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Introduction by the Organisers

The workshop Valuations and Integral Geometry, organized by Semyon Alesker,
Andreas Bernig, and Franz Schuster was held from January 17th to January 23rd,
2010. The meeting was attended by 16 participants working in different areas such
as convex and differential geometry or geometric measure theory. The program
involved 3 lecture series by Fu, Ludwig, and Reitzner as well as several one hour
and shorter lectures built around them. Some highlights of the program will be
described in the following.

In a 3 hour lecture series, Joseph Fu presented intriguing recent results about
the product and convolution structures on the space of continuous translation
invariant valuations. This new algebraic machinery has been the key tool for
a fuller understanding of the kinematic formulas for groups acting transitively
on the unit sphere obtained by Alesker, Bernig, and Fu. Fu described in detail
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the hermitian case and presented a mysterious conjecture concerning the integral
geometry in complex space forms.

In a related vein, Judit Abardia presented her joint work with Eduardo Gallego
and Gil Solanes on the integral geometry in complex space forms. Some starting
points for an integral geometry in Hermitian symmetric spaces were discussed by
Hiroyuki Tasaki. Daniel Hug gave a very clear talk about kinematic formulas for
tensor valuations which he recently obtained in a joint work with Rolf Schneider.
Rolf Schneider talked about zonoids and Crofton formulas in Minkowski spaces,
and Wolfgang Weil about translative kinematic formulas. Closely related to these
developments is a generalization of the notion of valuations to smooth manifolds
which was explained by Semyon Alesker in an impromptu evening lecture.

On a different line of research, Monika Ludwig gave an extremely interesting
3 hour lecture series about her characterizations of convex body valued valuations
compatible with affine transformations. These results are deeply connected with
the theory of isoperimetric inequalities. Here, the valuation point of view has shed
new light on some classical affine isoperimetric inequalities which were shown to
hold for larger classes of valuations by Haberl and Schuster. These inequalities have
led to new affine Lp Sobolev inequalities and an affine symmetrization principle
presented in a one hour lecture by Christoph Haberl.

Matthias Reitzner gave a 3 hour lecture series on his joint work with Monika
Ludwig concerning their breakthrough in the characterization of upper semicon-
tinuous SL(n) invariant valuations. Their results classified both of the classical
SL(n) invariant notions of affine surface area - affine surface area and centro-affine
surface area - which date back to Blaschke’s school of affine differential geometry.
In fact, all of the Lp affine surface areas introduced by Lutwak in early 1990’s were
completely characterized.

The program of the workshop also involved several excellent talks by young
researchers. Thomas Wannerer spoke about his extension of Ludwig’s characteri-
zation of the projection operator, one of the key concepts introduced by Minkowski
for the study of projections of convex bodies. Andy Tsang gave a talk about his
work on valuations defined on Lp function spaces, which presents a particularly
exciting new area in the theory of valuations. Gautier Berck presented joint work
with Juan-Carlos Álvarez on the use of Crofton formulas in the metrisability prob-
lem on Finsler manifolds. Gil Solanes spoke about Crofton and Gauss-Bonnet
formulas which are invariant under the action of the Möbius group.
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Abstracts

Convex body valued valuations

Monika Ludwig

Let Kn denote the space of convex bodies (compact, convex sets) in Rn equipped
with the usual topology induced by the Hausdorff metric. If Sn ⊂ Kn and 〈A,+〉
is an abelian semigroup, then Z : Sn → 〈A,+〉 is called a valuation if

ZK + ZL = Z(K ∪ L) + Z(K ∩ L),
whenever K,L,K ∪ L,K ∩ L ∈ Sn. Many important operators on convex bodies
are valuations. Maybe the most important such operator is the projection operator
Π which associates with a convex body K its projection body ΠK (defined via
its support function as h(ΠK,u) = voln−1(K|u⊥) for u ∈ Sn−1, where voln−1

denotes (n−1)-dimensional volume, u⊥ the hyperplane orthogonal to u, K|u⊥ the
image of the orthogonal projection of K on u⊥, h(K, v) = max{v · x : x ∈ K},
v ∈ Rn, and v · x is the standard inner product of v and x). In this series of
three lecture, we show that using convex body valued valuations it is possible to
classify operators on convex bodies and, as a consequence, obtain strengthened
isoperimetric inequalities.

There are several important additions on Kn and we consider here Minkowski
addition, which is defined for K,L ∈ Kn by K + L = {x+ y : x ∈ K, y ∈ L} (for
Blaschke addition, a complete classification was recently obtained by Haberl [1]).
An operator Z : Kn → Kn is called SL(n) contravariant, if Z(φK) = φ−t ZK for
all φ ∈ SL(n),K ∈ Kn.

Theorem 1 ([6]). An operator Z : Kn → 〈Kn,+〉, n ≥ 2, is a continuous, trans-
lation invariant, SL(n) contravariant valuation if and only if there is a constant
c ≥ 0 such that Z = cΠ.

The corresponding classification problem for continuous, translation invariant,
O(n) covariant valuations was studied by Schneider [15], Kiderlen [4], and Schuster
[16, 17, 18]. For even (i.e., Z(−K) = Z(K) for all K ∈ Kn), (n− 1)-homogeneous
valuations a complete classification was obtained by Schuster [16]. In general,
this interesting problem remains open but general representation theorems were
recently obtained by Schuster [18].

The above theorem was extended to valuations Z : Kn
0 → 〈Kn,+〉 that are

GL(n) covariant. Here Kn
0 is the space of convex bodies containing the origin in

their interiors and Z : Kn
0 → Kn is called GL(n) covariant if for some q ∈ R,

Z(φK) = | detφ|qφZK for all φ ∈ GL(n),K ∈ Kn
0 .

Theorem 2 ([8]). An operator Z : Kn
0 → 〈Kn,+〉, n ≥ 3, is a continuous, non-

trivial, GL(n) covariant valuation if and only if either there are constants c0 ≥ 0
and c1 ∈ R, not both zero, such that

ZK = c0 MK + c1m(K)
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for every K ∈ Kn
0 or there is a constant c0 > 0 such that

ZK = c0 Π(K
∗)

for every K ∈ Kn
0 .

Here, a valuation is called trivial if it is a linear combination of the identity and
the central reflection, K∗ denotes the polar body of K ∈ Kn

0 , m(K) =
∫

K x dx its
moment vector, and MK its moment body (defined via its support function as
h(MK,u) =

∫

K |x · u| dx).
Theorem 2 was recently extended to Lp Minkowski valuations for p > 1 [7],

that is, valuations Z : Kn
0 → 〈Kn

0 ,+p〉, where +p denotes Lp Minkowski addition
(defined by hp(K+p L, ·) = hp(K, ·) + hp(L, ·)). The resulting two-parameter fam-
ily of operators (first defined in [6]) is a generalization of the family of symmetric
operators given by Lp projection bodies and Lp centroid bodies, which were intro-
duced by Lutwak [10] and Lutwak and Zhang [14]. Using these new asymmetric
operators, Haberl and Schuster [3] obtained Lp affine isoperimetric inequalities
that strengthen and imply the inequalities by Lutwak and Zhang [14] and Lutwak,
Yang, and Zhang [11]. In [2], Haberl and Schuster used these inequalities to prove
strengthened versions of the sharp affine Lp Sobolev inequality of Lutwak, Yang,
and Zhang [12].

The relation between Sobolev inequalities and valuations is further explained by
the following result. Let Kn

c denote the space of origin-symmetric convex bodies in
Rn and W 1,1(Rn) the Sobolev space of functions f ∈ L1(Rn) whose weak partial
derivatives are in L1(Rn). An operator Z : W 1,1(Rn) → Kn

c is called affinely
contravariant if it is translation invariant, 1-homogeneous and such that for some
q ∈ R, Z(f ◦ φ−1) = | detφ|qφ−t Z(f) for all φ ∈ GL(n), f ∈ W 1,1(Rn) and a
valuation if Z(f ∨ g) + Z(f ∧ g) = Z(f) + Z(g) for all f, g ∈ W 1,1(Rn), where
f ∨ g = max{f, g} and f ∧ g = min{f, g}.

Theorem 3 ([9]). An operator Z : W 1,1(Rn) → 〈Kn
c ,+〉, n ≥ 3, is a continuous,

affinely contravariant valuation if and only if there is a constant c ≥ 0 such that

Z(f) = cΠ〈f〉

for every f ∈W 1,1(Rn).

For f ∈ W 1,1(Rn), the convex body 〈f〉 is (up to normalization) the unit ball
of the optimal Sobolev norm of f and the solution of the functional Minkowski
problem associated to f . These important notions were introduced by Lutwak,
Yang, and Zhang [13]. The operator Π〈f〉 is a critical ingredient of Zhang’s proof
of his affine Sobolev inequality [19] and

h(Π 〈f〉, u) = 1

2

∫

Rn

|u · ∇f(x)| dx

for all f ∈W 1,1(Rn).
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Affine invariant notions of surface area

Matthias Reitzner

The classical notion of surface area, the n − 1 dimensional Hausdorff measure
Hn−1(∂K) of the boundary of a set convex set K ⊂ IRn, is an continuous, mono-
tone, homogenous, translation and rotation invariant valuation. Yet it is not affine
invariant. In this series of lectures affine invariant notions of surface area have been
investigated.

In the first lecture we introduced the following affine invariant notions of surface
area:

• Minimal Surface-Area:

Smin(K) = min
A∈SL(n)

S(AK)
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This natural notion of surface is by definition affine invariant, yet it is
not a valuation. A beautiful reverse isoperimetric inequality for Smin was
proved by Ball [1].

• Volume of the Polar Projection Body: The projection body ΠK is
defined by h(ΠK, v) = Vn−1(K|v⊥). By Cauchy’s surface area formula, its
first intrinsic volume equals - up to a constant - the classical surface area,

V1(ΠK) =

∫

Sn−1

Vn−1(K|v⊥)dv = cnVn−1(K)

which is not affine invariant. Changing the exponent “1” to −n we obtain

V (ΠoK) =
1

n

∫

Sn−1

Vn−1(K|v⊥)−ndv

which is affine invariant. Although ΠK itself is a valuation, V (ΠoK) is
not a valuation.

• Classical Affine Surface Area:

Ω(K) =

∫

∂K

κ(x)
1

n+1 dH(x)

is an affine invariant valuation [5], [9], [11]. Since it vanishes on polytopes
it cannot be continuous. It turns out that this funcitonal is upper semi-
continuous.

• Centro-Affine Surface Area:

Ωn(K) =

∫

∂K

(

κ(x)

h(x)n+1

)
1
2

h(x) dH(x)

is even a GL(n) invariant valuation [10], which in addition is invariant
under polarization. Again, since it vanishes on polytopes it is only upper
semi-continuous. In addition, it is also not translation invariant .

• Lp Affine Surface Area: Classical affine surface area and centro-affine
surface area are on particular cases of

Ωp(K) =

∫

∂K

(

κ(x)

h(x)n+1

)
p

n+p

h(x) dH(x),

which for all p > 0 is an affine invariant upper semi-continuous valuation,
which vanishes on polytopes [10],[3]. It is not translation invariant.

• Maximal Affine Surface Area: One possibility to obtain a continuous
affine surface area is given by

Ωmax(K) = max
L⊆K

Ω(L) .

This is an affine invariant continuous notion of surface area, yet it is not a
valuation. It was introduced by Bárány [2]. Ωmax(K) is the affine surface
area of the limit shape of certain random polytopes in K.
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As an open question we raise the question to determine the convex set Kmin

such that for all n-dimensional convex K ⊂ IRn we have

Ωmax(Kmin) ≤ Ωmax(K) ≤ Ωmax(B).

The right hand side follows from the affine isoperimetric inequality.

Let Kn
0 denote the set of all convex bodies containing the origin in their interior,

and denote by Pn
0 the polytopes in Kn

0 . Among all the affine invariant notions of
surface area mentioned above, the Lp affine surface areas play a special role. This
is due to their characterization as the only upper semicontinuous, SL(n) invariant
homogeneous valuation, which vanish on polytopes. Valuations not vanishing on
polytopes with these properties are volume, Euler characteristic, and the volume
of the polar body [6]. In the second lecture a sketch of the proof of this recent
characterization of affine surface areas [8] was presented. More general, define

Conc(0,∞) = {φ : IR+
0 → IR+

0 , concave, lim
t→0

φ(t) = lim
t→∞

φ(t)/t = 0}

Theorem: Φ : Kn
0 → IR upper semicontinuous, SL(n) invariant valuation,

vanishing on polytopes
m

Φ(K) =

∫

∂K

φ

(

κ(x)

h(x)n+1

)

h(x) dH(x)

with φ ∈ Conc(0,∞), where κ(x) denotes the generalized Gaussian curvature and
h(x) = x · u(K,x).
Two interesting open problems are:
Conjecture: If Ψ : Pn

0 → IR is a Borel measurable, SL(n) invariant valuation,
then

Ψ(P ) = c0 V0(P ) + cn V (P ) + c−n V (P o)

Conjecture: If Φ : Kn
0 → IR is a SL(n) invariant, simple weak valuation of 1st

Baire class, homogeneous of degree q, vanishing on polytopes then

Φ(K) = cΩp(K)

for every K ∈ Kn
0 where p = n(n− q)/(n+ q).

In the third lecture we presented recent developments concerning the φ-affine
surface areas

Φ(K) =

∫

∂K

φ

(

κ(x)

h(x)n+1

)

h(x) dH(x)

with φ ∈ Conc(0,∞). They behave nicely under polarization [4], [7]

Ωφ(K
o) = Ωφo

(K),

with φo(t) = tφ(1/t) ∈ Conc(0,∞), vanish for most convex bodies, and satisfy an
Lφ-isoperimetric inequality [10], [12], [7]. This class of valuations can be comple-
mented by two additional classes of valuations introduced by Ludwig [7]. It re-
mains an open question to characterize all upper-semicontinuous SL(n)-invariant
homogeneous valuations which take values in IR+ ∪ {∞}.
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Open questions:

• Is there a Steiner formula for affine surface area Ω(K + εBn) (partial
answers due to Colesanti), or for Ωmax(K + εBn)?

• Φ(K) =
∫

Ln
i

Ω(K|E)dE is an upper semicontinuous, translation and SO(n)

invariant valuation, which vanishes on polytopes. Is it possible to deter-
mine Φ more explicitly?

• More general: Are there affine kinematic formulae?
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Crofton formulae and zonoids

Rolf Schneider

Motivated by the classical Crofton formula of Euclidean integral geometry, one
understands by a Crofton formula any result of the type

(1) k-area(M) =

∫

(n− k)-flats
card(M ∩ E)ϕ(dE).

If this holds for a given notion of k-area and a given class of k-dimensional surfaces
M , with some signed measure ϕ on a space of (n − k)-flats, then ϕ is called
a Crofton measure for the considered k-area. Investigations of this type were
initiated by Busemann, who suggested an integral-geometric approach to Hilbert’s
fourth problem, concerning the determination of all metrics for which lines are
minimizing, and who later extended this to a study of areas for which flats are
minimizing. He related this to the existence of positive Crofton measures. A
proper framework for investigating such questions is provided by projective Finsler
spaces. We describe work in this direction, roughly of the last decade, with special
emphasis on general (non-smooth) Finsler spaces and the application of the theory
of (generalized) zonoids.
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A (generalized) Finsler metric on an open convex subset C ⊂ R
n is a continuous

function F : C × Rn → [0,∞) such that F (x, ·) is a norm, for each x ∈ C. Curve
length and induced metric are defined as usual. The pair (C,F ) is a projective
Finsler space if line segments are shortest curves connecting their endpoints. The
classical examples are the Minkowski spaces (Rn with a norm) and the Hilbert geo-
metries in bounded convex domains. For Minkowski spaces, Busemann has defined
a general notion of Minkowskian k-area; it extends naturally to generalized Finsler
spaces, in the following way. A k-area is defined by a positive function αk on
the set of k-dimensional, origin-symmetric convex bodies which is invariant under
linear transformations, continuous, suitably normalized, and satisfies an additional
convexity assumption if k = n− 1. The corresponding k-area of a k-surface M in
the projective Finsler space (C,F ) is then given, up to a factor, by

∫

M

αk(Bx ∩ TxM)Hk
F (dx).

Here Bx := {ξ ∈ Rn : F (x, ξ) ≤ 1}, TxM is the tangent space of M at x (identi-
fied with a subspace of Rn), and Hk

F denotes the k-dimensional Hausdorff measure
coming from the metric induced by the Finsler structure (see [13] for this repre-
sentation of the k-area). The most prominent examples of such areas are the
Busemann area (obtained for constant αk) and the Holmes–Thompson area (ob-
tained from the volume product, also definable as a symplectic volume).

In smooth projective Finsler spaces, Crofton formulae (with smooth signed

densities) for Holmes–Thompson areas were obtained by Álvarez and Fernandes
[2, 3, 7, 5], see also [4]. They employed the symplectic structure on the space of
geodesics and later double fibrations and Gelfand transforms.

Exploiting the theory of zonoids, one can obtain various results on Crofton
measures in non-smooth projective Finsler spaces. This was initiated in [8], where
Crofton formulae (with positive measures) for Holmes–Thompson areas in hyper-
metric Minkowski spaces were obtained. A first explanation for the role of zonoids
is the following result. (All considered spaces from now on have dimension n.)

Theorem (by several authors) (a) For a Minkowski space, the following conditions
are equivalent:
(1) there exists a positive Crofton measure for the curve length,
(2) the dual unit ball is a zonoid,
(3) the metric induced by the norm is a hypermetric.

(b) For a Minkowskian (n − 1)-area in (Rn, ‖ · ‖), a Crofton measure (a positive
Crofton measure) exists if and only if the corresponding isoperimetrix is a gener-
alized zonoid (a zonoid).

Here, the isoperimetrix is the suitably normalized solution of the isoperimetric
problem.

The following results on the existence or non-existence of Crofton measures are
all based on finer properties of zonoids (more information is contained in [14]).
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Theorem [9] There exist Minkowski spaces, for example ℓn∞ and ℓn1 , for which
the only Minkowskian (n − 1)-area admitting a positive Crofton measure is the
Holmes–Thompson area (up to a factor).

Theorem [11]
(1) There are Minkowski spaces arbitrarily close (in the Banach–Mazur metric)
to ℓn2 , but not Euclidean, in which there exists a positive Crofton measure for the
Busemann (n− 1)-area.
(2) There are Minkowski spaces arbitrarily close to ℓn2 in which there exists no
positive Crofton measure for the Busemann (n− 1)-area.
(3) If n = 3 or n is sufficiently large, then a full neighbourhood of ℓn∞ consists of
Minkowski spaces in which there is no positive Crofton measure for the Busemann
(n− 1)-area.

On the other hand, in every sufficiently smooth Minkowski space there is a
(signed) Crofton measure for the Busemann (n − 1)-area. This is not generally

true in smooth projective Finsler spaces, as shown by Álvarez and Berck [1].

Conjecture. In the space of n-dimensional Minkowski spaces, there is a dense
subset of spaces in which there is no positive Crofton measure for the Busemann
(n− 1)-area.

Holmes–Thompson k-areas, which we now denote by volk, behave much better
with respect to Crofton formulae, as demonstrated by the following observations.
In every Minkowski space, there is a positive Crofton measure for voln−1. If in
a Minkowski space there exists a Crofton measure (a positive Crofton measure)
for vol1, then there also exists a Crofton measure (a positive Crofton measure) for
volk, k ∈ {2, . . . , n − 2}. Based on Holmes–Thompson areas, one can also define
valuations extending the intrinsic volumes, as done for hypermetric Minkowski
spaces in [10], and for smooth projective Finsler spaces by Bernig [6].

The theory of generalized zonoids can further be used, in combination with
Pogorelov’s approach to Hilbert’s fourth problem, to obtain the to date most
general Crofton formula in smooth projective Finsler spaces.

Theorem [13] Let (C,F ) be a smooth projective Finsler space. For j ∈ {1, . . . , n−
1}, there exists a signed measure ηj on the space A(n, j) of j-flats such that, for
k ∈ {n− j, . . . , n} and every (Hk, k) rectifiable Borel set M ⊂ C,

volk(M) = const ·
∫

A(n,j)

volk+j−n(M ∩ E) ηj(dE).

The line measure η1 is positive.

The existence of positive Crofton measures for volk if k > 1 requires stronger
assumptions. The following can be proved by approximation arguments.

Theorem [12]
(1) In every hypermetric projective Finsler space, there exists a positive Crofton
measure for volk, k = 1, . . . , n− 1.
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(2) In every projective Finsler space, there exists a positive Crofton measure for
voln−1.

The method of proof is responsible for the fact that these are merely existence
results. Explicit representations of the line measure (the Crofton measure for the
Holmes–Thompson (n− 1)-area) in Minkowski spaces have been known for a long
time. More recently, an explicit construction of the line measure was given for
polytopal Hilbert geometries [15]. We doubt whether this can be extended to
Crofton measures for volk, k < n− 1; indeed, we close with the following

Conjecture. For the Hilbert geometry in a convex body C, a positive Crofton
measure for vol1 exists only if the geometry is hyperbolic, that is, if C is an ellip-
soid.
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(2006), 479–488.



154 Oberwolfach Report 04/2010

Local Functionals and Translative Integral Formulas

Wolfgang Weil

A functional ϕ on the class P of convex polytopes in Rd is called local, if there is
a measurable, measure valued functional Φ which is translation covariant, locally
defined and satisfies Φ(P,Rd) = ϕ(P ), P ∈ P (compare [1, Section 11.1]). The
following result is shown.

Theorem. (a) A local functional ϕ on P with local extension Φ has a unique
decomposition

ϕ(P ) =

d−1
∑

j=0

ϕ(j)(P ) + cdVd(P )

with j-homogeneous local functionals ϕ(j) on P and cd ∈ R.
(b) Each ϕ(j) has a local extension Φ(j) of the form

Φ(j)(P, ·) =
∑

F∈Fj(P )

fj(n(P, F ))λF

with a function fj (uniquely determined by Φ) on the class of (d−j−1)-dimensional
spherical polytopes and the Lebesgue measure λF on the j-dimensional faces F of
P .

(c) Any additive, translation invariant, measurable functional ϕ on P is local.

(d) There exist local functionals ϕ
(j)
m on P × P, such that

∫

Rd

ϕ(j)(P ∩Qx)λd(dx) = ϕ(j)(P )Vd(Q) +

d−1
∑

m=j+1

ϕ(j)
m (P,Q) + Vd(P )ϕ

(j)(Q).

The functional ϕ
(j)
m (P,Q) is homogeneous of degree m in P and d− j +m in Q.

There is a corresponding result for the local extension Φ yielding mixed mea-

sures Φ
(j)
m . Both translative formulas (global and local) can be iterated. There are

explicit representations of the mixed functionals ϕ
(j)
m (resp. mixed measures Φ

(j)
m ).

For applications in stochastic geometry it is important that local functionals ϕ
can be extended to finite unions of convex polytopes which are pairwise in mutual
general position by the inclusion-exclusion formula. Consequently, formulas for
the mean values of ϕ on stationary Boolean models with polytopal grains result.

Two open problems mentioned in the talk: (1) Does a local functional ϕ on P
with suitable continuity properties allow an extension to the class K of all convex
bodies? (2) Since the local extension Φ of ϕ need not be unique, describe all
possible local extensions (this is already an important problem for the intrinsic
volumes ϕ = Vj).
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Algebraic integral geometry

Joseph H.G. Fu

Over the last ten years or so, S. Alesker has shown that the space of continu-
ous convex valuations enjoys a rich algebraic structure. Restricting to valuations
invariant under appropriate group actions, this structure turns out to encode an
enormous amount of integral geometric information, shedding light not only on
the classical integral geometry of the euclidean group (due originally to Blaschke)
but also to heretofore unexplored territory, such as the recent work [2] of A. Bernig
and the author on “hermitian integral geometry”, i.e. the integral geometry of Cn

under the unitary group U(n).
The prototype for these developments was the approach to the Blaschke kine-

matic formulas developed by Hadwiger. Denote by Val = Val(Rn) the vector

space of continuous translation-invariant convex valuations on Rn, and ValSO(n)

the subspace of continuous valuations invariant under the full isometry group
SO(n) := SO(n) ⋉ Rn. Hadwiger showed that the intrinsic volumes the in-

trinsic volumes µ0, . . . , µn, constitute a basis of ValSO(n). It follows that, given
k ∈ {0, . . . , n}, there exist universal constants cn,k,i,j

(1)

∫

SO(n)

µk(K ∩ ḡL) dḡ =
∑

i+j=n+k

cn,k,i,jµi(K)µj(L),=: kSO(n)(µk)(K,L)

for all compact convex sets K,L ⊂ Rn, where dḡ is the Haar measure and

kSO(n) : ValSO(n) → ValSO(n) ⊗ValSO(n) is the kinematic operator of SO(n).
The coefficients cn,k,i,j may then be evaluated using the template method, i.e.
by explicitly evaluating the integral for enough conveniently chosen K,L and solv-
ing the resulting linear equations.

Alesker showed that if G ⊂ SO(n) acts transitively on the sphere Sn−1 then

the subspace ValG of G := G⋉Rn-invariant is again finite-dimensional. It follows
that there is a kinematic operator kG : ValG → ValG ⊗ValG encoding the integral
geometry of the group G. A prominent example is the case where Rn = R2m = Cm

and G = U(m). Furthermore he defined a natural commutative graded product on

Val under which each ValG is closed, and that there is a natural Poincaré duality

operator p : ValG → ValG
∗
. It turns out that the kinematic operator kG carries

precisely the same information as the restriction mG : ValG⊗ValG → ValG of the
multiplication.

Theorem 1 (Fundamental theorem of algebraic integral geometry, or ftaig). Put

m∗
G : ValG

∗ → ValG
∗ ⊗ ValG

∗
for the adjoint of the Alesker product map. Then

the following diagram commutes:

(2)

ValG
p−−−−→ ValG

∗

kG





y

m∗

G





y

ValG⊗ValG
p⊗p−−−−→ ValG

∗ ⊗ValG
∗
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The groups G acting transitively on spheres have been classified. Using the ftaig
the integral geometry has been worked out for the special cases (Cn, U(n)) [1, 2],
(Cn, SU(n)) [4], (C4, Spin(7)) and (R7, G2) [3]. Of these, the case of hermitian
integral geometry (Cn, U(n)) is in many ways the most interesting, as the SU(n)
case may be regarded as a variation on it, and the other two cases as variations
on the classical SO(n) case.

The earliest definite results in the hermitian case were due to Tasaki [7]. The
starting point of the present approach is the following characterization of the
algebra of U(n)-invariant valuations on C

n. Let s, t be variables of formal degrees
2, 1 respectively, and define the polynomials fi(s, t) by

∑

i fi(s, t) = log(1+ s+ t).
Then

(3) ValU(n)(Cn) ≃ R[s, t]/(fn+1, fn+2).

In view of the Alesker-Poincaré duality for ValU(n), this may be proved in a com-
pletely formal way from the evaluations

(4) sn−kt2k(unit ball ⊂ C
n) =

(

2k

k

)

and the classical Pfaff-Saalschütz identities.
The integral geometry of certain homogeneous spaces may be approached in the

same way, using Alesker’s theory of valuations on manifolds. In this setting the
resulting algebra of valuations is no longer graded, but filtered. Alesker and Bernig
[5] have proved the ftaig for any compact space M whose group of isometries acts
transitively on the sphere bundle SM . Furthermore the “transfer principle” of R.
Howard ensures that certain similarities between spaces M are reflected in their
integral geometry. In fact one way to establish the identities (4) is via transfer
from CPn: there are analogous valuations s, t on CPn such that (4) holds with
the total space CPn replacing the unit ball. In fact, using the calculations of Gray
[6] of the Lipschitz-Killing curvatures of Kähler manifolds, it is easy to compute
that

(5) skt2l(CPn) =

(

2l

l

)(

n− k + 1

l + 1

)

By Alesker-Poincaré duality again, the evaluations (5) are enough to completely
determine the structure of the algebra of invariant valuations on CPn. Further-
more, the product formula of [5] implies that we may use analytic continuation to
compute this algebra for all complex space forms, whether positively or negatively
curved. This leads to the following conjecture, which we have checked by symbolic
machine calculation through n = 16:

Conjecture 2. Let s, t, λ be variables of formal degrees 2, 1,−2 respectively. De-
fine the formal series f̄k(s, t, λ) to be the sum of the terms of weighted degree k in
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the expansion of

log(1 + s+ t+ λ+ 3λ2+13λ3 + ...)

= log(1 + s+ t+
∑

[(

4n+ 1

n+ 1

)

− 9

(

4n+ 1

n− 1

)]

λn).

Then the filtered algebra VU(n)(CMn
λ ) of invariant valuations on the complex space

form of holomorphic sectional curvature 4λ is isomorphic to

(6) R[s, t]/(f̄n+1, f̄n+2, t
2n+1, st2n−1, . . . , snt).

The filtration on VU(n)(CMn
λ ) is induced by the degrees of s, t, without reference

to λ.
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SL(n)-contravariant Minkowski valuations

Thomas Wannerer

(joint work with Franz E. Schuster)

The projection body of a convex body K, originally introduced by Minkowski,
is a convex body ΠK which is determined by the (n − 1)-dimensional volume of
projections of K on hyperplanes through the origin. More precisely,

h(ΠK,u) = Voln−1(K
u), u ∈ Sn−1,

where h(L, x) = max{〈x, y〉 : y ∈ L} is the support function of a convex body L,
Voln−1(K

u) denotes the (n− 1)-dimensional volume of the orthogonal projection
of K on the subspace orthogonal to u and Sn−1 ⊂ R

n is the Euclidean unit sphere.
Projection bodies turned out to be a very useful concept, having applications in
many different areas ranging from stochastic geometry to Sobolev inequalities, cf.
[1], [3],[6], [7] and [8].

Denote by Kn the set of all nonempty, compact, convex subsets of Rn. A map
Z of Kn into Kn which satisfies

Z(K ∪ L) + Z(K ∩ L) = ZK + ZL
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whenever K,L,K ∪ L ∈ Kn is called a Minkowski valuation (here we agree that
Z∅ = {0}). We say that Z is translation invariant if Z(K + x) = ZK for x ∈ Rn

and Z is called homogeneous of degree d ∈ R if Z(λK) = λdZK for λ > 0. If Z
satisfies

Z(φK) = φ−tZK, K ∈ Kn, φ ∈ SL(n)

we say that Z is SL(n)-contravariant. Continuity of maps of Kn into Kn means
continuity with repect to the topology induced by the Hausdorff metric.

One can show that the projection body map Π is a continuous, translation
invariant, homogeneous, SL(n)-contravariant Minkowski valuation, cf. [2]. It was
shown by Ludwig in [5] (and under stronger assumptions on Z already in [4]) that
Π is characterized by these properties.

Theorem 1 ([5]). Let Z : Kn → Kn be a continuous, translation invariant, homo-
geneous, SL(n)-contravariant Minkowski valuation. Then there exists a number
c ≥ 0 such that

ZK = cΠK

for K ∈ Kn.

If one considers valuations Z defined only on the smaller subset Kn
o = {K ∈

Kn : 0 ∈ K}, one can omit the assumption of translation invariance in the previous
theorem. However, translation invariance is essential in Theorem 1. To see this,
consider the map Πo : Kn → Kn defined by

ΠoK = Π(conv({0} ∪K)).

From the relations

conv({0} ∪ (K ∪ L)) = conv({0} ∪K) ∪ conv({0} ∪ L)
and

conv({0} ∪ (K ∩ L)) = conv({0} ∪K) ∩ conv({0} ∪ L) if K ∪ L ∈ Kn

it follows that Πo is indeed a Minkowski valuation. As a consequence of the
properties of Π, the map Πo is continuous, homogeneous and SL(n)-contravariant.
Obviously, Πo is not translation invariant.

Surprisingly, Π and this new, not translation invariant valuation Πo are enough
to exhaust all examples of continuous, homogeneous, SL(n)-contravariantMinkowski
valuations.

Theorem 2. Let Z : Kn → Kn be a continuous, homogeneous, SL(n)-contravariant
Minkowski valuation. Then there exist numbers a1, a2 ≥ 0 such that

ZK = a1ΠK + a2ΠoK

for K ∈ Kn.

The proof of this theorem uses ideas developed by Ludwig in [5] and a non-trivial
result on generalized zonoids.
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There are several important volume inequalities for projection bodies. One of
them is the Petty projection inequality, which states that the affinely invariant
functional Vn(Π

∗K)Vn(K)n−1 is maximized exactly by ellipsoids:

Vn(Π
∗K)Vn(K)n−1 ≤ Vn(Π

∗Bn)Vn(B
n)n−1,

where we write Π∗K for (ΠK)∗, K∗ = {x : 〈x, y〉 ≤ 1 for y ∈ K} denotes the
polar body of K and Bn is the Euclidean unit ball. Using Theorem 2 it is possi-
ble to generalize this inequality to continuous, homogeneous, SL(n)-contravariant
Minkowski valuations.

Theorem 3. Let Z : Kn → Kn be a non-trivial, continuous, homogeneous, SL(n)-
contravariant Minkowski valuation. If dimK = n then

Vn(Z
∗K)Vn(K)n−1 ≤ Vn(Z

∗Bn)Vn(B
n)n−1.

If Z is not a multiple of Π, there is equality if and only if K is an ellipsoid
containing the origin, otherwise equality holds if and only if K is an ellipsoid.
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Valuations and Sobolev inequalities

Christoph Haberl

(joint work with Franz E. Schuster, Jie Xiao)

For p ≥ 1 and n ≥ 2, let W 1,p(Rn) denote the space of real-valued Lp functions
on Rn with weak Lp partial derivatives. The classical Pólya–Szegö principle [9]
states that the Lp norm of the gradient of a function on Rn does not increase
under symmetric rearrangement. To be precise, if f ∈ W 1,p(Rn) for some p ≥ 1,
then f⋆ ∈W 1,p(Rn) and

‖∇f⋆‖p ≤ ‖∇f‖p.
Here, the Lp norm of the gradient of a function f is defined by

‖∇f‖p =

(∫

Rn

|∇f |p dx
)1/p

,
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where | · | denotes the standard Euclidean norm on R
n. The symmetric decreasing

rearrangement f⋆ of a function f is defined as follows. For f ∈ W 1,p(Rn), denote
by µf : [0,∞) → [0,∞] the distribution function of the absolute value of f . The
decreasing rearrangement f∗ : [0,∞) → [0,∞] of f is defined to be zero for
s ≥ µf (0) and

f∗(s) = sup{t > 0 : µf (t) > s} for s < µf (0).

Now, the symmetric decreasing rearrangement f⋆ : Rn → [0,∞] is given by

f⋆(x) = f∗(κn|x|n),
where κn = πn/2/Γ(1 + n

2 ) denotes the volume of the Euclidean unit ball in Rn.
The geometric core of the Pólya–Szegö principle is the isoperimetric inequality.

The Petty projection inequality [8] is the classical affine isoperimetric inequality
which connects the volume of a convex body with that of its polar projection body.
It is stronger than (i.e., directly implies) the classical isoperimetric inequality.
Using this affine isoperimetric inequality as well as its symmetric Lp analog [6],
Zhang [11], Lutwak, Yang, and Zhang [7] and Cianchi et al. [2] proved an affine
version of the Pólya–Szegö principle: For every function f ∈W 1,p(Rn)

Ep(f⋆) ≤ Ep(f).
Here, the Lp affine energy Ep(f) is defined by

Ep(f) = cn,p

(∫

Sn−1

‖Duf‖−n
p du

)−1/n

where cn,p = (nκn)
1/n(

nκnκp−1

2κn+p−2
)1/p and Duf is the directional derivative of f in

direction u.
Recent characterizations of valuations by Ludwig [5] showed that for p > 1, the

geometric operator behind the affine Pólya–Szegö principle is only one of a whole
family of possible Lp analogs of the projection body operator. Using this insight,
it is proved in [4], that for every function f ∈W 1,p(Rn) the inequality

E+
p (f⋆) ≤ E+

p (f)

holds. The asymmetric Lp affine energy E+
p (f) of a function f is defined by

E+
p (f) = dn,p

(∫

Sn−1

‖D+
u f‖−n

p du

)−1/n

where dn,p = 21/pcn,p and D+
u f(x) = max{Duf(x), 0} denotes the positive part of

the directional derivative of f in direction u. Since

‖∇f⋆‖p = Ep(f⋆) = E+
p (f⋆) ≤ E+

p (f) ≤ Ep(f) ≤ ‖∇f‖p,
the asymmetric affine Pólya–Szegö principle strengthens and directly implies the
symmetric affine Pólya–Szegö principle as well as the classical one.

The asymmetric affine Pólya–Szegö inequality gives rise to affine versions of
several Sobolev inequalities. For example, an asymmetric affine version of the
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sharp Lp Sobolev inequality due to Aubin [1] and Talenti [10] is established in [3]
(see also [4]).
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Valuations on manifolds

Semyon Alesker

Let X be a smooth manifold, n = dimX . Let P(X) denote the family of
compact submanifolds with corners of X .

Definition 1. A smooth valuation on X is a functional

φ : P(X) → C

of the following form: there exists a smooth measure µ on X and a smooth n− 1-
form ω on the spherical cotangent bundle P+(T

∗X) such that for any P ∈ P(X)
one has

φ(P ) = µ(P ) +

∫

N(P )

ω

where N(P ) ⊂ P+(T
∗X) is the normal cycle of P .

Example 2. (1) Any smooth measure on X is a smooth valuation (indeed take
ω = 0).

(2) The Euler characteristic χ is a smooth valuation. (This is less trivial and
follows from a version of the Gauss-Bonnet theorem of Chern [9].)
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We denote by V∞(X) the space of smooth valuations. Naturally V∞(X) is a
Fréchet space. Let V∞

c (X) denote the subspace of compactly supported valuations.
We have the integration functional

∫

: V∞
c (X) → C

given by [φ 7→ φ(X)].
A rather non-trivial and important structure is the product on valuations. There

exists a continuous bilinear map

V∞(X)× V∞(X) → V∞(X)

which makes V∞(X) a commutative associative algebra with the unit (= the Euler
characteristic χ); see [1], [2], [8], [7].

The product satisfies a version of the Poincaré duality: the bilinear form
V∞(X) × V∞

c (X) → C given by (φ, ψ) 7→
∫

φ · ψ is a perfect pairing. In other
words the induced map V∞(X) → (V∞

c (X))∗ is injective and has a dense image
in the weak topology.

We denote V −∞(X) := (V∞
c (X))∗ and call it the space of generalized valua-

tions. Thus V∞(X) ⊂ V −∞(X) is dense.
Let us denote by F(X) the space of constructible functions, e.g. finite lin-

ear combinations with complex coefficients of the indicator functions of compact
submanifolds with corners. The natural linear map F(X) → V −∞(X) given by
∑

i λi1lPi
7→ [φ 7→∑

i λiφ(Pi)] is injective and has a dense image. Thus

V∞(X) ⊂ V −∞(X) ⊃ F(X).

Now let us explain the meaning of the product on valuations. Recently the speaker
and Bernig [7] have defined a partial product on generalized valuations V −∞(X)
which extends, on one hand, the above mention product on smooth valuations, and
restricts, on the other hand, to the pointwise product of constructible functions.
(We omit the relevant precise but technical statement.)

Let us discuss the push-forward on valuations. We discuss a general idea which
has been made rigorous in some special cases under technical assumptions in [6].
Let f : X → Y be a smooth proper map. The push-forward map f∗ : V (X) →
V (Y ) (here we omit the superscript indicating what regularity we require since it
may vary from one situation to another) is ”defined” by

(f∗φ)(P ) = φ(f−1(P )).

Once this definition is made rigorous, the push-forward of smooth measures con-
sidered as smooth valuations coincides with the usual push-forward on measures.
Moreover the push-forward on constructible functions considered as generalized
valuations should coincide with the well known operation of integration with re-
spect to the Euler characteristic along the fibers.

The pull-back operation f∗ : V (Y ) → V (X) should be considered as the dual
map to f∗. If we restrict f∗ to constructible functions, we get the usual pull-back
on functions. Let us restrict f∗ to measures. Consider the special case when
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f : Rn → R
k is the orthogonal projection (k < n). Consider the pull-back of the

Lebesgue measure f∗(volk). It is a well known valuation such that its value on
any convex compact set K ⊂ Rn is (f∗volk)(K) = volk(f(K)), i.e. the volume of
the projection.
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Valuations on Lp spaces

Andy Tsang

If (X,F, µ) is a measure space then the Lp-space, Lp(µ) where 1 ≤ p < ∞, is
the collection of µ-measurable functions f : X → [−∞,∞] that satisfies

∫

X

|f |p dµ <∞.

For an f ∈ Lp(µ), the Lp-norm of f denoted by ‖f‖p, is defined as

‖f‖p =
(

∫

X

|f |p dµ
)1/p

.

The functional ‖ · ‖p : Lp(µ) → R is a semi-norm. If functions in Lp(µ) that are
equal almost everywhere with respect to µ (a.e. [µ]) are identified, then ‖ · ‖p :
Lp(µ) → R becomes a norm and Lp(µ) becomes a normed linear space. From
now on Lp(µ) will be the identified space. One can easily check that Lp(µ) is a
lattice of functions, that is f ∨ g, f ∧ g ∈ Lp(µ) whenever f, g ∈ Lp(µ), where
f ∨ g = max{f, g} and f ∧ g = min{f, g}. A function Φ : Lp(µ) → R is called a
valuation if Φ(0) = 0 and

Φ(f ∨ g) + Φ(f ∧ g) = Φ(f) + Φ(g),

for all f, g ∈ Lp(µ). The following theorem provides a large class of continuous
valuations on the lattice Lp(µ).
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Theorem 1.1 [1] If h : R → R is a continuous function with the properties that
h(0) = 0 and there exist real numbers γ, δ ≥ 0 such that |h(α)| ≤ γ|α|p + δ for all
α ∈ R, then the functional Φ : Lp(µ) → R defined by

Φ(f) =

∫

X

h ◦ f dµ

for f ∈ Lp(µ), is a continuous valuation provided that δ = 0 if µ(X) = ∞.

A measure space (X,F, µ) is called non-atomic if for every E ∈ F with µ(E) > 0,
there exists F ∈ F with F ⊆ E and 0 < µ(F ) < µ(E). The following is an integral
representation theorem for a certain class of continuous valuations on Lp-spaces.

Theorem 1.2 [1] Let (X,F, µ) be a non-atomic measure space and let Φ : Lp(µ) →
R be a continuous valuation. If there exists a continuous function h : R → R

with h(0) = 0 such that Φ(αχE) = h(α)µ(E) for all α ∈ R and all E ∈ F with
µ(E) < ∞ then there exist real numbers γ, δ ≥ 0 such that |h(α)| ≤ γ|α|p + δ for
all α ∈ R and

Φ(f) =

∫

X

h ◦ f dµ

for all f ∈ Lp(µ). In addition, if µ(X) = ∞ then δ = 0.

Theorem 1.1 and Theorem 1.2 give two characterization theorems. But first
some notations and definitions. If X = Rn, F = M where M is the collection of
Lebesgue measurable sets in Rn and µ = m where m is Lebesgue measure then
we usually write Lp(Rn) instead of Lp(m). Also, if f ∈ Lp(Rn), it is customary

to write

∫

Rn

f(x) dx in place of

∫

Rn

f dm. For simplicity, we will always write

measurable functions instead of m-measurable functions. Denote by Sn−1 the
unit sphere in Rn and denote S to be the σ-algebra defined as

S = {E : E ⊆ Sn−1, {λx : x ∈ E, 0 ≤ λ ≤ 1} ∈ M}.
Also denote by σ the Lebesgue spherical measure. We will use the notation

Lp(Sn−1) for Lp(σ). Also, if f ∈ Lp(Sn−1), it is customary to write

∫

Sn−1

f(u) du

in place of

∫

Sn−1

f dσ. The collection of translations on Rn will be denoted by

T (n). If τ ∈ T (n) and f ∈ Lp(Rn) then τf is defined as τf = f ◦ τ−1. It should
be noted that τf ∈ Lp(Rn). A valuation Φ : Lp(Rn) → R is called translation
invariant if Φ(τf) = Φ(f) for every f ∈ Lp(Rn) and every τ ∈ T (n). The collection
of (proper) rotations on Rn will have the standard notation SO(n). If θ ∈ SO(n)
and f ∈ Lp(Sn−1) then θf is defined as θf = f ◦ θ−1. It should be noted that
θf ∈ Lp(Sn−1). A valuation Φ : Lp(Sn−1) → R is called rotation invariant if
Φ(θf) = Φ(f) for every f ∈ Lp(Sn−1) and every θ ∈ SO(n). Now we are ready to
state the two characterization theorems.
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Theorem 1.3 [1] A functional Φ : Lp(Rn) → R is a continuous translation in-
variant valuation if and only if there exists a continuous function h : R → R with
the property that there exists a real number γ ≥ 0 such that |h(α)| ≤ γ|α|p for all
α ∈ R and

Φ(f) =

∫

Rn

(h ◦ f)(x) dx

for all f ∈ Lp(Rn).

Theorem 1.4 [1] A functional Φ : Lp(Sn−1) → R is a continuous rotation in-
variant valuation if and only if there exists a continuous function h : R → R

with the properties that h(0) = 0 and there exist real numbers γ, δ ≥ 0 such that
|h(α)| ≤ γ|α|p + δ for all α ∈ R and

Φ(f) =

∫

Sn−1

(h ◦ f)(u) du

for all f ∈ Lp(Sn−1).

Perhaps one can find more applications of Theorems 1.1 and 1.2.
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Integral geometry in complex space forms

Judit Abardia

(joint work with Eduardo Gallego, Gil Solanes)

One of the classical problems in integral geometry consists on expressing the mea-
sure of the set of planes intersecting a convex domain in terms of the geometry
of the convex set, namely in terms of curvature integrals. These expressions are
known as Crofton formulas.

In the space of constant sectional curvature k, Mn(k), Santaló [9, p. 310] found
these expressions in terms of the mean curvature integrals. That is, if Lr denotes
the space of r-dimensional geodesic planes in Mn(k), dLr is a measure on Lr

invariant under the isometry group of Mn(k), Ω ⊂ Mn(k) is a compact domain
with smooth boundary, and r = 2l, then

(1)

∫

L2l

χ(Ω ∩ L2l)dL2l = c0vol(Ω) +

l
∑

i=1

cik
l−iM2i−1(∂Ω),

where ci are known coefficients depending only on n, r and i, whileMj(∂Ω) denotes
the j-th mean curvature integral. An analogous formula holds in the case of odd-
dimensional planes.

The main goal of this work is to extend expression (1) to complex space forms.
Complex space forms - denoted by CK

n(ǫ) - are simply connected Kähler manifolds
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with constant holomorphic curvature 4ǫ. (In a Kähler manifold, the holomorphic
curvature is the sectional curvature of a complex line.) A complex space form is
isometric to the standard Hermitian space, Cn, if ǫ = 0, to a complex projective
space, CPn, if ǫ > 0 or to a complex hyperbolic space, CHn, if ǫ < 0. For a more
extended description of these spaces see, for instance, [6] and [7].

In the standard Hermitian space Cn, some developments in the field of integral
geometry have been done recently. Alesker [3] computed the dimension of the space
of continuons translation invariant valuations, invariant also under the grup U(n),
and also gave two bases of valuations. In [5], Fu obtained the algebraic structure
of this space, and together with Bernig [4], they obtained an explicit formula of
the principal kinematic formula in terms of some new basis of valuations. From
this result, one can obtain the Crofton formulas in Cn, i.e. an expression for

∫

Lk,q

χ(Ω ∩ Lk,q)dLk,q,

where Lk,q denotes the space of totally geodesic planes Lk,q
∼= Cq⊕Rk−2q, in terms

of one of the introduced basis. The elements of this basis were called hermitian in-
trinsic volumes {µk,p}max{0,k−n}≤p≤k/2≤n/2. They can be represented as curvature

integrals of the boundary of the convex domain, and satisfy Klµk,p
(Lk′,p′) = δk

′,q′

k,q

where Kl is the Klain function (see [4] for definitions).
In our work, we obtain in any complex space form the expression for

(2) φr(Ω) :=

∫

LC
r

χ(Ω ∩ Lr)dLr,

in terms of the hermitian intrinsic volumes, which can be generalized to any com-
plex space form, as in [8]. In the case ǫ = 0 we get the result in [4] but in a different
way, leading to simplified expressions of the same coefficients. In the complex pro-
jective and hyperbolic space, it makes also sense to study the integrals over the
spaces of totally real totally geodesic submanifolds. This is done in [1], and this
completes the study of the Crofton formulas in complex space forms.

The obtained expression is (cf. [2])

φr =

n
∑

k=n−r

ǫk−(n−r)ω2n−2k
(

n
k

)

ω2r





k−1
∑

q=max{0,2k−n}

(

2k−2q
k−q

)

4k−q
µ2k,q + (k + r − n+ 1)µ2k,k





where µk,q denote the hermitian intrinsic volumes.
These coefficients, as Fu pointed out, correspond to the Maclaurin expansion of

1/
√
1− x. A geometric interpretation of this fact is not known.

In order to prove the result we obtain the first variation formula for both the
integral (2), using a similar method as in [10], and the hermitian intrinsic volumes,
extending a result in [4] for Cn to the other complex space forms.
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On the other hand, using the same variational method, we can express the Euler
characteristic of a domain in CP

n or CHn in terms of the hermitian intrinsic vol-
umes, obtaining an extrinsic expression in terms of the curvatures of the boundary
(cf. [2]).
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Metrizability of Path Geometries

Gautier Berck

(joint work with Juan Carlos Álvarez)

Our goal is to understand how to construct Finsler surfaces with prescribed
geodesics. This question was addressed by Busemann [5, 6, 7], Ambartzumian [2],
Alexander [1], Matsumoto [8], and Arcostanzo [3].

We stress that we work with the classical definition of (reversible) Finsler met-
rics:

Definition. A Finsler metric on a manifoldM is a continuous function F : TM →
[0 . .∞) that is homogeneous of degree one, smooth outside the zero section and
satisfies the quadratic convexity condition: at every tangent space TxM the Hes-
sian of F 2(x, ·) (computed using any affine coordinates on TxM) at any nonzero
tangent vector is a positive-definite quadratic form.

Indeed, in studying inverse problems in Finsler geometry our predecessors have
either weakened the condition of quadratic convexity to the condition that the
restriction of F to each tangent space be a norm ([3]), considered wider general-
izations of Finsler metrics such as G-spaces ([5, 6, 7]), or considered integrands
that are homogeneous of degree one and not necessarily defined in all tangent
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directions ([8]). If we insist on the quadratic convexity condition it is because
without it we cannot speak of the geodesic flow of the Finsler metric nor define
important invariants such as the flag curvature (see [4]).

Consider a manifold M together with a family of hypersurfaces such that
through every point x ∈ M and every tangent hyperplane ζx in TxM there is
a unique hypersurface passing through x tangent to ζx. Let us assume that this
family is parameterized by a smooth manifold Γ and that the projection that
sends a tangent hyperplane ζx to the unique hypersurface that is tangent to it is
a submersion from the space PT ∗M of contact elements on M to the parameter
manifold Γ.

Theorem A. If µ is a smooth positive measure on Γ, there is a (unique) Finsler
metric F : TM → [0 . .∞) such that for any piecewise smooth curve c on M we
have the Crofton-type formula

(1)

∫

F (ċ(t)) dt =

∫

γ∈Γ

#(γ ∩ c) dµ(γ).

In general, the authors do not know what is the precise relationship between
the family of hypersurfaces and the Finsler metrics associated to it. However, in
two dimensions the relationship is simple enough:

Theorem B. If M is a two-dimensional manifold, the Finsler metrics defined by
Eq. (1) are precisely those whose geodesics are the curves of the family parame-
terized by Γ.

In particular, any path geometry in a two-dimensional manifold is locally the

system of geodesics of a Finsler metric.

An interesting remark is that while the construction in Theorem A extends to
families of cooriented hypersurfaces such as the family of horospheres in hyper-
bolic space, Theorem B does not. Indeed, if we allow different curves of Γ to be
tangent on the condition that their coorientations at the point of tangency be
different, then not only do those curves fail to be geodesics of the Finsler metric
defined by Eq. (1), but metrics associated to different measures may have different
unparameterized geodesics. We demonstrate this by taking Γ to be the family of
horocycles in the hyperbolic plane and using Eq. (1) to construct two Riemannian
metrics — the hyperbolic metric and a metric conformal to it — with different
sets of unparameterized geodesics.
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Integral geometry of tensor valuations

Daniel Hug

(joint work with Rolf Schneider, Ralph Schuster)

Valuations and integral geometric results for real valued functionals have been
studied extensively in the literature. The present purpose is to present a survey of
recent integral geometric results for tensor valued valuations. Here the situation
turns out to be substantially more complicated than in the real valued case. The
use of algebraic methods in this context may shed some new light on the results
obtained so far and hopefully leads to new results in the future.

We write Tp for the vector space of symmetric tensors of rank p over Rn, p ∈ N0,
ab = a ⊙ b for the symmetric tensor product of tensors a and b, and Q for the
metric tensor, that is Q(x, y) = 〈x, y〉 for x, y ∈ Rn, where 〈·, ·〉 denotes the scalar
product. We write Bn for the Euclidean unit ball, κn for its volume and Sn−1 for
its boundary.

1. The classical case, p = 0

For any nonnegative ε ≥ 0, we have the Steiner formula

Vn(K + εBn) =

n
∑

j=0

εn−jκn−jVj(K).

The functionals Vj on the space Kn of convex bodies (nonempty compact convex
sets) are called intrinsic volumes or Minkowski functionals. They are isometry in-
variant, continuous valuations and Vj is homogeneous of degree j. By Hadwiger’s
classical characterization theorem, all functionals which are isometry invariant,
continuous valuations are linear combinations of the intrinsic volumes. As a con-
sequence of Hadwiger’s theorem, one can deduce the Crofton formula (CF)

∫

A(n,k)

Vj(K ∩E)µk(dE) = anjk Vn+j−k(K)

and the principal kinematic formula (PKF)
∫

Gn

Vj(K ∩ gM)µ(dg) =
n
∑

k=j

anjkVn+j−k(K)Vk(M),
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where K,M ∈ Kn, A(n, k) is the set of k-flats in R
n, Gn is the motion group

and µk and µ are suitably normalized Haar measures. The constants anjk are well
known and easy to determine. A surprisingly general result is Hadwiger’s general
integral geometric (GIG) theorem which states that for any continuous valuation
ϕ on the space of convex bodies, we have

∫

Gn

ϕ(K ∩ gM)µ(dg) =

n
∑

k=0

∫

A(n,k)

ϕ(K ∩ E)µk(dE)Vk(M).

2. Vector valued valuations, p = 1

As a starting point for the investigation of vector valued valuations one can
replace the volume functional by the moment vector

Mn(K) :=

∫

K

xdx.

The Steiner formula for the moment vector

Mn(K + εBn) =
n
∑

j=0

εn−jκn−jMj(K)

leads to vector valued functionals Mj : Kn → Rn, which are isometry covariant,
continuous valuations. A characterization theorem due to Hadwiger and Schneider
states that any isometry covariant, continuous vector valued valuation is a linear
combination of M0, . . . ,Mn. For Mj there exist (CF) and (PKF). An efficient
approach to these results uses curvature measures Φj(K, ·) of a convex body K,
which are Borel measures on Rn and image measures of the support measures
Λj(K, ·) under the projection map Rn × Sn−1 → Rn, (x, u) 7→ x. Local versions of
(CF) and (PKF) then are

∫

A(n,k)

∫

E

f(x)Φj(K ∩ E, dx)µk(dE) = anjk

∫

Rn

f(x)Φn+j−k(K, dx),

∫

Gn

∫

f(x)Φj(K ∩ gM, dx)µ(dg) =

n
∑

k=j

anjk

∫

f(x)Φn+j−k(K, dx)Vk(M).

The choice f(x) = x yields the (CF) and the (PKF) for vector valuations.

3. General tensor valuations

Next we consider the moment tensor

Ψr(K) :=
1

r!

∫

K

xr dx.

We obtain

Ψr(K + εBn) =
n+r
∑

j=0

εn+r−jκn+r−jV
(r)
j (K),
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where
V

(r)
j (K) =

∑

s

Φj−r+s,r−s,s(K)

with

Φk,r,s(K) :=
ωn−k

r!s!ωn−k+s

∫

xrusΛk(K, d(x, u)),

for k ∈ {0, . . . , n− 1} and r, s ∈ N0, and

Φn,r,0(K) :=
1

r!

∫

xr Λn(K, dx),

where Λn(K, ·) is the restriction of Lebesgue measure to K.

Theorem 3.1 (Alesker). Let p ∈ N0 and ϕ : Kn → Tp be a continuous isometry
covariant tensor valuation. Then ϕ is a linear combination of the basic tensor
functionals QlΦj,r,s with p = 2l+ r + s.

The basic tensor valuations are not linearly independent, since

2π
∑

s

sΦj−r+s,r−s,s = Q
∑

s

Φj−r+s,r−s,s−2,

which is due to McMullen. The following theorem is from [1].

Theorem 3.2. Every linear relation among the basic tensor valuations is obtained
by multiplying McMullen’s relations by Ql, for some l ∈ N0, and by taking linear
combinations of relations obtained in this way.

4. Integral geometric results

It is of considerable interest to obtain integral geometric formulas for the basic
tensor valuations. In various special cases, the formulas still take a simple form.
This is the case for tensor valuations of rank 2. Another example follows from
translative integral formulas for support measures, which yield the (PKF)
∫

Gn

Φn−1,r,s(K ∩ gM)µ(dg) = Φn−1,r,s(K)V (M) + δ(n, s)Q
s
2Φn,r,0(K)Vn−1(M),

where δ(n, s) is explicitly known and zero iff s is odd. The formula
∫

A(n,n−1)

Φn−1,r,s(K ∩E)µn−1(dE) = δ(n, s)Q
s
2Φn,r,0(K)

can be obtained as a consequence of the preceding (PKF )and Hadwiger’s (GIG)
theorem. As a third example, we mention

∫

A(n,n−2)

Φn−2,r,s(K ∩ E)µn−2(dE) = αn,n−2,sQ
s
2 Φn,r,0(K),

where αn,n−2,s is explicitly known and zero if s is odd, and

∫

A(n,n−1)

Φn−2,r,s(K ∩ E)µn−1(dE) =

⌊ s
2
⌋

∑

m=0

α(n, s,m)Qm Φn−1,r,s−2m(K),
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where α(n, s,m) is explicitly known. All these results are special cases of a general
Crofton formula stated in [2]. The approach there is essentially based on translative
integral geometry and presently requires methods of geometric measure theory. It
is desirable to simplify the approach to and the statement of these results.
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The intersection of two real forms in Hermitian symmetric spaces of
compact type

Hiroyuki Tasaki

(joint work with Makiko Sumi Tanaka)

This is based on [12] and a joint paper [11] with Tanaka.
The 1-dimensional Hermitian symmetric space of compact type is the complex

projecive line CP 1. If we regard CP 1 as the 2-dimensional sphere, then its real
form is a great circle. Two different great circles intersect at just two points and
their intersection is always a pair of antipodal points. The purpose of this talk is to
generalize this phenomenon to the intersection of two real forms in any Hermitian
symmetric space of compact type. This study has not yet reached to any result
of integral geometry, however I think an exact information on the intersection of
fundamental submanifolds is important for formulation of several integral formulas
in integral geometry. This is one of my motivations of this study.

1. Main results

Let M̄ be a Hermitian symmetric space. A submanifold M is called a real form
of M̄ , if there exists an involutive anti-holomorphic isometry σ of M̄ satisfying

M = {x ∈ M̄ | σ(x) = x}.
Any real form M is a totally geodesic Lagrangian submanifold of M̄ . Leung [4]
and Takeuchi [9] classified real forms of Hermitian symmetric spaces of compact
type.

A subset S in a Riemannian symmetric space M is called an antipodal set, if
sxy = y for any points x and y in S, where sx is the geodesic symmetry with
respect to x. The 2-number #2M of M is the supremum of the cardinalities of
antipodal sets of M . We call an antipodal set in M great if its cardinality attains
#2M . These were introduced by Chen and Nagano [2]. Takeuchi [10] proved

#2M = dimH∗(M,Z2)
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for any symmetric R-spaceM , where H∗(M,Z2) is the homology group ofM with
coefficient Z2. A compact Riemannian symmetric space is called a symmetric R-
space, if its maximal torus has an orthonormal basis of the lattice for a suitable
invariant metric. He also showed that any real form of Hermitian symmetric spaces
of compact type is a symmetric R-space in [9].

Now se can state our main results.

Theorem 1.1 ([11]). Let M be a Hermitian symmetric space of compact type. If
two real forms L1 and L2 ofM transversally intersect, then L1∩L2 is an antipodal
set of L1 and L2.

Two submanifolds in a Hermitian symmetric space are congruent, if one is
transformed to another by a holomorphic isometry.

Theorem 1.2 ([11]). Let M be a Hermitian symmetric space of compact type
and let L1 and L2 be two real forms of M which are congruent and transversally
intersect. Then L1∩L2 is a great antipodal set of L1 and L2. That is, #(L1∩L2) =
#2L1 = #2L2.

Theorem 1.3 ([11]). Let M be an irreducible Hermitian symmetric space of
compact type and let L1 and L2 be two real forms of M which transversally
intersect.

(1) If M = GC
2m(C4m) (m ≥ 2), L1 is congruent to GH

m(H2m) and L2 is
congruent to U(2m), then

#(L1 ∩ L2) = 2m <

(

2m

m

)

= #2L1 < 22m = #2L2.

(2) Otherwise, L1 ∩L2 is a great antipodal set of one of Li’s whose 2-number
is less than or equal to another and we have

#(L1 ∩ L2) = min{#2L1,#2L2}.
We call a Lagrangian submanifold L of a Hermitian symmetric spaceM globally

tight, if L satisfies

#(L ∩ g · L) = dimH∗(L,Z2)

for any holomorphic isometry g of M with the property that L transversally in-
tersects with g · L (Oh [6]). We obtain the following corollary from Theorem
1.2.

Corollary 1.4. Any real form of a Hermitian symmetric space of compact type
is a globally tight Lagrangian submanifold.

2. Outline of the proofs

We need the following lemma to start the proofs.

Lemma 2.1 ([12]). Let M be a compact Kähler manifold with positive holomor-
phic sectional curvature. If L1 and L2 are totally geodesic compact Lagrangian
submanifolds in M , then L1 ∩ L2 6= ∅.
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The proof of this lemma is similar to that of a result of Frankel [3] concerning
the intersection of two totally geodesic submanifolds in a Riemannian manifold
with positive sectional curvature.

Since Hermitian symmetric spaces of compact type have positive holomorphic
sectional curvature, we can apply Lemma 2.1 to real forms of Hermitian symmetric
spaces of compact type. Hence two real forms of them always intersect.

According to a result by Takeuchi [8] on maximal tori of compact symmetric
spaces and a result by Sakai [7] on cut loci of compact symmetric spaces, we can
prove Theorem 1.1.

Let M be a compact connected Riemannian symmetric space. We decompose
the fixed point set F (so,M) of the geodesic symmetry so at the origin o to the
disjoint union of its connected components:

F (so,M) =

r
⋃

j=0

M+
j .

We call each connected component M+
j a polar of M . The notion of polar was

introduced and investigated by Chen and Nagano [1], [5].
If M is a Hermitian symmetric space of compact type, then each polar M+ is

also a Hermitian symmetric space of compact type. If L is a real form through o
and if L ∩M+ is not empty, then the intersection L ∩M+ is a real form of M+.

We assume that M,L1, L2 are manifolds stated in Theorem 1.2 or 1.3. We can
suppose o ∈ L1 ∩ L2. By Theorem 1.1, L1 ∩ L2 is an antipodal set of L1 and L2,
so L1 ∩ L2 is an antipodal set of M , too. Hence L1 ∩ L2 ⊂ F (so,M). Therefore
we have the equality:

L1 ∩ L2 =
r
⋃

j=0

{(L1 ∩M+
j ) ∩ (L2 ∩M+

j )}.

The intersection of two real forms in M is reduced to that of two real forms in
M+

j . We can prove Theorem 1.2 by induction of the polars. In order to prove
Theorem 1.3 we use the classification of irreducible Hermitian symmetric spaces
of compact type and their real forms.
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Integral geometry under the Möbius group

Gil Solanes

(joint work with Jun O’Hara)

The aim of this talk is to show that integral geometry can be developed, to some
extent, in homogeneous spaces with a non-compact isotropy group. Concretely, we
study the case of the Möbius group acting on the extended plane R2 ∪ {∞} ≡ S2.

To begin with, we consider the space Γ of circles in the plane. This space admits
a natural measure dγ which is invariant under the Möbius group. Unfortunately,
the measure of the set of circles intersecting a given curve is infinite. Langevin
and O’Hara solved this problem by restricting the integration to circles intersecting
more than twice. Namely, for a smooth curve C ⊂ R2 one has (cf.[1])

∫

Γ

(

#(γ ∩ C)/2
2

)

dγ = c

∫

C×C

(θ cos θ − sin θ)
dxdy

‖y − x‖2 .

where the constant c depends only on the normalization of dγ, and θ is the angle
between the two circles through x, y tangent to C at x and y respectively. We
notice that dxdy/‖y−x‖2 is the modulus of the following Möbius invariant complex
valued form ω called the infinitesimal cross-ratio (cf.[1])

ω = (x, x + dx; y, y + dy) =
(dx1 + idx2) ∧ (dy1 + idy2)

(y − x)2
.

In a recent work with Jun O’Hara we considered the case of 0-dimensional
spheres. Indeed, the space of point pairs admits the following Möbius invariant
measure: dP(w,z) = dwdz/‖w − z‖4, where dw, dz denote area elements. Given

Ω ⊂ R2 with nonempty interior, the integral of dP over Ω × Ω is divergent. In
fact, for Ω compact with differentiable boundary C = ∂Ω, one has the following
Laurent expansion

∫

Ω×Ω\∆ǫ

dP =
πA(Ω)

ǫ2
− 2L(C)

ǫ
+ E(Ω) +O(ǫ)

where ∆ǫ = {(w, z) ∈ Ω × Ω | ‖w − z‖ < ǫ}, and A,L denote the area, and the
length respectively. We call the degree zero term E(Ω) the renormalized energy.
Using the fact that 2dP = Reω ∧Reω one can show that

E(Ω) = −
∫

C×C

sin θx sin θy
dxdy

‖y − x‖2 ,

where θx, θy are the oriented angles between the vector y − x and the positve
tangent vector of C at x, y respectively.
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It is also easy to see that

(1) E(Ω) = lim
ǫ→0

(

2L(C)

ǫ
− 1

2

∫

R2×R2

λ2(w, z)dP

)

where λ is the indicator function of Ω× Ω ∪ Ωc × Ωc.
By the invariance of dP , it is natural to expect the renormalized energy to be

Möbius invariant. In order to prove this we consider R2 as the ideal boundary
∂∞H

3 of Poincaré model of hyperbolic space H
3. Given Ω ⊂ R

2 as above, let
S ⊂ H3 be a complete surface orthogonal to ∂∞H3 along C. Assume further that
S∪C is a smooth surface with boundary. Such an S was said to have cone-like ends
in [2]. Considering Sǫ = S ∩ {(x, y, z)|z > ǫ}, we have the following Gauss-Bonnet
theorem for the integral of the extrinsic curvature K of S:

∞ >

∫

S

KdS = 2πχ(S) + lim
ǫ→0

(

A(Sǫ)−
L(C)

ǫ

)

= 2πχ(S) + lim
ǫ→0

(

2

π

∫

R2×R2

#(ℓ ∩ Sǫ)dP − L(C)

ǫ

)

= 2πχ(S) + lim
ǫ→0

(

2

π

∫

∆c
ǫ

#(ℓ ∩ S)dP − 8L(C)

πǫ

)

where A denotes the hyperbolic area, and ℓ is the geodesic defined by a point pair
in ∂∞H

3. Combining the equation above with (1) we get

(2)

∫

S

K = 2πχ(S) +
2

π

∫

R2×R2

(#(ℓ(w, z) ∩ S)− λ2(w, z))dP(w,z) −
4

π
E(Ω).

This shows the Möbius invariance of E(Ω). An invariant expression of E(Ω) has
been obtained in [2]. Another easy consequence of (2) is that E(Ω) ≥ π2χ(Ω)/2.
This follows by taking the convex hull of Ω, and observing that its boundary has
vanishing extrinsic curvature.
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