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Abstract. Modelling multivariate time series of possibly high dimension
calls for appropriate dimension-reduction, e.g. by some factor modelling,
additive modelling, or some simplified parametric structure for the dynam-
ics (i.e. the serial dependence) of the time series. This workshop aimed to
bring together experts in this field in order to discuss recent methodology
for multivariate time series dynamics which are changing over time: by an
abrupt switch between two (or more) different regimes or rather smoothly
evolving over time. The emphasis has been on mathematical methods for
semiparametric modelling and estimation, where ”semiparametric” is to be
understood in a rather broad sense: parametric models where the parameters
are themselves nonparametric functions (of time), regime-switching nonpara-
metric models with a parametric specification of the transition mechanism,
and alike. An ultimate goal of these models to be applied to economic and
financial time series is prediction. Another emphasis has been on comparing
Bayesian with frequentist approaches, and to cover both theoretical aspects
of estimation, such as consistency and efficiency, and computational aspects.
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Introduction by the Organisers

Over the past 20 years statisticians have contributed by developing methodology
to address the curse of dimensionality when modelling high-dimensional multivari-
ate economic and financial data such that subsequent estimation remains possible.
This ranges from parsimonious parametric models, over additive non-parametric
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modelling to the quite general factor model approach based e.g. on principal com-
ponents regression. Common to all of these approaches is the goal to describe
the common structure of a panel of several tenths of time series by a ”simple”
model, either in a low-dimensional parametric space or a low-dimensional space of
”common components” which up to some idiosynchratic behaviour specific to each
time series dimension describe the co-movement over time of the whole panel. This
latter factor approach has found lots of applications, not only in the context of
macro-economic or financial data. As soon as the data become serially correlated,
the afore-mentioned approaches need to be dynamic: (vector-) autoregressive mod-
els, either in the (conditional) mean or in the (conditional) variance structure of the
data (leading to so called MGARCH models), either parametric or non-parametric
(i.e. non-linear AR-models), dynamic (instead of static) factor models, conditional
correlation models, and alike. Treating these dynamic models from the point of
view of deriving theoretical properties of the accompanying estimation methods,
such as consistency, asymptotic normality, efficiency, and to construct reliable
prediction methods (intervals) for the future evolution of these time series, calls
for more refined mathematical-statistical skills, and it is primarily towards the
community of researchers with expertise in this field that the scope of our work-
shop is addressed. Based on recent empirical evidence, most of these multivariate
time series cannot necessarily be considered to have a homogeneous dynamical
structure over time: the impact of political and financial crises, changing mon-
etary policies of central banks, and alike, suggests to refine the afore-mentioned
models to allow for inhomogeneity, i.e. changing dynamics. Subsequently, the
proposed estimation methods need to be refined, and quite naturally, constructing
appropriate predictors becomes more challenging. The goal of this workshop at-
tended by 15 researchers from 10 different countries has been to compare a variety
of different approaches to model and treat the kind of inhomogeneity described
above. These approaches to inhomogeneous time series modelling could be called
”semi-parametric”, e.g. via a parametrisation locally in time as a stationary pro-
cesses. Examples for that are (vector-) autoregressive or MGARCH-type models
where the parameters become now non-parametric functions of time. Those can
be of low regularity (to include abrupt changes over time) or of higher smoothness
over time, in order to model a slow evolution of the dynamics. Another instance
of semiparametric modelling arises for a different approach to inhomogeneity: in
regime-switching models, the underlying stochastic process is modelled as chang-
ing from one regime of stationarity to another via a random mechanism (e.g. an
underlying Markov chain), i.e. the existence of latent (unobservable) state vari-
ables that control in which regime the mean and the variance-covariance structure
(conditional or unconditional) are to be found. Modelling the transition of these
(nonparametrically modelled) states by Bayesian or frequentist approaches, e.g.
via a parametric matrix of transition probabilities, was one emphasis of our dis-
cussions, addressing among others questions of statistical inference and subsequent
prediction, but also computational issues such as MCMC (Markov Chain Monte
Carlo) or EM-algorithms. Summarizing the workshop gave us the opportunity
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to enjoy lively discussions on the question how models for high-dimensional time
series with changing dynamics can be made on the one hand sufficiently parsimo-
nious (in ”parameters” through either latent variables or functional parameters
whose number is considerably smaller than the number of modelled time series)
but on the other hand sufficiently flexible to capture the inhomogeneity of the time
series.
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Abstracts

Dynamic Factor Models for Forecasting and Structural Identification

Matteo Barigozzi

(joint work with Lucia Alessi, Marco Capasso)

We consider new empirical applications of factor models, based on recent method-
ological advances in forecasting and structural analysis. The main idea underlying
factor analysis is that a large set of variables can be explained by a small number
of latent variables, the factors, which are responsible for all the relevant dynamics.
Given a sequence (indexed by n) of nested vector stochastic processes {ynt, t ∈ Z}
the dynamic factor represenation is

(1) ynt = xnt + znt = Bn(L)ut + znt, t ∈ Z.

The process ynt is decomposed into two components: a common one xnt that con-
tains the information carried by the factors ut, and an idiosyncratic one znt which
is simply the residual of the decomposition. Furthermore, the relation between
the common part of the observable series and the factors is assumed to be linear.
This decomposition is accomplished by analysing the spectral density matrix of
the observable variables. If these are all driven by a common set of say q factors
with q < n, then the q largest eigenvalues of the spectral density matrix of ynt

contain all the essential information and diverge as n diverges, while the remain-
ing n− q eigenvalues remain bounded. Factor analysis is therefore a technique of
dimension reduction that takes the information contained in a large dataset and
summarizes it by means of few unobservable common variables.

Starting from the most general case of Dynamic Factor Model presented in
[7], and [6], we consider the restriced case presented in [5]. Indeed under the
assumption of onesided finite lag loadings Bn(L) we can write (1) in state space
form

(2) ynt = AnFt + znt, (I−C(L))Ft = Hut, t ∈ Z.

This is very similar to the models by [9], and [3].

We propose a modification of (2) for conditionally heteroskedastic series. In
factor analysis nothing is usually said about the conditional covariance matrix of
the data. We assume that the observed conditional heteroskedasticity observed for
certain datasets is generated by conditionally heteroskedastic dynamic factors ut

that evolve according to a Multivariate GARCH. We call this new model Dynamic
Factor-GARCH (DF-GARCH). Together with the assumptions of this model, we
propose a three-steps estimator of the conditional covariance matrix which is con-
sistent as both the cross-section dimension n and the sample size T diverge. We
provide results from Monte Carlo simulations. We show forecast performance of
the model when applied to volatilities and covolatilities of asset returns of the
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London Stock Exchange. We then apply the model to a macroeconomic context,
when forecasting US inflation and its conditional variance. Moreover, we are also
able to get forecasts of conditional covariances between macroeconomic variables
which may result valuable in monetary policy issues (see [2]).

Model (2) can be used also as a competitor of Structural VARs (SVARs) for
economic analysis. Usually the literature faces the probelm of identification of
the structural shocks hitting the economy in the context of SVAR. We show that
typical small size reduced form VARs may suffer of the problem of nonfunda-
mentalness, i.e. the structural shocks of the structural MA representation of the
economy belong also the space spanned by future observations. This fact typically
happens when the economic agents’ information space is larger that the econome-
tricians’ one. In all these cases, the agent forms his future expectations by using
the information supplied by additional variables, while SVARs make use only of a
limited amount of information and clearly have information only about the past.
Neglecting this problem may lead to wrong identification of structural shocks. This
may be the case, for example, when we use SVARs for validating Dynamic Stochas-
tic General Equilibrium models which are often used by Central Banks for policy
making. We show how dynamic factor models in the state space representation
(2) do not suffer of this problem and are therefore suitable for identification. Fol-
lowing [5], we compare the results obtained with a dynamic factor approach with
the ones obtained from a New Keynesian model by [8]. Our results turn out to be
robust with respect to the transformation used for hours per worker as the labour
input variable. This is a very controversial issue as explained in [4]. As in [8], our
method seems to hint towards a negative correlation between hours per worker and
productivity growth rates, when conditioning on a technology shock while in [4] a
positive conditional correlation is reported. This discrepancy between SVAR and
factor models results, is imputable to thee presence of nonfundamental shocks in
the bivariate system made of labour productivity and hours worked, which SVARs
cannot identify (see [1]).
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Generalized Linear Dynamic Factor Models - An approach via

Singular Autoregressions

Manfred Deistler

(joint work with Brian D.O. Anderson, Alexander Filler, Christiane Zinner,
Weitian Chen)

Modeling and forecasting of high dimensional time series is plagued by the so
called “curse of dimensionality”. For instance in the unrestricted autoregressive
case, for fixed maximum lag, the dimension of the parameter space is proportional
to N2 where N is the number of time series considered, whereas the number of
data points, for a fixed sample size T , is linear in N . One way to overcome this
“curse of dimensionality” is to use Generalized Dynamic Factor Models (GDFMs)
which have been introduced in [2], [3] and in a slighty different form in [4] and
[5]. The price to be paid for overcoming this curse of dimensionality is to require
a certain kind of similarity or co-movement between the single time series.

The basic idea of GDFMs is that the N -dimensional observation at time t, yNt
say, can be represented as

(1) yNt = ŷNt + uNt ,

where (ŷNt ) is the process of latent variables, which are strongly dependent in the
cross-sectional dimension, and where (uNt ) is the wide sense idiosyncratic noise, i.e.
(uNt ) is weakly dependent in the cross-sectional dimension. Under our assumptions
the spectral densities corresponding to (1) are given by

(2) fN
y (λ) = fN

ŷ (λ) + fN
u (λ).

We assume that N is tending to infinity, that fN
ŷ is of rank q and that the latent

variables can be represented as a state space system of minimal dimension n where
both q and n are independent of N .

The core of the paper [1] is concerned with structure theory, in the sense that
we want to obtain a model for the latent variables from the population spectral
density of these variables rather than from data. Of course this is an idealized
setting, however as we show, the results obtained for this idealized setting, are
useful for estimation. Our structure analysis consists of the following steps:

• Factorization of the rational singular spectral density fN
y . The corre-

sponding stable and mini-phase factors are “tall” transfer functions and
correspond to Wold decomposition. The corresponding white noise are
dynamic factors.
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• Extraction of static factors from the latent variables. Static factors are
obtained by a static linear transformation of the latent variables and show
the same dynamics as the latent variables. They are of smaller dimension
than the latent variables and their dimension remains constant when N is
going to infinity. For this reason we consider the modeling of static factors.

• Realization of the tall spectral factors of the spectral density of the static
factors as state space or ARMA systems. Since the tall spectral factors can
be shown to be generically (in a certain setting) zeroless, they can be shown
to be realizable as an autoregressive system. This is a big advantage, since
the estimation of autoregressive systems is much easier than estimation of
state space or ARMA systems.

• Determination of the AR parameters by Yule-Walker equations. Since
the AR systems here are typically singular (i.e. the innvoation variance
is singular), the Yule-Walker equations may have multiple solutions. It
is shown that the minimal norm solution always corresponds to a stable
system.

If we commence from data, the process of static factors can be estimated by using
a (static) PCA on the sample covariance matrix of the observations.
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Flexible Low Dimensional Dynamic Factor Models with Applications

in Weather and Neuroeconomics

Song Song

(joint work with Wolfgang Haerdle, Yaacov Ritov)

Modeling for high-dimensional data is a challenging task in statistics especially
when the data comes in a dynamic context and is observed at changing locations
with different sample sizes. Such modeling challenges appear in many different
fields. In agricultural economics and financial engineering, it is common to analyze
the dynamics of temperatures and implied volatility surface for risk management.
For functional magnetic resonance imaging data (fMRI), one may be interested in
analyzing the brain’s response over time to certain stimuli as well as identifying
its activation area.
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A successful modeling approach utilizes factor type models, which allow low-
dimensional representation of the data. In an orthogonal L-factor model, a J-
dimensional random vector Yt = (Yt,1, . . . , Yt,J)

⊤ can be represented as

(1) Yt,j = Zt,1m1,j + · · ·+ Zt,LmL,j + εt,j ,

where Zt,l are common factors, εt,j are errors and the coefficients ml,j are factor
loadings. In most applications, the index t = 1, . . . , T reflects the time evolution of
the whole system, and Yt can be considered as a multidimensional not necessarily
stationary time series. The study of high-dimensional Yt is then simplified to the
modeling of Zt = (Zt,1, . . . , Zt,L)

⊤, which is a more feasible task when L ≪ J .
In a variety of applications, one has explanatory variable Xt,j ∈ R

d at hand that
may influence the factor loadings ml. An important refinement of the model (1)
is to incorporate the existence of observable covariates Xt,j . The factor loadings
are now generalized to functions of Xt,j, so that the model (1) is generalized to

Yt,j =

L∑

l=1

Zt,l ml(Xt,j) + εt,j, 1 ≤ j ≤ Jt, 1 ≤ t ≤ T.

def
= Z⊤

t m(Xt,j) + εt,j

where Zt = (Zt,1, . . . , Zt,L)
⊤ is an unobservable L-dimensional process and m is

an L-tuple (m1, . . . ,mL) of unknown real-valued functions ml defined on a subset
of Rd. The variables X1,1, . . . , XT,JT

, ε1,1, . . . , εT,JT
are independent. The errors

εt,j have zero means and finite second moments. For simplicity of notation, we
will assume that the covariates Xt,j have support [0, 1]d, and also that Jt = J do
not depend on t.

[1] consider an efficient nonparametric method of fitting the model (2) and call
it dynamic semiparametric factor model (DSFM).

Although it displays very interesting performance in applications, it suffers sev-
eral main disadvantages in practice. Firstly, for the estimation of m, they use a
series estimator, e.g. take tensor B-spline basis as {ψk : [0, 1]d → R, 1 ≤ k ≤ K}
and approximate m(x) by Aψ(x), where A = (αl,k) is a L × K matrix and
ψ = (ψ1, . . . , ψK)⊤. However, in practice, when d > 3, this usually leads to
quite large K. Secondly, when periodic dynamics are present, which are very
common in weather, fMRI and implied volatility modelings, VAR modeling the
low-dimensional time series Zt usually requires a high order process. Thirdly, the
Newton-Raphson algorithm for the quadratic minimization they proposed actually
actually can not be implemented in practice since they need invert a large matrix
with dimension L(T + K). Fourthly, a two step estimation procedure, i.e. esti-

mating Z and m at first, and then using VAR process to fit Ẑ leads to additional
errors.

We will consider a model in which patterns in time and space are incorporated:

(2) Yt(x) =

L∑

l=1

Zt,lml(x) + εt(x),
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One of the main motivations of the second point comes from the special structure
of the temperature data. They are the moving average (of 365 nearby days)
temperatures of Germany from Sep 1st, 1957 to Jul 24th, 2006. It shows the
special “large period” structure of the Germany temperatures besides the normal
seasonal effect. On may find another application of the model (2) in the analysis
of functional magnetic resonance imaging (fMRI) data. The fMRI is a noninvasive
technique of recording brain’s signals on spatial area in every particular time period
(2.5 sec for our data set). One obtains a series of three-dimensional images of the
blood-oxygen-level-dependent (BOLD) fMRI signals, when an exercised person is
subject to certain stimuli (periodically). The main aims of the statistical methods
in this field are identification of the brain’s activation areas for risky decisions and
analysis of its response over time. For this purpose the model (2) can be applied.

We observe (Xt,j , Yt,j) for j = 1, . . . , Jt and t = 1, . . . , T such that

Yt,j =
L∑

l=1

R∑

r=1

ur(t)γrl

K∑

k=1

alkψk(Xt,j) + εtj(3)

Y ⊤
t = U⊤

t Γ︸ ︷︷ ︸
Z⊤

t

AΨt︸︷︷︸
m

+εt
def
= U⊤

t β
⊤Ψt + εt.(4)

Here U⊤
t = (u1(t), . . . , uR(t)) is a 1×Rmatrix with ur(t) as the pre-specified initial

basis function in time, which we introduce to capture the global trend and periodic
variations. Ψt = (ψ1(Xt), . . . , ψK(Xt))

⊤ is a K×J matrix with ψk a basis of space
functions. Γ, A and β are R×L, L×K and R×K matrixes consisting of γrl, alk and
βrk respectively. For every β matrix, we introduce βr = (βkr, 1 ≤ k ≤ K)⊤, that
is, the row vector formed by the coefficients corresponding to the r-th basis in time.
Additionally we define ‖β‖2,1 =

∑
r

√∑
k β

2
rk. Finally we set R(β) = {r : βr 6= 0}

and M(β) = |R(β)| where |R| denotes the cardinality of set R.
The variables X1,1, . . . , XT,JT

, ε1,1, . . . , εT,JT
are independent. Throughout the

paper we assume that the Xt,j are deterministic. The errors εt,j are i.i.d., have
zero means and finite second moments. For simplicity of notation, we will assume
that the covariates Xt,j have support [0, 1]d, and also that Jt ≡ J do not depend
on t unless otherwise specified.

Someone may criticize that there is no random effect in the time part. If we
insert an unobservable L-dimensional random process Z0,t with E(Z0,t|Xt) = 0
into the time part, similar to equation (4) we get

Y ⊤
t = (Z⊤

0,t + U⊤
t Γ)AΨt + εt = U⊤

t β
⊤Ψt + Z⊤

0,tAΨt + εt
def
= U⊤

t β
⊤Ψt + ε∗t .

with E(ε∗t |Xt) = 0, which indicates that this is indifferent from the original model
(4). In essence, we do not assume that the behavior in time is stationary or
Markovian in . We believe that the temporal and spacial behavior should be
treated by similar smoothing tools.

Since not all initially included basis (in time) are significant, basis selection
are necessary. A popular variable selection method is the l1-norm penalized least
squares estimation, which is originally from [2] and commonly referred to as the
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lasso method. A natural extension of the lasso method, the so-called group Lasso
is given in [3], in which the penalty term is a mixed (2, 1)-norm of the coefficient
matrix.

Under the additional Gaussian error assumption, we first show that this group
Lasso-type estimator enjoys nice sparsity oracle inequalities and variable selection
properties. In particular, we are able to essentially remove the effect of the number
of initial basis functions in time in the bound. Finally, we show how our results
can be extended to more general noise distributions, of which we only require the
variance to be finite.

Our methods produce estimates of the true unobservable Zt, say Ẑt, as well
as estimates of the unknown basis in space ml. In practice, one operates on
Ẑt for further inference of the data. The main question that arises from these
application is whether the inference based on Ẑt is equivalent to the one based on
Zt. Attempting to give an answer to this questions forms Theorem 3.3.
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Forecasting Inflation Using Dynamic Model Averaging

Gary Koop

(joint work with Dimitris Korobilis)

Forecasting inflation is one of the more important, but difficult, exercises in
macroeconomics. Many different approaches have been suggested. Perhaps the
most popular are those based on extensions of the Phillips curve. This literature
is voluminous, with a few representative and influential papers include [1], [2],
[11], [21] and [20]. The details of these papers differ, but the general framework
involves a dependent variable such as inflation (or the change in inflation) and
explanatory variables including lags of inflation, the unemployment rate and other
predictors. Recursive, regression-based methods, have had some success. However,
three issues arise when using such methods.

First, the coefficients on the predictors can change over time. For instance, it is
commonly thought that the slope of the Phillips curve has changed over time. If so,
the coefficients on the predictors that determine this slope will be changing. More
broadly, there is a large literature in macroeconomics which documents structural
breaks and other sorts of parameter change in many time series variables (see,
among many others, [22]). Recursive methods are poorly designed to capture such
parameter change. It is better to build models designed to capture it.
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Second, the number of potential predictors can be large. For instance, [11] con-
sider ten predictors. Researchers working with factor models such as [21] typically
have many more than this. The existence of so many predictors can result in a huge
number of models. For instance, if the set of models is defined by whether each of
m potential predictors is included or excluded, then the researcher has 2m models.
This raises substantive statistical problems for model selection strategies. In light
of this, many authors have turned to Bayesian methods, either to do Bayesian
model averaging (BMA) or to automate the model selection process. Examples in
macroeconomics and finance include [3], [7] and [14]. Furthermore, computational
demands can become daunting when the research is facing 2m models.

Third, the model relevant for forecasting can potentially change over time.
For instance, the set of predictors for inflation may have been different in the
1970s than now. Or some variables may predict well in recessions but not in
expansions. Furthermore, papers such as [20] find that Phillips curve forecasts
work well in some periods, but at other periods simpler univariate forecasting
strategies work better. Such arguments suggest that the forecasting model is
changing over time. This kind of issue further complicates an already difficult
econometric exercise. That is, if the researcher has 2m models and, at each point
in time, a different forecasting model may apply, then the number of combinations
of models which must be estimated in order to forecast at time τ is 2mτ . Even
in relatively simple forecasting exercises, it can be computationally infeasible to
forecast by simply going through all of these 2mτ combinations. For this reason, to
our knowledge, there is no literature on forecasting inflation with many predictors
where the coefficients on those predictors may change over time and where a
different forecasting model might hold at each point in time. A purpose of this
paper is to fill this gap.

In this paper, we consider a strategy developed by [18] which they refer to as
dynamic model averaging or DMA. Their approach can also be used for dynamic
model selection or DMS where a single (potentially different) model can be used
as the forecasting model at each point in time. DMA or DMS seem ideally suited
for the problem of forecasting inflation since they allow for the forecasting model
to change over time while, at the same time, allowing for coefficients in each
model to evolve over time. They involve only standard econometric methods for
state space models such as the Kalman filter but (via some empirically-sensible
approximations) achieve vast gains in computational efficiency so as to allow DMA
and DMS to be done in real time despite the computational problem described in
the preceding paragraph.

We use these methods in the context of a forecasting exercise with quarterly US
data from 1959Q1 through 2008Q2. We use two measures of inflation and fifteen
predictors and compare the forecasting performance of DMA and DMS to a wide
variety of alternative forecasting procedures. DMA and DMS indicate that the
set of good predictors for inflation changes substantially over time. Due to this,
we find DMA and DMS to forecast very well (in terms of forecasting metrics such
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as log predictive likelihoods, MSFEs and MAFEs), in most cases leading to large
improvements in forecast performance relative to alternative approaches.
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Time Series, Breaks and Economic Forecasting

Jeroen V.K. Rombouts

The general objective of this project is to improve economic forecasts with evolu-
tionary econometric models, i.e. models that adapt to structural changes in the
economic environment. They are also called change-point models. The need for
adaptive modelling is obvious in the light of the current economic downturn.

Economic forecasting is essential for decision making with respect to fiscal and
monetary policy, public spending, and investment. For example, the monetary
transmission mechanism has long and uncertain lags. Therefore, monetary policy
should be forward-looking. To effectively ensure price stability, the central bank
needs to make forecast about the evolution of prices and output among others.
Forecasting member states deficits is also needed to monitor the implementation
of the stability pact of the EU.

Forecasting future observations of economic time series is done conditional on
past information since there is a wide consensus, based on experience, that the
future depends on the past. However, when there are structural changes we have
to be extremely careful. Structural changes (also called breaks), may change the
dynamics and even the trend of a time series and its volatility. Ignoring these
breaks, that is assuming constant parameters in the econometric model, typically
leads to forecasts that are far from realisations. As a consequence, an important
econometric challenge is to detect as soon as possible a structural break. Once we
know there is a break we can produce forecasts by either only using the information
since that break, or using all the past data but acknowledging there was a break
in the past. The latter option is more promising especially if we allow that breaks
can also occur in the forecasting period and if we believe that past breaks are
informative for future breaks. In fact, if breaks have happened in the past, we can
expect them to happen also in the future, especially for large forecast horizons.

This project seeks to develop a forecasting methodology based on economet-
ric models that account automatically for structural breaks if they occur and to
apply them to economic and financial variables. Modelling and forecasting this
kind of variables is a major field of empirical research in economics, for example
understanding and predicting the temporal dependence in economic growth and
inflation rates, interest rates, exchange rates and the volatilities and co-volatilities
of financial returns is important for several theoretical and applied issues. Eco-
nomic models involve potentially several relations and many unknown parameters
the values of which may change given certain economic conditions. For example,
it is likely the case that the parameters of an economic growth model are different
in booms and recessions and are furthermore likely to evolve over time.

It is well known that economic time series are not stationary, especially when
observed for long periods. One source of non-stationarity are the technological and
institutional changes of the economic environment, which may occur more or less
abruptly. When changes are gradual, they do not translate immediately into ob-
served data as there may be threshold or ratchet effects. Econometric models with
a fixed structural form or constant parameters are thus potentially misspecified.
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Markov-switching models allow capturing regime changes in econometric models,
by driving the parameter changes through a discrete hidden Markov chain. At
each date, the parameters of the model are in a given state determined by a value
of a discrete latent variable. At the next date, they can stay in the same state or
change to another state, among a few possible values. At a further date, they may
switch back to a previous state, i.e. states can be recurrent. In the recent litera-
ture, Markov-switching models with non-recurrent states (also called change-point
models or structural break models) have emerged as promising alternatives to re-
current state models. It may indeed be argued that booms and recessions in the
economy are always different and therefore have to be modeled by an evolutionary
model such as the change-point model. Another reason for these models is that
with recurrent states, the model is more difficult to handle because it involves more
parameters that are ultimately difficult to identify. To date, there are only a few
recent papers (see the context section below) that develop and use change-point
models.

Bayesian Inference for Markov-switching models or change-point models is par-
ticularly convenient for several reasons. Compared to the classical statistical par-
adigm, Bayesian inference considers the unknown parameters of the models as
random variables. This opens the door for computer-intensive techniques that
allow us to learn about the unknown parameters and simultaneously about the
structural break dates. The same techniques can be directly used for calculating
predictive densities. Unlike prediction in the classical framework, predictive den-
sities take into account parameter uncertainty by construction. Bayesian inference
can also deal easily with model uncertainty. For example, it may happen that of
two models, model 1 is the best for the period 1980-1987, then model 2 until 1993,
then again model 1 etc. Finally, another crucial feature of Bayesian inference is
that we can take into account potential future structural breaks when simulat-
ing the predictive densities. Bayesian inference is also very useful for combining
forecasts from several models through Bayesian model averaging.

The literature on change-point models in economics is recent (though, an influ-
ential paper from the statistics literature on mean and variance shifts in autore-
gressive time series is [6]) and many questions are still unresolved. The following
papers draw our particular attention.

First, [7] provide a new approach to forecasting time series that are subject to
discrete structural breaks. Using Bayesian inference, they propose a prediction
procedure that allows for the possibility of new breaks occurring over the forecast
horizon, taking account of the size and duration of past breaks (if any) by means of
a hierarchical hidden Markov chain model. Predictions are formed by integrating
over the parameters from the meta-distribution that characterizes the stochastic
break-point process. In an application to U.S. Treasury bill rates, they find that
the method leads to better out-of-sample forecasts than a range of alternative
methods.
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Second, [5] develop a new approach to change-point modelling that allows the
number of change-points in the observed sample to be unknown. Their model as-
sumes that regime durations have a Poisson distribution. It approximately nests
the two most common approaches: the time-varying parameter model with a
change-point every period and the change-point model with a small number of
regimes. A Markov chain Monte Carlo posterior sampler is constructed to esti-
mate a version of their model, which allows for change in conditional means and
variances. They show how real-time forecasting can be done in an efficient manner
using sequential importance sampling. Their small empirical exercise involves U.S.
GDP growth and inflation.

Third, [4] use a Bayesian approach to investigate the evidence for structural
breaks in reduced form time-series models of realized volatility. Using Monte
Carlo simulations they demonstrate that their estimation approach is effective in
identifying and dating structural breaks. Applied to daily SP 500 data from 1993-
2004, they find strong evidence of a structural break in early 1997. The main effect
of the break is a reduction in the variance of log-volatility.

The three papers above rely extensively on [2] who provides a new approach
for models with multiple change points. He formulates the change-point model in
terms of a latent discrete state variable that indicates the regime from which a
particular observation has been drawn. This state variable is specified to evolve
according to a discrete-time discrete-state Markov process with the transition prob-
abilities constrained so that the state variable can either stay at the current value
or jump to the next higher value associated to the next regime. This parameteri-
zation exactly corresponds to the change point model.

An alternative approach to breaks in time series is proposed by [3]. They model
the break process in a state-space representation through mixture distributions for
the state innovations. Similarly to [5], this allows for a random number of breaks.

The use of change-point models in forecasting has been shown to be promising
when applied to a few US time series. It is now time to study the relevance of this
model class to a large variety of macroeconomic and financial time series.
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On the Estimation of Dynamic Conditional Correlation Models

Christian M. Hafner

(joint work with Olga Reznikova)

Over the last 20 years, modelling of time-varying covariances of financial asset
returns has become an integral part of financial econometrics. Estimation of time-
varying volatilities and co-movements between financial series has proved to be a
useful tool in financial management. Correlations between returns are relevant for
problems such as time-varying beta coefficients in CAPM-type models, estimation
of hedge ratios, and Value-at-Risk (VaR) of a portfolio.

Alternative multivariate GARCH (generalized autoregressive conditional het-
eroscedasticity) models, which are aiming to give simple solutions to the problems
described above, have become the subject of wide discussions. The most well
known of them are the VEC model of [4], the BEKK model of [9], and the DCC
model of [7]. Recent proposals include the Flexible Multivariate GARCH model
of [16], the asymmetric DCC model of [5], Generalized Autoregressive Conditional
Correlation (GARCC) model of [20], and the Dynamic Equicorrelation (DE) model
of [8]. For recent reviews of multivariate GARCH models, see [2] and [22].

The Dynamic Conditional Correlation (DCC) model of [7] is one of the most
cited works related to the parametric modelling of time-varying correlations for
multivariate portfolios. It is a generalization of the Constant Conditional Cor-
relation (CCC) model of [3], where volatilities are time-varying but conditional
correlations are assumed to be constant. The CCC model is, however, too re-
strictive as it does not take into account the time variation in co-movements of
the assets during the periods of economic stability, growth or crises. [7] and [23]
extended the CCC model by allowing the correlation to change over time. Both
models are quite similar but, while [23] model the correlation process directly, [7]
specifies the model using a nonlinear transformation of a GARCH-type process to
ensure that the resulting process is a sequence of correlation matrices. [11] provide
some theoretical properties for the DCC model, but due to the complexity of the
model, a rigorous treatment of the theory is not yet available.

Although the DCC model is easy to implement and is widely used, it is now
well accepted that it does not perform well for the case of large dimensions. To
a minor extent, the reason is the assumption of the same parameters driving all
correlations. [12] extend the DCC model by allowing the parameters to vary across
the assets. More importantly, it turned out that in high dimensions the param-
eter estimates encounter severe negative biases, resulting in increasingly smooth
correlation trajectories, which eventually become virtually flat and constant. [11]
recognize the presence of downward bias in the estimated parameters but do not
propose solutions.

[1] reveals a weak point in the DCC model of [7]. His theoretical computations
and results of the simulation study show that the DCC model possesses a signif-
icant asymptotic bias in the estimator of the sample covariance matrix which is
a constituent of the correlation evolution process. [1] proposes a consistent DCC
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(cDCC) model. He modifies the form of the correlation driving process of the DCC
model in such a way that it has martingale difference innovations.

[10] suggest a composite likelihood estimator based on summing up the quasi-
likelihood functions of subsets of assets and thus avoids working with high di-
mensional matrices. They work with the specification of [1] and suppose that
the bias problem of the standard DCC model stems from the bias in the covari-
ance targeting parameter. However, we show in this paper that the problem of
biased parameter estimates prevails in the specification proposed by [1] in high
dimensions. This suggests that the problem is genuine to the dimensionality issue.

We claim that the main problem in estimating either the standard DCC model
or the modified version of [1] in high dimensions is an ill-conditioned estimator
of the sample covariance matrix, which is used for covariance targeting. We sug-
gest using the shrinkage technique of [13], which is a solution to obtain a well-
conditioned and asymptotically accurate estimator of the covariance matrix. We
show that this approach considerably improves the downward bias of the DCC
model as well as the cDCC model. Moreover, our estimator is asymptotically ef-
ficient, because the shrinkage intensity goes to zero when keeping the dimension
fixed and letting the sample size go to infinity. This contrasts the composite like-
lihood estimator of [10], which will be less efficient due to the information loss by
ignoring the joint likelihood.
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Semiparametric Estimation of Locally Stationary Diffusion Models

Oliver Linton

(joint work with Bonsoo Koo)

The theory of asset pricing has been one of the fastest growing fields of study
over the past decades.The diffusion process lays at the heart of modeling the
dynamics of economic variables, including the term structure of interest rates.

(1) dXt = µtdt+ σtdWt,

where {Wt : t ≥ 0} is a standard Brownian motion defined on the filtered proba-
bility space (Ω,FW , (FW

t ), P ), FW is a σ-algebra, FW
t is a filtration. Here, µt and

σ2
t are commonly referred to as the conditional drift or instantaneous return func-

tion, and the conditional diffusion or volatility function of the process respectively.
They can depend on Xt and time.

In line with the remarkable progress in asset pricing theory, the estimation
methodologies concerning continuous-time stochastic processes have improved im-
mensely over the most recent decade. Because one of the main goals of financial
econometrics is to investigate the expected returns and volatilities of the underly-
ing dynamics of economic variables such as stocks, interest rates, exchange rates,
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and their derivatives, the econometric treatment of estimating the above two func-
tions of interest has advanced quite significantly and become more sophisticated.

In spite of the progress on various fronts of econometric theory on continuous-
time stochastic processes, quite a few challenges still remain to be addressed.
For instance, identification, estimation and studies of the asymptotic properties
of the continuous-time processes have turned out to be quite demanding, mainly
because we only have discretely sampled observations drawn from processes whose
dynamics are continuous in time. Moreover, while the diffusion process in (1) is
quite extensively used, asset pricing theory doesn’t narrow down the number of
possible specifications for the drift and volatility terms, let alone pin down their
exact forms. For example, an array of different specifications have been proposed
for the term structure dynamics (see [1]).

As a result, many of stochastic models have been chosen simply due to mathe-
matical manipulability and simplicity of statistical inferences. One salient example
could be the assumption of stationarity, i.e., the assumption of the existence of a
time invariant stationary distribution. Indeed, most of the financial econometrics
theories depend on the assumption of stationarity of the observed process. Un-
doubtedly, this is because a stationarity assumption provides a powerful device
for identification and estimation of the underlying continuous-time data generat-
ing process. More specifically, there are conspicuous benefits attributed to this
assumption. Among them, most importantly, it enables us to avoid the serious
identification issue known as the aliasing problem, since cross-restrictions can be
imposed. It is worth mentioning that in general, there is no one-to-one correspon-
dence (bijection) between the parameters or functionals of the continuous-time
model and its corresponding discrete time model. Moreover, under suitable con-
ditions, a strict stationarity assumption guarantees that the distribution of the
diffusion process is completely characterized by two functionals of our concern. [1]
and [3] used this property to substantiate their arguments. Another compelling
reason for the stationarity assumption is because well-established asymptotic re-
sults are readily available. Therefore, it makes establishment of estimation and
inference procedures much simpler.

Nevertheless, there are a plethora of cases in which an assumption of station-
arity is unrealistic and unjustifiable. For example, irregularity of the trade at the
beginning or the end of financial markets, volatility clustering, and ruptures aris-
ing from shocks or structural changes are among those. In truth, nonstationary
properties of financial data are often found in many problems of interest in eco-
nomics and finance. In addition, time series in economic and financial markets
have inherently dynamic and time-varying nature. Therefore, the stationarity as-
sumption is unlikely to hold in many cases. Consequently, it would be ideal, if
not indispensable, for the sake of many applications in economics and finance that
nonstationarity could be allowed for. Not only does this relaxation enable us to
fit the data better, but may also allow us to augment the model built upon the
assumption of stationarity to a more general model with nonstationary character-
istics.



Semiparametric Modelling of Multivariate Economic Time Series 201

With these concerns as a motivation, this paper provides a semiparametric
estimation procedure with respect to the time-inhomogeneous diffusion processes
along the line of an important class of nonstationarity, local stationarity. More
specifically, our approach is based on the density matching method of [1] along
with the concept of local stationarity in [2]. We consider a method which is a
generalization of [1]’s method for stationary diffusion processes.

This paper proposes appropriate estimators of the quantities of interest of the
locally stationary diffusion processes in an attempt to establish the appropriate
asymptotic theory in a non- and semi-parametric framework. This paper suggests
our proposed estimators of the drift and volatility of processes are consistent and
asymptotically normal.

In addition, we obtain the uniform rate of convergence of the estimator of the
drift and the volatility functions. Finally, we present a simulation study and an
application to weekly interest rate data to illustrate the finite sample properties
of the proposed estimators of the drift and diffusion.
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Factor Modelling for Multiple Time Series: A Simple Approach with

Simple Inference

Qiwei Yao

Let {Yt} be a d × 1 time series. When d is large, the number of parameters in a
VARMA or even VAR model is large. In fact it may be too large to lead to a sta-
tistically effective and practically meaningful fitting. Under those circumstances,
an attempt to reduce the dimensionality is pertinent. If we are interested in the
linear dynamic structure ofYt only, conceptually we may think that Yt consists of
two parts: a dynamic component driven by, hopefully, a low-dimensional process
and a static part (i.e. a white noise). This leads to the decomposition:

(1) Yt = AXt + εt,

where Xt is an r × 1 latent process with (unknown) r < d, A is a d× r unknown
constant matrix, and εt ∼ WN(µε, Σε) is a vector white noise process. When r
is much smaller than d, we achieve an effective dimension-reduction, as then the
serial dependence of Yt is driven by that of a much lower-dimensional process Xt.
We call Xt a factor process.

Since none of the elements on the RHS of (1) are observable, we have to char-
acterize them further to make them identifiable. First we assume that no linear
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combinations of Xt are white noise, as any such component can be absorbed into
εt. We also assume that the rank of A is r. (Otherwise (1) may be expressed
equivalently in terms of a lower-dimensional factor.) Furthermore, since (1) is
unchanged if we replace (A,Xt) by (AH,H−1Xt) for any invertible r × r matrix
H, we may assume that the columns of A = (a1, · · · , ar) are orthonormal, i.e.,
A′A = Ir, where Ir denotes the r × r identity matrix. Note that even with this
constraint, A and Xt are not uniquely determined in (1), as the aforementioned
replacement is still applicable for any orthogonal H. However the factor loading
space, i.e. the r-dimensional linear space spanned by the columns of A, denoted
by M(A), is uniquely defined.

We summarize into condition C1 all the assumptions introduced so far.

C1. In model (1), εt ∼ WN(µε,Σε), c
′Xt is not white noise for

any constant c ∈ R
d. Furthermore A′A = Ir.

The key in the statistical inference for model (1) is to estimate A, or more

precisely M(A). Once we have obtained an estimator, say, Â, a natural estimator
for the factor process is

(2) X̂t = Â′Yt,

and the resulting residuals are

(3) ε̂t = (Id − ÂÂ′)Yt.

The dynamic modelling for Yt is achieved via Ŷt = ÂX̂t, and such a modelling

for X̂t. A parsimony fitting for X̂t may be obtained by rotating X̂t appropriately

(see [23]). Such a rotation is equivalent to replace Â by ÂH for an r×r orthogonal

matrix H. Note that M(Â) = M(ÂH), and the residuals (3) are unchanged with
such a replacement.

Below we outline two methods for estimating A (and also r). The method via
expanding the white noise space is more general. It can handle nonstationary
factors. Unfortunately it involves solving some nonlinear optimization problems
with upto (d − 1) variables, therefore is only applicable with moderately large
d. If we are prepared to entertain the stationarity condition (see C2 in section 3
below), the problem boils down to finding eigenvalues and eigenvectors for a d× d
non-negative definite matrix. Furthermore r is the number of non-zero eigenvalues
of this matrix. Hence the method can be applied to the cases with d in the order
of a few thousands.

Our goal is to estimate M(A), or its orthogonal complement M(B), where
B = (b1, · · · ,bd−r) is a d×(d−r) matrix for which (A,B) forms a d×d orthogonal
matrix, i.e. B′A = 0 and B′B = Id−r (see also C1). We call M(B) the white
noise space.

It follows from (1) that

(4) B′Yt = B′
εt.

Hence for any 1 ≤ j ≤ d − r, {b′
jYt, t = 0,±1, · · · } is a white noise process.

Hence, we may search for mutually orthogonal directions b1,b2, · · · one by one
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such that the projection of Yt on each of those directions is a white noise. We
stop the search when such a direction is no longer available, and take d− k as the
estimated value of r, where k is the number of directions obtained in the search.
For further details on the implementation of this method, we refer to [17].

In principle, this method works under condition C1 which is rather weak. For
example, we do not require condition C2 below, as we only make use of the prop-
erty that the project of Yt in M(B) = M(A)⊥ is white noise. The theoretical
exploration of the method in [17] requires more regularity conditions. Intuitively
some of those conditions are not essential.

A much simpler method is available with the stationarity condition on the factor
process as follows.

C2. Xt is weakly stationary, and Cov(Xt, εt+k) = 0 for any k > 0.

Put

Σy(k) = Cov(Yt+k,Yt), Σx(k) = Cov(Xt+k,Xt), Σxε(k) = Cov(Xt+k, εt).

It follows from (1) and C2 that

(5) Σy(k) = AΣx(k)A
′ +AΣxε(k), k ≥ 1.

For a prescribed integer k0 ≥ 1, define

M =

k0∑

k=1

Σy(k)Σy(k)
′.

Then M is a d× d non-negative matrix. It follows from (5) that MB = 0, i.e. the
columns of B are the eigenvectors of M corresponding to zero-eigenvalues. Hence
under conditions C1 and C2 we may conclude:

The factor loading space M(A) are spanned by the eigenvectors

of M corresponding to its non-zero eigenvalues, and the number

of the non-zero eigenvalues is r.

To estimate M(A), we only need to perform the eigenanalysis on

M̂ =

k0∑

k=1

Σ̂y(k)Σ̂y(k)
′,

where Σ̂y(k) denotes the sample covariance matrix of Yt at lag k.
When d is fixed, the estimators for the zero-eigenvalues of M converge at the

fast rate n while the estimators for non-zero eigenvalues converge at the standard
rate n1/2, as the sample size n→ ∞; see, e.g. Theorem 1 of [5]. The fast rate was

due to the quadratic form in the definition of M and M̂.
This estimation method has been taken further in modelling curve time series

by [5], in large factor modelling (i.e. d → ∞) by [14], and [15], in modelling
multivariate volatility processes by [16] and [24].

The approach outlined above is statistical, aiming to reduce the dimensionality
in the modelling. The setting (1) may be traced back at least to [18]; see also its
further development in dealing with cointegrated factors in [19].
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Factor modelling for time series has been more predominately featured in econo-
metrics literature. Motivated by modelling economic and financial behaviours, [20]
and [12] proposed dynamic-factor models, [7] and [6] proposed static (approximate)
factor models. Combining the above two approaches, [9], [10], [11] proposed and
further developed the so-called generalized dynamic-factor model. See also, among
others, [21], [22], [2], [3], [4], [13], [8], and [1].

Similar but also radically different from statistical model (1), econometric fac-
tor models also decompose Yt into two parts: a common factor and the so-called
idiosyncratic ‘noise’. The common factor drives the dynamics of most compo-
nents of Yt while each idiosyncratic component only affects the dynamics of a
few components of Yt. Obviously it is extremely appealing and also important
to isolate those common factor components from many idiosyncratic components
in analysing economic and financial phenomena. Since idiosyncratic ‘noise’ is not
white noise, the identification and the inference for those models are inevitably
more challenging. For example, the two parts (i.e. the common factor and the
idiosyncratic ‘noise’) are only asymptotically identifiable when d, the number of
components Yt, tends to ∞; see [7] and [9].
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On the thick-pen transformation for time series

Piotr Fryzlewicz

(joint work with Hee-Seok Oh)

Traditional visualisation of time series data consists of plotting the time series
values against time and “connecting the dots”. We propose an alternative, multi-
scale visualisation technique, motivated by the scale-space approach in computer
vision. In brief, our method also “connects the dots”, but uses a range of pens
of varying thicknesses for this purpose. The resulting multiscale map, termed the
Thick-Pen Transform (TPT) corresponds to viewing the time series from a range
of distances. We hope that the resulting set of plots will provide interesting and
useful information about the structure of the time series, not only in a heuristic,
but also in a formal probabilistic sense.

We define the TPT of a real-valued univariate process (Xt)
n
t=1 as follows. Let

T denote the set of thickness parameters. For each τi ∈ T , i = 1, . . . , |T |, let
U τi
t denote the upper boundary of the area covered by a pen of thickness τi while

connecting the points (t,Xt)
n
t=1. Similarly, let Lτi

t denote its lower boundary. The
TPT TPT (Xt) is the sequence of all pairs of boundaries, i.e.

TPT (Xt) = {(Lτi
t , U

τi
t )nt=1}i=1,...,|T |.

The precise mathematical form of TPT (Xt) depends on the shape of the pen
used. For example, consider a pen which is a closed square of side length τ ∈ T ,
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positioned so that two of its sides are parallel to the time axis. For each point
along the straight line connecting (t,Xt) with (t + 1, Xt+1), we place the pen so
that the given point is at the centre of the right-hand side of the pen. In this
set-up, we have

U τ
t = max(Xt, . . . , Xt+τ ) +

τ

2
(1)

Lτ
t = min(Xt, . . . , Xt+τ )−

τ

2
.(2)

Other pen shapes are possible, in the same way that a variety of kernel shapes
are possible in kernel smoothing. Considering TPT (Xt) for a range of thickness
values τ , a multiscale transform of the data Xt is obtained, with higher values of
the thickness parameter bringing out coarser-scale features of the data, and vice
versa.

The TPT is not the only multiscale tool in time series analysis. Wavelets,
which provide linear, multiscale and local decomposition of data, have been used
extensively in time series analysis (see e.g. [5]). SiZer (see [1]) is a linear data vi-
sualisation technique for displaying features of kernel-smoothed data as a function
of location and bandwidth, simultaneously over a range of bandwidths. We note
here that the TPT is not linear as it is based, effectively, on localised and weighted
min/max operations. Self-similarity and (multi-)fractality are oft-recurring con-
cepts in time series analysis, aiming to study parametric relationships between
distributions of the process at different scales, particularly in the context of long-
range dependent processes, see e.g. [2]. Besides using different methodology, the
aims of the TPT are different: we regard it as a visualiser which can be applied
to any time series and which can ultimately assist in solving tasks such as nonsta-
tionarity detection, classification or measuring dependence between time series.

In the TPT as described above, one thickness value τ generates two sequences:
U τ
t and Lτ

t . In some time series problems, it might be more convenient to use
a single summary sequence, instead of a pair. Probably the simplest possible
summary sequences involving U τ

t and Lτ
t are

• Volume of the pen, defined as V τ
t = U τ

t − Lτ
t ;

• Mean of the pen, defined as M τ
t = 1

2
{U τ

t + Lτ
t }.

Many more summary statistics are possible, also those combining U τ
t and Lτ

t non-
linearly. The volume statistic V τ

t deserves special attention as statistical literature
has previously explored the concept of “the volume of a covering of data”, albeit
in other contexts. [7] derived the “tube formula” for calculating the volume of a
tube surrounding a smooth manifold. This result has more recently been applied
in various statistical contexts by a number of authors, see e.g. [6]. We are un-
aware of any applications of tube formulae in classical time series, where sample
paths are often intrinsically non-smooth. On the other hand, in estimating the
Hurst exponent or the fractal dimension of stochastic processes, two techniques
involving statistics related to V τ

t are the Rescaled Range Analysis (see [4]) and
the “box-counting” method, whose statistical properties in estimating the fractal
dimension of a stationary continuous-time Gaussian process were studied in [3].
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By contrast, our V τ
t statistic is not an estimator, and applies to discrete-time, also

nonstationary processes.
We now state a discrimination property of the TPT, which implies, roughly

speaking, that two differently distributed Gaussian time series have differently
distributed TPTs, under the (mild) Assumption 1 below. This is an important
result as it gives us hope that the TPT can serve as an effective discriminant for
time series.

Assumption 1. For a given fixed lag τ > 0, a process Xt satisfies

∃λ0, δ ∈ [0, 1) ∀λ > λ0 ∀ t

P




⋃

t≤i,j≤t+τ;

{i,j}6={t,t+τ}

|Xi −Xj | > |Xt −Xt+τ |
∣∣∣ |Xt −Xt+τ | > λ


 ≤ δ.

Discrimination theorem. Let Xt, Yt be two zero-mean Gaussian time series

such that for some s < t, the distribution of Xs − Xt is not the same as the

distribution of Ys − Yt, and let both Xt and Yt satisfy Assumption 1 with τ =
t − s. Let TPT (Xt), TPT (Yt) be the TPTs of Xt, Yt respectively, both with the

square pen where the set T of thickness parameters is T = {1, 2, . . .}, and let

V τ
t (X), V τ

t (Y ) be the corresponding volumes. Then, TPT (Xt) and TPT (Yt) follow
different probability distributions in the sense that the tri-variate random vectors

(V τ−1
s (X), V τ−1

s+1 (X), V τ
s (X)) and (V τ−1

s (Y ), V τ−1
s+1 (Y ), V τ

s (Y )) are distributed dif-

ferently.

We have applied the TPT to testing for time series stationarity, and to quantify-
ing dependence between two time series. We introduce here the former application.
The key result is as follows.

Functional central limit theorem. Let {Xt}
n
t=1 be a stationary process satis-

fying E|Xt|
r <∞ for some r > 2. In addition let Xt be α-mixing with the mixing

coefficients αm satisfying αm = O(m−s) for some s > r
r−2

. Let TPT (Xt) be the

TPT of Xt using an arbitrary pen but such that both U τ
t and Lτ

t are functions of

Xt−Cτ , . . . , Xt+Cτ only, for some C > 0. Further let the summary sequence Kτ
t

be such that for each fixed τ , we have n−1Var(
∑n

t=1
Kτ

t ) → σ2
τ < ∞, and |Kτ

t | ≤
A+ B|max(Xt−Cτ , . . . , Xt+Cτ )| for some constants A,B > 0, possibly depending

on τ . Under these conditions, the following functional central limit result holds

for each fixed τ . Let u ∈ [0, 1] and denote Y τ
n (u) = σ−1

τ n−1/2
∑⌈nu⌉

t=1
Kτ

t − E(Kτ
t ).

We have

Zτ
n(u) := Y τ

n (u)−
⌈nu⌉

n
Y τ
n (1)

d
→ B0

u,

where B0
u is the standard Brownian bridge process on [0, 1].
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Our stationarity test is based on the fact that under the null hypothesis of
stationarity, the range of the empirical version of Zτ

n(u) is distributed as the range
of Brownian bridge. As the test is derived from the TPT, which is a visualiser,
it can be regarded as a “visual” one. Hence, it should come as no surprise that
it operates under low moment assumptions, and is equally valid for linear and
nonlinear processes. It appears to offer very good empirical performance.
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Modelling Changes in the Unconditional Variance of Long Stock

Return Series

Timo Teräsvirta

In this work we consider modelling daily return series that are long, that is, con-
tain for example more than 20000 observations. A characteristic feature of such
series is that they display not only volatility clustering that is often parameterised
using GARCH models, but also smooth changes in the amplitude of the clusters.
The latter type of fluctuations cannot be satisfactorily captured using stationary
GARCH models. One solution to this problem has been to apply Fractionally Inte-
grated GARCH (FIGARCH) models, see [2], but the standard stationary GARCH
model may also be generalised in other ways. [4] constructed a locally stationary
ARCH model to handle smooth changes. It is also possible to decompose the
variance of the return process multiplicatively into two components: a stochastic
stationary component and a deterministic nonstationary one. Examples include
[7], [5] and [1]. [1] called their model the Time-Varying GARCH (TV-GARCH)
model. It may also be mentioned that [3] considered a FIGARCH model with a
deterministically time-varying intercept.

The deterministic component of the TV-GARCH model consists of a linear
combination of logistic functions or sigmoids, whose argument is time. This linear
combination of sigmoids is a very flexible functional form, which makes it useful in
the present context. [1] developed a modelling strategy for building TV-GARCH
models. It contains three stages: specification, estimation and evaluation. At the
specification stage the form of the model is determined, which involves determining



Semiparametric Modelling of Multivariate Economic Time Series 209

the number of sigmoids which is unknown a priori. This can be done in various
ways, but we prefer sequential testing. Maximum likelihood estimation is carried
out by maximising the log-likelihood by parts as in [6]. At the evaluation stage
the specified and estimated model is subjected to misspecification tests to find out
whether or not it can be regarded as an adequate description of the time series
under study.

This modelling strategy has been found to work very well when the time series
are a few thousand observations long, in which case the number of sigmoids in
the model is still relatively small. There is, however, some doubt concerning the
functioning of the sequential tests when the number of sigmoids can potentially
be large, for example around ten. We propose a modification of our strategy to fit
into this situation. The idea is to divide the long series into subseries and apply the
modelling strategy each of them separately. This means determining the number of
sigmoids separately for each subseries and estimating the submodels, one for each
series. After that has been done, the models are combined into one by ’tying the
ends of the deterministic components together’. This can be done in different ways.
One is to do it recursively, beginning with the last two subsets, re-estimating the
model containing those, and working one’s way backwards. How well this works
is at best being investigated. Another interesting question demanding attention
is how the stationary GARCH component of the model behaves when the time
series are very long. Can one still assume that it has constant parameters? This
problem will be studied in the near future. An example in this presentation is the
long daily Dow-Jones stock index return series. The individual subset models can
be specified and estimated without problems, and at the moment work is being
done on how to put the pieces together into a single model.
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On the Univariate Representation of Multivariate Volatility Models

with Common Factors

Franz C. Palm

(joint work with Alain Hecq, Sébastien Laurent)

Most financial econometrics textbooks start with univariate models to explain the
presence of a time-varying volatility pattern in asset returns. Then a discussion of
the properties of different models (e.g. GARCH, EGARCH, TARCH, APARCH,
realized volatility, stochastic volatility) is undertaken together with their most im-
portant features in relation with stylized facts of financial data. It is also empha-
sized that to correctly account for the link between several series (e.g. contagion
effects) and to study time-varying conditional correlations, a multivariate frame-
work should be adopted. Indeed, understanding and predicting the dependence in
the second order moments of asset returns is important for many issues in financial
analysis and management.

It is not a secret however that unrestricted multivariate GARCH models and re-
lated processes of this kind suffer from the curse of dimensionality. An unrestricted
GARCH(0, q) for an n-dimensional set of financial assets is already of dimension
(n2 + n)/2 and implies ((n2 + n)/2)2q unknown coefficients if one does not count
the intercepts. As most portfolio analyses involve a large number of assets, the
need for more parsimonious forms is obvious. Let us just mention the diagonal
model, the constant conditional correlation (CCC), the dynamic conditional cor-
relation (DCC), the dynamic equicorrelation (DECO, see [10]), the BEKK ([1]),
the orthogonal GARCH or factor GARCH models as examples proposed in the
literature to restrict the dimension of the multivariate setting to a manageable
size as well as to impose the positive definitiveness of the covariance matrix (see
inter alia the survey by [2]). To make their estimation feasible on large portfolios
some of these models impose very strong restrictions on the dynamics of the co-
variance or correlation. One simple way to relax these constraints is to assume a
block-diagonal structure where the dynamics is constrained to be the same only
among groups of variables (see for instance the BLOCK-DCC and BLOCK-DECO
of respectively [3], and [10]).

We take another route. We start with some general multivariate GARCH
volatility models and study their implication for the underlying univariate pro-
cesses. Indeed, we look at the final equation representation of multivariate GARCH
models using a framework similar to that in Zellner and Palm (see inter alia

[16],[17]) for the conditional mean. This framework allows us to derive the mar-
ginal (weak) GARCH representation for the conditional variances and conditional
covariances of the multivariate GARCH model. However the implied univariate
representation is far from being parsimonious. There exists a paradox between
theoretically implied marginal volatility models derived from a multivariate model
and the common empirical finding that low order univariate GARCH models often
approximate single conditional volatilities GARCH rather well, a paradoxical issue
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similar to the one observed for the VAR(p) and the marginal implied ARMA(p∗, q∗)
models (see [5], [6]).

Indeed in empirical work, estimated univariate GARCH models are, too a large
extent, very parsimonious. The GARCH(1, 1) specification for instance is able
to capture the time-varying volatility in second moments of many symmetric as-
set returns. Consequently we look for multivariate representations that capture
the multivariate dynamics and could at least be compatible with the univariate
structure obtained in empirical work (like a GARCH(1, 1)). The implied univari-
ate models of familiar multivariate models such as the “unrestricted” BEKK (see
[1]) do not reproduce the properties of individual asset returns. Therefore, we
extend the analysis developed by [6] for vector autoregressive models to factor
representations in the conditonal second moments. These are the Factor GARCH
specification of [9] and the [12] pure variance model. These two specifications al-
low to explain why one might obtain such parsimonious univariate representations
for potentially large multivariate systems. Alternatively, obtaining a very parsi-
monious univariate representation for individual returns might be an indication of
the presence of co-movements or common factors in the volatility. On the contrary,
evidence for the presence of long memory is a sign of absence of co-movements.

Multivariate volatility systems with common factors are not the only ones how-
ever that can imply parsimonious GARCH orders. The diagonal BEKK which
implies no contagion effects can lead to similar univariate GARCH orders. A re-
lated paper to ours is [15]. Indeed these authors also study the marginal models
derived from a multivariate GARCH process with a particular focus to the aggre-
gation of individual series. They also sketch that the presence of a factor model
(the FGARCH in their case) for the variance might be important in the marginal-
ization of multivariate systems but without giving the orders of the univariate
representations nor the proofs. We study the issue of marginalization of vector
conditional volatlity processes with a factor structure in more detail and deter-
mine the orders of the implied weak Garch processes. Weak GARCH processes
(see [8]) are in fact the Wold representation of single conditional second moments
given their own past (only). This means that the innovations are white noise but
not (necessarily) i.i.d. random variables or martingale difference sequences. We
consider these implications of marginalization for empirical work.

In particular a likelihood procedure (assuming for instance normality) to esti-
mate the marginal processes is in fact a quasi-likelihood procedure. This estimator
is strongly consistent and asymptotically normally distributed but not efficient un-
der the usual regularity conditions, and its standard-errors can be obtained using
the so-called sandwich estimator(see for instance [13], [14], and [4]).

An important point of our paper is the need for methods to analyze subsets
of highly correlated (contagion effects) assets but likely with a small number of
common transmission mechanisms for the volatility and which exhibit similar uni-
variate time series properties. We propose simple reduced rank procedures and we
study their properties in a Monte Carlo simulation. We compare the behavior of
the likelihood ratio test based on canonical correlation analysis on squared returns
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(see [12], [11]) with a new method that uses combinations of series obtained by
partial least squares. In this later case we use Box-Pierce tests for the null of no-
ARCH on these combinations of squared returns and cross-returns to determine
the presence of common factors. The Monte Carlo results we provide illustrate
that these procedures are sensitive to the number of variables that are considered,
i.e. their number and the inclusion or not of the covariances in the test statistics,
as well as to the log transformation of the squared returns and cross-products.

In an emprical analysis of the daily returns of the 50 larges stocks listed at the
NYSE leads to the conclusion that 6 return series exhibit very similar univariate
GARCH(1,1) schemes, the remaining 44 series show signs of the presence of long
memory.Various tests for the presence of common factors indicate the presence of
one factor in the conditional second moments of the 6 series, a finding that is in
line with results reported by [12].

Issues for future research are a more extended analysis of the properties of
methods for statisitcal inference for (marginal) weak GARCH processes.
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Nonparametric Time Series with Markov Switching Dynamics

Jürgen Franke

(joint work with J.-P. Stockis, J. Tadjuidje-Kamgaing, W. K. Li)

We start from nonlinear autoregressive-ARCH models

(1) Xt = mk(Xt−1, . . . , Xt−p) + σk(Xt−1, . . . , Xt−p)ηt, k = 1, . . . ,K,

where ηt are i.i.d. innovations with mean 0 and variance 1. The order p has been
chosen the same for all k and for the autoregressive resp. ARCH-components only
for sake of simplicity.

Controlled by a non-observable Markov chain Qt with finite state space {1, . . . ,K},
the process Zt, which we are interested in, switches between those K data-genera-
ting mechanisms, i.e. writing Stk = 1{k}(Qt) for the state-indicators at time t we
assume

(2) Zt =

K∑

k=1

Stk

(
mk(Zt−1, . . . , Zt−p) + σk(Zt−1, . . . , Zt−p)ηt

)
.

We are interested in estimating the autoregressive and volatility functions mk,
σk, k = 1, . . . ,K, nonparametrically and in estimating the parameters of the
Markov chain, i.e. essentially its transition matrix A, as well as in reconstructing
the hidden state sequence Qt. The key for developping an asymptotic theory for
those estimates are short memory conditions for processes of the form (2). In [3],
we derive conditions for Zt being geometrically ergodic which depend in a rather
simple manner on A and on the limit behaviour of the functions mk(x), σk(x) for
||x|| → ∞ related to well-known conditions for the stationarity of processes of the
form (1). In particular, the single state processes (1) do not have to correspond
to a stationary regime for any k. The switching model may still be stationary if
some states are explosive provided they do not occur too frequently.

As nonparametric estimates, we first consider kernel smoothers for the autore-
gressive functions mk(x) assuming the conditional variances σk to be constant. In
[4], we develop an EM algorithm for calculating those local Gaussian quasi max-
imum likelihood estimates numerically in case where the Qt are i.i.d., i.e. in the
special case of an independent mixture of autoregressive schemes. The single steps
in that algorithm are explicit and do not require further numerical approximation.
We prove consistency of the kernel estimates as well as convergence of the EM
algorithm for an increasing number of iterations. We illustrate the performance
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with some simulations and an example with ECG data.

Next, we have a look at the general case where Qt is a Markov chain with
arbitrary transition matrix A. We now consider approximations of mk(x), σ

2
k(x)

by single-layer feedforward neural networks as a special case of sieve estimates.
In [5], we describe an EM algorithm for calculating those estimates as well as
estimates of A. Using this estimates of the system functions and parameters, a
Viterbi algorithm allows to calculate an approximation of the hidden states as
well. We investigate the limit behaviour of those estimates for increasing sample
size, and we illustrate its application with a portfolio management problem where
the trading strategy is based on forecasts of stock prices using model (2).

A main assumption made in the papers refered to above is that the evolution
of the Markov chain is largely independent of the observed process Zt, i.e. more
precisely that the conditional distribution of Qt given the past only depends on
Qt−1 and not on Zs, s < t. In [2], a parametric switching model is presented which
allows for a more general form of dependence between the processes Qt and Zt.
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