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Abstract. The theory of Minimal Surfaces has developed rapidly in the past
10 years. There are many factors that have contributed to this development:

• Sophisticated construction methods [14,29,31] have been developed and
have supplied us with a wealth of examples which have provided intu-
ition and spawned conjectures.

• Deep curvature estimates by Colding and Minicozzi [3] give control on
the local and global behavior of minimal surfaces in an unprecedented
way.

• Much progress has been made in classifying minimal surfaces of finite
topology or low genus in R3 or in other flat 3-manifolds. For instance,
all properly embedded minimal surfaces of genus 0 in R3, even those
with an infinite number of ends, are now known [21, 23, 25].

• There are still numerous difficult but easy to state open conjectures,
like the genus-g helicoid conjecture: There exists a unique complete
embedded minimal surface with one end and genus g for each g ∈ N, or
the related Hoffman-Meeks conjecture: A finite topology surface with
genus g and n ≥ 2 ends embeds minimally in R3 with a complete metric
if and only if n ≤ g + 2.

• Sophisticated tools from 3-manifold theory have been applied and gen-
eralized to understand the geometric and topological properties of prop-
erly embedded minimal surfaces in R3.

• Minimal surfaces have had important applications in topology and play
a prominent role in the larger context of geometric analysis.

Mathematics Subject Classification (2000): 53A10,49Q05, 53C42.

Introduction by the Organisers

The ArbeitsgemeinschaftMinimal Surfaces, organised byWilliamMeeks (Amherst)
and Matthias Weber (Bloomington) was held October 3rd – October 9th, 2009.
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This meeting was well attended with about 40 participants with broad geographic
representation. Both well-established researchers, postdocs, and graduate stu-
dents were present. As is customary for the style of the Arbeitsgemeinschaft, the
majority of the talks was given by graduate students and young postdocs.
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Abstracts

Introduction: Examples and Methods

Matthias Weber

This talk serves as a leisurely introduction, showing the evolution of minimal
surfaces from classical examples to the most recent developments.

In particular, I described the singly and doubly periodic Scherk surfaces, how
they form conjugate pairs and limit to catenoids and helicoids. Similarly, I showed
the Riemann family [28] limiting in a horizontal foliation of R3 by parallel planes.

By a recent theorem of Meeks, Perez and Ros [22], all properly embedded,
complete minimal surfaces of genus 0 belong to the Riemann family or its limits.

I then listed the all known examples of genus one, and briefly explained what
methods were used for their construction. We have the Costa surface and its
deformation to the Costa-Hoffman-Meeks family, the genus one helicoid [11–13],
the Riemann-Costa fusion of Hauswirth and Pacard [10], and a similar conjectural
example.

Recent deep theorems and general conjectures like the Hoffman-Meeks conjec-
ture and the helicoid conjectures indicate that this might be all there is of genus
one.

Finally, I spent some time with doubly periodic surfaces, mentioning the clas-
sification results by Lazard-Holly and Meeks for genus 0 and for genus one in the
case of parallel ends by Perez, Rodriguez and Traizet [27].
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Conjugate surfaces, Jenkins-Serrin graphs and Scherk towers

Rob Kusner

The goal of this introductory talk was to develop the basic tools needed to construct
the Scherk tower Mα which is a singly-periodic minimal surface that scales down
to a pair of planes meeting at angle α ∈ (0, π2 ]. It has been conjectured [7–9] that
any connected minimal surface with this property is an Mα (or possibly a catenoid
in the limiting case α = 0). The right-angled Scherk tower M π

2
can be constructed

directly by solving the Dirichlet problem for a minimal graph x3 = u(x1, x2) over a
unit strip {−∞ < x1 < ∞, 0 < x2 < 1} with boundary values u = |x1|, then using
Schwarz reflection; it arises as the limit of various finite topology minimal surfaces
[2, 6, 10] in S3 and R3. The more general towers Mα used in desingularization
constructions such as [4] require conjugate surface methods [5], especially Krust’s
theorem [1], applied to Jenkins-Serrin graphs [3] over a unit rhombus of angle α;
and these results depend, in turn, on basic force-balancing ideas (going back,
essentially, to Archimedes).
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The classification of doubly periodic minimal tori with parallel ends

M. Magdalena Rodŕıguez

Scherk [8] found the first (connected, orientable) properly embedded minimal
surface in R3, invariant by two linearly independent translations (we will shorten
by saying a doubly periodic minimal surface). This surface fits naturally into a 1-
parameter family F = {Fθ}θ of examples, called doubly periodic Scherk minimal
surfaces. Assume that one of the periods points to the x2-axis. In the quotient by
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the period lattice generated by its shortest period vectors, each Fθ has genus zero
and four asymptotically flat annular ends: two left and two right ones. This kind
of annular ends are called Scherk-type ends. The parameter θ in this family F is
the angle between left and right ends. Lazard-Holly and Meeks [4] proved that
these are the only doubly periodic minimal surfaces in R3 which have genus zero
in the quotient by their periods, up to translations, rotations and homotheties.
Moreover, the angle map θ : F → (0, π) is a diffeomorphism.

We construct in [7] a 3-parameter family K of doubly periodic minimal surfaces
in R

3 with genus one and four parallel Scherk-type ends in the quotient, called
KMR examples, including the examples given by Karcher [2,3] and by Meeks and
Rosenberg [5]. We prove that K is a 3-dimensional real analytic manifold and
the degenerate limits of sequences in K are the catenoid, the helicoid, any singly
or doubly periodic Scherk minimal surface and any Riemann minimal example.
Furthermore K is self-conjugate, in the sense that the conjugate surface of any
element in K also belongs to K.

Let S be the space of singly periodic minimal surfaces, which is on the boundary

of K, and define K̃ = K ∪ S. We consider the map C : K̃ → R+ × R2, which

associates to each surface in K̃ two geometric invariants: the length of the period
at its ends and the horizontal part of the flux along a nontrivial homology class
with vanishing period vector. We prove that C is a diffeomorphism, obtaining a
description of the space K of KMR examples.

Theorem 1. [7] K is diffeomorphic to (R2 − {(0, 0)})× R.

The main focus of the talk will be on proving the following uniqueness of the
KMR examples.

Theorem 2. [6] If M is a doubly periodic minimal surface of R3 with parallel
ends and genus one in the quotient, then M ∈ K.

We remark that Theorem 2 does not hold if we remove the hypothesis on
the ends to be parallel, as demonstrate the 4-ended tori discovered by Hoffman,
Karcher and Wei [1].

Since any KMR example is invariant by the translation of 1
2 (T1 + T2), where

T1, T2 generate the period lattice, then Theorem 2 also gives a classification of all
properly embedded minimal Klein bottles with parallel ends in doubly periodic
quotients of R3.
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Universal superharmonic functions and their application to the
conformal type of proper minimal surfaces in R3

Robert W. Neel

The material in all but the last section of this abstract can be found in [3], espe-
cially section 6. Many of the underlying ideas can be traced back to [1].

The author would like to thank Bill Meeks, Matthias Weber, and the Mathema-
tisches Forschungsinstitut Oberwolfach for inviting him to speak at the Minimal
Surfaces Arbeitsgemeinschaft.

1. Basic notions

Underlying any minimal surface is a Riemann surface. This is part of the
Weierstrass data, and the determination of the underlying Riemann surface of a
minimal surface, either exactly or in terms of some broad class, is an important
problem in the field.

Recall that harmonic functions are invariant under a conformal change of met-
ric, so the question of whether or not a surface admits a non-constant, bounded
harmonic function depends only on the conformal structure of the manifold. We
refer to this question as the question of the conformal type of the surface (note
that this term is often used for other, similar properties).

There are a few ways of introducing Brownian motion on a manifold; intuitively,
we think of it as the continuous version of an isotropic random walk on a manifold.
More precisely, it solves the martingale problem for half the Laplacian; that is, if
Bt is Brownian motion and f is smooth and compactly supported, then f(Bt) −
f(x0) −

∫ t

0
1
2∆f(Bs) ds is a martingale. (See [5] or [2] for more background on

Brownian motion on Riemannian manifolds.) Brownian motion on a surface M is
called recurrent if any of the following equivalent conditions hold:

• There exists an open, precompact set A ⊂ M and a point x ∈ M (with
x 6∈ A) such that Brownian motion started at x almost surely hits A.

• For any x ∈ M and open, precompact A ⊂ M , Brownian motion started
at x almost surely hits A.

• Brownian motion returns infinitely often to any (equivalently, some) open,
precompact A, almost surely.
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If M is not recurrent, it is transient. In this case, Brownian motion almost surely
has a last time in any compact set. We note that recurrence and transience depend
only on the conformal structure of M .

Our next task is to consider the relationship between bounded harmonic func-
tions and Brownian motion. IfM is recurrent,M admits no non-constant bounded
harmonic functions. On the other hand, if M is transient, it may or may not ad-
mit a non-constant bounded harmonic function. Fortunately, we when consider
surfaces with non-empty boundaries, the natural notions for bounded harmonic
functions and Brownian motion are equivalent. In particular, a surface M with
non-empty boundary ∂M is parabolic if any of the following equivalent conditions
hold:

• Any bounded harmonic function on M is determined by its boundary
values on ∂M .

• There exists a point x ∈ M such that Brownian motion started from x
hits ∂M almost surely.

• Brownian motion started from any point hits ∂M almost surely.

Note that if a surface M is recurrent or parabolic (depending on whether ∂M
is empty), then M with a compact set added or removed is also recurrent or
parabolic.

2. Universal superharmonic functions

Recall that a function is superharmonic if its Laplacian is everywhere non-
positive. It is well known that if a surface M with non-empty boundary admits a
positive, proper superharmonic function, then M is parabolic.

Definition 1. Let U be a non-empty, open subset of R3. A function f : U → R

is a universal superharmonic function on U if the restriction of f to any minimal
surface (possibly with boundary) in U is superharmonic.

For example the xi are universal superharmonic functions on all of R3. More
interestingly, let r =

√
x2
1 + x2

2. Then, for any minimal surface M ,

|∆M log r| ≤ |∇Mx3|2
r2

on M \ {x3-axis}.
It follows that

• log r − x2
3 is a universal superharmonic function on

{
r ≥ 1/

√
2
}

• log r− x3 arctanx3 +
1
2 log

(
x2
3 + 1

)
is a universal superharmonic function

on
{
r ≥

√
1 + x2

3

}

Consider the slab S(C) = {0 ≤ x3 ≤ C} for some C > 0. Using that log r −
x2
3 + C2 is a proper, positive, superharmonic function on any properly immersed

minimal surface contained in S(C)∩{r ≥ 1}, we outline the proof of (see Theorem
6.7 of [3] and Theorem 3.1 of [1])

Theorem 2. Let M be a properly immersed minimal surface, possibly with bound-
ary, contained in {x3 ≥ 0}. If ∂M = ∅, then M = {x3 = c} for some c ≥ 0. If
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∂M 6= ∅, then M is parabolic. In particular, if a properly immersed minimal
surface (without boundary) intersects any plane in a compact set, it is recurrent.

3. A more geometric application: area growth

We now wish to see how the universal superharmonic function f = log r − x2
3

can be used to control the growth of the area of a properly immersed minimal
surface-with-boundary, which is contained in a slab. Such a surface arises when
considering certain ends of properly embedded minimal surfaces. In particular, we
sketch the proof of the fact that such a minimal surface-with-boundary, which we
denote M , has quadratic area growth. That is,∫

M∩{r≤t}

dA = Ct2 + o
(
t2
)
.

The argument relies on the divergence theorem and the relationship between ∆Mf
and two more geometric quantities, namely |∇Mx3|2 and ∆M log r.

We note that analogous results, namely parabolicity and quadratic area growth,
can be proven for minimal surfaces-with-boundary contained between two half-
catenoids, rather than contained in a slab, by using the “other” universal super-
harmonic function mentioned above,

f = log r − x3 arctanx3 +
1

2
log
(
x2
3 + 1

)
.

Recall that a minimal surface is contained between two half-catenoids if |x3| ≤
C log r for large r.

4. More Brownian motion

We again consider a properly immersed minimal surface M , possibly with
boundary, contained in the halfspace {x3 ≥ 0}. This time we wish to use Brownian
motion to understand bounded harmonic functions. Using that x3 composed with
Brownian motion on M is a martingale, we give an alternative proof of Theorem 2
(see the proof of Theorem 2.2 of [4] for the basic approach). In particular, the
argument seems to rely on the same underlying structure as the proof mentioned
above, but doesn’t make any use of universal superharmonic functions.

In light of this last point, it might be of some interest to better understand the
relationship between these two approaches. For example, is there a similar Brow-
nian motion-based proof of the analogous result for a minimal surface contained
between two half-catenoids? More generally, does Brownian motion encode other
information about ends of properly embedded minimal surfaces contained between
two plane or half-catenoids?
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Unsolved problems in minimal surface theory

William H. Meeks

There are many interesting and important unsolved problems in the classical
theory of minimal surfaces in R and in other homogeneous 3-manifolds. The
discussion of some of these problems is the topic of this note.

1. Outstanding problems and conjectures.

I have listed in the statement of each conjecture the principal researchers to
whom the conjecture might be attributed. All of these problems appear in my
survey article [12] with Joaquin Perez and some appear in [8] or in [9], along
with further discussions. Also see the author’s 1978 book [10] for a long list of
conjectures in the subject.

Conjecture 1 (Convex Curve Conjecture, Meeks). Two convex Jordan curves
in parallel planes cannot bound a compact minimal surface of positive genus.

There are some partial results on the Convex Curve Conjecture, under the as-
sumption of some symmetry on the curves (see [19, 24, 25]). Also, the results of
Meeks and White [19, 20] indicate that the Convex Curve Conjecture probably
holds in the more general case where the two convex planar curves do not neces-
sarily lie in parallel planes, but rather lie on the boundary of their convex hull; in
this case, the planar Jordan curves are called extremal. Recent results by Ekholm,
White and Wienholtz [6] imply that every compact, orientable minimal surface
that arises as a counterexample to the Convex Curve Conjecture is embedded.

Conjecture 2 (4π-Conjecture, Meeks, Yau, Nitsche). If Γ is a simple closed
curve in R3 with total curvature at most 4π, then Γ bounds a unique compact, ori-
entable, branched minimal surface and this unique minimal surface is an embedded
disk.

Nitsche [22] proved that a regular analytic Jordan curve in R3 whose total
curvature is at most 4π bounds a unique minimal disk and Meeks and Yau [21]
demonstrated the conjecture if Γ is a C2-extremal curve. Concerning this weaken-
ing of Conjecture 2 by removing the orientability assumption on the minimal sur-
face spanning Γ, we mention the following generalized conjecture due to Ekholm,
White and Wienholtz [6]:

Besides the unique minimal disk given by Nitsche’s Theorem [22],
only one or two Möbius strips can occur; and if the total curvature
of Γ is at most 3π, then there are no such Möbius strip examples.
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Gulliver and Lawson [7] proved that if Σ is an orientable, stable minimal surface
with compact boundary that is properly embedded in the punctured unit ball
B(1) − {~0} of R3, then its closure is a compact, embedded minimal surface. If
Σ is not stable, then the corresponding result is not known. Recent results by
Meeks, Pérez and Ros [14, 16] indicate that a more general result might hold. In

fact, Meeks, Pérez and Ros have conjectured that the set {~0} can be replaced by
any closed set in R3 with zero 1-dimensional Hausdorff measure (see Conjecture 4
below). It is elementary to prove that the following conjecture holds for any
minimal surface of finite topology (in fact, with finite genus).

Conjecture 3 (Isolated Singularities Conjecture, Gulliver, Lawson).
The closure of a properly embedded minimal surface with compact boundary in the
punctured ball B(1)− {~0} is a compact, embedded minimal surface.

Conjecture 4 (Fundamental Singularity Conjecture, Meeks, Pérez, Ros). If
A ⊂ R3 is a closed set with zero 1-dimensional Hausdorff measure and L is a
minimal lamination of R3 −A, then L extends to a minimal lamination of R3.

Conjecture 5 (Connected Graph Conjecture, Meeks). A minimal graph in R3

with zero boundary values over a proper, possibly disconnected domain in R2 can
have at most two non-planar components. If the graph also has sublinear growth,
then such a graph with no planar components is connected.

Tkachev [26] proved that the number of disjointly supported minimal graphs is
at most three.

In the discussion of the conjectures that follow, it is helpful to fix some notation
for certain classes of complete embedded minimal surfaces in R3.

• Let C be the space of connected, complete, embedded minimal surfaces.
• Let P ⊂ C be the subspace of properly embedded surfaces.
• Let M ⊂ P be the subspace of surfaces with more than one end.

Conjecture 6 (Finite Topology Conjecture I, Hoffman, Meeks). An orientable
surface M of finite topology with genus g and k ends, k 6= 0, 2, occurs as a topo-
logical type of a surface in C if and only if k ≤ g + 2.

Conjecture 7 (Finite Topology Conjecture II, Meeks, Rosenberg). For every
non-negative integer g, there exists a unique non-planar M ∈ C with genus g and
one end.

The Finite Topology Conjectures I and II together propose the precise topo-
logical conditions under which a non-compact orientable surface of finite topology
can be properly minimally embedded in R

3. What about the case where the non-
compact orientable surface M has infinite topology? In this case, either M has
infinite genus or M has an infinite number of ends. By work in [5], such an M
must have at most two limit ends. Work in [14] implies that such an M cannot
have one limit end and finite genus. We claim that these restrictions are the only
ones.
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Conjecture 8 (Infinite Topology Conjecture, Meeks). A non-compact, orientable
surface of infinite topology occurs as a topological type of a surface in P if and only
if it has at most one or two limit ends, and when it has one limit end, then its
limit end has infinite genus.

Conjecture 9 (Liouville Conjecture, Meeks). If M ∈ P and h : M → R is a
positive harmonic function, then h is constant.

Conjecture 10 (Multiple-End Recurrency Conjecture, Meeks). If M ∈ M, then
M is recurrent for Brownian motion.

Conjecture 11 (Isometry Conjecture, Choi, Meeks, White). If M ∈ C, then
every intrinsic isometry of M extends to an ambient isometry of R3. Furthermore,
if M is not a helicoid, then it is minimally rigid, in the sense that any isometric
minimal immersion of M into R3 is congruent to M .

The Isometry Conjecture is known to hold if either M ∈ M (Choi, Meeks and
White [2]), M is doubly-periodic (Meeks and Rosenberg [17]), M is periodic with
finite topology quotient (Meeks [11] and Pérez [23]) orM has finite genus. One can
reduce the validity of the Isometry Conjecture to checking that whenever M ∈ P
has one end and infinite genus, then there exists a plane in R3 that intersects M
in a set that contains a simple closed curve.

The One-Flux Conjecture below implies the Isometry Conjecture.

Conjecture 12 (One-Flux Conjecture, Meeks, Pérez, Ros).
Let M ∈ C and let F = {F (γ) =

∫
γ
Rot90◦(γ

′) | γ ∈ H1(M,Z)} be the abelian

group of flux vectors for M . If F has rank at most 1, then M is a plane, a heli-
coid, catenoid, a Riemann minimal example or a doubly-periodic Scherk minimal
surface.

Conjecture 13 (Scherk Uniqueness Conjecture, Meeks, Wolf). If M is a con-
nected, properly immersed minimal surface in R3 and Area(M ∩ B(R)) ≤ 2πR2

holds in balls B(R) of radius R, then M is a plane, a catenoid or one of the
singly-periodic Scherk minimal surfaces.

Conjecture 14 (Unique Limit Tangent Cone Conjecture, Meeks). If M ∈ P
is not a plane and has quadratic area growth, then limt→∞

1
tM exists and is a

minimal, possibly non-smooth cone over a finite balanced configuration of geodesic
arcs in the unit sphere, with common ends points and integer multiplicities. Fur-
thermore, if M has area not greater than 2πR2 in balls of radius R, then the limit
tangent cone of M is either the union of two planes or consists of a single plane
of multiplicity two passing through the origin.

If M ∈ C has finite topology, then M has finite total curvature or is asymptotic
to a helicoid [1, 4, 12, 18]. It follows that for any such a surface M , there exists
a constant CM > 0 such that the injectivity radius function IM : M → (0,∞]
satisfies

IM (p) ≥ CM‖p‖, p ∈ M.



Arbeitsgemeinschaft: Minimal Surfaces 2559

Recent work of Meeks, Pérez and Ros in [15, 16] indicates that this linear growth
property of the injectivity radius function should characterize the examples in C
with finite topology.

Conjecture 15 (Injectivity Radius Growth Conjecture, Meeks, Pérez, Ros). An
M ∈ C has finite topology if and only if its injectivity radius function grows at least
linearly with respect to the extrinsic distance from the origin.

Conjecture 16 (Negative Curvature Conjecture, Meeks, Pérez, Ros). If M ∈ C
has negative curvature, then M is a catenoid, a helicoid or one of the singly or
doubly-periodic Scherk minimal surfaces.

Conjecture 17 (Four Point Conjecture, Meeks, Pérez, Ros).
Suppose M ∈ C. If the Gauss map of M omits 4 points on S2(1), then M is a
singly or doubly-periodic Scherk minimal surface.

The following conjecture is related to the Calabi-Yau conjectures.

Conjecture 18 (Finite Genus Properness Conjecture, Meeks, Pérez, Ros). If
M ∈ C and M has finite genus, then M ∈ P.

In [13], Meeks, Pérez and Ros proved Conjecture 18 under the additional hy-
pothesis that M has a countable number of ends, thereby generalizing the result
in the case of finite topology by Colding and Minicozzi [3].

Conjecture 19 (Embedded Calabi-Yau Conjectures). (Mart́ın, Meeks, Nadi-
rashvili, Pérez, Ros)

1.: A connected, open surface M properly minimally embeds in every smooth
bounded domain of R3 as a complete surface if and only if it is orientable
and every end of M have infinite genus.

2.: A connected, non-orientable open surface M properly minimally embeds
in some bounded domain in R3 as a complete surface if and only if every
end of M has infinite genus.

Any end of a surface M ∈ C with finite total curvature is C2-asymptotic to
the end of a plane or catenoid ( [25]). The next conjecture can be viewed as a
generalization of this result.

Conjecture 20 (Standard Middle End Conjecture, Meeks). If M ∈ M and
E ⊂ M is a one-ended representative for a middle end of M , then E is C0-
asymptotic to the end of a plane or catenoid. In particular, if M has two limit
ends, then each middle end is C0-asymptotic to a plane.
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[12] W. H. Meeks III and J. Pérez, Embedded minimal surfaces of finite topology, Preprint,
available at http://www.ugr.es/local/jperez/papers/papers.htm.

[13] W. H. Meeks III, J. Pérez and A. Ros, The embedded Calabi-Yau conjectures for finite
genus, Preprint, available at http://www.ugr.es/local/jperez/papers/papers.htm.
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Meeks’ proof of Osserman’s Theorem

John M. Sullivan

In 1964, Bob Osserman focused attention on minimal surfaces of finite total cur-
vature by proving [4] the following:

Theorem 1. If Σ is a complete oriented immersed minimal surface in R3 with
finite total curvature, then Σ has finite conformal type and its Gauss map extends
holomorphically across each end. Thus the total curvature of Σ is a multiple of
4π.

Here, finite conformal type means that Σ has finite topology – finite genus g and
a finite number k of (annular) ends – and furthermore that each end is conformally
a punctured disk. That is, Σ is conformally a compact surface Σ of genus g with k

punctures. Osserman’s theorem says the Gauss map G extends to G : Σ → Ĉ, so
the total Gauss curvature is 4π times the degree of this map. (In the same paper,
Osserman also proved that the rest of the Weierstrass data extends appropriately
to Σ, and considered analogous results for Σ2 ⊂ Rn.)

Osserman’s proof depends on the machinery developed by Huber for subhar-
monic functions. Huber [2] showed that any complete surface metric whose cur-
vature is nonnegative outside a compact set has finite conformal type. Osserman
could apply Huber’s result after constructing a complete flat metric on each end.

In 1995, Bill Meeks gave a new, more self-contained proof [3] of Osserman’s
theorem. My talk at the Arbeitsgemeinschaft in Oberwolfach outlined (as much
as possible in one hour) his proof. This report (with its even more restrictive page
limit) focuses in particular on two small steps – Lemma 3 and Proposition 6 – which
were left implicit in Meeks’ paper and which were of interest to the audience at
Oberwolfach.

Meeks starts by showing that an integral bound on curvature implies a pointwise
bound. (Results of this nature are not surprising for solutions to elliptic PDEs.)

Proposition 2. For any ε > 0 there exists δ > 0 with the following property.
Suppose M is a compact minimal surface (with boundary) in R3 and let d : M → R

denote the intrinsic distance to ∂M . If the Gauss image of M includes no spherical
cap of area δ (in particular if the total curvature is less than δ) then the Gauss
curvature satisfies |K(p)| ≤ ε

/
d(p)2.

The proof proceeds by contradiction. Given a sequence of surfaces forming
a counterexample, we rescale each surface around a point maximizing the scale-
invariant quantity d2|K| and show we can take a limit. To get the strong form of
the result – involving not just the area of the Gauss image but also its shape – we
need the following:

Lemma 3. Suppose f : M → N is a conformal map of riemannian manifolds
whose conformal factor is bounded below by λ on a geodesic ball Br(p) ⊂ M . Then

f
(
Br(p)

)
⊃ Bλr

(
f(p)

)
.
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Proof. Given any geodesic ray from f(p), we can find in its preimage an arc starting
at p; this can be continued for length at least r while staying in Br(p), so the image
geodesic continues for length at least λr. �

Another key ingredient is the ability to truncate each end of a minimal surface
along a closed geodesic. The next proposition was originally proved by Freedman,
Hass and Scott [1].

Proposition 4. Suppose γ is a nontrivial simple closed curve on an oriented
riemannian surface M . Any closed geodesic of least length in the free homotopy
class [γ] is injective.

Proposition 5. Consider a complete minimal surface M in Rn. Each nontrivial
free homotopy class contains a unique closed geodesic (the curve of least length).

The proofs Meeks gives for these propositions both involve the tower of coverings

M̂ → M̃ → M , in which M̂ is simply connected and π1

(
M̃
)
= Z is generated by

the free homotopy class [γ] under consideration.
These results imply that any minimal surface of finite total curvature has finite

topology with a pants decomposition along geodesics. In particular we can find
a geodesic ∂E bounding each end E. We then set up polar coordinates on E
by foliating it with geodesics perpendicular to ∂E; we let γr denote the circle at
distance r from ∂E. The fact that E has finite total curvature implies that it has
quadratic area growth, so the length of γr grows linearly (bounded by Cr).

The curvature bound now implies that the length of the Gauss imageG(γr) ⊂ S
2

converges to zero: Given ε > 0 we choose δ as in Proposition 2 and then choose r
such that the total curvature of the end beyond γr is less than δ. The pointwise
curvature bound shows that |K| < ε/r2 along γ2r, implying that len

(
G(γ2r)

)
is

less than 2rC
√
ε/r, which of course can be made arbitrarily small.

The proof of Osserman’s theorem now follows from some topological facts about
holomorphic maps, in particular from Corollary 8 below. We recall that non-
constant holomorphic maps between Riemann surfaces are both open (open sets
have open images) and light (points have totally disconnected preimages). Indeed
Stöılow showed [5] that any light open map between surfaces is holomorphic with
respect to some complex structure; see also [6–8]. (Light open maps have also
been called interior maps.)

Proposition 6. Let A := (0, 1]×S1 be the annulus and set γt := {t}×S1. Suppose
F : A → M is a light open map to a closed surface M with the property that the
length of F (γt) goes to zero with t. Then F has a well-defined limit as t → 0.

Proof. Set ℓt := len
(
F (γt)

)
. By compactness the condition ℓt → 0 is independent

of the metric on M , but of course we fix a metric for the proof. Choose δ > 0
smaller than the injectivity radius of M and smaller than diam(M)/4. Discard-
ing the outer part of A if necessary, we may assume that ℓt < δ for all t. In
particular, each F (γt) is homotopically trivial and lies in a closed ball of radius
ℓt/2 < diam(M)/8 around any of its points. We now claim that each pair of curves
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F (γt) and F (γs) intersects. The desired convergence then follows since for ℓt < ε,
the image F

(
(0, t]× S1

)
is contained in the ε-ball around any point of F (γt).

To prove the claim, suppose F (γt) and F (γs) are disjoint and consider Z :=
[s, t] × S1. Because F is open, each component of M \ F (∂Z) is either contained
in or disjoint from F (Z). Note that there is a unique “large” component C which
touches both F (γs) and F (γt). Since F (Z) is connected, it must include C. By the
lemma below, C contains the open ball of radius δ/2 around some p ∈ C. For some
r ∈ (s, t), we have p ∈ F (γr), implying that F (γr) ⊂ Bδ/2(p) ⊂ C. In particular,
F (γr) is disjoint from F (γs) and F (γt). But now we can repeat the argument
restricting to [s, r] × S1. Even here, F covers “most of” M . By induction, each
point in M has infinitely many preimages in the compact space Z, contradicting
the lightness of F . �

Lemma 7. Suppose M is a metric space and ε ≤ diam(M)/8. Then for any a, b ∈
M there exists p ∈ M such that the ε-ball Bε(p) is disjoint from Bε(a) ∪Bε(b).

Proof. Equivalently, we must find p /∈ B2ε(a) ∪ B2ε(b). But if these two balls
covered M , then for any q in their intersection, M would be covered by B4ε(q),
contradicting the choice of ε. �

Corollary 8. If F : A → S2 is a nonconstant holomorphic map, and the length of
F (γt) goes to zero with t, then A is conformally a punctured disk and F extends
holomorphically across the puncture.

Proof. Suppose A were conformally {r < |z| ≤ 1} for some r > 0. By Proposi-
tion 6, F extends to a constant along the inner boundary |z| = r. By Schwarz
reflection we would get a holomophic function constant along an interior arc, con-
tradicting the fact that F is nonconstant. Thus A is a punctured disk and F has
a removable singularity at the puncture. �
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Estimates for stable minimal hypersurfaces

Keomkyo Seo

In this talk, we discuss the estimates for three geometric quantities of stable min-
imal hypersurfaces. Firstly, we consider curvature estimates for compact stable
minimal surfaces in terms of the intrinsic distance from the boundary of the sur-
face. When a surface is a minimal graph, it was proved by E. Heinz [3], E. Hopf [4],
and R. Osserman [6] that
Theorem. Let DR := {x2 + y2 < R} be a disk in R2 of radius R centered at 0.
Suppose that u : DR → R satisfies the minimal surface equation. Let p = u(0) and
let d be the intrinsic distance from p to the boundary ∂u(DR). Then the Gaussian
curvature K(p) of the graph u(DR) satisfies

K(p) ≤ c

d2W (0)2
,

where c is an absolute constant and W 2 := 1 + |∇u|2 ≥ 1.
In [2], this result was generalized to embedded minimal disk with bounded density
or bounded total curvature, which played an important role in analyzing the local
structure of embedded minimal surfaces. Since minimal graphs are stable, curva-
ture estimate for stable minimal surfaces can be thought of as a generalization of
the above estimate for graphs. For stable minimal surfaces, R. Schoen [8] proved
the following.
Theorem. There exists a constant c > 0 such that for any orientable stable
immersed minimal surface Σ ⊂ R3 and p ∈ Σ the Gaussian curvature

|K(p)| < c

d(p)2
,

where d(p) is an intrinsic distance from p to the boundary of Σ.
The above theorem was reproved by W. Meeks [5] recently.

Secondly, we consider the following area estimates for stable minimal surfaces
which was proved by Pogorelov [7], Colding-Minicozzi [1], and Meeks [5]. If D ⊂ Σ
is a stable minimal disk of geodesic radius r0 on a minimal surface Σ ⊂ R3, then

πr20 ≤ Area(D) ≤ 4

3
πr20 .

Thirdly, we provide the following estimate of the first Dirichlet eigenvalue of the
Laplace operator on a complete stable minimal hypersurface M in the hyperbolic
space which has finite L2-norm of the second fundamental form on M . (See [9] for
details.)
Theorem. Let M be a complete stable minimal hypersurface in Hn+1 with∫
M |A|2dv < ∞. Then we have

(n− 1)2

4
≤ λ1(M) ≤ n2.
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Construction of triply periodic minimal surfaces

Rami Younes

Given a tiling T of the plane by straight edge polygons, which is invariant by
two independent translations, we construct a family of embedded triply periodic
minimal surfaces which desingularizes T × R. For this purpose, inspired by the
work of Martin Traizet, we open the nodes of singular Riemann surfaces to glue
together simply periodic Karcher saddle towers, each placed at a vertex of the
tiling in such a way that its wings go along the corresponding edges of the tiling
ending at that vertex.

Barrier construction

Emanuele Spadaro

We presented a barrier construction for solutions to Plateau’s problem due to
Meeks and Yau.

Given a mean-convex domain Ω ⊂ R3 and a null-homotopic (in Ω) curve Γ ⊂
∂Ω, then there is an area-minimizing embedded disk with boundary Γ contained in
Ω̄.

The proof proceeds in two steps: modifying the standard Euclidean metric
outside of Ω, one can force Morrey’s solutions to the least-area problem to intersect
Ω; then, an easy computation on the Laplacian of the distance function from ∂Ω
and the maximum principle for harmonic functions conclude.

This result allows one to construct stable minimal surfaces constrained to lie
“between two given minimal surfaces”. As a consequence of this construction,
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using the maximum principle and the curvature estimates, we showed the following
strong halfspace theorem due to Hoffman and Meeks.

Strong halfspace Theorem. Every two disjoint, properly immersed (possibly
branched) minimal surfaces in R3 are parallel planes.
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Colding-Minicozzi’s one-sided curvature estimate

Giuseppe Tinaglia

In this talk I will outline the proof of Colding-Minicozzi one-sided curvature esti-
mate. Loosely speaking, it says that if an embedded minimal disk gets sufficiently
close to and stays on one side of a plane, then the curvature of such disk is bounded
in the interior. This estimate can be though of an effective version of Hoffman-
Meeks half-space theorem.

Colding-Minicozzi Theory: The Calabi-Yau conjectures for embedded
surfaces.

Jacob Bernstein

In this talk we discuss some of the results of [2] regarding the Calabi-Yau con-
jectures for complete embedded minimal surfaces in R3. We defer the details of
the arguments to Christine Breiner’s talk. In particular, we address the following
hierarchy of statements about complete minimal immersions into R3:

(1) There exists a complete minimal immersion F : Σ → R3 so that F (Σ) ⊂
B1(0).

(2) There exists a non-flat complete minimal immersion F : Σ → R3 so that
F (Σ) ⊂ {x3 ≥ 0}.

(3) There exists a complete minimal immersion F : Σ → R3 that is not prop-
erly immersed.

Notice that by translation, a surface that satisfies the first condition must satisfy
the second, Furthermore, by the strong half-space theorem of Hoffman-Meeks [11]
a surface satisfying the second condition satisfies the third. Examples satisfying
the third condition have been known for some time, but the status of the first two
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was somewhat less clear. Indeed, Calabi, in [1], conjectured that there were no
examples satisfying the second condition (and hence none satisfying the first con-
dition). However, in 1980, Jorge-Xavier [7] constructed an example of a complete
minimal immersion lying in a slab – disproving Calabi’s conjecture. Furthermore,
in 1996, Nadirashvili [10] constructed a complete minimally immersed disk lying
inside the unit ball. Thus, even a weakening of Calabi’s conjecture is false for
immersed surfaces.

Nevertheless, one expects embedded surfaces to be much more rigid objects and
the conjecture might hold when restricted to this class. This turns out to be the
case, at least with additional finiteness assumption. Indeed, in [2], Colding and
Minicozzi show something even stronger. Namely, there are no embedded minimal
surfaces of finite topology (i.e. are diffeomorphic to a finitely punctured compact
surface) satisfying the third condition. In other words:

Theorem 1. Let Σ be a complete, minimally embedded surface in R3 of finite
topolgoy, then Σ is properly embedded.

Using one of the key propositions of [2], Meeks and Rosenberg [9] (see also [8])
generalize this to the following result:

Theorem 2. Let Σ be a complete, minimally embedded surface in R3 with uniform
lower bound on the injectivity radius, then Σ is properly embedded.

Colding and Minicozzi approach the problem in [2] by showing certain chord-arc
bounds for embedded minimal disks. Recall, the intrinsic distance between two
points on a surface in R

3 is always bounded below by the extrinsic distance (in R
3)

between them. On the other hand, extrinsic distance, in general, does not control
intrinsic distance. However, using their description of the structure of embedded
minimal disks, Colding and Minicozzi show that in fact such a reverse control
does exist (in some sense) for embedded minimal disks. The heart of their paper
is devoted to showing a weak form of this. Namely, the following weak chord-arc
bound :

Theorem 3. There exists a δ > 0 so that: Let Σ be an embedded minimal disk.
Suppose that that the intrinsic ball BR(x) is a subset of Σ\∂Σ. Then the component
Σx,δR of Σ ∩BδR(x) containing x is a subset of BR/2(x).

An important consequence of this is that ∂Σx,δR ⊂ ∂BδR(x). The proof the
weak chord-arc bound uses a blow-up argument and the results on the structure
of embeded minimal disks from [3–6]. By combining this result with the one-sided
curvature estimate of [5] (discussed in Giuseppe Tinaglia’s talk) one obtains the
following strong chord-arc bound :

Theorem 4. There exists a C > 0 so that: Let 0 ∈ Σ be an embedded minimal
disk. Suppose that BR(0) ⊂ Σ\∂Σ. Then if supBr0

(0) |A|2 ≥ r−2
0 for R/2 ≥ r0 > 0

then for any x ∈ BR/2(0) one has CdistΣ(x, 0) ≤ |x|+ r0.

Notice that the curvature normalization is neccesary, as can be seen by looking
far from the axis of a helicoid. This immediately proves that a complete embedded
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minimal disk is properly embedded. Arguing in a similar fashion, one shows that
annulur ends are properly embedded, which proves the more general result of
Colding and Minicozzi.
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Colding-Minicozzi Theory: Weak chord-arc bounds for embedded
minimal disks

Christine Breiner

This talk was a continuation of the talk by Jacob Bernstein; the goal of both was
to ultimately prove a chord-arc bound for embedded minimal disks in Euclidean
space (see [1]). The thrust of this talk was to prove a weak chord-arc bound for
embedded disks, without a priori knowledge of the position of the boundary. The
precise statement is as follows:

Theorem 1. Let Σ ⊂ R3 be an embedded minimal disk. Then there exists δ > 0,
independent of Σ such that if BR(x) ⊂ Σ\∂Σ, then Σx,δR ⊂ BR/2(x).

Here BR represents the intrinsic ball of radius R and Σx,δR is the component
of BδR(x) ∩Σ that contains x. Note also that δ is independent of R.

Throughout the proof, we rely on a similar result to Theorem 1, but for em-
bedded disks with a certain boundary condition. We place it here so we can refer
to it with convenience.
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Proposition 2. Let Σ ⊂ BR ⊂ R
3 be an embedded minimal disk such that ∂Σ ⊂

∂BR. Then there exists δ1, independent of Σ, such that Σ0,δ1R ⊂ BR/2(0).

To begin understanding the proof of the theorem, we need a few definitions that
explain the scale on which a δ-weak chord arc bound holds at a given point.

Definition 3. Let Bs(x) ⊂ Σ\∂Σ. We say Bs(x) is δ-weakly chord arc if Σx,δs ⊂
Bs/2(x).

We let Rδ(x) denote the supremum of the scales on which all lower scales are
δ-weakly chord arc. That is,

Definition 4. Rδ(x) = sup{R|Br(x) ⊂ Σ\∂Σ is δ-weakly chord arc for all r ≤ R}.
Note that the definition of Rδ(x) follows that of Meeks and Rosenberg in [3], and I
adapt the proof from [1] to use this new definition. Using the one-sided curvature
estimate, Proposition 2, and curvature estimates for 1/2-stable surfaces, one can
prove the following nice result.

Proposition 5. Let Σ ⊂ R3 be an embedded minimal disk. There exists a constant
C > 1, independent of Σ so that if BCR0

(y) ⊂ Σ\∂Σ is an intrinsic ball and

• every intrinsic subball BR0
(z) ⊂ BCR0(y) is δ2-weakly chord-arc

then for every s ≤ 5R0, the intrinsic ball Bs(y) is δ2-weakly chord-arc. That is,
Rδ2(y) ≥ 5R0.

Based upon Proposition 2 and up to a rescaling, this tells us that for a suf-
ficiently large intrinsic ball BC(y) ⊂ Σ\∂Σ for which intersections with extrinsic
balls of radius 1 are compact, one can show that B5(y) ∩Σ is also compact. Intu-
itively, it means that one cannot have an arbitrarily long geodesic in an extrinsic
ball.

The proof follows by contradiction. It reduces to showing that Σy,5 ⊂ BC(y) for
some C and then appealing to Proposition 2. Assuming no such C exists, one can
choose points on a geodesic through y that are intrinsically far apart but are fixed
extrinsically in B5(y). For a long enough geodesic, two of these points must be
extrinsically very close. The geodesic disks around these two points satisfy δ2-weak
chord arc bounds (and thus their intersections with small extrinsic balls of radius
δ2 are compact). Moreover, these geodesic disks are very close at their centers.
These criteria are enough to let us appeal to the one-sided curvature estimates
of Colding and Minicozzi [2]. That is, when the centers are sufficiently close, one
gets good curvature bounds on sub-disks. With small curvature bounds, one can
write one geodesic disk as a graph over the other with small norms for |u|, |∇u||A|.
Bounding these norms ultimately gives that each of these surfaces are 1/2-stable.

(A surface Ω is 1/2-stable if for all φ ∈ C0,1
0 (Ω), one has 1/2

∫
|A|2φ2 ≤

∫
|∇φ|2.)

If the initial centers are sufficiently close, one can use a Harnack inequality to
bound the extrinsic distance between two points on the boundary of slightly smaller
sub-disks. One can then iterate this process to get large, 1/2-stable geodesic disks.
The curvature estimates then force them to leave B5(y), which gives the necessary
contradiction. If ∂Σ = ∅, Proposition 5 would be enough to prove the Theorem
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1. Unfortunately, the boundary complicates matters. As is usually the case, one
deals with this by a blow-up argument.

Then, the thrust of the problem is to find a δ for which the function G(x) =
distΣ(x, ∂Σ)/Rδ(x) is bounded. Let aδ = supx∈ΣG(x), where G is defined for
that δ. A standard blow-up result shows

Proposition 6. Let Σ ⊂ R3 be a compact, embedded minimal disk that is smooth
up to the boundary. For a constant 0 < δ < 1/2, there exists y ∈ Σ and R0 > 0
such that

(1) Rδ(x) > R0 for every x such that BR0
(x) ⊂ BaδR0

(y);
(2) Rδ(y) < 5R0.

Notice if aδ > C where C is from Proposition 5 and δ ≤ δ1 of Proposition
2, Proposition 6 gives a contradiction to Proposition 5. Thus, G is a bounded
function and we have the chord-arc bound we desire.
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Rescaling arguments and minimal laminations

Thilo Kuessner

We indicated proofs of the following Theorems:

Lamination Closure Theorem: If M is a minimal surface in a 3-manifold
N with injectivity radius bounded away from zero (inj ≥ C > 0), then M is a
minimal lamination.

The main technical part of the proof (by Meeks and Rosenberg) is to show
that inj ≥ C > 0 implies that the second fundamental form is uniformly locally
bounded (in extrinsic balls). The latter implies that M is locally a union of graphs,
and leaves of M are then constructed as limits of these minimal graphs.

Stable Limit Leaf Theorem: If F is a minimal lamination, then two-sided
limit leaves are stable.

The proof is well-known in the foliation case, where it is just an application of
Gauss Divergence Theorem: let ∆ ⊂ L be a domain in a leaf, ∆′ a small variation,
∂Ω = ∆ ∪∆′, let W be the unit normal field to F and V the unit normal field to
∂Ω, then div (W ) = 2H = 0, hence

0 =

∫

Ω

div (W ) =

∫

∂Ω

< V,W >≤ area (∆′)− area (∆) .
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The proof in the lamination case (by Meeks-Perez-Ros) locally interpolates lamina-
tions (in a chart around a limit leaf) by foliations with mean curvature Ht = o (t)
and then adapts the above argument.

More generally one can prove that leaves of CMC-foliations are stable if they
locally maximize | H |.

Curvature Estimates: There exists a universal constant C such that, for all
complete 3-manifolds N with | sec |≤ 1 and all CMC-foliations, the second funda-
mental form of leaves is bounded by C: | A |F≤ C.

(If ∂N 6= ∅, then | A |F≤ C
d(.,∂N) .)

The proof is by a rescaling argument: let Nn be a sequence with λn =| A |Fn

maximal at pn, and assume by contradiction λn → ∞. Then λnB (pn, 1) converges
to flat R3, with a (weak) CMC-foliation that satisfies | A |F≤ 1 and | A |F= 1 at
some point. The latter implies that there is some non-flat leaf maximizing | H |,
that is a non-flat stable leaf. But stable leaves in flat R3 are known to be flat
planes, giving a contradiction.

Corollary (Meeks): Every CMC-foliation of the flat R3 is a foliation by
parallel flat planes.
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Harmonic function theory on minimal surfaces

José Miguel Manzano

In this talk we describe the notion of an annular end of a Riemannian surface
being of finite type with respect to some harmonic function (i.e. there exists a level
set of the function which has a finite number of ends) and prove some theoretical
results relating this property to the conformal structure of such an annular end.
We then apply these results to understand and characterize properly immersed
minimal surfaces in R3 of finite total curvature, in terms of their intersections
with two nonparallel planes.
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Complete embedded minimal ends with infinite total curvature and
uniqueness of the helicoid

Joaqúın Pérez

This talk was devoted to address the following question:

What are the possible shapes at infinity for a complete, embedded
minimal annular end in R3 with infinite total curvature?

The above question can be justified in several ways. From a historical point of view,
Schoen [9] characterized the end of a plane and of a half-catenoid as the unique
asymptotic models for complete, embedded minimal annular ends in R3 with finite
total curvature. Later on, Meeks and Rosenberg [6, 7] did the same job with
periodic minimal surfaces, finding that the only possibilities are planar, helicoidal,
Scherk-type ends a less known asymptotic geometry of a sort of mixed catenoidal-
helicoidal end, which cannot be part of a minimal surface without boundary by flux
reasons (we will encounter again this phenomenon in our setting to be explained
below). The case of an embedded annular minimal end with infinite total curvature
was studied by Hauswirth, Pérez and Romon [3], with additional assumptions
about flux and height differential of the surface. To finish this brief historical
tour about the question above, we should mention that in the last section of
their celebrated paper [8], Meeks and Rosenberg described how their proof of the
uniqueness of the helicoid could be modified to prove that

(⋆) Every nonplanar, properly embedded, one-ended minimal sur-
face M in R3 with finite genus and infinite total curvature is
conformally a compact Riemann surface M punctured at a sin-
gle point, M is asymptotic to a helicoid and it can be expressed
analytically in terms of meromorphic data on M .

Nevertheless, the original proof of the uniqueness of the helicoid was long and
technical and so, a variety of arguments needed to be shown to hold in order to
give a rigorous proof of (⋆) in the positive genus case. The first rigorous proof of
this fact has been recently given by Bernstein and Breiner [1]. In this talk, we will
overview a recent joint work by the author and Meeks [5] where they tackle the
more general problem of describing the asymptotic behavior, conformal structure
and analytic representation of an annular end of a complete, injectively immersed
minimal surface M in R3 with compact boundary and finite topology. Allowing the
surface to have compact boundary introduces a geometrical quantity, namely the
flux vector (which is zero in the case of (⋆) by the Stokes theorem). We will see that
this vector essentially parameterizes the moduli space of all possible asymptotics
for a surface as in the question posed at the beginning. We also remark that
completeness implies properness in this setting with finite topology and compact
boundary, as follows from the results in Colding and Minicozzi [2].

In order to state the main result in this talk, we need the following notation.
Given R > 0, let C(R) = {(x1, x2, x3) | x2

1 + x2
2 ≤ R2}. A multigraph over

D(∞, R) = {x3 = 0} ∩ [R3 − Int(C(R))] is the graph Σ = {(reiθ , u(r, θ)} ⊂
C × R ≡ R3 of a function u = u(r, θ) defined on the universal cover D̃(∞, R) =
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{(r, θ) | r ≥ R, θ ∈ R} of D(∞, R). The image in the figure describes how the
flux vector (a, 0,−b) of the surface Ea,b appearing in Theorem 1 below influences
its geometry.

Theorem 1. Given a ≥ 0 and b ∈ R, there exist a positive number R = RE =
R(a, b) and a properly embedded minimal annulus Ea,b ⊂ R3 with compact bound-
ary and flux vector (a, 0,−b) along its boundary, such that the following statements
hold.

(1) Ea,b − C(R) consists of two disjoint multigraphs Σ1,Σ2 over D(∞, R)

of smooth functions u1, u2 : D̃(∞, R) → R such that their gradients sat-
isfy ∇ui(r, θ) → 0 as r → ∞ and the separation function w(r, θ) =
u1(r, θ)−u2(r, θ) between both multigraphs converges to π as r+ |θ| → ∞.
Furthermore for θ fixed and i = 1, 2,

lim
r→∞

ui(r, θ)

log(log(r))
=

b

2π
.

(2) The translated surfaces Ea,b+(0, 0,−2πn− b
2π log n) (resp. Ea,b+(0, 0, 2πn−

b
2π log n)) converge as n → ∞ to a vertical helicoid HT (resp. HB) such
that HB = HT + (0, a/2, 0). Note that this last equation together with
item (1) above imply that for different values of a, b, the related surfaces
Ea,b are not asymptotic after a rigid motion and homothety.

(3) The annulus E0,0 is the end of a vertical helicoid, and the annuli E0,b are
each invariant under reflection across the x3-axis l and l ∩ E0,b contains
two infinite rays.

(4) Every complete, embedded minimal annulus E in R3 with compact bound-
ary and infinite total curvature satisfies the following properties:
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(a) E is properly embedded in R
3 and conformally diffeomorphic to a

punctured disk.
(b) After replacing E by a subend and applying a suitable homothety and

rigid motion to E, then:
(i) The holomorphic height differential dh = dx3 + idx∗

3 of E is
dh = (1+ λ

z−µ ) dz, defined on D(∞, R) = {z ∈ C | R ≤ |z|} for

some R > 0, where λ ∈ R and µ ∈ C. In particular, dh extends
meromorphically across infinity with a double pole.

(ii) The stereographic projection g : D(∞, R) → C ∪ {∞} of the
Gauss map of E can be expressed as g(z) = eiz+f(z) for some
holomorphic function f in D(∞, R) with f(∞) = 0.

(iii) E is asymptotic to the end Ea,b where (a, 0,−b) is the flux vector
of E along its boundary; in particular, E satisfies the properties
(1),(2) above, and E is asymptotic to the end of a helicoid if
and only if it has zero flux.

The existence of the “canonical model” Ea,b given in Theorem 1 is based on the
classical Weierstrass representation. Namely, in the case of nonvertical flux (i.e.
a 6= 0) one consider the following data for Ea,b:

(1) g(z) = t eiz
z −A

z
, dh =

(
1 +

B

z

)
dz, z ∈ D(∞, R),

where t > 0, A ∈ C − {0}, B ∈ R and R > |A| are to be determined. It can
be proved that the parameters A,B, t can be adjusted so that the corresponding
period problem is solved, and at the same time one can prescribe arbitrarily the
flux vector (a, 0,−b) (with a 6= 0) along the boundary {|z| = R}. Similarly, in the
vertical flux case E0,b, one takes

(2) g(z) = eiz
z −A

z −A
, dh =

(
1 +

B

z

)
dz, z ∈ D(∞, R),

where A ∈ C − {0} and R > |A|. After closing the period, one notices that

the conformal map z
Φ7→ z in the parameter domain D(R,∞) of E0,b satisfies

g ◦Φ = 1/g, Φ∗dh = dh, which implies that up to a translation in R3, Φ produces
a 180◦-rotation of R3 around the x3-axis which leaves E0,b invariant.

To prove the items in Theorem 1 one argues directly with a complete embed-
ded minimal annulus E with compact boundary and infinite total curvature (which
could be in particular Ea,b, assuming embeddedness for this last surface). The two
multigraph structure in item (1) of Theorem 1 essentially follows from Colding-
Minicozzi theory; some special care is needed here since we are dealing with com-
pact boundary. The crucial point here is that, with the notation of item (1) of
the theorem, the slope dui

dθ is strictly positive (up to change of orientation) on the
spiraling curves obtained after intersecting E with a vertical cylinder of radius
large enough, a fact already observed by Bernstein and Breiner in [1]. From here
is not difficult to derive that horizontal planes sufficiently high or low intersect
E exactly in a transverse proper arc. This property implies that the conformal
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structure of E is parabolic, that the (stereographically projected) Gauss map of E
can be written as g(z) = zkeH(z) for some k ∈ Z and some holomorphic function in
D(∞, R), and that the height differential dh = dx3+idx∗

3 extends holomorphically
across∞ with a double pole at ∞ (Meeks and Pérez [4]). The next step consists of
proving that k = 0, which follows by finding a curve Γ ⊂ D(∞, 1) homologous to
{|z| = R} such that the winding number of g along Γ is zero. Again the spiraling
curves described above are essential here. Once we know that k = 0, then a suit-
able change of coordinates and rotation in R3 produce the Weierstrass data for E
given in items (4)-(b)-(i) and (4)-(b)-(ii) of Theorem 1. The remaining properties
stated in Theorem 1 (in particular, the embeddedness of Ea,b) follow from a careful
analysis of the geometry of E based on the Weierstrass representation.
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Minimal Graphs in Nil3

Hojoo Lee

The Heisenberg group Nil3 with bundle curvature 1
2 admits a Riemannian fi-

bration over the Euclidean plane. More explicitly, after identifying Nil3 as R3

endowed with the Riemannian metric

ds2 = dx2 + dy2 +

[
1

2
(ydx− xdy) + dz

]2
,

the standard projection (x, y, z) 7→ (x, y) becomes a Riemannian fibration. The
coordinate (x, y) is geometric and so the notion of vertical graph z = f(x, y) is
natural. Fernández and Mira in [5] obtained a characterization of the moduli space

of entire minimal graphs in Nil3.
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Theorem 1. Let Q be a holomorphic quadratic differential on D or a non-zero
holomorphic quadratical differential on C. Then, there exists a 2-parameter fam-
ily of (generically non-congruent) entire minimal graphs in Nil3. Conversely, all
entire minimal graphs in Nil3 belong to these families.

One of the enlightening ideas we encounter in the Fernández-Mira solution of
the Bernstein problem in Nil3 is the explicit duality between minimal surface in
Nil3 and spacelike surface with constant mean curvature 1

2 in L3.

Theorem 2. Given a conformal immersion of the minimal surface in Nil3

X = (F, h) : Σ → Nil3,

let Q denote its Abresch-Rosenberg differential on the Riemann surface Σ. Apply-
ing Daniel’s isometric correspondence in [4], we obtain a conformal immersion of
its sister surface with constant mean curvature 1

2 in the product space H2 × R

Xsister = (F sister , hsister) : Σ → H
2 × R.

Then, we can choose ǫ ∈ {−1, 1} having the property that

Xtwin = (F, ǫhsister) : Σ → L
3

becomes the conformal immersion of the unique (up to positive isometries) spacelike
surface with constant mean curvature 1

2 in Minkowski space L3. The induced Hopf

differential of the immersion Xtwin is −Q.

Then, we are able to exploit the well-known theory ( [2], [12], [13]) of spacelike
surfaces with constant mean curvature 1

2 in L3 to describe the moduli space of

entire minimal graphs in Nil3.
Now, one may naturally ask about the existence of the dualities for surfaces

with constant mean curvature in more general ambient spaces. We define the
Bianchi-Cartan-Vranceanu space E3(κ, τ) by

E
3(τ, κ) =

(
V,

dx2 + dy2

δκ(x, y)
2 +

[
τ

(
ydx− xdy

δκ(x, y)

)
+ dz

]2)
,

where δκ(x, y) = 1 + κ
4

(
x2 + y2

)
and V = {(x, y, z) | δκ(x, y) > 0}. We introduce

the Lorentzian Bianchi-Cartan-Vranceanu space E3(κ, τ) as follows.

L
3(τ, κ) =

(
V,

dx2 + dy2

δκ(x, y)
2 −

[
τ

(
ydx− xdy

δκ(x, y)

)
+ dz

]2)
.

The following theorem in [9] generalizes the classical duality ( [1], [6], [11])
between minimal graphs in R3 and maximal graphs in L3.

Theorem 3. There exists the duality between the moduli space of graphs with
constant mean curvature H in E3(κ, τ) and the moduli space of spacelike graphs
with constant mean curvature τ in L3(κ,H).
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For instance, we obtain the correspondence between the maximal graphs in the
Lorentzian Heisenberg space Nil31

(
1
2

)
= L3

(
0, 1

2

)
and the graphs of constant mean

curvature 1
2 in R3.

Motivated by this duality, we studied in [10] maximal surfaces in the Lorentzian

Heisenberg space Nil31 (τ) = L3 (0, τ) with τ 6= 0. We proved that their Gauss maps
becomes harmonic maps into S

2 and that their Abresch-Rosenberg differentials are
holomorphic. (See also Daniel’s results in [3].)

Employing the above duality and applying Chern’s theorem that there is no
entire spacelike graph of constant mean curvature H 6= 0 in R3, we can solve the
Bernstein problem in Nil31(τ) with τ 6= 0.

Theorem 4. There exists no entire spacelike graph with zero mean curvature in
the Lorentzian Heisenberg space Nil31(τ) with τ 6= 0.

The well-known self-duality in the moduli space of timelike graphs with zero
mean curvature in L3 is also generalized in [9].

Theorem 5. There exists the duality between the moduli space of timelike graphs
with constant mean curvature H in L3(κ, τ) and the moduli space of timelike graphs
with constant mean curvature τ in L3(κ,H).

The geometries of our PDE graph duality appeared in Theorem 3 and Theorem
5 and their various applications will be fully discussed in [7] and [8].

References

[1] E. Calabi, Examples of Bernstein problems for some non-linear equations, Proc. Sympos.
Pure Math. 15 (1970), Amer. Math. Soc., Providence, RI, 223–230.

[2] S.Y. Cheng, S.T. Yau, Maximal spacelike hypersurfaces in the Lorentz- Minkowski spaces,
Ann. of Math., 104 (1976), 407–419.

[3] B. Daniel, The Gauss map of minimal surfaces in the Heisenberg group, preprint.
[4] B. Daniel, Isometric immersions into 3-dimensional homogeneous manifolds, Comment.

Math. Helv. 82 (2007), No. 1, 87–131.
[5] I. Fernández and P. Mira, Holomorphic quadratic differentials and the Bernstein problem

in Heisenberg space, Trans. Am. Math. Soc. 361 (2009), 5737–5752.
[6] H. Jenkins and J. Serrin, Variational problems of minimal surface type II. Boundary value

problems for the minimal surface equation, Arch. Rational Mech. Anal., 21 (1966), 321–342.
[7] H. Lee, Duality between H-graphs in E3(κ, τ) and spacelike τ -graphs in L3(κ,H), preprint.
[8] H. Lee, Duality between timelike H-graphs in E3(κ, τ) and timelike τ -graphs in L3(κ,H),

preprint.
[9] H. Lee, Extension of the duality between minimal surfaces and maximal surfaces, preprint.

[10] H. Lee, Maximal surfaces in Lorentzian Heisenberg space, preprint.
[11] M. Shiffman, On surfaces of stationary area bounded by two circles, or convex curves, in

parallel planes, Ann. of Math. 63 (1956), 77–90.
[12] T. Y. Wan, Constant mean curvature surface harmonic map and universal Teichmuller

space, J. Differential Geom. 35 (1992), 643–657.
[13] T. Y. Wan, T.K. Au, Parabolic constant mean curvature spacelike surfaces, Proc. Amer.

Math. Soc. 120 (1994), 559–564.



2578 Oberwolfach Report 45/2009

The halfspace theorem in Nil

Karsten Große-Brauckmann

I reported on the recent paper [2] by Benôıt Daniel and Laurent Hauswirth about
minimal surfaces in Heisenberg space Nil3. This space is a homogeneous Riemann-
ian 3-manifold which has the structure of a Riemannian fibration π : Nil3 → R2

with geodesic fibres. Hence the notion of a graph makes sense: This is a section
of the bundle over some subset of the base. More general are multigraphs which
are proper immersions transversal to the fibres.

The main result of [2] is a Bernstein theorem for Nil3 under the weak assumption
of a multigraph:

Theorem. A complete minimal multigraph in Nil3 is an entire graph and hence
classified by the work of Fernandez and Mira [3].

Consequently we have, unlike the Euclidean case: The entire minimal graphs in
Nil3 form an infinite-dimensional space, classified by the Hopf differentials on the
complex plane or disk.

Let us define a vertical plane as the preimage of π of a geodesic in the base R2;
it is minimal. Also, let a vertical slab be the preimage of a closed strip bounded
by two disjoint geodesics. We say the slab is perpendicular to a vector in R2 if the
vector is orthogonal to the bounding geodesics of the projection of the slab. Then
we can quote the main technical result of the paper:

Lemma 1. There exists a family of properly embedded minimal annuli, called hor-
izontal catenoids, whose degenerate limit is a double cover of a punctured vertical
plane. Moreover, there is an axis vector in R

2 such that each vertical slab per-
pendicular to this direction meets each catenoid of the family only in a compact
set.

Note that the only rotation isometries about horizontal geodesics of Nil3 are half-
turns, and so for a horizontal axis a surface of revolution cannot be defined. Nev-
ertheless, certain ODE solutions lead to generalized Weierstrass data for the hor-
izontal catenoids in Nil3.

Given the catenoid family of Lemma 1, the proof of the Hoffman-Meeks Halfs-
pace Theorem immediately carries over to the case of Nil3 and shows:

Vertical Halfspace Theorem in Nil3. The only proper minimal immersions
Nil3 disjoint to vertical planes are vertical planes.

Implicit in the paper by Daniel and Hauswirth is the following statement:

Lemma 2. The projection of a multigraph in Nil3 to the base R2 is an immersion
whose boundary is the union of entire geodesics (possibly empty).

For instance, the domain of a graph can only be a strip, a halfspace or the
entire plane; the same is claimed for multigraphs. The proof of Lemma 2 literally
follows a proof by Hauswirth, Rosenberg and Spruck [1]. In my talk, I indicated
that Lemma 2 holds in greater generality for minimal surfaces or constant mean
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curvature surfaces in Riemannian fibrations with geodesic fibres over simply con-
nected constant mean curvature bases. I plan to write a short note containing the
precise statement.

If there is a bounding geodesic in Lemma 2, then it contradicts the Halfspace
Theorem. Hence a multigraph can only be entire, which proves the theorem.

Entire minimal graphs and vertical planes foliate and hence are stable; Bill
Meeks asked after the talk if these can be shown to be all complete stable minimal
surfaces in Nil3. One could also ask if there are any other properly embedded
minimal disks. Another question is if properly embedded annuli in Nil3 can be
characterized in general, or constructed by desingularization.
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Minimal Surfaces in H2
× R

Julia Plehnert

In this talk we proved the following theorem:
Theorem (Collin/Rosenberg): In H2 ×R there exist entire minimal graphs

over H2 which are conformally the complex plane C.
The proof is devided into three steps:

(1) Construct minimal graphs in H2 × R over an ideal quadrilateral with a
generalized Jenkins-Serrin Theorem.

(2) Show that these graphs are conformally C.
(3) Extend graphs to H2 such that the extension is conformally C.

Collin and Rosenberg start with an ideal regular quadrilateral and consider the
Dirichlet problem for the minimal surface equation with values alternating between
plus and minus infinity over consecutive edges. This generalizes a construction by
Jenkins and Serrin. The graph is simply connected, complete and has finite total
curvature. By a theorem of Huber the graph is conformally C.

To get the desired graph over H2 Collin and Rosenberg inductively construct
a sequence of Jenkins-Serrin graphs by replacing each ideal boundary edge with
an ideal quadrilateral. By choosing the extending quadrilateral to be very close
to a regular ideal quadrilateral, they can assert that the extended solution is
almost vertical over the original edges. This lets the extended solution stay as
close as desired to the original one, and leaves the conformal type of the extension
unchanged.
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↓ π

The limit of the sequence is an entire minimal graph over H2 which is confor-
mally equivalent to the complex plane. The vertical projection of the graph gives
a surjective harmonic diffeomorphism, and so provides an answer to a question
posed by R. Schoen:

Corollary (Collin/Rosenberg): There exist harmonic diffeomorphisms from
C onto the hyperbolic plane H

2.
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