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Introduction by the Organisers

The general topic of the meeting was “Valued fields and related structures”. It
included both applications of model theory, as well as so-called “pure” model
theory: the classification of first order structures using new techniques extending
those developed in stable theories.

The interactions of “theory” and “applications” were very visible in the meeting
and in the list of participants which included people working in pure model theory,
in more applied model theory, and researchers outside model theory hoping to
use the machinery developed here. There were 21 long talks of 50 minutes each
complemented by an afternoon with four 30 minute talks. The organizers are
grateful to Rémy and Thuillier for giving a short course on Berkovich spaces as
well as being available for a very active question session in the evening. This
provided background for the tutorial given by Hrushovski and Loeser on their
recent work analyzing the type space of algebraically closed valued fields.
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Valued fields, often henselian, have been, for many years, important examples
to which model theory and logic can be applied. This began with work of Ax-
Kochen-Ersov in the 1960’s, leading to an asymptotic solution to a conjecture
of Artin. In the 1980’s Denef made use of the model theory of the p-adic field,
together with p-adic integration, to answer a question of Serre. In the 1990’s
the methods were generalized to “motivic” measure and integration by Denef and
Loeser (following an idea of Kontsevich) with many applications to algebraic ge-
ometry. More recently, Hrushovski and Kazhdan have developed a “geometric”
theory of measure and integration in valued fields, based on a detailed analysis of
the category of definable sets in algebraically closed valued fields, again with new
applications. This answered a question of Kontsevich and Gromov: if X,Y are
smooth d-dimensional subvarieties of a smooth projective n-dimensional variety V ,
with V ⊂ X and V ⊂ Y birationally isomorphic, then X × An−d and Y × An−d

are birationally equivalent. These developments are also behind the identification
of the space of stably dominated types as one which in special cases agrees with
the Berkovich space. This might pave the way to extending the Berkovich spaces
to other settings using model theoretic language.

Over the same time period there have been important developments in “ab-
stract” or “pure” model theory, based on generalizing the powerful machinery
of stability to possibly unstable first order theories. One can distinguish three
strands: First, the notion of o-minimal structures was introduced, influenced both
by real algebraic geometry and the notion of a strongly minimal set from stability.
The main examples are expansions of the field of real numbers by certain analytic
functions, as the exponential function, where the abstract theory had many appli-
cations. Recently o-minimal structures were considered as special structures with
NIP (i.e. having the non-independence property). This has been enhanced by the
general theory of o-minimality, related to definably compact groups and measures,
and also by the general theory of forking in theories with NIP.

Furthermore, various general notions like C-minimality and P -minimality, at-
tempting to include nice valued fields, have been formulated. This developed into
a modern model theory of algebraically closed valued fields, which lead to the work
of Hrushovski and Kazhdan mentioned above. The core theories of valued fields
are neither o-minimal nor simple, but have the NIP, so that these new methods
do apply.

Recently, these strands have lead to a new general theory of “metastability”
generalizing the theory of algebraically closed valued fields. There is a wider
class of theories (not having Shelah’s Tree property of the second kind), which
comprises both, o-minimal and simple theories. Both o-minimal as well as simple
theories were intensely studied in the 1990’s. These new methods start to lead
to a more uniform treatment of this wider class of theories. Some new results
and conjectures concerning groups definable in o-minimal and NIP theories were
given by Hrushovski in his final lecture, influenced by some fascinating analogies
between o-minimal theories and valued fields.
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Among other related and striking contributions were: Berarducci’s talk relat-
ing o-minimal and classical homotopy in the context of definably compact groups
in o-minimal structures, Scanlon’s somewhat conjectural talk about motivic inte-
gration and valued difference fields, and Peterzil’s talk on uniform definability of
generalized exponential maps in o-minimal expansions of the reals. Zilber gave a
talk about Quantum Field Theory and Zariski geometries.

There were also several exciting contributions by young researchers on the NIP
theories, pairs of structures and stable fields.
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Abstracts

Bounds on VC density of formulae in some NIP theories

Deirdre Haskell

(joint work with Matthias Aschenbrenner, Alf Dolich, Dugald Macpherson,
Sergei Starchenko)

The VC dimension of a formula ϕ(x̄, ū) in a model M is defined to be the VC
dimension of the definable family of sets Pϕ = {ϕ(b̄, ū) : b̄ ∈ M ℓ(x̄)}; that is, the

least n (if it exists) such that, for all sets A in M ℓ(ū) of size n, there is a subset A′

of A for which there is no element b̄ ∈M ℓ(x̄) with A′ = A ∩ ϕ(b̄, ū). The property
that a formula has finite VC dimension is immediately seen to be the same as that
of the formula having NIP (see [2] for more on the relationship between NIP and
finite VC dimension). The VC density of a formula with finite VC dimension is
defined to be the least r such that

lim
n→∞

sup
|A|=n

{# subsets of A determined by Pϕ/n
r}

is finite. See [1] for further discussion of this definition.
In the talk, I stated a theorem which gives bounds on the possible VC density

of a formula in an NIP theory. We first need the following definition.

Definition 1. We say that the theory T with NIP has the VCm property if the
following is true: for any finite set of L-formulas ∆(x; ū) (note that ℓ(x) = 1) there
is a finite set P∆ = {pi(x; ū1, . . . , ūm) : i ∈ I} of definable families of definable
∆-types such that, for any finite set B ⊂ M ℓ(ū), and any q ∈ S∆

x (B) there are
b̄1, . . . , b̄m ∈ B, and pi ∈ P∆ such that

pi(x; b̄1, . . . , b̄m) ⊢ q.

Theorem 2. Suppose that T has the VCm property. For any finite set ∆(x̄; ū)
of L-formulas there is a natural number constant K such that, for any finite set
A ⊂M ℓ(ū)

|S∆
x̄ (A)| ≤ K|A|mℓ(x̄).

Hence, in particular, the VC density of the set of formulas is bounded by mℓ(x̄).
I discussed how one can see that o-minimal theories have the VC1 property,

and P-minimal theories with definable Skolem functions have the VC2 property.

References

[1] M. Karpinski and A. Macintyre, Approximating volumes and integrals in o-minimal and P-
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Model theoretic properties of metric valued fields

Itäı Ben Yaacov

The theory of algebraically closed fields is the archetypal example of a stable
(and even ℵ0-stable) theory. Other theories of fields, with “more structure” (e.g.,
differentially closed, separably closed, pseudo-finite. . . ) are stable, or simple, and
consequently admit a particularly elegant theory of independence. On the other
hand, a valued field necessarily has the strict order property and therefore cannot
be either stable or simple. Alternative structure theories have been developed
recently for some valued fields (most significantly, the algebraically closed ones,
e.g. [4]). Here, however, we follow a different path, reasoning that using real-
valued logic we can force the value group to be (a subgroup of) (R>0, ·), thus
eliminating the source of the strict order property and of instability.

We wish to consider complete valued fields (with a multiplicative valuation in R)
in the framework continuous first order logic, a real-valued logic introduced in [3].
For technical reasons, we prefer to consider instead of a field K its projective line
P1(K). This is due to the fact that continuous first order logic is most conve-
niently applied to the study of bounded metric structures, while valued fields are
unbounded. The trick commonly used in the context of Banach space structures,
namely, replacing the structure with its closed unit ball (in this case, the valua-
tion ring) will not work, since the class of valuation rings is not elementary (in
fact, contains no ℵ0-saturated structure). On the other hand, every unbounded
structure can be made bounded through the addition of a formal point at infinity,
which in the case of valued fields amounts exactly to replacing K with P1(K) (see
[1] for the general construction).

Every member of P1(K) can be represented as [a : a′] where |a|∨|a′| = 1 (where
∨ denotes maximum), and we only consider such representatives. Given a polyno-
mial P (X0, X

′
0, X1, X

′
1, . . . , Xn−1, X

′
n−1), homogeneous in each pair (Xi, X

′
i) sepa-

rately, say over Z, and [a0 : a′0], . . . , [an−1 : a′n−1], the value |P (a0, a
′
0, . . .)| belongs

to [0, 1] and does not depend on the choice of representatives. We may therefore
name |P (. . .)| as an n-ary predicate, and define LP1 to consist of all such predi-
cates. One particular predicate of this form, which we take to be the distance on
P1(K), is

d
(
[a : a′], [b : b′]

)
= |ab′ − ba′|.

It is an ultra-metric distance, complete if and only if K is complete. Then,

(1) The valued field K can be recovered from the (bounded, metric) LP1-
structure P1(K).

(2) The class of all P1(K) is elementary, with theory MVF .
(3) The class of all P1(K) for algebraically closed, non trivially valued K is

elementary as well, denoted ACMV F .
(4) The theory ACMV F eliminates quantifiers, and is strictly stable (even up

to any kind perturbations).
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Alternatively, one may representK as a multi-sorted structure P(K) =
(
Pn(K)

)
n
.

In this case we use a mostly functional language LP, consisting of function sym-
bols ⊗ : Pn × Pm → Pnm+n+m for the Segre embeddings, a function symbol
A : Pn → Pn for each A ∈ SLn+1(Z), acting naturally, and predicate symbols
[a0 : . . . : an] 7→ |a0|, where again we only consider representatives such that
|a0| ∨ . . . ∨ |an| = 1.

We show that P1(K) and P(K) are quantifier-free bïınterpretable, in the sense
appropriate for continuous logic, and uniformly so in K. Consequently, all the re-
sults cited above (axiomatisability, quantifier elimination, stability) pass to (classes
of) structures of the form P(K).

We recall that a subset X of a metric structure is called definable if it is closed,
and the distance d(x,X) is a definable predicate. (For example, the interpretability
of Pn(K) in P1(K) consists, first of all, of identifying Pn(K) with a quotient of

a definable subset of
(
P1(K)

)n(n+1)
2 .) We show that if K is algebraically closed,

then every projective variety V ⊆ Pn(K), defined over K, is a definable set in this
sense. More generally, every complete variety defined over K is interpretable in K.
Since compact subsets are always definable, not all definable sets are projective
varieties, and the question of characterising all definable sets in Pn is left open.

Quantifier elimination of ACMV F allows us to show that the type space SPn(K)
is naturally homeomoprhic to the Berkovich projective space Pn,an(K). More
generally, if V is a complete variety defined over K then SV (K) is homeomoprhic
to V an.

Also mentioned briefly are real closed valued fields with convex valuation ring.
These again form an elementary class, with theory RCMV F , which is model
complete and dependent.

For more details see the pre-print [2].

References

[1] I. Ben Yaacov, Continuous first order logic for unbounded metric structures, Journal of
Mathematical Logic, to appear, arXiv:0903.4957.

[2] , Model theoretic properties of metric valued fields, in preparation, arXiv:0907.4560.
[3] I. Ben Yaacov and A. Usvyatsov Continuous first order logic and local stability , Transactions

of the American Mathematical Society, to appear, arXiv:0801.4303.
[4] D. Haskell, E. Hrushovski, and D. Macpherson, Definable sets in algebraically closed val-

ued fields: elimination of imaginaries, Journal für die Reine und Angewandte Mathematik.
[Crelle’s Journal] 597 (2006), 175–236.

Commutators in groups definable in o-minimal structures

Eric Jaligot

(joint work with Eĺıas Baro, Margarita Otero)

Groups definable in o-minimal structures and groups of finite Morley rank share
many properties. Both types of groups are equipped with a finite dimension which

http://arxiv.org/abs/0903.4957
http://arxiv.org/abs/0907.4560
http://arxiv.org/abs/0801.4303
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is definable and additive, satisfy the descending chain condition on definable sub-
groups, and have definably connected components. These properties suffice for
many developments of the theory of groups of finite Morley rank.

The main difference between groups of finite Morley rank and groups definable
in an o-minimal structure is in the behaviour of the dimension. The dimension
in the o-minimal case fails the essential property of the Morley rank: for every
definable set A, dim(A) ≥ n+ 1 if and only if A contains infinitely many pairwise
disjoint definable subsets Ai with dim(Ai) ≥ i. This property/definition of the
Morley rank is crucial in Zilber’s stabilizer argument, and consequently in Zilber’s
generation lemma on indecomposable sets in the finite Morley rank context. Ul-
timately, the definability of most commutator subgroups, and in full generality of
derived subgroups, depends on this in the finite Morley rank case.

For groups definable in o-minimal structures, derived subgroups need not be
definable. Using recent results on central extensions in this case, Annalisa Con-
versano exhibits in [1, Example 3.1.7] a definably connected group G definable in
an o-minimal expansion of the reals, with G′ not definable. The most surprising is
that G is a central extension, by an infinite center, of the definably simple group
PSL2(R). In this work we prove that this is essentially the only obstruction to the
definability of commutator subgroups in the o-minimal context.

Definition 1. We say that a definably connected group G definable in an o-
minimal structure is a strict central extension of a definably simple group if Z(G)
is infinite and G/Z(G) is infinite nonabelian and definably simple.

We call section of a group G any quotient H/K where K E H ≤ G, and we
speak of definable section when both K and H are definable.

Definition 2. We say that a group G definable in an o-minimal structure satisfies
assumption (*) whenever the derived subgroup (H/K)′ is definable for every de-
finable section H/K of G which is a strict central extension of a definably simple
group.

Notice, for example, that all solvable groups satisfy assumption (∗), and hence
our main result below applies in all solvable groups definable in o-minimal struc-
tures.

Theorem 3. Let G be a group definable in an o-minimal structure and satisfying
assumption (∗), and let A and B be two definable subgroups of G which normalize
eachother. Then the subgroup [A,B] is definable and [A,B]◦ = [A◦, B][A,B◦].
Furthermore, any element of [A,B]◦ can be expressed as the product of at most
dim([A,B]◦) commutators from [A◦, B] or [A,B◦] whenever A◦ and B◦ are solv-
able.

Our argument for the proof of Theorem 3 consists mainly in finding very rudi-
mentary forms of Zilber’s general stabilizer argument on generation by indecom-
posable sets in the finite Morley rank context. In fact, our finite bound on the
number of commutators in Theorem 3 is ultimately obtained by the fact that,
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in an abelian group, the subgroup generated by an arbitrary family of definable
connected subgroups is the product of finitely many of them.

References
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NIP and generically stable types

Anand Pillay

I discussed (1) variants of definability (2) Stability, (3) NIP, and (4) generically
stable types. We fix a complete theory T and work in a saturated model M̄ eq.

(1) We have various notions of definability: definable set, type-definable set,
∗-definable set, hyperdefinable set.

(2) Fix a complete type p(x) over a small modelM . Call a formula φ(x, b) (over M̄)
small for p if p(x) ∪ {φ(x, b)} divides over M . Then stability of T is characterized
by
(a) the set of small formulas for p is a proper ideal, and (b) for any φ(x, b), either
φ(x, b) is small for p, or ¬φ(x, b) is small for p.
So (assuming stability) p(x) has a unique global extension p′(x) which does not
contain any small formula (i.e. is a nondividing or nonforking extension of p), and
one can conclude that p′ is definable over M .

(3) T has NIP if for any indiscernible sequence (ai : i < ω) and formula φ(x, y)
there is Nφ such that for no b do we have |= φ(ai, b) iff |= ¬φ(ai+1, b) for i =
0, . . . , Nφ.

Fact A. If T has NIP and p(x) ∈ S(M) then again the set of small formulas for p
is an ideal, and moreover p has at most 2|M| global nondividing extensions, each
of which is Borel definabl over M .
Question. (NIP) If p(x) ∈ S(M), and φ(x, y) ∈ L, is {b : φ(x, b) is small for p}
Borel definable over M?

(4) Assume NIP. We say that p ∈ S(M) is generically stable if p has a unique
global nondividing extension p′ which is moreover definable over M .

Fact B. Suppose p ∈ S(M) is generically stable. Let I = (ai : i < ω) be any
Morley sequence in p. Then I is totally indiscernible and for φ(x, y) ∈ L, and
any b, φ(x, b) ∈ p′ if and only if all but finitely many ai ∈ I satisfy φ(x, b) if and
only if at least Nφ many ai ∈ I satisfy φ(x, b).

Identify now generically stable types with “global types” or with their sequence of
φ(x, y) definitions, as φ varies.
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Corollary C. The set of generically stable tyes with variable x, is ∗-definable.
Proof. We use also the fact
(*) that if I is an infinite totally indiscernible sequence then its global average
type (given by NIP) is generically stable and I is a Morley sequence for it.

Now by Fact B, for any φ(x, y) ∈ L there is ψφ(y, z) such that for any generically
stable type p(x), its φ-definition is ψ(y, c) for some c. Now the collection of tuples
(cφ : φ ∈ L) which correspond to the defining schema of some generically stable
type is ∗-definable by (*) and Fact A.

Some basic objects in Berkovich theory, 1 – Survey talk

Bertrand Rémy

This report sums up the first of the two talks given by A. Thuillier and my-
self in order to introduce V. Berkovich’s theory of analytic geometry over non-
archimedean complete fields. It can also be seen as an introduction to the talks
given later by E. Hrushovski and F. Loeser on their work in progress dealing with
the relationship between Berkovich geometry and model theory [4].

More precisely, the talk presented here intended to introduce two kinds of basic
spaces of Berkovich geometry, namely analytic spectra and analytifications of affine
spaces (mostly the dimension 1 case).

1. Analytic spectra, after Berkovich.— These spaces are the building
blocks of the theory. The starting point is a Banach ring A i.e., a (commutative)
ring (with unit element) endowed with a Banach norm ‖·‖A that is submultiplica-
tive: for any f and g in A, we have: ‖f · g‖A ≤ ‖f‖A · ‖g‖A.

1A) Algebraic motivation and the definition. Recall that to the commu-
tative ring A is associated the algebraic spectrum Spec(A), consisting of the prime
ideals in A, endowed with the Zariski topology [3, II.§4.3]. It is well-known that
Spec(A) is in one-to-one correspondence with the set of equivalence classes of ring
homomorphisms from A to an arbitrary field, where two maps are identified if they
both factorize through a common third such map.

Definition 1. The analytic (or Berkovich) spectrum of A is the set M (A) of
multiplicative seminorms A → R≥0 whose restrictions to A are bounded with
respect to ‖ · ‖A; this space is endowed with the coarsest topology such that for
any f ∈ A, the evaluation map x 7→ x(f) is continuous.

For f ∈ A and x ∈ M (A) it is often useful to write |f(x)| instead of x(f). Note
that in this context, the real number |f(x)| exists before the notation f(x) makes
sense. The latter is defined as follows: to x ∈ M (A) is associated the prime ideal
px = {f ∈ A : |f(x)| = 0}, which by the way defines a map M (A) → Spec(A).
The complete residue field of x is by definition the completion of the fraction field
κ(x) = Frac(A/px) with respect to the quotient norm induced by x on κ(x). This
complete field is denoted by H(x) and f(x) is defined to be the class of f in H(x).
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The algebraic identification recalled before the definition has the following ana-
log: a seminorm x ∈ M (A) gives rise to a bounded homomorphism A → H(x);
conversely, any such homomorphism ϕ : (A, | · |A) → (k, | · |k) gives a multiplica-
tive bounded seminorm in M (A), namely the composed map | · |k ◦ϕ : A → R≥0.

Useful references for the above material are the very beginnings of [2] and [5].

1B) Non-emptiness and compactness. The following theorem is a funda-
mental result due to V. Berkovich [2, Theorem 1.2.1].

Theorem 2. For any A 6= {0} as above, M (A) is non-empty and compact.

Non-emptiness. Pick a maximal ideal m, choose a minimal (with respect to
the order given by pointwise comparison) bounded submultiplicative seminorm on

A/m, say | · |. Consider the completion B = Â/m w.r.t. | · |: it is a field and a
Banach ring, and it suffices to show that | · | is multiplicative in order to prove
non-emptiness. This is done by showing that | · | is power-multiplicative (i.e.,
|fn| = |f |n for any f ∈ B and n ∈ N) and that |f−1| = |f |−1 for any f ∈ B.
The main tool for this is thus the algebras B〈r−1T 〉 = {

∑
i biT

i :
∑

i|bi|r
i <

∞} endowed with the norms ‖
∑

i biT
i‖r =

∑
i|bi|r

i. For power-multiplicativity,

assume that there exist f and n contradicting it, set r = |fn|
1
n and introduce

ϕ : B → B〈r−1T 〉/(f − T ). The map ‖ · ‖r ◦ϕ then contradicts the minimality
of the initial seminorm (there is one point: checking that f − T is non-invertible,
which is done by a standard Euclidean division trick, as for “convergence” of
submultiplicative real sequences). Inversion is treated similarly, with r = |f−1|−1.

Compactness. The idea is to use the natural map ·̂ : A →
∏

x∈M (A) H(x), called

the Gelfand transform, and defined by f̂ =
(
f(x)

)
x∈M (A)

. For the sup norm on the

product, it is 1-Lipschitz and provides a map M
(∏

x∈M (A)H(x)
)
→ M (A) which

is continuous and surjective. It remains then to use the fact that for a collection
of complete fields (Ki)i∈I with I discrete, then M

(∏
i∈I Ki

)
is isomorphic to the

Stone-Čech compactification of I.

1C) The analytic spectrum of the ring of integers. The now well-known
star-shaped figure of M (Z) was presented at this point, see [1] and [2]. The idea
is to use the map M (Z) → Spec(Z). For each prime number p, there is exactly
one seminorm in the preimage of p: it sends any non-multiple of p to 1 and any
multiple of p to 0. The other elements of M (Z) lie above the generic point of
Spec(Z), hence are norms; they are classified by Ostrowski’s theorem [3, VI.§6.3].
Note that the topology is coarser than the “intuitive” one, and it is an easy exercice
to see convergence of seminorms in this space.

2. Analytic affine spaces and projective line.— In what follows, k is a
field endowed with a complete (possibly trivial) absolute value | · |k.
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2A) General set-up. To each algebraic variety V over k is attached a Berkovich
analytic space over k, which is denoted by V an. The attachment V 7→ V an is func-
torial and moreover satisfies (see [2, 3.4-3.5] for details):

(i) if V is affine with coordinate ring k[V ], then V an consists of all the mul-
tiplicative seminorms k[V ] → R+ extending the absolute value of k;

(ii) if V is projective, then V an is compact.

It follows from (i) that the (underlying space of the) analytic affine n-space
An,an

k is the set of multiplicative seminorms k[T1, . . . , Tn] → R≥0 extending | · |k.
We henceforth restrict to the case when n = 1.

2B) Affine lines for trivially valued fields. Assume that k is trivially

valued: | · |k sends everybody to 1 (except 0). Then the space A1,an
k also has the

shape of a star as in 1C (but non-compact this time). The exhaustive description
of the seminorms is similar to the case of M (Z). A degenerate case is that of
the seminorms that are not norms: there is one such seminorm ηP,0 associated to
each irreducible P ∈ k[T ] sending f ∈ k[T ] to 0 if P | f and to 1 otherwise. It
remains to treat the case of norms on k[T ]: they have to be non-archimedean by
the boundedness assumption made on the restriction on k. Let x be such a norm.
If |T (x)| ≤ 1 then qx = {f ∈ k[T ] : |f(x)| < 1} is a prime ideal; when qx = {0},

the norm x is the trivial one η1 (the center of the star A1,an
k ) and otherwise there

exist an irreducible P ∈ k[T ] and r ∈]0; 1[ such that x is the norm ηP,r defined by

ηP,r(f) = rvalP (f). If |T (x)| > 1, the ultrametric inequality implies that, setting

r = |T (x)|, the norm x is equal to ηr such that ηr(f) = rdeg(f). See for instance
J. Poineau’s PhD [5] for details.

2C) Affine lines for algebraically closed non-archimedean fields. As-
sume now that k is algebraically closed and that | · |k is non-trivial and non-
archimedean. This case was treated thoroughly in A. Thuillier’s talk [6], so we
refer to his report for details. We simply mentioned how to produce the desired
seminorms. One first way is to use a K-rational point ϕ : k[T ] → K of the algebraic
line A1

k, with (K, | · |K) a complete non-archimedean field, and to take | · |K ◦ϕ.
One other way is to take a closed ball D in k and to consider the seminorm ηD de-
fined by ηD(f) = supz∈D|f(z)|k (checking multiplicativity requires an argument:
Gauss lemma). At last, a decreasing sequence D = (Di) of closed balls provides
further seminorms ηD by setting ηD(f) = limi ηDi

(f). Berkovich’s classification

[2, 1.4.4] says that all points of A1,an
k come this way and that given two sequences

D and D′, we have ηD = ηD′ if and only if either
⋂

D∈DD =
⋂

D∈D′ D 6= ∅ or

both intersections are empty and D and D′ are cofinal. Emptiness of an intersec-
tion

⋂
D∈DD as above may happen when k is non-spherically or non-maximally

complete [3, VI.§10, ex. 2, p. 193].

Note finally that the connection with the so-called types of points of P1,an
k was

made explicit in A. Thuillier’s talk [6], and that the case of a non-algebraically
closed field can be treated thanks to a natural Galois action [2, 1.3.5].
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Some basic objects in Berkovich theory, 2 – Survey talk

Amaury Thuillier

This was the second introductory talk devoted to Berkovich theory. Its main
purpose was to describe the affine and projective lines over a non-Archimedean
field k, previously defined by B. Rémy [5], and to give a rough idea of the approach
used by Berkovich in order to analyze the homotopy type of a smooth analytic
space [3].

We consider a field k endowed with a complete non-Archimedean absolute value

| · | and we denote by k̃ its residue field. We freely use notation introduced in [5]
and we assume that k is algebraically closed for simplicity.

1. Points of the affine line A1,an
k are classified according to their completed

residue field. They split up into (at most) four types.

Type (1) This the case where H(x) = k. Those are the “classical” points, obtained
by taking the value of polynomials at some element of k.

Type (2) Here, |H(x)×| = |k×| (same valuation group) and H̃(x) ≃ k̃(T).

Type (3) Dually, |H(x)×| = |k×|rZ with r ∈ R>0 − |k×| and H̃(x) = k̃.
Type (4) This is the case where H(x) is an immediate extension of k: we have

H(x) 6= k but |H(x)×| = |k×| and H̃(x) = k̃.

Any point of type (2), (3) or (4) lies over the generic point of P1
k: its completed

residue field is a completion of k(T ). One can describe the projective line P1,an
k as

the one-point compactification A1,an
k ∪{∞} of the affine line. The point at infinity

is of type (1).

Types (3) and (4) are somehow “instable” since they disappear if the field k is
replaced by a some maximally complete non-Archimedean extension K satisfying
|K×| = R>0.

2. Given a ∈ k and r ∈ R>0, it follows from Gauß lemma that the map

k[T ] → R>0,
∑

n∈N

an(T − a)n 7→ max
n

|an|r
n
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is a multiplicative seminorm. Let ηa,r denote the corresponding point in A1,an
k ,

which is of type (1), (2) or (3) whether r = 0, r ∈ |k×| or r ∈ R>0 − |k×|.

We can thus draw a continuous path ηa,− : [0,∞[→ A1,an
k from a to ∞, and it

follows readily from the ultrametric inequality that the paths ηa,− and ηb,− starting
at two elements a, b ∈ k are disjoint on [0, |a− b|[ and coincide on [|a− b|,∞[. This

construction displays the structure of a real tree on P1,an
k , whose ends are points

of type (1) and (4) and in which bifurcations occur at points of type (2).

However, the topology on P1,an
k is much coarser as the tree topology since this

space is compact. For example, if x is a point of type (2), then connected com-

ponents of P1,an
k − {x} are in natural one-to-one correspondence with elements of

P1(k̃), and one obtains a fundamental system of neighbourhoods of x by deleting

a finite number of closed discs in A1,an
k − {x}.

3. For each non-Archimedean field K extending k, there is a natural map
pK : A1,an

K → A1,an
k induced by the canonical morphism k[T ] → K[T ]. It extends

to the projective lines by mapping ∞ to ∞.

It is instructive to look at this map when K = H(x) is the completed residue

field of a point x ∈ A1,an
k . We set px = pH(x). The canonical map k[T ] → H(x)

defines a H(x)-rational point x in A1,an
H(x) such that px(x) = x. If x is not of

type (1), then the fibre p−1x (x) contains a non-empty open disc centered in x:
indeed, the real number r(x) = infa∈k |(T − a)(x)| is positive (otherwise x ∈ k)
and |x− a| = |(T − a)(x)|, hence

|(T − a)(y)| = |(T − x)(y) + (x − a)| = |(T − a)(x)|

for any a ∈ k and y ∈ A1,an
H(x) such that |y − x| < r(x). This inequality shows that

p−1x (x) contains the open disc of radius r(x) centered in x.

This construction gives another way to look at points of type (4), since it is

easily checked that they are precisely the points x ∈ P1,an
k such that the fibre

p−1x (x) is isomorphic to the closed unit disc over H(x).

4. A key ingredient used by Berkovich in his study of the homotopy type of
non-Archimedean analytic spaces [2], [3] is the action of a compact torus

Td = M(k〈T±11 , . . . ,T±1d 〉) = {x ∈ Ad,an
k | |T1(x)| = . . . = |Td(x)| = 1}

on the space under consideration. It should be emphasized that Td is not a group,
rather a group object in the (here undefined) category of k-analytic spaces. In
particular: for any non-Archimedean extension K/k, the set Td(K) of K-rational
points of Td is the maximal bounded subgroup of (K×)d.

The first non-trivial example is given by the closed unit disc

E(0, 1) = {x ∈ A1an
k | |T (x)| 6 1},

which is contractible. This is not a surprise in view of the tree structure on the
analytic affine line, albeit one should not forget that the actual topology is strictly
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coarser than the tree topology. There is a natural action of the one dimensional
torus T1 on E(0, 1) such that t · x = tx for any non-Archimedean extension K/k
and any K-rational points t, x of T1, E(0, 1) respectively. The orbits are precisely
the fibres of the continuous map E(0, 1) → [0, 1], x 7→ |T (x)|. Since the path
η0,− introduced above (2) defines a continuous section of the latter map, we have
defined a retraction τ of E(0, 1) onto a closed subset homeomorphic to [0, 1].

The construction of a homotopy H : E(0, 1) × [0, 1] → E(0, 1) between idE(0,1)

and τ follows easily from two remarks:

• the group T1 has a natural increasing filtration by closed subgroups

T1,r = {z ∈ T1 | |(T − 1)(z)| 6 r}, r ∈ [0, 1];

• the orbit of any point x ∈ E(0, 1) under T1,r has a unique maximal point
h(x, r), where maximal means with respect to evaluation of polynomials:

|f(y)| 6 |f(h(x, t))|

for any f ∈ k[T ] and any y ∈ T1,r · x.

More generally, one proves in the same way that the closed unit ball in Ad,an
k is

contractible.

5. Contractibility of closed unit balls implies immediately that any smooth
k-analytic space X is locally contractible at any “classical” point x ∈ X(k), for
each such point has a fundamental system of neighbourhoods isomorphic to closed
balls. However, unlike what happens in complex geometry, most points in X are
non-classical and a precise description of a fundamental system neighbourhoods
of them is a delicate problem.

A natural way to attack this question is to look at models of X over the valuation
ring k◦ = {z ∈ k | |z| 6 1}, i.e., (formal) schemes over k◦ with generic fibre X. If
there exists a model with very “mild” singularities, then Berkovich showed in [3]
that X has the homotopy type of a CW-complex. Roughly speaking, one obtains
a covering of X by elementary pieces which we know how to deform explicitly and
one checks that these deformations glue together, the compatibility being deduced
from the fact that the local homotopies come from the action of some torus Td.

Existence of “nice” models is intimately connected with resolution of singular-
ities (at least when X is the analytification of an algebraic variety). A positive
answer is known for curves (semi-stable reduction theorem of Deligne-Mumford

and Bosch-Lütkebohmmert), and in any dimension if the residue field k̃ has char-
acteristic zero (semi-stable reduction theorem of Knudsen-Mumford, building on
Hironaka’s desingularisation). Using J. de Jong’s alterations, Berkovich managed
to prove local contractibility of smooth k-analytic spaces and conjectured in [3]
that V an should have the homotopy type of a finite CW-complex if V is a smooth
projective variety over k. A more general statement and model-theoretic proof
was recently announced by E. Hrushovski and F. Loeser [4].
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Valued difference fields as a foundation for motivic integration

Thomas Scanlon

With his work in [2] Denef revealed that quantifier elimination theorems for
valued fields could be employed to prove rationality theorems about Poincaré series
associated to counting problems for algebraic equations over p-adic rings. In later
work (see, for example, [3] and [4]) these techniques have been applied to other
contexts such as p-adic analytic equations and problems in motivic integration.

Results generalizing the relative completeness and quantifier elimination theo-
rems for henselian fields were proven for difference henselian fields in [1] and [8]
and in this talk I proposed extending the theory of motivic integration by replac-
ing the target rings built from Grothendieck rings of algebraic varieties by ones
constructed from Grothendieck rings of difference varieties.

A difference henselian field is a valued field (K, v) given together with an au-
tomorphism σ : K → K satisfying v(σ(x)) = v(x) universally. We say that (K, v)
is difference henselian if every valuation is represented by an element fixed by σ
and the analogue of Hensel’s lemma holds for difference polynomials. That is, if
P (X0, . . . , Xn) ∈ OK [X0, . . . , Xn] is a polynomial in n+1 variables over the ring of
integers OK := {a ∈ K : v(a) ≥ 0} of K, a ∈ O, and v(P (a, σ(a), . . . , σn(a)) > 0
while v( ∂P

∂xi
(a, σ(a), . . . , σn(a)) for some i, then there is some solution b ∈ OK with

P (b, σ(b), . . . , σn(b)) = 0 and v(a − b) > 0. Newton’s method for approximating
roots may be adapted to prove the difference Hensel’s lemma in every maximally
complete valued difference field in whose residue field every nonzero linear dif-
ference operator is surjective. In particular, we have two important classes of
examples of difference henselian fields.

• If (k, σ) is an existentially closed difference field, then K := k((t)), the field
of Laurent series over k, with the σ extended via σ(

∑
ait

i) :=
∑
σ(ai)t

i

is difference henselian.
• If k is an algebraically closed field of characteristic p > 0, τq : k → k is

the q-power Frobenius map x 7→ xq where q is some nonzero power of p,
K is the field of fractions of the Witt vectors of k, and σ : K → K is the
unique lifting of τq to K, then (K,σ) is difference henselian.

The main theorem of [1] asserts that these structures, when the characteristic
of K is zero, admit quantifier elimination relative to the theories of the residue
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field and value group. In these specific cases, the theory of the value group is
simply Pressburger arithmetic so that divisibility predicates suffice. In the case of
the Laurent series field, the definable sets in models of ACFA are well-understood
while in the case of the Witt vectors, one-by-one, we have full quantifier elimination
in the residue field. For us, the most important point is that just as with the
classical Ax-Kochen-Eršov theorems, it follows from Hrushovski’s theorem on the
limit theory of the Frobenius that the theory of the Witt vectors with a Witt-
Frobenius converges to the theory of a Laurent series field with a difference closed
residue field as p tends to infinity [6].

For the time being, we restrict to the case of difference henselian field with value
group Z. If X is a definable subset of On and πm : O → O/mm+1 is the reduction
map modulo the (m + 1)st power of the maximal ideal, then πm(X) is definably
isomorphic to a set definable in the residue field. As such, one may associate to
such a set X a sequence 〈[πm(X)] : m ∈ Z+〉 of classes of definable sets in the
Grothendieck ring of definable sets over the residue field. in practice, because we
wish apply counting methods, we restrict this construction to finite dimensional
sets, that is, definable sets X having the property that the transcendence degree
of the difference field generated by some point in X in some elementary extension
is bounded. Moreover, we consider [πm(X)] as a class in the Grothendieck ring of
finite dimensional definable sets over the residue field. From the work of Ryten and
Tomašić one knows that this ring admits nontrivial homomorphisms to integral
domains.

With the restriction to finite dimensional sets, then away from a lower di-
mensional set, the maps πm+1(X) → πm(X) are fibrations where the fibres are
isomorphic to some fixed finite Cartesian power of points of the fixed field in the
affine line of the residue field. In particular, in the case of the Witt vectors, finite
dimensional definable sets are locally piecewise p-adic manifolds where “locally”
means that it might happen that πm(X) is infinite for some m (for example, con-
sider the equation σ(x) = xq), but each fibre is a finite Boolean combination of
p-adic manifolds. With these observations, on any finite dimensional difference
variety we may define a motivic measure taking values in a localization of the
Grothendieck ring of finite dimensional definable sets over the residue field in such
a way that the measures specialize to the canonical p-adic measures.

The remaining key ingredient in Denef’s proof of the rationality of Poincaré
series is the fact that after suitable changes of variables, the valuation of a differ-
ence polynomial may be computed piecewise as the valuation of a monomial. A
similar result is true for difference polynomials over difference henselian fields and
is a key step in the proof of the extension of isomorphisms lemma required for
the proof of quantifier elimination. With these ingredients in place, rationality of
Igusa integrals is a formal consequence.

Our main theorems on difference henselian fields hold without any restriction
on the value group and the description of the definable sets is compatible with
the principles elucidated in [7] on how definable sets in algebraically closed valued
fields may be analyzed by definable sets in the residue field and in the value group.
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However, we have not systematically investigated what the Hrushovski-Kazhdan
theory might say in the case of difference valued fields.
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[10] I. Tomašić, Fields with measure and automorphism, Bull. Lond. Math. Soc. 41 (2009), no. 3,
429–440.

On the differential ring of semi-germs of definable holomorphic
functions

Alex J. Wilkie

Let ∗R be an extension of R suitable for nonstandard analysis. For definiteness
we may take ∗R to be RI/U , a sufficiently saturated ultrapower of R. This has
the advantage that all functions f : Rn → Rm and all sets S ⊆ Rn have canonical
extensions to ∗R, which we denote by ∗f and ∗S respectively. Then  Loś’s Theorem
asserts that ∗R is an elementary extension of R for any first order structure on R.

Now let us fix an o-minimal structure on R expanding the ordered field structure
and denote its language by L. It is convenient for us to assume that every r ∈ R
is named by a constant symbol of L. Then, in particular, R � ∗R as L-structures
and ∗R is o-minimal. Henceforth “definable” means L-definable in R or in ∗R with
parameters. This is also applied in the corresponding complex fields using the
usual identification of C with R× R and (using  Loś) ∗C with ∗R× ∗R.

The ring of definable holomorphic semi-germs is constructed as follows. Firstly,
fix n ≥ 1 and let r̄ be an n-tuple of positive real numbers, i.e. r̄ is a polyradius. The
polydisk of polyradius r̄ is the set ∆(n)(r̄) := {z̄ ∈ Cn : |zi| < |ri|, i = 1, . . . , n}.
So, as discussed above, ∗∆(n)(r̄) denotes its extension to ∗Cn. Note that ∗∆(n)(r̄)

http://arxiv.org/abs/math/0406514
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is definable in ∗R (without parameters). Let us now consider a function
f : ∗∆(n)(r̄) → ∗C that is definable in ∗R. We call f definably holomorphic if,
in the sense of the o-minimal structure ∗R, the real and imaginary parts of f are
continuously differentiable and satisfy the Cauchy-Riemann equations. The set
of all such definably holomorphic functions is denoted Fn(r̄). Clearly Fn(r̄) is a
differential ring (for the usual derivations) and r̄ < s̄ (i.e. ri < si for i = 1, . . . , n)
implies that the restriction map embeds Fn(s̄) into Fn(r̄). The differential ring
of definable semi-germs, denoted Fn, is now defined to be the direct limit of the
directed set {Fn(r̄) : r̄ ∈ Rn

+} as r̄ → 0̄.

In this talk I shall sketch a proof of the fact that if our original o-minimal
structure is polynomially bounded, then Fn is a Noetherian ring. I do not know
whether one can do away with this assumption. Certainly the result is false for
the corresponding direct limit of all internal (in the sense of nonstandard analy-
sis) holomorphic functions, as one can see by considering the ideal generated by
all (semi-germs of) functions of the form zN where N is an infinite positive inte-
ger. However, it was shown by Peterzil and Starchenko that no such function is
definable in any o-minimal structure (whether polynomially bounded or not).

The polynomial boundedness is needed in order to show that every nonzero
element of Fn has, up to a multiplicative constant (from ∗R), a representative f
in some Fn(s̄) which is both bounded by 1 and yet takes, for each r̄ < s̄, a non-
infinitesimal value on ∗∆(n)(r̄). This ensures that the standard part of f , which
is a standard holomorphic function by one of Abraham Robinson’s early results
in nonstandard complex analysis, is nonzero. One then pulls back the usual proof
(using the Weierstrass Division Theorem) of the Noetherianity of standard rings
of germs to Fn.

Finally, I should mention that this work is motivated by Zilber’s conjecture
on the quasi-minimality of the complex exponential field and the observation that
although the complex exponential function is not definable in any o-minimal struc-
ture, its restrictian to any disk of radius 1 in ∗C is so definable from the parameter
exp(w), where w is the centre of the disk.

On stable fields of finite weight

Krzysztof Krupiński

(joint work with A. Pillay)

A longstanding conjecture says that each infinite, stable field is separably closed.
There are several well-known results saying that under some stronger assumptions
(e.g. superstability or semiregularity) the field is even algebraically closed [4, 1].
In all these situations, a suitable rank with good additive properties is available,
which allows one to prove an “exchange property for generics” (if g is generic and
g ∈ acl(h), then h is also generic), and then, using Galois theory, one gets the
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desired conclusion that the field is algebraically closed. Such a rank, on the face
of it, is unavailable in an arbitrary stable field.

We consider stable fields of finite weight (i.e. whose generic type has finite
weight). Weight does not have as good additive properties as Lascar U-rank, and
this makes our situation interesting and requiring new methods.

A separably closed field of infinite Ershov invariant is an example of a stable
field of weight 1 [2]. So, the strongest conjecture on infinite, stable fields of finite
weight that we can make is

Conjecture 1. An infinite, stable field of finite weight is separably closed.

Our main result is

Theorem 2. Each stable field of weight 1 is separably closed.

One of the essential steps in the proof is to show the following version of the
“exchange property for generics”.

Lemma 3. Let K be a stable field in which both the sum and the product of any
two non-generics over a subset A are non-generic over A (this is the case when
K is stable of weight 1). Let k be a subfield of K. If an element g is generic over
k and g is separably algebraic over k(h1, . . . , hm) (of course, in the field-theoretic
sense), then one of the hi’s is generic over k.

Besides Theorem 2, we get some partial results on stable fields of arbitrary finite
weight.

Proposition 4. If K is an infinite, stable field of finite weight, then for almost
all primes q, Kq = K. More precisely, the number of exceptions is at most the
weight of K.

If one was able to strengthen the above proposition so that the conclusion holds
for all primes q different from the characteristic of K, then using Scanlon’s result
that stable fields are closed under Artin-Schreier extensions [3], Conjecture 1 could
be easily proved. Another observation is

Proposition 5. An infinite, stable field of finite weight and of finite degree of
imperfection is perfect.

Our work is also related to Shelah’s question on the structure of strongly de-
pendent fields [5]. In fact, assuming stability, strong dependence of the theory
amounts exactly to saying that all types have finite weight. Stable, strongly de-
pendent theories are also called strongly stable. Thus, our context of stable fields
of finite weight is more general than the context of strongly stable fields. A rea-
sonable conjecture on strongly stable fields is

Conjecture 6. Each infinite, strongly stable field is algebraically closed.

We notice that each strongly stable field is perfect, and so, in virtue of Theo-
rem 2, we get that Conjecture 6 is true in the case when the weight of the field
equals 1.
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We finish with the following two conjectures, in which we assume that K is an
infinite, stable, saturated field with an additional structure.

Conjecture 7. The following conditions are equivalent:
(1) K is separably closed.
(2) K satisfies the exchange property for generics formulated in the conclusion of
Lemma 3.

Conjecture 8. The following conditions are equivalent:
(1’) K is algebraically closed.
(2’) For any small subfield k of K and g, h ∈ K, if g is generic over k and g is
algebraic over k(h) in the field-theoretic sense, then h is generic over k.

From our work, it follows that (2) implies (1). Similarly, one can check that
(2’) implies (1’). The both converses remain open problems.

References

[1] G. Cherlin, S. Shelah, Superstable fields and groups, Ann. Math. Logic 18 (1980), 227-270.
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On the homotopy type of definable groups in an o-minimal structure

Alessandro Berarducci

(joint work with Marcello Mamino)

It is known that given a definable group G in a saturated o-minimal expansion
of a field, there is a canonical homomorphism from G to a compact real Lie group
G/G00, where G00 is the “infinitesimal subgroup” of G and G/G00 has the “logic
topology” [5]. If G is definably compact, we show that the Lie-isomorphism type of
G/G00 determines the definable homotopy type of G. Our results are based on the
study of the o-minimal fundamental group πdef

1 (G) and the o-minimal fundamental
groupoid of G (all definable groups will be assumed to be definably compact and
definably connected). Similar results have been independently obtained in [1] by
different methods.

Large part of our analysis does not use the group structure of G. So more gen-
erally we consider quotients X/E where X is a definable set, E is a type-definable
equivalence relation of bounded index, andX/E has the “logic topology”. We work
under the following general assumptions. (A1): X/E is locally simply connected;
(A2): each E-equivalence class x/E is the intersection of a countable decreasing
family of definably simply connected definable sets. Both assumptions hold in the
case X/E = G/G00 (i.e. when X = G and E = {(x, y) : xG00 = yG00}). Indeed
the verification of (A1) for G/G00 follows at once from its being a Lie group. The
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verification of (A2) is carried out in [2] and is based on the “compact domination
conjecture” established in [9] ([8] for the non-abelian case). We show that, after
choosing base points x0 ∈ X and x0/E ∈ X/E, there is a canonical isomorphism
π1(X)def ∼= π1(X/E). Moreover this result can be “localized”, namely for any
open subset U of X/E we obtain, after the appropriate choice of the base points,
an isomorphism π1(V )def ∼= π1(U) where V is the preimage of U under the projec-
tion X → X/E. In particular we obtain a localizable version of the isomorphism
π(G)def ∼= π(G/G00) established in [6].

The isomorphism π1(X)def ∼= π1(X/E) is obtained as the restriction of a homo-
morphism between the o-minimal fundamental groupoid of X and the fundamental
groupoid of X/E. Since the universal cover of a space can be construed as a sub-
set of its fundamental groupoid, we have in particular the following consequence:
there is a natural homomorphism from the o-minimal universal cover of G and
the univeral cover of G/G00 whose kernel is isomorphic to G00. Roughly speaking
this says that the “infinitesimal subgroup of the universal cover of G” is naturally
isomorphic the infinitesimal subgroup of G. This can be used to show that every
Lie group extension of G/G00 comes from a definable extension of G.

It is natural to ask whether the above results extend to the higher homotopy
groups. Let us first observe that in the case X/E = G/G00, we actually have a
strong form of (A1) and (A2) with “simply connected” replaced by “contractible”.
Let us call (A1*) and (A2*) the strong forms. We conjecture that they entail
an isomorphism of the higher homotopy groups, namely πdef

n (X) ∼= πn(X/E) for
all n. So far however this has been proved only for X = G and E = G00 [4]
using that fact that every definably compact group G is an almost direct product
of an abelian definable subgroup and a semisimple definable subgroup [8], and
that when G is abelian all the higher o-minimal homotopy groups of G vanish [4].
Combining all the above results we finally obtain that the Lie-isomorphism type
of G/G00 determines the definable homotopy type of G.
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The space of generically stable types, I, II

Ehud Hrushovski

1.

Let T be a NIP theory. A definable type p is generically stable if p(x)⊗q(y) =

p(y)⊗q(x). Given a definable set V , let V̂ be the family of generically stable types

on V . As explained in Anand Pillay’s talk, V̂ can be construed as a pro-definable
set.

Assume now that V carries a definable topology. One can define a topology

on V̂ , whose basic open sets have the form Û , where U is a definable open subset

of V . A pro-definable subset X of V̂ is definably compact if any definable type q
on X has a limit point in X . If in addition a specific definable set is designated
as a “line”, path-connectedness and homotopy between definable functions can be
defined.

These notions were developed in work with François Loeser, where we study

the topology of V̂ for the theory T = ACV F of algebraically closed valued fields,
when V is an algebraic variety carrying the valuation topology. The value group
Γ (with an element at ∞ adjoined) serves as a natural definable “line”. In this

case V̂ can be represented as a projective limit of space of semi-lattices LH (or in
the projective case, semi-lattices up to homothety), with H a finite dimensional
vector space over the valued field.

The natural operation p⊗q : Û × V̂ → Û × V is not continuous, but when
restricted to a Γ-internal domain it is continuous. This uses the curve selection
theorem, familiar from the o-minimal case, as well as this uses the fact that if
f : [0,∞] → LH is continuous, then near 0 and near ∞, the lattices f(t) can be
diagonalized by a single basis.

In [2] a definable deformation of any definable X ⊆ V̂ to a skeleton is con-

structed. This is a pro-definable subset of V̂ which is definably homeomorphic to
a definable subset of Γn

∞.
We will illustrate using Abelian groups some uses of the space of stably domi-

nated types (as opposed to a single type.) A definable subgroup B of A is called
generically stable if it carries a generically stable, translation invariant type p.
In this case p is unique. The set of such p is characterized by the property:
p−1 = p∗p = p, where p∗q is the convolution, i.e. the pushforward under addition
of p⊗q. Convolution is thus continuous on any Γ-internal set.

Let A be a Abelian variety defined over a valued F . It can be shown on the
definable level, without topological considerations, that there exists a definable
homomorphism h : A → C onto a definably compact Abelian group C defined
over Γ, whose kernel B is the union of a definable, Γ-internal, directed system of

http://arxiv.org/abs/0710.2330v2
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generically stable subgroups. Since a limit point for a cofinal definable type on this

family must exist in the definably compact space Â, B must itself be generically
stable.

For any c ∈ C, let pc be the unique translate of pc concentrating on h−1(c). This

defines a map h∗ : C → Â. h∗(C) is in fact a skeleton for A: there exists a definable

deformation of Â into h∗(C). In fact there exists a definable sequence of subgroups
Bt varying along a Γ-interval I, with translation invariant generically stable types
pt on Bt, interpolating continuously between (0) and B. The homotopy can then
be taken to be such that h(a, t) is the generic type of a+ Bt. This can be shown

by beginning with any definable deformation q : Â× I → Â with h1(Â) contained
in a skeleton S. Let qm = q ∗ q−1 ∗ · · · ∗ q. Then for large enough even m, by
an argument using finiteness of weight but also the commutativity of the group
structure, qm is the generic type of a generically stable subgroup. When starting
from a generic element v of B, the deformation h(t, v)m traces a path leading from
(0) to the generic of B.

2.

As explained in Pierre Simon’s talk, a Keisler measure p on a definable set D
is generically stable if p(x)⊗q(y) = p(y)⊗q(x).

The space M(V ) of generically stable measures can again be parametrized by
a pro-definable set; it forms a hyperdefinable set. While generically stable types
(and paths in the space of such types) suffice for ACVF, in o-minimal theories
they are scarce, but generically measures may take their place as a structural tool.

We will also consider generically stable measures on
∨

-definable sets
⋃

iDi;
by definition, these are finitely additive real valued measures on the set definable
subsets

⋃
iDi, whose restriction to each Di is generically stable.

There exists an analogy between sets defined by weak (strict) valuation inequal-
ities in ACVF, and

∨
(resp.

∧
-) definable sets in o-minimal theories. In particular

the structure R((t)) can be viewed either as a substructure of a model of ACVF,
or as an o-minimal ordered field; and any set defined by strict (weak) valuation in-
equalities for the valued field structure is

∨
(resp.

∧
-) definable for the o-minimal

structure.
One can begin to see some outlines of a possible unification of o-minimality and

metastability under the aegis of NIP. I will again use Abelian groups to sketch
what is known, and what is not. A

∨
-definable group is called generically stable

if it admits a left- translation invariant generically stable measure. In this case,
the measure is unique up to multiplication by a constant. For ACVF, we have
a structure theorem for interpretable Abelian groups A: There exists a definable
familiy (Bt : t ∈ S) of definable subgroups of A, forming a directed system. Let
L =

⋃
tBt. Then the quotient A/L and the partially ordered set S are both

internal to an o-minimal set. The groups Bt are generically stable, dominated by
a homomorphism h : Bt → Dt into a stable group, with kernel Ct; and we have
Ct =

⋃
s<t Bs. This is more generally valid for metastable groups with appropriate

finite rank assumptions.
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For o-minimal theories, one can conjecture the analogous statement, with Bt∨
-definable, Ct

∧
-definable, L = A, Dt compact. The o-minimality assumption

on L, S is of course vacuous here.
For NIP theories, one has the following proposition: there exists an

∧
-definable

set S and
∧

-definable subgroups Ct of A, for t ∈ S, forming a directed system. We
have

⋃
Ct = A. Each Ct stabilizes a generically stable measure; in particular, if

there is no indiscernible linearly ordered family of
∨

-definable subgroups, A itself
is generically stable.

Here the
∧

-definable groups Ct are visible, but not the
∨

-definable generically
stable groups. One can conjecture their existence under an appropriate finite
weight assumption. A provisional definition with generically stable measures can
be given. Anand Pillay found evidence that Shelah’s notion of “strong dependence”
is closely related to the finite weight required here. At the moment, even at the
conjectural level, no analogue is known to the o-minimality of S. The stability or
compactness of Bt/Ct may to some extent be replaced by the condition that for
any definable subset X of Bt, the relation: “aX∩bX has measure zero” is a stable
relation on Bt ×Bt.

To prove the proposition, one considers first any M(A)-invariant measure on
the M -definable subsets of A, where M is an ℵ1-saturated model. Such measures
exist by amenability of A. They can be extended to smooth, M(A)-invariant
measures µ, by a variant of Keisler’s argument. Let Cµ be the stabilizer of µ. Any
generically stable measure is conjugate to a measure p based on M ; by the fim
property of p, p leaves µ invariant, with probability 1. It follows that Cp ≤ Cµ;
and the set of conjugates Ct of Cµ satisfies the conditions.
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On Γ-internal subsets of V̂

Fraņcois Loeser

(joint work with Ehud Hrushovski)

In this talk, which followed the one by E. Hrushovski in which he introduced the
space of generically stable types in NIP theories, we present some points of our
joint work in progress on the topology of these spaces for ACVF. If V is a definable

set, we denote by V̂ the space of generically stable (i.e., stably dominated in this
case) types on V .

Let K be a valued field. Let H = KN be a vector space of dimension N . By a
lattice in H we mean a free O-submodule of rank N . By a semi-lattice in H we
mean an O-submodule u of H , such that for some K-subspace U0 of H we have
U0 ⊆ u and u/U0 is a lattice in H/U0. We define a topology on L(H): the pre-basic
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open sets are those of the form: {u : h /∈ u} and those of the form {u : h ∈ Mu},
where h is any element of H . We call this family the linear pre-topology on L(H).

Let Hℓ;d be the space of polynomials of degree ≤ d in ℓ variables. Here ℓ is
fixed, so we suppress the index and write Hd.

Proposition 1. For p in Ân, the set

Jd(p) = {h ∈ Hd : p∗(val(h)) ≥ 0}

belongs to L(Hd). There are canonical morphisms

Jd : Ân → L(Hd),

leading to a morphism of profinite spaces

J : Ân → lim
←
L(Hd)

which induces an homeomorphism between Ân and its image.

Now, Γ-internal subsets of L(H) have the following very important “diagonal
basis” property:

Proposition 2. Assume K is algebraically closed. Let Y be a Γ-internal subset
of L(H). Then there exists a finite number of bases b1, . . . , bℓ of H such that each
y ∈ Y is diagonal for some bi.

This statement would follow from Theorem 2.4.13 (iii) of [1], except that in this
theorem one considers f defined on Γ (or a finite cover of Γ) whereas here Y is the
image of Γn under some definable function f , which requires some more work.

We ended the talk by sketching the proof of the following statement:

Proposition 3. Let X ⊆ ÂN be iso-definable and Γ-internal over an algebraically
closed valued field F . Then for some d, and finitely many polynomials hi of degree
≤ d, the map p 7→ (p∗(val(hi)))i is injective on X.
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On existentially closed ordered difference fields

Fraņcoise Point

Let RCF denote the theory of real-closed fields; a direct consequence of results of
H. Kikyo and S. Shelah, is that the theory of real-closed ordered difference fields,
RCFσ does not have a model-companion (see [4]).

In a difference field (K,σ), one has automatically a pair of fields, namely
(K,Fix(σ)), where Fix(σ) denotes the subfield of elements of K fixed by σ and
if K is real-closed, then so is Fix(σ). W. Baur showed that the theory of all
pairs of real-closed fields (K,L) with a predicate for a subfield is undecidable ([1]).
However, he also showed that the theory of the pairs (K,L) such that, adding
to the language of ordered rings a new function symbol for a convex valuation v
such that the residue field of L is dense in the residue field of K and each finite-
dimensional L-vector space of K has a basis a1, · · · , an satisfying for all bi ∈ L
that v(

∑
i bi · ai) = mini{v(bi · ai)}, becomes decidable ([1]).

In [5], we first describe a class of existentially closed totally ordered difference
fields (even though it is not an elementary class). We also consider the case of a
proper preordering, using former results of A. Prestel and L. van den Dries.

Then, we consider valued ordered difference fields and we assume on one hand
that σ is strictly increasing on the set of elements of strictly positive valuation
and on the other hand that in the pair (K,Fix(σ)), the residue field of K and the
residue field of Fix(σ) coincide. We proceed as for the case of valued difference
fields with an ω-increasing automorphism treated by E. Hrushovski ([3]). We
show an Ax-Kochen-Ersov type result for those which are real-closed and satisfy
in addition a σ-Hensel lemma, which entails that the corresponding class is model-
complete. Note that any complete valued ordered difference field with σ strictly
increasing satisfies this σ-Hensel Lemma.

Finally, we consider commutative von Neumann regular lattice-ordered rings
(ℓ-rings) with a distinguished automorphism σ which fixes the set of its maximal
ℓ-ideals and we use transfer results due to S. Burris and H. Werner ([2]) in certain
Boolean products in order to describe a class of existentially closed difference ℓ-
rings.
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Definability of the theta functions and universal polarized abelian
varieties

Ya’acov Peterzil

(joint work with Sergei Starchenko)

In [3] we investigated the uniform definability of 1-dimensional complex tori and
the Weierstrass ℘-functions, in the o-minimal structure Ran,exp. The result was
used in the recent work of J. Pila, [4], to create a bridge between the analytic and
algebraic description of certain Shimura varieties, within the o-minimal framework.
This in turn allowed Pila to apply results with A. Wilkie, [5], on rational points
of definable sets in o-minimal structures in order to solve certain cases of the
arithmetic Andre-Oort conjecture.

In this talk I describe a recent generalization of our earlier work to the case of
abelian varieties of arbitrary dimension.

We first observe that each single n-torus TΠ = Cn/ΛΠ can be viewed as a
definable complex group in the real field, by considering the manifold and group
structures on the fundamental domain

EΠ = {
2n∑

i=1

tivi : 0 ≤ ti ≤ 1, i = 1, . . . , 2n}.

(Here Π = (v1, . . . , v2n) is the n×2n period matrix whose columns are R-independent
in Cn). Moreover, the family of all n-tori is uniformly definable in the field R.

When n > 1, the family of all abelian varieties is a proper sub-collection of all n-
tori, which is given by countably many definable subfamilies, {FD}, parameterized
by all n× n diagonal matrices

D = Diag(d1, d2, . . . , dn),

with d1|d2|...|dn positive integers. Each single family FD is parameterized by the
Siegel half space Hn, of all n × n complex symmetric matrices with a positive
definite imaginary part, as follows:

FD = {T(τ,D) : τ ∈ Hn}.

Each abelian variety Tτ := T(τ,D) in FD admits a polarization of type D. Given
n and D as above, there is a natural number k such that every Tτ in FD can be
embedded, via a map Θτ , into Pk(C).

Any two such polarized varieties Tτ1 and Tτ2 are isomorphic (as polarized vari-
eties) if and only if there is an element g of the symplectic group Γ = SpD(2n,Z)
such that g ·τ1 = τ2. Here SpD(2n,Z) is the the group of 2n×2n integral matrices
preserving the alternating form

(
0 D

−D 0

)
.

The quotient space Γ\Hn is known to admit an embedding, let’s call it ϑ̄, into
projective space Pℓ(C) such that the topological closure of ϑ̄(Hn) is an algebraic
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projective variety (for the classical results in complex analysis we refer to Igusa’s
book, [2]).

Both ϑ̄ and Θτ (z) (as a function of z and τ) are given in coordinates by finitely
many theta functions, defined by

ϑ

[
a
b

]
(z, τ) =

∑

Zn

eiπ(
t(n+a)τ(n+a)+2t(n+a)(z+b)),

for a, b ∈ Qn.
Consider the map

α : Cn ×Hn−→Pℓ(C) × Pk(C),

defined by
α(z, τ) = (Θτ (z), ϑ̄(τ)).

Then the topological closure of α(Cn ×Hn) in Pℓ(C) × Pk(C), call it χn,D, is an
algebraic variety (see [1]). This variety can be viewed as the universal polarized
abelian variety of polarization type D.

We now turn to the definability content of the above classical constructions.
Clearly, the lattices ΛΠ and the discrete groups SpD(2n,Z) cannot be definable
in an o-minimal structure. Similarly, the holomorphic maps Θτ : Cn → Pk(C),
ϑ̄ : Hn → Pℓ(C) and α cannot be definable in an o-minimal structure because
of their infinite periods. However, as pointed out above, each torus Tτ has a
semilinear fundamental domain, call it Eτ ⊆ Cn. Also, it follows from the so-
called Siegel reduction theory (see Igusa’s book) that the quotient Sp(2n,Z)\Hn

also has a semi-algebraic fundamental domain, call it Fn. Let us define

Ωn = {(z, τ) ∈ Cn ×Hn : τ ∈ Fn&z ∈ Eτ}.

Our main theorem states:

Theorem 1. For every a, b ∈ Rn, the restriction of ϑ

[
a
b

]
to Ωn is definable in

the o-minimal structure Ran,exp. Hence, the restriction of α to Ωn is definable in
Ran,exp.

In particular, ϑ̄|Fn and the family {Θτ |Eτ : τ ∈ Fn} are definable in Ran,exp.

In very broad terms, the idea of the proof is to present ϑ

[
a
b

]
as a composition

of the complex functions of the form τi,j 7→ eiπτi,j (defined on a subset of C with
a bounded real part) and an analytic function on a bounded domain U , which can
be extended analytically to the closure of U .

As a corollary, one obtains for example:

Corollary 2. Let F = {Aw : w ∈ W} be a family of n-dimensional projective
abelian varieties which is definable in Ran,exp. Then, there is in Ran,exp a definable
family of maps {fw1,w2 : w1, w2 ∈W} such that, for every w1, w2 ∈W the function
fw1,w1 : Aw1 → Aw2 is a real analytic group isomorphism of the two abelian
varieties (note that all n-tori are real analytically isomorphic to a 2n-product of
the circle group).
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No indiscernibles in NIP

Itay Kaplan

(joint work with Saharon Shelah)

We study a conjuncture of Shelah about the existence of indiscernible sequences
in dependent (or NIP) theories. The conjuncture states that given a big enough
set, it contains an indiscernible sequence.

Definition 1. For a cardinal κ, n < ω (or an ordinal) and an ordinal δ, κ→ (δ)T,n

means: for every sequence 〈aα |α < κ 〉 ∈ κ(Cn), there is a subset u ⊆ κ of order
type δ such that 〈aα |α ∈ u〉 is an indiscernible sequence.

Morley, in [1], proved that for ω-stable T , and for κ regular big enough, κ →
(κ)T,1. In fact, for stable theories, and for κ > 2|T | regular, κ → (κ)T,n for

all n < ω (or even n ≤ |T |) (for example by local character of non-forking and
Feodor’s lemma - see [3, III]). In the dependent context we have the following
theorem (from [2]):

Theorem 2. If T is strongly dependent then i|T |+ (κ) → (κ+)T,n for all n < ω.

The two conditions, T being strongly dependent, and n < ω seemed at first
redundant. We show that they are necessary.

Definition 3. κ → (δ)
<ω
θ means: for every coloring c : [κ]

<ω → θ, there is a
sub-sequence of κ of length δ, 〈αi |i < δ 〉 (αi < κ) such that for all n < ω, there
exists some cn ∈ θ such that c (αi1 , . . . , αin) = cn for all increasing sequences
i1 < . . . < in.

So κ→ (δ)
<ω
θ says that κ is a (θ, δ)-Erdös cardinal. An easy claim is

Claim 4. If κ → (δ)
<ω
θ then for any theory T of size |T | ≤ θ, κ → (δ)T,n for all

n ≤ ω.

The first theorem shows that under just NIP (as opposed to strong depen-
dence), unless there is a good set theoretical reason (as in the previous claim),
indiscernibles need not exist.

Theorem 5. For any cardinal θ there is a dependent theory T such that |T | = θ,

and for any cardinal κ and any limit ordinal δ, κ→ (δ)T,1 iff κ→ (δ)
<ω
θ .
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The assumption n ≤ ω in Theorem 2 is also needed:
First, the example in Theorem 5 can be modified so that we get :

Theorem 6. For any cardinal θ there is a strongly dependent theory T such that
|T | = θ, and for any cardinal κ and any limit ordinal δ, κ→ (δ)T,ω iff κ→ (δ)

<ω
θ .

Moreover, we can reach a similar result for R, whose theory, RCF , is strongly
dependent.

Theorem 7. If κ < The smallest inaccessible cardinal, then κ9 (ω)RCF,ω.

A few words about the proofs: The proof of both theorems 5 and 7 uses the
same basic idea: use induction on κ, and use properties of trees to generate a
witness for κ9T (δ). Both proofs divide into cases: κ = ℵ0 (or θ), κ is a singular
cardinal, and κ is regular but not strongly inaccessible.
In Theorem 5 we also deal with the case where κ is strongly inaccessible, and in
fact this takes most of the work. We use the assumption that κ 9 (δ)<ω

θ and
induction to produce a model where the existence of an indiscernible sequence will
produce a contradiction.
In order to prove Theorem 7 we prove something a bit stronger, i.e. that for all
such κ there is a sequence of intervals 〈〈Iαn |n < ω 〉 |α < κ 〉, such that if
〈〈bαn |n < ω 〉 |α < κ 〉 is a sequence of points such that bαn ∈ Iαn , then it is not
indiscernible.
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A Proof in Search of a Theorem

Frank Olaf Wagner

(joint work with Thomas Blossier, Amador Martin Pizarro)

Let M be a structure in some language L, and (Mi : i < n) a family of reducts
of M to some sublanguages Li ⊂ L. We shall study the relationship between
definable groups in M and interpretable groups in the reducts (Mi : i < n). There
are various natural examples for this type of question:

• The theory of differentially closed fields of characteristic zero as an expan-
sion of the theory of algebraically closed fields of characteristic zero.

• The theory of existentially closed fields with automorphism as an expan-
sion of the theory of algebraically closed fields (of given characteristic).

• The fusion of two strongly minimal sets in disjoint languages [9].
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• The fusion of two strongly minimal sets over a common vector space over
a finite field [5].

• The coloured fields (black, red and green) [11, 12, 1, 4, 2] as expansions of
the underlying algebraically closed field.

We shall suppose that T (and hence the reducts Ti) is stable. Our results remain
true if T is merely simple but the reducts remain stable; if the reducts are merely
simple, we have to assume geometric elimination of hyperimaginaries, and the sim-
ple group configuration theorem only yields almost hyperdefinable groups rather
than interpretable ones [6].

With no other hypotheses on the theory or its reducts, we obtain

Theorem 1. [7] Let G be a T -definable group, and T0 a reduct of T . Then (possibly
after adding parameters) there is a T0-interpretable group H and a T -definable
homomorphism ϕ0 : G → H such that for independent T -generic g, g′ ∈ G we
have aclT (g), aclT (g′) |0⌣ ϕ0(gg′)

aclT (gg′). Moreover, ϕ0(gg′) is 0-interalgebraic

with acl0(aclT (g), aclT (g′)) ∩ aclT (gg′).

If T0 is the reduct to equality, H is the trivial group and the independence
condition just means that aclT (g) ∪ aclT (g′) and aclT (gg′) are disjoint. We shall
have to suppose some geometric conditions to ensure that the kernel of the homo-
morphism is small. We shall do this relative to an additionnal closure operator 〈.〉
contained in aclT (.) satisfying

(†) IfA ist T -algebraically closed and b |⌣A
c, then 〈Abc〉 ⊆

⋂
i<n acli(〈Ab〉, 〈Ac〉).

(‡) If ā ∈
⋃

i<n acli(A), then 〈aclT (ā), A〉 ⊆
⋂

i<n acli(aclT (ā), 〈A〉).

Definition 2. [7] A theory T is one-based over (Ti : i < n) for 〈.〉 if for all T -
algebraically closed A ⊆ B and all c̄, if 〈Ac̄〉 |i⌣A

B for all i < n, then the canonical

base cbT (c̄/B) is T -algebraic over A.
T is CM-trivial over (Ti : i < n) for 〈.〉 if for all T -algebraically closed A ⊆ B and
all c̄, if 〈Ac̄〉 |i⌣A

B for all i < n, then the canonical base cbT (c̄/A) is T -algebraic

over cbT (c̄/B).

Condition (†) then ensures that these definitions behave well under adding and
forgetting parameters; moreover, we may assume that A and/or B are models.

Example 3. • The theory DCF0 of differentially closed fields of character-
istic 0 is one-based over the theory ACF0 of algebraically closed fields of
characteristic 0 for the differential closure aclδ, which satisfies (†) and (‡)
[13, 10] .

• The theory ACFA of existentially closed fields with automorphism is one-
based over the theory ACF of algebraically closed fields for the σ-closure
aclσ, which satisfies (†) and (‡) [8].

Moreover, we show

Theorem 4. [7] The theory of the fusion of two strongly minimal theories (in
disjoint languages or over a common vector space over a finite field) is CM-trivial
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over the two constituent theories for the self-sufficient closure. The theory of the
coloured fields is CM-trivial over ACF for the self-sufficient closure. Moreover,
the self-sufficient closure satisfies (†) and (‡).

We then get

Theorem 5. [7] Let G be a T -definable group, and ϕi : G → Hi as in Theorem
1. If T is one-based over (Ti : i < n) with respect to a closure operator satisfying
(†) and (‡), then

⋂
i<n ker(ϕi) is finite. If T is CM-trivial over (Ti : i < n), then

(
⋂

i<n ker(ϕi))
0 ≤ Z(G0).

Corollary 6. [7] A simple group, or a field, embeds into a Ti-interpretable group
or field for some i < n.

Finally, we want to study arbitrary groups definable in some coloured field.
Such a group G gives rise to the usual group configuration (a, b, c, ab, ca, cab),
where a, b, c are three independent generic elements of G. We manage to con-
struct elements α ∈ acl0(aclT (c), aclT (ca)), β ∈ acl0(aclT (cab), aclT (ca)) and
αβ ∈ acl0(aclT (cab), aclT (c)) such that (α, β, c, αβ, ca, cab) is a group configura-
tion in ACF , and hence gives rise to an algebraic group H . However, the precise
relationship between G and H has not yet been completely elucidated.
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Model theoretic connected components of algebraic groups

Jakub Gismatullin

Let G be a (sufficiently saturated) group with some first order structure and
A ⊂ G a small set of parameters. We consider several kinds of model-theoretic
connected components of G:

(1) G0
A — the connected component of G over A, is the intersection of all

A-definable subgroups of G with finite index,
(2) G00

A — the type-connected component ofG overA, is the smallest subgroup
of G type definable over A and with bounded index,

(3) G∞A — the ∞-connected component ofG overA, is the smallest Aut(G/A)-
invariant subgroup of G with bounded index.

If for every small A, G∞A = G∞∅ , then we call G∞∅ the ∞-connected component
of G and denote it by G∞ (we also say that G∞ exists in this case). Similarly we
define G00 (the type-connected component) and G0 (the connected component).
G0 is a classical object. G00 has been studied widely in model theory. G∞

was designated as G000 by Peterzil, Pillay, Hrushovski and by Shelah for abelian
groups with NIP in [7]. It was proved in [7] that for abelian group G with NIP,
G∞ exists. In [3, Theorem 5.3] we extended this result to an arbitrary group with
NIP. In general G∞ may not exists (even when the theory of G is simple). If G∞

exists, then also G00 and G0 exist and G∞A ⊆ G00
A ⊆ G0

A are normal subgroups of
G (e.g. [3]).

One of the motivations for consideringG0
∅, G

00
∅ andG∞∅ , is the interplay between

them and strong types. In [4] we investigated the following construction: consider
the 2-sorted structure G = (G,X, ·), where · : G×X → X is a regular action of G
on X , and X is a predicate (on G we take its original structure). Then, Lascar,
Kim-Pillay and Shelah strong types on the sort X correspond exactly to orbits
of G0

∅, G
00
∅ and G∞∅ (resp.) on X . Also, G/G∞∅ with “the logic topology” is a

quasi-compact topological group, which can be seen as a canonical subgroup of
the Lascar group GalL(G) of the structure G.

The Lascar group is an abstractly defined invariant of first order theories of
classical mathematical content. Lascar showed in [5] that for a very large class
of theories, the G-compact ones, the group carries a compact Hausdorff topology.
Another characterization of G-compactness is the following: T is G-compact if and
only if in a saturated model of T , Kim-Pillay and Lascar strong types coincide.
Essentially, there is only one known example of non-G-compact theory due to
Ziegler [1]. Therefore an example of a group G with G00

∅ 6= G∞∅ will yield a new
kind of non-G-compact theory, based on the group structure. Such an example is
not currently known. Pillay and Hrushovski showed that G00 = G∞ for definable
amenable group G with NIP.

The main result of my talk concerns Chevalley groups and connected perfect
linear algebraic groups. For such groups non-G-compactness in the above sense
cannot occur.
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Theorem 1 ([2]). If G is a classical Chevalley group over an arbitrary infinite field
(see below and [8]) or G is a connected perfect (i.e. G = [G,G]) linear algebraic
group over an algebraically closed field, then

G∞ = G00 = G0 = G

for an arbitrary first order structure on G (working in a saturated extension).

The components of a non-perfect reductive connected linear group G depend on
the related components of G/[G,G]. Namely, for an arbitrary first order structure
on G, there is some “natural” quotient structure on G/[G,G] such that

Gx
∅ = j−1

[
(G/[G,G])x∅

]
, for x ∈ {∞, 00, 0},

where j : G → G/[G,G] is the quotient map. The problem of determining the
connected components of an abelian group seems to be difficult and related to
additive combinatorics.

The classical construction of Chevalley groups is quite technical. It depends on
a choice of three parameters: an arbitrary field K, a crystallographic root system
Φ ⊂ Rn and Λπ — the weight lattice of some representation π of a semisimple
complex Lie algebra associate to Φ. The resulting group GK,Φ,Λπ

is generated by
root subgroups. Every root system Φ decomposes into a finite union of irreducible
root subsystems Φ = Φ1 ∪ · · · ∪ Φl. Consequently GK,Φ,Λπ

can be written as a
product of corresponding subgroups GK,Φ,Λπ

=
∏

1≤i≤nGK,Φi,Λπ
. Moreover, irre-

ducible root system are classified: An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥
4), E6, E7, E8, F4 and G2. E.g. when Φ = An, or Φ = Cn, GK,Φ,Λπ

is a quotient
of SLn+1(K) or Sp2n(K), respectively.

There is another characterization of Chevalley groups. If K is algebraically
closed, then GK = GK,Φ,Λπ

is a connected semi-simple linear algebraic group over
K, defined and split over the prime subfield of K. Any connected semi-simple
linear algebraic group over K is isomorphic to one of the Chevalley groups. If F is
an arbitrary subfield of K, then GF = GF,Φ,Λπ

is a commutator subgroup of the
group GK(F ) of points of GK that are rational over F : GF = [GK(F ), GK(F )].

We sketch the theory from [2] leading to the proof of Theorem 1. In [3] we gave
another descriptions of G∞A and G00

A . The key notion is the notion of thick subset
of a group. A subset X ⊆ G is thick if it is symmetric X = X−1 and, for some
natural N , for every N -sequence g1, . . . , gn from G, there are 1 ≤ i < j ≤ n such
that g−1i gj ∈ X .

Proposition 2. (1) G∞A is generated by the intersection of all A-definable
thick subsets of G: G∞A = 〈

⋂
{P : P ⊆ G is A-definable and thick}〉,

(2) G00
A =

⋂
{P ·Q : P,Q ⊆ G are A-definable, thick, and P ⊇ G∞A ∪Q}.

This Proposition allows us to investigate G∞A for certain groups. For instance,
consider G = PSLn(K), where K is a saturated field. Then G (with the pure
group structure) is also saturated and simple (as a group). Since G∞A is a nor-
mal subgroup of G, G = G∞A . Therefore, by compactness and Proposition 2,
there is a natural number N , such that for every A-definable and thick P ⊆ G,
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PN = P · · · · · P︸ ︷︷ ︸
N times

= G. In fact, a more general result is true:

Let (G, ·) be an arbitrary non-trivial group. The following conditions are equiva-
lent:

(1) There exists a natural number N such that, for every thick subset P ⊆ G
(not necessarily definable), PN = G.

(2) G is infinite and if G∗ is a sufficiently saturated extension of an arbitrary
first order expansion (G, ·, . . .) of (G, ·), then G∗∞ exists and G∗ = G∗∞.

We say that a group G is N -absolutely connected (N -ac) if it satisfies condition (1).
In order to prove that certain groups are absolutely connected, we introduce

the class of weakly simple groups. For a group G and a natural number N define:

GN (G) =

{
g ∈ G :

(
gG ∪ g−1

G
)≤N

= G

}
. We say that a group G is N -weakly

simple if G\GN (G) is not thick. It can be proved that N -weakly simplicity implies
4N -absolutely connectedness.

Theorem 3. Chevalley groups over infinite fields are 3-weakly simple and 12-ac.

Here is an idea of the proof. Chevalley groups have the structure of a split
BN-pair. If g is a regular element from the maximal torus, then the conjugacy
class of g generates the whole group in 3 steps (so g is in G3). Using invertibility of
the Cartan matrix, one can construct a sequence (gi)i∈N with regular g−1i gj. �

One can show that every absolutely connected group is perfect. In general the
converse is not true, however for connected linear algebraic groups it is true.

Theorem 4. Let G be a connected linear algebraic group over an algebraically
closed field. The following conditions are equivalent: G is weakly simple, G is
absolutely connected and G is perfect. Moreover, if the commutator width of G is
R and the radical R(G) is solvable of derived length M , then G is 3(4R)M -weakly
simple (12(4R)M-ac).

Let CN be the class of N -ac groups and C∞ =
⋃

n<ω CN . Using Newelski
criterion for type definability in groups [6] we have the following important remark:

If the sequence CN , N < ω does not stabilize i.e. C∞ 6= CN for
every N , then there exists a group G with G∞∅ 6= G00

∅ .

Unfortunately, we do not know if there is a universal upper bound for the absolutely
connectedness of connected perfect linear groups.
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RV information of definable sets in valued fields

Immanuel Halupczok

Let K be a henselian valued field of characteristic (0, 0). For simplicity of
exposition, we assume K = k((t)) where k is any field of characteristic 0. Let
R = k[[t]] be the corresponding valuation ring. We write Γ for the value group.

It will be useful to define the valuation and the angular component of tu-
ples x =

∑
i∈Γ ait

i ∈ Kn (where ai ∈ kn): v(x) := min{i ∈ Γ | ai 6= 0} =
min{v(x1), . . . , v(xn)} and ac(x) := av(x).

For a definable set X ⊂ Rn, we want to understand the residue field and value
group information (the “RV information”) contained in X . More precisely, we
want to describe definable sets “up to RV-isometry”, which is defined as follows:

Definition 1. A definable bijection f : X → Y is an RV-isometry if for any
x, x′ ∈ X , we have v(f(x) − f(x′)) = v(x − x′) (i.e. it is a usual isometry) and
ac(f(x) − f(x′)) = ac(x− x′).

We will present a theorem which yields a good description of definable sets up
to RV-isometry; it implies that large parts of any definable set are, up to RV-
isometry, translation invariant in many directions. To make this precise, we need
some more definitions.

By a “ball” in Rn, we shall mean a set of the form B = x0 + tλRn = {x ∈ Rn |
v(x− x0) ≥ λ}.

Call a definable set X ⊂ Rn translatable on a ball B if there exists a direction
c ∈ Kn\{0} in which it is translation invariant on B, i.e. (X+Kc)∩B = X∩B. Call
X ⊂ Rn almost translatable on B if there exists an RV-isometry X ∩B → Y ⊂ B
such that Y is translatable on B.

theorem 1. 1 For every definable set X, there exists a finite number of sets Si

each of which is either a ball or a point such that for any ball B, X is almost
translatable on B if and only if B does not contain any of the sets Si.

Each ball Si yields a finite number of balls B on which X is not almost trans-
latable; each point Si yields an infinite descending chain of balls. Typically, these
points are singularities of X .2

1“theorem” with lowercase “t” because still work in progress.
2In a more general setting, when the value group Γ is not Z, the theorem can still be formulated

essentially in the same way. However, then even the balls Si yield infinite chains of balls B where
X is not almost translatable.

http://arxiv.org/abs/math/0703045
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This theorem is useful because it reduces understanding X up to RV-isometry
for most of the set to lower dimension: suppose that B is a ball where X is almost
translatable, i.e.X∩B is RV-isometric to a set Y ⊂ B which is translation invariant
in direction c. Then Y is the preimage under π of a set Y ′ ⊂ B′, where B′ ⊂ Rn−1

is a ball of the same radius as B but of lower dimension and π : B ։ B′ is a
suitable projection sending c to 0. Hence, up to RV-isometry X ∩B is determined
by Y ′ and the direction c. Now theorem 1 can be recursively applied to Y ′. In
other words, we obtain that on most of the balls where X is almost translatable,
it is even RV-isometric to a set which is translation invariant in two directions,
and so on.

This description is a rather strong restriction on possible RV-isometry classes
of definable sets. It turns out that indeed, the number of possible RV-isometry
classes which are left over is small in a precise sense: the RV-isometry class of
a set can be specified using only parameters from the residue field and the value
group. Moreover, this works in a definable way. More precisely:

theorem 2. Let Xs be a definable family of definable sets (s ∈ S). Then there
exists a definable map ψ : S → (k ∪ Γ)eq such that ψ(s) = ψ(s′) if and only iff Xs

and Xs′ are RV-isometric.

Dimensions, matroids, and dense pairs of structures

Antongiulio Fornasiero

In the following, all structures expands an integral domain.

Definition 1. A structure M is geometric if the algebraic closure is a pregeometry
in all M ′ elementarily equivalent to M ([2] observe that in this case M eliminates
the quantifier ∃∞).

We define a generalisation: structures with an “existential matroid”. The main
examples are superstable structures of U -rank a power of ω and d-minimal struc-
tures:

Definition 2. A d-minimal structure is a structure M with a definable Hausdorff
topology, such that every definable subset X of M is the union of an open set and
finitely many discrete sets (where the number of discrete sets does not depend on
the parameters of definition of X), plus some additional conditions.

O-minimal structures, p-adic fields, and algebraically closed valued fields are
d-minimal (and also geometric).

On a structure there can be at most one existential matroid. Ultraproducts of
geometric structures, while not geometric in general, do have an unique existential
matroid. An existential matroid on M can be extended in a canonical way to a
closure operator on M eq (see [6] for the case when M is geometric).

A dimension function dim on M is a function from M -definable sets to the
natural numbers, which is additive, definable, and such that dim(M) = 1 [3, 8].
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There is a canonical correspondence between dimension functions and existential
matroids.

Generalising previous results in [7, 4, 1], we study dense closed pairs of struc-
tures with an existential matroid:

Definition 3. X ⊆ M is dense if X intersects every definable subset of M of
dimension 1.

Given T the theory of a structure with an existential matroid, let T d be the
theory of pairs (B,A) such that B |= T and A is a dense and closed (w.r.t. the
matorid) subset of B. Then, T d is consistent and complete. Moreover, the models
of T d also have an existential matroid, the “small closure”: b ∈ scl(X) if b is in
the closure of A ∪X . We extend the above result to dense tuples of structures:

Theorem 4. Let T be the theory of a structure with an existential matroid. Define
T nd be the theory of tuples A0 ≺ A1 ≺ . . . ≺ An |= T , such that each Ai is closed
in An, and A0 is dense in An. Then, T nd is consistent and complete.
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Counting types and NIP

Artem Chernikov

Classically stable theories can be characterized as those with few types over models
in some cardinalities. We consider a generalization of stability spectrum Sloc

T (κ)
by counting only those types which satisfy local character (do not fork over some
subset of the model of size ≤ |T |). In stable theories it coincides with the usual
spectra. Based on results from [1] we show that (modulo NTP2) the following are
equivalent

(1) T is NIP
(2) Sloc

T (κ) ≤ κ for some κ

(3) Sloc
T (κ) ≤ κ for every κ = κ|T |
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It is known that even o-minimal theories rarely have models with all types
over them definable. However there are always models with few types over them
in NIP. More precisely, using results of Baldwin and Benedikt on definability of
types over indiscernible sequences indexed by complete linear orders (see [2]) we
show that every NIP theory has a model M with |M | = κ and S(M) = κ|T | for
every cardinal κ. In addition we can choose M to be gross (every definable subset
is either finite or of size |M |, see [3]). This property does not characterize NIP,
but we conjecture some strengthening which might.
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Generically stable measures

Pierre Simon

(joint work with Ehud Hrushovski, Anand Pillay)

Measures in model theory, as a generalization of types, were introduced by Keisler
in [4] to recover certain phenomena of stability theory in general NIP context.
Hrushovski, Peterzil and Pillay resurrected them in [1] in their study of Pillay’s
conjecture for definably compact groups in o-minimal theories. In [2] and [3], it
is shown how, in the NIP context, they behave very much like types and notions
such as “finitely satisfiable” or “definable” can make sense for them.

Generically stable types are defined in [2] as invariant types that have a symmet-
ric Morley sequence. Equivalently, they are definable and finitely satisfiable global
types. This notion extends naturally to measures. However, whereas generically
stable types need not always exist in NIP theories, generically stable measures can
always be found.

Two special cases are of interest. First any measure induced by a sigma-additive
measure on some model is generically stable. In particular, it is definable. This
generalizes previously known results for the Lebesgue measure on an o-minimal
structure.

Secondly, a group has an invariant generically stable measure if and only if it
is fsg, i.e. there is a type p and a small model M0 such that all translates of p
are finitely satisfiable in M0. The invariant measure is then unique. Furthermore,
if the measure is smooth (has a unique extension to any bigger model), then the
group is compactly dominated by π : G → G/G00. This means that for any
definable set X of G, the set {x ∈ G/G00 : π−1(x)∩X 6= ∅ and π−1(x) ∩Xc 6= ∅}
has Haar measure 0.

http://arxiv.org/abs/0906.2806
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Amalgamation functors and the boundary conditions

Byunghan Kim

(joint work with John Goodrick, Alexei Kolesnikov)

This is a joint work with J. Goodrick and A. Kolesnikov continuing their earlier
work [2]. As well-known 4-amalgamation is used to produce the hyperdefinable
homogeneous space from a group configuration [1][3]. Recently E. Hrushovski
pointed out various relationships between n-amalgamation functors and imaginar-
ies generated by definable groupoids in stable theories [4]. He showed that we can
essentially assume n-amalgamation for all n in stable theories. Whether the re-
sult can be extended to the context of simple theories remains open. On the other
hand, we showed that n-uniqueness is equivalent to (n+1)-amalgamation in stable
theories, which was left open in [4]. Then we studied how much the equivalence
of n-amalgamation and a certain definable closure condition in stable theories is
preserved in the context of simple theories. Roughly the failure of amalgamation
in simple theories is due to either the bad boundary condition or intrinsic instabil-
ity. Then we tried to develop a certain homology theory to detect such difference.
Amalgamation notions are rephrased, and many natural questions come after.
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On Zariski structures, noncommutative geometry and physics

Boris Zilber

In recent developments in the theory of Zariski structures it has been established
that many quantum algebras can be represented as (noncommutative) co-ordinate
rings of Zariski geometries. In particular, we are interested in the quantum al-
gebra generated by invertible operators U and V satisfying the Weyl commuta-
tion relation V U = qUV. This is related to the Heisenberg commutation relation
PQ − QP = ~, for the position and momentum operators, via the Campbell-
Hausdorff formula. We note that, on the other hand, the corresponding Zariski
geometries for general q can be approximated (in a well-defined model-theoretic
sense) by Noetherian Zariski structures for q a root of unity of order N . The
latter are of a finitary type, where Dirac calculus has a well-defined meaning. Cor-
respondingly, we assume that ~ = 1/N for an integer N with divisibility properties
dictated by the model-theoretic analysis. We use this to give a mathematically
rigorous calculation of the Feynman propagator for the free particle

√
1

2πi~t
exp i

(x1 − x0)2

2t~

and the quantum harmonic oscillator (for the frequency ω = 2π)

c0

√
1

~| sin 2πt|
expπi

(x21 + x22) cos 2πt− 2x1x2
~ sin 2πt

.

p-adic van der Corput Lemma

Raf Cluckers

We present the p-adic analogue of the real van der Corput Lemma with analytic
phase which dates back to 1921, see [2]. It concerns p-adic (resp. real) oscillatory
integrals with an analytic phase, where the k-th derivative of the phase does not
vanish, and where then upper bounds for the norm of the integrals are found in
terms of k. Many typical, but often recent, real corollaries also follow in the p-adic
case, for example related to Fourier transforms of Lp functions in many variables
and their restrictions to “suitably curved” p-adic manifolds, in analogy to real
results in [3] and [4]. More generally, in [1], the theory is developed over the p-
adics and over Fq((t)) in great analogy to Chapter VIII of [4]. This research fits
in a broader project by Cornulier, Louvet, Tessera, Valette, and the author on
groups with the Howe-Moore property.

In his lecture, the author made a link to another broader project namely that
of developing the theory of motivic harmonic analysis, and noted that this p-adic
van der Corput Lemma fills in a gap in the p-adic knowledge where clearly a better
understanding of the p-adics will help for developing the broader project.
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