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Introduction by the Organisers

The biennial workshop Material Theories organized by Antonio DeSimone, (Tri-
este), Stephan Luckhaus (Leipzig) and Lev Truskinovsky (Palaiseau) brings to-
gether mathematicians, mechanicians and theoretical physicists interested in de-
veloping new mathematical models of complex materials, medias and systems. The
workshop covers a wide range of topics from nonequilibrium statistical mechanics
and dynamical systems to calculus of variations and nonlinear functional analysis.

A particular focus of the 2009 meeting was on continuum description of biolog-
ical systems, pattern formation, granular media, molecular dynamics, plasticity
and turbulence. In addition to 25 general lectures the conference program in-
cluded an evening talk on thermodynamic modeling of evolutionary genetics and
an exceptional concert of classical music.

Among the highlights of the conference we would like to mention the talk of Flo-
rian Theil (Coventry), who presented a significant advance in 3D crystal problem,
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the talk of Hans Herrmann (Zürich) devoted to the modeling of optimal fractal
organization in moving granular systems and the talk of Yann Brenier (Nice) on
multidimensional rearrangement theory and its relation to Navier-Stokes Boussi-
nesq equations.

The exciting lectures of Jean-Francois Joanny (Paris), Frank Jülicher (Dresden),
Karsten Kruse (Saarbrücken), Sebastien Neukirch (Paris), Paolo Cermelli (Torino)
and Marta Lewicka (Minneapolis) reviewed new developments in the continuum
representation of active biological systems (at both cellular and tissue level) which
targeted such diverse applications as viruses, DNA, tumors and trees. Another
novel and still poorly understood subject is pinning-depinning transition and the
related self organized criticality. Mathematical progress in the related problems
leading to power law spectrum of fluctuations was reviewed in the lectures of Luis
Bonilla (Leganes) Nicolas Dirr (Bath), Francisco-Jose Perez-Reche(Cambridge)
and Oguz Umut Salman (Palaiseau).

Borrowing most their tools from probability theory, Stefano Olla (Paris) and
Sergei Kuksin (Palaiseau) discussed the averaged behavior of stochastically regu-
larized nonlinear dynamical systems originating in the theory of heat conduction
and fluid mechanics (nonequilibrium steady states). Recent progress in the clas-
sical problems of nonlinear solid mechanics, such as fracture, plasticity and strain
localization was addressed in the lectures of Antonin Chambolle (Palaiseau), Da-
vide Bigoni (Trento) and Luca Mugnai (Leipzig). More general issues of rate in-
dependent hysteresis, structural self-similarity, pattern formation and band gaps
in continuum mechanical systems and the new mathematical tools developed for
the adequate representation became the subject of the lectures of Giovanni Alberti
(Pisa), Alexander Mielke (Berlin), Victor Berdichevsky (Detroit), Mark Peletier
(Eindhoven) and Guy Bouchitte (La Garde). Recent advances in the rigorous
study of coarse graining and the transition from discrete to continuum in both
statics and dynamics were reviewed by Bernd Schmidt (München) and Antonio
DiCarlo (Roma).

Overall, the workshop created an unprecedented opportunity for the researchers
working in different disciplines to be exposed to new and fruitful ideas and to build
otherwise impossible exchanges and collaborations.
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Abstracts

Wetting and contact-angle hysteresis

Giovanni Alberti

(joint work with Antonio DeSimone)

Consider a drop E sitting on a solid surface S as shown in the picture below.

E (drop)

Σ  (contact surface)
c

γ (contact line)

S (solid surface)

Σ  (free surface)
f

θ (contact angle)

The classical model of capillarity (cf. [3]) postulates an energy of the form

E = σLV |Σf |+ σLS |Σc|+ σSV |S \ Σc|+ volume energy

where |Σ| denotes the area of the surface Σ, the volume energy is usually given
by the integral over E of an energy density ρ, and the coefficients σLV , σLS , σSV

satisfy the wetting condition

|σLS − σSV | ≤ σLV .

This energy yields the usual equilibrium conditions at fixed volume, namely
Laplace’s law

−2σLV H
f + ρ = constant on Σf ,

where Hf stands for the mean curvature of the free-surface Σf (outward oriented)
and the constant at the right-hand side corresponds to the pressure difference
across the surface, and Young’s law

θ = θY on γ ,

where the angle θY is defined by the relation

cos θY :=
σSV − σLS

σLV
.

Thus, according to this model, if E is an equilibrium configuration (e.g., a local
minimizer of E at fixed volume) then the contact angle θ agrees with θY at every
point of the contact line γ.

Note that the following (observed) phenomena are not accounted for by this
model:

1) A drop of water on an inclined plane may be in equilibrium, even though in
presence of gravity the energy E would be decreased by sliding down, and in this
case the contact angle is not constant.

2) If we increase the volume of a spherical drop on an horizontal plane, at first
the contact line remains still while the contact angle increases until it reaches a
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critical value θadv, and afterwards the contact angle remains constant = θadv while
the contact line advances (moves outward). Moreover, if at a certain moment we
invert the process and start decreasing the volume, then at first the contact line
remains still and the contact angle decreases until it reaches a critical value θrec,
and afterwards the contact angle remains constant = θrec and the contact line
recedes. Thus we observe contact-angle hysteresis.

In order to account for these phenomena, following [2], in [1] we postulate that
the contact line is subject to a frictional force described by the following condition:
if the contact line γ moves with normal velocity v, the dissipation rate (energy
dissipated per unit time) is

R = µ

∫

γ

|v| .

Indeed, if we define the angles θadv and θrec by the relations

cos θadv := cos θY − µ

σLV
and cos θrec := cos θY +

µ

σLV

(we assume that the parameter µ is such that the right-hand sides of these equa-
tions belongs to thew interval [−1, 1]), then the flow rules for the quasistatic evo-
lution associated to this system – that is, to the energy E and the dissipation rate
R – prescribe that at every time the free surface Σf satisfies Laplace’s law, and
the contact angle θ satisfies

◦ θ = θadv in the points of γ where v > 0;
◦ θ = θrec in the points of γ where v < 0;
◦ θrec ≤ θ ≤ θadv in the points of γ where v = 0.

Therefore these flow rules explain the contact-angle hysteresis described above.

On the analysis side, following the work of A. Mielke and coauthors (see [5] for
a detailed overview, a similar approach was proposed in [4]) we prove the existence
in a suitable weak setting of quasistatic evolutions with given initial configuration
(what drives the evolution is the volume of the drop, which varies in time in a
prescribed way, and possibly the volume forces). More precisely, we show that
a quasistatic evolution can be obtained by taking the limit in time-discretized
evolutions as the time-discretization parameter tends to 0.

An interesting feature of this relatively simple geometric model is that in some
cases quasistatic evolutions can be explicitly written, and, not surprisingly, it turns
out that they may be discontinuous in time (the drop jumps instantly from one
configuration to another). In one of these examples the predicted behaviour at the
discontinuity is clearly unphysical, and this suggests that our notion of quasistatic
evolution should be refined, e.g. by adding a suitable vanishing viscosity.
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Statistical origin of microstructure self-similarity in severe plastic
deformation

Victor L. Berdichevsky

One of the most remarkable experimental findings of recent years in mate-
rial science was the discovery of self-similarity of microstructures in severe plastic
deformations of polycrystals. It was made by Hughes et al. [2], [3] and further
developed in a series of publications by Hansen, Hughes and their coauthors. They
studied the microstructure of cold rolled aluminum, copper and nickel in case of
large shear deformation, up to a von Mises strain 6. In such highly sheared ma-
terials the microstructure is predominantly laminar. The laminar microstructure
exhibits the ”turbulent” features: the misorientation angle of crystal lattices in
neighboring laminae, θ, and lamina thickness, a, are random. The probability
density functions of a and θ were found by working out the experimental data. It
turned out that the random numbers, a and θ, after being scaled by their average
values, ā and θ̄, have the universal distributions that are independent on strains
and materials tested.

In this talk a simple statistical model is suggested, which admits an analytical
investigation and yields the distributions of a/ā and θ/θ̄. The model is based on
the following schematic picture of the microstructure.

Consider a crystal which is clamped at one side, while the opposite side is
sheared and/or compressed by a prescribed displacement. The displacement is of
the order of the length of the piece, L. Thus, a finite plastic strain develops. The
plastic deformation is accompanied by the formation of a laminar microstructure.
The microstructure consists of N laminae with the thicknesses a1, a2, ..., aN . The
plastic deformation of each lamina occurs due to nucleation and multiplication
of dislocations. Dislocations sitting in a lamina cause the change of the crystal
orientation of this lamina as compared to the orientation of the perfect lattice. The
absolute value of the misorientation of kth layer is denoted by αk. The absolute
value of the crystal lattice misorientation is neighboring layers is set equal to the
sum,

(1) θk = αk−1 + αk.

So, the microstructure is characterized by the set of 2N positive numbers,
a1, a2, ..., aN and α1, α2, ..., αN . To describe the statistics of these numbers, we
have to define the probability of elementary events. As such we will use the proba-
bility measure suggested in [1]: the microstructures with the same value of energy
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are equiprobable. It is assumed, of course, that the admissible parameters must
satisfy the kinematic constraints, like, e.g., the sum of all lamina thicknesses must
be equal to the length of the specimen, L,

(2) a1 + a2 + ...+ aN = L.

We make two major assumptions. First, the energy of the microstructure, H,
is a linear function of αk :

(3) H = 2γ0 (α1 + ...+ αN ) |Ω| .
Here |Ω| is the area of the specimen cross-section x = const, γ0 a constant.

Second, the parameters αi and ai are not kinematically independent. A certain
number of dislocations is needed to create a grain boundary. The number of
dislocations generated in the kth lamina is proportional to the misorientation of
the lamina αk. For zero αk, no grain boundary is generated, or, in other words, the
grain boundary spacing is infinite. For small αk, the grain boundary spacing must
be large. The larger αk, the smaller ak. We accept that there is ”microstructure
quantum number”, κ, such that the product of α and a for all grains is the same:

(4) α1a1 = α2a2 = ... = αNaN = κ.

The constant κ has the dimension of length.
The relation (4) makes α1, ..., αN certain functions of the spacings and elimi-

nates them from the set of the independent characteristics of the microstructure.
Energy becomes a function of spacings,

(5) H = 2γ0κ |Ω|
(

1

a1
+ ...+

1

aN

)
.

Formulas (2)-(4) define the probabilistic measure: all microstructures which lie
in the region

E 6 2γ0κ |Ω|
(

1

a1
+ ...+

1

aN

)
6 E +∆E

L 6 a1 + ...+ aN 6 L+∆L

are equally probable. This yields the probability density function of spacings,

(6) f (a1, .., aN ) = cδ (E −H (a1, .., aN)) δ (L− a1 − ...− aN ) ,

where c is a normalizing constant.
Computation of probability density function of thicknesses of the first layer, a1,

is reduced to computation of the integral,

(7) f (a) =

∫
f (a, a2, .., aN ) da2...daN .

The probability density of misorientation angles is determined from (1) and (4).
The probability densities are computed in the thermodynamic limit when N → ∞
while energy per one layer, E/N, and average thickness, L/N, remain finite. The
probability densities exhibits the proper scaling by average values ā and θ̄ and
coincide reasonably well with the experimental data.
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Material instabilities and the perturbative approach in solid mechanics

Davide Bigoni

Localized deformations in the form of shear bands emerging from a slowly vary-
ing deformation field are known to be the preferential near-failure deformation
modes of ductile materials. Therefore, shear band formation is the key concept to
explain failure in many materials and, according to its theoretical and practical
importance, it has been the focus of an enormous research effort in the last 30
years. From the theoretical point of view, this effort has been mainly directed in
two ways, namely the dissection of the specific constitutive features responsible
for strain localization in different materials and the struggle for the overcoming of
difficulties connected with numerical approaches.

Although these problems still seem far from being definitely solved, the most
important questions in this research area have only marginally been approached
and are therefore still awaiting explanation. They are as follows.

(i) The highly inhomogeneous stress/deformation state developing near a shear
band tip is unknown from an analytical point of view (and numerical techniques
can hardly have the appropriate resolution to detail this).

(ii) It is not known if a shear band tip involves a strong stress concentration.
(iii) The fact that shear bands grow quasi-statically and rectilinearly for re-

markably long distances under mode II loading conditions, while the same feature
is not observed in the akin problem of crack growth, remains unexplained.

(iv) Finally, and most importantly, the reason why shear bands are preferential
failure modes for quasi-statically deformed ductile materials has no justification.

Answers to the questions above are provided employing the perturbative ap-
proach proposed by Bigoni and Capuani in [1], [2] and Piccolroaz et al. in [7], as
extended to perturbing agents in terms of rigid line inclusions and slip surfaces
(see [3], [5], [4], [6]).
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Waves in nonlinear discrete systems

Luis L. Bonilla

(joint work with Ana Carpio, Holger Grahn, Guido Dell’Acqua, Ignacio Arana)

The damped Frenkel-Kontorova model of dislocations [1, 2], the spatially discrete
FitzHugh-Nagumo (FHN) model of nerve conduction in myelinated neurons [3]
or the discrete drift-diffusion model of electron transport in doped semiconductor
superlattices (SL) [4] are examples of nonlinear discrete systems. These models
are described by systems of coupled autonomous differential-difference equations
having nonlinear N-shaped source terms and their dynamical behavior can be
understood in terms of fronts, pulses or wave trains.

Wave fronts have monotone profiles joining two different constant solutions as
the discrete index i goes to −∞ or +∞. These fronts are either traveling wave
solutions moving at a constant velocity or stationary solutions (in whose case
we say that the fronts are pinned by the lattice). Typically stationary fronts
exist when a control parameter (the load in the FK model or the current J in
the superlattice model) takes values on an open interval. The transition between
moving and pinned fronts (pinning-depinning transition) depends on the dynamics
of the system. For the overdamped FK model or the SL model, it is a global saddle-
node bifurcation such that the front velocity vanishes as c(J) ∝ |J − Jc|1/2 as J
goes to one of the extremes of the pinning interval [4, 5]. To be precise, consider
the SL case:

dEi

dt
+ v(Ei)

Ei − Ei−1

ν
−D(Ei)

Ei+1 + Ei−1 − 2Ei

ν
= J − v(Ei),(1)

in which the pinning interval is (Jc1, Jc2). Ei(t) are electric field values at the
SL quantum wells, v(E) and D(E) are the electron drift velocity and diffusivity,
respectively [4]. The critical currents Jc1 and Jc2 depend on another parameter,
the dimensionless doping density ν. For J > Jc2, the wave fronts move towards
the left, with negative velocity, whereas they move to the right if J < Jc1. As
J → Jc1− or J → Jc2+, the front profile develops steps (and it loses smoothness
at the critical currents). For large values of ν there is one prominent step in
the front profile: most Ei(t) = E(i − ct) are either E(1)(J) or E(3)(J), with
v(E(n)(J)) = J , except for a single active point E0(t) which is in between these
two values. The evolution of E0(t) is given approximately by (1) with Ei =
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E(1)(J) for i < 0 and Ei = E(3)(J) for i > 0. The front profile E(z) can be
reconstructed from the motion of the active point by using E(z) = E0(−z/c)
[1, 4, 5]. For J in the pinning interval, the equation for E0 has one unstable
and two stable stationary solutions. The unstable and one of the stable solutions
merge in a saddle-node bifurcation as J → Jcn, n = 1, 2. As J → Jc1− or
J → Jc2+, the corresponding normal form dϕ/dt = α(J − Jcn) + β2ϕ2, has the

solution ϕ = (−1)n
√
α(J − Jcn)/β tan[

√
αβ(J − Jcn) (t − t0)], which blows up

at (t − t0) = ±1/(2c), with c =
√
αβ(J − Jcn)/π. c is the approximate front

velocity. At the blow-up times, E0(t) solves (1) with J = Jcn, Ei = E(1)(J) for
i < 0 and Ei = E(3)(J) for i > 0, and the matching conditions E0 → E(3)(Jcn)
as (t − t0) → +∞ for (t − t0) = 1/(2c) (resp. E0 → E(1)(Jcn) as (t − t0) → −∞
for (t − t0) = −1/(2c)). As ν decreases, there are more active points between
E(1)(J) and E(3)(J) and finitely many equations need to be kept to approximate
(1). See Ref. [5] for a detailed description and results. In the continuum limit,
ν → 0, the pinning interval disappears and (1) may be approximated by a first-
order hyperbolic equation together with shock and entropy conditions that yield
approximate wave front velocities [4].

The pinning-depinning transition of wave fronts is modified by disorder. For ex-
ample, fluctuations in the SL doping density result in adding a term γD(Ei)(ξi+1−
ξi)− γv(Ei)ξi to the right hand side of (1), where ξi is a random variable taking
values on (−1, 1) with equal probability and γ → 0. An extension of the active
point theory has been used to show that the effect of disorder is to shift the critical
currents and to change the critical exponent from 1/2 to 3/2 [6]. The effect of
inertia may be even more dramatic. In the underdampled FK model with a piece-
wise linear source, the pinning-depinning transition may become subcritical: the
stable branch of moving fronts is connected to the stationary solution by branches
having infinitely many turning points that accumulate at the static critical J [2].

Wave fronts are stable solutions of the differential-difference equations con-
sidered here. We can use their profiles and velocities to describe more complex
dynamical behaviors. Two examples. A voltage biased SL is described by (1)

for i = 1, . . . , N , the bias condition
∑N

i=0 Ei = (N + 1)φ (for a given constant
voltage φ) and boundary conditions at i = 0 and N . The unknowns in this
problem are Ei(t) and J(t). Depending on the values of ν and φ, this prob-
lem has stable stationary or time-periodic solutions which can be visualized in
a bifurcation diagram of J versus φ (current-voltage diagram) [7]. For large ν,
the only stable solutions are stationary and there may be several stable solution
branches for a given value of φ. The field profile of each solution branch is a
stationary wave front pinned at a given SL period i. For lower doping densities,
there are intervals of φ for which the stable solutions are self-sustained oscilla-
tions having a periodic J(t). The corresponding field profiles are pulses moving
from i = 0 to i = N . These pulses are regions with Ei = E(3)(J) bounded
by monotonically increasing and monotonically decreasing wave fronts. Between
pulses or between pulses and contacts, Ei = E(1)(J). During a self-oscillation,
J(t) varies slowly whereas the field (either at wave fronts or at flat regions with
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Ei = E(n)(J)) adapts rapidly to the instantaneous value of J . To find an equation
for J(t), we simply time-differentiate the voltage bias condition, use the known
functions c±(J) (velocities of a monotone increasing or decreasing wave front in
terms of J) and that v′(E(n)(J)) dE(n)/dt = dJ/dt. The result is an equation
dJ/dt = A(J) [n+c+(J)− n−c−(J)]/N , where n± is the number of increasing (+)
or decreasing (-) fronts and A(J, φ) > 0 is a known function. If we include stages
of wave front formation and annihilation at contacts, this equation is the basis of
an asymptotic description of self-oscillations in the limit of large N (long SL) [7].

The other example of reducing pulse dynamics to wave front dynamics is pro-
vided by the FHN system consisting of an overdamped FK equation for the ex-
citatory unknown and a linear ODE for the recovery unknown (the load). Their
respective time scales are widely separated. In the fast time scale, the recovery
variable is frozen and there are monotone increasing and decreasing fronts bound-
ing a pulse of the excitatory variable. In the slow time scale, the excitatory variable
moves over the stable branches of the N-shaped source term for the overdamped
FK equation following the evolution of the recovery variable. It is possible to find
a reduced system of equations for the time lag between wave fronts, the length of
the region between fronts and the values of the recovery variable at the fronts [3].
The solution of this reduced system describe the evolution of the pulse.

Recently, we have considered a model for electron and hole transport in an
undoped SL. In addition to a discrete drift-diffusion equation similar to (1), this
system has an additional equation for the hole density plus bias and boundary
conditions. If the electron-hole recombination is calculated as a function of electric
field, the resulting system may have excitable or oscillatory dynamics with only
one stable constant stationary solution, a situation reminiscent of the FHN system
[8]. The voltage bias condition gives rise to a large variety of oscillations mediated
by wave fronts, pulses and wave trains. Different from the case of doped SL, a
pulse may be created inside the SL (not at the contact region), split into two, and
each resulting pulse then moves towards the closest contact. Repetition of this
process produces chaotic current oscillations.
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Multi-scale approach for resonance effects in metamaterials.

Guy Bouchitté

Introduction

It is now commonly admitted that obstacles made of metallic or dielectric inclu-
sions placed periodically in a suitable way can behave like homogeneous materials
with negative refractive index (or other rather unexpected exotic properties). The
aim of the talk is to present several 3D situations where such behaviors can be
recovered rigorously by using multi-scale methods:

- High conductivity fibers with very small filling ratio (negative effective per-
mittivity [1, 2, 3, 4, 5])

- High contrast dielectric inclusions (artificial magnetism and negative permit-
tivity [6, 7, 8, 9, 10, 11] )

- Pendry metallic split ring structures (see [12, 13, 14])
In all these cases, the key point relies on a spectral problem in the periodic cell

which accounts internal resonances and allows to describe small scale oscillations
of the electromanetic field. Due to the extreme values of the permittivity in the
inclusions, these micro-resonances are compartible with a possibly large incident
wavelength. The macroscopic behavior of the photonic crystal is then identified
by using classical homogenization techniques.

In this report we will only present the case of a scattering body made of high
conductivity metallic fibers and we will explain how negative effective permittiv-
ity tensors can be reached by choosing suitably the disposition, the size and the
conductivity of the fibers.

Construction of the structure (metamaterial)

The metamaterial will exhibit two different microscopic scales. Its construction
is realized in two steps.

Step 1. Recently in [3] a new homogenization theory was proposed for a bounded
obstacle made of periodically disposed parallel high conducting metallic fibers of
finite length and very thin section. Although the resulting constitutive law is non
local, a cut-off frequency effect could be evidenced when fibers become infinitely
long (see [2]).

Let us start by considering such a finite 3D scatter filled with periodically
disposed e3-parallels metallic rods with very small radius a and high conductivity
σ. The radius a is assumed to be infinitesimal with respect to the period d so that
the filling ratio θ vanishes in the limit process. more precisely

Assumptions. In this model we assume that:
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i) d2 ln a → γ−1 where the constant γ represents the average capacity of the
rods per unit of volume.

ii) σ θ → κ where θ = π a2

d2 and κ represents the conductivity averaged over the
scatter (since θ → 0, we have σ → +∞).

Under these scaling assumptions, it has been shown in [3] that the scatter illu-
minated by a mono chromatic incident wave (wave number k0) has asymptotically
a non-local behavior governed by the following system of equations:

(1)





curlE = iω µ0 H on R
3

curlH = −iω ε(E + i J e3) on R
3

∂2J
∂x2

3
+ (k20 +

2iπγ
κ ) J = 2iπγ E3 on Ω

∂J
∂x3

= 0 on ω±
L

where Ω := D × [−L/2, L/2] and ω±
L = D × {±L/2}, and J represents the bulk

average of the vertical displacement current induced in the fibers.

Step 2. Now we design a second device by repeating periodically photonic com-
ponents of small size and of the same kind as the one constructed in Step 1. More
precisely the periodic obstacle Ση is given by

(2) Ση = Ω ∩
( ⋃

i∈Z3

η(i +Σ)

)
,

where Σ = D×(−h/2, h/2) is a cylinder strictly contained in the unit cell Y . Here
D is a connected subdomain of (−1/2, 1/2)2 and h < 1 denotes the height. The
upper and lower basis of Σ are denoted D±. Their rescaled periodic counterparts
are called D∓

η . Applying directly the previous limit model on each component of
Ση on which we plug the system (1), we are led to a global diffraction problem
described by a triple (Eη, Hη, Jη) such that:

(3)





curlEη = iωµ0Hη on R
3

curlHη = −iωε0(E + i 1Ση Jη e3) on R
3

∂2Jη

∂x2
3
+
(
k20 +

2iπγ
κ

)
Jη = 2iπγ Eη · e3 on Ση

∂Jη
∂x3

= 0 on D±
η

+ radiations conditions at infinity

where 1Ση denotes the function equal to 1 on Ση and zero otherwise.
In the perspective of obtaining a new effective law in the limit as η → 0, our

aim is to identify two-scale limits (E0, H0, J0) of (Eη, Hη, Jη). The macroscopic
electric and magnetic fields will be identified in the limit η → 0 as

(4) E(x) =

∫

Y

E0(x, y) dy , H(x) =

∫

Y

H0(x, y) dy .
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Multiscale Analysis

By classics arguments of two-scale convergence, one checks that system (3) leads
to the following cell problem for (E0(x, ·), H0(x, ·), J0(x, ·) :

(5)





curly E0 = curly H0 = 0, divyH0 = 0 ,
divy(E0 + 1Σ J0) = 0 , J0 = J0(y1, y2)

J0 = 2iπγ

k2
0+

2iπγ
κ

1
h

∫ h/2

−h/2
E0(y1, y2, y3) · e3 dy3

By the two first equations of (5), H0(x, ·) is constant and we can write E0(x, ·)
in term of a suitable periodic scalar potential Φ(x, ·):

H0(x, y) = H(x) , E0(x, y) = E(x) +∇yΦ(x, y) .

By the two last equations of (5), Φ satisfies

(6) ∆yΦ = i J0 (δD+ − δD−) , J0 =
2iπγ

k20 +
2iπγ
κ

(E3 + [Φ]h)

where

[Φ]h(·, y1, y2) :=
1

h

(
Φ(·, y1, y2,

h

2
)− Φ(·, y1, y2,−

h

2
)
)

Micro-resonator problem

We introduce the operator Bh : w ∈ L2(D) 7→ [ϕ]h(y1, y2) where ϕ is the
unique Y -periodic solution of −∆ϕ = w (δD+ − δD−). It is a linear positive
compact selfadjoint operator and by (6), we see that j0(x, ·) satisfies the spectral
equation:

(7) Bh(J0)−
(

k20
2πγ

+
i

κ

)
J0 = −i E3(x) .

Let ν20 > ν21 ≥ ν22 · · · ≥ ν2n be the (real positive) eigenvalues of Bh (ν2n → 0 as
n → ∞) and let {ϕn : n ∈ N} an associated orthonormal basis of L2(D). Then
the solution of (7) is given by

(8) J0(x, y1, y2) = i E3(x)χ(ω, y1, y2)

with χ(ω, y1, y2) :=
∑

n cnϕn , cn =
∫
D

ϕn

k2
0

2πγ −ν2
n+

i
κ

Effective permittivity

Exploiting (8)(9), the limit of the term Jη 1Ση in the second equation of (3) can

be identified as the average
∫
Σ
J0(x, y1, y2) dy1dy2 = i hΛ(κ, γ, ω)E3(x) , where

(9) Λ(κ, γ, ω) :=

∫

D

χ(ω, y1, y2) dy =
∑

n

(
∫
D
ϕn)

2

k2
0

2πγ − ν2n + i
κ

Thus the limit system reads
{

curlE = iωµ0 H
curlH = −iωε0ε

eff E



3048 Oberwolfach Report 57/2009

with εeff is the diagonal tensor given by

(10) εeff11 = εeff22 = 1 , εeff33 = 1− hΛ(κ, γ, ω)

Thus we are led to a local effective law described by a permittivity tensor that
we can explicit as a function of the frequency. By (9) the eigenvalues of this
tensor have real part changing of sign and possibly very large within some range
of frequencies. We refer to [5] for futher details and for a complete demonstration
of the convergence result.

Notice that we may also generalize the previous construction by mixing three
families of metallic fibers composants each of them being disposed alternatively
in the three directions of axis. That way we will reach all effective tensors of the
kind

εeff =



1− h1Λ1(ω) 0 0

0 1− h2Λ2(ω) 0
0 0 1− h3 Λ3(ω)


 ,

where the parameters hi and fonctions Λi(ω) are computed according to the par-
ticular geometry and electromagnetic properties of each family of inclusions.

Conclusions

By considering a complex structure consisting of periodically disposed (period
η) sytems of small arrays (size d ≪ η) of parallel disconnected fibers of length
l ≪ η, we can construct a metamaterial showing micro-resonances effects for large
wavelength incident field (λ ≫ η). Such a metamaterial is characterized by a local
effective permittivity tensor with possibly real negative eigenvalues (band gaps
of frequencies). By tuning the geometrical parameters of the micro-fibers (filling
ratio, conductivity, orientation of the fibers), we can reach (at least theoretically)
a wide range of metamaterials including any one characterized by an arbitrary real
symmetric permittivity tensor.
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Rearrangement and Convection

Yann Brenier

A crude model of convection. Let us introduce the following discrete scheme
as a crude model of convection: we consider a vertical column of fluids with N
equally spaced grid points a1 < a2 < ... < aN . At each discrete time t = hn,
n = 0, 1, 2, ..., the temperature at elevation ai is denoted by yni . A heat source
is located at each elevation ai and denoted by G(ai) where G is a given smooth
function. Then, the evolution of the temperature is made of two steps:
i) a predictor step which takes into account the heat source:
ỹn+1
i = yni + h G(ai),
ii) a corrector step which rearranges the temperature field in increasing order so
that the cold fluid instantaneously goes to the bottom and the hot fluid goes to
the top:
yn+1 = R[ỹn+1],
where R denotes the rearrangement operator (i.e. sorting in increasing order).

Convergence analysis. The numerical scheme has a unique continuous limit
y(t, a) which can be shown to be the solution of the subdifferential equation:

(1) G(a) ∈ ∂ty + ∂Ψ[y]

where Ψ[y] = 0 if y = y(t, a) is non decreasing as a function of a
and Ψ[y] = +∞ otherwise. This equation is well-posed in the space L2. The
pseudo-inverse u(t, y) defined by u(t, y(t, a)) = a can also be shown to be a
Kruzhkov entropy solution to the scalar conservation law

(2) ∂tu+ ∂y(g(u)) = 0,

with flux g(a) =
∫ a

0 G(b)db.
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Multidimensional rearrangements with convex potential. There is a mul-
tidimensional generalization of the concept of rearrangement in increasing order
which is closely related to optimal transport theory: given a smooth bounded do-
main D ⊂ Rd, any z ∈ L2(D,Rd) has a unique rearrangement R[z] ∈ L2(D,Rd)
for which there is a convex lsc p such that ∇p(x) = R[z] almost everywhere in D.
(cf. [1], see also [4].) Thanks to this multidimensional rearrangement result, it is
straightforward to get a generalization of the model in higher dimension, where it
is understood that:
-y(t, x) ∈ Rd (generalized temperature) is now a vector field valued in Rd,
-the source term G = G(x) is also valued in Rd and has bounded derivatives.
For this multidimensional extension of the model, we can show the global exis-
tence of a generalized solution y(t, x) ∈ Rd with a convex potential, valued in
C0([0,+∞[, L2(D,Rd)), in the sense:

(3)
d

dt

∫

D

f(y(t, x))dx =

∫

D

(∇f)(y(t, x)) ·G(x)dx

for all smooth function f such that |f(x)| ≤ 1 + |x|2. Notice that the formulation
(3) is “self-consistent”, thanks to the rearrangement theorem. Indeed, the knowl-
edge of f →

∫
D f(y(t, x))dx for all suitable f is sufficient to recover y(t, x) entirely,

as a map with convex potential. However, uniqueness issues are essentially un-
solved except in the case d = 1 and G(a) = −a, where, in different ways, maximal
monotone operator theory can be used.

Derivation from the Navier-Stokes equations with Boussinesq approxi-
mation. Finally, our multidimensional model can be seen as the singular limit of
the convection model

ǫ(∂t + v · ∇ −∆)v +∇p = f , (∂t + v · ∇)f = G , ∇ · v = 0,

as ǫ goes to zero, where the unknowns f = f(t, x) ∈ Rd, v = v(t, x) ∈ Rd,
p = p(t, x) ∈ R depend on t and x ∈ Rd and G = G(x) ∈ Rd is given. The limit
system, that we call Hydrostatic Boussinesq (HB) model,

∇p = f , (∂t + v · ∇)f = g , ∇ · v = 0,

is locally well posed under the requirement that p = p(t, x) is a uniformly strictly
convex smooth function in x. In this local regime, the convergence can be proven
thanks to a suitable ’relative entropy’ argument

For more details, we refer to the recent papers [2] and [3], and the references
included in these papers, in particular by Gregoire Loeper on the semigeostrophic
equations.
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Mathematical crystallography of the structural transitions of viruses

Paolo Cermelli

(joint work with Giuliana Indelicato, Simone Racca, Reidun Twarock, Giovanni
Zanzotto)

Structural capsid transitions are important for virus function, as in maturation
or infection processes, and have been the object of recent analyses from both the
experimental and theoretical viewpoints [14], [15], [16], [6], [7], [8]. In this work
we explore how crystallographic notions which are useful in the kinematics of
reconstructive structural phase transformations in crystalline solids [5], [17], [13],
[3], [10], can be adapted for the investigation of viral transitions.

We start from the fact that capsid configurations can be well approximated
by suitable double-shell point configurations in 3D with icosahedral symmetry
[8]. By adapting classical notions in the theory of quasicrystals [11], [9], we first
show how such structures can be obtained as projections to 3D space of suitable
subsets of the icosahedral (i.e. the simple-, body-centered-, and face-centered-
cubic) Bravais lattices in 6D. The transitions between two configurations of a
virus can then be studied in terms of transitions between two 6D lattices. For
this purpose we consider the 6D analogs of the ’Bain-like’ deformations, which
constitute an important class of transition paths involving minimal intermediate
symmetry reduction and minimal strain, and related concepts [2], [13], [4], [12],
[1].
As a specific example illustrating our approach, we consider the Cowpea Chlorotic
Mottle virus (CCMV), whose capsid structures have been investigated in some
detail [6], [8]. The experimental observations on the CCMV capsid are compatible
with: (a) a set of two pre-transition configurations; and (b) a set of ten post-
transition configurations. Each such set of double-shell icosahedral structures gives
respectively the possible initial and final configurations in the transition path,
which is at present unknown, and here we perform a systematic analysis of all
the possible 6D Bain-like paths between the given start and end configurations.
We do so by calculating suitable finite subsets of the integral normalizers of the
maximal subgroups of the integral representations of the icosahedral group in 6D
(cf. [18]), and by suitably measuring the strain such deformations induce on the
3D shell structures.

The results we obtain from this analysis give a ranking of likely transition
mechanisms for the CCMV virus confugurations, based on the requirements of
minimal symmetry loss at intermediate configurations and minimal overall strain.
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The approach we propose suggests a general method for the investigation and
prediction of possible capsid distortion paths, which may give guidelines for future
experimental or numerical work on viral transitions.
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Crack kinking in planar elasticity

Antonin Chambolle

(joint work with Gilles Francfort, Jean-Jacques Marigo)

We consider a planar linear-elastic brittle material. In the classical theory proposed
by Griffith [6], a fracture increases in order to release an amount of energy which
is dissipated into the system. Then, one assumes that the dissipation for creating
a crack of a certain length is proportional to this length, with a factor Gc known
as the “toughness” of the material. If one neglects all other possible ways of
dissipating energy (e.g., thermal dissipation), one arrives to the following model.
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• The setting is a (smooth) reference configuration Ω ⋐ R
2 and an increasing

boundary condition u0(t) on ∂Ω (“hard device”— could also be on some
part, or also be a force “soft device”). Ex: u0(t) = tU0, U0 ∈ H1/2(∂Ω).

• The crack path γ(ℓ), ℓ = length(γ(ℓ)) ≥ 0, is supposed to be known and
the fracture grows continuously along γ.

• The elastic energy associated to a boundary displacement u0(t) and a crack
of length ℓ is

W (t, ℓ) = min
u=u0(t)
on ∂Ω

1

2

∫

Ω\γ(ℓ)
Ae(u) : e(u) dx

where u ∈ H1
loc(Ω \ γ(ℓ)) and A is the Hooke’s law, given (in isotropic

elasticity) by σ = Ae(u) = 2µe(u) + λTre(u) I.
• The energy release rate is

G(t, ℓ) = −∂W (t, ℓ)

∂ℓ
≥ 0

• The evolution must obey the axioms:
(1) (Irreversibility) t 7→ ℓ(t) is nondecreasing,
(2) (Stability) G(t, ℓ(t)) ≤ Gc,

(3) (Energy-dissipation balance) (G(t, ℓ(t)) −Gc)ℓ̇(t) = 0

This model suffers a few drawbacks. In particular, it is unable to predict the
crack initiation, nor its trajectory. The issue of crack initiation has been analysed
in [4]. Let us comment on the issue of predicting the trajectory. We consider
more particularly the problem of “crack kinking”. The situation is as follows: an
initial crack γi is ending at 0 ∈ Ω by a straight segment. Then, it is known since
Grisvard [7] that at the tip, the displacement u has the form

u = K1Φ1 + K2Φ2 + v

where v ∈ H2(Ω\γi) while Φi are 1/2-homogeneous and correspond to the “mode
1”-opening (which is symmetric) and “mode 2”-opening (a pure shear). The coef-
ficients Ki, called “stress intensity factors” (SIF), are related to the energy release
rate as follows: G ∼ K2

1 +K2
2 if the fracture grows in its direction.

If the crack is loaded in a symmetric way, K2 = 0 and it is supposed to grow
smoothly. If not, one has K2 6= 0 and one expects it to “kink”, that is, to change
brutally its direction. Two competing criteria are classically used to determine
the angle θ that the new crack will make with the initial crack:

• “Gmax ”: the idea is to compute, for infinitesimal straight add-cracks at
the tip 0, the release rate G(θ) = − limε→0(W (ε, θ) −W (0))/ε,

W (ε, θ) = min
u=u0(t)
on ∂Ω

1

2

∫

Ω\(γi∪ε[0,Xθ])

Ae(u) : e(u) dx,

where Xθ = (cos θ, sin θ). It depends on the angle θ between the add-crack
and the initial crack γi. One then looks for the angle θ which maximizes
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this release rate and if it is equal to Gc the fracture starts growing in that
direction.

• “PLS” (Principle of local symmetry): the idea is that after the kinking
the fracture should be stable and in particular not “kink” again: hence on
looks for an angle θ such that K∗

2 (θ) = 0 where K∗
i (θ) are the SIFs at the

tip of the infinitesimal add-crack ε[0, Xθ]. One then uses the corresponding
release rate GPLS.

The issue is that it is widely accepted that these criteria are incompatible (al-
though this is only a conjecture, which supported by an asymptotic development
at zero, and a numerical estimation of (K∗

1 (θ),K
∗
2 (θ)) as a (linear) function of

(K1,K2), see [5, 1, 8]). In any case, it is proved that they can be compatible only
for a finite number of angles.

Doing a suitable blow-up analysis at 0, we define in [3] a “generalized energy-
release rate” at the tip, which depends on an arbitrary (connected) add-crack
pattern Σ. It means that we consider the crack γi ∪ εΣ for ε > 0 small, and
compute the normalized release of energy as ε → 0.

Then, we say that a crack is unstable as soon as for all ε > 0 small enough, it
is possible to find a small add-crack which lowers the global energy+dissipation.
In this case, we can show that a crack loaded in a nonsymmetric way (K2 6= 0) is
unstable “before” what both “PLS” and “Gmax” criteria predict. The conclusion
is that it should not grow according to classical Griffith’s laws (and most probably,
not in a continuous way). Even if there is a doubt that physical systems which
perfectly obey these laws exist, this analysis applies to the evolutions described
in [2], restricted to the planar case.
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[7] P. Grisvard, Singularités en elasticité, Arch. Rational Mech. Anal., 107(2) (1989) 157–180.
[8] J.-B. Leblond, Crack paths in plane situation – I, General form of the expansion of the

stress intensity factors, Int. J. Solids Struct., 25 (1989) 1311–1325.



Material Theories 3055

A reappraisal of the Andersen-Parrinello-Rahman method from a
continuum mechanics point of view

Antonio DiCarlo

(joint work with Matteo Paoluzzi, Paolo Podio-Guidugli, Marco
Ribezzi-Crivellari)

Continuum Physics and Molecular Dynamics. Multiscale approaches are key to
understanding phenomena in fields as different as biology, materials science, fluid
mechanics, and chemistry. Finding accurate and efficient methods for bridging the
gap between the atomistic time and space scales accessible by computer simulation,
the mesoscopic scale addressed by coarse-grained models, and the macroscopic
domains described by continuum mechanics is key for modelling and computing
multiscale properties. The arena where molecular dynamics (MD)—and, more
generally, atomistic models—meet with concepts and techniques from continuum
physics is nowadays one of the most exciting and promising areas for innovative
mathematical modelling. The interplay between atomistic and continuum physics
is vital, and it should work both ways: while fine theories would hopefully produce
coarser theories with sound constitutive information, coarse theories provide a well-
structured target to fine ones. This greatly helps in culling the effective behaviour
of interest out of the bewildering mass of unstructured microscopic information.

In a way, the attitude we advocate is a return to the origins of continuum
physics. Strange as it may appear to us, many of its founding fathers strongly be-
lieved in the necessity of an underlying discrete structure of matter—while having
in mind a very näıve molecular picture of it. In the closing Section 134 of his trea-
tise on three-dimensional elasticity [1] Lamé identified that theory as molecular
physics :

Nous terminons cette Leçon, et le Cours que nous avons entrepris,
par quelques réflexions sur la constitution intérieure des corps
solides. [ . . . T]outes les questions relatives à la Physique moléculaire
ont été rétardées, plutôt qu’avancées, par l’extension, au moins
prématurée sinon fausse, des principes et des lois de la Mécanique
céleste.

The APR Method for Molecular Dynamics. In classical MD the equations of mo-
tions for a finite set of Newtonian interacting particles are integrated numerically,
and properties of the system are obtained from the generated phase-space trajec-
tories. For practical reasons, the number of particles in the computational cell is
nowadays restricted to several millions. Thirty years ago, when Andersen wrote
his seminal paper [2], the practicable number was just one thousand. This more
than thousandfold increase, however prodigious, is trifling when compared with the
extra factor needed to bridge the abyss separating 106 from an Avogadro number
(∼6·1023) of particles: from a macroscopic point of view, an attomole (10−18 mol)
is negligibly larger than a zeptomole (10−21 mol). If such minuscule aggregates
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were simulated in isolation, their bulk properties would be polluted—if not alto-
gether obliterated—by overwhelming surface effects. Hence, the common practice
used to compute bulk properties is to (imagine to) fill asymptotically the entire
space (assumedly Euclidean) by periodically repeating a unit parallelepipedal cell
of finite size containing a finite—and relatively small—number of particles. This
makes the boundary recede to infinity and obliterates any surface effects.

However, if the size and shape of the computational cell are fixed once for all
and the number of particles per cell is kept constant (as implied by periodicity),
many situations of obvious interest turn out to be inaccessible to direct simulation
and some materials phenomena of major interest—such as phase changes—are
simply inhibited. It is desirable, for instance, to be able to perform simulations
at constant temperature and/or pressure, as Andersen pointed out in [2]. But
this is not feasible with the above described technique, since it keeps constant the
number of particles, the volume of the cell they invade and their total energy, thus
producing (approximate) averages over a microcanonical ensemble. As further
observed by Parrinello and Rahman in [4], changes in the shape of the periodic
cell play an essential role in crystal structure transformations. For example, in a
plane four points at the vertices of a square cell together with one at the centre
generate a square lattice, which can become a lattice of equilateral triangles only
if the square cell is allowed to transform into a rectangular cell having aspect ratio
1 :
√
3.

To remove this impediment, in 1979 H.C. Andersen devised a way to allow
the cell volume to evolve under a time-dependent dilation [2]. M. Parrinello and
A. Rahman immediately extended Andersen’s idea to general linear transforma-
tions, allowing also the cell shape to fluctuate and evolve in time [3, 4]. In the
Andersen-Parrinello-Rahman (APR) method, the prototype cell is allowed to de-
form in a very orderly way, being assumed to stay parallelepipedal. Therefore, its
evolution may be parameterized by n vector-valued maps τ 7→ (a1(τ), . . . , an(τ))
that yield cell edges as a function of time or, equivalently, by the single tensor-
valued map τ 7→ F(τ) such that aℓ(τ) = F(τ) eℓ (1 ≤ ℓ ≤ n), (e1, . . . , en) being a
given vector basis. The instantaneous cell deformation tensor F(τ) is assumed to
be invertible at all time τ , so that the cell never degenerates. The instantaneous
radius vector ri(τ) of the i-th particle is then given as

ri(τ) = F(τ) si(τ) (1 ≤ i ≤ N) ,

where si(τ) is the i-th instantaneous scaled radius vector and N is the number
of particles in the cell. The original proposal by Andersen is tantamount to the
hypothesis that F takes only spherical values: F(τ) = λ(τ) I , where the scalar
λ(τ)>0 is the instantaneous cell dilation and I the identity tensor.

Beyond the APR Lagrangian. Both si (i = 1, . . . , N) and F are now regarded as
independent variables, whose evolution is governed by an extended Lagrangian,
subtly introduced by Andersen and generalised by Parrinello and Rahman. The
APR Lagrangian stems from a shrewd, but unwarranted hypothesis: the kinetic



Material Theories 3057

decoupling of the cell DOFs from the particle DOFs. To quote Parrinello and
Rahman themselves [4]:

Whether such a Lagrangian is derivable from first principles is a
question for further study.

After nearly thirty years, this foundational study was still to be done, since MD
practitioners always considered the APR Lagrangian just as an expedient trick
for generating the desired particle statistics—but see the very recent contribution
from P. Podio-Guidugli [5].

On the contrary, we are now interested in the dynamics of the deforming com-
putational cell per se, wishing to identify it with the body element of a Cauchy
continuum. Seen from this perspective, APR-like Lagrangians embody the cou-
pling between atomistic and continuum DOFs. Through extensive MD simulations
using the standard “simplified” APR Lagrangian and some “corrected” versions
of it, we plan to inquire how neglected kinetic couplings affect the fluctuations of
the cell. Ultimately, we aim to construct atomistically informed approximations
to a continuum by means of an array of interacting APR-like cells, simulated in
parallel.
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Interface Evolution in a Random Obstacle Model

Nicolas Dirr

(joint work with J. Coville, S. Luckhaus, P. Dondl, M. Scheutzow)

We consider the following semi-linear PDE with random coefficients, the so-
called Random Obstacle Model:

∂tu(x, t, ω) = ∆u(x, t, ω) + f(x, u(x, t, ω), ω) + F on R
n(1)

u(x, 0) = 0(2)

This is supposed to capture some features of an interface moving through a
field of random obstacle: The graph of the function u : R

n × R
+ → R, i.e. the

set Σ(t) := {(x, u(t, x))} is the interface. The surface tension, captured by the
Laplacian in the equation, tries to keep the graph ”flat.” F is a constant driving
force, driving the interface though the obstacles.
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u

x

Figure 1. The random nonlinearity f(x, u, ω) describes the effect of
obstacles with random strength. The strength of the random obsta-
cles is indicated by the grey level, darker obstacles are stronger. f is
negative on the obstacles and zero else.

The random nonlinearity f(x, u, ω) : Rn × R× Ω → R models the field of soft
obstacles. Loosely speaking, f is negative on an obstacle with a strength which is
random, vanishes away from the obstacles. (See figure 1). The obstacles do not
change with time.

More precisely, the random nonlinearity is constructed in the follwing way: Let
φ be the mollification of a cylindrical obstacle of height and radius 0 < δ < 1/4
centered at zero, i.e. Φ smooth and nonnegative,

1[−(3δ)/4,(3δ)/4]×B(3δ)/4(0)(x, u) ≤ Φ(x, u) ≤ 1[−δ,δ]×Bδ(0)(x, u).

Then

f(x, u, ω) =
∑

(i,j)∈Zn×(Z+ 1
2 )
(E(ℓij)− ℓi,j(ω)(ω))φ(x− i, u− j).

Here the random obstacle strength (ℓi,j(ω))(i,j)∈Zn×(Z+ 1
2 )

are a family of inde-

pendent identically distributed exponential random variables. (i.e. there exists
λ0 > 0 such that P{ℓ(i, j)(ω) > r} = e−λ0r for r ≥ 0 ). In certain situations the
assumption on exponential tails of the strength can be modified. In general, the
precise effects of the tail of the obstacle strength distribution is a topic of ongoing
research. Note that f is not symmetric in this model and does not have average
zero.

In the physics literature, a parabolic semi-linear equation with random coeffi-
cients like (1) is sometimes called Quenched Edwards Wilkinson model.

It is motivated in the following way: A very basic model for an interface (phase
boundary, dislocation line in its slip plane etc) moving through an array of random
obstacles (e.g. impurities, other dislocation lines) in an over-damped limit (inertial
effects are neglected) is the gradient flow of the area functional plus a random
bulk term. If so-called inner variations are considered, the resulting evolution
law is forced mean curvature flow, where the forcing is random. For forced mean
curvature flow and applications, in particular in the case of periodic forcing, we
refer to [4], [2], [7]. If the interface is a graph and the gradient is sufficiently small,
the evolution by forced mean curvature flow for the graph can be approximated
heuristically by a semi-linear parabolic PDE as (1).
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Related problems have found considerable interest in the physics community,
see e.g. [9, 1].

Pinning or no pinning? The forcing F pushes the interface up, while the
obstacles (which are not uniformly bounded) try to keep the interface down. Which
effect wins?

For periodic f(x, u) this is completely understood (see [8]). Here we ask whether,
depending on F, limt→∞ u(x, t) is finite (pinning) or infinite (no pinning). (Note
that there are by construction no obstacles on {u = 0} so it is easy to see that
always ∂tu ≥ 0) By the comparison principle for (1), any global non-negative
stationary solution acts as barrier for (1,2), so it it is sufficient to consider existence
or non-existence of solutions for

(3)

{
0 = ∆u(x, ω) + f(x, u(x, ω), ω) + F on R

n

u(x) ≥ 0
.

We have the following results:
Theorem 1 [N.D., J. Coville, S. Luckhaus, see [3]] Let the space dimension

n = 1 and let u solve (3) on [−N,N ] with u(−N) = u(N) = 0. Then there exist
F0 > 0, C and K such that for F > F0

(4) P

(
u(x) ≥ KN −K|x| for all x ∈ [−N,N ]

)
≥ 1− Ce−

N
C

The result extends directly to higher dimensions if the model is a discrete version
of (1), extending the discretization procedure used in the one-dimensional proof
is work in progress. It says that nonnegative stationary solutions of the Dirichlet
problem grow like the domain size for F large, i.e. the random obstacles cannot
keep the solution down.

Theorem 1 implies the desired non-existence of a nonnegative stationary solu-
tion as corollary, as, by the comparison principle for the parabolic equation (1),
any global non-negative stationary solution has to remain above the solution of
the Dirichlet problems considered in Theorem 1:

Corollary 1 [n = 1] There is almost surely no global non-negative stationary
solution of (3).

Moreover we have a complementary result for existence of stationary solutions,
i.e. pinning of evolving interfaces.

Theorem 2 [N.D., P. Dondl, M. Scheutzow, see [5]] Let n = 1, 2. There ex.
0 < F1 such that for 0 < F < F1, (3) has almost surely a solution with E[u(x, ω)] =
c < ∞ for all x ∈ R

n.
The idea of the proof is to decompose Rn×R

+ in large cubes and to call a cube
open if it contains an obstacle with strength larger than an approriately chosen
cut-off. We would like to construct a Lipschitz-path w with Lipschitz constant
depending on h/L, which crosses only open cubes. Mapping the cubes to sites on
the integer lattice, this corresponds to asking whether the percolating cluster of
open sites contains a Lipschitz graph. This question is answered affirmatively by
a recent result on Lipschitz percolation, see [6], provided the probability of a cube
being open is sufficiently large.
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From w we are able to construct a function u ≥ 0 such that

0 ≥ ∆u(x, ω) + f(x, u(x, ω), ω) + F on R
n.
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Rolling Matter (space-filling packings)

Hans Herrmann

Since Apollonius of Perga we know that it is possible to fill space with circles
of very different sizes. The self-similarity of this construction generates a power-
law size distribution defining a fractal dimension. We will see that it is possible
to generate also space-filling packings of disks in such a way that they can all
roll sliplessly on each other. This is achieved using conformal transformations.
Discrete families of different topologies can be classified algebraically. Aided by
computers it has been possible to discover also a three dimensional packing that
fulfils this property. Only one topology is known up to now allowing however for an
infinity of rolling modes. Applications of these packings are models for turbulence
and for tectonic gouge in seismic gaps. One can also construct random variants,
study the energy spectrum and observe anomalous diffusion of tracer particles.

Figure 1 shows a 2d Apollonian packing. With S.S. Manna we calculated its
fractal dimension to be 1.3057 +/- 0.0001 as published in [14]. In 1989 I con-
structed a much larger family of such packings of different topology and fractal
dimension that also could serve as space-filling bearings as explained in detail in
[6]. In [5] we showed with Giorgio Mantica and Daniel Bessis that there exist only
two discrete families of different solutions for packings having only loops of four
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Figure 1

discs. The generalization to arbitrary even loop length was published with Gadi
Oron in [16].

Figure 2

Figure 2 shows a configuration in the strip geometry (goes to infinity in hori-
zontal direction) of the first family having loops of length 6 and the parameters
n=m=0. It is obtained by a conformal map that consists iteratively of an inversion
and a reflection. Only very specific radii for the original circles as well as for the
inversion circles are allowed which gives the condition for the discrete families of
possible solutions. Some artistic pictures were also made by Jos Leys. A popular
view also appeared in [18], in La Recherche of April 1991 and also as cover of
”Physik in unserer Zeit”.

The most prominent application of these bearings in Nature seems to be shear
bands as the one shown in Figure 3. Indeed rotations have been measured and
simulated within shear bands in several occasions. Famous shear bands on a
gigantic scale are faults between tectonic plates, like the San Andreas fault. They
have so called ”seismic gaps”. i.e. regions without earthquakes or measurable
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Figure 3

frictional heat. One way to measure rotations in geological faults is through the
remnant magnetization of the earth as explained in [17]. That roller bearings
do in fact spontaneously appear in shear bands has in fact also been observed in
simulations of packings of disks of similar size under uniaxial load as we showed in
a paper with Jan Ȧstrom and Jussi Timonen (see [3]). In [9] I combine this with
the existence of three-dimensional bearings as discussed below.

Recently with Reza Mahmoodi we made some progress in three dimensions. We
could construct five different topologies using conformal mappings as described in
[11]. Together with Nick Rivier we could prove that in one case which is bi-
chromatic (see Figure 4) it acts as a slip-free rolling, space-filling bearing as de-
scribed in the paper published in [12] and as you can see in a movie. Jos Leys has
produced beautiful pictures of our packings.

Figure 4

In Figure 4 one sees the new space-filling bearing based on an octahedron instead
of a tetrahedron as usually used in Apollonian packings. Its fractal dimension is
2.58 as compared to 2.47 for the classical case. See also [8], or [4] and [15].
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Figure 5

Figure 6

One up to now not really understood particularity of our conformal mapping
method to construct self-similar packings is that in some specific cases of the second
family of solutions the space is not completely filled but holes appear as seen in
Figure 5. These holes are surrounded by a powder of infinitely small disks that
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mechanically decouple the hole from the rest of the packing. Due to self similarity
one never finds just one hole but if there is one hole there are also infinitely many
smaller holes in the system.

As seen from Figure 6 it is also possible to construct random space-filling bear-
ings. There blue circles only touch grey ones and grey only blue ones. At some
places one might think that two blue do touch in the figure but in fact there is
a layer of very small grey particles in between. This configuration is obtained
numerically by placing one by one circles (or spheres) onto random positions into
the not yet occupied space and repositioning and growing them until an even loop
is created optimizing at the same time towards maximum filling (see [13]).

Figure 7

Finally I should mention that one can also study the network formed by the
connections between the centers of mass of an Apollonian packing. We call them
”Apollonian networks” (see Figure 7). They can be applied to porous media,
polydisperse packings, road networks or electrical supply systems and they have
interesting properties like being scale-free, ultrasmall world, Euclidean, matching
and space-filling (see [2]). In fact this network already forms part of Wolfram’s
Mathematica .

A calculation of coupled maps on such a network has recently been achieved with
Pedro Lind and Jason Gallas as can be seen in [10]. With Roberto Andrade we also
wrote the extensive paper [1] on the properties of the ferro- and antiferromagnetic
Ising model on the Apollonian network. All the links corresponding to this text
are accessible from: http://www.comphys.ethz.ch/hans/appo.html
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Mechanics and growth of tissues

Jean-Fraņcois Joanny

(joint work with M. Basan, J. Elgeti, F. Juelicher, J.Prost, J. Ranft, T. Risler)

Biological processes such as the growth of organs during development or the growth
of a cancerous tumor involve tissue growth in which cell division overtakes cell
death which is often due to apoptosis.

Research is this area has for a long time focused on genetic pathways that lead
to gene regulation or genetic switches. It has however been realized recently that
the mechanical properties of the tissue also plays an important role. The pattern
of gene expression in a tissue can depend on the local stress as shown for example
by perturbing the development of the fruit fly drosophila by applying external
mechanical perturbations [1]. Similarly, during tumor growth, gene expression is
coupled to the stress distribution inside the tumor and conversely the mechanical
and the growth properties of the tumor depend on the gene expression pattern.

There is therefore an important interest to study the mechanics and growth
of tissues. From a mechanical properties, a tissue is a complex system where
elastic deformations and flows are coupled to the growth process. Two different
approaches have been proposed. At the cell level, the tissue has been described
as a foam-like structure which is constantly remodeled by cell division and cell
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death [2]. The various phases obtained can be directly compared to observations
of tissues during development.

We use here a more macroscopic approach based on a continuum mechanics
which is valid at length scales larger than the cell size and at time scales longer
than the cell division or apoptosis times [3]. This requires a constitutive equation
for the tissue relating stress and deformation. Plant tissues are often considered
as elastic solids. We argue here that both during cancer growth and development
a tissue must be considered as a liquid or a visco-elastic fluid. Some tissues also
have a yield stress and be considered as a plastic material.

We have recently proposed that the homeostatic pressure which is the pressure
in the tissue in the steady state the cell division and death rates exactly balance
be an important characteristic of the tissue. It could for example be one of the
parameters giving information on the the invasiveness of the tissue. When two
tissues are competing for the same space, we have shown that the tissue with the
larger homeostatic pressure invades the tissue with the lower homeostatic pressure.
Several experiments are currently being built in our laboratory to make systematic
measurements of the homeostatic pressure.

An important feature of tissue growth is that cell division and cell death are
coupled to the local stress. In many instances the axis of cell division is imposed
by the principle axis of the stress acting on the cell. When this is taken into
account in a tissue, the internal stresses generated by cell division and cell death
relax the elastic stress in the tissue over a time scale which is proportional to
the cell division time. Therefore, at a a time scale which is larger than the cell
division or death time a tissue can be considered as a liquid with a viscosity or
the order of the product of the cell elastic modulus and the cell division time. An
important result is that close to the homeostatic state, not only the shear stress
relaxes but also the isotropic component of the stress which relaxes to the negative
of the homeostatic pressure. A tissue is thus a very unusual material which due to
cell division and cell death is infinitely compressible and therefore can have large
fluctuations. Examples of the liquid-like behavior of a tissue are given for the
competition between two tissues and for the stability of the membrane between
an epithelial tissue and a stroma.

An alternative way to study the mechanics and growth of tissues is to perform
numerical simulations. We have built a simulation scheme based on the simula-
tion method of liquids called ‘Dissipative particle dynamics’. We introduced in this
simulation scheme a very simple model for cell division and cell death. Although
the results are only preliminary, they show that tissues indeed have a liquid-like
behavior at timescales larger than the cell division time and they allow the calcula-
tion of the diffusion constant of a cell in the tissue. The diffusion constant increases
linearly with the cell division rate in agreement with our theoretical description.
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Active Matter: From Cells to Tissues

Frank Jülicher

One of the most fascinating features of living cells is their inherent dynamics. Dy-
namic cellular processes such as cell locomotion and cell division are driven on the
molecular scale by active force generation in the cell cytoskeleton. The prototype
for fore generation on the molecular scale are specialized motor molecules. Be-
cause of such active processes, the cytoskeleton becomes an active material which
on large scales can be described by hydrodynamic equations. These hydrody-
namic equations contain active terms describing for example active contributions
to stresses in the material. In addition, if filaments of the cytoskeleton align lo-
cally this defines a local polar order which evolves dynamically. Active stresses
become anisotropic if the material is polar. In that case spontaneous shear flows
can be generated which in turn reorient filament polarity. Such active materials
exhibit novel properties and are the basis to understand dynamics of cells but
also on larger scales dynamic flows in tissues. a particular model system is the
locomotion of cells on a solid substrate. This locomotion can be described as the
consequence of active stresses in an anisotropic film on active fluid with specific
boundary conditions describing local assembly and disassembly of filaments.

Mathematics of 2d Turbulence

Sergei Kuksin

For the purposes of this talk I assume that 2D turbulence is described by small-
viscosity 2D Navier-Stokes equations (NSE), perturbed by a random force:

u′
t − ν∆u + (u · ∇)u +∇p = η(t, x),

x ∈ Γ, div u = 0 ; 0 < ν ≤ 1.

Here u(t, x) ∈ R
2 – velocity, p(t, x) ∈ R – pressure, η(t, x) ∈ R

2 – random force. Γ
is either a compact Rieman surface; e.g., Γ = S2 or Γ = T

2 = {(x1, x2) | 0 ≤ x1 ≤
a, 0 ≤ x2 ≤ b}. Or Γ ⋐ R

2 and u |∂Γ= 0. For simplicity of notation assume
that Γ = T

2 or Γ ⋐ R
2. So (u · ∇)u = u1

∂
∂x1

u+ u2
∂

∂x2
u.

Remarks. 1) Another way to introduce randomness in the Navier-Stokes equations
would be through random initial data. For that model it is more difficult to get
physically interesting results. I will not discuss it.
2) The random force in Navier-Stokes equations may be of the form

〈 deterministic force 〉 + 〈 small random perturbation 〉.
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Applying to the equation the Leray projection Π (see [1] or any mathematical
book on NSE) and using that Π∇p = 0 and Πu = u, we write the Navier-Stokes
equations as

u′
t − νAu+B(u) = Π η(t) =: η, (NSE)

where Au = Π∆u and B(u) = Π(u · ∇)u.
Let e1, e2, . . . be the basis of the space of divergence-free vector fields, satisfying

the boundary conditions, formed by eigen-functions of A, Aej = λjej ∀ j ≥ 1 (if
Γ = T

2, this the usual sin/cos basis).
The force η has the form η(t, x) =

∑
j bjβj(t)ej(x), where the constants bj ≥

0 fast decay to zero and βω
j (t) = ∂

∂twj(t) + fj , where f1, f2, . . . are constants

and w1(t), w2(t), . . . are standard independent Wiener processes (we can handle
another class of random forces, called random kicks. See in [1].

A solution u(t) is a random Markov process in a function space. We are inter-
ested NOT in individual trajectories t 7→ uω(t), but in distribution (=the law) of
a solution u(t). This is a probability measure µt in the function space, defined
as follows: µt(Q) = 〈probability that (u(t) ∈ Q)〉. We have µt = S∗

t (µ0), where
{S∗

t } is a semi-group of linear operators in the space of measures. The main task
is to study qualitative properties of distributions of solutions, i.e. of the measures
µt, t ≥ 0.

A measure µ in the function space is called a stationary measure for (NSE)
if S∗

t µ ≡ µ. If u(t) is a solution such that the law of u(0) = µ, then the law of
u(t) ≡ µ. It is called a stationary solution. Existence of a stationary measure
is an easy fact (it follows from compactness arguments). But its uniqueness is
complicated.

Condition (C). bj > 0 for each j ≤ N , where N = N(B0, ν,Γ).
For example, (C) holds if bj 6= 0 for all j.

THEOREM 1 (see in [1]). If (C) holds, then:
1) there exists a unique stationary measure µ.
2) For any solution u(t) of (NSE) the law µ(t) of this solution converges to µ
exponentially fast (with respect to one of the ‘usual’ distances in the space of
measures e.g., Prokhorov’s or Wasserstein’s).
3) If force η(t, x) is smooth in x, then µ is supported by smooth functions.

So, “statistical properties of solutions for t ≫ 1 are universal and are described
by a unique stationary measure µ”.

Theorem 1 has important consequences (see [1]):
THEOREM 2 (ergodicity). If (C) holds, then for any solution u(t) of (NSE) and

any ‘good’ f(u) we have 1
T

∫ T

0
f(u(s)) ds → 〈µ, f〉, almost surely.

That is, “for a turbulent flow time-average equals ensemble-average”.

THEOREM 3 (CLT). Let 〈µ, f〉 = 0. Then the law of 1√
T

∫ T

0 f(u(s)) ds con-

verges to a Gaussian measure N(0, σ), for some σ ≥ 0.

So “on large time-scales a turbulent flow is Gaussian”.
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Now let Γ = T
2. 2d turbulence is described by solutions of (NSE) with ν ≪ 1.

Consider the equation with small ν and with the force, multiplied by some degree
of ν:

u′
t − νAu+B(u) = νaη, a ∈ R.

Solutions of this equation remain ∼ 1 as ν → 0 if and only if a = 1
2 . Accordingly,

below we discuss equation

u′
t − νAu+B(u) =

√
ν η, 0 < ν ≤ 1. (NSEν)

Let (C) holds. Then eq. (NSEν) has a unique stationary measure µν . Let uν(t, x)
be the corresponding stationary solution. Assume that the force η is stationary in
x. Then uν(t, x) is stationary both in t and in x. Also, Reuν ∼ ν−1.

Task: study µν and uν as ν → 0.
Theorem 4 (Eulerian Limit), see [1]. Every sequence ν′j → 0 has a subsequence
νj → 0 such that the law of the process uνj (t, x) converges to the law of a process
U(t, x). This limiting process U is stationary in t and x. Moreover,
a) every its trajectory U(t, x) as a function of x belongs to the Sobolev space H2

and satisfies the free Euler equation

u̇+ (u · ∇)u+∇p = 0, div u = 0. (Eu)

b) The energy E(U) = 1
2‖U(t)‖2 = 1

2

∫
|U(t, x)|2 dx is time-independent. If g(·) is

a bounded continuous function, then
∫
g(rot U(t, x)) dx also is time-independent.

c) the law µ0 of U(t) equals limµνj and is an invariant measure for (Eu).
d) The measure µ0 is such that the following integrals are finite and non-zero:∫
‖∇u‖2 µ0(du),

∫
‖∆u‖2 µ0(du),

∫
eσ‖∇u‖2

µ0(du), for a suitable σ > 0.

µ0 and U(·) are called the Eulerian limit for eq. (NSEν). They describe the
space-periodic 2D turbulence since they describe solutions of (NSE) with ν ≪ 1
and Re≫ 1.

Measure µ0 is supported by Sobolev space H2. If we write

u(x) =
∑

s∈Z2

us
s⊥

|s| e
is·x, Es =

∫
|us|2µ0(du), s ∈ Z

2.

then
∑

s∈Z2 |s|2Es =
∫
‖u‖2H2 µ0(du) < ∞. I cannot prove a better estimate.

(Numerics indicate that the relation above gives the right level of decay of Es and∑
|s|2+εEs = ∞ for ε > 0).
Now consider 3d NSE in the thin domain (x1, x2, x3) ∈ Γ × (0, ε), perturbed

by a random force. Assume free boundary conditions in the thin direction x3:
u3 |x3=0, ε = 0, ∂3u1,2 |x3=0, ε = 0. Then the law of (u1, u2)(t, x1, x2, x3) con-
verges, as ε → 0, to the law of a solution of randomly forced 2d NSE in Γ and we
have

E 〈normalised energy of 3d flow〉 → E 〈 energy of 2d flow〉 (∗)
(so ε−1

∫
|u3|2 dx → 0). It seems that (in non-trivial situations) (∗) does not hold

for enstrophy, and that ε−1
∫
|∇u3|2 dx does not converge to zero.
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So randomly forced 2d NSE describe a class of anisotropic 3d turbulence. For
these results for randomly forced 3d NSE see [2, 3]. Cf. well known related results
for deterministic 3d NSE in thin domains due to G. Raugel, G. Sell and many
people after them.
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On the relation of morphogenesis and non-Euclidean elasticity: scaling
laws and thin film models

Marta Lewicka

The purpose of this note is to report on the recent development concerning thin film
models for structures exhibiting residual stress at free equilibria. This phenomenon
has been observed in different contexts: growing leaves, torn plastic sheets and
specifically engineered polymer gels [7]. The study of wavy patterns in these
contexts suggest that the sheet endeavors to reach a non-attainable equilibrium
and hence assumes a non-zero stress rest configuration.

1. Elastic energy of a growing tissue. Consider a sequence of thin 3d films
Ωh = Ω × (−h/2, h/2), with an open, bounded and simply connected mid-plate
Ω ⊂ R

2. Each Ωh undergoes a growth process, described instanteneously by a
given smooth tensor ah = [ahij ] with the property: det ah(x) > 0. According to the

formalism in [15], the multiplicative decomposition ∇u = Fah is postulated for the
gradient of a deformation u : Ωh → R

3. The tensor F = ∇u(ah)−1 corresponds to
the elastic part of u, and accounts for the reorganization of Ωh in response to the
growth tensor ah. The elastic energy of u depends hence only on F :

(1) IhW (u) =
1

h

∫

Ωh

W (∇u(ah)−1) dx, ∀u ∈ W 1,2(Ωh,R3).

The energy density W : R3×3 −→ R+ is assumed to be C2 in a neighborhood of
SO(3), and to satisfy normalization, frame indifference and nondegeneracy:

∃c > 0 ∀F ∈ R
3×3 ∀R ∈ SO(3) W (R) = 0, W (RF ) = W (F )

W (F ) ≥ c dist2(F, SO(3)).
(2)

2. Non-Euclidean elasticity. We now compare the above approach with the
’target metric’ formalism [1, 12]. On each Ωh we assume to be given a smooth
Riemannian metric gh = [ghij ]. A deformation u of Ωh is an orientation preserving

realization of gh, when (∇u)T∇u = gh and det∇u > 0, or equivalently:

(3) ∇u(x) ∈ Fh(x) =
{
R
√
gh(x); R ∈ SO(3)

}
a.e. in Ωh.
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It is hence instructive to study the following energy, bounding from below IhW (u):

(4) Ĩhdist(u) =
1

h

∫

Ωh

dist2(∇u(x),Fh(x)) dx ∀u ∈ W 1,2(Ωh,R3),

and measuring the average pointwise deviation of u from orientation preserving
realizations of gh. Note that Ĩhdist is comparable in magnitude with IhW , for W =

dist2(·, SO(3)). Indeed, the intrinsic metric of the material is transformed by ah to
the target metric gh = (ah)Tah and, for isotropic W , only the symmetric positive

definite part of ah given by
√
gh plays the role in determining the deformed shape.

We also consider a more general functional ĨhW =
∫
W (x,∇u(x)) with the in-

homogeneous W satisfying frame invariance, normalisation and quadratic growth
from below, as in (2) with respect to the energy well Fh given in (3).

3. Residual stress. Note that one could define the energy as the difference
between the pull-back metric of a deformation u and the given metric: Ihstr(u) =∫
|(∇u)T∇u − gh|2 dx. However, such ’stretching’ functional is not appropriate

from the variational point of view, because there always exists u ∈ W 1,∞ such
that Ihstr(u) = 0. Further, if the Riemann curvature tensor Rh associated to gh

does not vanish identically, say Rh
ijkl(x) 6= 0, then u has a ’folding structure’ [5];

it cannot be orientation preserving (or reversing) in any open neighborhood of x.

As proven in [12], the functionals IhW , ĨhW and Ĩhdist have strictly positive infima
for non-flat gh, which points to the existence of non-zero stress at free equilibria
(in the absence of external forces or boundary conditions):

Rh 6≡ 0 ⇔ inf
{
Ĩhdist(u); u ∈ W 1,2(Ωh,R3)

}
> 0.

4. The prestrained Kirchhoff model. Several interesting questions arise
in the study of the proposed energy functionals. A first one is to determine the
scaling of the infimum energy in terms of the vanishing thickness h → 0. Another
is to find the limiting zero-thickness theories under obtained scaling laws.

In [12], we considered a first case where gh is given by a tangential Riemannian
metric [gαβ] on Ω, and is independent of the thickness variable. Consequently, if
[gαβ ] has non-zero Gaussian curvature κ[gαβ ], then each Rh 6≡ 0. We proved that:

[gαβ] has an isometric immersion y ∈ W 2,2(Ω,R3) ⇔ inf Ĩhdist ≤ Ch2,

It also follows that κ[gαβ ] 6≡ 0 iff h−2 inf Ĩhdist ≥ c > 0. Existence of isometric
immersions is a longstanding problem in differential geometry, depending heavily
on the regularity [6]. We deal with W 2,2 immersions not studied previously.

More precisely, we prove that any sequence of deformations uh with ĨhW (uh) ≤
Ch2, converges to an isometric immersion y as above. Conversly, every y can be
recovered as a limit of uh whose energy scales like h2. The Γ-limit of the energies
is a curvature functional on the space of all W 2,2 realizations y of [gαβ] in R

3:

1

h2
ĨhW

Γ−→ 1

24

∫

Ω

Q2(x
′)
(√

[gαβ ]
−1

(∇y)T∇~n
)
dx′,
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Here ~n is the unit normal to the surface y(Ω), while Q2(x
′) are the quadratic

forms, nondegenerate and positive definite on the symmetric 2× 2 tensors, which
can be calculated explicitely (see [12]) from ∇2W (x′,

√
[gαβ ]).

5. Rigidity estimate. As a ingredient of proofs, we give a generalization of
[3] to the non-Euclidean setting. For all u ∈ W 1,2(U ,Rn) there exists Q ∈ R

n×n:
∫

U
|∇u(x)−Q|2 dx ≤ C

(∫

U
dist2(∇u,F(x)) dx+ ‖∇g‖2L∞(diam U)2|U|

)
,

where F is the energy well as in (3) relative to given metric g on U . The constant
C depends on ‖g‖L∞, ‖g−1‖L∞ , and on U , uniformly for a family of domains which
are bilipschitz equivalent with controlled Lipschitz constants.

6. The prestrained von Kármán model. Towards studying the dynamical
growth problem, in [8] we considered the growth tensor of the form:

ah(x′, x3) = Id + h2ǫg(x
′) + hx3γg(x

′),

with given matrix fields ǫg, γg : Ω → R
3×3. We proved that inf IhW ≤ Ch4, while

the lower bound h−4 inf IhW ≥ c > 0 is equivalent to:

curl((γg)tan) 6≡ 0 or 2curlT curl(ǫg)tan + det(γg)tan 6≡ 0,

which are the (negated) linearized Gauss-Codazzi equations corresponding to the
metric I = Id+ h2(ǫg)tan and the second fundamental form II = 1

2h(γg)tan on Ω.
The Γ-limit of the rescaled energies is now expresed in terms of the out-of-plane

displacement v ∈ W 2,2(Ω,R) and in-plane displacement w ∈ W 1,2(Ω,R2):

1

h4
IhW

Γ−→ 1

24

∫

Ω

Q2

(
∇2v+

1

2
(γg)tan

)
+

1

2

∫

Ω

Q2

(
sym∇w+

1

2
∇v⊗∇v− 1

2
(ǫg)tan

)
.

The two terms above measure: the first order in h change of II, and the second
order change in I, under the deformation id + hve3 + h2w of Ω. Moreover, any
sequence of deformations uh with IhW (uh) ≤ Ch4 is, asymptotically, of this form.

For W isotropic, the Euler-Lagrange equations of the limiting functional are
equivalent, under a change of variables which replaces the in-plane displacement
w by the Airy stress potential Φ, the system proposed in [14]:

(5) ∆2Φ = −S(KG + λg), B∆2v = [v,Φ]−BΩg,

with S the Young’s modulus, KG the Gaussian curvature, B the bending stiffness,
and ν = λ/(2(λ + µ)) the Poisson ratio given in terms of the Lamé constants

λ and µ. The corrections due to the prestrain are: λg = curlT curl (ǫg)2×2 and

Ωg = divT div ((γg)2×2 + ν cof (κg)2×2). When Q2 = Id, (5) has the form:

∆2Φ = − det∇2v−1

2
curlT curl(ǫg)tan, ∆2v = 12 cof∇2Φ : ∇2v−1

2
divTdiv(γg)tan.

7. A hierarchy of scalings. We expect it should be possible to rigorously
derive a hierarchy of prestrained limiting theories, differentiated by the embed-
dability properties of the target metrics. This is in the same spirit as the different
scalings of external forces lead to a hierarchy of nonlinear elastic plate theories
recently displayed by Friesecke, James and Müller [4]. For shells, that are thin
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films with mid-surface or arbitrary (non-flat) geometry, an infinite hierarchy of
models was proposed, by means of asymptotic expansion in [13], and it remains in
agreement with all the rigorously obtained results [2, 9, 10, 11].
Acknowledgements. Supported by grants NSF DMS-0707275 and DMS-0846996.
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Vanishing-viscosity solutions for rate-independent systems

Alexander Mielke

In these notes we give an overview of the recently developed theory for rate-
independent systems. Such systems are used to model hysteresis, dry friction,
elastoplasticity, magnetism, and phase transformation, and they are characterized
by the fact that the changes of the state are driven solely by changes of the loading.

General energy-driven systems, also called generalized gradient systems, are
characterized by a triple (Z, I,R) where the Banach space Z is the state space
and I : [0, T ] × Z → R∞ := R ∪ {∞} is the energy functional. The dissipation
potential R : Z×Z → [0,∞] allows us to write the evolution equation in the form

(1) 0 ∈ ∂żR(z, ż) + ∂zI(t, z) ⊂ Z∗,
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where ∂z denotes a suitable subgradient of I(t, ·), while ∂żR(z, ·) denotes the
convex subdifferential of R(z, ·). The generalized gradient system (Z, I,R) is rate
independent if R(z, ·) is positively homogeneous of degree 1, since this implies
∂vR(z, αv) = ∂vR(z, v) for all α > 0. We then call (Z, I,R) a rate-independent
system, shortly RIS. Hence, system (1) is necessarily nonsmooth. In fact, the
convex subdifferential ∂vR(z, ·) : Z ⇉ Z∗ is not continuous and set-valued.

However, the main difference to the usually studied generalized gradient flows is
that R(z, ·) has at most linear growth, and we cannot guarantee continuity of the
solutions z : [0, T ] → Z. Since we can guarantee the absolute continuity needed
in (1) only under strong convexity assumptions (cf. [MiR07], we mainly discuss
the question, how the strong differential form should be weakened to allow for
solutions with jumps. For full details we refer to the survey [Mie09] or the papers
[MRS09b, MRS09a, MiZ09].

To motivate the main structures of the different solution concepts for RIS, we
start from the Fenchel equivalence (R∗(z, ·) is the Legendre transform of R(z, ·))

η ∈ ∂vR(z, v) ⇐⇒ v ∈ ∂ηR∗(z, η) ⇐⇒ R(z, v) +R∗(z, η) ≤ 〈η, v〉.

While the statement on the left-hand side of this equivalence is a force balance,
the statement on the right-hand side is given in terms of energy rates. Using
−η = ξ(t) ∈ ∂zI(t, z(t)) and a chain rule, we find that (1) is equivalent to the
scalar, upper energetic inequality

(2)
I(T, z(T )) +

∫ T

0
R(z(t), ż(t)) +R∗(z(t),−ξ(t)) dt

≤ I(0, z(0)) +
∫ T

0
∂tI(t, z(t)) dt.

The particularity of RIS is that R∗(z,−ξ) only takes the two values 0 and ∞, viz.
R∗(z,−ξ) = 0 if and only if 0 ∈ ∂vR(z, 0) + ξ. Thus, the energetic inequality (2)
can be rewritten in terms of two conditions

local stability 0 ∈ ∂vR(z(t), 0) + ∂zI(T, z(t)) a.e. in [0, T ],(3a)

energy inequality
I(T, z(T )) + DissR(z, [0, T ])

≤ I(0, z(0)) +
∫ T

0 ∂tI(t, z(t)) dt,
(3b)

where DissR(z, [r, t]) =
∫ t

r
R(z(s), ż(s)) ds is the energy dissipated in [r, t].

The local stability condition is a purely static concept and does not involve any
time dependence, which shows that RIS are very close to static systems. Relation
(3b) is a simple scalar energy inequality, which in fact should hold as an identity
and also for all times t ∈ [0, T ] and not just for t = T . In all the different solution
concepts discussed below we have these two different principles, namely (i) a static
stability condition and (ii) an energy inequality. However, a crucial point in the
definitions of solutions to RIS is always that the stability condition and the energy
inequality interact in such a way that the stability condition implies a lower energy
estimate on all subintervals of [0, T ], which together with the upper energy estimate
(3b) provides energy balance on all subintervals.
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Local solutions were introduced in [ToZ09] and are characterized by (3a) and
the upper energy estimate (3b) but for each subinterval [r, t] ⊂ [0, T ]. This notion
is still quite general and all solutions consider here fall into this class.

Energetic solutions (also called irreversible quasistatic evolutions in [DaT02,
DFT05], and surveyed in [Mie05]) ask for an energy equality (E), where the dis-
sipation is formulated in terms of a dissipation distance D : Z × Z → [0,∞].
Moreover, the local stability (3a) is replaced by a global stability conditions (S),
namely I(t, z(t)) ≤ I(t, z̃)+D(z(t), z̃) for all z̃ ∈ Z.

Parametrized solutions are obtained in the vanishing-viscosity limit in

(4) 0 ∈ ∂żR(zε, żε) + εVżε + ∂zI(t, zε) ⊂ Z∗,

after an arclength parametrization. Taking the limit ε → 0 directly in zε : [0, T ] →
Z is difficult because of the formation of jumps, i.e. fast transitions on time inter-
vals of length 1/ε. We use the arclength parametrization ζε = (τε, Zε) : [0, S

ε] →
R × Z such that τ ′ε(s) + ‖Z ′

ε(s)‖V = 1 and zε(τε(s)) = Zε(s) a.e. The limit
ζ = (t, Z) for ε → 0 is called parametrized solution and satisfies the limit problem

0 ∈ ∂ŻR(Z(s), Z ′(s)) + ∂C(Z ′(s)) + ∂ZI(τ(s), Z(s)), τ ′(s) + ‖Z ′(s)‖V = 1,

where C(v) = 0 for ‖v‖V = 〈Vv, v〉1/2 ≤ 1 and ∞ otherwise. Existence results for
parabolic situations are established in [MiZ09].

BV solutions z̃ : [0, T ] → Z are in principle defined as projections of the
parametrized solutions, i.e. there exists a parametrized solution ζ = (τ, Z) such
that (t, z̃(t)) = (τ(s(t)), Z(s(t)) for some monotone s : [0, T ] → [0, S]. However, it
is important to have an independent characterization which can be obtained via
the vanishing-viscosity contact potential

p(v, ξ) := inf
{
Rε(v) +R∗

ε(ξ)
∣∣ ε > 0

}
with Rε(v) = Ψ(v) +

ε

2
〈Vv, v〉.

This allows us to define a supplemented dissipation distance via

∆(t, z0, z1) := inf
{ ∫ 1

r=0 p(ẏ(r),−DI(t, y(r))) dr
∣∣

y ∈ W1,1([0, 1];Z), y(0) = z0, y(1) = z1
}
.

Note that ∆(t, z0, z1) ≥ Ψ(z1−z0) ≥ ‖z1−z0‖X for some Banach space X.
A function z̃ : [0, T ] → Z is called a BV solution of the RIS (Z, I,Ψ,V), if

z̃ ∈ BV([0, T ];X) ∩ L∞([0, T ];Z) and the following holds:

local stability ∀ t ∈ C(z) : 0 ∈ ∂Ψ(0) + ∂zI(t, z);(5a)

energy balance(5b)
∀ t∈[0,T ]: I(t, z(t))+Dissp,I(z, [0, t]) = I(0, z(0))+

∫ t

0
∂τI(τ, z(τ)) dτ,

where C(z̃) ⊂ [0, T ] denotes the continuity points of z̃ : [0, T ] → X and Dissp,I
is a special variation of defined via Ψ at continuity points and ∆ at jump points,
see [MRS09a, Mie09]. These works contain first convergence results of the viscous
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approximations zε towards BV solutions. Moreover, for viscous time-incremental
problems of the form

zε,δk ∈ Argmin I(kδ, z) + δRε

(1
δ
(z−zε,δk−1)

)
,

where δ > 0 is the time-step, it is shown that the piecewise affine interpolants
ẑε,δ : [0, T ] → Z converge to BV solutions if ε, δ, and δ/ε tend to 0. If instead,
ε/δ goes to 0, then the limits are energetic solutions.
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Rossi, Giuseppe Savaré, and Sergey Zelik.
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On a mesoscopic many-body Hamiltonian describing elastic shears and
dislocations

Luca Mugnai

(joint work with Stephan Luckhaus)

We assume that low-energy states in a mono-atomic crystalline material are
given by approximately linear deformations of a ground state lattice (here a simple
Bravais-lattice LG := {Gz : z ∈ Z

d}, for some G ∈ GL+(d,R)). Hence we
construct a “mesoscopic” many-body interaction potential acting on finite systems
of particles (a Hamiltonian in the language of statistical mechanics and of this
report) that is able to describe deformed crystals with defects. More precisley the
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Hamiltonian we present measures the shear and the deviations from the linearly
sheared ground-state lattice in a mesoscopic interaction range.

In order to describe the construction of the Hamiltonian and its relation to
measurable quantities, we need to introduce some notation. With Ω we denote an
open, connected, bounded, subset of Rd (d ≤ 3), and with X := {xi}i∈I ⊂ Ω we
denote a finite subset whose elements represent the positions of the particles of
a given configuration. We define the Hamiltonian in two steps. In the first step
we define an “energy density” which depends on: the point x ∈ Ω in the Eulerian
space; an auxiliary variable represented by an affine deformation; and the particle
configuration X in a finite neighborhood (range) of x of size λ << L (L > 0
being the diameter of Ω). In the second step we integrate the “energy-density”
over the Eulerian coordinate x ∈ Ω and minimize it with respect to the affine
deformation. As a result we obtain a Hamiltonian which depends only on the
particle configuration and, in our case, is invariant with respect to rigid motions
and permutations acting on X .

Let us describe in more detail how the Hamiltonian is constructed. For a point
x ∈ Ω, an affine map (A, τ) ∈ GL+(d,R)×R

d and the finite particle configuration
X , our “energy-density” is given by the sum of three terms:

(i) The first term is obtained assignin a value to the linearly deformed ground-
state lattice L(A) := {Az : z ∈ Z

d};
(ii) The second term is obtained assignin an excess-energy for each individual

particle xi ∈ X through a periodic potential which has the periodicity of
the lattice Lx(A, τ) := {A(z− τ)+x : z ∈ Z

d}, and which can be thought
as a one-particle potential in an otherwise periodic lattice, multiplied with
a cut-off function of finite mass to ensure a finite interaction range;

(iii) The third and last term penalizes the presence of “vacancies” measuring
the difference between the determinant of the inverse of the deformation
A and the empirical density of a point.

The analytical expression of the term described in (i) is given by a function F ∈
C2(GL+(d,R), [0,+∞)) such that

• F (A) ≥ 0 for every A ∈ GL+(d,R);
• F is frame-indifferent, that is F (RA) = F (A) for every rotation R acting
on R

d;
• F is invaraint with respect to (positive) changes of the lattice-basis of
L(A), that is F (A) = F (AB) for every B ∈ Z

d×d such that detB = 1;
• the function F takes its minum on the ground-state lattice LG. That is

{F = 0} = {G̃ ∈ GL+(d,R) : L(G̃) = L(G)}.
The analytical expression of the second term, the one described in (ii) above, is

1

λd

∑

xi∈I

[
W

(
xi, Lx(A, τ)

)
− ϑ0

]
ϕλ,x(xi),

where: for fixed x ∈ Ω and (A, τ) ∈ GL+(d,R) × R
d, the function W : Rd ×

GL+(d,R) × R
d → [0,+∞) behaves similarly to the squared-distance from the
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lattice Lx(A, τ); ϑ0 > 0 is a positive constant; and ϕλ,x(·) ∈ C∞(Rd, [0, 1]) is a
cut-off function supported in the ball of radius 2λ centered at x, with finite mass
independent of x. The last term, corresponding to (iii), is given by

ϑ1

( 1

detA
− 1

Cϕ λd

∑

xi∈X

ϕλ,x(xi)
)
,

where ϑ1 > 0 is a constant, and Cϕ is a renormalizing factor depending on the
cut-off function ϕλ,x. Finally we define the energy density at a point x, depending
still on the auxiliary variable represented by the affine deformation A = (A, τ) ∈
GL+(d,R)× R

d, as follows

hλ(x,A, X ) :=F (A) +
1

λd

∑

xi∈I

[
W

(
xi, Lx(A, τ)

)
− ϑ0

]
ϕλ,x(xi)

+ϑ1

( 1

detA
− 1

Cϕ λd

∑

xi∈X

ϕλ,x(xi)
)
.

Note that the third term can be incorporated in the first two, but its meaning
is the cost of a vacancy. As we already said W (·,Lx(A, τ)) has the period of the
affinely deformed ground-state lattice Lx(A, τ). The meaning of −ϑ0 is that of the
energy per particle in the ground-state, D2

yyW (0,Lx(A, τ)) is the quadratic-form
describing independent deviations of particles from the lattice position, and F (A)
the energy-cost of a linear deformation of the ground-state lattice. Eventually we
define the Hamiltonian

Hλ(X ,Ω) :=

∫

Ω

[
inf

A∈GL+(d,R)×Rd
hλ(x,A, X )

]
dx.

Minimization of hλ(x,A, X ) with respect to A is approximately the same as iden-
tifying the optimally fitted lattice, and then calculating its energy F (A) plus the
cost of the deviation from this lattice. As a consequence we deduce that the
Hamiltonian can give a “realistic” picture only for low energy states.

In fact the results we obtained in [5] contribute to the descriptions of low energy
states. More precisely we consider low-energy configurations with an additional
hard-core constraint, and an uniform lower bound on the empirical density. The
result we are able to prove is that low-energy configurations are characterised by a
large set of low energy-density whose connected components we call “grains”. On
each open, simply connected subset U of a grain we show the existence of a family
of maps AB = (AB , τB) ∈ C1(U, GL+(d,R) × R

d) indexed by B ∈ GL+(d,Z) × Z
d

(the set of affine maps leaving a simple Bravais-lattice invariant) with the following
properties. For every x ∈ U we have

hλ(x,AB (x), X ) = inf
A∈GL+(d,R)×Rd

hλ(x,A, X ).

Moreover

λ‖∇AB(·)‖L∞(U) + ‖∇τB(·)−A−1
B

(·)‖L∞(U) ≤
CB

∇
λ

,
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where CB

∇ > 0 is a constant which is proportional to the “small” value of
hλ(x,AB (x), X ). Moreover we can think of the shift part of the affine deforma-
tion τB as a transformation from Eulerian to Lagrangian coordinates, while we
can think of its inverse as the (local) deformation which is defined only up to the
period of the lattice (e.g. the flat torus). If a grain is not simply connected it can
happen that going around a closed curve one ends up with a vector in the lattice
corresponding to a “jump” in τB . In this case we say that the loop wraps around
a dislocation and we call the lattice-vector the Burgers vector associated with the
dislocation.

If one wants to be very precise in algebraic terms, in this theory a dislocation
structure (in a grain) is a homeomorphism from the homothopy group of the grain
into GL+(d,Z)× Z

d, only it turns out that a nontrivial component in GL+(d, Z)
is much more costly in energy than one in Z

d (the Burgers vector).
Note that much of the final description is very similar to the one given in a

rational mechanics context by Kondo [3] and Kröner [4] (see also [2]). However our
purpose is to make the connection with a Hamiltonian depending only on particle
configurations. In the end this should be a starting point for a non-equilibrium
statistical mechanics theory.
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Thermodynamics and evolutionary genetics

Ingo Müller

Thermodynamics and evolutionary genetics have something in common. Thus the
randomness of mutation of cells may be likened to the random thermal fluctuations
in a gas. And the probabilistic nature of entropy in statistical thermodynamics can
be carried over to a population of haploid and diploid cells without any conceptual
change. The energetic potential wells, in which the atoms of a liquid are caught,
correspond in genetics – to selective advantages for some phenotype over others.
Thus the eventual stable state in a population comes about as a compromise in
the universal competition between entropy and energy.

A population is discussed in which energetically equivalent alleles A and a are
present. They undergo mutations of the type A ↔ a and their entropy may be
calculated as an entropy of mixing, so that without selection natural selection
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or selection by a breeder the tend to an equi-distribution. If there is selection,
it may be that cells of type a have an evolutionary advantage, or it may be that
both types, A or a have an evolutionary advantage, if they are rare. In the
latter case there is the possibility of a phase transition. In both cases there is a
competition between mutation and selection, which leads to a maximum of entropy
under the constraint of the selective advantage. Equilibrium fluctuations in the
distribution of cells provide a possibility of survival of the population under a
change of environment.
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Twisting An Open Knotted Elastic Rod

Sébastien Neukirch

(joint work with Basile Audoly, Nicolas Clauvelin)

Figure 1. An open trefoil knot tied on an elastic filament. As
the pulling tension is increased the loop radius decreases. Self-
contact takes place in the braid region.

Knots are found in everyday life, shoe lacing being probably the most common
example. They are also essential in a number of activities such as climbing and
sailing. In science, knots have long been studied in the field of mathematics, the
main motivation being to propose a topological classification of the various knot
types, see e.g. the review by [1]. Recently, there has been an upsurge of interest in
knots in the biological context: knots form spontaneously in many long polymers
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chains such as DNA [2] or proteins, and have been tied on biological filaments
[3]. Knotted filaments have a lower resistance to tension than unknotted ones and
break preferably at the knot [5, 4]. Despite a wide range of potential applications,
the mechanics of knots is little advanced. The present paper is an attempt to
approach knots from a mechanical perspective by using a well-established model
of thin elastic rods. To go beyond a purely geometrical description of knots, it is
natural to formulate the problem in the framework of the theory of elasticity.

In the present work, we study the limit of loose knots, when the total contour
length captured in the knot is much larger than the radius of the filament. In
this limit, it is possible to use a Cosserat type model and describe the rod as an
inextensible curve embedded with a material frame, obeying Kirchhoff equations;
as we show, the equilibria of open knots can be solved analytically in this limit.
Self-contact in continuummechanics, and in the theory of elastic rods in particular,
leads to problems that are both interesting and difficult. This comes from the
fact that the set of points in contact is not known in advance — in fact, not
even the topology of this set is known. This paper builds up on prior work by
[6], who characterizes the smoothness of the contact force in equilibria of elastic
rods, and by [7], who write down the Kirchhoff equations for rods in self-contact
explicitly, including the unknown contact force. These equations have been solved
by numerical continuation in specific geometries by [7, 8, 9]. In these papers, the
authors simultaneously solve for the nonlinear Kirchhoff equations and for the
unknown contact forces, but not for the contact topology which is postulated.

The mechanical problem considered here is the following. We solve the Kirch-
hoff equations for an infinite rod, with clamped boundary conditions at both end-
points at infinity. The rod is inextensible, unshearable and its weight is neglected;
bending and twisting moments are related to curvature and twist by a linear con-
stitutive law but geometric non-linearities are retained. Topology of the centerline
is a prescribed knot shape (we consider trefoil and cinquefoil knots). This knot-
ted shape is enforced by self-contact forces, which are taken into account in the
equations of equilibrium. The rod is loaded under combined tension force T and
twisting moment U at its endpoints; this loading is captured by a single dimension-
less parameter, U . We derive a family of solutions of the boundary-value problem
depending on the loading parameter U , which is asymptotically valid for small ǫ.
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Stripe Patterns and the Eikonal Equation

Mark A. Peletier

(joint work with Marco Veneroni)

1. Introduction

In this note we describe the behaviour of a stripe-forming system that arises in
the modelling of block copolymers. Part of the analysis concerns a new formulation
of the eikonal equation in terms of projections. For precise statements of the
results, complete proofs, and references, we refer to [5] and [4].

1.1. Diblock Copolymers. In [5] we study the formation of stripe-like patterns
in a specific two-dimensional system that arises in the modelling of AB diblock
copolymers. This system is defined by an energy Gε that admits locally minimizing
stripe patterns of width O(ε), and the aim is to study the properties of the system
as ε → 0. Below we will show that any sequence uε of patterns for which Gε(uε) is
bounded becomes stripe-like; in addition, the stripes become increasingly straight
and uniform in width.

The energy functional is

(1) Fε(u) =





ε

∫

Ω

|∇u|+ 1

ε
d(u, 1− u), if u ∈ K,

∞ otherwise.

Here Ω is an open, connected, and bounded subset of R2 with C2 boundary, d is
the Monge-Kantorovich distance, and

K :=

{
u ∈ BV (Ω; {0, 1}) : −

∫

Ω

u(x) dx =
1

2
and u = 0 on ∂Ω

}
.

We introduce a rescaled functional Gε defined by

Gε(u) :=
1

ε2

(
Fε(u)− |Ω|

)
.

The interpretation of the function u and the functional Fε are as follows.
The function u is a characteristic function, whose support corresponds to the

region of space occupied by the A part of the diblock copolymer; the complement
(the support of 1−u) corresponds to the B part. The boundary condition u = 0 in
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K reflects a repelling force between the boundary of the experimental vessel and
the A phase.

The functional Fε contains two terms. The first term penalizes the interface
between the A and the B parts, and arises from the repelling force between the two
parts; this term favours large-scale separation. In the second term the the Monge-
Kantorovich distance d appears; this term is a measure of the spatial separation of
the two sets {u = 0} and {u = 1}, and favours rapid oscillation. The combination
of the two leads to a preferred length scale, which is of order ε in the scaling of (1).

1.2. A non-oriented version of Eikonal equation. At finite ε > 0, structures
with small Gε resemble parallel stripes of thickness roughly 2ε. As ε → 0, these
stripes become dense, and the limiting structure can be interpreted as a field of
infinitesimal stripes—a field of orientations.

A natural mathematical object for the representation of such orientation fields,
or line fields, is a projection. We define a projection to be a matrix P that can be
written in terms of a unit vector m as P = m⊗m. Such a projection matrix has a
range and a kernel that are both one-dimensional, and if necessary one can identify
a projection P with its range, i.e. with the one-dimensional subspace of R2 onto
which it projects. Note that the independence of the sign of m—the unsigned
nature of a projection—can be directly recognized in the formula P = m⊗m.

We define divP as the vector-valued function whose i-th component is given by

(divP )i :=
∑2

j=1 ∂xjPij . We consider the following problem. Let Ω be an open

subset of R2. Find P ∈ L∞(Ω;R2×2) such that

P 2 = P a.e. in Ω,(2a)

rank(P ) = 1 a.e. in Ω,(2b)

P is symmetric a.e. in Ω,(2c)

divP ∈ L2(R2;R2) (extended to 0 outside Ω),(2d)

P divP = 0 a.e. in Ω.(2e)

The first three equations encode the property that P (x) is a projection, in the
sense above, at almost every x. The sense of property (2d) is that the divergence
of P (extended to 0 outside Ω), in the sense of distributions in R

2, is an L2(R2)
function, which, in particular, implies

Pn = 0 in the sense of traces on ∂Ω.

The exponent 2 in (2d) is critical in the following sense. Obvious possibilities for
singularities in a line field are jump discontinuities (‘grain boundaries’) and target
patterns (see Figure 1).

At a grain boundary the jump in P causes divP to have a line singularity, com-
parable to the one-dimensional Hausdorff measure; condition (2d) clearly excludes
that possibility. For a target pattern the curvature κ of the stripes scales as 1/r,
where r is the distance to the center; then

∫
κp is locally finite for p < 2, and

diverges logarithmically for p = 2. The cases p < 2 and p ≥ 2 therefore distinguish
between whether target patterns are admissible (p < 2) or not.
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Figure 1. Canonical types of stripe variation in two dimensions:
grain boundary (left), target and U-turn patterns (middle) and
smooth directional variation (right). The left and middle types
are excluded by (2d).

Given the regularity provided by (2d), the final condition (2e) represents the
condition of parallelism, as a calculation for a smooth unit-length vector field m(x)
shows:
(3)
0 = P divP = m(m · (m divm+∇m ·m)) = m divm+m(m · ∇m ·m) = m divm,

where the final equality follows from differentiating the identity |m|2 = 1. For this
smooth case the orientation field P can also be interpreted as a solution of the
eikonal equation |∇u| = 1, as follows. The solution vector field m is divergence-free
by (3), implying that its rotation over 90 degrees is a gradient ∇u; from |m| = 1
it follows that |∇u| = 1. This little calculation also shows that the interpretation
of m in P = m ⊗m is that of the stripe direction; P projects along the normal
onto the tangent to a stripe.

1.3. Main result. The precise relation between the solutions of the non-oriented
eikonal equation and the block copolymer energy functionals is the following:

Theorem 1. The rescaled functional Gε Gamma-converges to the functional

G0(P ) :=





1

8

∫

Ω

| divP (x)|2dx if P ∈ K0(Ω)

+∞ otherwise

Here the admissible set K0(Ω) is the set of solutions of (2). The topology of
the Gamma-convergence in this case is the strong topology of measure-function
pairs in the sense of Hutchinson [2]. The main tool in the proof of Theorem 1 is
an explicit lower bound on the energy Gε originally derived in [3]. This inequality
gives a tight connection between low energy on one hand and specific properties
of the geometry of the stripes on the other.

We refer to [4, 5] for the details and an extended discussion.
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Criticality in material behaviour

Francisco J. Pérez-Reche

(joint work with Lev Truskinovsky and Giovanni Zanzotto)

Scale-free behaviour, also referred to as criticality, has been observed in many
natural systems and processes such as earthquakes, epidemic outbreaks or solar
flares [1]. In particular, criticality is ubiquitous within materials science. For in-
stance, it has been observed in the intermittent response of metals being deformed
plastically [2] or the acoustic events (avalanches) detected during the martensitic
transformation [3, 4, 5]. The most frequently given experimental evidence for crit-
icality is the power-law probability density function, p(A) ∝ A−α, obeyed by the
observed quantities, A, such as the magnitude of earthquakes or the size of acous-
tic emission signals detected during the martensitic transformation. It is easy to
prove that power-law is the only functional dependence remaining invariant under
changes in scale of the observable A.

Critical phenomena in natural systems has been widely studied in connection
to second-order phase transitions such as, for instance, the paramagnetic → fer-
romagnetic transition undergone by magnets when cooled below a certain critical
temperature, Tc, the so-called Curie temperature [6]. At Tc, the fluctuations of
the order parameter (magnetisation) are infinitely large and there is no character-
istic scale in the system. The Renormalization Group is a systematic and powerful
framework allowing the criticality in second-order phase transitions to be described
[7, 8]. Roughly speaking, the renormalization group consists in analysing the effect
of changing the scale (Renormalization Group transformation, RGT) of systems.
Critical points responsible for second-order phase transitions are associated with
critical fixed points under RGT which represent scale-free systems. The set of all
systems flowing towards a certain critical fixed point under RGT share the same
critical behaviour and define a universality class. This idea is one of the greatest
achievements of the renormalization group as it allowed the concept of universality
(i.e., different systems share the same critical behaviour) to be understood.

The ubiquity of criticality observed in externally driven systems cannot be
explained in terms of the existence of critical fixed points only. Indeed, in addition
to the existence of at least one critical fixed point, a mechanism self-organising
the system towards the critical manifold of the critical fixed point is necessary.
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This defines the concept of Self-Organised Criticality (SOC)1. For instance, in
martensites, the distribution of size of the avalanches attain a power-law only
after multiple cycling through the martensitic transformation [10, 5]. We have
proposed that the interplay of reversible phase transformation with concurrent
activity of defects such as dislocations, allows the system to attain the optimal
amount of disorder and therefore become critical [11, 12].

In the present talk we have concentrated on the study of the critical behaviour
displayed by the Random Snap-Spring Model (RSSM) with athermal dynamics
(i.e., T = 0) which is usually a good approximation to the kinetics of non-diffusive
structural transformations in solids [13]. In the limit of slow driving, the model
exhibits two drastically different types of critical non-equilibrium steady states
[14]. One of them is related to the existence of a critical point for a certain
value of the disorder, ro. This corresponds to classical criticality in the sense
that it requires fine tuning of the disorder in a way analogous to the tuning of
temperature necessary to reach criticality in magnets [15]. Self-organisation to
criticality is absent in this regime and systems with generic disorder are therefore
not expected to lie on a critical manifold in general. The other critical steady state
observed in the model is a self-organised criticality which is insensitive to disorder.
This regime is reminiscent of the criticality associated with the pinning-depinning
(PD) transition where the disorder r is an irrelevant parameter [16], i.e., the PD
critical manifold exist for a finite interval of r. Owing to the irrelevance of r, it
has been established that systems displaying a PD transition with generic disorder
display SOC towards one of the PD universality classes in the limit of infinitely slow
driving [17, 18]. The crossover between the two types of criticality in the RSSM is
determined by the mode of driving. As one moves from ‘soft’ to ‘hard’ driving the
universality class of the critical point changes from OD (classical order-disorder
[15]) to QEW (quenched Edwards-Wilkinson, one of the possible PD universality
classes [19]).
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Criticality in martensite

Oguz Umut Salman

Self Organized Criticality (SOC) is a concept introduced in the early 90’s to unify
the understanding of natural systems governed by different physical laws. The
main motivation of self organization theories is to find an explanation to the
fact that many natural systems exhibit structural and dynamical complexity even
though the laws of physics that govern interactions between the elements of those
systems are often simple. In other words, self-organization seeks to discover the
general rules under which complexity may occur, the forms which it can take and
methods of predicting the changes to the structure that will result from changes
to the underlying system [1].

Even though there is no exact definition for complexity, an important signature
of complexity is scale-invariance. The analysis of complex shapes and time-series
signals has led to the discovery that when they are viewed at different levels
of magnification, their structures often appear to look roughly the same, hence
they are scale-invariant or self-similar. This property was termed as fractals by
Mandelbrot [4] but the origin was not understood. Mathematically scale-invariance
can be captured by a power law, which will be crucial in the following discussions,
and it is given by

(1) P (A) = A−β ,
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where P (A) is the probability density of some characteristic quantity A and β
called as scaling exponent. This power law relation has the property of scale-
invariance. More precisely, decreasing the scale corresponds to see finer details
of the spectrum having the same qualitative relationship with higher values, i.e.,
the scaling leaves the basic form of the spectrum of A unchanged. Note that only
power laws have this unique feature.

In this talk, we have focussed on the study of the critical (scale-free) behavior of
martensitic phase transformations. The kinetic of martensitic phase transforma-
tions has been studied in several experimental works and it has been shown that
acoustic emission (AE) generated during a martensitic transformation follows a
power law behavior for both amplitude (A) and durations (T) of the signal [3].
However, the origin of avalanches and of the scale-free character of behavior in
3D real martensites are not fully understood. Here, we study this problem us-
ing classical mechanics that takes all of the principal features of martensites into
account, i.e., the three dimensional nature of transformation, inertial effects, long-
range interactions corresponding to a real crystallography (cubic-to-tetragonal)
and real experimental parameters (elastic constants, interfacial energy, dissipation
and mass density) of FePd alloy.

In three dimensions, a cubic-to-tetragonal transition can be described by two
deviatoric strains e2 and e3 representing shear deformations on {110}-type planes
in the < 1̄10 >-type directions and they are defined as

(2) e2 =
1√
2
(ǫxx − ǫyy), e3 =

1√
6
(ǫxx + ǫyy − 2ǫzz).

The remaining components of the symmetry-adapted strain tensor are

(3) e1 =
1√
3
(ǫxx + ǫyy + ǫzz), e4 = ǫxy + ǫyx, e5 = ǫxz + ǫzx, e6 = ǫyz + ǫzy,

where ǫij =
1
2 (

∂ui

∂xj
+

∂uj

∂xi
) and ui is the displacement vector.

A cubic-to-tetragonal transition can be described by the functional given by

(4) Ftetra = A2(e
2
2 + e23) +A4e3(e

2
3 − 3e22) +A6(e

2
2 + e23)

2.

The form of this functional guarantees that there are four degenerate energy min-
ima corresponding to three tetragonal variants and the austenite phase at the
transition temperature. The coefficient A2 can be tuned to change the depth of
wells in order to incorporate the temperature dependance. The other coefficients
can be tuned using experimental data. The harmonic strain energy contribution
due to shear strains is given by

(5) Fshear = A3(e
2
4 + e25 + e26).

The volume change associated with the transformation is incorporated in the free
energy by adding the term

(6) Fbulk = A1(e1 −K(e22 + e23))
2.
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(a) t = 150 (b) t = 300 (c) t = 3000

(d) t = 13000 (e) t = 15000 (f) t = 16000

Figure 1. Time evolution of the system.

The Ginzburg energy that penalizes the interfaces is written only in terms of
primary order parameters e2 and e3 in the spirit of Landau theory and is given by

(7) FG =
β

2
(|∇e2|2 + |∇e3|2).

Finally, the total free energy reads

(8) FGL =

∫

V

{
FL + FG

}
dr,

where FL = Ftetra + Fshear + Fbulk. Finally, we add the kinetic energy by T =∫
V ρu̇2

i and the dissipation by R =
∫
V γė2i for i = 1, 3. Finally, the dynamical

equation is given by d
dt

δL

δu̇i
− δL

δui
= − δR

δu̇i
, where L =

∫
V

{
T − (FL + FG)

}
dr.

To initiate the transition a single defect is put in the middle of the system. At
t = 0, the displacement vector ui vanishes at every point. Therefore, there is no
quenched (pre-existent) disorder in the system.

Figure 1 displays the evolution of the microstructure from the nucleation of
variants of martensite starting around the perturbation in the middle of the system
until the final state reached under constant cooling rate. It is clear from figs.
1(a)-1(c) that the austenite transforms first into a single variant of martensite
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(a)

Figure 2. Log-log plot of distribution of avalanche surfaces P(S) with
scaling exponent ǫ = 1.6.

(variant 3 shown with blue color) around the defect and then other variants appear
(variant 1 and 2 shown with green and red colors, respectively and the austenite
is transparent) in an auto-catalytic way. Finally, as seen from fig. 1(d)-1(f), the
austenite is completely transformed into the variants of martensite. Note that each
pair of variants in a cubic-to-tetragonal transition are twin related and all the twins
are compound twins having {110}cubic planes as obtained in the simulations.

Indeed, the energy dissipation occurs when either austenite transforms into one
variant of martensite or one of already existing variants of martensite transforms
into one of the other variants. The statistical analysis of the dissipated energy
during the transformation for distributions of the avalanche characteristics: (du-
rations T, amplitudes A and surfaces S) lead to the power-laws: P (A) ∼ A−α,
P (T ) ∼ T−τ , and P (S) ∼ S−ǫ with exponents α = 2.15, τ = 2.4 and ǫ = 1.6 (see
fig. 2). These results are also in good agreement with experimental observations
[2].

This result shows that the critical state can be reached in the presence of inertial
effects in three dimensions without any external disorder (static or dynamic) which
has been claimed to be the reason of critical behavior in martensites [6, 8, 5, 7].
The inertial effects provide the system a way of passing through more metastable
states resulting in scale-free behavior that clearly lacks in the purely dissipative
approaches.
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From Atomistic Models to Linear Elasticity

Bernd Schmidt

The relation of atomistic and continuum models of matter is an important and
very active area of current research, both from a computational and from the
analytical point of view. Ultimately, the elastic moduli of solids should be derivable
from atomistic models. The main aim of this note is to report on recent results
on rigorous derivations of effective linearized theories for elastic bodies starting
from atomistic models, see [7]. Our approach thus combines the derivation of
linearized theories from nonlinear models (see [3] for a rigorous approach in the
pure continuum setting) with the passage from atomistic to continuum theory (see,
e.g., in [5] for thin films and the results [4, 2] on the Cauchy-Born rule).

More precisely, we will derive linear elasticity theory from atomistic models by
means Γ-convergence. In particular, we will obtain the simultaneous limit when
both the number of atoms tends to infinity (i.e., when the interatomic distances
tend to zero) and the strains within the material become infinitesimally small. Our
approach generalizes a recent result of Braides, Solci and Vitali [1]. In particular,
we study mass spring models with full nearest neighbor (NN) and next-to-nearest
neighbor (NNN) pair interactions. We also consider boundary value problems
where a part of the boundary is free.

Consider the atomistic reference configuration εL ∩ Ω, where Ω ⊂ R
d (the

‘macroscopic region’ occupied by the material) is a Lipschitz domain, L = AZd,
A ∈ R

d×d with detA > 0, a Bravais lattice (the ‘atomic crystal’) and ε ≪ 1 is a
small parameter (the ‘interatomic distance’). Atomic deformations are mappings

y : εL ∩Ω → R
d.

In order to efficiently describe these deformation, we will need some book keep-

ing: Choose a numbering z1, . . . , z2
d

of A{− 1
2 ,

1
2}d and let

Z = (z1, . . . , z2
d

) ∈ R
d×2d

(cf. Fig. 1). Let x′ ∈ εL′ denote the centers of the unit cells εA(z+[0, 1)d), z ∈ Z
d.

Now the main object that encodes all the relative displacements of atoms in one
cell is the following discrete gradient:

∇̄y(x′) := ε−1
(
y(x′ + εz1)− y(x′), . . . , y(x′ + εz2

d

)− y(x′)
)
∈ R

d×2d ,
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Figure 1. Reference unit cell.

where we have interpolated on εL′ by setting y(x′) := 1
2d

∑2d

i=1 y(x
′ + εzi). E.g.,

the discrete gradient of x 7→ Gx, G ∈ R
d×d, is GZ.

Our main structural assumption is that the energy of a deformation y : εL∩Ω →
R

d be given as a sum of individual cell energies as follows.

Eε(y) =
∑

x′

Wε(x
′, ∇̄y(x′)), Wε(x

′, ·) = Wcell(·) +Wsurface(x
′, ·).

For simplicity, we will neglect Wsurface in the sequel and refer to [7] for further
details on surface terms. Typical examples of admissible energy functionals are
given by suitable mass spring models (cf Fig. 2).

�
�
�
�
�
�
�
��

P
P
P
P
P
P
P
PP

Figure 2. A 2d NN & NNN mass spring model.

Basic Assumption.

(1) Frame indifference: ∀R ∈ SO(d), c ∈ R
d, F ∈ R

d×2d :

Wcell(RF + (c, . . . , c)) = Wcell(F ).

(2) Wcell ≥ 0 and Wcell(F ) = 0 iff

∃R ∈ SO(d), c ∈ R
d s.t. Fi = Rzi + c.

(3) Wcell is C2 near S̄O(d) = {RZ : R ∈ SO(d)}. The Hessian Qcell =
D2Wcell(Z) is positive definite on the orthogonal complement of the sub-
space spanned by infinitesimal translations (c, . . . , c) and rotations FZ,
FT = −F .

(4) Wcell grows at infinity at least quadratically on the orthogonal complement
of the subspace spanned by infinitesimal translations.

Suppose ∂Ω∗ ⊂ ∂Ω (the ‘Dirichlet boundary’) has positive Hd−1-measure and
consider the space

Aε(g, ∂Ω∗,Ω) = {u : εL ∩ Ω → R
d : u = g on Dirichlet boundary cells}
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of admissible lattice displacements. (See [7] for the precise definition of Dirichlet
boundary cells, where Dirichlet boundary data are prescribed, and of the contin-
uum analogue H1(g, ∂Ω∗,Ω) of Aε(g, ∂Ω∗,Ω).) In order to derive linear elasticity
from atomistic models, we prove a Γ-convergence result for the functionals

Ik(u) = δ−2
k εdkEε(Id+δku) = δ−2

k εdk
∑

x′

Wcell(Z + δk∇̄u(x′)),

when εk, δk → 0. Here a sequence of discrete displacements (uk) is understood to
converge to the continuum displacement u : Ω → R

d if suitable interpolations of
uk converge to u in L2.

Additional assumption. IfWcell and Wsurface are ‘incompatible’ or if ∂Ω∗ 6= ∂Ω,
then assume limk δ

−2
k εk = 0.

Theorem 1 (Compactness). If Ik(uk) ≤ C, then for a subsequence and after
modification on non-Dirichlet boundary cells and suitable interpolation

(1) uk ⇀ u for some u ∈ H1(g, ∂Ω∗,Ω).
(2) For (p. c. interpolations of) ∇̄uk: ∇̄uk ⇀ ∇u · Z in L2.

Theorem 2 (Gamma-convergence). The functionals Ik Γ-converge to

I : H1(g, ∂Ω∗,Ω) → R, I(u) =
1

2 detA

∫

Ω

Qcell(e(u) · Z),

e(u) = 1
2 ((∇u)T +∇u).

Theorem 3. If Ik(wk) − inf Ik → 0, then (after modification on non-Dirichlet
boundary cells)

∇̄uk → ∇u · Z strongly in L2, u the unique minimizer of I.

Remarks.

(1) Manifestation of the Cauchy-Born rule: I is precisely the energy functional
one would obtain by first passing from atomistic models to nonlinear elas-
ticity by applying the Cauchy-Born rule and then passing from nonlinear
to linear elasticity (cf. [3]).

(2) The condition ε ≪ δ2 guarantees that surface contributions cannot domi-
nate the bulk energy terms near the free boundary.

(3) Strong L2-convergence of the gradients of minimizers (see Thm. 3) is new
even for the nonlinear-to-linear continuum limit of [3], cf. [6].
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3d-Crystallization: FCC and HCP

Florian Theil

(joint work with Lisa Harris)

We study the asymptotic behavior of minimizers of classical pair energy systems
in the limit where the number of particles tends to infinity. To be specific, we
assume that the pair interaction energy between two point particles with positions
y, y′ ∈ R

3 is given by V (|y − y′|) for some potential V : (0,∞) → R. The scaled
pair-energy of an n-particle configuration y ∈ R

3×n is then given by

En({y}) =
1

n

∑

1≤i<j≤n

V (|yi − yj |).

It is known from numerical simulations that for sufficiently large n and V (r) =
r−12 − r−6 (the Lennard-Jones potential) the minimizers form slightly deformed
subsets of a hexagonally close packed lattice (hcp). The hcp-lattice is one of the two
lattices that solve the kissing problem, i.e. the number of nearest neighbors is 12.
The other lattice with the same property is the fcc-lattice (face-centered-cubic).
We can prove that for sufficiently strongly localized potentials V the minium of
En is the energy per particle of a hcp or fcc lattice, depending on finer properties
of V .

Definition Let L ⊂ R
3 be either a fcc or an hcp lattice with lattice parameter 1.

A potential V ∈ C2(0,∞) is α-localized if limr→∞ V (r) = 0,

V (r) ≥ 1

α
, r ∈ [0, 1− α],

V ′′(r) ≥ 1, 1− α < r < 1 + α,

V ′(r) > 0 r > 1 + α,

|V ′′(r)| ≤ αr−9, r > t(L) + 2α,

and

min
r>0

∑

y∈L\{0}
V (r |y|) =

∑

y∈L\{0}
V (|y|) = −12,

where t(L) is the distance of third-nearest neighbors, t(Lfcc) =
√
3, t(Lhcp) =√

8/3.
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Theorem. Let L ⊂ R
3 be either a fcc or an hcp lattice with lattice parameter 1.

There exist α0 > 0 such that for all 0 < α < α0 and all α-localized potentials V
with the properties V (

√
2) = −1/10, V (t(L)) = −1/50 and

V ′(r) + |V ′′(r)| < α, 1 + α < r <
√
2 + α or

√
2 + 2α < r < t(L) + α

the following holds.

(A) Ground state energy:

lim
n→∞

min
y∈R3×n

En({y}) = −6.

(B) Ground states: Let A ⊂ L be finite and y : L → R
3 minimize

E({y}) = 1

#A

∑

i,j∈L
{i,j}∩A6=∅

V (|yi − yj|)

subject to the constraint that yx = x for all x ∈ L \A. Then yi = i for all
i ∈ L, i.e. the minimizer is a perfect lattice.

The theorem is a significant extension of earlier results for two-dimensional systems
[2]. The proof relies on rigidity estimates [1] and a new proof of the kissing problem
by Oleg Musin [3].
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Prof. Dr. Jean-Francois Joanny

Institut Curie
Section Research, UMR 168
11, rue Pierre et Marie Curie
F-75248 Paris Cedex 05

Prof. Dr. Frank Jülicher
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