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Abstract. The mini-workshop was devoted to the spectral analysis of ran-
dom Schrödinger-type operators. While this topic has been intensively stud-
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has been particular attention devoted to models where the random parame-
ters enter the model in a non-monotone or non-linear way. Most of the estab-
lished methods applied for random operators, in fact, hinge on the presence
of monotonicity w. r. t. randomness. Thus the treatment of non-monotone
models forces a deeper analysis of the structure of random Hamiltonians and,
in particular, the interplay of the kinetic and the potential energy parts.
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Introduction by the Organisers

The mini-workshop was organised by G. Stolz and I.Veselić and brought to-
gether sixteen participants from six countries. An introductory talk by one of
the organizers was followed by 15 lectures of participants, including survey talks
as well as lectures on results of recent research. Nevertheless, the mini-workshop
format left time for intense collaborative work which was pursued in small group
discussions throughout the week.

The workshop activities focused on open problems in the theory of localiza-
tion of random Schrödinger operators. A central theme was to discuss difficulties
which arise due to the lack of monotonicity properties in some models of random
Schrödinger operators. Such monotonicity properties have been heavily exploited
in many of the rigorous results obtained for the Anderson model over the last three
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decades. While the standard discrete and continuum Anderson models depend
monotonically on the random parameters, this is not the case for other important
quantum mechanical models of disordered media. Examples of such models are
Anderson-type models with sign-indefinite single site potentials, models for struc-
tural disorder such as the Poisson and random displacement models or random
wave guides, Schrödinger operators including random magnetic fields or random
spin matrices, certain ergodic Hamiltonians with “pseudo-random” properties (in-
duced e.g. by the skew-shift or doubling map), or random Schrödinger operators
with discretely distributed random parameters such as the Bernoulli-Anderson
model or Laplacians on random graphs.

A number of talks focussed on some of the central tools in localization theory
where monotonicity properties (or their lack) play a significant role in proofs:
Wegner estimates, fractional moment bounds, and Lifshits tail asymptotics of the
integrated density of states. Some mechanisms were identified which allow to
recover monotonicity properties in some of the models or replace them with other
tools such as arguments involving convexity or analyticity. One main reason for
the interest in these results is that they generally require a better understanding
of the underlying physics, in particular, the interaction of kinetic and potential
energy in the form of uncertainty principle relations. In fact, many existing proofs
which use the monotone dependence of the potential on the random parameters
disregard completely the properties of the kinetic energy part of the Schrödinger
operator.

Most of the participants have been working in the field of random operators be-
fore, which enabled intense and flexible discussions during and after the lectures.
A few experts from other fields (namely asymptotic analysis and probability the-
ory) have been invited with the intent to provide new tools which may be used
to tackle the challenges not approachable by current methods. For instance, the
lecture by W. König gave insight into how probabilistic methods are used to yield
a detailed analysis of the intermittency phenomenon for the parabolic Anderson
model. Similar ideas may lead to a proof of localization which does not hinge on
the regularity of the individual random variables. On the final day of the workshop
a lecture (by W. Kirsch) was presented in a joint session with participants of the
Mini-Workshop on “Geometry of Quantum Entanglement”.

Summarizing, one can say that the discussions at the workshop led to a better
understanding of common themes in various non-monotone models, which had
previously been investigated for specific random Hamiltonians. A clearer picture
arose of the difficulties due to non-monotonicity as well as how (and if) they can
be remedied. In addition, a number of open challenges were identified, examples
being:

• Find a localization proof for the discrete multi-dimensional Bernoulli-
Anderson model. In particular: How can recent work by Bourgain and
Kenig in the continuum be carried over to discrete models?

• Identify an analogue or replacement of the usual unique continuation prop-
erty for solutions of discrete Schrödinger operators.
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• Show localization at the spectral edges of Laplacians on percolation graphs
in the supercritical regime.

• Find ways to understand that infinite volume quantities (such as the IDS)
are “smoother” than their finite volume counterparts.

• Use multiple averaging to show that the expectation of the eigenvalue
counting function has regularity beyond the one of the distribution of a
single random variable.





Mini-Workshop: Modeling and Understanding Random Hamiltonians 2969

Mini-Workshop: Modeling and Understanding Random Hamil-
tonians: Beyond Monotonicity, Linearity and Independence

Table of Contents

Ivan Veselić
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Fractional moment method for discrete alloy-type models . . . . . . . . . . . . . 2975

Shu Nakamura (joint with Frédéric Klopp)
Lifshitz tails for Schrödinger operators with non-sign definite random

potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2976

François Germinet (joint with Nicolas Dombrowski and Georgi Raikov)
About currents, magnetic perturbations, magnetic barriers and magnetic

guides in quantum Hall systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2978

Denis Borisov (joint with Ivan Veselić)
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2× 2 matrices, quadratic forms, and representation theorems . . . . . . . . . 2988





Mini-Workshop: Modeling and Understanding Random Hamiltonians 2971

Abstracts

Wegner-type bounds for discrete alloy-type models

Ivan Veselić

A discrete alloy type model is a family of operators Hω = H0 + Vω on ℓ2(Zd).
Here H0 denotes an arbitrary symmetric operator. In most applications H0 is the
discrete Laplacian on Zd. The random part Vω is a multiplication operator

(1) Vω(x) =
∑

k∈Zd

ωk u(x− k)

defined in terms of an i. i. d. sequence ωk : Ω → R, k ∈ Zd of random variables
each having a density f , and a single site potential u ∈ ℓ1(Zd;R). It follows that
the mean value ū :=

∑
k∈Zd u(k) is well defined. We will assume throughout the

paper that u does not vanish identically and that f ∈ BV . Here BV denotes
the space of functions with finite total bounded variation and ‖ · ‖BV denotes the
corresponding norm. The mathematical expectation w.r.t. the product measure
associated with the random variables ωk, k ∈ Zd will be denoted by E.

The estimates we want to prove do not concern the operator Hω, ω ∈ Ω, but
rather its finite box restrictions. For L ∈ N we denote the subset [0, L]d∩Zd by ΛL,
its characteristic function by χΛL , the canonical inclusion ℓ2(ΛL) → ℓ2(Zd) by ιL
and the adjoint restriction ℓ2(Zd) → ℓ2(ΛL) by πL. The finite cube restriction of
Hω is then defined as Hω,L := πLH0ιL+VωχΛL : ℓ

2(ΛL) → ℓ2(ΛL). For any ω ∈ Ω
and L ∈ N, the restriction Hω,L is a selfadjoint finite rank operator. In particular
its spectrum consists entirely of real eigenvalues E(ω,L, 1) ≤ E(ω,L, n) ≤ · · · ≤
E(ω,L, ♯ΛL) counted including multiplicities. Note that if u has compact support,
then there exist an n ∈ N and an x ∈ Z

d such that supp u ⊂ Λ−n+x, where Λ−n :=
{−k | k ∈ Λn}. We may assume without loss of generality x = 0 without restricting
the model (1). The number of points in the support of u is denoted by ranku. Now
we are in the position to state our bounds on the expected number of eigenvalues
of finite box Hamiltonians Hω,L in a compact energy interval [E − ǫ, E + ǫ] .

Theorem 1. Assume that the single site potential u has support in Λ−n. Then

there exists a constant cu depending only on u such that for any L ∈ N, E ∈ R

and ǫ > 0 we have,

E
{
Tr

[
χ[E−ǫ,E+ǫ](Hω,L)

]}
≤ cu ‖f‖BV ranku ǫ (L+ n)d·(n+1)

The next Theorem applies to single site potentials u ∈ ℓ1(Zd) with non vanishing
mean ū 6= 0. Let m ∈ N be such that

∑
‖k‖≥m |u(k)| ≤ |ū/2|. Here ‖k‖ = ‖k‖∞

denotes the sup-norm.

Theorem 2. Assume ū 6= 0 and that f has compact support. Then we have for

any L ∈ N, E ∈ R and ǫ > 0

E
{
Tr

[
χ[E−ǫ,E+ǫ](Hω,L)

]}
≤ 8

ū
‖f‖BV min

(
Ld, ranku

)
ǫ (L+m)d
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If, in addition, supp u ⊂ Λ−n, we have for any L ∈ N, E ∈ R and ǫ > 0,

E
{
Tr

[
χ[E−ǫ,E+ǫ](Hω,L)

]}
≤ 4

ū
‖f‖BV ranku ǫ (L+ n)d

If the operator Hω has a well defined integrated density of states N : R → R,
meaning that

lim
L→∞

1

Ld
E
{
Tr

[
χ(−∞,E](Hω,L)

]}
= N(E)

at all continuity points of N , then the second statement of Theorem 2 implies
that the integrated density of states is Lipschitz continuous. Consequently its
derivative, the density of states, exists for almost all E ∈ R.

Theorem 3. Assume that d = 1, f has compact support and that there exist

s ∈ (0, 1) and C ∈ (0,∞) such that |u(k)| ≤ Cs|k| for all k ∈ Z. Then there exist

cu ∈ (0,∞) and D ∈ N0 depending only on u such that for each β > D/| log s|
there exists a constant Kβ ∈ (0,∞) such that for all L ∈ N, E ∈ R and ǫ > 0,

E
{
Tr

[
χ[E−ǫ,E+ǫ](Hω,L)

]}
≤ 8

cu
‖f‖BV ǫ L (L+ β logL+Kβ)

D+1

One can use the above results to prove spectral localisation with the aid of
multiscale analysis. The necessary initial scale estimate can be obtained from the
Wegner bound and a sufficiently large choice of disorder.

Theorem 4. Assume that H0 is the discrete Laplacian on Zd, and f and u have

compact support. Then there exists an ǫ ∈ (0,∞) depending only on u, such that

if ‖f‖BV ≤ ǫ, then Hω has almost surely no continuous spectral component and

all its eigenfunctions decay at infinity with an exponential rate.
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Regularity of the Green function for the Anderson model with spin

Alexander Elgart

(joint work with Gian Michele Graf)

We study the behavior of the system governed by the Hamiltonian

(1) Hω : = −∆⊗ I2 + λ
∑

n∈Z

I ⊗ Vω(n) ,

acting on the Hilbert space H = L2(Z ⊗ C2). Here ∆ is the discrete Laplacian,
accounting for a hopping in the electronic degrees of freedom, and the matrix
Vω(n) ∈M2,2 is a randomly chosen Pauli matrix, describing the spin:

(2) Vω(n) := σ(kω(n)) := kω(n) · σ , kω(n) ∈ S2 .

We assume that kω are independent, identically distributed random variables, with
the uniform probability density function on the unit sphere.

Let Pn denote a (two dimensional) projection to the site n ∈ Z, let HΛ be the
natural restriction of Hω to the set Λ ⊂ Z, and let Γ(Λ) stand for a collection of
bonds connecting Λ with its complement in Z. By |S| we will denote the cardinality
of the set S ∈ Z. The quantity of the interest is the typical asymptotic behavior
of the (matrix valued in our case) Green function

(3) Gnk(E) := Pn(Hω − E + i0)−1Pk ; GΛ
nk(E) := Pn(HΛ − E + i0)−1Pk .

The main result we establish is

Theorem 1. For every finite set Λ, any x, y ∈ Λ, and all E ∈ R satisfying

|E − Ej | >
√
δ for a set of 14 values of j, with δ > 0, we have uniform bounds

E ‖GΛ
xx(E)‖ s

40 <
Cs(δ)

λs
;(4)

E ‖GΛ
xy(E)‖ s

400 <
Cs(δ)

λs
(5)

for all 0 < s < 1.

This estimate is sufficient as an input for the fractional moment method, and
can be used to establish Anderson localization in the perturbative regimes. As
oppose to the monotone Anderson model [1], we have to average over not only the
randomness associated with the sites x, y, but also over their local environment to
obtain the desired regularity.

To obtain this result, we exploit the continuous fraction structure of the Schrö-
dinger operator. We were also forced to obtain a quantitative version of the Schur
complement formula [3] that controls the number of small (but necessary zero)
singular values of the Hermitian matrix. Another important tool which is used
in the analysis is a refined version of Woodbury matrix identity. The method
is stable in higher dimension as well, but the control over the Hölder exponent
becomes ridiculously weak in this case.
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Quasi-one-dimensional random operators: random phase property,

Lyapunov spectrum and delocalization

Hermann Schulz-Baldes

(joint work with Rudo Römer and Christian Sadel)

A random phase property establishing a link between quasi-one-dimensional
random Schrödinger operators and full random matrix theory is advocated. Briefly
summarized it states that the random transfer matrices placed into a normal sys-
tem of coordinates act on the isotropic frames and lead to a Markov process with
a unique invariant measure which is of geometric nature. On the elliptic part of
the transfer matrices, this measure is invariant under the full hermitian symplectic
group of the universality class under study. While the random phase property can
up to now only be proved in special models or in a restricted sense, we provide
strong numerical evidence that it holds in the Anderson model of localization.
A main outcome of the random phase property is a perturbative calculation of
the Lyapunov exponents which shows that the Lyapunov spectrum is equidistant
and that the localization lengths for large systems in the unitary, orthogonal and
symplectic ensemble differ by a factor 2 each. In an Anderson-Ando model on a
tubular geometry with magnetic field and spin-orbit coupling, the normal system
of coordinates is calculated and this is used to derive explicit energy dependent
formulas for the Lyapunov spectrum.

The second topic of the talk concerns the Altland-Zirnbauer symmetry classi-
fication for disordered systems. It is reviewed for quasi-one-dimensional systems
with particular focus on the associated isotropic frames. It shows that the isotropic
frames can be identified with the maximal compact subgroup of the transfer ma-
trix group except in the cases where there is a non-trivial Z2 invariant. For those
systems as well as systems with different number of left and right movers it can
be proved that the spectral measure of associated model operators are absolutely
continuous.
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Fractional moment method for discrete alloy-type models

Martin Tautenhahn

(joint work with Alexander Elgart, Ivan Veselić)

The discrete alloy-type model is the discrete random Schrödinger operator Hω =
−∆ + Vω on ℓ2(Zd), where ∆ denotes the discrete Laplace operator and Vω de-
notes the multiplication with the function Vω(x) =

∑
k∈Zd ωku(x − k). Here,

ω = {ωk}k∈Zd is a sequence of independent and identically distributed (i. i. d.)
random variables each distributed with the density ρ ∈ W 1,1(R), and u : Zd → R

is assumed to have compact support Θ = suppu = {k ∈ Zd : u(k) 6= 0}. For
Γ ⊂ Zd we denote by HΓ : ℓ2(Γ) → ℓ2(Γ) the natural restriction of Hω to the set
Γ. For x, y ∈ Zd (resp. Γ) and z ∈ C \ R, we set Gω(z;x, y) = 〈δx, (Hω − z)−1δy〉
(resp. GΓ(z;x, y) = 〈δx, (HΓ − z)−1δy〉). The symbol E denotes the average with
respect to the randomness.

One of the fundamental results in the theory of random Schrödinger operators
is the physical phenomenon of localization, i. e. the almost sure spectrum of Hω

has only pure point spectrum with probability one. In the higher dimensional
case there are two methods to prove localization in the case of large disorder or
at extreme energies: the multiscale analysis [8, 7, 5] and the fractional moment
method [3, 1, 9, 2]. We are interested in the fractional moment method for the
discrete alloy-type model. Our results are

Theorem 1 ([6]). Let d = 1, n = maxΘ−minΘ+ 1, s ∈ (0, 1) and assume that

‖ρ′‖L1 is sufficiently small. Then there are constants C,m ∈ (0,∞) such that

E
{
|Gω(z;x, y)|s/2n

}
≤ Ce−m|x−y|

for all x, y ∈ Z with |x− y| ≥ 4n and all z ∈ C \ R.
Theorem 2 ([10]). Assume that the function û : [0, 2π)d → C, defined by

û(θ) =
∑

k∈Zd

u(k)eik·θ,

does not vanish. Let s ∈ (0, 1) and Λ ⊂ Zd be finite. Then there exists a constant

Cu depending only on u, such that for all z ∈ C \ R and all x, y ∈ Λ,

E
{
|GΛ(z;x, y)|s

}
≤

(
Cu‖ρ′‖L1

)s 21+ss−s

1− s
.

There are several relatives to our results. In the case where u(0) = 1 and
u(k) = 0 for k ∈ Zd \ {0}, i. e. in the i. i. d. Anderson model, exponential decay
of averaged fractional moments has been shown, e. g., in [3, 4]. They also allow
the potential values at different lattice sites to be correlated random variables by
imposing some regularity conditions. However, these regularity conditions are in
general not satisfied for the discrete alloy type model, see [10]. In the case where
u(k) ≥ 0 for all k ∈ Zd the method of [2] applies. Indeed, in [2] the fractional
moment method is developed for the continuum alloy-type model with sign fixed
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single-site potential, and these results carry over immediately to the discrete case.
The fact that u(k) ≥ 0 plays an important role in the proofs.

We allow the single site potential u to change its sign. As a consequence, the
dependence of Hω on the random coupling constants ωk is no longer monotone.
Notice, that the proof of Theorem 1 does not use monotonicity at all, while the
proof of Theorem 2 is based on a transformation of random variables to recover
monotonicity.
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[7] J. Fröhlich, F. Martinelli, E. Scoppola and T. Spencer, Constructive proof of localization in
the Anderson tight binding model, Commun. Math. Phys. 101 (1985), 21–46.
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Lifshitz tails for Schrödinger operators with non-sign definite random

potentials

Shu Nakamura

(joint work with Frédéric Klopp)

We discuss recent results on Lifshitz tails for alloy-type (or generalized alloy-type)
Schrödinger operators with the local potential which does not have fixed sign
([1, 2]). Usual proof of Lifshitz tail relies on the monotonicity of the random
perturbation with respect to random variables, and thus we cannot apply these
method directly to show Lifshitz singularities for our model.

Here we consider

Hω = −△+ Vp + Vω on L2(Rd)
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where Vp is a Z
d-periodic background potential, and

Vω(x) =
∑

γ∈Zd

ωγv(x− γ).

Here {ωγ} are i.i.d. random variables with the common distribution µ, and v ∈
C0

c (Λ1(0)), where Λ1(0) is the unit cube with the center at the origin. We suppose
Suppµ ⊂ [a, b] with {a, b} ⊂ Suppµ, and Vp and v are symmetric with respect to
reflections about {x |xj = 0}, j = 1, . . . , d.

Let HN
λ be the operator −△+ Vp + λv on L2(Λ1(0)) with Neumann boundary

conditions. We denote E(λ) = inf σ(HN
λ ). We note that E(λ) is a concave function

in λ, and hence E− := min{E(λ) |λ ∈ [a, b]} is attained either at λ = a or b.

Theorem 1 ([1]) If E(a) 6= E(b), then the Lifshitz tail holds at the bottom of the
spectrum, i.e., inf σ(Hω) = E− almost surely, and

lim sup
E→E−

log | logN(E)|
log(E − E−)

≤ −d
2
,

where N(E) is the integrated density of states for Hω.

The main step of the proof employs a simple operator inequality:

Hω ≥ c
[
−△+ Vp +

∑

γ∈Zd

(ωγ − a)
]

on L2(Rd)

with some c > 0, where we suppose E− = E(a). This in turn follows from another
operator inequality:

HN
λ ≥ c

[
−△+ Vp + (λ− a)

]N
on L2(Λ1(0)),

where both sides are Neumann operators. This (simple but rather surprising)
argument relies on the fact:

H1(Rd) ⊂
⊕

γ∈Zd

H1(Λ1(γ))

and that the form domain of the Neumann operator on Ω ⊂ Rd is H1(Ω).

If E(a) = E(b) then we have the following somewhat weaker result:

Theorem 2 ([2]) If E(a) = E(b) and if µ is not Bernoulli, then the Lifshitz tail
holds at the bottom of the spectrum, i.e., inf σ(Hω) = E− almost surely, and

lim sup
E→E−

log | logN(E)|
log(E − E−)

≤ −1

2
,

where N(E) is the integrated density of states for Hω.

In this case, the above comparison theorem does not hold, and we need to use
completely different method. In particular, we cannot use the argument involving
the Temple inequality. We use, instead:

• Neumann decomposition to long pseudo 1D domains.
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• Poincaré type inequality for long pseudo 1D domains with periodic back-
ground potential.

• The positivity of the Dirichlet-to-Neumann operator for positive Schrödinger
operators on small domains.

Combining these, we can obtain the necessary lower bound of lowest eigenvalues
for Hω restricted to large boxes to show the Lifshitz singularities.

Note that in [2] we consider Schrödinger operators with generalized alloy-type
random potentials, which takes finitely many forms randomly at each γ ∈ Zd.
We then combine the result with concavity argument to show Theorem 2. Our
general result applies also to some random displacement models discussed in a talk
by Günter Stolz.
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About currents, magnetic perturbations, magnetic barriers and

magnetic guides in quantum Hall systems

François Germinet

(joint work with Nicolas Dombrowski and Georgi Raikov)

Since a seminal paper of Halperin [H], the physics of the Quantum Hall effect
can be studied from two points of view: bulk and edge. They both give rise to
quantized currents measured through, respectively, the Hall conductance and the
edge conductance. These two points of view coincide since these two conductances
are simultaneously quantized.

BULK:
In quantum Hall systems, namely 2DEG submitted to a transverse constant

magnetic field, localized states are responsible for the celebrated plateaux of the
quantum Hall effect. Where the Hall conductance is discontinuous, non trivial
transport has been proved to take place in [GKS] for electric disorder. We provide
a similar picture but with magnetic disorder. The random magnetic potential
is shown to create both strongly localized states at the edges of the spectrum
and dynamical delocalization near the center of the band in the sense that wave
packets travel at least at a given minimum speed. We thus consider 2D-random
magnetic perturbations of the Landau Hamiltonian and prove a transition between
dynamical localization and dynamical delocalization inside an arbitrary number
of bands.

The proof of localization exploits the Wegner estimate of Hislop and Klopp
[HK], revisited by Ghribi, Hislop and Klopp [GrHK], together with a simple weak
disorder argument to start the multiscale analysis, provided some information
on the location of the spectrum that we address in a separate argument; then
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dynamical localization follows from [GK]. Delocalization is proved along the lines
of [GKS]; in particular the Hall conductance is quantized, constant in the region
of localization and jumps by one as a Landau level is crossed.

We further exhibit an explicit family of small periodic magnetic perturbations
for which the splitting gives rise to a full interval of spectrum. This is achieved
by direct computation using translation invariance of our potential in one direc-
tion. Such examples are then good enough to be randomized and used as random
magnetic fields.

ONE EDGE:
The wall is designed by an Iwatsuka magnetic field [Iw], a y-independent mag-

netic field with a decaying profile in the x-axis. As a matter of fact the particle is
subjected to, say, a strong magnetic field on the left half plane, and to a weaker
one on the right half plane, creating currents along such an interface. The edge
conductance for these currents is explicitly computed and is quantized.

Perturbations are also of magnetic nature. As a preliminary but essential re-
sult, we prove that magnetic perturbations carried by magnetic fields compactly
supported in the x-axis do not affect the edge conductance. Next, we consider non
compactly supported perturbations that do not vanish at infinity, and provide a
sum rule similar to that obtained in [CG]. Namely, the edge conductance of the
perturbed system is the sum of the edge conductance of the magnetic confining po-
tential and of the edge conductance of the system without magnetic wall defined
by a reference Landau Hamiltonian perturbed by the magnetic potential. This
enables us to compute the edge conductance of the perturbed Hamiltonian when
energies fall inside a gap of some reference Landau Hamiltonian perturbed by the
magnetic potential. To consider energies corresponding to localized states, one has
to go one step further and regularize the trace that defines the edge conductance.

TWO EDGES:
If we now consider a magnetic strip created by two large positive magnetic

fields and a (not too big) magnetic field in the middle, the net current flowing
along these axes is zero, like in the electric case. An interesting phenomenon
appears when the two walls are generated by magnetic fields of opposite signs.
Existence of quantized current is proved, with quantization equal to two times the
value provided by the quantum Hall effect in the particular case of opposite value
of the magnetic strengths. Such currents are sometimes called “snake currents” in
the physics literature.
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Spectral properties of weak-disorder quantum waveguides

Denis Borisov

(joint work with Ivan Veselić)

We consider random quantum waveguides in R2, determined by the following
data. Let (ωk)k∈Z be a sequence of independent, identically distributed, non-
trivial random variables taking values in the interval [0, 1], κ > 0 a global coupling
constant, l ≥ 1 the length of one (periodicity) cell of the waveguide, and g ∈
C2

0 (0, l) a single bump function. The following function determines the shape of
the waveguide

G(x1, ω) :=
∑

k∈Z

ωk g(x1 − kl),

which is defined as the set

Dκ,ω := {x ∈ R
2 | x1 ∈ R, κG(x1, ω) < x2 < κG(x1, ω) + π}.

The operator we consider is the Dirichlet Laplacian in L2(Dκ,ω). The main aim is
to obtain an initial length scale estimate for such operator.

For the formulation of our results we need to consider also finite segments of
the infinite waveguide. For N ∈ N we let

Dκ,ω(N) := {x ∈ R
2 | 0 < x1 < Nl, κG(x1, ω) < x2 < κG(x1, ω) + π}.

Denote by Γκ,ω(N) the upper and lower part of the boundary of Dκ,ω(N), i.e.,

Γκ,ω(N) :={x ∈ R
2 | 0 < x1 < Nl, x2 = κG(x1, ω)}

∪{x ∈ R
2 | 0 < x1 < Nl, x2 = κG(x1, ω) + π}.

The remaining part of the boundary ∂Dκ,ω(N) \ Γκ,ω(N) is denoted by γκ,ω(N).
LetHκ,ω(N) be the negative Laplace operator onDκ,ω(N) with Dirichlet boundary
conditions on Γκ,ω(N) and Neumann b.c. on γκ,ω(N). The lowest eigenvalue of
Hκ,ω(N) is indicated by λκ,ω(N).

Since the global coupling constant κ > 0 is arbitrary we may assume without
loss of generality

(1) max{‖g‖C[0,l], ‖‖g′‖C[0,l], ‖g′′‖C[0,l]} = 1.

Denote the distribution measure of ωk by µ. Then P =
⊗

k∈Z
µ denotes the

product measure on the configuration space Ω = ×k∈Z[0, 1] whose elements we
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denote by ω. Set

g̃ := g − 1

l

l∫

0

g(t)d t, c2 =
9

10
‖g̃‖L2(0,l), c3 =

3

5000
‖g̃‖2L2(0,l)

.

Our first result gives the probabilistic estimate for λκ,ω(N).

Theorem 1. Let g and µ as above be given, and γ > 17. Then there exists an

initial scale N1 such that if N ≥ N1 then the interval

IN :=

[
2N

1
γ− 1

2

E{ωk}
√
c2
, c3N

− 15
2γ

]

is non empty. There exists a positive constant c4 > 0 such that if N ≥ N1 and

κ ∈ IN then

P
(
ω ∈ Ω | λκ,ω(N)− 1 ≤ N−1

)
≤ N1− 1

γ e−c4N
1/γ

.

By Combes-Thomas estimate this theorem implies an initial length scale esti-
mate.

Theorem 2. Under the assumptions of the previous theorem there exist constants

C1 and C2 independent on N so that for all sets

A,B ⊂ Dκ,ω, dist (A,B) = δ > 0,

the estimate

P

{
‖χA

(
Hκ,ω(N)

)−1
χB‖ ≤ C1Ne−C2N

−1/2δ
}
≥ 1−N1− 1

γ e−c4N
1/γ

holds true for N ≥ N1, where χA and χB are the characteristic functions of the

sets A and B.

D. Borisov was partially supported by RFBR (grant No. 08-01-97016) and
the grant of the President of Russia for young scientists (MD-453.2010.1) and for
Leading Scientific Schools.

Correlated Random Potentials and Dominated Schrödinger Cocycles

David Damanik

(joint work with Artur Avila)

We consider ergodic Schrödinger operators

[Hωψ](n) = ψ(n+ 1) + ψ(n− 1) + Vω(n)ψ(n)

where Vω(n) = f(T nω) with Ω a compact metric space, T : Ω → Ω a homeomor-
phism, µ a T -ergodic Borel probability measure, and f : Ω → R continuous.

Let us discuss two examples. The Bernoulli-Anderson Model is obtained as
follows: Ω = {0, 1}Z, (Tω)n = ωn+1, µ =

⊗
n∈Z

ν, where ν(0) = p and ν(1) =
1− p, and f(ω) = λω0. It is known that this model is spectrally and dynamically
localized for every p ∈ (0, 1) and λ ∈ R \ {0}.
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The Doubling Map Model is obtained as follows: Ω = R/Z, Tω = 2ω, and
µ = Leb. It is widely expected that this model is spectrally and dynamically
localized for most non-constant continuous sampling functions f : Ω → R. Partial
results for small f are due to Chulaevsky-Spencer, Bourgain-Schlag, Sadel-Schulz-
Baldes, and Avila-Damanik. Note that this model may be considered as the half-
line restriction of a canonical whole-line model.

Motivated by these examples, we consider potentials generated by a uniformly
hyperbolic homeomorphism T and a general (Hölder) continuous f . Using a recent
generalization of Fürstenberg’s Theorem, due to various authors including Avila,
Bonatti, Gómez-Mont, and Viana, we describe a way to prove that the Lyapunov
exponent associated with these Schrödinger operators is positive for most energies.
This procedure is based on mutual accessibility of period points of T and inverse
spectral theory for periodic Schrödinger operators.

Crucial to this approach is the notion of a dominated cocycle and the resulting
holonomy maps that allow one to formulate a sufficient criterion for the positivity
of the Lyapunov exponent in terms of the absence of a family of probability mea-
sures {νω}ω∈Ω on RP

1 that are invariant under the holonomies and the projective
action of the cocycle. Indeed, the existence of such families for the energy-indexed
family of cocycles associated with the given Schrödinger operators for a too large
set of energies leads (via analyticity arguments) to the conclusion that the spectra
corresponding to periodic points of T coincide, either locally or globally, which is
a situation that cannot occur if there are sufficiently many periodic points.

An example of continuous matrix-valued Anderson model

Hakim Boumaza

We study localization properties of the following operator :

(1) Hℓ(ω) = − d2

dx2
⊗ IN + V +

∑

n∈Z




c1ω

(n)
1 1[0,ℓ](x−ℓn) 0

. . .
0 cNω

(n)
N 1[0,ℓ](x−ℓn)



 ,

acting on L2(R)⊗CN . The constants c1, . . . , cN are non-zero real numbers, ℓ > 0

and V is a real symmetric matrix. The (ω
(n)
i )n∈Z are sequences of independent

and identically distributed (i.i.d.) random variables of common law ν such that
{0, 1} ⊂ supp ν and supp ν is bounded. Let Σ denote the almost-sure spectrum of
Hℓ(ω).
This operator is an example of a larger class of quasi-one dimensional random
Schrödinger operators of the form :

(2) H(ω) = − d2

dx2
⊗ IN +

∑

n∈Z

V (n)
ω (x− ℓn),

acting on L2(R)⊗CN , where N ≥ 1 is an integer and ℓ > 0 is a real number. For

every n ∈ Z, the functions x 7→ V
(n)
ω (x) are symmetric matrix-valued functions,
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supported on [0, ℓ] and bounded uniformely on x, n and ω. The sequence (V
(n)
ω )n∈Z

is a sequence of i.i.d. random variables.
In [1], we have already proven that, under suitable assumptions on the Fürstenberg
group of these operators (i.e. the group generated by the transfer matrices), valid
on an interval I ⊂ R, they exhibit localization properties on I, both in the spectral
and dynamical sense. After looking at the regularity properties of the Lyapunov
exponents and of the integrated density of states, we had to prove a Wegner
estimate and apply a multiscale analysis scheme to prove localization for these
operators.
For the operator Hℓ(ω), we prove that for almost every background potential V ,
and for small values of the parameter ℓ, away from a finite set of critical energies,
there will be localization in a certain compact interval depending only on ℓ and
N .

Theorem 1. For Lebesgue-almost every real symmetric matrix V , there exist

a finite set SV ⊂ R and a real number ℓC = ℓC(N) > 0 such that, for every

ℓ ∈ (0, ℓC), there exists a compact interval I(N, ℓ) ⊂ R with the property :

on every open interval I ⊂ I(N, ℓ) \ SV, with I ∩ Σ 6= ∅, Hℓ(ω)
exhibits exponential and dynamical localization on I.

According to the general result of [1], we only have to prove that the Fürstenberg
group of Hℓ(ω) is Zariski-dense in the symplectic group for all energies in an inter-
val except a finite set of critical energies. We actually prove a stronger statement
which will be that the Fürstenberg group of Hℓ(ω) is equal to the symplectic
group. The proof of this result is based upon a denseness criterion in semisimple
Lie groups due to Breuillard and Gelander ([2]). All we have to do to apply this
criterion is to construct elements of the Fürstenberg group close to the identity
(that is why we need ℓ small), then to compute their logarithms and finally to show
that these logarithms generate the Lie algebra of the symplectic group. The first
two steps can be done for any background potential V , the third one is true only
for a generic V . We actually show that it is true for a particular V0 defined as the
matrix having a null diagonal and coefficients on the upper and lower diagonals
all equal to 1 and then we use an argument of analytic continuation to obtain the
result for almost every real symmetric matrix V .
The result we obtain here for Hℓ(ω) could be improved in several ways. First we
should be able to get rid of the assumption of ℓ > 0 to be small and prove the
same localization result for any ℓ. Simultaneously we should obtain that we have
localization for all energies except a discrete set and not only in a bounded inter-
val. Finally, we would like to replace, in the random potential, the characterisitic
functions of [0, ℓ] by any function in L1(R) compactly supported in [0, ℓ].
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Low energy properties of the random displacement model

Günter Stolz

(joint work with Jeff Baker and Michael Loss)

We consider the random displacement model, a random Schrödinger operator given
by Hω = −∆+ Vω(x) in L

2(Rd), where

Vω(x) =
∑

i∈Zd

q(x− i− ωi).

The single site potential q is real-valued, bounded, supported in [−r, r]d for some
r ∈ (0, 1/2) and reflection symmetric in each variable. The displacements ω =
(ωi)i∈Zd are i.i.d. random vectors in Rd with distribution µ supported in the cube
[−dmax, dmax]

d, where dmax = 1
2 − r, giving non-overlapping sites in Vω .

In [1] a spectrally minimizing periodic configuration ω∗ was identified, i.e. a
configuration with the property that inf σ(Hω∗) = inf Σ =: E0, where Σ is the
almost sure spectrum of Hω. This configuration is characterized through clusters
of 2d neighboring single-sites located in adjacent corners of their supporting unit
cell.

One may find examples of single-site potentials q such that inf σ(Hω) = inf Σ
for all configurations ω, thus providing situations where inf Σ is not a fluctuation
boundary of the spectrum. In all other cases, for example if q is nontrivial and sign-
definite, and under the additional assumption r < 1/4, it was shown in [2] that,
up to translations, ω∗ is the unique minimizing periodic configuration if d ≥ 2. In
dimension d = 1 there are many other minimizing periodic configurations, which
are characterized by the requirement that equally many ωi take values dmax and
−dmax, respectively, and none of them lies in (−dmax, dmax).

This difference between the one and multi-dimensional cases also leads to differ-
ent low energy asymptotics of the integrated density of states of Hω. An extreme
case is given by the one-dimensional Bernoulli displacement model, where the sup-
port of µ is {±dmax} with P(ωi = dmax) = P(ωi = −dmax) = 1/2. In this case it
was shown in [2] that

N(E) ≥ C

ln2(E − E0)

for some C > 0 and E near E0. In particular, the IDS is not Hölder-continuous
at E0.

On the other hand, it was shown in [5] that the uniqueness result from [2]
implies a weak form of Lifshits tails for the IDS if d ≥ 2. More precisely, it was
shown in [5] that if suppµ is finite and all 2d corners (±dmax, . . . ,±dmax) are
contained in suppµ, then

lim sup
E↓E0

log | logN(E)|
log(E − E0)

≤ −1

2
.

The above results have led to a better understanding of the low-energy prop-
erties of the random displacement model. In fact, in an ongoing collaboration
with F. Klopp, M. Loss and S. Nakamura we expect to find a proof of spectral
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and dynamical localization for the multi-dimensional random displacement model
near the bottom of the spectrum. So far, results on localization for this model
are only known in a semi-classical regime [3] and in certain situations with small
displacements [4].
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Some Spectral Properties of Discrete Displacement Operators

Roger Nichols

(joint work with Günter Stolz)

In this talk we consider the spectral properties of discrete displacement operators
on ℓ2(Zd). A displacement operator is specified by L = (Li)

d
i=1, (bi)

d
i=1 ∈ Nd

with bi ≤ Li for i = 1, . . . , d and a function q : Zd → R which is supported in
×d

i=1[1, bi] and reflection symmetric about each of the d axes. For a “displacement

configuration” ω ∈ (×d
i=1[0, Li − bi])

Z
d

, a Hamiltonian is given by hω = h0 + Vω ,
where h0 is the negative discrete Laplacian and Vω is multiplication by the function

Vω(n) =
∑

k∈Zd

q(n− kL− ωk).

As h0 is a bounded operator, the family {hω}ω is a uniformly bounded family of
self-adjoint operators and one is led to consider the existence of minimizing and
maximizing configurations, νmin and νmax, for which

minσ(hνmin) = inf
ω

minσ(hω)

maxσ(hνmax) = sup
ω

max σ(hω).

We show that an extremal configuration is given by the cluster configuration,
ν∗ = νmin = νmax, where the components of ν∗ are given by ν∗k = 〈δ1((−1)ki)(Li−
bi)〉di=1. This is the discrete analogue of the extremal configuration given by Baker,
Loss, and Stolz for the continuum displacement model on L2(Rd), [1].

As an application, we consider the random Bernoulli displacement model, which
is a simple one-dimensional discrete displacement model with L1 = 2, and q = λδ1
for a fixed λ ∈ R \ {0}. For ω ∈ {0, 1}Z, we assume ωk = 0 (resp. ωk = 1) with
probability p 6= 0 (resp. 1−p), so that {hω,λ}ω, with hω,λ = h0+Vω, is an ergodic
Schrödinger operator. Standard results from ergodic operator theory provide that
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{hω,λ}ω has a deterministic spectrum, Σλ, in the sense that σ(hω,λ) = Σλ for
almost every ω. Using the extremal configuration ν∗ with ν∗k = δ1((−1)k), and
positive solutions to eigenvalue equations, we calculate Σλ and we show that Σλ

contains at least one gap for every λ 6= 0. We rely heavily on the characterization
of the almost sure spectrum as the closure of the union of the spectra over all
periodic configurations:

Σλ = ∪ω periodic σ(hω,λ)

and the fact that the extremal configuration ν∗ is periodic. For 0 < |λ| ≤ 2,
the almost sure spectrum Σλ is calculated explicitly by showing Σλ = σ(hν∗,λ) ∪
σ(hω1,λ) where ω

1 is the periodic configuration with components ω1
k = 1. We are

not able to handle the case |λ| > 2, but conjecture Σλ = σ(hν∗,λ) ∪ σ(hω1,λ) in
this case as well; we provide numerics to back the conjecture.
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The universality classes in the parabolic Anderson model

Wolfgang König

We consider the parabolic Anderson model (PAM), the Cauchy problem for the
heat equation with random potential

∂tu(t, z) = ∆u(t, z) + ξ(z)u(t, z), t > 0, z ∈ Z
d,

u(t, 0) = δ0(z),

where ξ = (ξ(z))z∈Zd is an i.i.d. random potential, and ∆ is the discrete Laplace
operator. This model describes a random mass flow through a random field of sinks
and sources; in a branching process with random rates and migration it decribes
the expected number of particles at time t in the site z.

The main task is the description of the random function u(t, ·) and of its total
mass, U(t) =

∑
z∈Zd u(t, z), asymptotically for large t. In particular, we aim at

the understanding of those small regions from which the overwhelming part of
the total mass stems from. Using a Fourier expansion, it is suggested that these
regions are determined by those regions with (close to) maximal local Dirichlet
eigenvalues of the Anderson Hamiltonian ∆+ ξ, and these are determined by the
extraordinarily high potential peaks. This gives an intuitive interpretation of the
spectrum of the Anderson Hamiltonian close to its top.
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It turns out in a series of papers by various authors, that, under some mild
regularity assumption on the potential distribution in the upper tail, there are ba-
sically only four different universality classes of asymptotic behaviors, determined
by the size of the relevant islands and by a characteristic variational problem [1].
In the talk, we explain the characteristics of these classes and the general picture.

The main starting point of all proofs is a probabilistic representation of the
solution in terms of the well-known Feynman-Kac formula,

u(t, z) = E0

[
exp

{∫ t

0

ξ(Xs) ds
}
δz(Xt)

]
,

where (Xs)s∈[0,∞) is a continuous-time random walk in Zd with generator ∆. We
explain the large-t behavior in terms of this formula, i.e., in terms of the optimal
behavior of the underlying random walk in the random field ξ.
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Some Random Hamiltonians modeling Superconductors

Werner Kirsch

(joint work with Bernd Metzger, Peter Müller)

We consider random operators that arise in models of superconductors (BCS
theory). The operators are block matrices of the form:

M =

(
A B
B −A

)

where A and B are selfadjoint operators in the Hilbert space H0 = ℓ2(Zd).
The operator M acts in the natural way on the Hilbert space H = H0 ⊕ H0.

The first component in that space describes a particle, say an electron, the second
component describes a hole. The electron can convert into a hole which mimics
the creation of a Cooper pair and a hole can convert into an electron modeling the
decay of a Cooper pair.

In our investigation the operator A is an Anderson Hamiltonian of the form

Hω = H0 + Vω

where H0 is the discrete Laplacian and Vω(n) is a sequence of independent and
identically distributed random variables. The operator B is a diagonal matrix
with entries bω(n).

If bω(n) ≥ b0 > 0 then M has a spectral gap between −b0 and b0. This is
typical for superconductors.

Under reasonable assumptions on b we can prove a Wegner estimate for M
showing that the density of states exists.
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We also investigate the behavior of the density of states near the spectral edges
±b0. If b = b0 is constant, then the density of states n has a square root singularity
at the points ±b0, which is independent of the dimension d.

For certain cases we can prove Lifshitz behavior of the density of states near
±b0 for random b.

2 × 2 matrices, quadratic forms, and representation theorems

Vadim Kostrykin

(joint work with Luka Grubǐsić, Konstantin A. Makarov, Krešimir Veselić)

Consider a 2× 2 matrix

B =

(
a+ v
v∗ a−

)

with a± ∈ R and v ∈ C. Without loss of generality we can assume that a+ ≥ 0
and a− ≤ 0. The eigenvalues and the corresponding eigenvectors of the matrix B
can be calculated explicitly in the form

λ+ = a+ + |v| tan θ = vw tan θ,

λ− = a− − |v| tan θ = v∗w∗ tan θ
(1)

and

(2) x+ =

(
1

w tan θ

)
, x− =

(
−w∗ tan θ

1

)
,

where w :=
v∗

|v| and θ :=
1

2
arctan

2|v|
a+ − a−

≤ π

4
is the angle between the vectors

x+ and

(
1
0

)
.

Let now H0 ⊕ H1 be an orthogonal decomposition of the Hilbert space H.
Assume that B is a bounded self-adjoint operator in H. With respect to the
decomposition H = H0 ⊕H1 it can be represented as a block operator matrix

B =

(
A+ V
V ∗ A−

)
,

where the operators A± act in the Hilbert spaces H±, respectively, and the oper-
ator V maps H− in H+ continuously.

There is a big amount of literature addressing the spectral theory of block
operator matrices (see, e.g., [9] and references quoted therein). Surprisingly, the
spectrum and the spectral subspaces of the operator B under the assumption that
both A+ and −A− are positive definite, can be described by formulae completely
analogous to (1) and (2). In particular, the spectrum of the operator B is a union
of two disjoint sets belonging to R+ and R−, respectively,

spec(B) = spec(A+ + VW tanΘ) ∩ spec(A− − V ∗W∗ tanΘ∗),

spec(A+ + VW tanΘ) ⊂ R+, spec(A− − V ∗W∗ tanΘ∗) ⊂ R−,
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The operators A+ + VW tanΘ and A− − V ∗W∗ tanΘ∗ are in general not self-
adjoint but similar to self-adjoint ones. The spectral subspaces of the operator B
corresponding to the sets R+ and R− possess representations as graph subspaces,

Ran EB(R+) =

{(
x

W tanΘx

) ∣∣∣x ∈ H+

}
,

Ran EB(R−) =

{(
−W∗ tanΘ∗x

x

) ∣∣∣ x ∈ H−

}
.

Here W and W∗ are partial isometries defined by the polar decompositions X =
W |X | and X∗ = W∗|X∗| of the operators X and X∗, respectively, where X :
H0 → H1 is a unique contractive solution to the Riccati equation

A−X −XA+ −XVX + V ∗ = 0.

The operators Θ and Θ∗ are self-adjoint operator satisfying 0 ≤ Θ,Θ∗ ≤ π/4
and tanΘ = |X |, tanΘ∗ = |X∗|. Geometrically they have the meaning of angles
between the subspaces H+ and RanEB(R+) (see, e.g., [1]).

A generalization of the results described above to the case of unbounded oper-
ators defined by indefinite (that is, not necessarily semibounded) quadratic forms
will appear in [3], [4], [5]. In particular, we provide new straightforward proofs of
the first and the second representation theorems for indefinite quadratic forms. Al-
ternative approaches to the representation theorems for indefinite quadratic forms
have been developed by A. McIntosh [6], [7], by Nenciu [8], and by Fleige, Hassi,
and de Snoo (see [2] and references quoted therein).
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quadratic forms revisited, in preparation.
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