +B

∫

Σ

(JN
µ [ψ] + JN

µ [Nψ])nµ
Σ

in R.

The above theorem applies in particular to Kerr and Kerr-Newman for |a| ≪M ,
|Q| ≪ M , but its domain of validity is of course much larger. In particular, the
C1 assumptions on the metric mean that the result does not depend on details of

very near to what will be a Cauchy horizon, where there is an opposite, blue-shift effect. This
red-shift property is crucial for showing that a so-called apparent horizon forms, also contained
in the region of stability. This fact may be useful in non-linear stability proofs in the absense of
symmetry.
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geodesic flow. Philosophically, this point is very important. Let us note moreover
that the assumption that T , Φ are Killing can be replaced by the assumption that
their deformation tensors suitably decay.

The second element of the ‘state of the art’ proves a weak form of decay, but is
restricted to spacetimes which are exactly Kerr:

Theorem 2. ( [11]) Let R be as above and let gM,a denote the Kerr metric defined

on R, with |a| ≪M . Let Σ̃ be a spacelike hypersurface terminating at either spatial

infinity or I+, let Σ̃τ be as before, and let Rτ = J+(Σ̃τ )∩R. Then there exists a
nonnegative φt-invariant function χ vanishing in a neighborhood of r = 3M and
a constant B such that for all solutions ψ of 2gM,a

ψ = 0, then

(2)

∫

Rτ

χJN
µ [ψ]Nµ ≤ B

∫

Σ̃τ

JN
µ [ψ]nµ

Σ̃τ
,

where both integrals are with respect to the induced 4 and 3-dimensional volume
forms, respectively.

The setting of the above theorem can in fact be made more general; one can
replace gM,a with metrics g which asymptote sufficiently fast (with respect to τ)
to exactly the Kerr metric gM,a

A result similar to Theorem 2 has independently been obtained by [18], and
a slightly weaker result by [2]. We note that the above statement (2) is not the
sharpest form of the result as, in particular, not all derivatives of ψ degenerate,
and more precise information can be said about the behaviour of χ at infinity.

The statement of the above theorem can in fact be retrieved for the general
subextremal case |a| < M in forthcoming work of ours.

Theorem 2 can easily be seen to imply Theorem 1 when the statement of the
latter is restricted to exactly Kerr spacetimes. As we shall see below, however,
the proof of Theorem 2 makes essential use of properties of geodesic flow of the
Kerr spacetime. These properties ‘live’ at a higher level of differentiability than
the assumptions of Theorem 1. This reflects the fact that the physical basis for
the argument of Theorem 1 is in fact entirely different and of a much more general
nature.

Theorem 2 is a statement of “integrated local energy decay”. We shall say
less here about the last element of the ‘state of the art’ which is essentially the
statement that, given the results of Theorems 1 and Theorem 2, together with
“good behaviour” of g at null infinity, one can obtain quantitative decay bounds
of energy through a foliation Σ̃τ terminating on null infinity, as well as pointwise
decay. This latter statement is in fact a much more general type of result which is
best discussed elsewhere. See our recent [12]. This improves earlier understanding
based on constructions of conformal Morawetz vector fields (see [2, 11] for Kerr,
and for the Schwarzschild case, see [4, 7]). See also Luk [15]. Both these original
methods and the method of [12] are very robust; in particular they do not require
exact stationarity of the metric (in fact, the method of [12] is perhaps more robust
than the traditional method for Minkowski space in that it uses neither multipliers
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nor commutators with weights in t!), and thus could be useful in a nonlinear
setting.

This is not the place to comment at length at the methods of proof. Both
Theorems 1 and 2 are proven by exploiting vector field multiplier currents and
vector field commutators which reflect the geometrically interesting aspects of the
spacetime. This is important, because only such methods have proven sufficiently
robust to handle non-linear problems such as the stability of Minkowski space.
The interesting aspects of spacetime which must be captured here, briefly, are (i)
the redshift effect, (ii) superradiance, and (iii) trapping.

The celebrated redshift effect (i) in the context of what we now understand as
black holes was first discussed by Oppenheimer-Snyder [17]. This effect already
occurs in Schwarzschild, but is in fact very general; a localised version of the effect
depends in fact only on the positivity of surface gravity of the Killing horizon. It
turns out that the red-shift effect can be completely captured by the positivity
properties an energy identity associated to an appropriately chosen vector field
N , when restricted to a neighborhood of the horizon. See [7, 8] for the original
constructions and [11] for a generalisation. In particular, this requires no frequency
analysis. The positivity properties of JN are preserved by commutation in a
transversal direction (see [10,11]). This use of the redshift effect plays an important
role in the proof of both of the above theorems, as well as [12].

The problem of superradiance (ii) is not present in the Schwarzschild case, but
is present for all Kerr’s with a 6= 0. Superradiance is just the property that, since
T = ∂t is not timelike in the domain of outer communication, the conserved cur-
rent JT associated to T is no longer positive definite on spacelike hypersurfaces,
and thus fails to control the solutions, which certainly can radiate more energy to
infinity than their initial JT -flux. Under the assumptions of Theorem 1, one can
show, using a Fourier-based decomposition of the solution into its ‘superradiant’
and ‘non-superradiant’ parts, that the superradiant part is not trapped (see the
discussion of trapping below). Using also the red-shift, one can then construct a
non-degenerate energy current which roughly speaking shows that the superradi-
ant part of the solution disperses, and, together with the usual conserved energy
current applied to the non-superradiant part of the solution, this shows that the
total solution (i.e. the sum of the two) is bounded. Defining the decomposition is
technically challenging because it relates to the Fourier transform in time, whereas
the solution is not known a priori to be even bounded in time. Nonetheless, this
difficulty can be overcome. See [10] for details.

The issue of trapping (iii) concerns the presence of null geodesics which nei-
ther cross the event horizon, nor escape to null infinity. This is a familiar issue
from the study of the wave equation outside of obstacles in Euclidean space. In
particular, it is known that integrated decay estimates of the form (2) must degen-
erate near trapping, and decay bounds for the energy flux through the foliation
Σ̃τ must ‘lose derivatives’. As with the other two difficulties, trapping can also be
‘captured’ through suitable energy currents. In a different language, the study of
such currents in the Schwarzschild case was initiated in [13]. See [7–9, 11, 16]. As
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was shown in [1], these constructions cannot be immediately generalised to Kerr.
This has to do with the fact that the dynamics of geodesic flow in a neighborhood
of trapped geodesics cannot be well understood by projecting to physical space.
In particular, in contrast to the Schwarzschild case, it is no longer the case in
Kerr that future-trapped geodesics asymptote to a codimension-1 hypersurface of
physical space. There are now three methods for these constructions: the original
independent constructions [11] and [18] which use a frequency localised construc-
tion, and the more recent [2], which accomplishes frequency localisation by cleverly
commuting with higher order operators. All three arguments make fundamental
use of essentially the same property, namely the complete integrability of geodesic
flow. See above for a comparison with the general boundedness statement (Theo-
rem 1) which is independent of the properties of geodesics. We refer the reader to
the original papers to get an idea of the difficulties involved.

References

[1] S. Alinhac Energy multipliers for perturbations of Schwarzschild metric Comm. Math. Phys.
288 (2009), no. 1, 199–224

[2] L. Andersson and P. Blue Hidden symmetries and decay for the wave equation on the Kerr
spacetime, arXiv:0908.2265

[3] L. Bieri An extension of the stability theorem of the Minkowski space in general relativity,
Thesis, ETH, 2007

[4] P. Blue and J. Sterbenz Uniform decay of local energy and the semi-linear wave equation on
Schwarzschild space Comm. Math. Phys. 268 (2006), no. 2, 481–504

[5] D. Christodoulou and S. Klainerman The global nonlinear stability of the Minkowski space
Princeton University Press, 1993

[6] M. Dafermos The interior of charged black holes and the problem of uniqueness in general
relativity Comm. Pure Appl. Math. 58 (2005), 445–504

[7] M. Dafermos and I. Rodnianski The redshift effect and radiation decay on black hole space-
times Comm. Pure Appl. Math. 52 (2009), 859–919.

[8] M. Dafermos and I. Rodnianski The wave equation on Schwarzschild-de Sitter spacetimes,
arXiv:0709.2766v1 [gr-qc]

[9] M. Dafermos and I. Rodnianski A note on energy currents and decay for the wave equation
on a Schwarzschild background, arXiv:0710.0171v1 [math.AP]

[10] M. Dafermos and I. Rodnianski A proof of the uniform boundedness of solutions to the wave
equation on slowly rotating Kerr backgrounds, arXiv:0850.4309v1 [gr-qc]

[11] M. Dafermos and I. Rodnianski Lectures on black holes and linear waves, arXiv:0811.0354
[gr-qc]

[12] M. Dafermos and I. Rodnianski A new physical-space approach to decay for the
wave equation with applications to black hole spacetimes, in press, Proceedings of the
Int. Cong. Math. Phys., Prague 2009, 418–429

[13] I. Laba and A. Soffer Global existence and scattering for the nonlinear Schrödinger equation
on Schwarzschild manifolds Helv. Phys. Acta 72 (1999), no. 4, 272–294

[14] H. Lindblad and I. Rodnianski The global stability of Minkowski space in harmonic gauge
to appear, Ann. of Math.

[15] J. Luk Improved decay for solutions to the linear wave equation on a Schwarzschild black
hole, arXiv:0906.5588

[16] J. Marzuola, J. Metcalfe, D. Tataru, M. Tohaneanu Strichartz estimates on Schwarzschild
black hole backgrounds arXiv:0802.3942v3

[17] J. R. Oppenheimer and H. Snyder On continued gravitational contraction Phys. Rev. 56

(1939), 455–459



2594 Oberwolfach Report 46/2009

[18] D. Tataru and M. Tohaneanu Local energy estimate on Kerr black hole backgrounds,
arXiv:0810.5766

Decay estimates for the wave equation on asymptotically flat
space-times

Daniel Tataru

The aim of the talk was to provide an overview of recent and ongoing work con-
cerning global in time decay properties for the wave equation on asymptotically
flat space-times. Parts of this work are joint with the following collaborators:
Jeremy Marzuola, Jason Metcalfe and Mihai Tohaneanu. Some of this research
was motivated by problems in general relativity concerning the decay properties
for the wave equation on Schwarzschild and Kerr backgrounds. Partly for this
reason, all the results are presented in 3 + 1 space dimensions; for similar results
in other dimensions one can consult the references.

We consider decay estimates for the forward wave equation

(1) (2g + V )u = f, u(0) = u0, ∂tu(0) = u1

For the metric g and the potential V we consider two cases:
Case A: g is a smooth Lorenzian metric in R×R3, with the following properties:
(i) The level sets t = const are space-like, and (ii) g is asymptotically flat, i.e.
g = m + or(1) and V = or(r

−2) as |x| = r → ∞, where m stands for the
Minkowski metric.
Case B: g is a smooth Lorenzian metric in an exterior domain R×R3 \B(0, R0)
which satisfies (i) and (ii) above, as well as (iii) the lateral boundary R×∂B(0, R0)
is outgoing space-like.

The second case is modeled after the Schwarzschild and Kerr metrics, which
satisfy the above conditions in suitable advanced time coordinates. There the
parameter R0 is chosen so that 0 < R0 < 2M in the case of the Schwarzschild
metric, respectively r− < R0 < r+ in the case of Kerr, so that the exterior of the
R0 ball contains a neighbourhood of the event horizon. There are several types of
estimates which are of interest:
I. Energy estimates, where the aim is to obtain uniform in time bounds,

‖∇x,tu‖L∞L2 . ‖∇x,tu(0)‖L2 + ‖f‖L1
tL

2
x

II. Local energy decay, i.e. integrated energy decay in compact spatial regions:

‖∇x,tu‖LE + ‖〈r〉−1u‖LE . ‖∇x,tu(0)‖L2 + ‖f‖LE∗

where the dual LE and LE∗ norms are defined using the partition of the space-time
R+ × R3 into dyadic regions Am = {〈r〉 ≈ 2m}

‖v‖LE = sup
m

‖〈r〉− 1
2 v‖L2

x,t(Am), ‖f‖LE∗ =
∑

m

‖〈r〉 1
2 f‖L2

x,t(Am)

III. Strichartz estimates, i.e. global space-time integrated decay:

‖|Dx|s∇u‖Lp
tL

q
x
. ‖∇x,tu(0)‖L2 + ‖f‖L1

tL
2
x
,

1

p
+

1

q
≤ 1

2
,

1

p
+

3

q
=

3

2
− s
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IV. Pointwise decay for the homogeneous problem (f = 0):

(2) |u(t, x)| . ‖u0‖Zm+1,1 + ‖u1‖Zm,2

〈t+ |x|〉〈t − |x|〉2 , |∂tu(t, x)| .
‖u0‖Zm+1,1 + ‖u1‖Zm,2

〈t+ |x|〉〈t − |x|〉3

where Zm,k represent the fixed time weighted norms

‖u‖Zm,k =
∑

j≤m

‖〈r〉j+k∇j
xu‖LE∗

Local energy estimates were first obtained in work of Morawetz [15], and have
a long history up to the present. Of interest here is the following result:

Theorem 1 ( [14]). Case A: If g −m is small then (LE) holds.

There is no general result available for large perturbations of the Minkowski
space time. What we hope to prove (and is known in special cases) is

Theorem 2 (in progress). Case A: If (i) g, V are stationary, (ii) g nontrapping
and (iii) 2g + V admits no eigenmode λ with ℜλ ≥ 0 and no zero resonance then
(LE) holds.

The key result in [14], which we do not describe here, is the construction of an
outgoing parametrix for 2g + V outside a compact spatial region. Using this, we
were able to show that local energy decay governs the Strichartz estimates.

Theorem 3 ( [14]). Case A: If (LE) holds then (SE) holds.

In Case B, one can sometimes establish directly uniform energy bounds. This
is the case for the Schwarzschild and Kerr space-times:

Theorem 4 ( [6], [5], see also [8], [20]). Case B: (EE) holds for Schwarzschild and
Kerr space-times with small angular momentum |a| ≪ M , as well as for a class
of small perturbations thereof.

However, one does not expect the full local energy decay estimates as above
since trapping will necessarily occur. Nevertheless, a weaker form of decay can
still occur when the trapped null geodesics are hyperbolic:

Theorem 5 ( [10], [20], see also [3], [6], [1], [4], [2]). Case B: A weaker form of
(LE) holds for Schwarzschild and Kerr space-times with small angular momentum
|a| ≪M .

Combining this with the approach in [14] for the dynamics near infinity, one
obtains:

Theorem 6 ( [10], [22]). Case B: (SE) hold for Schwarzschild and Kerr space-
times with small angular momentum |a| ≪ M for nonsharp indices, 1/p+ 1/q <
1/2.

Finally, we come to the pointwise decay estimates, where we have
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Theorem 7 ( [21]). Case A,B: Suppose that the metric g and the potential V
satisfy

g = m+Oradial(r
−1) + o(r−1), g = m+Oradial(r

−3) + o(r−3)

If (EE) and a weak form of (LE) hold then the pointwise decay estimates (PD).

Such a result was conjectured by Price [16] in the case of the Schwarzschild
space-time and proved by [18] when g = m and V is small. By Theorems 4,5 this
result implies Price’s conjecture for both the Schwarzschild and Kerr space-times
with small angular momentum |a| ≪ M . Partial results in these two cases have
been previously proved in [3], [6], [7], [11] [4], [12], [17].
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Hidden symmetries and decay for the wave equation on the Kerr
spacetime

Pieter Blue

We study the wave equation

∇α∇αψ = 0(1)

in the exterior region of the Kerr spacetime, which is described in Boyer-Lindquist
coordinates by (t, r, θ, φ) ∈ R × (r+,∞) × S2, where r+ = M +

√
M2 − a2 and

where M and aM are the mass and angular momentum of the Kerr black hole.
The Kerr spacetime has two symmetries, time translation and rotation about

the axis of symmetry, and these generate the Killing vector fields ∂t and ∂φ. In
addition, there is Carter’s Killing 2-tensor which is said to generate a “hidden
symmetry” and allows us to define a second-order operator Q.

In work with L. Andersson [1], we have shown

Theorem 1. There are positive constants ā and C′, and a positive quadratic
form ‖ · ‖2(t) defined on each hypersurface of constant t such that if |a| < ā
then, for parameters r1 and r2 satisfying r+ < r1 < r2 < ∞, there is a positive
constant C for which all solutions ψ of the wave equation satisfy the estimate that
∀t > 0, r ∈ [r1, r2], (θ, φ) ∈ S2:

|ψ(t, r, θ, φ)| ≤Ct−1+C′|a|‖ψ‖(0).
The norm ‖ψ‖(t) is bounded if ψ is both smooth and has a decay rate, for itself

and its first nine derivatives with respect to the Boyer-Lindquist coordinates, of
r−5/2+δ for any positive δ. We also have proved the corresponding decay rates for
ψ as r → r+ and r → ∞.

Previously, separation of variables was used to expand solutions as ψ(t, r, θ, φ) =∑
Lz

∫ ∑
n e

iLzφeiωtRLz,ω,n(r)YLz ,ω,n(θ)dω and to obtain decay results of the form

limt→∞ ψ(t, r, θ, φ) → 0 when there are only finitely many Lz in the expansion of
ψ [7].

Another approach was used to prove decay estimates in the subcase of the
Schwarzschild spacetime, where a = 0, using the vector-field method, which essen-
tially involves only integration by parts and choices of vector fields. For the wave
equation, decay rate estimates were proved [3], proved with less regularity loss [2],
and proved independently with stronger estimates near the event horizon [6]. This
work built on earlier work for a model problem [8]. These results for the wave
equation did not require a restriction to finitely many modes.
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In 2008, uniform bounded was proven for the wave equation on slowly rotating
Kerr spacetimes [5, 9]. A result similar to theorem 1 was also announced and a
detailed outline of the proof was given in [4]. Shortly before that uniform bound-
edness results were proved in [5, 9]. These results combined vector field methods
with Fourier analytic or microlocal techniques. This does not use the complete
separability of solutions, but does use the possibility of expansion in eiωteiLzφ,
which follows from the Kerr symmetries of time translation and rotation about
the axis of symmetry.

In applying the vector field method to the wave equation on the Kerr spacetime,
there are three major obstacles

(1) there is no globally timelike vector field T ,
(2) there is not the full set of rotational symmetries Θi , and
(3) the set of orbiting geodesics fills a four-dimensional volume.

It is well known that timelike Killing vector fields generate positive conserved
energies, but that the Kerr spacetime has no timelike Killing vector field. The
vector fields ∂t and ∂t + ωH∂φ, where ωH = a/(r2+ + a2), are both Killing. The
first generates the time translation symmetry, and the second generates the null
tangents to the event horizon. For sufficiently large r, the vector field ∂t is timelike,
and, for r sufficiently close to r+, the vector field ∂t + ωH∂φ is timelike. When
|a| is sufficiently small, these far and near regions overlap, so that it is possible to
construct a globally timelike Killing vector, Tχ, by smoothly transitioning from
one vector field to the other in the region where both are timelike. The region
where Tχ fails to be timelike covers only a compact set of r values. Thus, to prove
that the associated energy is bounded, it is sufficient to control the spacetime
integral of |∂rψ||∂φψ| in this region.

The standard way to go from estimates for the energy of a solution to estimates
for the solution itself is to consider not just the energy of ψ but also derivatives
of ψ which also satisfy the wave equation. If ψ is a solution of the wave equation,
then so is Sψ for any S in the algebra of symmetries generated by

⊕∞
n=0Sn, Sn ={∂nt

t ∂
nφ

φ QnQ |nt, nφ, nQ ∈ N, nt + nφ + 2nQ = n},
Q =(sin θ)−1∂θ sin θ∂θ + sin2 θ∂2φ + a2 sin2 θ∂2t .

Thus, if ETχ,1[ψ] is the energy of ψ, defined using Tχ, then we can define ETχ,3[ψ]

to be the sum of the energies ETχ,1[Sψ] with S ∈ ⊕2
n=0Sn. Since the Sψ also

satisfy the wave equation, this growth of the third-order energy will be controlled
by the spacetime integral of third-derivatives of ψ in a fixed range of r values.

Spacetime integrals of this form can be controlled by Morawetz estimates,
which already played an important role in the proof of decay rate estimates in
the Schwarzschild case. Such estimates require the construction of a vector field
which is adapted to point away from the orbiting geodesics. In the Schwarzschild
case, where the orbiting geodesics are constrained to the three-dimensional hyper-
surface r = 3M , such a vector field can be chosen by taking A = F(r)∂r with F
a smooth, increasing function which changes sign at r = 3M .
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Unfortunately, obstacle 3, in conjunction with certain nonvanishing- derivative
and smoothness conditions required for the Morawetz estimate, prevents the con-
struction of a vector field A which points away from the photon orbits, since there
is no single value at which the weight F(r) should change sign. By replacing F(r)
by Fab(r)SaSb where S2 = {Sa}, we have been able to construct a Morawetz
estimate without using Fourier transforms in t. At one point in the proof, we
still require that there are sufficiently small ǫ and sufficiently large N such that∫
S2(ψ − N∂2φψ)

2dθdφ > ǫ
∫
S2(ψ

2 + (∂2φψ)
2)dθdφ, which follows from the discrete

spectrum of ∂2φ.
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The massive wave equation on slowly rotating Kerr-AdS spacetimes

Gustav Holzegel

We study the massive linear wave equation

(1) 2gψ − α
Λ

3
ψ = 0

for α < 9
4 on asymptotically anti-de Sitter (AdS) black hole backgrounds. That is

to say that, in particular, g satisfies

(2) Rµν − 1

2
Rgµν + Λgµν = 0

with Λ < 0, and decays suitably to the AdS metric towards null-infinity. Note
that, as we use signature (−,+,+,+), the range 0 < α < 9

4 corresponds to neg-
ative mass. The choice α = 2 has particular relevance as it produces the confor-
mally invariant wave equation in (1). Finally, the bound α < 9

4 is known as the
Breitenlohner-Freedman bound [4].

http://arxiv.org/abs/0908.2265
http://arxiv.org/abs/0811.0354
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Asymptotically AdS spacetimes are not globally hyperbolic. To make equa-
tion (1) well-posed on these backgrounds, one has to impose, in addition to initial
data on a spacelike hypersurface Σ, boundary conditions at null infinity (I). Con-
structing an appropriate coordinate system (t, r, θ, φ) near I, and exploiting the
asymptotic timelike Killing field ∂t and its associated energy, one establishes the
following well-posedness statement:

Theorem 1. Fix an asymptotically AdS spacetime whose causal geometry is sim-
ilar to either pure AdS or Kerr-AdS. Then, for α < 9

4 and suitably regular data on
a spacelike hypersurface, there exists a unique solution ψ of (1) with the property
that its associated energy flux (arising from ∂t) through null-infinity vanishes.

It is noteworthy that the solution is expected to be non-unique, if one imposes
only ψ = 0 at I. This type of non-uniqueness has been shown explicitly in the
pure AdS case in [3, 4]. The point here is that membership of the solution in the
energy space (as arising from ∂t) imposes decay conditions on ψ which are much
stronger than just ψ = 0 at I.

We are interested in the global behavior of solutions produced by Theorem 1
on black hole spacetimes. For the Schwarzschild-AdS case the metric – in regular
coordinates including the event horizon – reads (setting Λ = − 3

l2 )

g = −
(
1− 2M

r
+
r2

l2

)
(dt⋆)

2
+

4M

r
(
1 + r2

l2

)dt⋆dr +
1 + 2M

r + r2

l2(
1 + r2

l2

)2 dr2 + r2dω2

and we prove

Theorem 2. Fix a Schwarzschild-anti de Sitter spacetime (M, gM>0,Λ) and Σ0 =

Στ0 a slice of constant t⋆ = τ0 in D = J+ (I) ∩ J− (I). Let α < 9
4 and ψ be a

solution arising from Theorem 1. If

(3)
n∑

k=0

∫

Σ0

(
1

r2
(
∂t⋆Ω

kψ
)2

+ r2
(
∂rΩ

kψ
)2

+ | /∇Ωkψ|2
)
r2drdω <∞

then
n∑

k=0

∫

Στ

(
1

r2
(
∂t⋆Ω

kψ
)2

+ r2
(
∂rΩ

kψ
)2

+ | /∇Ωkψ|2
)
r2drdω

≤ C

[
n∑

k=0

∫

Σ0

(
1

r2
(
∂t⋆Ω

kψ
)2

+ r2
(
∂rΩ

kψ
)2

+ | /∇Ωkψ|2
)
r2drdω

]
.(4)

for a constant C which just depends on M , l and α. Here Στ denotes any constant
t⋆ slice to the future of Σ0 and restricted to r ≥ rhoz.

In Theorem 2 we commute with a basis of angular Killing vectorfields Ωi. Using
Sobolev embedding on S2 we obtain a pointwise bound for ψ on the entire black
hole exterior.

The proof of Theorem 2 uses vectorfield multipliers and commutators and has
two essential ingredients. Firstly, in the range 0 < α < 9

4 the energy momentum



Mathematical Aspects of General Relativity 2601

tensor associated with ψ does not satisfy the dominant energy condition due to the
zeroth order term. However, it turns out that in the energy identity arising from
the Killing field T = ∂t⋆ , one can absorb the zeroth order term by the r-derivative
term using a weighted Hardy inequality. Hence the energy is still positive in an
integrated sense.

The second ingredient is a redshift vectorfield Y , which was constructed by
Dafermos and Rodnianski for any non-degenerate Killing horizon [2]. It turns
out that the energy arising from T plus the redshift vectorfield suffice to prove
boundedness (cf. [1] for the asymptotically flat context).

We next generalize Theorem 2 to the case of Kerr-AdS. The additional difficulty
caused by the ergosphere can be resolved in a much simpler fashion than in the
asymptotically flat case: For sufficiently small angular momentum, there exists a
globally causal Killing field K on the black hole exterior [5]. Using K instead of
T one proves (again with the help of the redshift) that the non-degenerate energy
can be controlled from the data for all times (i.e. the analogue of (4) for k = 0).
For higher derivatives a problem arises since one can no-longer commute (trivially)
with angular momentum operators. To resolve this problem we again apply the
results of [2], suitably adapted to the AdS setting: Commuting with T (or K) and
with the redshift vectorfield near the horizon is sufficient to gain control over all
derivatives using elliptic estimates. In brief this is possible because the worst term
in the commutation with the redshift vectorfield has a good sign. We obtain

Theorem 3. Fix α < 9
4 , a mass M and a negative cosmological constant Λ. Then

there exists a parameter ã > 0 (depending on M and Λ) such that for any fixed
Kerr-AdS spacetime with parameters (M , |a| < ã, Λ), solutions of the massive
wave equation as arising from Theorem 1 remain uniformly bounded on the black
hole exterior.

We finally remark that one can generalize Theorem 3 even further to include
backgrounds which are sufficiently close to the Kerr-AdS spacetimes and admit a
global causal Killing field which is null on the horizon.
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A black hole uniqueness theorem

Spyros Alexakis

(joint work with A. Ionescu and S. Klainerman)

This report covers recent work of the author, in collaboration with A. Ionescu and
S. Klainerman on the black hole uniqueness question, [2, 3].

This question is motivated by the expectation1 that general, dynamic black hole
exteriors should settle down asymptotically to non-radiative, stationary solutions;
this is projected due to radiation of matter and gravitational energy into the
black hole region and to inifinity. One therefore wishes to understand the possible
stationary black hole solutions, in the hope that the general dynamic black hole
solutions should asymptoticaly resemble such a state.

Hawking and Ellis asserted, based on prior work of Carter and Robinson [4,
12], that the Kerr family of solutions are the only possible sufficiently regular
stationary black hole solutions with a simply connected non-degenerate bifurcate
event horizon. They proved this assertion, imposing the apriori assumption of
real-analyticity on the space time metric. We review the Hawking argument, since
it will set a blueprint for our result:

The classical black hole uniqueness proof: Hawking noted that given any sta-
tionary black hole exterior (Mext,g), stationarity implies the existence of a jet
of a second, rotational Killing filed Z on the event horizon. The assumption of
real-analyticity enabled him to conclude that this formal jet extends to an actual
rotational Killing field Z in the entire exterior region Mext.

2 Thus the space-time
(Mext,g) is not only stationary but also axi-symmetric. The conclusion then fol-
lows from the work of Carter and Robinson who proved that a black hole exterior
which is both stationary and axisymmetric must necessarily be isometric to a Kerr
solution. (Remark: The original ingenious arguments in [4, 12] have since been
simplified and cast in new light by numerous authors; I wish to make particu-
lar reference to the work of Mazur and Weinstein [11, 13]. The recent work of
Chusciel-Costa [5] provides a definite account of all elements in the proof and fills
in gaps in the prior literature).

One unsatisfacory point with the above approach is its reliance on the apri-
ori assumption of real-analyticity. Indeed, this assumption is highly un-natural,
given that stationary (non-static) black hole exteriors must necessarily posess an
ergo-region, where the Killing field T is space-like. There is apriori no reason
whatsoever for the metric to be real-analytic there. Our theorem addresses this
short-coming; we feel that the rsult in [2,3] provides the strongest evidence to-date
on the validity of the black hole uniqueness conjecture:3

Theorem 1 (A., Ionescu, Klainerman, [2,3].). Let (Mext,g) be a vacuum, station-
ary, globaly hyperbolic black hole exterior, with a bifurcate event horizon H+

⋃H−;

1Formulated in [7].
2A rigorous proofof this fact was later given by Friedrich-Racz-Wald in [6].
3We provide a simplified formulation of the main theorem. We refer the reader to [2] for the

proper formulation.
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denote the stationary Killing field by T. Assume that the Mars-Simon tensor
Sijkl satisfies a smallness condition of the form |(1 − σ)S(T, T a, T b, T c)| ≤ ǫ for
some sufficiently small ǫ.4 Then under suitable regularity assumptions (on the be-
haviour at space-like infinity and at the event horizon), described in [2] we prove
that (Mext,g) must be isometric to a member of the Kerr family of solutions.

Remark: The Mars-Simon tensor Sijkl is a natural tensor defined on any sta-
tionary vacuum space-time, see [9, 10]. One of its remarkable features is that its
vanishing is a local characterization of the Kerr solutions. Thus, the smallness
condition we impose can be interpreted as a “closeness” condition to the Kerr
family of solutions.

Ideas in the proof: The proof of the above relies on two main components.
The first is a general unique continuation theorem for the vacuum Einstein equa-
tions. This is used to derive that for vacuum Einstein metrics, a Killing field
can be extended across any hypersurface H provided H is pseudo-convex, in an
appropriate sense.5 In fact, based on Carleman estimates in [8], we show in that
the rotational Killing field Z can be extended to a neighborhood of the event
horizon, without any smallness assumption on S. The second component is the
observation that the smallness assumption on S implies the existence of a foliation
of Mext be a family of hypersurfaces which do satisfy the (apropriate) notion of
pseudo-convexity. Specificaly:

First step, [2]: Such a unique continuation result was originaly derived in [1].
The proof in [2] provides a substantial simplification of the ideas in [1]. The ar-
gument relies on coupling the (differentiated) Einstein equations6 to a system of
second order ODE’s, which fix the gauge choice though a moving frame construc-
tion.7 Unique continuation for the Einstein metric then follows by combining this
system of equations with Carleman estimates applied to the wave operator.

Second Step, [3]: The required foliation is explicitly constructed by using the
level sets of Re( 1

1−σ ). We then prove that these level level sets are conditionaly
pseudo-convex. This notion is the correct notion of pseudo-convexity in this setting:
Ionescu-Klainerman showed [8] that in stationary space-times, Carleman estimates
(for the wave operator coupled with an ODE in the Killing direction) hold across
a given hypersurface H, provided conditional pseudo-convexity (as opposed to
the full notion of pseudo-convexity) holds across H. Here we define a smooth
hypersurface H to which T is tangent to be conditionaly pseudo-convex (in a given
direction) when H is convex relative only to null geodesics which are normal to T.

4Here σ is the (complexified) Ernst potential for the Killing field T. Sijkl is the Mars-Simon

tensor and T 0, T 1, T 2, T 3 stands for an orthonormal frame defined on the Cauchy surface in
Mext.

5The classical notion of pseudo-convexity was introduced by Hörmander. In this setting it
means that H should be convex (in a specific direction) only with respect to null geodesics.

6We use the well-known fact that the Einstein equations imply a non-linear wave equation
on the space-time cuvature tensor.

7The argument in relied on fixing the gauge through a canonical choice of “double Fermi”
coordinates. This gave rise to a second-order ODE, which caused difficulties and complications
in the proof.



2604 Oberwolfach Report 46/2009

References

[1] S. Alexakis, Unique continuation for the vacuum Einstein equations, arXiv:0902.1131.
[2] S. Alexakis, A. D. Ionescu, S. Klainerman, Hawking’s local rigidity theorem without analyt-

icity, arXiv:0902.1173.
[3] S. Alexakis, A. D. Ionescu, S. Klainerman, Uniqueness of smooth stationary black holes in

vacuum: small perturbations of the Kerr spaces, arXiv:0904.0982.

[4] B. Carter, Black hole equilibrium states, Black holes/Les astres occlus (École d’Été Phys.
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Gravitational collapse for the Einstein-Vlasov system

Gerhard Rein

(joint work with H̊akan Andréasson, Markus Kunze)

An important open problem in general relativity is the validity of the weak cos-
mic censorship conjecture which says that generic asymptotically flat initial data
for the Einstein-matter equations have a maximal future development possessing
a complete future null infinity. An answer to this problem in full generality is
beyond reach of present mathematical techniques, but under the assumption of
spherical symmetry Christodoulou showed that the conjecture holds if “matter”
is described as a massless scalar field, while it is violated if matter is described as
dust, i.e., an ideal fluid with pressure zero, cf. [6] and the references there.

In my talk I argued that a collisionless gas as described by the Vlasov equation
provides a suitable matter model for investigating the weak cosmic censorship
conjecture, and I presented recent results in that direction.

The Einstein-Vlasov system describes in the framework of general relativity
an ensemble of particles, say the stars in a galaxy or a globular cluster, which
interact only through the gravitational field which they create collectively. If
f = f(xα, pβ) ≥ 0 denotes the number density of the particles on the co-tangent
bundle of the spacetime manifold and gαβ the Lorentz metric with induced Einstein
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tensor Gαβ , then the system takes the form

Gαβ = 8πTαβ,

pα∂xαf − 1

2
∂xαgβγpβpγ∂pα

f = 0,

Tαβ = |g|−1/2

∫
pαpβf

dp0dp1dp2dp3
m

;

|g| denotes the modulus of the determinant of the metric and m the rest mass of
the particle with coordinates (xα, pβ). Usually we restrict ourselves to the case
that m = 1 for all particles. We emphasize that in our analysis f is a (smooth)
distribution function and not a possibly singular measure; by a suitable choice
of the latter type dust would become a special case of the Vlasov matter model.
The Newtonian limit of the Einstein-Vlasov system, the so-called Vlasov-Poisson
system, is frequently used as a model in astrophysics.

A distinguishing feature of the latter system is that sufficiently regular initial
data launch smooth, global-in-time solutions [7, 9, 10]. Possible singularities in
the solutions of the Einstein-Vlasov system must therefore have some relativistic
origin. In addition, for a given, sufficiently smooth metric the Vlasov equation
simply says that the particles in the ensemble move along timelike geodesics so
this matter model does not produce singularities by itself. These two features
make the Vlasov equation a particularly suitable matter model when investigating
gravitational collapse, the formation of possible spacetime singularities, and the
cosmic censorship conjecture. On the other hand the dynamics of the system
is rich already in spherical symmetry and qualitatively different types of solution
behavior are possible: Small data launch geodesically complete solutions where the
matter disperses [11], the system possesses an abundance of steady states [12,13],
in numerical simulations one finds both stable and unstable such steady states,
and the perturbation of stable ones seems to lead to periodic oscillations while
the perturbation of unstable ones can lead to gravitational collapse [3]. Numerical
investigations of critical gravitational collapse for the Einstein-Vlasov system have
so far always lead to so-called type I behavior [3,8,15], in support of the conjecture
that weak cosmic censorship holds for this system.

In order to analyze solutions of the asymptotically flat and spherically sym-
metric Einstein-Vlasov system and possible gravitational collapse the choice of
coordinates is important. A first choice are Schwarzschild coordinates where the
metric takes the form

ds2 = −e2µ(t,r)dt2 + e2λ(t,r)dr2 + r2(dθ2 + sin2 θ dϕ2).

From [14] it is known that if a solution in these coordinates develops a singularity
the first one must be at the center. Hence solutions exist globally on domains like

D := {(t, r) | r ≥ γ(t)}
the boundary curve of which is a radially outgoing null geodesic:

γ̇ = eµ(t,γ)−λ(t,γ), γ(0) = r0 > 0.
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In [1] explicit conditions on the initial data are specified such that the behavior
of the solutions on D can be analyzed in sufficient detail to conclude that a black
hole forms, the spacetime has a complete future null infinity in the sense of [6],
and hence weak cosmic censorship holds, cf. also [2]. The basic structure of the
data is that some matter, which can be represented by a steady state, is inside
{r < r0} while a shell of particles which move inward sufficiently fast is situated
at radii larger than but close to the Schwarzschild radius of the total ensemble.

A drawback of Schwarzschild coordinates in such an analysis is that they can-
not cover regions of spacetime containing trapped surfaces. Related to this is the
fact that they do not seem to completely cover the generator of the event hori-
zon; at least it has not been possible to show that they do. For the data under
consideration a necessary condition for the completeness of the event horizon is
that

lim
t→∞

m(t, 2M) =M

where m = r
2 (1− e−2λ) is the quasi-local ADM mass and M = m(t,∞) the ADM

mass of the solution. The latter asymptotic behavior of the matter has been
established in [4].

In [5] the system was analyzed in Eddington-Finkelstein coordinates where the
metric takes the form

ds2 = −a(v, r) b2(v, r) dv2 + 2b(v, r) dv dr + r2
(
dθ2 + sin2 θ dϕ2

)
.

Here v is an advanced null coordinate, and b must be strictly positive but a can
change sign. Surfaces of constant v and r are trapped if a(v, r) < 0. Explicit
conditions on initial data with a > 0 are specified which guarantee that a trapped
surface forms. The evolution of the solutions is analyzed after the formation of a
trapped surface, and it is shown that the generator of the event horizon is future
complete. The structure of the initial data is similar to what was explained above.
Finally, by studying a situation where a shell of Vlasov matter is sent into a black
hole solutions are found where apparent horizon and event horizon do not coincide.
In textbooks the latter phenomenon is usually illustrated by Vaidya spacetimes
where so-called null dust is used as an ad-hoc matter model.

We conjecture that for the class of data investigated in [5] a curvature singularity
arises at the center, and strong cosmic censorship holds. Numerical simulations
support this conjecture.

References
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Non-existence of stationary two-black-hole configurations

Jörg Hennig

(joint work with Gernot Neugebauer)

This talk is meant to contribute to the present discussion about the existence
or non-existence of stationary equilibrium configurations consisting of separate
bodies at rest. In Newtonian theory it is a classical result that there exists no
static n-body configuration (with bodies separated by a plane and with n > 1).
Recently, a similar statement was shown in the context of General relativity: Beig
and Schoen [1] were able to prove a non-existence theorem for a reflectionally
symmetric static n-body configuration.

Our intention is to involve the interaction of the angular momenta of rotating
bodies (“spin-spin interaction”) which could generate repulsive effects compensat-
ing the omnipresent mass attraction. An interesting result in this direction is a
generalization of the above mentioned theorem by Beig and Schoen that proves the
non-existence of symmetric two-body configuration with anti-aligned spins, cf. [2].
However, motivated from post-Newtonian expansions one would expect repulsive
spin-spin effects for bodies with aligned spins.
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As a characteristic example for a stationary configuration with separated bodies
we investigate the possibility of equilibrium between two aligned rotating axisym-
metric black holes. We will present and review a chain of old and new arguments
which finally forbid this equilibrium situation.

Interestingly, there exists an exact solution to the Einstein equations that
was extensively discussed as a good candidate for two black holes in equilib-
rium [4,6–13] — the double-Kerr-NUT solution, first investigated by Kramer and
Neugebauer [9]. This solution is a particular case of a more general solution which
was constructed by applying a N -fold Bäcklund transformation1 to an arbitrary
seed solution [14]. The double-Kerr-NUT solution can be obtained as the spe-
cial case of a two-fold (N = 2) Bäcklund transformation applied to Minkowski
spacetime [15]. Since a single Bäcklund transformation generates the Kerr-NUT
solution that contains, by a special choice of its parameters, the Kerr black hole
solutions and since Bäcklund transformations act as a “nonlinear superposition
principle”, the double-Kerr-NUT solution was considered to be a good candidate
for the solution of the two-horizon problem.

However, there was no argument requiring that this particular solution be the
only candidate. In this talk we will remove this objection and show that the
discussion of a boundary value problem for two separate horizons necessarily leads
to (a subclass of) the double-Kerr-NUT family of solution. For that purpose,
we utilize another soliton method — the inverse scattering method. Hereby, an
associated linear problem is analyzed, whose integrability conditions are equivalent
to the non-linear field equations in axisymmetry and stationarity, see [14]. Details
of the solution of the boundary value problem can be found in [16, 17].

In order to investigate whether the double-Kerr-NUT solution really describes
the desired equilibrium between two black holes, we test physical inequalities which
have to be satisfied for reasonable black hole spacetimes. To this end we study
equilibrium configurations containing sub-extremal black holes (defined by exis-
tence of trapped surfaces in every sufficiently small interior neighborhood of the
event horizon, cf. [3]) and degenerate black holes (defined by vanishing surface
gravity κ). In particular, we analyze the following configurations:

(1) Configurations with two sub-extremal black holes:
As shown in [5], every sub-extremal black hole satisfies the inequality
8π|J | < A between angular momentum J and horizon area A. However,
the explicit formulae for angular momenta and horizon areas of the two
objects described by the double-Kerr-NUT solution show that at least
one of these objects violates this inequality. Hence we conclude that an
equilibrium between two sub-extremal black holes is impossible, see [17].

(2) Configurations with two degenerate black holes:
In this case, the ADM massM of the double-Kerr-NUT solution turns out
to be negative — a contradiction to the positive mass theorem. Therefore,
also this equilibrium configuration cannot exist.

1The Bäcklund transformation is a particular method from soliton theory that creates new
solutions to nonlinear equations from a previously known one.
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(3) Configurations with one degenerate and one sub-extremal black hole:
Together with the inequality 8π|J | < A for the sub-extremal black hole,
the ADM mass of the spacetime can be estimated. The result is again
a negative total mass, M < 0, i.e. also this configuration cannot be in
equilibrium.

Therefore, we arrive at the conclusion that physically reasonable two-black-hole
equilibrium configurations (containing sub-extremal or degenerate black holes) do
not exist.
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Global well-posedness of the Cauchy problem for a super-critical
nonlinear wave equation in 2 space dimensions

Michael Struwe

In [2] Ibrahim, Majdoub, and Masmoudi demonstrated that the initial value prob-
lem for the equation

(1) utt −∆u+ ueu
2

= 0 on R× R
2

is well-posed for smooth Cauchy data

(2) (u, ut)|t=0
= (u0, u1)

with initial energy

(3) E(u(0)) =

∫

R2

e(u(0))dx ≤ 2π,

where

(4) e(u) =
1

2

(
|ut|2 + |∇u|2 + eu

2 − 1
)
.

Equation (1) is related to the critical Sobolev embedding in 2 space dimensions.
Let Ω be a bounded domain in R2. Recall the Moser-Trudinger inequality

(5) sup
u∈H1

0 (Ω);||∇u||2
L2(Ω)

≤1

∫

Ω

e4πu
2

dx <∞;

see [6], [12]. The exponent α = 4π is critical for this Orlicz space embedding in
the sense that for any α > 4π there holds

(6) sup
u∈H1

0 (Ω);||∇u||2
L2(Ω)

≤1

∫

Ω

eαu
2

dx = ∞.

On account of the obvious scaling property

(7) sup
u∈H1

0 (Ω);||∇u||2
L2(Ω)

=1

∫

Ω

eαu
2

dx = sup
u∈H1

0 (Ω);||∇u||2
L2(Ω)

=α

∫

Ω

eu
2

dx

and in view of (5), (6) the Cauchy problem for (1) with initial energy E(u(0)) < 2π
then may be regarded as “sub-critical”, while the cases E(u(0)) = 2π or E(u(0)) >
2π may be termed “critical” or “super-critical”, respectively.

The work [2] of Ibrahim, Majdoub, and Masmoudi thus shows that the Cauchy
problem for equation (1) is well-posed in the sub-critical and critical regimes, as
one might conjecture in view of the known results for nonlinear wave equations

(8) utt −∆u+ u|u|p−2 = 0 on R× R
n

in n ≥ 3 space dimensions where well-posedness was shown to hold for p ≤ 2n
n−2 ;

see for instance the Notes in [7] for a brief survey and references.
It therefore may seem quite surprising that in the case of equation (1) the

restriction (3) on the size of the initial data is unnecessary, at least in the case of
radially symmetric data. Indeed, in [10] we establish the following result.
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Theorem 1. For any radially symmetric data (u0, u1) = (u0(|x|), u1(|x|)) ∈
C∞(R2) there exists a unique, smooth solution u = u(t, |x|) to the Cauchy problem
(1), (2), defined for all time.

Our method can also be applied to obtain global regularity of radially symmetric
solutions to nonlinear wave equations (8) in higher dimensions. In particular, when
n = 3 we obtain a new proof of global well-posedness of (8) in the critical case
p = 6, first established in [9]. However, it is not clear how the method might be
adapted to the case when p > 6. With some luck, it might be possible to deal with
logarithmically super-critical problems as treated in recent work of Tao [11].

On the other hand the recent results [1], [3] of Ibrahim, Jrad, Majdoub, and
Masmoudi show that the local solution of the Cauchy problem (1), (2) in gen-
eral does not depend continuously on the initial data in the energy norm when
E(u(0)) > 4π. In this respect then equation (1) is similar to nonlinear wave
equations (8) with super-critical nonlinearities in dimensions n ≥ 3.

It is therefore not clear whether Theorem 1 may be extended also to non-
symmetric data, even though it seems that a singularity would most likely appear
in the radially symmetric case. Perhaps the recent work [4] of Ibrahim, Maj-
doub, Masmoudi, and Nakanishi on the scattering behavior of solutions to (1)
with Cauchy data satisfying (3), or the references [1], [3], and [5] can help provide
further intuition for this problem and with regard to the issue of well-posedness
and ill-posedness of super-critical wave equations in general.
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Late-time tails of self-gravitating waves

Piotr Bizoń

The work presented in this talk is part of a long-time joint project with Tadek
Chmaj and Andrzej Rostworowski aimed at the detailed quantitative description
of the process of relaxation to equilibrium for nonlinear wave equations defined on
spatially unbounded manifolds. By equilibrium we mean here a stable stationary
solution, like a soliton, a black hole, or just a flat space. The convergence to these
solutions occurs through a mechanism of radiating an excess energy to infinity. For
a large class of physically interesting systems the late stages of this process are
universal: for intermediate times the convergence has the form of exponentially
damped oscillations (called quasinormal modes) and asymptotically it has the form
of polynomial decay (called a tail). This very last stage of the relaxation process,
the tail, is the subject of my talk. The key point which I wish to emphasize here
is that, in general, the tail is a strictly nonlinear phenomenon. Before showing
this for Einstein’s equations, let me illustrate this point with a simple example of
a radial wave equation with a potential and power nonlinearity

(1) φtt − φrr −
2

r
φr + V (r)φ ± |φ|p−1φ = 0 .

For positive small potential V (r) ∼ r−α as r → ∞ (α > 2) and p > 1 +
√
2 it

is well known that solutions starting from small, smooth, compactly supported
initial data exist globally in time and scatter. It is not so well known that the
asymptotic behavior of solutions for t→ ∞ (r = const) is [1]

(2) φ(t, r) ∼ t−γ , γ = min{α, p− 1} .
It follows from (2) that linearization yields the sharp decay rate only if p > α +
1. Otherwise, the late-time behavior is inherently nonlinear, a fact frequently
overlooked in physics literature.

Now, I will show that a similar situation arises for late-time tails of self-
gravitating matter fields. First, let us consider the spherically symmetric Einstein-
massless scalar field system

(3) Gαβ = 8π

(
∇αφ∇βφ− 1

2
gαβ(∇µφ∇µφ)

)
, gαβ∇α∇βφ = 0 .

This toy-model of gravitational collapse has been intensively studied in the past
leading to valuable insights about the validity of the weak cosmic censorship
and no-hair conjectures. In particular, Christodoulou proved that there are two
generic endstates of evolution: Minkowski spacetime for small initial data [2]
and Schwarzschild black hole for large initial data [3]. For dispersive solutions
Christodoulou showed that φ(t, r) ≤ Ct−3, while for collapsing solutions Dafer-
mos and Rodnianski showed that φ(t, r) ≤ Ct−3+ǫ [4]. The first reliable numerical
simulations of the late-time asymptotics of this relaxation process have been done
by Gundlach, Price, and Pullin (GPP) [5]. They found that, regardless of the end-
state of evolution, the scalar field develops a tail which falls off as t−3 near timelike
infinity (for compactly supported initial data). Since this decay rate coincides with
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the decay rate for the linear wave equation on the Schwarzschild background (so
called Price’s law [6]), GPP suggested that the predictions of linearized theory
might apply in a nonlinear regime. It turns out that this interpretation is too
naive and in actual fact the above coincidence of decay rates is accidental. To sub-
stantiate this claim in the case of small initial data (φ, φt)t=0 = ε(f(r), g(r)) we
computed the late-time tails (both the decay rate and the amplitude) in d = 2L+3
space dimensions using nonlinear perturbation expansion [7]. The result, obtained
by elementary methods, reads

(4) φ(t, r) ∼ ε3
ΓL

t3L+3
,

where the coefficient ΓL is determined explicitly in terms of functions (f(r), g(r)).
For small values of ε this third-order approximation is in excellent agreement with
the results of numerical integration of the full Einstein-scalar field equations.

As mentioned above, for L = 0 (that is, d = 3) the decay rate of the tail
(4) agrees with Price’s tail. However, this agreement is lost in higher dimensions
(L ≥ 1) where Price’s tail behaves as t−(6L+4) [8]. Although the formula (4)
was derived only for small dispersive solutions, the same mechanism is at work
for collapsing solutions. In this case the tail has two components: the linear one
coming from the backscattering on the black hole potential and the nonlinear one.
For example, in six spacetime dimensions for small perturbations of Schwarzschild
we have φ(t, r) ∼ Aε/t10 +Bε3/t6 (where A,B are constants depending on initial
data), hence we observe the crossover from the linear to the nonlinear tail at time
t ∼ ε1/2.

In [9] we studied the analogous problem for wave maps which are a natural
geometric generalization of the wave equation for the massless scalar field. This
generalization seems interesting because in the so called equivariant case the homo-
topy index ℓ of the map plays the role similar to the multipole index for spherical
harmonics. However, in contrast to the decomposition of a scalar field into spher-
ical harmonics, which makes sense only at the linearized level, it is consistent
to study nonlinear evolution for the wave map within a fixed equivariance class.
In this sense ℓ-equivariant self-gravitating wave maps can serve as a poor man’s
toy-model of non-spherical collapse. The ℓ = 0 case reduces to the spherically
symmetric massless scalar field described above. For ℓ ≥ 1 we showed that for
small compactly supported initial data the late-time tail of the self-gravitating
ℓ-equivariant wave map decays as t−(2ℓ+2) at timelike infinity. Note that this de-
cay is by power slower than Price’s tail t−(2ℓ+3) for higher multipoles, which can
be viewed as another example of the inapplicability of linearized theory in the
analysis of radiative relaxation processes.

I would like to emphasize that our results by no means diminish the importance
of a recent flurry of results on late-time asymptotics of the linear wave equation on
a fixed background (cf. talks by Mihalis Defermos, Peter Blue, and Daniel Tataru).
Good understanding of the linear problem is a necessary first step in iteration-type
proofs of nonlinear stability of the background spacetime. Our work shows only
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that in general is not correct to draw conclusions about the late-time asymptotics
of the nonlinear problem on the basis of linearization.
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Null Asymptotics of Solutions of the Einstein-Maxwell Equations in
General Relativity and Gravitational Radiation

Lydia Bieri

A major goal of mathematical General Relativity (GR) and astrophysics is to pre-
cisely describe and finally observe gravitational radiation, one of the predictions
of GR. In order to do so, one has to study the null asymptotical limits of the
spacetimes for typical sources. Among the latter we find binary neutron stars and
binary black hole mergers. In these processes typically mass and momenta are
radiated away in form of gravitational waves. Among the pioneering papers, we
find [3], [4], [5], [6], [10].

D. Christodoulou showed that every gravitational-wave burst has a nonlinear
memory [8]. Before that such an effect had already been studied in linearized
theory [5], [6], [10], but it was so small, that for typical sources it would be negli-
gible. In [8] Christodoulou proved that this effect is much bigger in the nonlinear
theory, that is the nonlinear memory effect can in principle be observed. The
insights of this work are based on the precise description of null infinity obtained
by D. Christodoulou and S. Klainerman in [9] (see also [7]). Among the many
pioneering results they derived the Bondi mass loss formula. This is all in the
regime of the Einstein vacuum equations. N. Zipser studied the Einstein-Maxwell
equations and computed limits along the lines of Christodoulou and Klainerman
for this case [11], [12]. She derived a Bondi mass formula in the EM case. In this
talk, we discuss the null asymptotics for spacetimes solving the Einstein-Maxwell
(EM) equations, compute the radiated energy and derive limits at null infinity and
compare them with the Einstein vacuum (EV) case. Here, we rely on the methods
introduced in the works of Christodoulou and Klainerman [9], Bieri [1], [2] and
Zipser [11], [12].
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The nonlinear memory effect, that is the permanent displacement of the test masses
of a laser interferometer detector is governed by

Σ+ − Σ− =
1

2

∫ ∞

−∞

Ξ(u) du

See [8] for its derivation. Here, Σ denotes the asymptotic shear of outgoing null
hypersurfaces Cu and Σ+ and Σ− are limits of Σ as u tends to +∞ and −∞,
respectively. And Ξ is the (weighted) limit of the trace-free part of the conjugate
null second fundamental form of a closed spacelike surface S in spacetime.

Whereas in the EV case [9], [8] the total energy F

4π radiated to infinity in a given
direction per unit solid angle is obtained from

F =
1

8

∫ +∞

−∞

| Ξ |2 du ,

in the EM case F takes the form

F =
1

8

∫ +∞

−∞

(
| Ξ |2 +

1

2
| AF |2

)
du .

with AF denoting a component of the electromagnetic field. We investigate the
nonlinear memory effect in the presence of an electromagnetic field.

As for the gravitational wave experiment, considering the Jacobi equation, we
show that a component of the electromagnetic field comes in but only at lower
order. We derive the formulae for the EM case and compare them with the EV
situation.
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A Wave Coordinate Approach to the Stability of the Irrotational
Euler-Einstein System with a Positive Cosmological Constant

Jared Speck

(joint work with Igor Rodnianski)

1. Introduction

The irrotational Euler-Einstein system models the evolution of a dynamic space-
time1 (M, g) containing a perfect fluid with vanishing vorticity. In this article, we
endow this system with a positive cosmological constant Λ and consider the equa-
tion of state p = c2sρ, where p ≥ 0 is the fluid pressure, ρ ≥ 0 is the proper energy
density, and the non-negative constant cs is the speed of sound. Under these
assumptions, the irrotational Euler-Einstein system comprises the equations2

Rµν − 1

2
Rgµν + Λgµν = T (scalar)

µν ,(1)

Dα(σ
sDαΦ) = 0,(2)

where gµν is the spacetime metric, R β
µαν is the Riemann curvature tensor3,

Rµν
def

= R α
µαν is the Ricci curvature tensor, R = gαβRαβ is the scalar curva-

ture, Φ is the fluid potential4, T
(scalar)
µν = 2σs(∂µΦ)(∂νΦ) + gµν(1 + s)−1σs+1 is

the energy-momentum tensor of the irrotational fluid, σ = −gαβ(∂αΦ)(∂βΦ) ≥ 0
is the enthalpy per particle, and s = (1 − c2s)/(2c

2
s). The fundamental unknowns

are (M, g, ∂Φ), while the pressure and proper energy density can be expressed as
p = 1

s+1σ
s+1, ρ = 2s+1

s+1 σ
s+1. We remark that since Φ itself never directly enters

into the equations, we may consider ∂Φ, the spacetime gradient of Φ, to be the
unknown.

1By spacetime, we mean a 4−dimensional manifold M together with a Lorentzian metric gµν
on M of signature (−,+,+,+).

2See [3] for details concerning the fluid potential formulation of the irrotational relativistic
Euler equations.

3 In this article, Greek indices α, β, · · · take on the values 0, 1, 2, 3, while Latin indices a, b, · · ·

take on the values 1, 2, 3. Pairs of adjacent, repeated indices, with one raised and one lowered,
are summed (from 0 to 3 if they are Greek, and from 1 to 3 if they are Latin). We raise and lower
indices with the spacetime metric gµν and its inverse gµν . In our wave coordinate systems, which
are introduced in Section 3, x0 = t ∈ R will denote the “time” coordinate, and (x1, x2, x3) will

denote the standard “spatial” coordinates on T3 def
= [−π,π]3. D denotes the covariant derivative

induced by gµν , and ∂µ = ∂
∂xµ .

4In [3], Christodoulou refers to Φ as the wave function.
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In a future article, we will prove the future global nonlinear stability of a family
of Friedmann-Lemâıtre-Robertson-Walker (FLRW) type “background” solutions

to the system (1) - (2) under the assumption 0 < cs <
√
1/3. In this article, we

provide an introduction to some of the main ideas of our proof.

2. Background Solutions

We now introduce the family of FLRW type solutions which, under the assump-
tion 0 < cs <

√
1/3, will be shown to be future stable in a later publication. Using

an ODE ansatz (see e.g. Chapter 5 of [12]), one can show that the system (1) -
(2) has the following background solutions on the manifold5 M = (−∞,∞)×T3,

where T3 def

= [−π, π]3 with the ends identified:

g̃(t) = −dt2 + a(t)2
3∑

a=1

(dxa)2, ∂tΦ̃(t) = Ψ̄e−WΩ(t), ∂jΦ̃(t) = 0,(3)

where a(t) ∼ e(
√

Λ
3 )t is the solution to ȧ = a

√
Λ
3 + ρ̄

3a3(1+c2s)
with a(0) > 0, the con-

stant ρ̄ > 0 is the initial proper energy density of the fluid, Ψ̄ =
(
ρ̄ s+1
2s+1

)1/(2s+2)

,

Ω(t)
def

= ln
(
a(t)

)
, and W

def

= 3
2s+1 = 3c2s.

3. The Initial Value Problem Formulation and the Notion of
Stability

In order to discuss the notion of stability, we need to introduce an initial value
problem formulation of the Einstein equations. Although the existence of such
a formulation is well understood by now, it remains a decidedly subtle issue. In
particular, because of their diffeomorphism invariance, the hyperbolic nature of
the Einstein equations does not become apparent until one makes a gauge choice.
This difficulty was first resolved in the seminal work [2] by Choquet-Bruhat, who

showed the existence of a wave coordinate system in which Γµ def

= gαβΓ µ
α β ≡ 0. In

our analysis of the irrotational Euler-Einstein system, we will use a version of the
wave coordinate condition that is similar to the one used by Ringström in [11].
That is, we work in a coordinate system in which

Γµ ≡ Γ̃µ = 3ωδµ0 ,(4)

where the Γ̃µ = 3ωδµ0 are the contracted Christoffel symbols of the background

solution metric, and ω(t) = d
dtΩ(t). As discussed in Section 5, in our future publi-

cation, we will use identities valid in a wave coordinate system to derive a modified
hyperbolic system that (in a wave coordinate system) is equivalent to (1) - (2),
and that features energy-dissipating terms.

5Technically, the term “FLRW” is usually reserved for a class of solutions that have spatial
slices diffeomorphic to S3, R3, or hyperbolic space (see [12]).
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The initial data for (1) - (2) consist of a 3−dimensional manifold Σ together
with the following fields on Σ : a Riemannian metric ḡ, a covariant two-tensor6 K̄,
and the functions ∂̄Φ̊, Ψ̊, which are the tangential and normal derivatives along
Σ of the fluid potential Φ. The initial value problem for the Einstein equations is
overdetermined; the data are subject to the Gauss and Codazzi constraints7:

R̄− K̄abK̄
ab + (ḡabK̄ab)

2 = 2T
(scalar)
00 |Σ,(5)

D̄aK̄aj − ḡabD̄jK̄ab = T
(scalar)
0j |Σ,(6)

where R̄ is the scalar curvature of ḡ, and D̄ is the covariant derivative induced by
ḡ.

Our goal in our future paper is the following: to show that all sufficiently small
perturbations of the data corresponding to the background solutions of Section 2
that satisfy the Gauss and Codazzi constraints launch solutions to the irrotational
Euler-Einstein system with the following properties: i) in our wave coordinate
system, the solutions exist for (t, x1, x2, x3) ∈ [0,∞)× T3, ii) the spacetimes are
future causally geodesically complete, and iii) the solutions converge in some sense
as t→ ∞. Because of the inclusion of property iii), this type of stability is called
asymptotic stability. The fact that we will prove asymptotic stability is intimately
connected to the fact that our proof will rely upon energy estimates and decay
estimates. In the next two sections, we will see why such estimates are available
for the modified system.

4. The Model Problem

As a model problem, we consider the inhomogeneous wave equation gαβDαDβv =

F for the metric g = −dt2 + e2t
∑3

a=1(dx
a)2 on [0,∞) × T3. The contracted

Christoffel symbols of g are Γµ = 3δµ0 , which implies that relative to this coordinate
system, the wave equation can be written as follows:

−∂2t v + e−2tδab∂a∂bv = 3(∂tv)
2 + F.(7)

To estimate solutions to (7), we define the energy E2(t) = 1
2

∫
T3(∂tv)

2 +

e−2tδab(∂av)(∂bv) d
3x, and after an application of integration by parts and the

Cauchy-Schwarz inequality, we find that

d

dt
E ≤ −E + ‖F‖L2.(8)

From (8), it is clear that sufficient estimates of ‖F‖L2 in terms of E (for example,
‖F‖L2 ≤ CE, where C < 1 is a constant) will lead to energy decay.

6The tensor K̄ is the second fundamental form.
7In the constraint equations, we raise and lower indices with the metric ḡab and its inverse

ḡab.
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5. The Modified Irrotational Euler-Einstein System

In our future publication, we will make use of algebraic identities that are
valid in our wave coordinate system (see (4) for our wave coordinate condition)
to construct a modified version of the irrotational Euler-Einstein system. The
modified system has several key features. First, it comprises quasilinear wave
equations and therefore is of hyperbolic character. Second, following Rinström [11],
we will add gauge terms8 to the system in order to produce an energy-dissipating
effect that is analogous to the effect created by the 3(∂tv)

2 term on the right-hand
side of the model equation (7). It is exactly these dissipation-inducing terms that
will play a key role in our global existence argument.

6. Comparison with previous work

The main precursor to our work is Ringström’s article [11]. Using a wave co-
ordinate system similar to the one in (4), he showed the future global nonlinear
stability of a large class of solutions to the Einstein-non-linear scalar field system9

featuring accelerated expansion. Moreover, he stated that one of his main motiva-
tions for producing the work [11] was that the wave coordinate framework is easy
to adapt to handle various matter models. Our work can be viewed as an example
of the robustness of his methods.

Next, we remark that the behavior of the fluid equation (2) on exponentially ex-
panding backgrounds is very different than it is in flat spacetime. More specifically,
Christodoulou’s monograph [3] shows that on the Minkowski space background,
shock singularities can form in solutions to the irrotational fluid equation arising
from data that are arbitrarily close to that of a uniform quiet fluid state. Our
original intuition for our work was that rapid spacetime expansion should smooth
out the fluid and discourage the formation of shocks.

Finally, we note that Brauer, Rendall, and Reula have shown [1] a Newtonian
analogue of our main result. More specifically, they studied Newtonian cosmolog-
ical models10 with a positive cosmological constant and with perfect fluid sources
under the equation of state p = Cργ , where ρ ≥ 0 is the density, and γ > 1. They
showed that small perturbations of a uniform quiet fluid state of constant positive
density lead to a global solution. It is of particular interest to note that they do
not require the fluid to be irrotational. This suggests that our main result can be
extended to allow for (small) non-vanishing vorticity. We will address this issue
in another forthcoming article.

8That is, terms that are equal to 0 in wave coordinates.
9Although Ringström set Λ = 0, his scalar field Φ was a solution to gαβDαDβΦ = V ′(Φ),

where V (0) > 0, V ′(0) = 0, and V ′′(0) > 0. In effect, the nonlinearity V (Φ) emulates the
presence of a positive cosmological constant.

10Their models were based on Newton-Cartan theory, which is a slight generalization of ordi-
nary Newtonian gravitational theory that can be endowed with a highly geometric interpretation.
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Structure of singularities in cosmological spacetimes with symmetry

Jacques Smulevici

The study of the global Cauchy problem constitutes one of the main areas of
research in mathematical relativity and is one of the most natural problems to in-
vestigate in view of the hyperbolicity of the Einstein equations and of the theorems
concerning the local Cauchy problem1.

The results presented here are concerned with solutions of the vacuum Einstein
equations or of the Einstein-Vlasov system2, arising from initial data of arbitrarily
large size, but enjoying certain symmetries3, so as to reduce the equations for the
geometrical part to certain systems of 1 + 1 wave equations.

The classes of symmetry adressed are the so-called T 2-symmetric and surface-
symmetric spacetimes. The T 2-symmetric spacetimes constitute a class of solu-
tions arising from initial data with spatial topology T 3 and admitting a torus
action. They contain as special subcases the T 3-Gowdy spacetimes and the po-
larized T 2-symmetric spacetimes. The surface-symmetric spacetimes constitute a
class of solutions arising from initial data where the initial Riemannian 3-manifold

1See for instance [18] for a detailed exposition of the Cauchy problem in relativity.
2See [21] for an introduction to the Einstein-Vlasov system.
3As well as high regularity. See [23] for a precise description of the classes of initial data.
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is given by a product S1×S, where S is a compact 2-surface of constant curvature
k and such that the rest of the initial data is invariant under the local isometries
of S. By rescaling, k may be taken as being −1, 0 or +1 and the different cases
are known as hyperbolic, plane4 or spherical symmetry.

In the case of T 2-symmetric or k ≤ 0 surface-symmetric spacetimes, the local
geometry of the solution possesses the particular property that, unless the space-
time is flat, the symmetry orbits are either trapped or antitrapped [5, 19, 20]. If
we denote by t the area of the symmetry orbits, this means that the gradient of
t is everywhere timelike and that t may be used as a time coordinate. For the
vacuum T 2-symmetric case with zero cosmological constant (Λ = 0), the existence
of a global areal foliation where t takes value in (t0,∞) with t0 ≥ 0 was proven
in [13]. The proof was then extended to the Vlasov case [11, 12] and to the case
with Λ > 0 [10]. Similarly, the existence of a global areal foliation for the surface-
symmetric case with k = −1, Λ = 0 and Vlasov matter5 was proven in [9] and
extended to the case with Λ > 0 in [7, 8].

It was already realized in [6] that in the vacuum T 3-Gowdy case with Λ = 0,
one has t0 = 0 unless the spacetime is flat. The natural question arose: Is t0 = 0
generically for all the possible cases? This question is equivalent to the question of
global existence on (0,∞)×S1 for the solutions of the reduced system of equations
obtained by writing the Einstein equations in areal coordinates. The proofs that
t0 = 0 generically for T 2-symmetric spacetimes with Λ = 0, in the vacuum or with
Vlasov matter, were given in [4] and [3]. It has also been proven that t0 = 0 in
the case of plane symmetric initial data with Λ = 0 and Vlasov matter as well as
in the case of plane or hyperbolic symmetric initial data with Λ ≥ 0 and Vlasov
matter under an extra small data assumption [1, 2].

One motivation for the study of the value of t0 was the expectation that, in
the cases were t0 = 0, the curvature should in general blow up as t goes to 0,
thus providing a proof of inextendibility (and thus of the strong cosmic censor-
ship conjecture) for these cases. We refer to the introduction of [23] for a more
detailed exposition of the relations between the values of t0 and the strong cosmic
censorship conjecture.

In [23], the problem of the past asymptotic value of t for the remaining cases
was resolved. More precisely, we proved the following global existence theorems:

Theorem 1. Let (M, g, f) be the maximal development of T 2-symmetric initial
data with Vlasov matter and Λ ≥ 0. Suppose that the Vlasov field f does not
vanish identically. Then (M, g) admits a global foliation by areal coordinates with
the time coordinate t taking all values in (0,∞), i.e. t0 = 0.

Thus the presence of Vlasov matter forbids t0 > 0. In the vacuum case, we
know that non-flat solutions with t0 > 0 exist (see appendix E in [22]) which
already indicates that this case is more difficult. We proved the following:

4Note that the plane symmetric case is a special case of T 3-Gowdy polarized solutions.
5Note that, in the surface-symmetric case, a result analogous to Birkhoff’s theorem applies,

by which we mean that these spacetimes have no dynamical degrees of freedom in the vacuum.
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Theorem 2. Let (M, g) be the maximal Cauchy development of vacuum T 2-
symmetric initial data with Λ > 0 and suppose that the spacetime is not polarized.
Then (M, g) admits a global foliation by areal coordinates with the time coordinate
t taking all values in (0,∞), i.e. t0 = 0.

Finally, a result analogous to Theorem 1 holds in the hyperbolic symmetric
case:

Theorem 3. Let (M, g, f) be the maximal development of k = −1 surface-
symmetric initial data with Vlasov matter and Λ ≥ 0. Suppose that the Vlasov
field f does not vanish identically. Then (M, g) admits a global foliation by areal
coordinates with the time coordinate t taking all values in (0,∞), i.e. t0 = 0.

The proofs of these three theorems may be found in [23]. Let us just mention
that the proofs of Theorems 1 and 3 follow the approaches developed in [3, 4],
while, in the case of Theorem 3, a key a priori estimate no longer holds and forced
us to introduce a new strategy. Key features of the proof of Theorem 3 include: a
new blow up criterion, a hierarchisation of the equations exploiting the assumption
of non-polarization, new a priori estimates for the geometry of the quotient of the
spacetime by the orbits of symmetry and refined null cone estimates.
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Matter matters – On the dynamics of spatially homogeneous
cosmological models with anisotropic matter

J. Mark Heinzle

(joint work with Simone Calogero)

A spatially homogeneous cosmological model is a solution (M, 4g) of the Einstein
equations that admits an isometry group whose orbits are spacelike hypersurfaces
that foliate the spacetime M . The prime examples are the Bianchi models, which
are of the form M = I × G, where I is an interval of the real numbers, and
G a 3-dimensional Lie group; the Lorentzian metric 4g has the warped product
structure

(1) 4g = −dt2 + g(t) ,

where, for each time t, the (Riemannian) metric g(t) is a left-invariant metric on G.
By gij(t) we mean the components of g(t) w.r.t. a time-independent left-invariant
frame.

The dynamics of these cosmological models, i.e., the time-evolution of g(t), is
known to depend crucially on the choice of Lie group G (the ‘Bianchi type’). In
comparison, little is known about the influence of the choice of matter model,
the main question being whether the results on the dynamics of vacuum and
orthogonal perfect fluid models (where the matter field is a perfect fluid whose four-
velocity is aligned with ∂t) are robust under a change of matter model. Previous
work [1–3] indicates that this is not to be expected. The work [4] is a first step
towards a systematic analysis of the problem—in the present report we focus on
two particular results.
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Of particular interest are models of Bianchi type IX, for which G = S3 (‘closed
cosmologies’). Under rather general conditions these models are expected to ex-
pand from an initial singularity (‘big bang’), reach a maximum volume, and then
recontract and recollapse to a ‘big crunch’ [5]. The conditions are the energy con-
ditions imposed on the matter, in particular the strong energy condition which
makes gravity ‘an attractive force’. A proof of this ‘closed-universe-recollapse con-
jecture’ is available under the more restrictive condition of a non-negative average
pressure [6]. However, as we show in [4] there exist anisotropic matter models
such that closed-universe recollapse fails in general: We consider locally rotation-
ally symmetric models of Bianchi type IX and show the existence of matter models
with

(2) w =
p

ρ
∈
(
−1

3
,
1−

√
3

3

)
, β ∈ (β−, β+) ⊂

(
−1

2
, 0
)
,

such that there exists an open set of initial data for which the associated solutions
do not recollapse but expand for all times. In (2), ρ is the energy density and p
the average pressure (i.e., the average of the principal pressures) of the matter.
The parameter β measures the degree of anisotropy; it is constructed from the
minimum/maximum of the principal pressures and ρ. (For perfect fluids we have
β = 0, elastic materials are characterized by positive values of β; collisionless
(Vlasov) matter has β = 1; finally, magnetic fields are related to models with
β = −2. The matter model satisfying (2) does not correspond to any of these
explicit models.)

The main reason to study models of Bianchi type IX lies in their conjectured
role as building blocks for generic spacelike singularities: The asymptotic dynamics
of type IX models toward the (initial) singularity is expected to be representative
of the asymptotic dynamics of spacetimes without symmetries that form spacelike
singularities [7] (see, however, [8]). In this context, it is also expected that ‘matter
does not matter’, which means that the dynamics of solutions of the Einstein-
matter equations is asymptotically the same as the dynamics of vacuum solutions.
In [4] we show that this is not true in general already for locally rotationally
symmetric models. While, in the vacuum and (non-stiff) perfect fluid case, typical
solutions are asymptotic to the Taub solution

(3) g11 = a t2 , g22 = g33 = b , (a, b = const) ,

solutions with collisionless matter, i.e., Vlasov-Einstein, exhibit an oscillatory be-
havior towards the initial singularity; the effects of the matter field cannot be
neglected, i.e., certain matter models ‘matter’.

The methods used in [4] to obtain these results are methods from the theory
of dynamical systems. Since the metric is (1), the Einstein equations reduce to
a system of ordinary differential equations. The main difficulty is to regularize
these equations in order to obtain a dynamical system that is defined on a rela-
tively compact state space. Once this has been achieved, the analysis is largely
built on the construction of monotone functions and application of the monotonic-
ity principle to determine the α/ω-limit sets of solutions. We refer to Figure 1
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(b) Vlasov

Figure 1. Phase portraits of Bianchi type IX solutions in the
dynamical systems formulation. In the perfect fluid case, the α-
limit of the solution is the fixed point T♭, which represents the
Taub solution (flat Kasner solution). In the Vlasov case, the α-
limit set is a heteroclinic cycle; the asymptotic behavior is thus
oscillatory. Matter ‘matters’.

for a depiction of the state space and the dynamics in the perfect fluid and the
collisionless matter case.
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Cosmological post-Newtonian expansions

Todd A. Oliynyk

By generalizing Newtonian gravity to the cosmological setting [6], it appears that
Newtonian theory can accurately describe gravity on all scales except in regions
near compact neutron stars or black holes [1, 3]. Moreover, by including post-
Newtonian corrections, relativistic effects such as perihelion shifts and gravita-
tional lensing can be taken into account. Since the arguments of [1,3] assume the
existence of the Newtonian limit and the validity of post-Newtonian expansions,
the conclusions of the articles [1,3] provide considerable motivation to mathemat-
ically justify the Newtonian limit and post-Newtonian expansions.

The difficulty in justifying the Newtonian limit and post-Newtonian expansions
arises from the singular nature of the limit

ǫ =
vT
c

ց 0

for the Einstein equations1. In the limit ǫց 0, the Einstein equations degenerate
from a hyperbolic system for ǫ > 0 into a scalar elliptic equation at ǫ = 0. It
is this transition from a hyperbolic system for the spacetime metric to a scalar
elliptic equation for the Newtonian potential that is the source of the analytical
difficulties in justifying the Newtonian limit and post-Newtonian expansions.

A particularly important class of matter for cosmological studies is the perfect
fluid. We recall that gravitating perfect fluids are governed by the Einstein-Euler
equations

Gij =
8πG

c4
T ij and ∇iT

ij = 0,

where

T ij = (ρ+ c−2p)vivj + p(ρ)gij ,

with ρ the fluid density, p = p(ρ) the fluid pressure, vi the fluid four-velocity
normalized by vivi = −c2, c the speed of light, and G the Newtonian gravitational
constant. By suitably rescaling, these equations can be written as

(1) Gij = 2ǫ4T ij and ∇iT
ij = 0,

where

T ij = (ρ+ ǫ2p)vivj + pgij and vivi = − 1

ǫ2
.

For cosmological spacetimes of the form M = [0, T )×T3, the appropriate limit
equations satisfied by solutions of (1) in the limit ǫց 0 are [7, 8]:

∂tρ = −wI∂Iρ− ρ∂Iw
I − 3

2

ã′

ã
ρ,(2)

∂tw
J = −wI∂Iw

J − 1

ãρ
∂Jp(ρ)− ã′

ã
wJ + gJ ,(3)

∆Φ = 4ã(ρ− µ̃),(4)

1Here, c is the speed of light and vT is a typical speed associated with the gravitating matter.



Mathematical Aspects of General Relativity 2627

where

µ̃(t) =

∫

T3

ρ̃(t) d3x,

ã(t) = exp

(∫ t

0

(
8

3

∫

T3

ρ(s) d3x

) 1
2

ds

)
,

gJ = −1

ã

(
3

2

ã′

ã

1

µ̃

∫

T3

ρwJ d3x+
1

4
∂JΦ

)
,

∆ = δIJ∂I∂J , ∂J = δIJ∂I ,

and 〈·|·〉L2 is the standard L2 inner-product on T3, i.e.

〈ψ1|ψ2〉L2 =

∫

[0,1]3
ψ1(x)ψ2(x) d

3x.

We refer to these as the cosmological Poisson-Euler equations and note that
these equations agree with the Newton-Cartan field equations for a gravitating
fluid formulated in adapted coordinates [4, 6].

For purposes of interpretation, it is often useful to introduce Galilei coordinates
[4,6]. This is done as follows: suppose {ρ(t, x), wI(t, x),Φ(t, x)} is a solution of the
cosmological Poisson-Euler equations (2)-(3) on M = [0, T ) × T

3. Then, letting

M̃ = [0, T )×R3 denote the covering space, we define a diffeomorphism on M̃ by

ψ : M̃ −→ M̃ : (t, x) 7−→ (t, x/
√
ã(t)).

Lifting the cosmological Poisson-Euler equations to M̃ , and then pulling back
by ψ shows that

ρ̂(t, x) = ρ
(
t, x/

√
ã(t)

)
,

ŵJ (t, x) =
√
ã(t)wJ

(
t, x/

√
ã(t)

)
+

1

2

ã′(t)

ã(t)
xJ ,

ρ̂(t, x) = Φ
(
t, x/

√
ã(t)

)
,

satisfy

∂tρ̂ = −ŵI∂I ρ̂− ρ̂∂Iŵ
I ,(5)

∂tŵ
J = −ŵI∂I ŵ

J − 1

ρ̂
∂Jp(ρ̂) + ĝJ ,(6)

∆Φ̂ = 4(ρ̂− µ̃),(7)

where

ĝJ = −3

2

ã′

ã3/2
1

µ̃

∫

T3

ρwJ d3x− 1

4
∂J Φ̂− µ̃

3
xJ .

A Newtonian potential can be defined by

Φ̌ =
Φ̂

4
+
µ̃

6
δIJx

IxJ +
4

ã′ã7/2
δIJx

I

∫

T3

ρ̃0w̃
J
0 d

3x.
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This potential satisfies the usual Poisson equation

(8) ∆Φ̌ = ρ̂

while the acceleration due to gravity ĝJ takes the familiar form

(9) ĝJ = −∂JΦ̌.
Together, equations (5), (6), (8), and (9) show that solutions to the cosmo-

logical Poisson-Euler equations determine solutions to the standard Poisson-Euler
equations on the covering space M̃ .

The main result of the articles [7, 8] is rigorously justify the Newtonian limit
for the Einstein-Euler equations and to establish the existence of solutions that
admit post-Newtonian expansions to arbitrary order. More specifically, we prove
the existence of a large class of one-parameter families of solutions to (1) defined
for 0 < ǫ < ǫ0 that

(i) exist on a common piece of spacetime of the form M = [0, T )× T3,
(ii) converge as ǫց 0 to solutions of the cosmological Poisson-Euler equations

(2)-(4) of Newtonian gravity, and
(iii) are differentiable in ǫ to any prescribed order ℓ ∈ N.

Properties (i)-(iii) guarantee that these one parameter families of solutions to the
Einstein-Euler equations have valid Newtonian limits and admit a post-Newtonian
expansions to order ℓ/2.

In light of the significant and well-known difficulties that are encountered at
the formal (and rigorous) level in trying to develop post-Newtonian expansions on
asymptotically flat spacetimes beyond the order 2.5 [5], it is somewhat surprising
that these difficulties are absent in the cosmological setting. On asymptotically
flat spacetimes, the problems that occur in the higher order post-Newtonian ex-
pansions are often attributed to the reaction of gravitational radiation with itself
and matter. The analysis contained in the article [7, 8] shows that this is not the
complete story as the these effects are also present in the cosmological setting, but
do not cause similar difficulties
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Helical solutions in scalar gravity

Robert Beig

(joint work with Bernd G.Schmidt)

An important step in understanding the solution space of a field theory consists
in the study of solutions with continuous symmetries. In the case of general rel-
ativity, and for asymptotically flat solutions with timelike ADM four-momentum,
the possible solutions have been classified in the paper [BC]. Namely it was shown
that only possible are: (a) stationary symmetry, (b) axial symmetry, in particular
spherical symmetry, (c) helical symmetry, and, finally, combinations of the above.
By helical symmetry (called stationary-rotating symmetry in [BC]) one means the
existence of a Killing vector ξ which at spatial infinity approaches a vector field
which is a linear combination of a time translation and a rotation, i.e. ξ = ∂t+Ω ∂φ
and where neither of them by itself is a Killing vector. The cases (a) and (b) are
well understood and of course there are plenty of examples. Concerning (c) noth-
ing is known.
Some known examples in other theories are the following. In the Newtonian 1-
body problem one has the Jacobi ellipsoids which describe triaxial ellipsoids con-
sisting of ideal fluid in steady rotation about one of their axes. For 2 bodies
there are of course 2 point particles in a circular orbit around their center of
mass: for extended bodies consisting of ideally elastic material these have been
constructed [BS]. In electromagnetism one has the Schild solution, describing two
charged point-particles interacting via the half-retarded plus half-advanced field
on circular orbits, and the analogue for a special relativistic, scalar theory of grav-
ity, and for an arbitrary number of point particles, has been constructed in [BHS].
These solutions can be described by saying that the radiation emitted by the parti-
cles is exactly balanced by incoming radiation. The behavior of the field at spatial

infinity is of the form ∼ eiΩt

r and thus incompatible with the total energy being
finite.
It was the aim of the work [BS1] to construct similar solutions where the point
particles are replaced by elastic bodies. For simplicity we treated the case of one
body in steady rotation: if this body is not axially symmetric and-or rotation
is not about its axis of symmetry of the body, the resulting solution has merely
helical symmetry.
The studied model is given by the two fields (V, f) on Minkowski space M =
(R4, ηµν), where V is a scalar and f , the elastic configuration, is a map from M
into a domain B ⊂ R3, called body or material manifold. The action S is of the
form

(1) S =
1

2

∫
ηµν(∂µV )(∂νV )d4x+ 4πG

∫
ρ(1 + V )d4x
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where ρ is a function of the principal invariants of the linear map

HA
B = ηµν(∂µf

A)(∂νf
C)δBC (with A,B,C = 1, 2, 3)

subject to certain regularity and constitutional assumptions. Our result states
that the following: suppose the axis of rotation goes through the centre of mass
of the body in its stress-free state and this axis coincides with one of the axes of
inertia. Then there exists, for small enough values of G and Ω, a helical solution
to the equations given by the action (1) close to the trivial solution where V is
zero and the elastic configuration is stress-free. Our result, which holds modulo
a plausible conjecture concerning the differentiability in a certain Banach space
of the self-field term in the elastic equation, uses methods similar to those in the
papers [ABS1], [ABS].
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Construction of N-body initial data sets in general relativity

Justin Corvino

(joint work with Piotr T. Chruściel and James Isenberg)

Introduction. Gluing methods have long been used for connected-sum and de-
singularization constructions in geometry. Over the past decade, gluing techniques
have been implemented to construct interesting solutions to the Einstein constraint
equations. Isenberg, Mazzeo and Pollack developed connected-sum constructions
using the conformal method [11]; around the same time, we used gluing ideas to
study asymptotics of solutions to the time-symmetric constraints, and introduced
a method to localize gluing [7]. This method was extended to a study of the full
constraint operator in joint work with R. Schoen [10], as well as by Chruściel and
Delay [4]. There have been many interesting applications of these methods, which
include localized gluing constructions for scalar curvature [5], as well as construc-
tions of solutions to the constraints (which provide initial data for the Einstein
equation) with the following features: asymptotically Euclidean (AE) initial data



Mathematical Aspects of General Relativity 2631

that evolves into asymptotically simple space-times in the sense of Penrose [3, 9];
and AE initial data with multiple apparent horizons [3, 6, 8]. In the present work
we construct solutions of the Einstein constraints to model N -body systems.

The main Theorem. We model isolated gravitational systems by AE initial
data (M, g,K) for the Einstein equation, where M is a three-manifold, and (g,K)
will be the induced first and second fundamental forms of M inside the space-
time determined by the development of the space-like Cauchy data (M, g,K). We
let Φ(g,K) =

(
R(g)− ‖K‖2 + (trg(K))2, divg(K)− d(trg(K))

)
be the constraint

operator, so that the constraint equations are Φ(g,K) = (16πµ, 8πJ), where (µ, J)
is the energy-momentum density of the matter fields along M .

We specify a body to be a compact subset of an AE solution of the Einstein
constraint equations. The solutions (hence the bodies) may be vacuum (pure
gravity), or they may contain compactly supported (µ, J) from physical fields. Our
construction takes N such bodies and produces an AE solution to the constraint
equations that contains the N bodies isometrically, and has an AE end in which the
bodies interact. We remark that if the original AE solutions containing the bodies
each has the topology of R3, then the resultingN -body data has the same topology.
The proof uses the method of [4,10], based on a construction of Chruściel and Delay
[3]. We assume the given AE solutions each have well defined Poincaré charges
(given by certain flux integrals at infinity), i.e. the ADM energy-momentum, the
center-of-mass and angular momentum.

Theorem 1. For each k = 1, . . . , N , let (Mk, g
k,Kk) be a three-dimensional

connected AE initial data set, and let Ek ⊂ Mk be a vacuum AE end with well
defined global Poincaré charges. Let Uk ⊂Mk be pre-compact. Then for each η >
0, there is a solution (M, gη,Kη) of the constraints containing a region U isometric

to the disjoint union
N⋃

k=1

(Uk, g
k,Kk), such that M is connected, with one AE end

isometric to a space-like slice of a Kerr metric with ADM energy-momentum four-

vector (m(gη), ~pη) satisfying

∣∣∣∣m(gη)−
N∑

k=1

mk

∣∣∣∣ < η, and

∥∥∥∥~pη −
N∑

k=1

~pk

∥∥∥∥ < η, where

(mk, ~pk) is the ADM energy-momentum four-vector of Ek.

Sketch of the proof. We sketch the proof here; details can be found in [1, 2].
Let {|x| ≥ ǫ−1} ⊂ Ek ∩ (Mk \ Uk), for each k. We re-scale the AE solutions in
which the bodies Uk are located, pulling back re-scaled data on {ǫ−1 ≤ |x| ≤ 2ǫ−1}
onto a fixed annulus. Consider a Euclidean ball containing points c1, . . . , cN ,

so that
N∑

k=1

mkck = 0. We glue the standard Minkowski data (g,K) = (̊g, 0)

on the ball to the re-scaled data from each Ek, on annuli centered at each ck,
respectively, and to data from a space-like slice in Kerr in an annular region along
the outer boundary of the ball. For suitable scalings and suitably chosen Kerr data
(possibly boosted), we will have an approximate solution of the vacuum constraint
equation Φ = 0 on a region Ω, which is a ball with smaller balls around each
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ck deleted. We note that we make better approximate solutions with scalings of
larger annuli (smaller ǫ), in which case the data on Ω approaches the Minkowski

data. The linearization L̊ of Φ at the Minkowski data has formal adjoint given by
L̊∗(f,X) = (−∆f g̊ + Hess(f),− 1

2LX g̊), where L is the Lie derivative, and the
operators are taken at the Euclidean metric. This operator has ten-dimensional
kernel K∗ given by span{1, x1, x2, x3} ⊕ {Euclidean Killing fields}. Thus if Π is a
(weighted) L2-projection onto K⊥

∗ on Ω, then Π ◦Φ has surjective linearization at
(̊g, 0). What we can then solve by perturbation theory (implicit function theorem)

is Π ◦Φ(g,K) = 0. Using the fact that L̊∗ is overdetermined-elliptic, we can solve
in appropriate weighted spaces so that our solution (g,K) smoothly agrees with
our glued data along the boundary ∂Ω [4,10]. Moreover, Φ(g,K) = 0 if and only
if the projection of Φ(g,K) onto K∗ is zero. We compute the projections onto the
standard basis of K∗, divided by the scale parameter ǫ, to obtain the following (up
to constant scale factors and O(ǫ) error terms): the projection onto the constant
direction yields the difference between the mass of the exterior Kerr and the sum of
the masses of the bodies (i.e of the Ek); the projection onto the xj directions yields
the mass-times-center parameter of the exterior Kerr (since the center-of-mass of
the bodies has been normalized to zero); the projection onto the translation Killing
fields yields the difference between the linear momentum of the exterior Kerr, and
the sum of the linear momenta of the bodies; the projection onto the rotational
Killing fields yields the difference between the angular momentum of the exterior
Kerr and the sum of the angular momenta of the bodies, minus the total orbital

angular momentum
N∑

k=1

ck × ~pk. For ǫ small enough, we can arrange Φ(g,K) = 0

by choosing the parameters of the exterior Kerr appropriately. We now re-scale
to restore the original metric on each Uk; we note that doing so produces a re-
scaling of the original center-of-mass configuration, and that for ǫ small enough,
the desired energy-momentum four-vector estimate will hold.
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Poincaré 8, 597-620 (2007)

[10] Corvino, J., Schoen, R.M.: On the asymptotics of the vacuum Einstein constraint equations.
Jour. Diff. Geom. 73, no. 2, 185-217 (2006)

[11] Isenberg, J., Mazzeo, R., Pollack, D.: Gluing and wormholes for the Einstein constraint
equations. Comm. Math. Phys. 231, no. 3, 529-568 (2002)

On geometric problems related to Brown-York and Liu-Yau quasilocal
mass

Pengzi Miao

In [11], using the Riemannian positive mass theorem [10,12], Shi and Tam proved
the following remarkable result on the boundary behavior of compact manifolds
with nonnegative scalar curvature:

Theorem 1. (Shi-Tam, 02) Given an n-dimensional (n ≥ 3), compact, Riemann-
ian spin manifold (Ωn, g) with boundary and with nonnegative scalar curvature,
suppose its boundary Σ is isometric to some strictly convex hypersurface Σ0 ⊂ R

n
.

Let H, H0 be the mean curvature of Σ in (Ω, g), Σ0 in R
n
respectively. If H > 0,

then

(0.1)

∫

Σ

H dσ ≤
∫

Σ0

H0 dσ.

Moreover, the equality holds if and only if (Ω, g) is isometric to a domain in R
n
.

A key ingredient in the proof of Theorem 1 in [11] is a monotonicity property
of the integral

∫
Σ(H0 − H) dσ along a particular foliations {Σt} of a specially

constructed asymptotically flat extension of (Ω, g). Recently, Shi, Tam and I [7]
have discovered a general derivative formula, governing the evolution of

∫
Σ(H0 −

H) dσ along an arbitrary geometric foliation of any given ambient space.

Theorem 2. (Miao-Shi-Tam, 09) Let {Σt} be a smooth family of closed hypersur-
faces evolving in an ambient manifold (Mn, g) according to an equation ∂F

∂t = ην,
where ν is a unit vector field normal to Σt and η is the speed of evolution. Suppose
Σt embeds isometrically to a hypersurface Σ0

t in R
n
and {Σ0

t} evolves smoothly in
R

n
. Then

(0.2)
d

dt

∫

Σt

(H0 −H) dσ =
1

2

∫

Σt

(
|A0 −A|2 − |H0 −H |2 +R

)
η dσ,

where A0 and H0 are the second fundamental form and the mean curvature of Σ0
t

in R
n
, A and H are the second fundamental form and the mean curvature of Σt

in (M, g), and R is the scalar curvature of (M, g).

In Theorem 2, if {Σ0
t} ⊂ R

n
evolves with a normal speed, say ∂F 0

∂t = η0ν0,

where ν0 is the the outward unit normal to Σ0
t and η0 is the speed, then (0.2)
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directly implies

(0.3)
d

dt

∫

Σt

(H0 −H) dσ =
1

2

∫

Σ

[
−
(
1− η0

η

)2

Rt +R

]
η dσ,

where Rt is the scalar curvature of each leaf Σ0
t (or Σt). In particular, if

(0.4) Rt ≥ 0, R ≤ 0, and η ≥ 0,

then
∫
Σt
(H0 − H) dσ is monotone non-increasing. This suggests that the key

monotonicity property of
∫
Σt
(H0 − H) dσ used by Shi and Tam [11] indeed can

be generalized to an arbitrary geometric foliation {Σ0
t} of R

n
, as long as each leaf

Σ0
t has nonnegative scalar curvature.
In [3], using the above observation, together with a result of Gerhardt [4] and

Urbas [9] on evolving star-shaped surfaces into spheres, Eichmair, Wang and I
obtained the following extension of Theorem 1.

Theorem 3. (Eichmair-Miao-Wang, 09) The conclusion of Theorem 1 remains
valid if the assumption that Σ embeds as a strictly convex hypersurface in R

n
is

relaxed to the requirement that Σ has positive scalar curvature and is isometric to
a mean-convex, star-shaped hypersurface in R

n
. Moreover, the spin assumption

in Theorem 1 is not necessary if the dimension n satisfies 3 ≤ n ≤ 7.

Suppose Σ is a closed, connected, spacelike 2-surface in a spacetime N . Suppose
Σ has positive Gaussian curvature and the mean curvature vector H of Σ in N is
spacelike. We recall that the Liu-Yau quasi-local mass of Σ [5, 6] is given by

(0.5) m
LY
(Σ) =

1

8π

∫

Σ

(k0 − |H |)dσ,

where k0 is the (positive) mean curvature of the isometric embedding of Σ into the

Euclidean space R
3
, |H | is the length of H in N and dσ is the volume form on Σ.

When Σ bounds a compact, time-symmetric, hypersurface Ω in N , the Liu-Yau
mass reduces to the Brown-York mass [1, 2] which is

(0.6) mBY(Σ) =
1

8π

∫

Σ

(k0 − kΩ)dσ,

where kΩ is the mean curvature of Σ in Ω. Using the result of Shi and Tam 1,
Liu and Yau proved that m

LY
(Σ) ≥ 0 and m

LY
(Σ) = 0 only if N is flat along Σ.

In [8], Ó Murchadha, Szabados and Tod constructed examples of 2-surfaces Σ in

R
3,1

such that mLY(Σ) > 0. In a recent work [7] with Shi and Tam, using the
techniques of maximal surfaces, we have shown

Theorem 4. (Miao-Shi-Tam, 09) Let Σ be an arbitrary, closed, connected, space-

like 2-surface in R
3,1

. Suppose Σ spans a compact spacelike hypersurface in R
3,1

.
If Σ has positive Gaussian curvature and has spacelike mean curvature vector, then
m

LY
(Σ) > 0 unless Σ lies on a hyperplane in R3,1.
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A model problem for conformal parameterizations of the Einstein
constraint equations

David Maxwell

Initial data for the Cauchy problem of general relativity consist of a Riemannian
manifold and a second fundamental form that satisfy a system of nonlinear PDEs
known as the Einstein constraint equations. It would be desirable to find a pa-
rameterization of all solutions of these equations on a given manifold, and hence
a description of all possible initial data. The conformal method of Lichnerowicz
and Choquet-Bruhat and York provides an elegant and complete solution to the
problem of constructing all constant-mean curvature (CMC) solutions. For exam-
ple, on compact manifolds the solutions of the Einstein constraint equations are
effectively parameterized by selection of conformal data consisting of a conformal
class for the metric, a so-called transverse-traceless tensor, and a (constant) mean
curvature. The conformal method can also be used to generate initial data with
non-constant mean curvatures, but little is known in this case, especially if the
mean curvature is far-from CMC.

Until recently, virtually all results for the conformal method only applied to
near-CMC initial data. The first construction using the conformal method of a
family of initial data with arbitrarily specified mean curvature was given by Holst,
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Nagy, and Tsogtgrel in [HNT08]. Although this result represents a breakthrough
for the conformal method, it has a number of important limitations:

• The near-CMC hypothesis is replaced by a smallness assumption on the
transverse-traceless tensor (i.e. a small-TT hypothesis).

• It is not known if small-TT conformal data determine a unique solution.
• The construction only works on Yamabe-positive compact manifolds.
• The construction requires non-vanishing matter fields.

It was subsequently shown in [Ma09] that the construction could be extended to
vacuum initial data, but the other restrictions remain. These results are compat-
ible with the possibility that a large set of conformal data lead to no solutions or
multiple solutions; from the point of view of parameterizing the full set of solutions
one would like to show that this does not occur.

In this talk we describe a family of highly symmetric conformal data that can be
used to examine the solution theory of the conformal method for large transverse-
traceless tensors and far-from CMC mean curvatures. The data are all specified
on a conformally flat torus with the flat background metric, and are independent
of all but one direction (x). The mean curvatures in the family are of the form

τt(x) = t+ λ(x)

where λ is fixed, carefully chosen function describing fluctuations about a mean,
and t is a constant that controls how close the mean curvature is to being CMC,
with |t| >> 1 corresponding to the near-CMC case. The transverse-traceless
tensors in the family are parameterized by two constants, η and µ, that control
the size of pieces of the tensor. Given parameters (t, η, µ), we seek a corresponding
symmetric solution of the constraint equations.

Restricting our remarks to the case µ = 0, we observe the following:

• If |t| is sufficiently large so that the mean curvature does not change sign,
then there exists a corresponding symmetric solution of the constraint
equations.

• If |t| is small enough so that the mean curvature changes sign, but t 6= 0,
then there is a critical value η0 > 0. If |η| > η0 there are no solutions with
symmetry, and if 0 < |η| < η0 there are at least two.

• When t = 0 there are no solutions with symmetry unless η = 0, in which
case there is a one-parameter family.

This is the first case where non-uniqueness for the standard, vacuum conformal
method has been shown.

Intriguingly, we also find that for mean curvatures in the family with chang-
ing sign, the existence theory depends sensitively on the values of the constants
involved in the nonlinear coupling of the conformal method. We show that these
constants are balanced in such a way that any arbitrarily small adjustment to their
values lead to one of two different existence theories.

Although the limitations of the conformal method described here only pertain to
Yamabe-null manifolds, they suggest that the weaknesses of the Yamabe-positive
results of [HNT08] and [Ma09] arise from real phenomena. At any rate, if the
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Yamabe-positive results are to be extended to the Yamabe-null case, then a small-
CMC condition will be necessary to obtain uniqueness, and it may be that solutions
need not exist for large transverse-traceless tensors. Given the sensitivity of the
existence theory of the model problem with respect to the coefficients in in the
equations, we expect it will be very difficult to obtain such an extension.
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Ricci flow on open surfaces

Rafe Mazzeo

One natural, and surprisingly fairly open, area of investigation in the intensively
studied field of Ricci flow is to study the behaviour of this evolution problem on
various natural classes of complete, noncompact Riemannian manifolds, or on
incomplete spaces with geometrically structured (e.g. stratified) singular sets. We
survey some of the known results in these directions below, and then report on a
handful of new results in both of these settings in the lowest dimensional case, i.e.
for surfaces.

Since it is the focus here, we write down the relevant equation in two dimensions.
For any metric g on a surface Σ, let R denote its scalar curvature (i.e. twice its
Gauss curvature). The Ricci flow equation is then

(1) ∂tg(t) = (ρ−R)g, g(0) = g0,

where ρ is a normalizing constant. When Σ is compact, for example, then a
suitable choice of ρ ensures that the area of (Σ, g(t)) remains constant. Note that
g(t) remains in the same conformal class as g0; this is in marked distinction to the
higher dimensional case. Thus if we write g(t) = u(t)g0, then (1) is equivalent to

(2) ∂tu = ∆g0 log u−R0 + ρu, u(0) = 1.

An important early result in the development of Ricci flow was obtained by
Shi [13], who proved that if one starts at any initial metric which is complete and
satisfies some quite general hypotheses of bounded geometry, then a solution of
the flow equation exists for a short time. One shortfall of this theorem is that
it does not address the fundamental issue of whether the flow preserves any fine
asymptotic structure that the metric may have; indeed, it is not immediately
apparent from his result whether the quasi-isometry type is preserved, although
that was addressed later by Hamilton [4]. This is a key point in the discussion
below. At around the same period, Wu [14] obtained some results about the long-
time behaviour of Ricci flow for fairly general metrics on R2, cf. also the recent
paper of Isenberg and Javaheri [6] which completes more of that story. Wu did
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prove that the aperture at infinity, which is some sort of measure of asymptotic
cone angle of the metric, remains constant. Certain initial metrics flow toward the
flat metric on R2, but others flow toward more general objects, for example the
cigar-shaped soliton metric.

In the past several years there have been several papers concerning the be-
haviour of Ricci flow on higher dimensional manifolds which are asymptotically
Euclidean. Motivation for this comes from physics. We refer in particular to the
work of Oleinyk and Woolgar [11], Schnürer, Schulze and Simon [12] and most per-
tinently to our work, Dai and Ma [2]. The last paper works in the slightly more
general setting of ALE (asymptotically locally Euclidean) spaces, and proves, in
particular that in the AE setting, the ADM mass is preserved under the flow.

There are two main types of results one might hope to obtain concerning limiting
behaviour of Ricci flow. The first addresses stability: if (M, ḡ) is a canonical metric
which is preserved under Ricci flow (i.e., either an Einstein metric or a soliton),
and if g0 is any perturbation of ḡ, then stability means that the Ricci flow starting
at g0 converges to ḡ as t → ∞. For the second, we do not a priori assume the
existence of a canonical metric, but produce it as the limit of the flow; this yields
the dramatic results (e.g. the Poincaré conjecture and geometrization theorem in
three dimensions). For the Ricci flow on surfaces, we are almost always studying
problems of the first type since by the general uniformization theorem, there is
always a complete constant Gauss curvature metric in any given conformal class
(see [10] for a PDE proof of this fact). Note however that this canonical metric
may not be quasi-isometric to the initial metric.

Here is a first example of this type of theorem, where everything works partic-
ularly simply.

Theorem 1 (Ji-M-Sesum [9]). Let (Σ, g0) be a complete noncompact Riemannian
surface where each end is asymptotic to a finite area hyperbolic cusp. Suppose that
χ(Σ) < 0, so that there exists a unique uniformizing metric ḡ conformal to g0 (in
this case, ḡ is quasi-isometric to g0). Then if ρ = 4πχ(Σ)/Area(Σ, g0), (1) admits
a unique solution g(t) which exists for all t ≥ 0 and such that g(t) → ḡ.

For simplicity here we omit discussion of any regularity issues, as well as the
precise rates of decay of the asymptotics along the end.

There are three main steps to proving this theorem. The first involves establish-
ing a short-time existence result for (1) in the class of metrics with ends which are
asymptotic to hyperbolic cusps. This requires demonstrating good mapping prop-
erties for the solution operator for the linearization of this equation at a metric
of this type. The second is to obtain long-time existence, which is done using the
notion of a potential function, i.e. a function satisfying ∆φ = R−R, where R is the
average value of R, as in Hamilton’s original paper [5]. More specifically, a simple
maximum principle argument shows that R is uniformly bounded below for all t;
another maximum principle argument applied to the function Z := ∆φ + |∇φ|2
gives an upper bound for R; these two bounds can then be used to show that
the conformal factor u in (2) is uniformly bounded on each bounded time interval
[0, T ), and standard bootstrapping shows that the flow continues for all time. The
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third and final step is to show that the metric converges to a hyperbolic one, and
in this particular setting this follows very simply and almost exactly in the case of
closed surfaces of negative Euler characteristic using the upper and lower estimates
for R.

The somewhat novel part of this argument lies in the linear analysis needed
to prove the existence of a potential function φ for which ∆φ and |∇φ| are both
bounded (these are both necessary in order to apply Hamilton’s comparison argu-
ment for Z). The L2 spectral theory of the Laplace operator on surfaces with cusp
ends is well-known and one could simply let φ be the unique L2 solution which
has average value 0. This does turn out to be the correct solution, but it is not
at all clear that this has bounded gradient. Our proof involves an examination of
the asymptotic expansion of φ along each end and a slightly delicate computation
(of a linear algebraic nature) involving the scattering matrix of the Laplacian.

The next case that has been studied is when (Σ, g0) is a complete surface with
asymptotically Euclidean, or slightly more generally, asymptotically conic ends.
For technical reasons, we also assume that χ(Σ) < 0. There is a bit of a surprise
here, since just as in the previous result, the uniformizing metric is a hyperbolic
metric of finite area, which has cusp ends and hence is not quasi-isometric to g0.
In work currently in progress, in collaboration with Isenberg and Sesum, we prove
the following.

Theorem 2. Let (Σ, g0) be a complete surface with asymptotically conic ends,
and with χ(Σ) < 0. The Ricci flow admits a unique solution g(t), which exists
for all t ≥ 0, and which is asymptotically conic for all t. There exists a uniform
constant C > 0 and for every compact set K ⊂ Σ a constant CK > 0 such that
CK(1 + t)g0 ≤ g(t) ≤ Cg(t) for all t ≥ 0. Hence g̃(t) := t−1g(t) is uniformly
controlled on any compact set. This rescaled metric g̃(t) converges, as t → ∞, to
a complete hyperbolic metric.

The first part of this theorem states that g(t) is ‘inflating’ at a rate proportional
to t, but the lower bound is only uniform on compact sets. Hence if one rescales
by 1/t, then the geometry at infinity collapses as t→ ∞, although g̃(t) converges
locally uniformly. The paper [7] contains further information about the nature of
the incompleteness of the limiting metric. We note that current work of Dai and
Wei also treats the Ricci flow for asymptotically Euclidean surfaces.

The steps in the proof of this result are much the same as before: one first
proves the well-posedness of (1) within the class of asymptotically conic metrics,
then produces a potential function and shows using the maximum principle that
the flow exists for all time. This last step is significantly easier than in the asymp-
totically cusp case, but still requires some knowledge of the asymptotic behaviour
of solutions of the Laplace equation on this class of surfaces. The linear upper
bound is proved using a simple adaptation of an argument due to Aronson and
Benilan. On the other hand, the locally uniform linear lower bound is more compli-
cated and is proved somewhat indirectly. The completeness of the limiting metric
follows from Hamilton’s compactness theorem for solutions of Ricci flow.
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These two theorems suggest that an interesting general problem would be to
study the limiting behaviour of Ricci flow if one starts with any initial metric
which has finite total curvature. This is a class of particularly interesting metrics.
By classical results of Huber and Osserman, any such surface is conformal to
punctured compact Riemann surfaces. The two results above are two of the easiest
cases of this problem. Some other cases should not be so difficult, but this problem
may be difficult in full generality.

We mention one other related recent result, by Albin, Aldana and Rochon [1].
If (Σ, g0) is a surface where g0 is a conformally compact metric, i.e. one which is
asymptotically hyperbolic and asymptotic to an infinite area hyperbolic ‘funnel’,
then without any assumptions on χ(Σ), the Ricci flow exists for all time and
converges to the unique complete infinite area hyperbolic metric in the conformal
class of g0. These authors also consider a certain regularized determinant of the
Laplacian under this flow, both in this setting as well as in the asymptotically
hyperbolic cusp one, and prove that it is monotone under this flow.

We conclude with a brief description of current work in progress, with Rubin-
stein and Sesum, which treats this problem in the setting of incomplete metrics
with isolated conic singularities on a compact surface Σ. The first major difficulty
here is to define the flow on this class of metrics in such a way that the conical
singularities (as well as the values of the individual cone angles) are preserved
under the flow. This is in contrast to recent work by Giesen and Topping [3],
in which they prove the existence of a smooth family of metrics g(t) solving (1)
and with g(0) an incomplete metric of a fairly general type. The existence of a
suitable potential function requires some knowledge of the asymptotic behaviour
of solutions of ∆φ = f at the conic points, and in order to use this potential func-
tion to obtain long-time existence one must prove that one can still apply similar
maximum principle arguments, see [8].

The reason this problem is particularly interesting is that there does not always
exist a constant curvature metric on Σ in the given conformal class and with
prescribed cone angles. Indeed, assuming that all cone angles are less than 2π,
there is a simple linear condition on the cone angles, discovered originally by
Troyanov, which is necessary and sufficient for the existence of a constant curvature
metric. The goal of our work is to prove that in the cases where a constant
curvature metric does exist, the flow converges to that metric, whereas in the
remaining cases (still assuming that all cone angles are less than 2π) where no
constant curvature metric exists, the flow still has a limit, which now is a Ricci
soliton. If successful, this would provide a rich supply of new and interesting
soliton metrics.
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