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Introduction by the Organisers

Transfer operators are linear operators associated to discrete- or continuous-time
dynamical systems with some hyperbolicity. Acting on suitable Banach spaces,
they often have Perron-Frobenius type spectrum, although it can be quite tricky
to find a proper Banach space on which this can be proved and be exploited to ob-
tain statistical information about the dynamical system (SRB measures and other
Gibbs states, exponential decay of correlations, statistical stability, probabilistic
limit theorems, linear response, . . . ). The first results date back to the1960’s (D.
Ruelle), and the three organisers have contributed to this theory since the 1980’s
(see [1] for a detailed discussion and results of such a theory). In the last decade a
fresh point of view has gradually emerged, where most of the combinatorial (and
sometimes quite artificial) constructions used previously, like Markov partitions,
Young towers, cluster expansions etc., can be avoided by introducing suitable Ba-
nach spaces. This not only allows to give simpler proofs of known results on smooth
hyperbolic systems, but also to extend the theory to piecewise smooth systems,
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partially hyperbolic systems, or systems in infinite dimensions (such as coupled
map lattices). What is common to most of these situations is that rather compli-
cated arguments of combinatorial flavour (book-keeping of iterated singularities,
spatial dependencies etc.) are captured by norm estimates in judiciously chosen
Banach spaces. These techniques not only apply to dynamical systems but also
to many Markov chains including various time series models of current interest
(see [2]). All participants of the workshop are actively working on the quest for
suitable Banach spaces or on exploiting the spectral information thus obtained for
a deeper understanding of the dynamical systems under study (or on both).

In order to leave enough time for discussions and cooperations, the number of
talks was limited to twelve. They all were followed by long and lively discussions,
and some of them were continued the following day by demand of the audience.

For the development of new Banach spaces the dialogue between tools devel-
oped in semiclassical analysis (related to quantum mechanics) and the techniques
introduced recently for transfer operators of chaotic dynamical systems was most
fruitful. A number of new ideas originated from this which hopefully will produce
interesting results in the near future. But also the detailed comparison of the
special advantages and difficulties of the approaches based on the one hand on
Triebel-type Banach spaces and on the other hand on more geometrically defined
spaces lead to new insights into the particular problems associated with the spec-
tral approach to piecewise hyperbolic systems. At the end of the workshop the
road to an operator treatment of the Sinai-billiard flow was visible.

Among the applications of transfer operator theory were a strikingly new and
very general approach to prove almost sure invariance principles for partial sum
processes generated by chaotic dynamical systems, precise results on linear re-
sponse theory for Benedicks-Carleson unimodal maps, applications to Poincaré
sums and sum-level sets of continued fraction expansions, genericity results on
the Ruelle spectrum of transfer operators, and limit theorems for the statistics of
systems with shrinking targets.

Talks on complex cone contractions and on self-consistent (nonlinear) Perron-
Frobenius operators indicated related directions of research.

In summary it is clear that a new unifying point of view in the study of hyper-
bolic dynamical systems is emerging. Ideally such a new approach will encompass
both discrete and continuous time, both smooth and piecewise smooth systems,
both conservative and dissipative phenomena, both finite and infinite dimensional
models. We believe that this workshop, by bringing together different approaches
to and people working on different, but related, facets of such project, has consid-
erably advanced the above research program and that its influence will be felt in
the future development of the field.
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Jérôme Buzzi
Old results, new techniques: problems in piecewise smooth dynamics . . . 2707

Stefano Galatolo
Shrinking targets and decay of correlations . . . . . . . . . . . . . . . . . . . . . . . . . . 2710
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Abstracts

Fourier norms for piecewise hyperbolic maps

Viviane Baladi

(joint work with Sébastien Gouëzel)

The “spectral” or “functional” approach to study statistical properties of dy-
namical systems with enough hyperbolicity, originally limited to one-dimensional
dynamics, has greatly expanded its range of applicability in recent years. The
following spectral gap result of Blank–Keller–Liverani [6] appeared in 2002:

Theorem 1. Let T : X → X be a C3 Anosov diffeomorphism on a compact
Riemannian manifold, with a dense orbit. Define a bounded linear operator by

(1) Lω =
ω ◦ T−1

| detDT ◦ T−1| , ω ∈ L∞(X) .

Then there exist a Banach space B of distributions on X, containing C∞(X), and
a bounded operator on B, coinciding with L on B∩L∞(X) and denoted also by L,
with the following properties: The spectral radius of L on B is equal to one, the
essential spectral radius of L on B is strictly smaller than one, L has a fixed point
in B. Finally, 1 is the only eigenvalue on the unit circle, and it is simple.

It is a remarkable fact that “Perron-Frobenius-type” spectral information as in
the above theorem gives simpler proofs of many known theorems, but also new
information. Among these consequences, let us just mention: Existence of finitely
many physical measures whose basins have full measure, exponential decay of cor-
relations for physical measures and Hölder observables, statistical and stochastic
stability, linear response and the linear response formula, central and local limit
theorems, location of the poles of dynamical zeta functions and zeroes of dynam-
ical determinants, etc. One of the advantages of this “functional approach” is
that it bypasses the construction of Markov partitions and the need to introduce
artificial “one-sided” expanding endomorphisms.

Billiards with convex scatterers, also called Sinai billiards, are among the most
natural and interesting dynamical systems. They are uniformly hyperbolic, pre-
serve Liouville measure, but they are only piecewise smooth. Analysing the diffi-
culties posed by the singularities has been an important challenge for mathemati-
cians, and it is only in 1998 that L.-S. Young [12] proved that the Liouville mea-
sure enjoys exponential decay of correlations for two-dimensional Sinai billiards. It
should be noted that these results were in fact obtained for a discrete-time version
of the billiard flow. Indeed the question of whether the original two-dimensional
continuous-time Sinai billiard enjoys decay of correlations is to this day still open.
(Chernov [7] recently obtained stretched exponential upper bounds.) It is well
known that the continuous-time case is much more difficult, and it seems that the
ideas of Dolgopyat which were exploited in several smooth hyperbolic situations
are not compatible with the tools used in [12] for example. We believe that a new,
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“functional,” proof (via a spectral gap result for the transfer operator (1) on a suit-
able anisotropic Banach space of distributions) of exponential decay of correlations
for discrete-time surface Sinai billiards will be a key stepping stone towards the
expected proof of exponential decay of correlations for the continuous-time Sinai
billiards.

The recent paper of Demers-Liverani [8] was a first breakthrough in this direc-
tion, as we explain next. Since none of the spaces of [9, 10, 4, 5] behave well with
respect to multiplication by characteristic functions of sets, they cannot be used
for systems with singularities. Demers–Liverani therefore introduced some new
Banach spaces, on which transfer operators associated to two-dimensional piece-
wise hyperbolic systems admit a spectral gap. However, the construction and the
argument of [8] are quite intricate, in particular, pieces of stable or unstable mani-
folds are iterated by the dynamics, and the way they are cut by the discontinuities
has to be studied in a very careful way. As a consequence, adapting the approach
in [8] to billiards (which are not piecewise hyperbolic, stricto sensu, because their
derivatives blow up along the singularity lines) is daunting.

Another progress in the direction of a modern proof of exponential decay of
correlations for discrete-time billiards is our previous paper [2]. There, we showed
that ideas of Strichartz [11] imply that classical anisotropic Sobolev spaces Ht,s

p

in the Triebel-Lizorkin class (these spaces had been introduced in dynamics in [1])
are suitable for piecewise hyperbolic systems, under the condition that the system
admits a smooth (at least C1) stable foliation. Unfortunately, although it holds
for several nontrivial examples, this condition is pretty restrictive: In general, the
foliations are only measurable!

More recently [3], for piecewise smooth and hyperbolic dynamics, we were able
to remove the assumption of smoothness of the stable foliation, whenever the
hyperbolicity exponents of the system satisfy a bunching condition. This is the
new result presented in this talk.

The bunching condition is rather standard in smooth hyperbolic dynamics,
where it ensures that the dynamical foliations are C1 instead of the weaker Hölder
condition which holds in full generality. The bunching condition is always satisfied
in codimension one (in particular, it holds in dimension two, so that our results
apply to physical measures of all surface piecewise hyperbolic systems previously
covered). Our methods require the dynamics to be C1+α on each (closed) domain
of smoothness, and therefore do not apply directly to discrete-time Sinai billiard.
However, we expect that it will be possible to adapt them to obtain the desired
functional proof of exponential decay of correlations for two-dimensional Sinai
billiards. We stress that hyperbolicity is defined in terms of cones and that there
is a priori no invariant stable distribution, contrary to our previous work [2].

We use the Triebel spaces Ht,s
p as building blocks in the construction of our

new Banach spaces Ht,s
p (R) and H). As a consequence, we may exploit, as we

did in [2], the rich existing theory (in particular regarding interpolation), and use
again the results of Strichartz [11]. The new ingredient with respect to [2] is that
we define our norm by considering the Triebel norm in Rd through suitable C1
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charts, taking now the supremum over all cone-admissible charts. We use the
bunching assumption to show that the family is invariant under iteration. Indeed,
this is how we avoid the necessity for a smooth stable foliation. As in [2], we do
not iterate single stable or unstable manifolds (contrary to [12, 8]), and we do not
need to match nearby stable or unstable manifolds: Everything follows from an
appropriate functional analytic framework.

Our main result is an upper bound on the essential spectral radius of weighted
transfer operators associated to cone hyperbolic systems satisfying the bunching
condition and acting on a Banach space H of anisotropic distributions. If hyper-
bolicity dominates complexity growth and if either detDT ≡ 1, or ds = 1 and
du > 0, then one can choose the Banach space so that at least one of the transfer
operator has essential spectral radius strictly smaller than 1, and thus a spectral
gap.
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Old results, new techniques: problems in piecewise smooth dynamics

Jérôme Buzzi

Since [4], there has been exciting developments of the transfer operator method
in geometric space – see [1, 2, 3, 13, 15, 16] as a subjective selection geared to-
wards this talk. The first works considered globally smooth, uniformly hyperbolic
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systems but there are now results for some piecewise smooth dynamics, motivated
both by physical examples like the hard ball systems and as one of the simplest
forms of non-uniformity. Hence, these new techniques are an invitation to give a
fresh look to a number of old (and not so old) results, sometimes painfully obtained
in a restricted context.

We would like to draw the attention to three problems.

The first one is the existence and properties of Sinai-Ruelle-Bowen measures
(i.e., absolutely continuous in the unstable direction) for general piecewise hyper-
bolic systems. Under some technical assumptions, this has been accomplished by
V. Baladi and S. Gouëzel [1, 2]. The assumptions involve (i) the non-conformality
of the expanding direction which is related to the regularity defect of the unstable
foliation (and does not appear in the expanding case); (ii) the local complexity of
the discontinuities. We only consider systems with a finite number of pieces with
boundaries as smooth as the map itself.

Do all piecewise affine systems preserving complementary stable
and unstable cone fields always have a Sinai-Ruelle-Bowen mea-
sure? Is it true of most of them?

This has been shown in the expanding case by M. Tsujii [19]. One deals with (ii)
by introducing the Jacobian into the counting of discontinuities. In dimension 2
the argument is quite simple and extends to piecewise real-analytic maps [6, 17]
but not piecewise Cr maps for r <∞ [8, 18] (r = ∞ is unknown). A less ambitious
question is to establish the above for almost all systems, say an open and dense
set of systems in a natural topology [5, 12].

The second problem is to link the above ergodic theory with the periodic struc-
ture by defining and studying appropriate Ruelle zeta functions. There are classical
results for uniformly hyperbolic systems going back to Ruelle. Such results are
now being refined and extended (see other talks in this workshop).

Can one build meromorphic extensions of the Ruelle zeta functions
for the above systems?

For piecewise expanding systems this was done in [11] by using a Hofbauer tower as
an elaborate substitute for the Markov structure. See also [10]. The introduction
of good Banach spaces raises the hope that this could be much simplified as was
done in dimension 1 with the consideration of sharp traces and determinants (see
[14] and the references therein).

The third problem deals with the invariant probability measures with maxi-
mal entropy (which describe ”most” of the topological dynamics and often the
distribution of periodic orbits).

Do all piecewise affine systems which are (1) uniformly expanding;
(2) uniformly hyperbolic possess finitely many ergodic invariant
probability measures with maximal entropy? Is it true of most of
them?
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This is known for the expanding case under ”smallness of the boundary entropy”
[7]. It is also known without any uniform assumption for all piecewise affine surface
homeomorphisms [5] (existence can fail for piecewise affine surface maps [8] and
finiteness can obviously fail in higher dimensions). Even for surfaces a simplified
proof and more informations about the maximal entropy measures would be very
interesting.
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Ann. IHP Analyse non linéaire 26 (2009), 1453–1481.
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Shrinking targets and decay of correlations

Stefano Galatolo

Let (X,T, µ) be an ergodic system on a metric space X and fix a target point
x0 ∈ X . For µ-almost every x ∈ X , the orbit of x goes closer and closer to x0
entering (sooner or later) in each positive measure neighbourhood of the point x0.

For several applications it is useful to quantify the speed of approaching of the
orbit of x to x0. In the literature this has been done in several ways, with more
or less precise estimations or considering different kind of target sets.

A general approach to this kind of problems problem is to consider a family
of sets Sr indexed by a real parameter r containing x0 and give an estimation for
the time needed for the orbit of a point x to enter in Sr

(1) τ(x, Sr) = min{n ∈ N
+ : T n(x) ∈ Sr}.

If X is a metric space, the most natural choice is to take Sr = Br(x0) (the
ball of radius r ). In this case several estimations are known for the behaviour
of τ(x, Sr) as r → 0. Another way to look at the same kind of problem which
is present in the literature, is to consider the behaviour of the minimum distance
after n iterations: dn(x, x0) = mini≤n dist(T

i(x)), x0) these two approaches are
somewhat equivalent for our purposes (see the appendix of [3] for some precise
statements).

It is known that if the system has fast decay of correlations or is a circle rotation
with generic arithmetical properties (see [2], [1]) then for a.e. x

(2) lim
r→0

log τ(x,Br(x0))

− log r
= dµ(x0).

This gives an estimation for the scaling behaviour of τ when r → 0 and re-
lates it to the local dimension of the invariant measure at the target point x0.
On the other hand it is worth to remark that there are mixing systems (hav-
ing particular arithmetical properties and slow decay of correlations) for which

lim infr→0
log τ(x,Br(x0))

− log r = ∞ > dµ(x0) (see [3]). For applications it is important

to extend this kind of result to a larger class of target sets. It is possible to prove
that (see [4])

Proposition 1. If a system has superpolynomial (faster than any power law)
decay of correlations (with respect to Lipschitz observables) then the time needed
for a typical point x to enter for the first time a set Sr = {x : f(x) ≤ r} which is
a sublevel of a Lipschitz function f satisfies

lim
r→0

log τ(x, Sr)

− log r
= lim

r→0

logµ(Sr)

log r
.

As an example of an application of the above result we consider the geodesic
flow of a negatively curved manifold, which is known to have exponential decay of
correlations ([6]). This gives the following result, similar to the one given in [7]

Proposition 2. Let M be a C4, compact manifold of dimension d with strictly
negative curvature and T 1M be its unitary tangent bundle. Let π : T 1M →M the
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canonical projection. If T is the time 1 map of the geodesic flow, µ the Liouville
measure on T 1M , and dist() the Riemannian distance onM, then for each p ∈M :

(3) lim sup
n→∞

− log dist(p, π(T nx))

logn
=

1

d

holds for almost each x ∈ T 1M.

Finally we mention that if one wants to obtain a law similar to (2) for a flow, it
is not necessary to prove that the whole flow has fast decay of correlations. One
can work with a Poincaré section (provided the return time is integrable and some
more technical assumptions) and prove fast decay of correlation for the induced
map on the section. This is what was done in [5] leading to a formula like (2) for
a class of Lorenz like flows.
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Almost sure invariance principle by spectral methods

Sébastien Gouëzel

The almost sure invariance principle is a very strong reinforcement of the central
limit theorem: it ensures that the trajectories of a process can be matched with
the trajectories of a Brownian motion in such a way that, almost surely, the error
between the trajectories is negligible compared to the size of the trajectory (the
result can be more or less precise, depending on the specific error term one can
obtain).

Definition 1. For λ ∈ (0, 1/2], an Rd–valued process (A0, A1, . . . ) satisfies an
almost sure invariance principle with error exponent λ and limiting covariance Σ2

if there exist a probability space Ω, and two processes (A∗
0, A

∗
1, . . . ) and (B0, B1, . . . )

on Ω such that

(1) The processes (A0, A1, . . . ) and (A∗
0, A

∗
1, . . . ) have the same distribution.

(2) The random variables B0, B1, . . . are independent, distributed as N (0,Σ2).
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(3) Almost surely in Ω,

(1)

∣∣∣∣∣

n−1∑

ℓ=0

A∗
ℓ −

n−1∑

ℓ=0

Bℓ

∣∣∣∣∣ = o(nλ).

We mainly consider processes originating from dynamical systems: let T : X →
X be a map, let f : X → Rd be a function, and let µ be a probability measure
on X (invariant or not). We are interested in the almost sure limit theorem for
Aℓ = f ◦ T ℓ. Such results are known for instance in the following cases:

(1) d = 1, T a piecewise expanding map of the interval, f of bounded variation
[HK82].

(2) d = 1, T subshift of finite type or Axiom A, f Hölder continuous [DP84].
(3) d ≥ 1, T subshift of finite type (or more generally Gibbs-Markov), f locally

Hölder continuous [MN09].

All those results rely either on techniques specific to d = 1, or on the existence of
a nice Markov structure on the space, that makes it possible to approximate an
observable by a locally constant one and then apply probabilistic techniques for
Rosenblatt–mixing processes and martingales. This does not cover simple dynami-
cal examples where such a natural Markov structure is not available. On the other
hand, in such situations, it is often possible to prove the central limit theorem
using spectral information. Moreover, this spectral method is so powerful that it
should be possible to use it to prove for dependent sequences essentially all the
results that are known for i.i.d. sequences. In this talk, we illustrate this philoso-
phy by showing that the almost sure invariance principle follows from the spectral
method (and with very good error bounds, contrary to the previous martingale
methods).

Definition 2. The characteristic function of a process (Aℓ) as above is coded by
a family of operators (Lt)|t|≤ǫ0 on a Banach space B if there exist φ0 ∈ B′ and
u0 ∈ B such that, for any t0, . . . , tn−1 ∈ B(0, ǫ0),

E
(
ei

∑n−1

ℓ=0
tℓAℓ

)
= 〈φ0,Ltn−1

Ltn−2
· · · Lt1Lt0u0〉.

This definition is an abstraction of the properties that are commonly used for
the spectral method: in most cases, B is a space of functions on X , u0 is the
function 1 and φ0 is the integral with respect to µ. However, for more complicated
dynamical systems, one sometimes needs to take for B a space of distributions,
or measures, or even wilder objects. The previous definition applies in all those
settings.

Our main theorem is the following.

Theorem 1 ([Go09, Theorem 2.1]). Let (Aℓ) be a process whose characteristic
function is coded by a family of operators (Lt), and bounded in Lp for some p > 2.
Assume that

(1) One can write L0 = Π+Q where Π is a one-dimensional projection and Q
is an operator on B, with QΠ = ΠQ = 0, and ‖Qn‖B→B ≤ Cκn for some
κ < 1.
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(2) For small enough t, we have ‖Ln
t ‖B→B ≤ C uniformly in n.

Then there exist a ∈ Rd and a matrix Σ2 such that
∑n−1

ℓ=0 (Aℓ − a)/
√
n converges

to N (0,Σ2). Moreover, this process satisfies an almost sure invariance principle
with limiting covariance Σ2 for any error exponent larger than p/(4p− 4).

This applies for instance to piecewise expanding or hyperbolic maps, or to
coupled map lattices.

Contrary to most similar results, we do not assume the existence of a perturbed
eigenvalue (at the cost of a boundedness assumption in Lp for some p > 2, while
the usual assumptions in the central limit theorem is simply for p = 2).

The proof of this theorem is mainly probabilistic: we deduce from the spectral
assumption in the above theorem a decorrelation estimate on characteristic func-
tions, and then show that this estimate is sufficient by itself to get the almost sure
invariance principle.
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Self-consistent Perron-Frobenius operators for globally coupled maps

Gerhard Keller

(joint work with Jean-Baptiste Bardet and Roland Zweimüller)

Globally coupled maps are collections of individual discrete-time dynamical systems
(their units) which act independently on their respective phase spaces, except for
the influence (the coupling) of a common parameter that is updated, at each time
step, as a function of the mean field of the whole system. Systems of this type have
received some attention through the work of Kaneko [5, 6] in the early 1990s, who
studied systems ofN quadratic maps acting on coordinates x1, . . . , xN ∈ [0, 1], and
coupled by a parameter depending in a simple way on x̄ := N−1(x1 + · · · + xN ).
His key observation, for huge system size N , was the following: if (x̄t)t=0,1,2,...

denotes the time series of mean field values of the system started in a random
configuration (x1, . . . , xN ), then, for many parameters of the quadratic map, and
even for very small coupling strength, pairs (x̄t, x̄t+1) of consecutive values of the
field showed complicated functional dependencies plus some noise of order N−1/2,
whereas for uncoupled systems of the same size the x̄t, after a while, are constant
up to some noise of order N−1/2. While the latter observation is not surprising
for independent units, the complicated dependencies for weakly coupled systems,
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a phenomenon Kaneko termed violation of the law of large numbers, called for
closer investigation. Similar numerical findings were later presented for systems
of coupled tent maps [3, 8, 9] and partially supported by mathematical arguments
[3, 2]. Rigorous proofs for the “non-violation” of the law of large numbers in the
case of expanding circle maps with weak global coupling are given in [4, 7], but no
rigorous treatment of a situation where the law of large numbers is “violated” was
known. It was the purpose of my talk to present an example of this kind, studied
in [1], that can be analysed rather completely.

I first presented the formal framework to study mean field coupled systems,
namely the passage from ordered configurations of finite systems to unordered
ones, i.e. to empirical measures. This idea is well known in other branches of many
particle systems and was described for deterministic dynamical systems in [7]. If
the individual units Tr : X → X are piecewise expanding interval maps satisfying
a uniform Lasota-Yorke type inequality on BV(X), it leads to the problem of
studying the dynamics of a nonlinear version of the Perron-Frobenius operator
(also called self consistent PFO) when the individual units allow a description

in terms of linear PFOs. The dynamics of this self consistent PFO P̃ on the
space D ⊂ L1 := L1

Leb(X) of all probability densities on X determines much of
the dynamical properties of systems of N coupled maps for large N . For the
example system, all local maps Tr : X → X , X = [− 1

2 ,
1
2 ], − 2

3 < r < 2
3 , have

two linear fractional branches. T0 s the doubling map, and the general formula

is Tr(x) = (r+4)x+r+1
2rx+2 “mod X”. The N -particle system is then given by TN :

XN → XN , TNx = (Trx1, . . . , TrxN ) with r = G(φ(x)), where φ(x) = N−1
∑

i xi
and G(x) = A tanh(BAx) with parameters 0 < A ≤ 0.4 and 0 ≤ B ≤ 16. The

corresponding self consistent PFO P̃ : D → D turns out to be P̃u = PTru where
r = G(φ(u)) and φ(u) =

∫
X xu(x) dx.

The main results from [1] are the following two theorems:

Theorem 1. For all 0 < A ≤ 0.4, 0 ≤ B ≤ 16 and for all N ≥ 1 the map TN has
a unique absolutely continuous invariant measure µN . µN has a strictly positive,
analytic density, and the system (TN , µN ) shows exponential decay of correlations
for Hölder-observables on XN .

For the second theorem denote by ur the unique invariant density of the local

map Tr. (Up to normalisation, ur(x) =
2r2

(rx−1)2−r2 .)

Theorem 2. For all 0 < A ≤ 0.4 holds:

(1) If 0 ≤ B ≤ 6, then P̃ has a unique fixed point u0 in D. Indeed, u0 = 1,

and limt→∞ P̃ tu = u0 in L1 for all u ∈ D.
(2) If 6 < B ≤ 16, then P̃ has exactly three fixed points in D, namely

u−r∗ , u0, and ur∗, where r∗ is the unique positive fixed point of the map

r 7→ G(φ(ur)). For each u ∈ D, the sequence P̃ tu converges in L1 to one
of these three fixed points. The basins of attraction of u−r∗ and of ur∗ are
open in L1.
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I conjecture that the basin of u0 is the common boundary of the two other
basins, but so far I can only prove that the union of the two open basins is dense
in D. Refined information about the structure of the basin of u0 is relevant for a
large deviations analysis (as N → ∞) of the finite systems.

The proof of Theorem 1 relies on classical results for piecewise expanding maps,
while the proof of Theorem 2 rests on the fact that PFOs of maps with full
fractional-linear branches leave the class of Herglotz-Pick-Nevanlinna functions

invariant. This observation can be used to study the action of P̃ in terms of an
iterated function system on the interval [− 2

3 ,
2
3 ] with two fractional-linear branches

and place dependent probabilities. In the bistable regime the system is of course
not contractive, but it has strong monotonicity properties and special geometric
features which allow to prove the theorem.
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[4] E. Järvenpää, An SRB-measure for globally coupled analytic expanding circle maps, Non-
linearity 10 (1997), 1435–1469.

[5] K. Kaneko, Globally coupled chaos violates the law of large numbers but not the central limit
theorem, Phys. Rev. Letters 65 (1990), 1391–1394.

[6] K. Kaneko, Remarks on the mean field dynamics of networks of chaotic elements, Physica
D 86 (1995), 158–170.

[7] G. Keller, An ergodic theoretic approach to mean field coupled maps, Progress in Probability,
Vol. 46 (2000), 183-208.

[8] N. Nakagawa, T.S. Komatsu, Collective motion occurs inevitably in a class of populations
of globally coupled chaotic elements, Phys. Rev. E 57 (1998), 1570–1575

[9] N. Nakagawa, T.S. Komatsu, Confined chaotic behaviour in collective motion for populations
of globally coupled chaotic elements, Phys. Rev. E 59 (1999), 1675–1682.

Poincaré sums, sum-level sets, and uniform distribution

Marc Kesseböhmer

(joint work with Bernd O. Stratmann)

Our main task is to give a detailed measure-theoretical analysis of the following
sets Cn, for n ∈ N, which we will refer to as the sum-level sets:

Cn := {[a1, a2, . . .] ∈ [0, 1] :

k∑

i=1

ai = n for some k ∈ N}.

In here, x = [a1, a2, . . .] denotes the regular continued fraction expansion of x ∈
[0, 1]. The first main result is to settle a recent conjecture of Fiala and Kleban
[1], which asserts that the Lebesgue measure of these level sets decays to zero, for
the level tending to infinity. The second and third main result then give precise



2716 Oberwolfach Report 49/2009

asymptotic estimates for this decay. The proofs of these results are based on
recent progress in infinite ergodic theory [2] (also relying on [11, 12]) obtained for
the Farey map. In particular we show in [6] that

n∑

k=1

λ (Ck) ∼
n

log2 n
and λ(Cn) ∼

1

log2 n
,

where an ∼ bn means that limn→∞ an/bn = 1 for two positive sequences (an) and
(bn).

Refined results from [3] then allow us to prove that the Stern–Brocot and the
Farey sequence are uniformly distributed in [0, 1] with respect to certain geometric
weights. That is we consider two sequences of subsets of the unit interval: the well-
known Farey sequence given by Fn := {p/q : 0 < p ≤ q ≤ n, (p, q) = 1} and the
even Stern–Brocot sequence Sn :=

{
sn,2k/tn,2k : k = 1, . . . , 2n−1

}
(cf. [10]), where

s0,1 := 0 and s0,2 := t0,1 := t0,2 := 1, sn+1,2k−1 := sn,k and tn+1,2k−1 := tn,k,
for k = 1, . . . , 2n + 1, sn+1,2k := sn,k + sn,k+1 and tn+1,2k := tn,k + tn,k+1 for
k = 1, . . . , 2n, n ∈ N (see [4] for more details). More precisely, on the one hand we
have

1

card (Fn)

∑

r∈Fn

δr
∗→ λ and

1

card (Sn)

∑

r∈Sn

δr
∗→ ν,

where ν denotes the measure of maximal entropy for the Farey map ([9], [5]). (Note
that the distribution function of ν is given by the famous Minkowski question mark
function.) While on the other hand, in [8] we show that for the weighted measures,
for n tending to infinity, we have

ζ(2)

logn

∑

p/q∈Fn

1

q2
δp/q

∗→ λ and 2 logn
∑

p/q∈Sn

1

q2
δp/q

∗→ λ.

Carrying over the above described ideas to the setting of Kleinian groups we are
able to derive in [7] estimates for the algebraic growth rate of the Poincaré series
for a Kleinian group at its critical exponent of convergence. That is we study the
Poincaré series

P(z, w, s) :=
∑

g∈G

e−sd(z,g(w))

of a geometrically finite Kleinian group G acting on the (N + 1)-dimensional hy-
perbolic space H, for arbitrary z, w ∈ H. Here, d(z, w) denotes the hyperbolic
distance between z and w, and s ∈ R. It is well known that a group of this type
is of δ-divergence type, which means that P(z, w, s) diverges for s equal to the
exponent of convergence δ = δ(G) of P(z, w, s). For g ∈ G let |g| denote the word
norm of G. Then for a geometrically finite, essentially free, zonal Kleinian group
G with rmax denoting the maximal rank of the parabolic fixed points of G, and
for each z, w ∈ H, we have

Pn(z, w, δ) :=
∑

g∈G
|g|≤n

e−δd(z,g(w)) ≍






n2δ−rmax for δ < (rmax + 1)/2
n/ log n for δ = (rmax + 1)/2
n for δ > (rmax + 1)/2,
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where an ≍ bn means that the sequence of quotients (an/bn) is bounded away
from zero and infinity.
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Transfer operators of continuous-time dynamics

Carlangelo Liverani

(joint work with Paolo Giulietti)

The study of the transfer operator for hyperbolic systems has received a big im-
pulse lately. Many new techniques have been proposed. I like to illustrate the
relation between the standard pair approach pioneered by Dmitry Dolgopyat [4]
and perfected by Dolgopyat and Chernov [3] and the Banach space approach (ini-
tiated in [1]) which is the theme of the present workshop. In fact, standard pairs
are related to a particular version of the Banach space approach that can be found
in [6] and [7].

The standard pairs approach is based on the identification of a set of measures
(supported on manifolds close to the unstable foliation) which are invariant under
the action of the dynamics. One can then use a version of the coupling technique
introduced in the field by Lai-Sang Young [13] to obtain results on the convergence
to equilibrium, limit theorems and linear response. One can look at [5] to see how
the combination of such an approach with the martingale methods introduced by
Stroock and Varadhan [12] allows to obtain very sharp results concerning the
limiting behaviour of Dynamical Systems with fast-slow degree of freedom.
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The relation between standard pairs and [6] consists in the possibility to use
such a set of measures as the predual of a Banach space. If one proceeds along
such lines it is then possible to obtain a Lasota-Yorke inequality and the necessary
compactness to apply the usual machinery of transfer operators whereby obtaining
much more fine results on the statistical properties of the system than available
by the coupling technique or other competing methods.

I illustrate such a procedure both in discrete and continuous time [8, 2]. In the
continuous time case I announce some results contained in a work in progress with
Paolo Giulietti concerning the meromorphicity of the zeta function for Anosov
flows. The methods used to obtain such last results are a combination of the
approach in [2] and the tools developed in [9, 10], following in the footsteps of
Ruelle [11].

References

[1] M. Blank, G. Keller, C. Liverani, Ruelle-Perron-Frobenius spectrum for Anosov maps. Non-
linearity 15 (2002), no. 6, 1905–1973.

[2] O. Butterley, C. Liverani, Smooth Anosov flows: correlation spectra and stability.
J. Mod. Dyn. 1 (2007), no. 2, 301–322.

[3] N. Chernov, D. Dolgopyat, Brownian Brownian motion. I. Mem. Amer. Math. Soc. 198

(2009), no. 927, viii+193 pp.
[4] D. Dolgopyat, On differentiability of SRB states for partially hyperbolic systems. In-

vent. Math. 155 (2004), no. 2, 389–449.
[5] D. Dolgopyat, Averaging and invariant measures. Mosc. Math. J. 5 (2005), no. 3, 537–576,

742.
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The Ruelle spectrum of generic transfer operators

Frédéric Naud

Let Ω ⊂ Cd be a an open connected bounded non-empty set. Let U(Ω) denote the
Banach space of holomorphic functions f : Ω → C having a continuous extension to
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the closure Ω, endowed with the obvious supremum norm. The set of holomorphic
contractions γ : Ω → Ω is defined by

K(Ω) := {γ ∈ U(Ω)d : γ(Ω) ⊂ Ω}.
Let k ≥ 1 be an integer. We now denote by Mk(Ω) the product

Mk(Ω) := K(Ω)k × U(Ω)k.

Given (φ,w) ∈ Mk(Ω) one defines the transfer operator associated to the data
(φ,w) by the formula

Lφ,wf(z) =

k∑

i=1

wi(z)(f ◦ φi)(z).

This linear operator, when acting on a reasonable function space of holomorphic
functions (for example A2(Ω) which is the Bergmann Hilbert space of square in-
tegrable holomorphic functions on Ω), is a compact trace class operator. Transfer
operators of this type have been first considered by Ruelle in [5], arising as com-
plexified Perron-Frobenius operators related to real analytic expanding maps. The
eigenvalues of L form a discrete decreasing sequence denoted by (λn(L)). Ruelle
gave an upper bound on this sequence in dimension d = 1 which was extended
recently to arbitrary domains Ω by Bandtlow-Jenkinson in [1] :

|λn(L)| ≤ Ae−an1/d

,

for some constants A, a > 0. Except in some affine contraction examples, no
general lower bounds on the spectrum is known. In this talk we explain how to
obtain lower bounds for a dense set of data by using some tools of potential theory
that have been successfully applied in the framework of scattering theory by Tanya
Christiansen in [3, 4]. More precisely, we prove the following.

Theorem 1. Assume that Ω is convex. Then there exists a dense subset G ⊂
Mk(Ω) such that for all (φ,w) ∈ G, for all ǫ > 0, we have

(1) lim sup
n→+∞

|λn(L)|
exp(−n1/d+ǫ)

= +∞.

This result shows that for a dense set of data, the upper bound is the best possible
in terms of exponent. For all d, k, it is possible to build examples of transfer
operators with data in Mk(Ω) without eigenvalues except possibly 0. We actually
show in [2] that a similar statement holds for Perron-Frobenius operators related to
piecewise real analytic expanding maps for d = 1. Our proof is based on complex
analysis and the potential theoretic properties of the order of families of entire
functions. Given (φ,w) ∈ Mk(Ω), we investigate the determinants

Z(ζ) := det(I − eζLφ,w),

which are entire functions of order M(L) ≤ d+ 1, the order being defined by

M(L) := lim sup
r→+∞

log
(
sup|ζ|=r log |Z(ζ)|

)

log r
.
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The order is closely related to the distribution of zeros of Z(ζ) and therefore the
spectrum of L, and we show that the previous ”lower bound” (1) follows from the
equalityM(L) = d+1. By looking at one dimensional families Lz := Lφz,wz where
φz = (1 − z)φ0 + zφ1, wz = (1 − z)w0 + zw1, z is in a complex neighbourhood
U ⊃ [0, 1], we actually obtain the following statement.

Theorem 2. Assume that Ω is convex and that (1) holds for z = 0, then there
exists a set E of Hausdorff dimension 0 such that the lower bound (1) holds for
all z ∈ U \ E.

This result may be viewed as a weak maximum principle that follows from approx-
imating the order M(Lz) by subharmonic functions. More details can be found in
[2].
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Quantum transfer operators and chaotic scattering

Stéphane Nonnenmacher

Consider a symplectic diffeomorphism T on T ∗Rd, which can be generated
near the origin by a single function W (x1, ξ0), in the sense that the dynamics
(x1, ξ1) = T (x0, ξ0) is the implicit solution of the two equations ξ1 = ∂x1

W (x1, ξ0),
x0 = ∂ξ0W (x1, ξ0). One can associate to T a family of quantum transfer operators
M(T, h) acting on L2(Rd), of the form:

(1) [M(T, h)ψ](x1) =

∫
a(x1, ξ0) e

i
h (W (x1,ξ0)−〈ξ0,x0〉) ψ(x0)

dx0 dξ0
(2πh)d

.

Here a ∈ C∞(T ∗Rd) is called the symbol of the operator. The “small parameter”
h > 0 is the typical wavelength on which the integral kernel of the operator
oscillates; it is often called “Planck’s constant”, due to the appearance of such
operators in quantum mechanics.

The operator M(T, h) (understood as a family (M(T, h))h∈(0,1]) can be inter-
preted as a “quantisation” of the symplectic map T , for the following reason.
Consider a phase space point (x0, ξ0) ∈ T ∗Rd. There exist wavefunctions (quan-
tum states) ψx0,ξ0,h ∈ L2(Rd) which are localised near the position x0 ∈ Rd, and
whose h-Fourier transform is localised near the momentum ξ0 ∈ Rd (equivalently,
the usual Fourier transform is localised near h−1ξ0). Such wavefunctions are said
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to be microlocalised near (x0, ξ0); in some sense, they represent the best quantum
approximation of a “point particle” at (x0, ξ0). In the semiclassical limit h → 0,
the application of stationary phase expansions to the integral (1) shows that the
image state M(T, h)ψx0,ξ0,h is microlocalised near the point (x1, ξ1) = T (x0, ξ0);
that is, this operator transports the quantum mass at the point (x0, ξ0) to the
point T (x0, ξ0).

Similar families of operators have appeared in the theory of linear PDEs in the
1960s: the “Fourier integral operators” invented by Hörmander. A modern account
(closer to the above definition) can be found in the recent lecture notes of C.Evans
&M.Zworski [1]. We are using these operators as nice models for “quantum chaos”,
that is the study of quantum systems, the classical limits of which are “chaotic”.
In this framework, these operators (sometimes called “quantum maps”) generate
a quantum dynamical system:

(2) L2(Rd) ∋ ψ 7→ M(T, h)ψ .

These quantum maps provide a discrete time generalisation of the Schrödinger
flow U t(h) = exp(−itP (h)/h) associated with the Schrödinger equation ih∂tψ =

P (h)ψ, where P (h) is a selfadjoint operator, e.g. of the form P (h) = −h2∆
2 +V (x);

in that case, the classical evolution is the Hamilton flow φtp generated by the

classical Hamiltonian p(x, ξ) = |ξ|2

2 + V (x) on T ∗Rd.
As usual in dynamics, one is mostly interested in the long time properties of the

dynamical system (2). For such a linear dynamics, these properties are encoded
in the spectrum ofM(T, h). Therefore, a major focus of investigation concerns the
spectral properties of the operators M(T, h), especially in the semiclassical limit
h→ 0, where the connection to the classical map is most effective. Quantum maps
have mostly been studied in cases whereM(T, h) is replaced by a unitary operator
on some N -dimensional Hilbert space, with N ∼ h−1. This is the case if T is a
symplectomorphism on a compact symplectic manifold, like the 2-torus [4]. More
recently, one has got interested in operatorsM(T, h) which act unitarily on states
microlocalised inside a certain domain of T ∗Rd, but “semiclassically kill” states
microlocalised outside a larger bounded domain (these properties depend on the
choice of the symbol a(x1, ξ0)). As a result, the spectrum of M(T, h) is contained
in the unit disk, and its effective rank is ≤ Ch−d (according to the handwaving
argument that one quantum state occupies a volume ∼ hd in phase space). Such
operators have been called “open quantum maps”.

Let us now assume that the map T has chaotic properties: the nonwandering
set Γ is a fractal set included inside B(0, R), and T is uniformly hyperbolic on
Γ. We may then expect this dynamical structure to imply some form of quantum
decay: indeed, a quantum state cannot be localised on a ball of radius smaller than√
h, and such a ball is not fully contained in Γ, so most of the ball will escape

to infinity through the map T . On the other hand, quantum mechanics involves
interference effects, which may balance this purely classical decay. Following old
works of M.Ikawa [3] and P.Gaspard & S.Rice [2] in the framework of Euclidean
obstacle scattering, one is lead to the following condition for quantum decay:
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Theorem 1. For any (x, ξ) ∈ Γ, call ϕu(x, ξ) = − log | detDT|Eu(x,ξ)| the un-
stable Jacobian of T at (x, ξ), and consider the corresponding topological pressure
P(12ϕ

u).

If that pressure is negative, then for any 1 > γ > exp{P(12ϕ
u)}, and any small

enough h > 0, the operator M(T, h) has a spectral radius ≤ γ.

In dimension d = 1 (that is, when T acts on T ∗R), the negativity of that
pressure is equivalent with the fact that the Hausdorff dimension dH(Γ) < 1.
This equivalence breaks down in higher dimension, but a negative pressure is still
correlated with Γ being a “thin” set.

The above theorem has been obtained by M.Zworski and myself in the frame-
work of Euclidean scattering by smooth potentials [6]. The extension to quantum
maps M(T, h) is straightforward, and should be part of a work in preparation
with J.Sjöstrand and M.Zworski. In general we do not expect the above to be op-
timal. Following a recent work of V.Petkov & L.Stoyanov [8], one should be able
to compare M(T, h) with classical transfer operators of the form L 1

2
ϕu+i/h, apply

Dolgopyat’s method to the latter to get a spectral radius γ = exp{P(12ϕ
u) − ǫ1}

for the classical and the quantum operators.
Most of the O(h−d) eigenvalues ofM(T, h) can be very close to the origin when

h → 0. Indeed, the fractal character of the trapped set has a strong influence
on the semiclassical density of eigenvalues: any point situated at distance ≫ h1/2

from Γ will be pushed out of B(0, R1) through the classical dynamics (either in the
past or in the future), within a time |n| ≤ C log(1/h), where semiclassical methods
still apply. As a result, the eigenstates of M(T, h) associated with nonnegligible
eigenvalues must be “supported” by the tubular neighbourhood of Γ of radius√
h. A direct volume estimate of this neighbourhood, and the above-mentioned

argument on the volume occupied by a quantum states, lead to the following upper
bound for the density of eigenvalues:

Theorem 2. Assume that the hyperbolic trapped set Γ ⊂ T ∗Rd has upper Minkow-
ski dimension dM > 0. Then, for any small ǫ, ǫ′ > 0 and any small enough h > 0,
one has

(3) #{λ ∈ Spec(M(T, h)), |λ| > ǫ} ≤ Cǫ,ǫ′ h
−dM/2−ǫ′ .

(eigenvalues are counted with multiplicities.)

A similar result has been first obtained by J.Sjöstrand in the case of Euclidean
scattering by smooth potentials [10], and has then been refined and generalised to
various settings. The case of quantum maps should also appear in the forthcoming
work with J.Sjöstrand and M.Zworski.

The “fractal upper bound” (3) is actually conjectured to be an asymptotics.
This has been shown numerically in various cases, including hyperbolic scattering
[5] as well as quantum maps [9]. This asymptotics has been proved only for a
very specific quantum maps [7], and represents an interesting challenge for more
realistic systems.
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Duke Math. J., 60(1990), 1–57; J. Sjöstrand and M. Zworski, Fractal upper bounds on the
density of semiclassical resonances, Duke Math. J. 137(2007), 381–459.

Complex Cone Contractions

Hans Henrik Rugh

We present recent developments in which ‘contraction of complex cones’ is used to
obtain ‘spectral gaps’ for linear operators. The notions was introduced in [3] and
has been developed further in [2]. Given a bounded linear operator A on a complex
Banach space X our goal is to provide sufficient conditions for a so-called spectral
gap. By this we here mean the existence of a non-zero complex value λ which is
a simple eigen-value of A and such that the rest of the spectrum is contained in
a disc of radius strictly smaller than |λ|. The central ideas are as follows: Find a
proper complex cone C ⊂ X and a projective metric dC which satisfies a Uniform
Contraction Principle (UCP) with respect to linear maps.

By a proper complex cone we mean a subset which is invariant under multi-
plication by any non-zero complex number and by properness that if the complex
vector space spanned by two vectors x and y is entirely contained in C then the
two elements must be co-linear. For the UCP suppose that A ∈ L(X) maps
C∗ = C \ {0} into itself. It then induces a projective map (a homography) on
the corresponding subset P (C) of complex projective space P (X). We say that
a metric d on P (C) satisfy a uniform contraction principle if any homography
A of P (C) is automatically a contraction with respect to the metric and that
this contraction is strict whenever the diameter of the image is finite. Thus, if
∆ = supx,y∈C∗ d(Ax,Ay) ∈ [0,+∞] denotes the diameter of the image of the
cone, there should be η = η(∆) ≤ 1 such that dC(Ax,Ay) ≤ ηdC(x, y) for all
x, y ∈ C∗. And η should be strictly smaller than one if ∆ is finite.
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For real Banach spaces Birkhoff [1] found that the Hilbert metric indeed verifies
such a UCP with η = tanh(∆/4). And he used this to give a conceptually new
proof (with explicit bounds) for Perron-Frobenius like theorems. We observed
in [3] that the same is true for holomorphic maps of hyperbolic subsets of the
Riemann sphere. Modulo technical assumptions on the cone (so that we may
compare the cone metric and the Banach space norm) this gives rise to conditions
for the operator to have a spectral gap. In [2] this point of view has been further
developed introducing yet another (and simpler) metric satisfying the UCP.
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Deformations of Benedicks-Carleson unimodal maps

Daniel Smania

(joint work with Viviane Baladi)

We study the linear response problem for unimodal maps satisfying the so called
Topological Slow Recurrence (TSR) condition. A S-unimodal map g satisfies the
Topological Slow Recurrence (TSR) condition if g is a Collet-Eckmann map, that
is, there exists C > 0 and λ > 1 such that

|Dgn(g(c))| ≥ Cλn

for every n ∈ N, where c is the critical point of g, and moreover

(1) lim
δ→0

lim sup
n→+∞

1

n

∑

1≤j≤n
|gj(c)−c|<δ

− log |Dg(gj(c))| = 0.

In particular, maps satisfying the TSR condition satisfy a strong
Benedicks-Carleson condition: For every β > 0 there exists C > 0 such that

|gi(c)− c| ≥ Ce−βi.

Another remarkable fact is that the TSR condition is a topological invariant [4].

Consider a smooth family of TSR S-unimodal maps gt. It is not difficult to show
that gt is a smooth deformation, that is, there exists a conjugacy ht between gt
and g0. Since these maps are Collet-Eckmann, each gt has a unique absolutely
continuous invariant probability µt. Given an observable ψ, one can ask about the
differentiability of the function

t→
∫
ψ dµt.
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To study this question, it is necessary to study the differentiability of ht with re-
spect to the parameter t. We show the following result

Theorem. Given a smooth family gt of S-unimodal maps, C3, symmetric and
with quadratic critical points, satisfying the TSR condition, then there exists a
unique bounded function α such that

∂tgt(x)|t=0 = α(g0(x))−Dg0(x)α(x)

for every x in the phase space. Furthermore α is continuous and α(x) = ∂tht(x)|t=0

for every x which is either a periodic point or in the forward orbit of the critical
point.

The proof consists in a dynamical resummation of the formal solution of the co-
homological equation above. To this end we use the tower defined in [3].
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Transfer operators for geodesic flows on negatively curved manifolds

Masato Tsujii

In this talk, we discussed about spectrum of transfer operators for geodesic flows on
negatively curved manifolds and related analytic properties of the corresponding
semi-classical zeta functions.

Let F t : M = T ∗
1N → M be the geodesic flow of a C∞ closed Riemannian

manifold N with negative sectional curvature. Given a C∞ multiplicative cocycle
gt :M → C, we consider a one parameter family of transfer operators

Lt : C∞(M) → C∞(M), Ltu(x) = gt(x) · u(F t(x)).

Set

M =M(F t, gt) = lim
t→∞

(
sup
x∈M

|gt(x)|/
√

det(DF |Eu)

)1/t

m = m(F t, gt) = lim
t→∞

(
inf
x∈M

|gt(x)|/
√

det(DF |Eu)

)1/t
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The main result I gave was
Theorem 1([2]) There exists a Hilbert space H, embedded in the space of dis-
tributions (C∞(M))′ and containing C∞(M) as a dense subset, such that Lt for
t ≥ 0 extends to Lt : H → H boundedly and the essential spectral radius of Lt|H
is exactly M t.

The semiclassical zeta function ζsc(·) is a function defined (formally) by

ζsc(s) = exp



−
∑

n≥1

∑

γ∈Γ

e−sn|γ|

n

1√
det(Id−Dn

γ )





It is known that this function, though the rhs is well-defined only for s ∈ C

with large real part, has meromorphic extension to the whole complex plane.
If we restrict ourselves to the case of dimN = 2, we may write the rhs of
the definition above using dynamical traces of transfer operators with cocycles
gt(x) = (detDF t|Eu)1/2 and gt(x) = (detDF t|Eu)−1/2, and relate the spectral
properties of those transfer operators to analytic properties of ζsc(·). (The as-
sumption dimN = 2 is not very essential. If dimN > 2 we have to consider
vector-valued transfer operators.) Up to some technical argument, Theorem 1
leads naturally to
Theorem 2 For any ǫ > 0, there are only finitely many zeros of ζsc(·) (and no
poles if dimN = 2) on the region ℜ(s) > ǫ.

Note that, in the case of constant negative curvature (≡ −1), the semi-classical
zeta function ζsc(·) coincides with the Selberg zeta function ζSelberg(·) up to trans-
lation by 1/2: ζsc(s) = ζSelberg(s + 1/2), so that the classical result of Selberg[1]
implies that the bound in theorem 2 is optimal in a sense.

In the talk, we also discussed about the following statements on the spectra of
transfer operators and semi-classical zeta functions that may be inferred from the
argument in the proof of theorem 1 and 2:

• the essential spectrum Lt : H → H is contained in the subset

{|z| ≤ e−λtM t} ∪ {mt ≤ |z| ≤M t}
where λ is the hyperbolicity exponent of the flow.

• ζsc(s) has infinitely many zeros on the strip |ℜ(s)| < ǫ and only finitely
many zeros on −λ+ ǫ < ℜ(s) < −ǫ, for any ǫ > 0.

The proof of Theorem 1 in [2] is based on Littlewood-Paley type decomposition
and somewhat complicated. In the talk, we outlined a new proof which uses partial
Bargmann transform and has flavour of ”semi-classical analysis”.
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