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Introduction by the Organisers

The workshop Moduli Spaces in Algebraic Geometry, organised by Dan Abramo-
vich (Brown), Gavril Farkas (HU Berlin), and Stefan Kebekus (Freiburg) was held
January 10–14, 2010 and was attended by 52 participants from around the world.
The participants ranged from senior leaders in the field to young post-doctoral
fellows and even a few PhD students; their range of expertise covered areas from
classical algebraic geometry to motivic Hall algebras.

Being central to a number of mathematical disciplines, moduli spaces are stud-
ied from many points of view, using a wide array of methods. Major progress
has been achieved in virtually every branch of the field, and well-known questions
have been answered lately. The workshop brought together researchers working on
different aspects of moduli theory, to report on progress, discuss open problems,
give overview, and in order to exchange methods and ideas. Lecture topics were
chosen to cover many of the subject’s disparate aspects, and most lectures were
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followed by lively discussions among participants, at times continuing well into the
night.

For a flavor of the wide palate of subjects covered, a few of the talks are high-
lighted below.

Characteristic classes on surfaces. Proof of Göttsche’s conjecture. Jun
Li (Stanford) lectured on the solution of Göttsche’s conjecture, obtained by his
student Yu-jong Tzeng. Although the result was announced a few months ago,
his talk in this workshop was the first time a complete proof was presented in a
public lecture in Europe.

Given an algebraic surface X and a suitably general m-dimensional linear sys-
tem V on X , the problem of counting the number ofm-nodal elements of V can be
traced back to the 19th century. Göttsche’s conjecture predicts that, in a suitable
range, this number is a universal function of four characteristic classes of X and
V . Göttsche reduced his conjecture to a statement on intersection numbers on
Hilb(X). The key ideas in the proof of Tzeng are (a) a spectacular generalization
of the work of Levine and Pandharipande on generators of the cobordism group of
pairs (X,L) of a surface with line bundle, and (b) an equally spectacular proof of a
degeneration formula showing that Göttsche’s intersection numbers are cobordism
invariants.

Understanding deformations using mirror symmetry. Paul Hacking (Am-
herst) presented a solution to a 28-year-old conjecture of Looijenga, using ideas
that originate from mirror symmetry.

A surface cusp singularity has a cycle of rational curves as its exceptional con-
figuration. In 1981 Looijenga conjectured that a cusp singularity is smoothable
if and only if the exceptional set of the dual cusp lies on a rational surface as an
anticanonical divisor. Gross, Hacking and Keel later recognized the appearance
of the configuration on a rational surface as part of a construction coming from
mirror symmetry. In this setting, mirror symmetry works perfectly: counting ra-
tional curves on the mirror dual, one obtains an explicit deformation of a given
cusp. Looijenga’s conjecture follows.

Topology of moduli spaces and their relative connectivity. Eduard Looi-
jenga (Utrecht) discussed topological properties of moduli spaces, presenting a
result of a very classical flavor. He reported on joint work with W. van der
Kallen, proving the vanishing of the relative homology groups Hk(Ag ,Ag,dec;Q)
for k ≤ g − 2, where Ag is the moduli space of principally polarized abelian vari-
eties and Ag,dec is the locus of decomposable ones. The proof goes by a sequence
of beautiful reductions, proving in particular that the corresponding decomposable
locus on the Siegel space is homotopy equivalent to a bouquet of (g − 2)-spheres,
which in itself is reduced to a completely combinatorial problem.

An analogous result holds for moduli of curves of compact type: we have
Hk(Mc

g,∆
c
g;Q) = 0 for k ≤ g − 2. Here, the result follows from a combinatorial

discussion of the separating curve complex, which is shown to be (g−3)-connected.
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Using computer algebra to prove rationality. Christian Böhning (Göttin-
gen) reported on his joint work with H.-C. von Bothmer on rationality of the space
of plane curves of sufficiently high degree d ≥ 0. The starting point of the proof
is rather classical and uses the Aronhold method of covariants which gives a map
from the space of degree d plane curves to that of quartic curves. In order to show
that a general fibre of this map is a vector bundle over a rational base, a certain
matrix having entries polynomials in d, must have full rank. To achieve this, the
authors introduce innovative techniques that rely on reduction to characteristic
p and a computer check of the corresponding statement over a finite field. By
semicontinuity, then rationality follows in characteristic 0 as well!

Tautological rings of the moduli space of curves. Carel Faber (Stockholm)
gave the inaugural talk of the workshop and discussed developments about certain
subrings of the cohomology of the moduli space Mg of curves of genus g. Around
1993, Faber formulated an amazing conjecture predicting that the tautological ring
of the (3g − 3)-dimensional moduli space Mg enjoys all the properties (vanishing,
perfect pairing), of a smooth compact complex manifold of dimension g−2. Faber’s
Conjecture generated a great deal of interest in the last few years, and significant
parts of it (vanishing, top degree predictions) have been confirmed. However, the
part predicting the existence of a perfect pairing between complementary tauto-
logical rings has been more resistant to proofs. Quite surprisingly, it turns out
that the Faber-Zagier method of producing enough tautological relations to verify
this part of the conjecture, stops working exactly in genus 24! The occurrence
of this genus in relation to Faber’s Conjecture has caused quite a stir, especially
since this is also the range when Mg starts to become a variety of general type.
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Geometric constructions of Enriques involutions and special families of
Enriques surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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Abstracts

New developments regarding the tautological ring of the moduli space

of curves

Carel Faber

The tautological rings R•(Mg,n) are defined as the minimal system of Q-
subalgebras of the rational Chow rings closed under push-forward for the maps
forgetting a marked point and the standard gluing maps. They contain the well-
known ψ-, κ-, and λ-classes. For the partial compactifications M ct

g,n and (for

g ≥ 2) M rt
g,n (the moduli spaces of curves of compact type and with rational tails ,

respectively), the tautological rings are defined by restriction. The Gorenstein
conjectures say that these rings are Gorenstein, with socle in degree 3g − 3 + n
resp. 2g − 3 + n resp. g − 2 + n for Mg,n resp. M ct

g,n resp. M rt
g,n. Perhaps it is fair

to say that the main evidence consists of the following results:

(1) The conjectures are true for M0,n (Keel) and Mg , 2 ≤ g ≤ 23 (Faber).
(2) In general, it is known that the degrees given above are the top degrees

and that the top graded pieces are one-dimensional (Looijenga, Looijenga-
Faber, Graber-Vakil and Faber-Pandharipande).

(3) The conjectures hold for M1,4, M2,3 and M ct
4 , each case requiring a new

tautological relation (Getzler-Pandharipande, Belorousski-Pandharipande,
Faber-Pandharipande).

For all these tautological rings, the product pairing into the top graded piece is
completely determined by the integrals on Mg,n of monomials in the ψ-classes
against 1 resp. λg resp. λgλg−1. These integrals are known, with several proofs
for each set of integrals; it all begins with Witten and Kontsevich, of course. E.g.,
for the λgλg−1-integrals, the result follows from Givental’s proof of the Virasoro
conjecture (Eguchi-Hori-Xiong, S. Katz) for P2, as Getzler and Pandharipande
observed; more direct proofs were given by Liu-Xu and (very recently) by Buryak-
Shadrin (earlier, Goulden-Jackson-Vakil had obtained partial results for arbi-
trary g). Hence the Gorenstein quotients can be studied; Stephanie Yang has im-
plemented an intersection number algorithm for arbitrary tautological classes (fol-
lowing Graber-Pandharipande) and has determined the dimensions of the graded
pieces for approximately 70 of these rings.

In the first part of the talk, I reported on the following recent result of my
student Mehdi Tavakol:

Theorem 1. (Tavakol.) R•(M ct
1,n) is Gorenstein with socle in degree n− 1.

Tavakol shows that R•(M ct
1,n) is closely related to a naturally defined tauto-

logical ring R•(Cn−1), where (C,O) is a fixed elliptic curve; in fact, it is isomor-
phic to the tautological ring of Un−1, the Fulton-MacPherson compactification
of Un−1 = (C − O)n−1, where all n points stay apart. Particularly interesting
is a certain block triangular structure found by Tavakol and the fact that some
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innocent-looking relations (that need to hold to obtain the Gorenstein property)
are derived from the codimension 2 relation for M1,4 found by Getzler and shown
to be algebraic by Pandharipande.

More precisely, the tautological ring R•(Cn) (with C now a curve of genus g) is
defined as the Q-subalgebra of the rational Chow ring generated by the classes Ki

(the pull-back of the canonical class via projection onto the ith factor) and Di,j

(of the (i, j)th diagonal). Its image in cohomology (with the algebraic degree) is
denoted RH•(Cn). Approximately 10 years ago, Pandharipande and I determined
the rings RH•(Cn) completely. Denote by ai the pull-back of the class of a point
via projection onto the ith factor and write bi,j for Di,j − ai − aj. Trivially,
a2i = 0 and aibi,j = 0, and it is easy to see that b2i,j = −2gaiaj and bi,jbi,k =
aibj,k. Therefore, RH•(Cn) is additively generated by the monomials with non-
overlapping index sets. (For g = 1, include the ai in RH•(Cn)). It is easy to
check that there are equally many such monomials in degrees adding up to n. We
analyzed the pairing and found that its nullspace is governed by pull-backs of the
‘master relation’

b1,2 b3,4 · · · b2g+1,2g+2 + · · · = 0 ,

where the (2g + 1)!! terms in the relation correspond to the fixed point free in-
volutions of {1, . . . , 2g + 2}. (As we found out later, this result was obtained
independently by Hanlon and Wales.) The master relation holds in cohomology
and as a result, RH•(Cn) is Gorenstein with socle in degree n. (To the embar-
rassment of the author, these results are not yet written up.)

In R•(Cn), one can in general not replace Ki by 2g − 2 times the class of a
point pulled back to the ith factor. Clearly, R•(C2) is Gorenstein if and only if
the relation K1K2 = (2g − 2)K1D1,2 holds. This can be shown for g ≤ 3, but
Green and Griffiths proved that this relation doesn’t hold for a generic complex
curve if g ≥ 4.

For an elliptic curve (C,O), one defines ai ∈ R•(Cn) as the pull-back of the
class of O to the ith factor. Tavakol shows that the relation b1,2b1,3 = a1b2,3 is

obtained by restricting Getzler’s relation for M1,4 to the fiber over [C,O] ∈ M1,1

and that the master relation b1,2b3,4 + b1,3b2,4 + b1,4b2,3 = 0 is obtained similarly

from the pull-back of Getzler’s relation to M1,5. Hence R•(Cn) is Gorenstein in
genus 1. The blocks referred to above correspond to copies of R•(Ck) for various k.
The nearly triangular structure is obtained by a careful analysis of the relations
between the monomials in the ai, the bi,j , and the classes of the many exceptional

divisors in Un−1. Tavakol first proves that R
•(Un−1) is Gorenstein and then uses

this to show that the natural map from R•(M ct
1,n) onto this ring is an isomorphism.

In the second part of the talk, I reported on some recent calculations, done
jointly with Pandharipande, in the tautological ring R•(Mg), which is multiplica-
tively generated by κ1, . . . , κg−2 and has top degree g−2. (In fact, the first ⌊g/3⌋
kappa’s suffice, as Morita and Ionel proved.) Some years ago, Zagier and I care-
fully studied the Gorenstein quotient of this ring and we obtained the following
result. Let

p = {p1, p3, p4, p6, p7, p9, p10, . . . }
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be a collection of variables indexed by the positive integers not congruent to 2
modulo 3. Let Ψ(t,p) be the following formal power series:

Ψ(t,p) =

∞∑

i=0

tip3i

∞∑

j=0

(6j)!

(3j)!(2j)!
tj +

∞∑

i=0

tip3i+1

∞∑

j=0

(6j)!

(3j)!(2j)!

6j + 1

6j − 1
tj ,

where p0 := 1. Define rational numbers Cr(σ), for σ any partition (of |σ|) with
parts not congruent to 2 modulo 3, by the formula

log(Ψ(t,p)) =
∑

σ

∞∑

r=0

Cr(σ)t
rpσ ,

where pσ denotes the monomial pa1
1 p

a3
3 p

a4
4 . . . if σ is the partition [1a13a34a4 . . . ].

Define

γ :=
∑

σ

∞∑

r=0

Cr(σ)κrt
rpσ ;

then the relation

[exp(−γ)]tr pσ = 0

holds in the Gorenstein quotient when g − 1 + |σ| < 3r and g ≡ r + |σ|+ 1 (mod
2). (Of course, κ0 = 2g − 2.) Let me call these relations (in the Gorenstein
quotient) the FZ-relations for brevity. Observe that this gives the expected number
of relations in every codimension less than or equal to ⌊(g − 2)/2⌋, although we
didn’t prove that the obtained relations in such a codimension are independent.
Our goal was precisely to understand the relations ‘until the middle’; it was clear
to Zagier and me that these relations could never suffice for g large enough.

The recent calculations with Pandharipande revealed first of all that the FZ-
relations give all relations whenever g ≤ 23. However, for g = 24, one relation is
missing, in codimension 12 (there is a quite unexpected syzygy). Further compu-
tations for higher genera revealed a few more such cases.

As to actual relations in R•(Mg), recall the ‘diagonal’ relations introduced in
my paper on the Gorenstein conjecture for R•(Mg): the vanishing Chern class
cg(F2g−1 − E) is cut with some diagonals in the (2g − 1)st fiber product of the
universal curve over Mg; the push-down to Mg gives a tautological relation (the
λ-classes are expressed in the κ-classes via Mumford’s formula). The methods for
actually computing such relations are by now quite good, and we find that the
diagonal relations give all relations for g ≤ 23. But for g = 24 and codimension 12
these relations don’t seem to give a Gorenstein quotient. (Even with the current
methods, it is difficult to compute all diagonal relations in this case.) For higher
genus there seem to be a few more cases of similar nature. In fact, at this moment it
is reasonable to think that the diagonal relations give exactly the same result as the
FZ-relations. Whether the Gorenstein conjecture for R•(M24) fails or not, is still
open; there are many other geometric relations that have not yet been computed
in this case. If one wishes to disprove the conjecture, one should probably look
for a cycle of codimension 10 in M24 that is not tautological, but on which the
product of λ24λ23 and an arbitrary κ-class of degree 12 can be evaluated.
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Spherical objects and rational points

Daniel Huybrechts

In my talk I discussed the following special case of a conjecture of Bloch:

Conjecture 1. Let X be a smooth projective K3 surface and f : X
∼

//X an

automorphism which acts as the identity on H2(X,OX) (f is symplectic). Then
f acts as the identity on the kernel of the cycle map CH∗(X) → H∗(X,Z).

The conjecture is still open even for symplectic involutions, but for non-generic
Picard group derived techniques can be used to prove it under additional assump-
tions on the Picard group.

The structure of the Chow ring CH∗(X) of a K3 surface is very rich. Due to a re-
sult of Mumford, it is known to be of infinite dimension whenX is a K3 surface over
C. More recently, Beauville and Voisin studied a natural subring R(X) ⊂ CH∗(X)
on which the cycle map is injective. In contrast, the Bloch–Beilinson conjectures
predict that the cycle map is injective for K3 surfaces over a number field. One
way of attacking the latter conjecture would be via Bogomolov’s ‘logical possibil-
ity’ suggesting that any rational point of a K3 surface over a number field might
be contained in a (singular) rational curve. Another way of studying this question
would be via the derived category of coherent sheaves Db(X). Spherical objects
play a central role (eg. their associated spherical twists generate the interesting
part of the group of autoequivalences) and one might wonder whether over number
fields, they generate Db(X). These two logical possibilities seem related, but I am
not able to make this precise.

Autoequivalences of derived categories can also be used to approach the original
question on the action of symplectic automorphisms. Roughly, the idea is that
under additional conditions symplectic automorphisms are contained in a bigger
group that is generated by autoequivalences of Db(X) whose action on CH∗(X)
can be controlled.

The main results are:

Proposition 2. Let X ba a smooth projective K3 surface of Picard rank at least
two and let E ∈ Db(X) be a spherical object. Then the Mukai vector v(E) is
contained in the Beauville–Voisin subring R(X) ⊂ CH∗(X) and the associated
spherical twist acts as the identity on the homologically trivial part of CH2(X).

This result relies on techniques of Lazarsfeld showing that curves on K3 surfaces
are Brill–Noether general.

The following result uses deformation theory and non-projective K3 surfaces as
studied in [4]

Proposition 3. If two autoequivalences Φ1,Φ2 of Db(X) induce the same action
on cohomology, their action on CH∗(X) coincides as well.

The next result is a consequence of a result of Kneser:
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Proposition 4. If the 2-rank and 3-rank of Pic(X) is at least four resp. three,
then for a symplectomorphism f the induced action f∗ on H∗(X,Z) is contained
in the subgroup generated by reflection associated to algebraic (−2)-classes.

Since reflections of the above type can be lifted to spherical twists, one obtains

Corollary 5. Under the above assumptions on the 2- and 3-rank of Pic(X) one
can show that any symplectic automorphism of X acts as the identity on CH2(X).

The result applies to many concrete examples (eg. Fermat quartics), but does
not settle the general case (not even for symplectic involutions). Indeed the generic
K3 surface endowed with a symplectic involution has Picard group (up to index
two) of the form Z⊕ E8(−2) whose 2-rank is zero (see [1]).
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Hall algebras and Donaldson-Thomas invariants

Tom Bridgeland

In the forthcoming paper [2] we use Joyce’s theory of motivic Hall algebras to
prove some basic properties of Donaldson-Thomas (DT) curve-counting invariants
on Calabi-Yau threefolds. We prove that the reduced DT invariants coincide with
the stable pair invariants introduced by Pandharipande and Thomas [9]

PTβ(q) = DTβ(q)/DT0(q),

and that the generating functions for these invariants are Laurent expansions of
rational functions in q, invariant under the transformation q ↔ q−1. Similar results
have been obtained by Toda [10, 11].

The proof we give of these results is based on Joyce’s theory of motivic Hall
algebras [3, 4, 5, 6, 7, 8]. In this talk we explained some of this technology. In
particular we defined the motivic Hall algebra H(M) of coherent sheaves on a
complex variety M , and a certain subalgebra

Hreg(M) ⊂ H(M)

of regular elements, having the structure of a Poisson algebra. In the case that M
is a Calabi-Yau threefold we then constructed a Poisson algebra homomorphism

I : Hreg(M) → C[T ]

to the ring of functions on an algebraic torus T equipped with a symplectic form.
This material will be explained in detail in [1].
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The results on Donaldson-Thomas invariants of [2] are obtained by first trans-
lating certain natural categorical statements (e.g. existence and uniqueness of
Harder-Narasimhan filtrations) into identities in the motivic Hall algebra, and
then applying (a completion of) the above map I to give the required identities of
generating functions.
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Differentials with real periods and subvarieties of the moduli space of

curves

Samuel Grushevsky

(joint work with Igor Krichever)

In this talk we presented our joint work with Igor Krichever, obtaining a new
proof of the Diaz’ theorem: that any complex subvariety of the (uncompactified)
moduli space of curves Mg has complex dimension at most g − 2. Our proof is
direct and uses no complicated machinery. We use differentials with real periods,
which have seen much use in Whitham perturbation theory of integrable systems,
appeared in other guises in Chas-Sullivan string topology, and are related to the
study of geometric quadratic differentials by McMullen.

The constructions and the outline of the proof are as follows. We refer to [1] for
all the details, motivation, and references. We work on the moduli space Mg,2 of
smooth (complex) curves X of genus g with two labeled marked points p±. The
basic tool of our method is the following elementary classical observation:

Lemma 1. For any (X, p+, p−) ∈ Mg,2 there exists a unique differential Ψ with
simple poles at p+, p−, holomorphic on X \ {p+, p−} (i.e. Ψ ∈ |KX + p+ + p−|),
with residues ±

√
−1 at p±, respectively, and all periods real.
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Sketch of proof. To prove uniqueness, we note that if two such existed, their differ-
ence would be a holomorphic differential with all periods real, which is impossible
by Riemann’s bilinear relations. To prove existence, note that dimC |KX + p+ +
p−| = g + 1. The conditions of periods being real impose 2g real conditions on a
differential; fixing the residues imposes one complex condition, and thus the ex-
pected dimension of the set of possible Ψ is zero. Thus the existence follows from
uniqueness. �

One now uses this differential Ψ (a real-analytic section of the bundle of ap-
propriate differentials over Mg,2) to construct local real-analytic coordinates on
the moduli space. This construction generalizes to the case of differentials the
Lyashko-Looijenga map giving local coordinates on the Hurwitz space (the gener-
alization is that in general for arbitrary order poles we replace the function by its
differential, and then no longer assume the differential to be exact). These coor-
dinates have actually been considered in Whitham theory, are essentially known
in string topology, and are as follows:

Proposition 2. The following give local real-analytic coordinates on Mg,2: the
set of 2g (real) periods a1, . . . , a2g of Ψ over a basis of cycles, and the set of

“critical values”, i.e. the integrals φi :=
∫ qi
p0

Ψ from some point p0 to all the 2g

zeroes {q1, . . . , q2g} of Ψ. (More precisely, since one cannot label the zeroes of Ψ,
the coordinates are symmetric functions of the critical values, and p0 is chosen so
that the sum of all critical values is zero,

∑
φi = 0.)

The proof of this proposition is somewhat technical, see [1]. From the point of
view of string topology it can be seen graphically by viewing the global well-defined
harmonic function f := Im

∫
Ψ on X as a “height” map f : X → R, and gluing

the surface at a given height from appropriate pieces. We note that, crucially,
in general the imaginary parts Imφi (more precisely, the symmetric functions of
them) are globally well-defined on Mg,2.

Using these coordinates, we define a foliation L of Mg,2 by declaring locally a
leaf La1,...,a2g to be the locus where all periods of Ψ are locally constant and equal
to ai. Note that though Ψ depends on the point (X, p+, p−) real-analytically, the
defining equations for a leaf (that there exists a differential with prescribed periods
a1, . . . , a2g) are holomorphic, and thus the leaves locally are complex subvarieties
of Mg,2. We now use this to bound the dimension of complete subvarieties of
Mg,2.

Sketch of the proof of Diaz’ theorem. Suppose Z ⊂ Mg is a complete subvariety

of complex dimension n; let Z̃ ⊂ M̃g,2 be its preimage in the partial compactifi-

cation where the points are allowed to coincide — so Z̃ is a complete subvariety
of dimension n + 2. Consider now a connected component Y of the intersection
Z̃∩La of Z̃ with any leaf La of the foliation L. Any function Imφi is a well-defined
global harmonic function on the complete variety Y , and thus by the maximum
principle is constant on it. Thus its conjugate harmonic function Reφi (which a
priori is only defined locally) is locally, and thus globally, constant on Y . Since all
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periods ai are also constant on Y (since Y is contained in the leaf La), it means
that all the coordinates that we have constructed on Mg,2 are constant on Y , and

thus Y is a point. Thus the intersection of Z̃ with any (complex codimension g)

leaf La is a point, and thus dim Z̃ ≤ g, implying the Diaz’ bound.

To make this proof rigorous, one needs to argue that the boundary of M̃g,2

causes no problems, and to deal with symmetric functions of φi instead of φi
themselves — we refer to [1] for how this is done. The idea is as above but the
construction becomes logically much more involved. �

The construction of differentials with real periods appears to also be useful for
studying cycles on the moduli spaces of curves, and in [2] we will apply it to prove
vanishing results for certain tautological classes on the moduli spaces of curves.
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The ring of invariants of n points on the projective line

Ravi Vakil

(joint work with Ben Howard, John Millson, Andrew Snowden)

(This extended abstract is extracted from the announcement [2], which contains
more details.) We consider the ring of invariants of n points on the projective
line, and the GIT quotient (P1)n//PGL2. The quotient depends on a choice of n
weights ~w := (w1, . . . , wn) ∈ (Z+)n:

(P1)n 99K (P1)n//~wPGL2 := Proj

(
⊕

k

Rkw̃

)

where R~v = Γ((P1)n,O(v1, . . . , vn))
PGL2 . Small cases (n ≤ 6) yield familiar beau-

tiful geometry. The case n = 4 gives the cross ratio (P1)4 99K M0,4
∼= P1. The

case n = 5 yields the quintic del Pezzo surface (P1)5 99K M0,5 →֒ P5. The case
n = 6 is particularly beautiful, and is summarized in Figure 1. The case of n = 8,
sketched in [2], turns out to be even more beautiful than the n = 6 case; the
structure is shown in Figure 2.

Our main theorem describes the relations for any n and for any weighting. We
describe the invariants in terms of a graphical algebra. To a directed graph Γ
(with no loops) on n ordered vertices (in bijection with the n points), we associate∏

~ab∈Γ(xayb−yaxb), an invariant element ofO(~v), where ~v is the n-tuple of valences
of the vertices. The degree ~w invariants are generated (as a vector space or module)
by these elements. This description can be used to show that the ring of invariants
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representation 2 + 2 + 2

(P3)6//AutP3

(P1)6//AutP1

Segre cubic
Gale duality

Igusa quartic ⊂ P4∨

⊂ P4

(P2)6//AutP2

Veronese

Gale

dual

Gale-fixed

representation 3 + 3

Figure 1. The classical geometry of six points in projective space

dim 11

M8 = Sing(cubic)

N ′

8
= Sing(quintic)

Sec(M8)⊂ cubic

⊂ ⊂ quintic

dual

dim 5 dim 11 dim 12

dim 12

(P1)8//AutP1

(P3)8//AutP3

Gale

(P5)8//AutP5

2:1 (Gale)

representation 4 + 4

representation 2 + 2 + 2 + 2

⊂ P13

⊂ P13∨

Segre

⊂

divisor

= N8

f

f′

Gale duality

dim 9

Figure 2. Relations among moduli spaces of eight points in pro-
jective space

for any ~w is generated in degree 1. In the unit weight case, this is Kempe’s
Theorem. We make a series of observations about this graphical algebra.

Multiplication. Multiplication of (elements associated to) graphs is by superpo-
sition. (See for example Figure 3(a). The vertex labels 1 through 4 are omitted
for simplicity. In later figures, even the vertices will be left implicit.)

Sign (linear) relations. Changing the orientation of a single edge changes the
sign of the invariant (e.g. Figure 3(b)).

Plücker (linear) relation. Direct calculation shows the relation of Figure 3(c).
Bigger relations from smaller ones. The “four-point” Plücker relation immedi-

ately “extends” to relations among more points, e.g. Figure 3(d) for 6 points. Any
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×

(a)
× =

(b)
= −

(c) + + = 0(d)+ + = 0

(e)

=
(f)

(g)

(h)

×× = ××

× ×

× = ×

= ×

Figure 3. Relations in the graphical algebra

relation may be extended in this way. For example, the sign relation in general
should be seen as an extension of the two-point sign relation.

Remark. The sign and (extended) Plücker relations generate all the linear
relations, via a graphical version of the “straightening algorithm”.

The Segre cubic. The relation of Figure 3(e) is patently true: the superposition
of the three graphs on the left is the same as that of the three graphs on the
right. This is a cubic relation on the six point space. It turns out to be nonzero,
and is thus necessarily the Segre cubic relation. Of course, all that matters about
the orientations of the edges is that they are the same on the both sides of the
equation.

A simple (binomial) quadric on eight points. Figure 3(f) gives an obvious rela-
tion on 8 points. The arrowheads are omitted for simplicity; they should be chosen
consistently on both sides, as in Figure 3(e).

Simple quadrics for at least eight points are obtained by “extending” the eight-
point relations, e.g. Figure 3(g) is the extension to 12 points, where the same two
edges are added to each graph in Figure 3(f).
Main Theorem of [3] for the n even “unit weight” case ~w = 1n If n 6= 6,
the simple quadrics (i.e. the Sn-orbit of the quadric above) generate the ideal of
relations.
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By [1, Thm. 1.2], the arbitrary weight case readily reduces to the “unit weight”
case ~w = 1n (n even), so this solves the problem for arbitrary weight. For example,
an explicit description of the quadrics in the del Pezzo case of five points are as
the five rotations of the patently true relation in Figure 3(h).
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Differential forms on singular varieties

Daniel Greb

(joint work with Stefan Kebekus, Sándor J. Kovács, Thomas Peternell)

1. Introduction

Differential forms are an important tool in the study of the geometry of (smooth)
algebraic varieties. On singular varieties there are various approaches to define
the right analogue of the sheaf of differential forms on a smooth variety. One
candidate is the sheaf of reflexive differentials, i.e., the push-forward of the sheaf
of differential forms on the smooth locus Xsmooth of X , another candidate is the

push-forward π∗Ω
p

X̃
of the sheaf of differential forms on a desingularisation X̃ of

X (which is in fact independent of the chosen resolution π). In general, these
two sheaves do not coincide. It was observed by Grauert and Riemenschneider
in [GR70] that on a normal variety Serre duality holds for the sheaf of reflexive
n-forms while Kodaira vanishing holds for π∗Ω

n
X̃
, n = dimX .

It is hence natural consider those varieties on which both sheaves coincide.
Assuming that the sheaf of reflexive n-forms is locally free, this is exactly the
definition of canonical singularities. This class of singularities plays an important
role in the classification theory of algebraic varieties known as the Minimal Model
Program. In fact, for technical reasons it is often convenient to work in the class
of pairs (X,∆) with Kawamata log terminal (klt) singularities. These share many
properties with canonical singularities. In particular, they are rational, see e.g.
[KM98, Prop. 5.13].

Requiring reflexive n-forms to extend with at worst simple poles to any res-
olution leads to the class of log canonical singularities, which in contrast to the
situation in the case of klt singularities can display complicated cohomological
behaviour.
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2. Results

In [GKKP10] we prove the following extension result for log canonical pairs:

Theorem 1 (Extension Theorem). Let X be a normal complex algebraic variety
of dimension n and ∆ ⊂ X a Q-divisor with coefficients in [0, 1]∩Q. Assume that

the pair (X,∆) is log canonical. Let π : X̃ → X be a log resolution, and set

∆̃ := largest reduced divisor contained in suppπ−1(non-klt locus),

where the non-klt locus is the smallest closed subset W ⊂ X such that (X,∆) is klt

away from W . If 1 ≤ p ≤ n is any index, then the sheaf π∗Ω
p

X̃
(log ∆̃) is reflexive.

This generalizes the results of [GKK08] to all values of p and to non-reduced
log canonical pairs. Theorem 1 implies in particular that on a variety with klt
singularities, the sheaf of reflexive p-forms and the sheaf π∗Ω

p

X̃
introduced above

coincide. In other words, every differential form defined on the smooth locus of a
variety X with at worst klt singularities extends to a regular differential form on
any desingularisation of X ; hence the name ”Extension Theorem”.

As corollaries of the result stated above we prove vanishing theorems of Kodaira-
Akizuki-Nakano and Bogomolov-Sommese-type on log-canonical and klt varieties:

Furthermore, as part of the proof of Theorem 1 we generalize various techniques
dealing with differential forms from the smooth to the singular case. For example,
we establish the existence of a residue sequence and natural pull-back morphisms
for reflexive differential forms on dlt spaces.

3. Sketch of the proof

The proof of Theorem 1 proceeds in two main steps:
First, we prove that differential forms defined on the smooth locus of a log

canonical variety X extend with at worst logarithmic poles to any desingularisa-
tion of X . This part uses recent work of Kollár-Kovács [KK09] on cohomological
properties of log canonical singularities. In particular, we deduce a generalized
version of Steenbrink’s vanishing theorem [Ste85] for log canonical singularities.
This in turn leads to a vanishing theorem for local cohomology groups supported

in fibres of resolutions π : X̃ → X from which extension with logarithmic poles
follows.

In a second step, assuming that X is klt, we use the Minimal Model Program,
residue sequences for reflexive differentials on dlt spaces, and Shokurov’s Rational
Connectedness Conjecture (as proven by Hacon and McKernan [HM07]) to deduce

that in fact differential forms extend regularly to any resolution X̃ of X .

4. Applications to moduli theory

For applications of these extension results to moduli theory, especially to Sha-
farevich’s and Viehweg’s Conjecture, as well as for further details concerning the
Bogomolov and generalized Steenbrink vanishing theorem we refer the reader to
Sándor Kovács’ contribution in this report.
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Vanishing theorems for log canonical pairs

Sándor J. Kovács

(joint work with Daniel Greb, Stefan Kebekus, Thomas Peternell)

1. Viehweg’s conjecture

Let Y ◦ be a quasi-projective manifold that admits a generically finite
morphism µ : Y ◦ → M to a moduli stack of canonically polarized varieties.

Generalizing Shafarevich’ conjecture [Sha63], Viehweg conjectured [Vie01] that
this can only happen if Y ◦ is of log general type. Equivalently, if f◦ : X◦ → Y ◦

is a smooth family of canonically polarized varieties and the variation of f◦ is
maximal, then Y ◦ is of log general type, i.e., Var(f◦) = dimY ◦. This conjecture
was refined in [KK08]:

Conjecture 1 (Refined Viehweg conjecture). Let f◦ : X◦ → Y ◦ be a smooth
projective family of canonically polarized varieties, over a quasi-projective manifold
Y ◦. Then either

i) κ(Y ◦) = −∞ and Var(f◦) < dimY ◦, or
ii) κ(Y ◦) ≥ 0 and Var(f◦) ≤ κ(Y ◦). �

2. How to prove Viehweg’s Conjecture

Conjecture 1 was confirmed for dim Y ◦ ≤ 3 in [KK08c]. Next we list the main
ingredients of the proof.

Theorem 2 (Pluri-differentials on the base [VZ02]). Let f◦ : X◦ → Y ◦ be a
smooth projective family of canonically polarized varieties over a quasi-projective
manifold Y ◦. Let Y be a smooth compactification of Y ◦ such that D := Y \ Y ◦
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is a divisor with simple normal crossings. Then there exists an m ∈ N and an
invertible subsheaf

A ⊂ SymmΩ1
Y (logD)

such that κ(A ) ≥ Var(f◦).

Theorem 3 (Extension theorem [GKKP10]). Let X be a complex variety of di-
mension n and D ⊂ X a Q-divisor. Assume that the pair (X,D) is log canonical.

Let π : X̃ → X be a log resolution, and set

D̃ := largest reduced divisor contained in suppπ−1(non-klt locus),

where the non-klt locus is the smallest closed subset W ⊂ X such that (X,D)
is klt away from W . Let p be an integer such that 1 ≤ p ≤ n. Then the sheaf

π∗Ω
p

X̃
(log D̃) is reflexive.

One corollary of Theorem 3 is the following generalization of the well-known
Bogomolov-Sommese vanishing theorem for snc pairs, cf. [EV92].

Theorem 4 (Bogomolov-Sommese vanishing for log canonical pairs [GKKP10]).
Let (X,D) be a log canonical logarithmic pair, where X is projective. If A ⊆
Ω

[p]
X (logD) is a Q-line bundle, then κ(A ) ≤ p.

The way these results combine is as follows: Assume (for instance) that the
statement of (1.ii) is false, that is there exists a subsheaf A ⊂ Symm Ω1

Y (logD)
with κ(A ) > κ(Y ◦). This may be used to prove that the tangent sheaf of a mini-
mal model (Yλ, Dλ) of the pair (Y,D) is unstable. Similarly, one may prove that

the sheaf of reflexive differentials Ω
[1]
Yλ
(logDλ) is unstable. Let B be a maximal

destabilizing subsheaf of Ω
[1]
Yλ
(logDλ) of rank p. Taking the determinant of B

we obtain a subsheaf detB ⊂ Ω
[p]
Yλ
(logDλ) with κ(detB) > κ(Y ◦). At the same

time by Theorem 4 we have that κ(detB) ≤ p. This means that κ(Y ◦) < dimY ◦

implying Viehweg’s conjecture. Further analysis yields the Refined Viehweg con-
jecture.

3. Inside the Bogomolov-Sommese vanishing theorem: Relative

vanishing theorems for log canonical pairs

Theorem 5 (Steenbrink-type vanishing for log canonical pairs). Let (X,D) be a

log canonical pair of dimension n ≥ 2. If π : X̃ → X is a log resolution of (X,D)

with π-exceptional set E, and if D̃ is the reduced divisor

D̃ := E ∪ π−1
(
supp⌊D⌋

)
,

then Rn−1π∗
(
Ωp

X̃
(log D̃)⊗ OX̃(−D̃)

)
= 0 for all 0 ≤ p ≤ n.

Remark 6. For p > 1 the claim of Theorem 5 is proven in [Ste85, Thm. 2(b)]
without any assumption on the nature of the singularities of X.
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Corollary 7 (Steenbrink-type vanishing for cohomology with supports). Let (X,D)

be a log canonical pair of dimension n ≥ 2. If π : X̃ → X is a log resolution of

(X,D) with π-exceptional set E, if D̃ := E ∪ π−1
(
supp⌊D⌋

)
, and if Fx = π−1(x)

is the (reduced) fibre over a point x ∈ X, then we have

H1
Fx

(
X̃, Ωp

X̃
(log D̃)

)
= {0} for 0 ≤ p ≤ n.

Remark 8. Using the standard exact sequence for cohomology with support, the
conclusion of Corollary 7 can equivalently be reformulated as follows.

(1) The restriction H0
(
X̃, Ωp

X̃
(log D̃)

)
→ H0

(
X̃ \ Fx, Ω

p

X̃
(log D̃)

)
is surjec-

tive, and

(2) The restriction H1
(
X̃, Ωp

X̃
(log D̃)

)
→ H1

(
X̃ \Fx, Ω

p

X̃
(log D̃)

)
is injective.

Proof of Corollary 7. Duality for cohomology groups with support (cf. [GKK08,

Appendix]) yields H1
Fx

(
X̃, Ωp

X̃
(log D̃)

) dual∼
(
Rn−1π∗Ω

n−p

X̃
(log D̃)(−D̃)x

)̂
, where

̂ denotes completion with respect to the maximal ideal mx of the point x ∈ X .
The latter group vanishes for the required range of p by Theorem 5. �

4. The case p = 0 of Theorem 5.

Theorem 9 (Vanishing for ideal sheaves on pairs of Du Bois spaces). Let (X,D)

be a reduced pair such that X and D are both Du Bois, and let π : X̃ → X
be a log resolution of (X,D). If E := Exc(π) denotes the exceptional set and

D̃ = E ∪ π−1(D), both divisors considered with their reduced structure, then

Riπ∗OX̃(−D̃) = 0 for all i > max
(
dimπ(E) \D, 0

)
.

In particular, if X is of dimension n ≥ 2, then Rn−1π∗OX̃(−D̃) = 0.

Corollary 10 (Vanishing for ideal sheaves on log canonical pairs). Let (X,D)

be a log canonical pair of dimension n ≥ 2. Let π : X̃ → X be a log resolution

of (X,D) with π-exceptional set E. Then Rn−1π∗ OX̃(−D̃) = 0, where D̃ :=

supp
(
E + π−1⌊D⌋

)
.

Proof. Recall from [KK09, Theorem 1.4] that X is Du Bois, and that any finite
union of log canonical centers is likewise Du Bois. Since the components of ⌊D⌋
are log canonical centers, Theorem 9 applies to the reduced pair

(
X, ⌊D⌋

)
to prove

the claim. �

The case p = 1 can be proved using this case, the fact that the result is known
for p > 1 by [Ste85, Thm. 2(b)], and an argument using relative cohomology of
the pair (X,D). For details, see [GKKP10].
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[KK09] J. Kollár and S. J. Kovács: Log canonical singularities are Du Bois, preprint
arXiv:0902.0648, February 2009.
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Polarized K3 surfaces of genus 16

Shigeru Mukai

Let T = G(2, 3;C4) be the EPS-moduli space of the twisted cubics in P3 con-
structed in [1]. T is the GIT-quotient ofC2⊗C3⊗C4 by the action ofGL(2)×GL(3)
on the first and second factors. There exist two tautological vector bundles E ,F
of rank 3, 2 and the universal homomorphism E ⊗ C4 −→ F on T . The vector
bundle E embeds T into the 21-dimensional Grassmannian G(S2C4, 3).

Theorem 1. (1) A general complete intersection S with respect to the rank 10
vector bundle E⊕2 ⊕F⊕2 in the EPS-moduli space T is a K3 surface, and det E|S
is a polarization of genus 16, that is, degree 30.

(2) Moreover, a moduli-theoretically general polarized K3 surface (S, h) of genus
16 is obtained in this way.

Let Fg be the moduli space of primitively (quasi-)polarized K3 surfaces (S, h)
of degree 2g − 2, and Sg be the (quasi-)universal family over it. The theorem
yields a dominant rational map P 36

99K F16 from a G(2, 12)-bundle P 36 over the
16-dimensional Grassmannian G(2, S2C4) of pencils of quadrics to F16.

Corollary 2. The moduli space F16 is unirational.

See [2] and [3] for the birational type of other Fg’s.
Since E|S is a stable semi-rigid vector bundle with Mukai vector v = (3, h, 5),

the rational map factors through S16.

Conjecture 3. The induced rational map P 36//PGL(4) 99K S16 between 21-
dimensional varieties is birational.

References

[1] G. Ellingsrud, R. Piene, and S.A. Strømme, On the variety of nets of quadrics defining
twisted cubic curves. In F. Ghione, C. Peskine and E. Sernesi, editors, Space Curves, Lecture
Notes in Math. 1266 (1987), Springer-Verlag, pp. 84–96.

[2] V.A. Gritsenko, K. Hulek and G.A. Sankaran, The Kodaira dimension of the moduli spaces
of K3 surfaces, Invent. math. 169 (2007), 519–567.

[3] S. Mukai, Polarized K3 surfaces of genus thirteen, In S. Mukai et. al, editors, Moduli spaces
and Arithmetic Geometry (Kyoto, 2004), Adv. Stud. Pure Math. 45 (2006), Math. Soc.
Japan and Amer. Math. Soc., pp. 315–326.

Smoothing surface singularities via mirror symmetry

Paul Hacking

(joint work with Mark Gross and Sean Keel)

We construct deformations of surface singularities determined by counts of ratio-
nal curves and holomorphic discs on a mirror surface. We prove a conjecture of
Looijenga [5, III.2.11] on smoothability of cusp singularities.

Let Y be a rational surface (smooth and compact) and B ⊂ Y a cycle of smooth
rational curves of length n such that KY +B = 0.
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Let P ∈ X be the reducible surface singularity

0 ∈ C2
x1,x2

∪ C2
x2,x3

∪ · · · ∪ C2
xn,x1

⊂ Cn
x1,...,xn

,

a cyclic union of coordinate planes in Cn. We call P ∈ X the vertex of degree n.
Let S be the affine toric variety associated to the closure of the Kähler cone

K ⊂ H2(Y,R). (Actually, K may not be rational polyhedral, in which case we
consider rational polyhedral subcones of K.)

Theorem 1. The pair (Y,B) determines a natural deformation (X ⊂ X )/(0 ∈ S)
of the vertex of degree n over the germ (0 ∈ S) with smooth general fibre.

We view this as a version of local mirror symmetry, because we expect that Y \B
and the general fibre Xt of X/S admit dual special Lagrangian torus fibrations
(the Strominger–Yau–Zaslow interpretation of mirror symmetry) and X/S defines
a map from the complexified Kähler cone of Y (the interior of S) to the moduli
space of complex deformations of Xt.

The construction uses the scattering diagram introduced by Kontsevich and
Soibelman [4] in the algebraic setting developed by Gross and Siebert [1]. It has
an enumerative description discovered by Gross, Pandharipande and Siebert [2] —
we count rational curves f : C → Y such that f−1B is a single point.

A cusp singularity is a surface singularity such that its minimal resolution has
exceptional locus a cycle of smooth rational curves. A cusp singularity admits
an infinite cyclic quotient construction as follows [3, §2]. Let P ∈ Z be a cusp
singularity and U = Z \ {P} the punctured singularity. Then U is the quotient of
an open analytic subset of the torus (C×)2 by the action of a hyperbolic element
of SL(2,Z). The dual cusp is obtained by the same construction applied to the
induced action on the dual torus. The link of the dual cusp is diffeomorphic to
that of the original cusp, but the orientation is reversed.

Corollary 2 (Looijenga’s conjecture). Let P ∈ Z be a cusp singularity. Then Z
is smoothable iff the exceptional locus of the minimal resolution of the dual cusp
lies on a rational surface as an anticanonical divisor.

Looijenga’s conjecture provides an effective algorithm to decide whether a given
cusp is smoothable, because every rational surface with anticanonical cycle is ob-
tained from a minimal surface with anticanonical cycle by a sequence of blowups
of points of the boundary.

Sketch of proof of Corollary. Let Y be a rational surface with anticanonical bound-
ary B which contracts to the dual cusp. Let X/S be the induced deformation of
the vertex. Let T ⊂ S be the toric stratum associated to the face

〈B1, .., Bn〉⊥ ∩K(Y )

of K(Y ). We show that the general fibre of X|T is isomorphic to the cusp Z. So
Z is smoothable. The converse was proved by Looijenga using Inoue surfaces. �
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Tzeng’s proof of the Goettsche-Yau-Zaslow formula on nodal curve

counting

Jun Li

Let X be a smooth algebraic surface over C and L an ample line bundle on
X . The generalized Severi problem asks for the number of r-nodal curves in a
generic r-dimensional linear subsystem of |L|. This problem has been investigated
for P2 and rational surfaces by many people, including Ran, Kontsevich-Manin,
Harris-Pandharipande, Choi, Caporaso-Harris, Vakil, etc. For general surfaces,
this problem has been investigated by Vainsencher, Kleiman and Piene, and others.

This problem took off after the work of Yau-Zaslow on enumerating the rational
curves on K3 surfaces. Their work established that the generating function of the
counting of rational curves in K3 surfaces is the dedekind η function. Inspired
by Yau-Zaslow formula, Göttsche proposed several conjectures on the number of
r-nodal curves in a general r-dimensional sublinear system in |L| for sufficiently
ample line bundles L on general surfaces.

The Göttsche conjecture for primitive classes on K3 surfaces was proved by
Bryan-Leung. The full Göttsche conjecture was proved by A-K. Liu using sym-
plectic technique. Recently, J-R. Tzeng in her thesis gave a nice algebro-geometric
proof:

Theorem 1 (Göttsche’s conjecture). For every integer r ≥ 0, there exists a
universal polynomial Tr(x, y, z, t) of degree r with the following property: given
a pair of a smooth projective surface X and a (5r − 1)-very ample line bun-
dle L on X, a general r-dimensional sublinear system in |L| contains exactly
Tr(L

2, LK, c1(X)2, c2(X)) r-nodal curves.

Let G2 = − 1
24 +

∑
n>0

(∑
d|n d

)
qn,∆(q) = q

∏
k>0(1 − qk)24 and D = q d

d q .

Write q = e2πiτ then G2, DG2 and D2G2 are quasimodular forms and ∆ is a
modular form.

Theorem 2 (Göttsche-Yau-Zaslow formula). There exist universal power series
B1, B2 in q such that

∑

r≥0

Tr(L
2, LK, c1(X)2, c2(X))(DG2(τ))

r =
(DG2(τ)/q)

χ(L)B1(q)
K2

XB1(q)
LKX

(∆(τ)D2G2(τ)/q2)χ(OX )/2
.
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Outline of the proof. The proof of Tzeng consists of three main components.
Let dr(X,L) be the number of r-nodal curves in a r-dimensional sublinear system
in |L| when L is sufficiently ample (relative to r). The first component is to express
dr(X,L) in terms of enumerative number on the Hilbert scheme of points of X .
This component was completed by Göttsche. Using this work of Göttsche, one
can define dr(X,L) without reference to sufficiently ampleness of L, though the
resulting number dr(X,L) is no longer enumerative. Nevertheless, this provides a
homomorphism

Z{[X,L]} −→ Q[[t]]×, [X,L] 7→
∑

r≥0

dr(X,L) · xr, d0(X,L) = 1.

Here Z{[X,L]} is the Abelian group generated by pairs [X,L] of smooth algebraic
surfaces and line bundles on them.

The second component of her proof is to find a structure result of the cobordism
group of the pairs. Following the work of Levine-Pandharipande, one is led to the
algebraic cobordism group of surfaces and line bundles

ω2,1 = Z{[X,L]}/R,
also introduced by Levine-Pandharipande, where [X,L] is as before and R is the
subgroup generated by double point relations.

Suppose [X0, L0], [X1, L1] and [X2, L2] are pairs of surfaces and line bundles.
The extended double point relation is defined by

[X0, L0]− [X1, L1]− [X2, L2] + [P(π), L3](1)

with the assumption that there exists projective family π : X → P1 and a line
bundle L on X such that:

(1) π−1(∞) = X1 ∪D X2 is a union of two irreducible smooth components
that intersect transversally along a smooth divisor D;

(2) X is smooth and π is smooth away from a finite fibers of π;
(3) the fiber of 0 ∈ P1 equals X0 = π−1(0), which is a smooth surface;
(4) let ij : Xj ⊂ X be the inclusion maps. Then i∗j(L) = Lj;
(5) P(π) := P(1D ⊕ NX1/D), η : P(π) → D is the projection and L3 =

η∗(L|D).

Tzeng proved a structure theorem of the cobordism group ω2,1:

Theorem 3. As vector spaces, ω2,1 ⊗Z Q ∼= Q⊕4. An integral generators are
[P2,O], [P2,O(1)], [K3,O] and [K3,O(1)].

The third component of her proof is the following factorization theorem

Theorem 4. The homomorphism Z{[X,L]} −→ Q[[t]]× defined earlier factors
through the quotient homomorphism Z{[X,L]} −→ ω2,1.

The proof uses the degeneration of Hilbert scheme of points of surfaces con-
structed by B-S. Wu, following J. Li’s work on degeneration of stable morphisms.

The Theorem 1 and 2 follow from Theorem 3 and 4, and Bryan-Leung’s work
on GW-invariants of K3 surfaces.
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Some recent progress on the rationality problem in invariant theory

Christian Böhning

(joint work with Hans-Christian Graf von Bothmer)

Let G be a connected linear algebraic group over C and V a finite dimensional
complex linear representation of G. Denote by V/G any birational model of the
field C(V )G of invariant rational functions. The problem referred to in the title is
whether V/G is rational, and under the hypotheses made, no counterexample is
known. However, if G is not assumed to be connected, there exists examples where
V/G is not even stably rational [Sa]. For more information we refer to [B09].

The talk was devoted to giving an overview of the proof of the following

Theorem 1. Let G be SL3(C) and put V (d) = Symd(C3)∨ so that

C(d) = P(V (d))/G

is the moduli space of plane algebraic curves of degree d under projectivities. Then
C(d) is rational except possibly for one of the following values for which rationality
remains unknown:

d = 6, 7, 8, 11, 12, 14, 15, 16, 18, 20, 23, 24, 26, 32, 48.

This is proven in [BvB1], [BvBK], and [Kat89] (the last reference supplies a
proof for d ≡ 0(mod3), d ≥ 210). However, the method of covariants used in
[BvB1] appeared first in [Shep], and we learnt a lot from this source.

We give a brief sketch of the pattern of the argument for d ≡ 1(mod3), d =
3n+ 1. We construct a family of covariants

Sd ∈
(
Sym4V (d)∨ ⊗ V (4)

)G
, Sd : P(V (d)) 99K P(V (4))

via the symbolical method of Aronhold and Clebsch [G-Y] and subspaces Ld =
x2n+3
1 · C[x1, x2, x3]n−2 ⊂ V (d) (x1, x2, x3 coordinates on C3) with the property

that

I3P(Ld)
⊃ IBSd
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where BSd
is the base scheme of Sd. Via inner projection from Ld we may thus

introduce a ruled structure for Sd : P(V (d)) 99K P(V (4)), i.e. view P(V (d))
birationally as a tower of Zariski-locally trivial projective bundles over P(V (4)).
Using a section of

P(V (4)) 99K P(V (4))/G

we may then introduce a ruled structure also for S̄d : P(V (d))/G 99K P(V (4))/G
and conclude by using the stable rationality of P(V (4))/G.

This, however, so far hides the main technical problem which had to be ad-
dressed in [BvB1]: one needs the genericity statement that a general projection
fibre P(Ld + Cg), g ∈ V (d), is mapped surjectively to P(V (4)) under Sd. The
difficulty in checking this comes from the fact that Ld is defined in terms of mono-
mials whereas Sd can be evaluated most conveniently on forms f ∈ V (d) which
are written as sums of powers of linear forms.

For the details of how this problem is resolved we have to refer to [BvB1],
here we just list the main ingredients in the argument in the form of key words:
interpolation polynomials, consideration of leading terms, reduction to finite fields
Fp, upper-semicontinuity over Spec(Z).
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Geometric constructions of Enriques involutions and special families of

Enriques surfaces

Klaus Hulek

(joint work with Matthias Schütt)

1. Introduction

The main purpose of this talk was to present a geometric construction of En-
riques involutions on jacobian elliptic K3 surfaces and to relate this to familiar
examples of families of Enriques surfaces with special geometric properties.

2. The construction

Let S → P1 be a rational elliptic surface with a section. S is the blow-up of P2

in nine points (possibly infinitely near). If f : P1 → P1 is a degree 2 base change
morphism which is ramified at points where the fibres of S are non-reduced, then
the resulting surface X → P1 is a jacobian elliptic K3 surface (which depends
on 10 moduli). The generic such K3 surface has Néron-Severi group NS(X) =
U ⊕E8(−2) where U denotes the hyperbolic plane and E8(−2) is the unique even
unimodular negative definite rank 8 lattice E8(−1) whose form has been multiplied
by 2. Such a K3 surface X does not admit an Enriques involution since NS(X)
does not contain the lattice U(2) ⊕ E8(−2) as a primitive sublattice. The main
point of this talk was to discuss a method to construct Enriques involutions on
subfamilies (of dimension up to 9) where one can construct Enriques involutions
geometrically.

Let ι be the deck transformstion on X and denote the hyperelliptic involution
by (−1). Then j = ι ◦ (−1) has 8 fixed points, namely the 2-torsion points on the
fibres of X which lie over the ramification points of f . Thus j defines a Nikulin
involution and the minimal model X ′ of the quotient X/〈j〉 is again a K3 surface.
We thus obtain the following diagram

X
fι
ւ ↓

fj

ց
S P1 X ′

↓
f

ւ
f

ց ↓
P = P1.

Now assume that X ′ has a section P ′ different from the 0-section and let P be
its pullback to X . By ⊞ P we denote the addition on the elliptic fibration X given
by the section P . Let

τ = ⊞ P ◦ ι ∈ Aut(X).

This is an involution which multiplies the 2-form on X by −1. If the fibres of X
over the ramification points of f are smooth, then τ is fixed point free if and only if
it does not intersect the 0-section of X on these fibres. This is equivalent to saying
that P ′ intersects the corresponding fibres on X ′ at non-identity components (in
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general these fibres will be I∗0 fibres). In this case τ is an Enriques involution, i.e.
the quotient surface Y = X/〈τ〉 is a smooth Enriques surface. We shall refer to
this construction as an Enriques involution of base change type.

3. Special families

The above approach can be used to construct several interesting families of
Enriques surfaces.

We first consider special Enriques surfaces, i.e. Enriques surfaces Y containing
a smooth rational curve R (which is then nodal, i.e. R2 = −2). The inverse image
of R on the K3 cover X of Y splits into two disjoint curves. Cossec has shown that
special Enriques surfaces admit elliptic fibrations which contain a smooth rational
curve as bisection. Pulling this back to X this becomes a section P of X and one
is exactly in the situation where the section P and the 0-section are disjoint.

In order to illustrate our method further we consider the lattice U +2E8(−1)+
〈−2M〉. This has a unique embedding into the K3 lattice LK3 = 3U + 2E8(−1).
Hence there is a 1-dimensional family of K3 surfaces whose generic element has
this Néron-Severi group.

Proposition 1. Let M ∈ N and X be a K3 surface with NS(X) = U +2E8(−1)+
〈−2M〉.

i) If M is odd, then X does not admit an Enriques involution.
ii) If M is even, then X admits an Enriques involution of base change type.

It is also possible to consider higher dimensional families with an Enriques
involution. An example is given by the lattice U + E8(−2) + 〈−2M〉 which also
admits a unique embedding into the K3 lattice. In analogy to the result above we
obtain

Proposition 2. Let M ∈ N and X be a K3 surface with NS(X) = U +E8(−2)+
〈−2M〉.

i) If M is odd, then X does not admit an Enriques involution.
ii) If M is even, then X admits an Enriques involution of base change type.

We note that Ohashi [3] has recently studied families of K3 surfaces which admit
Enriques involutions from a lattice theoretic point of view and that the above 9-
dimensional families appear in his classification. The case M = 2 is the case of
special Enriques surfaces.

The Barth-Peters family is a 2-dimensional family of Enriques surfaces which
admits a cohomologically trivial involution. This family was studied by Mukai [4],
[5] and Mukai and Namikawa [6] showed that this is the only example of Enriques
surfaces which admit a cohomologically trivial involution. One can show that this
family also fits into our framework. In fact, it can be constructed by starting with
the rational elliptic surface given by the Weierstrass equation

y2 = x3 + x2 + sx.

Then P = (0, 0) defines a 2-torsion section on S whose pullback to X defines the
required Enriques involution, as P also descends to a section P ′ on the quotient
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X ′. The two parameters from the base change give rise to the two parameters of
the Barth-Peters family. Moreover, the 1-dimensional families from Proposition 1
with M = 2, 4 can be identified as subfamilies of the Barth-Peters family.

4. Brauer groups

An Enriques surface Y has Brauer group Br(Y ) = Z/2Z. If π : X → Y is the
K3 cover then one has the two possibilities that either π∗ Br(Y ) = Z/2Z or that
π∗ Br(Y ) = 0. The latter happens on a countable number of proper subvarieties in
the moduli space on Enriques surfaces. Beauville has asked whether an example
of such an Enriques surface can be found over the rationals. He has also shown
the following

Theorem 3 (Beauville). In the above notation, the following statements are equiv-
alent:

i) π∗ Br(Y ) = {0} ⊂ Br(X);
ii) There is a divisor D on X such that τ∗D = −D in NS(X) and D2 ≡ 2

mod 4 (where τ is the Enriques involution).

It is then easy to see that K3 surfaces with NS(X) = U + 2E8(−1)+ 〈−4M〉+
〈−2N〉 for N > 1 odd admit an Enriques quotient Y with the property that the
pullback of the Brauer group to the K3 cover is trivial. Since X is a singular
K3 surface, these examples are defined over number fields (see also [2]). For
M = 1, N = 3 one can show that X and Y have a model over the rationals, thus
giving a positive answer to Beauville’s question.
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The Deligne-Mumford compactification of Hilbert modular varieties

Martin Möller

(joint work with Matt Bainbridge)

Each Hilbert modular surface has a beautiful minimal smooth compactification
due to Hirzebruch. Higher-dimensional Hilbert modular varieties instead admit
many toroidal compactifications none of which is clearly the best. In the talk, we
describe a canonical compactifications of closely related varieties, namely the real
multiplication locus RMO in the moduli space Mg of genus g Riemann surfaces.
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RMO is the locus of Riemann surfaces, whose Jacobian has real multiplication
by an order O in a totally real field of degree g over Q. For g = 2 and g = 3 we
give a complete characterization of the boundary components. The situation for
g ≥ 4 is more complicated due to the Schottky problem. We show a containment
statement that yields a sharp upper bound for possible boundary components.

The original motivation was to understand (and classify) Teichmüller curves
in genus three. The cross-ratio equation in the main theorem gives an enormous
constraint for the existence of these Teichmüller curves. We refer to [1] for details
on how far this classification problem has been pushed in g = 3. The main theorem
also is likely to have applications to estimating the dimension of the intersection
of Hilbert modular varieties with Mg for g ≥ 4 as well as to the existence question
of Shimura curves in Mg for large g.

The main idea to understand ∂RMO is to use not only the curve and its Ja-
cobian with real multiplication but also the differential forms that are eigenforms
for O-multiplication. The number theory of the residues of the eigenforms at the
nodes of a stable curve governs the question whether this stable curve lies in the
boundary of RMO. In order to state the main theorem, we thus do not work in
Mg but rather in ΩMg, the total space of the relative dualizing sheaf over Mg.
We denote by EO ⊂ ΩMg the space of eigenforms for real multiplication.

Consider the quadratic map Q : F → F , defined by

(1) Q(x) = NF
Q (x)/x.

We say that a finite subset S ⊂ F satisfies the no-half-space condition if the interior
of the convex hull of Q(S) in the R-span of Q(S) in F ⊗Q R contains 0.

It is well known that every stable curve which is in the closure of the real
multiplication locus RMO ⊂ Mg has geometric genus 0 or g. Our description of
the closure of the eigenform locus for the interesting special case g = 3 reduces to
the following theorem.

Theorem 1. A geometric genus 0 stable curve X together with a section ω of the
dualizing sheaf of X lies in the boundary of the eigenform locus ΩEO if and only
if:

• The set of residues of ω is a multiple of ι(S), for some subset S ⊂ F ,
satisfying the no-half-plane condition and spanning an ideal I ⊂ O, and
for some embedding ι : F → R.

• If Q(S) lies in a Q-subspace of F , then an explicit additional equation,
involving cross-ratios of the nodes of X, is satisfied.

Existence questions and counting problems for the intersection of RMO with
the various boundary components, depending on O (or the size of its discriminant)
and the topology of the stable are very interesting and to a large extent open even
for g = 3. We refer to [1] for details and the relation to counting the intersections
of geodesic flats in the symmetric space SL2(Z)\SL2(R)/SO2(R).
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On the moduli space of spin curves

Alessandro Verra

(joint work with Gavril Farkas)

The purpose of this report is to describe some new results, jointly obtained by
Gavril Farkas and the author, on the Kodaira dimension of the moduli space of
spin curves; as well as on further global properties of these spaces in low genus,
like uniruledness or unirationality.
As is well known an even (odd) spin curve of genus g is a pair (C, η) such that C is
a smooth, irreducible projective curve and η is an even (odd) theta characteristic
on C. We will assume that C is defined over C.
For every g ≥ 1 the moduli space of spin curves of genus g splits in two irreducible
connected components S+

g and S−
g , which respectively parametrize even and odd

spin curves. Suitable compactifications S+

g and S−

g of the moduli S+
g and S−

g are
also well known, see [C].
Adding to the above mentioned new results some older ones, the picture on the

Kodaira dimension of S+

g and S−

g , and on uniruledness / unirationality questions
in low genus, appears quite complete. Such a picture can be summarized as follows.

Theorem 1. S+

g has Kodaira dimension:

◦ 3g − 3 for g ≥ 9 [F],
◦ zero for g = 8 [FV1]
◦ negative for g ≤ 7.

Moreover the following results are contained in [FV2]:

Theorem 2. S−

g has Kodaira dimension:

◦ 3g − 3 for g ≥ 12,
◦ negative for g ≤ 7.

Theorem 3.

◦ S+
g is uniruled for g ≤ 7,

◦ S−
g is uniruled for g ≤ 11.

◦ S−
g is unirational for g ≤ 9.

Among the previous results the case of S+

8 is quite appealing. Here the transition
from the uniruled/unirational case to the case where the moduli space is of general
type has an intermediate step, because

kod(S+

g ) = 0
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for g = 8. A sketch of the proof of this property goes as follows. It is due to Farkas

that the canonical class of the canonical divisor K
S

+
8
of S+

8 contains an effective

divisor, [F]. Namely one has

K
S

+
g

≡ cM + 8Θnull +
∑

i=1...4

(aiAi + biBi)

with ai, bi, c > 0. Here Ai, Bi,M,Θnull are the following divisors:

- Ai, Bi, i = 1 . . . 4, are the standard boundary divisors on S+

8 .

- Let π : S+

8 → M8 be the forgetful map. Then M is the pull-back by π of the
divisor in M8 parametrizing plane septic curves of genus 8.
- Finally Θnull parametrizes even spin curves (C, η) such that h0(η) > 0.

To prove that the above effective canonical divisor of S+

8 has Kodaira dimension
zero, it suffices to apply to it the following elementary remark:

Remark 4. Let D = D1 + · · · + Dm be a sum of effective, integral Q-Cartier
divisors D1, . . . , Dm on an integral variety X . Assume that each Di is covered by
a family of integral curves Ri such that Ri · Dj = 0 for i 6= j and Ri · Di < 0.
Then D has Kodaira dimension zero.

To apply the remark to the divisors M , Θnull, Ai and Bi one needs to exploit
deeply the geometry of canonical curves of genus 8.
One of the steps is the construction of a family of covering curves R of Θnull with
the property prescribed by the remark. To this purpose the following theorems
are proved in [FV1], which imply the existence of the required family of curves R
in the divisor Θnull:

Theorem 5. Let (C, η) be a general even spin curve such that h0(η) = 2. Then
C ⊂ S, where S is a K3 surface of Picard number two such that

Pic S ∼= Z[F1]⊕ Z[F2]

and F 2
i = 0, i = 1, 2, and F1F2 = 7. Moreover F1 + F2 is very ample and

C ∈| F1 + F2 | .
Furthermore it holds

η ∼= OC(F1) ∼= OC(F2).

Note that the latter condition implies that C ∈ φ∗ | OP1×P1(1, 1) |, where φ : S →
P1 × P1 is the morphism defined by the the product of the maps defined by the
elliptic pencils | F1 | and | F2 |. In particular C moves in a pencil

P ⊂ φ∗ | OP1×P1(1, 1) | .
Let D ∈ P be general, it is easy to see that then ηD := OD(F1) ∼= OD(F2) is
an even theta characteristic such that h0(ηD) = 2. Therefore P defines a family

{(D, ηD), D ∈ P} of even spin curves. The image of P in S+

8 is a rational curve

R ⊂ Θnull

passing through the moduli point of (C, η). The conclusion is the following:
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Theorem 6. R ·Θnull = −1 and R ∩ Ai = R ∩Bi = R ∩M = ∅.
Similar results can be proved, with similar types of geometric constructions, for
suitable family of integral rational curves covering Ai, Bi, M .

Hence S+

8 has Kodaira dimension zero.
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Functoriality of Gromov–Witten theory under crepant transformation

Yuan-Pin Lee

(joint work with H.-W. Lin, C.-L. Wang)

Let X be a nonsingular projective variety, and ψ : X → X̄ be a flopping con-
traction with ψ̄ : Z → S as the restriction to the exceptional loci. Assume the
exceptional loci have the following structure: There are two rank r + 1 bundles
F, F ′ over S such that Z = PS(F ) and the normal bundle NZ|X

∼= O(−1)⊗ ψ̄∗F ′.
Then Mori theory tells us that there is a flop X 99K X ′, which is called an ordinary
Pr flop.

In this project, we proved

Theorem 1. [1] For an ordinary flop, the graph closure induces an equivalence of
Chow motives of X and X ′. In particular, the equivalence preserves the intersec-
tion pairing.

However, the ring structure is not invariant under the above equivalence, as can
be computed in simple examples. What is surprising about the next result is that
the quantum ring structure becomes invariant after an analytic continuation.

Theorem 2. The quantum ring (small or big) is invariant under the ordinary flops
via the above identigication, after a (necessarily non-trivial) analytic continuation
on the extended Kähler moduli space, “modelled” on the Euler series

∑

d∈Z

qd = 0,

along the direction of the flopped curve class.

In fact, this result holds for higher genus as well.

Theorem 3. [1, 2, 3] The full Gromov–Witten theory is invariant under the or-
dinary flops via the above identification, after an analytic continuation on the
extended Kähler moduli space.
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A contraction is of Mukai type if Z ∼= PS(F ) such that NZ|X
∼= T ∗

Z|X . The

corresponding flop X 99K X ′, whose existence is again guaranteed by the Mori
theory, is called a Mukai flop.

Theorem 4. [1] A Mukai flop is a slice of an ordinary flop. It preserves the
diffeomorphism type, Hodge structure, and the full Gromov–Witten theory.

In the literature, the Crepant Transformation Conjecture are usually established
in the following two categories. The first category contains those examples where
the global structure of X and X ′ are explicit and computable (toric, finite group
quotients of Cn etc.), and the proof goes by more or less computing both sides
and equating them. The second one is for those the Gromov–Witten invariants
associated to the extremal ray vanishes (e.g. Mukai flops).

In [1, 2], we establish a class of crepant transformation (i.e. K-equivalence)
where the global structure of the varieties are non-explicit. In [3], we generalize this
to the cases where even the local structure of exceptional loci are non-explicit. Note
that Gromov–Witten invariants are invariant under (symplectic) deformation, and
the above results naturally generalize to those cases.

The main ingredients in the proof are

• Explicit computation of Chow rings of projective bundles under a flop.
• Degeneration formula and Virtual localization.
• Classification of algebraic cobordism of vector bundles on varieties [4].
• Gamma function regularization and analytic continuation.

These consist of parts of a joint project with H.-W. Lin and C.-L. Wang from
National Taiwan University.
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Virtual push-forwards

Cristina Manolache

Ideally, we would like to give an answer to the following question:

If we are given a morphism of smooth projective varieties p : X → Y and we
know the Gromov-Witten invariants of Y can we compute (some of) the Gromov-
Witten invariants of X?

One way of attacking this problem is to try to compare the virtual classes (see [1],
[6]) of the moduli spaces of stable maps M̄g,n(X, β) and M̄g,n(X, p∗β). One of the
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easiest examples of such a comparison is the following:
Let P̃n be a blow up of a projective space Pn in a smooth subvariety. Then, the
projection p : P̃n → Pn induces a map between the moduli spaces of stable maps

p̄ : M̄0,n(P̃n, d̃) → M̄0,n(P
n, d)

where d̃ is the class of a strict transform of a general line in Pn of degree d. Using
the fact that M̄0,n(P

n, d) is smooth of the expected dimension, one can easily see
that

p̄∗([M̄0,n(P̃n]virtd̃) = [M̄0,n(P
n, d)]virt.

Using the projection formula (see [4]) one obtains that for any γ ∈ A∗(Pn) we have

ev∗i p
∗γ · p̄∗([M̄0,n(P̃n]virtd̃) = ev∗i γ · [M̄0,n(P

n, d)]virt.

Having this example in mind, we can move to a more general context. Let us
slightly change a definition of Gathmann (see [2])

Definition 1. Let p : F → G be a proper morphism of stacks possessing virtual
classes [F ]virt ∈ Ak1(F ) and [G]virt ∈ Ak2 (G) with k1 ≥ k2 and let [G]virt1 , ..., [G]virts ∈
Ak2(G) be irreducible cycles such that [G]virt = m1[G]

virt
1 + ...+ms[G]

virt
s for some

m1, ...,ms ∈ Q. Let γ ∈ Ak3(F ), with k3 ≤ k1 − k2 be a cohomology class. We
say that p satisfies the virtual push-forward property for [F ]virt and [G]virt if the
following two conditions hold:
1. If the dimension of the cycle γ · [F ]virt is bigger than the virtual dimension of
G then p∗(γ · [F ]virt) = 0.
2. If the dimension of the cycle γ · [F ]virt is equal to the virtual dimension of G
then p∗(γ · [F ]virt) = n1[G]

virt
1 + ...+ ns[G]

virt
s for some n1, ..., ns ∈ Q.

If moreover, the following condition holds, we say that p satisfies the strong virtual
push forward property for [F ]virt and [G]virt:
2′. If the dimension of the cycle γ · [F ]virt is equal to the virtual dimension of G
then p∗(γ · [F ]virt) is a scalar multiple of [G]virt.

We are interested in finding conditions for a morphism p : F → G to satisfy the
(strong) virtual push-forward property. For this let us first give a definition.

Definition 2. Let p : F → G be a proper morphism of stacks possessing virtual
classes of virtual dimensions k1 respectively k2 with k1 ≥ k2 and let us assume
that we have a morphism of obstruction theories ϕ : p∗E•

G → E•
F . If the relative

obstruction theory induced by ϕ (see [7], Construction 2) is perfect (in the sense
of [1]), then we call p a virtually smooth morphism.

Using the properties of virtual classes in [3] and [7] we obtain the following
results.

Lemma 3. Let p : F → G be a proper virtually smooth morphism of Deligne-
Mumford stacks. Then p satisfies the virtual push-forward property.

Theorem 4. Let p : F → G be a virtually smooth morphism. If G is connected,
then p satisfies the strong virtual push-forward property (in homology).
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These results have applications in Gromov-Witten theory: blow-ups (see [5],
[7]), smooth fibrations p : X → Y ). One question that arises naturally is: “When
is a moduli space of stable maps connected?” and “Are there cases in which we
can replace the connectivity by a weaker condition?”
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Hodge classes on families of Calabi-Yau manifolds

Stefan Müller-Stach

(joint work with Pedro Luis del Angel, Duco van Straten and Kang Zuo)

Zucker has developed a Dolbeault version of L2-cohomology for variations of Hodge
structures over curves. This was later extended by Jost, Yang and Zuo to compact-
ifiable Kähler manifolds. The construction uses the monodromy weight filtration.
In the talk smooth families f : X → S of Calabi-Yau 3-folds over a (non-compact)
curve S are discussed. In joint work with del Angel, van Straten and Zuo we have
computed formulas to obtain L2-Hodge numbers hp,q (p + q = 4) of H1

L2(S, V ),
where V = R3f∗C. Such formulas are interesting because the Hodge number h2,2

allows to predict the existence of algebraic cycles in CH2(X) which have non-
trivial Abel-Jacobi map on each fibre. Such classes occur naturally in open string
theory. Our results are published in Acta Vietnamica Vol. 35, pp. 1-16 (2010). If
the fibers are elliptic curves or K3 surfaces such formulas are also interesting and
can be obtained in the same way.

Cohomology of Moduli Spaces and Modular Forms

Gerard van der Geer

(joint work with Jonas Bergström and Carel Faber)

On the one hand we are interested in the cohomology of moduli spaces, such
as the moduli Mg of curves of genus g or the moduli Ag of principally polarized
abelian varieties of dimension g for small values of g, and on the other hand in
modular forms on SL(2,Z) or on Sp(2g,Z) for small values of g. There is an
intimate relation between the two that can be used to let information flow both
ways. These moduli spaces are defined over Z and the idea is that one can study
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the cohomology over Q by looking at the fibre Mg ⊗ Fp with Fp a finite field and
using comparison theorems; we get information about the ℓ-adic étale cohomology
(ℓ 6= p) of Mg ⊗ Fp by counting points over finite fields.

Let us start with g = 1. The space Sk of cusp forms of weight k on SL(2,Z) has
a cohomological interpretation: consider the universal elliptic curve π : X1 → A1

and the local system V = R1π∗Q of rank 2. For a ∈ Z≥1 we have the local system
Va = Syma(V ) of rank a+ 1. We look at the Euler characteristic

ec(A1, Va) =

2∑

i=0

(−1)i[Hi
c(A1, Va)] ,

where the subindex c refers to compactly supported cohomology and the square
brackets indicate that we consider the cohomology in an appropriate Grothendieck
group of mixed Hodge modules or Galois representations (for the ℓ-adic counter-

part V
(ℓ)
a ). Note that the cohomology vanishes for a odd.

Then we have ec(A1, Va) = −S[a+ 2]− 1 for even a ≥ 2 with S[k] the motive
associated to the space of cusp forms Sk as constructed by Scholl. The Eichler-
Shimura congruence relation then implies that the trace of Frobenius on H1

c (A1 ⊗
Fp, V

(ℓ)
a ) equals 1 + tr(T (p), Sa+2), that is, 1 plus the trace of the Hecke operator

T (p) on Sa+2. After enumerating elliptic curves over Fp (with the order of their
automorphism groups) up to isomorphism over Fp and counting their number of
rational points one can thus calculate the trace of the Hecke operator T (p) on Sk

for all k ≥ 4. Of course, there are other ways to calculate these.
We applied this approach to genus 2 by looking at the universal abelian surface

π : X2 → A2, the local system V = R1π∗Q and the symplectic local systems
Vλ with λ = (a, b) associated to a representation of Sp(4,Q) of highest weight
a − b, b. We write ec(A2, Vλ) =

∑
i(−1)i[Hi

c(A2, Vλ)] for the Euler characteristic.
By a beautiful formula of Getzler the cohomology of M2,n can be expressed in the
cohomology of such local systems on M2, see [7]. So we cover the spaces M2,n as
well.

Note that the cohomology vanishes if a+ b is odd. A result of Faltings tells us
that Hi(A2, Vλ) and Hi

c have mixed Hodge structures and Hi
! = Im(Hi

c → Hi)
has a pure Hodge structure. Moreover, if λ is regular, i.e., a > b > 0, then if
Hi

! (A2, Vλ) 6= (0) we have i = 3. The first step in the Hodge filtration F a+b+3 ⊂
F a+2 ⊂ F b+1 ⊂ F 0 = H3

! (A2, Vλ) can be interpreted as a space of vector-valued
Siegel modular cusp forms:

F a+b+3 ∼= Sa−b,b+3,

with the factor of automorphy being Syma−b(Cτ+D) det(Cτ+D)b+3 for a matrix
τ = (A,B;C,D) ∈ Sp(2g,Z).

If we want to use the traces of Frobenius obtained by counting over finite fields
to calculate the traces of the Hecke operators as we did for g = 1 we face for
g = 2 two problems. First we must calculate the Eisenstein cohomology, that
is, the kernel

∑
(−1)i ker(Hi

c → Hi); this we did in [6, 4]. Second, there are
contributions that do not see the first and the last part of the Hodge filtration
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(endoscopy). We gave a conjectural formula for this in [4]. In [9], Weissauer shows
that the conjecture (in the case of a regular weight) can be deduced from earlier
work of his. Assuming this the formula for the trace of the Hecke operator T (p)
on Sa−b,b+3 is

−trace of F on ec(A2 ⊗ Fp, V
ℓ
a,b) + trace of F on e2,extra(a, b)

with F Frobenius and e2,extra(a, b) given by

sa−b+2 − sa+b+4(S[a− b + 2] + 1)Lb+1 +

{
S[b+ 2] + 1 a ≡ 0(mod2)

−S[a+ 3] a ≡ 1(mod2),

and L the Lefschetz motive and sk = dimSk. With this formula and our counting
we can calculate the trace of T (p) on the spaces Sj,k for all j and k. The results
it gives agree with everything we know about g = 2 modular forms. Inspired by
our results Harder formulated a conjecture about congruences between g = 1 and
g = 2 modular forms and we obtained a lot of numerical evidence for this, see
[8, 6]. All of these things have been generalized to g = 2 and level 2 in [1].

What about g = 3? There we have a degree 2 map of stacks M3 → A3.
We now have local systems Va,b,c parametrized by triples (a, b, c) with a ≥ b ≥
c ≥ 0. We are interested in vector-valued Siegel modular cusp forms of weight
(a − b, b − c, c + 4), i.e. holomorphic functions f : H3 → W on the Siegel upper
half space H3 to a finite-dimensional complex vector space W satisfying

f((aτ + b)(cτ + d)−1) = ρ(cτ + d)f(τ)

where ρ is the irreducible representation of GL(3,C) on W of highest weight a−
b, b− c, c+ 4.

We now have the following conjectural formula for the trace of the Hecke oper-
ator T (p) on the space of cusp forms Sa−b,b−c,c+4:

trace of Frobenius on ec(A3 ⊗ Fp), Va,b,c)− e3,extra(a, b, c),

with e3,extra(a, b, c) given by

−ec(A2, Va+1,b+1)− e2,extra(a+ 1, b+ 1)⊗ S[c+ 2]

+ec(A2, Va+1,c) + e2,extra(a+ 1, c)⊗ S[b+ 3]

−ec(A2, Vb,c)− e2,extra(b, c)⊗ S[a+ 4]

The evidence we have is overwhelming and includes the following. It fits all the
calculations we did over finite fields. The numerical Euler characteristic

∑
(−1)i dimHi

c(A3, Va,b,c)

is known by [2, 3] and this fits the results. We find that for a+b+c ≤ 60 the space
Sa−b,b−c,c+4 contributes a rank that is always divisible by 8. For a = b = c it fits
with the dimension formula for dimS0,0,c+4 for scalar-valued modular forms due
to Tsuyumine. Moreover, we observed Harder-type congruences between g = 1
and g = 3 modular forms. We also have a precise conjectural formula for all the
lifts from g = 1 to g = 3.
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To illustrate this, assuming the conjecture we find for the eigenvalues of T (p)
with p = 2, 3, 5 and 7 on S3,3,7 the values 23 · 33 · 5, 26 · 34 · 5 · 7, 23 · 33 · 52 · 7 · 9749
and 28 · 53 · 72 · 8887.

One can also look at the cohomology ofM3 instead of A3. The degree 2 covering
M3 → A3 is ramified along the hyperelliptic locus. Unlike A3 the moduli space
M3 can have cohomology for a+ b+ c odd. This is related to Teichmüller modular
forms that do not come from Siegel modular forms. An example is the modular
form χ9 =

√
χ18 onM3 that vanishes on the hyperelliptic locus and was studied by

Ichikawa; we see it occurring in the cohomology of the local system V5,5,5 on M3.
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Stability conditions for the local projective plane

Arend Bayer

(joint work with Emanuele Macr̀ı)

I discussed our results [BM09] on the space of stability conditions on the derived
category of the local P2, its group of autoequivalences, and its relation to mirror
symmetry.

Motivation

Consider a projective Calabi-Yau threefold Y containing a projective plane Ideally,
one would like to study the space of Bridgeland stability conditions on its derived
category Db(Y ). Understanding the geometry of this space would give insights on
the group of autoequivalences of Db(Y ) and give a global mirror symmetry picture.
Understanding wall-crossing for counting invariants of semi-stable objects would
have many implication for Donaldson-Thomas type invariants on Y .
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However, no single example of stability condition on a projective Calabi-Yau
threefold has been constructed. Instead, we study the full subcategory Db

P2(Y )
of complexes concentrated on P2 ⊂ Y . Equivalently, we study the “local P2”:
the total space X = TotOP2(−3) of the canonical bundle of P2, and its derived
category D0 := Db

0(X) of coherent sheaves on X supported on the zero-section.
The space Stab(D0) of stability conditions on D0 is a three-dimensional complex

manifold, coming with a local homeomorphism Z : Stab(D0) → Hom(K(D0),C) ∼=
C3. The goal of this article is to study the space Stab(D0) as a test case for the
properties we would expect in the case of Y ; similar local example have been
studied by Toda in [Tod08, Tod09].

This space Stab(D0) was first studied in [Bri06], where the author described
an open subset, and conjectured a close relation to the Frobenius manifold of
the quantum cohomology of P2. While this conjecture (and questions related to
wall-crossing on Stab(D0)) remains open, our results give a good description of a
connected component of Stab(D0), explain its relation to autoequivalences of D0,
and do give a global mirror symmetry picture.

Results

Our starting point is an explicit description of the “geometric chamber” U , which
consists of stability conditions where all skyscraper sheaves Ox of points x ∈ P2

are stable.
For complex numbers a, b ∈ C with ℑa > 0 we define a map Z : Coh0X → C

given by

Za,b(E) = −ch2(E) + a · deg(E) + b · rank(E).

For a ≈ +i · ∞ and b ≈ +∞ one should think of this as a deformation of the map
Z(E) = i · deg(E) + rank(E) that can be used to define slope-stability for sheaves

on X . Let B = −ℑb
ℑa . Then a sheaf of slope µ = deg(E)

rank(E) will have Za,b(E) in

the upper half-plane if and only if µ > B. This motivates the use of the “tilted”
subcategory A♯(B) ⊂ D0 given by the following definitions:

Coh>B = {F ∈ Coh0X : Any quotient of F has slope µ > B}
Coh≤B = {F ∈ Coh0X : Any subsheaf F has slope µ ≤ B}

A♯(B) =
{
E ∼=

(
E−1 d→E0

)
∈ D0 : kerd ∈ Coh≤B, cokd ∈ Coh>B

}

It is a standard fact that A♯(B) is again an abelian category.
Then for any E ∈ A♯(B) the complex number Za,b(E) will automatically lie

in the closure of the upper half-plane. If we additionally require inequalities for
a, b (coming from the Chern classes of stable vector bundles of slope µ = B), then
Za,b(E) will be in the semi-closed upper half-plane {z : z ∈ R>0 ·eiπφfor φ ∈ (0, 1]}.
This ensures that we get a well-behaved notion of stability in the category A♯(B)

by comparing the phase of Za,b(E) with the phases Za,b(E
′) of subobjects E′ of

E. Proving the existence of Harder-Narasimhan filtrations yields the first part of:
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Theorem 1. Whenever a, b satisfy above-mentioned inequalities, the above con-
struction produces a stability conditions on D0. Further, any stability condition
for which skyscraper shaves Ox of points are stable must be (up to rescaling) of
this form.

The exact form of the inequalities follows from the classical results by [DLP85]
on Chern classes of stable vector bundles on P2.

Let U be the closure of U in Stab(D0). One can directly construct every wall
of U , i.e. the components of the boundary ∂U = U \ U , using exceptional vector
bundles on P2. We use this to prove the following result:

Theorem 2. The translates of U under spherical twists at exceptional vector
bundles on P2 cover a connected component Stab†(D0) of Stab(D0).

The translates of U are disjoint, and each translate is a chamber on which the
moduli space of stable objects of class [Ox] is constant.

In [Bri06], Bridgeland described an open (but not dense) subset Staba of Stab
†(D0)

consisting of “algebraic” stability conditions that can be described in terms of quiv-
ers and exceptional collections on P2. By combining this description of Staba with
the description given by Theorem 2, we establish:

Theorem 3. The connected component Stab†(D0) is simply-connected.

Using Theorem 2 we can classify all autoequivalences Aut†(D0) which preserve

the connected component Stab†(D0):

Theorem 4. The group Aut†(D0) is isomorphic to a product Z×Γ1(3)×Aut(X).

Recall that Γ1(3) is isomorphic the group on two generators α and β subject to

the relation (αβ)3 = 1. As a subgroup of Aut†(D0) it is generated by the spherical
twist at the structure sheaf OP2 of the zero-section P2 →֒ X , and by the tensor
product with OX(1); this was already observed in [Asp05].

The mirror partner of X is the universal family over the moduli space MΓ1(3)

of elliptic curves with Γ1(3) level structures.
1 Let M̃Γ1(3) be the universal cover,

with the fundamental group Γ1(3) acting as the group of deck transformations.

Theorem 5. There is an embedding I : M̃Γ1(3) →֒ Stab†(D0) which is equivariant
with respect to the Γ1(3)-action.

Here the Γ1(3)-action on Stab†(D0) is induced by the subgroup Γ1(3) ⊂ Aut†(D0)
identified in Theorem 4.

On the level of central charges, the embedding is given in terms of a Picard-

Fuchs differential equation: for a fixedE ∈ D0, the function (Z◦I)(z)(E) : M̃Γ1(3) →
C is a solution of the Picard-Fuchs equation (i.e., a period in the mirror construc-
tion). In particular, while classical enumerative mirror symmetry gives an inter-
pretation of their formal expansions at special points of M in terms of genus-zero

1This is a little too simplistic; more accurately, the mirror is a family an open subfamily of
punctured quasi-projective elliptic curves.
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Gromov-Witten invariants on Y , the space of stability conditions allows us to in-
terpret solutions of Picard-Fuchs equations globally. The result is motivated by
the conjectural picture for projective Calabi-Yau threefolds proposed in [Bri09,
Section 7], and is based on computations of the monodromies of the Picard-Fuchs
equation in the mathematical physics literature [AGM94, Asp05, ABK08].
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Connectivity properties pertaining to Ag and Mg

Eduard Looijenga

(joint work with Wilberd van der Kallen)

We work over C throughout. Let us first recall that if A is a principal polarized
abelian variety of dimension g > 0, then the collection of its nonzero abelian
subvarieties on which the polarization is principal is finite and that if p(A) is the
collection of its minimal elements, then the natural map

∏
P∈p(A) P → A is an

isomorphism. We say that A is decomposable if p(A) 6= {A}. Such A define a
closed subvariety Ag,dec of the coarse moduli space Ag.

Theorem 1. We have Hk(Ag,Ag,dec;Q) = 0 for k ≤ g − 2.

Here is a stronger statement.

Theorem 2. Regard Ag as the orbit space of the Siegel upper half space Hg by

the group Sp(2g,Z). Then a complex-analytic cover (Ãg, Ãg,dec) → (Ag,Ag,dec)
defined by a torsion free subgroup Γ ⊂ Sp(2g,Z) is (g − 2)-connected.
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This indeed implies Theorem 1: take Γ torsion free of finite index in Sp(2g,Z)

and observe that Hk(Ag,Ag,dec;Q) is a quotient of Hk(Ãg , Ãg,dec;Q).
Let us write Hg,dec for the locus of decomposables in Hg. Theorem 2 in turn

follows from

Theorem 3. The subset Hg,dec of Hg is a closed analytic subvariety that has the
homotopy type of a bouquet of (g − 2)-spheres.

For this means that Hg,dec may be regarded as the (g − 2)-skeleton of a Γ-
equivariant cellular decomposition of the contractible Hg. More precisely, Hg is
obtained from Hg,dec by successively attaching cells of dimension ≥ g−1 to Hg,dec

in a Γ-equivariant manner in such a way that no nontrivial element of Γ fixes a
cell. This implies that Ãg is obtainable from Ãg,dec by attaching cells of dimension

≥ g − 1 and so (Ãg, Ãg,dec) is (g − 2)-connected.

An irreducible component of Hg,dec defines a decomposition of (Z2g, 〈 , 〉) into
two perpendicular unimodular summands; if the genera of these summands are g′

and g′′ (so that g = g′ + g′′), then this component is isomorphic to Hg′ × Hg′′ .
Conversely, any such decomposition of (Z2g, 〈 , 〉) determines an irreducible compo-
nent of Hg,dec. An intersection of such irreducible components is given by a (finite)
decomposition of Z2g into pairwise perpendicular proper unimodular sublattices
(to which we shall refer as a proper unimodular decomposition of (Z2g , 〈 , 〉) and is
isomorphic to the corresponding product of Siegel upper half spaces. In particular
it is contractible. We conclude that the covering of Hg,dec by its irreducible com-
ponents is a closed covering that satisfies the Leray property. The nerve of this
covering is given by the poset of unimodular decompositions of (Z2g, 〈 , 〉), with ≤
standing for “is refined by”. So by Weil’s nerve theorem, 3 follows from

Theorem 4. The poset of proper unimodular decompositions of (Z2g, 〈 , 〉) is
spherical of dimension g − 2.

This theorem is derived with the help of a standard argument from.

Theorem 5. The poset of proper unimodular sublattices of (Z2g , 〈 , 〉) (with ≤
being ‘⊆’) is spherical of dimension g − 2.

This is what we regard in this context as our main result. It is proved with
the help of a nerve theorem for posets that we obtain using techniques introduced
by Quillen and Maazen. Both statements and proofs of Theorems 4 and 5 remain
valid if we replace in (Z2g , 〈 , 〉), the base ring Z by any Euclidean ring R. This
enables us to improve somewhat on earlier work of Charney:

Theorem 6. If R is an Euclidean ring, then the natural map Hi(Sp(2g,R),Z) →
Hi(Sp(2g + 2, R),Z) (induced by the obvious inclusion) is an isomorphism for
g ≥ 2i+ 3 and surjective for g = 2i+ 2.

These results have a counterpart for Mg. Let Mc
g ⊃ Mg parameterize the sta-

ble genus g curves with compact Jacobian so that ∆c
g := Mc

g −Mg parameterizes
the singular ones among them.
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Theorem 7. We have Hk(Mc
g,∆

c
g;Q) = 0 for k ≤ g − 2.

This is derived in a similar fashion as we did for the pair (Ag,Ag,dec) via a
chain of intermediate results that starts with:

Theorem 8. The separating curve complex in genus g is (g − 3)-connected.

We recall the definition of this complex. Fix a closed connected, orientable
surface Sg of genus g. An embedded circle α ⊂ Sg is called a separating curve
if Sg − α has two connected components, none of which is an open disk. It is
clear that such an α defines a unimodular decomposition of H1(Sg;Z) with two
(nonzero) summands. The separating curve complex Csep(Sg) has as its vertices
the isotopy classes of separating curves and we stipulate that a finite nonempty
set of these spans a simplex of Csep(Sg) if its elements can be simultaneously be
represented by curves that are pairwise disjoint. Special cases of Theorem 8 were
previously obtained by Farb and Ivanov (0-connectivity for g ≥ 3), Putman (1-
connectivity for g ≥ 4) and Hatcher-Vogtmann (⌊ g−3

2 ⌋-connectivity). The proof of
Theorem 8 is inductive in nature and this forces us to prove such a statement also
about the case of pointed surfaces (a statement, whose formulation is not quite
obvious, see [1, Theorem 5]). Other major input is a theorem of Harer.

Observe that the complex Csep(Sg) is acted on by the mapping class group
Γg. Now let us recall that the natural map Γg → Sp(H1(Sg;Z)) ∼= Sp(2g,Z) is
surjective. Its kernel, here denoted Tg, is called the Torelli group. We have a
natural poset map from the barycentric subdivision of Csep(Sg) to the poset of
proper unimodular decompositions of H1(Sg;Z). This map is easily seen to factor
through Tg\Csep(Sg) and it can be shown that the resulting map from Tg\Csep(Sg)
to the poset of proper unimodular decompositions of H1(Sg;Z) (or rather, its
geometric realization) is a Sp(2g,Z)-equivariant homotopy equivalence.

References

[1] Eduard Looijenga: Connectivity of complexes of separating curves, available at
arXiv:1001.0823.

[2] Wilberd van der Kallen, Eduard Looijenga: Spherical complexes attached to symplectic
lattices, available at arXiv:1001.0883.

The connected components of the moduli spaces containing the

Burniat surfaces

Fabrizio Catanese

(joint work with Ingrid Bauer)

1. What is.. a Burniat surface?

The so called Burniat surfaces were constructed by Pol Burniat in 1966 ([3]),
where the method of singular bidouble covers was introduced in order to solve the
geography problem for surfaces of general type.
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The special construction of surfaces with geometric genus pg(S) = 0, done in
[3], was brought to attention by Chris Peters, who explained Burniat’s calculation
of invariants in the modern language of algebraic geometry, and nowadays the
name of Burniat surfaces is reserved for these surfaces with pg(S) = 0.
The birational structure of Burniat surfaces is rather simple to explain:

let P1, P2, P3 ∈ P2 be three non collinear points (which we assume to be the
points (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1)), and let Di = {∆i = 0}, for i ∈ Z/3Z,
be the union of three distinct lines through Pi, including the line Di,1 which is the
side of the triangle joining the point Pi with Pi+1.

Assume that D = D1 ∪D2 ∪D3 consists of nine different lines.

Definition 1. A Burniat surface S is the minimal model for the function field

C(x, y)(

√
∆1

∆2
,

√
∆1

∆3
).

Proposition 2. Let S be a Burniat surface, and denote by m the number of points,
different from P1, P2, P3, where the curve D has multiplicity at least three. Then
0 ≤ m ≤ 4, and the invariants of the smooth projective surface S are:

pg(S) = q(S) = 0,K2
S = 6−m.

The heart of the calculation, based on the theory of bidouble covers, as illus-
trated in [5], is that the singularities where the three curves have multiplicities
(3, 1, 0) lower K2 and pg − q both by 1, while the singularities where the three
curves have multiplicities (1, 1, 1) lower K2 by 1 and leave pg − q unchanged.

One understands the biregular structure of S through the blow up W of the
plane at the points of D P1, P2, P3, . . . Pm of multiplicity at least three.
W is a weak Del Pezzo surface of degree 6−m (i.e., a surface with nef and big

anticanonical divisor).

Proposition 3. The Burniat surface S is a finite bidouble cover (a finite Ga-
lois cover with group (Z/2Z)2) of the weak Del Pezzo surface W . Moreover the
bicanonical divisor 2KS is the pull back of the anticanonical divisor −KW . The
bicanonical map of S is the composition of the bidouble cover S →W with the an-
ticanonical quasi-embedding of W , as a surface of degree K2

S = K2
W in a projective

space of dimension K2
S = K2

W .

2. The main classification theorem

Fixing the number K2
S = 6−m, one sees immediately that the Burniat surfaces

are parametrized by a rational family of dimension K2
S − 2, and that this family

is irreducible except in the case K2
S = 4.

Definition 4. The family of Burniat surfaces with K2
S = 4 of nodal type is the

family where the points P4, P5 are collinear with one of the other three points
P1, P2, P3, say P1.

The family of Burniat surfaces with K2
S = 4 of non-nodal type is the family

where the points P4, P5 are never collinear with one of the other three points.
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Our main classification result of Burniat surfaces is summarized in the follow-
ing table giving information concerning the families of Burniat surfaces: more
information will be given in the subsequent theorems.

K2 dim is conn. comp.? is rational? π1

6 4 yes yes 1 → Z6
→ π1 → (Z/2Z)3

5 3 yes yes H⊕ (Z/2Z)3

4, non nodal 2 yes yes H⊕ (Z/2Z)2

4, nodal 2 yes yes H⊕ (Z/2Z)2

3 1 no: ⊂ 4-dim. irr. yes H⊕ Z/2Z
component

2 0 no: ∈ conn. component yes (Z/2Z)3

of standard Campedelli

Theorem 5 (Classification Theorem I). The three respective subsets of the moduli
spaces of minimal surfaces of general type Mmin

1,K2 corresponding to Burniat surfaces

with K2 = 6, resp. with K2 = 5, resp. Burniat surfaces with K2 = 4 of non
nodal type, are irreducible connected components, normal, rational of respective
dimensions 4,3,2.

Moreover, the base of the Kuranishi family of such surfaces S is smooth.

Observe that the above result for K2 = 6 was first proven by Mendes Lopes
and Pardini in [6]. We showed in [1] the stronger theorem

Theorem 6 (Primary Burniat’s Theorem). Any surface homotopy equivalent to
a Burniat surface with K2 = 6 is a Burniat surface with K2 = 6.

For K2 = 2 another realization of the Burniat surface is as a special element of
the family of Campedelli surfaces, Galois covers of the plane with group (Z/2Z)3

branched on seven lines (one for each non trivial element of the group). For
the Burniat surface we have the special configuration of a complete quadrilateral
together with its three diagonals.

For K2 = 3 work in progress of the authors shows that the general deformation
of a Burniat surface is a Galois covering with group (Z/2Z)2 of a cubic surface
with at least three singular points, and with branch locus equal to three plane
sections. It is still an open question whether the closure of this set is again a
connected component of the moduli space.

3. Nodal Burniat surfaces and Murphy’s law2.

A new phenomenon occurs for nodal surfaces, confirming Vakil’s ‘Murphy’s law’
philosophy ([7]). To explain it, recall that indeed there are two different structures
for the moduli spaces of surfaces of general type.

One is the moduli space Mmin
χ,K2 for minimal models S having χ(OS) = χ, K2

S =

K2, the other is the Gieseker moduli space M
can
χ,K2 for canonical models X having

χ(OX) = χ, K2
X = K2. Both are analytic spaces (the latter is actually known to be
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a quasiprojective) and there is a natural holomorphic bijection M
min
χ,K2 → M

can
χ,K2 .

Their local structure as complex analytic spaces is the quotient of the base of the
Kuranishi family by the action of the finite group Aut(S) = Aut(X).

In [4] series of examples were exhibited where M
can
χ,K2 was smooth, but Mmin

χ,K2

was everywhere non reduced. For nodal Burniat surfaces with K2
S = 4 both spaces

are everywhere non reduced, but the nilpotence order is higher for Mmin
χ,K2 ; this is

a further pathology, which adds to the ones presented in [4] and in [7].

Theorem 7 (Classification theorem II = Murphy’s law2). The subset of the
Gieseker moduli space M

can
1,4 of canonical surfaces of general type X corresponding

to Burniat surfaces S with K2
S = 4 and of nodal type is an irreducible connected

component of dimension 2, rational and everywhere non reduced.
More precisely, the base of the Kuranishi family of X is locally analytically

isomorphic to C2 × Spec(C[t]/(tm)), where m is a fixed integer, m ≥ 2.
The corresponding subset of the moduli space M

min
1,4 of minimal surfaces S of

general type is also everywhere non reduced.
More precisely, the base of the Kuranishi family of S is locally analytically

isomorphic to C2 × Spec(C[t]/(t2m)).

An interesting question is to determine the above integer m explicitly.
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S-100 44 Stockholm

Prof. Dr. Alexander Polishchuk

Department of Mathematics
University of Oregon
Eugene , OR 97403-1222
USA

Dr. Sönke Rollenske

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn

Prof. Dr. Frank-Olaf Schreyer

FB Mathematik & Informatik
Campus E2.4
Universität des Saarlandes
66123 Saarbrücken

Prof. Dr. Georg Schumacher

Fachbereich Mathematik und
Informatik
Philipps-Universität
Lahnberge
35032 Marburg

Prof. Dr. Edoardo Sernesi

Dipartimento di Matematica
Universita degli Studi ”Roma Tre”
Largo S. Leonardo Murialdo 1
I-00146 Roma

Nicola Tarasca

Institut für Mathematik
Humboldt-Universität
10099 Berlin

Dr. Orsola Tommasi

Institut für Algebraische Geometrie
Leibniz Universität Hannover
Welfengarten 1
30167 Hannover

Prof. Dr. Ravi Vakil

Department of Mathematics
Stanford University
Stanford , CA 94305-2125
USA

Prof. Dr. Alessandro Verra

Dipartimento di Matematica
Universita Roma 3
Largo S. Leonardo Murialdo 1
I-00146 Roma

Dr. Filippo Viviani

Dipartimento di Matematica
Universita degli Studi Roma Tre
Largo S. L. Murialdo, 1
I-00146 Roma




