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Abstract. The field of mathematical and numerical analysis of systems of
nonlinear partial differential equations involving interfaces and free bound-
aries is a flourishing area of research. Many such systems arise from mathe-
matical models in material science, fluid dynamics and biology, for example
phase separation in alloys, epitaxial growth, dynamics of multiphase fluids,
evolution of cell membranes and in industrial processes such as crystal growth.
The governing equations for the dynamics of the interfaces in many of these
applications involve surface tension expressed in terms of the mean curvature
and a driving force. Here the forcing terms depend on variables that are solu-
tions of additional partial differential equations which hold either on the in-
terface itself or in the surrounding bulk regions. Often in applications of these
mathematical models, suitable performance indices and appropriate control
actions have to be specified. Mathematically this leads to optimization prob-

lems with partial differential equation constraints including free boundaries.
Because of the maturity of the field of computational free boundary problems
it is now timely to consider such control problems.

In order to carry out design, control and simulation of such problems in-
teraction is required between distinct mathematical fields such as analysis,
modeling, computation and optimization. By bringing together leading ex-
perts and young researchers from these separate fields we intended to develop
novel research directions in applied and computational mathematics. The aim
of the workshop here was to focus on emerging new themes and developments
in these fields and to establish and extend links between them.
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The meeting was attended by 53 participants from Austria, Belgium, China,
France, Germany, Great Britain, Japan, Portugal, Spain and the United States,
with expertise from three main areas: optimal control of partial differential equa-
tions, modeling involving free boundary problems and mathematical and numeri-
cal analysis of free boundary problems. Apart from discussing current problems,
techniques and issues across the differing communities the focus of the workshop
was set on developing the necessary analytical and numerical techniques required
to successfully tackle new emerging classes of problems related to the following
themes:

(1) Computational and analytical approaches to interfaces and free bound-
aries,

(2) Control and optimization of interfaces and free boundaries,
(3) Numerical treatment and control of surface partial differential equations.

The presentations of Abels, Asai, Bellettini, Bothe, Garcke, Giga, Kohsaka, Ni-
ethammer, Röger and Santosa concerned analytical approaches to interfaces and
free boundaries. While Feng, Kornhuber, Nürnberg, Pozzi, Reusken, A. Schmidt,
Stoll, and Tobiska gave talks on numerical approaches to interfaces and free bound-
aries. Control and optimization with focus on interfaces and free boundaries was
the subject of the talks of Bernauer, Casas, Deckelnick, Günther, Hintermüller,
Raymond, S. Schmidt, Siebert, Vierling and Yan. Elliott gave a survey talk on
the treatment of surface partial differential equations with surface finite elements,
and Voigt, in his talk, introduced a diffuse-interface approach for the numerical
treatment of coupled bulk/surface partial differential equations. Finally, Sprekels,
in his talk, reported on the state of the art of mathematical and technical achieve-
ments in Czochralski crystal growth. This method may be considered a model
application containing many of the topics considered within the workshop.

To offer young researchers a stage for presenting their research, a young re-
searcher session was organized on Wednesday evening where the Heizaemon Honda
Scholar Asai together with the Oberwolfach Leibniz Graduate Students Bernauer,
Günther, S. Schmidt, and Vierling took this opportunity and gave talks on their
current research results.

Surveys and articles concerning mathematical and numerical approaches to in-
terfaces and free boundary problems may be found in the conference proceedings
[5, 6, 2, 8]. The level set approach to related problems of optimal design are
surveyed in [3]. The book [1] contains theoretical results for optimal control of
variational inequalities. Modern mathematical concepts of control and optimiza-
tion with partial differential equation constraints are developed in the book [7].
Also we mention a survey of numerical methods for interface evolution involving
curvature, [4]. Finally we remark that many recent references concerning the issues
of the workshop are provided at the end of the each extended abstract.
Acknowledgement: The organizers would like to thank Professor Karl Heinz
Hoffmann for many fruitful discussions in the run-up to the application for this
Oberwolfach workshop.
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Abstracts

Young researcher Session

T. Asai, M. Bernauer, A. Günther, S. Schmidt, M. Vierling

Tomoro Asai: On the smoothing effect for higher order curvature flow equa-
tions We constructed a local unique smooth solution starting from a rough initial
curve for higher order curvature flow equations including the surface diffusion flow
and the Willmore flow. The initial curvature is allowed to be discontinuous. For
this purpose we develop an abstract theory for quasilinear parabolic equations
based on the theory of analytic semigroups. We estimate lower order terms in a
careful way which leads a strong smoothing effect of higher order curvature flow
equations.

Martin K. Bernauer (joint with Roland Herzog & Karl Kunisch): Opti-
mal Control of the Two-Phase Stefan Problem in Level Set Formulation Motion
planning problems for the two-phase Stefan problem are considered. A level set
representation of the moving interface is used. First order optimality conditions
are derived using shape calculus. The approximation of the forward and adjoint
systems relies on the X-FEM and discontinuous Galerkin schemes. Numerical
examples are included.

Andreas Günther (joint with M.H. Tber): A goal-oriented adaptive Moreau-
Yosida algorithm for control- and state-constrained elliptic optimal control prob-
lems We consider adaptive finite elements for distributed optimal control prob-
lems governed by elliptic partial differential equations. Of particular interest is
the tailored design of goal-oriented adaptive meshes under additional control- and
state-constraints. The latter ones are regularized by a Moreau-Yosida penaliza-
tion. Throughout our investigations we use piecewise linear finite elements for the
state variable while the control is not discretized. This technique in particular
results in the absence of control residuals in error representations. Our findings
are confirmed by numerical experiments.

Stephan Schmidt (joint with Volker Schulz): Large Scale Aerodynamic Shape
Optimization The talk presents the problem of aerodynamic shape optimization
as a free boundary problem. First, a very brief overview on shape optimization
is given. Next, incompressible fluids are considered. The gradient in Hadamard
form is derived for a general incompressible Navier-Stokes problem. Afterwards,
the shape Hessian is analyzed and found to have an operator symbol similar to
the Dirichlet-to-Neumann map. The talk concludes with the optimization of an
Onera M6 flying wing using the compressible Euler equations to model the fluid.
Due to using the Hadamard form of the gradient, a very large scale morphing of
shapes is possible.

Morten Vierling: An optimal order error bound for state constrained optimal
control problems We consider the variational discretization of a linear–quadratic
optimal control problem with pointwise control and state constraints. In order to
allow for a Fréchet smooth norm, the problem is reformulated by means of the
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reflexive space W 1,p(Ω) instead of C(Ω̄). The discretization of the state equation
yields a family of perturbed optimal control problems, whose solutions can be
computed numerically. Assuming a Slater condition, we apply an implicit mul-
tifunction theorem to the first order necessary conditions to proof a bound on
the perturbation error for these solutions. In the special case of an elliptic state
equation in Ω ⊂ R2 undergoing a simple finite element discretization we obtain
convergence of order O(h).

Sharp and Diffuse Interface Models for Two-Phase Flows of Viscous
Incompressible Fluids

Helmut Abels

We consider a two-phase flow of two viscous incompressible Newtonian fluids
of the same density filling a domain Ω ⊆ Rd, d = 2, 3. In classical models the
interface between both fluids is modeled as a (d − 1)-dimensional surface Γ(t).
– Such a model will be called sharp interface model in the following. – The
surface energy associated to the interface is σHd−1(Γ(t)), where Hd−1 denotes
the (d − 1)-dimensional Hausdorff measure and σ is a (constant) surface tension
coefficient. The presence of a surface energy causes an extra contribution to the
inner forces/the stress tensor, which is proportional to the mean curvature of the
interface and described by the Young-Laplace law (7) below.

On the other hand in so-called diffuse interface model for such a two-phase
flow a partial mixing of the macroscopically immiscible fluids in a small interfacial
region is assumed in the model. Additionally, diffusion of both components is
taken into account. This leads to a coupled Navier-Stokes/Cahn-Hilliard system,
which is capable to describe the evolution of droplet formation and collision during
the flow consistently and reads as follows:

∂tv + v · ∇v − div(ν(c)Dv)︸ ︷︷ ︸
inner friction

+∇p = −ε div(∇c⊗∇c)︸ ︷︷ ︸
surface tension

(1)

div v = 0(2)

∂tc+ v · ∇c = m∆µ(3)

µ =
δEε
δc

= −ε∆c+ ε−1φ′(c)(4)

Here v is the mean velocity, Dv = 1
2 (∇v +∇vT ), p is the pressure, c is an order

parameter related to the concentration of the fluids (e.g. the concentration differ-
ence or the concentration of one component), µ is a chemical potential, and Ω is a
suitable bounded domain. Moreover, ν(c) > 0 is the viscosity of the mixture, ε > 0
is a (small) parameter, which will be related to the “thickness” of the interfacial
region, m > 0 is a mobility coefficient, and φ = Φ′ for some suitable energy density
Φ. The latter model first appeared in [9] with the name “model H”. A rigorous
derivation was given in [8].
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The system is dissipative and sufficiently smooth solution satisfy

d

dt
E(c(t), v(t)) = −

∫

Ω

ν(c)|Dv|2 dx−
∫

Ω

m|∇µ|2 dx

where E(c(t), v(t)) = Eε(c(t)) +
1
2

∫
Ω
|v(t)|2 dx, and

Eε(c) =
ε

2

∫

Ω

|∇c(x)|2 dx+ ε−1

∫

Ω

Φ(c(x)) dx

describes the energy of the mixture. Here Φ is a double well potential as e.g.
Φ(c) = 1

8 (1− c2)2 if c = c1 − c2 is the difference of the mass concentrations.
For the mathematical analysis it is essential that both the interface thickness ε

and the mobility m are positive. Under this assumption and suitable assumptions
on Φ, the domain and the initial conditions, one can prove the existence of weak
solutions of (1)-(4) in two and three space dimension. Furthermore, strong unique
solutions exist in two dimensions globally in time and in three dimensions locally in
time. Moreover, for large times any weak solution becomes regular and converges
to a solution of the associated stationary system. We refer to [3] for these results
and further references. In the case ε > 0 and m = 0 existence of weak solutions
is an open problem and so far only short-time existence of strong solutions was
shown, cf. [5].

In applications the parameter ε > 0 is often very small. Therefore a rigorous
understanding of the limit ε → 0 and the relation to classical sharp interface
models is of interest. But the limit system as ε → 0 depends on the choice of
the scaling of m = m(ε). We expect that, if m(ε) →ε→0 m0 ≥ 0 and c is the
concentration of one fluid, then the limit system is

∂tv + v · ∇v − div(ν±Dv) +∇p = 0 in Ω±(t)(5)

div v = ∆µ = 0 in Ω±(t)(6)

−
[
n · (ν±Dv − pI)

]
= σHn on Γ(t)(7)

V = n · v|Γ(t) −m0[n · ∇µ] on Γ(t)(8)

[v] = 0, µ|Γ(t)= σH on Γ(t)(9)

Here [.] denotes the jump of a function across the interface Γ(t). In the case
m0 = 0, the equations for the chemical potential µ decouple from the rest and the
system coincides with the classical sharp interface model. In the casem0 > 0 it was
shown that weak solutions of (1)-(4) converge (modulo subsequences) to varifold
solutions of (5)-(9) in the sense of [6]. In the case m0 = 0 convergence was shown
by formally matched asymptotics in [12] and it was observed numerically in [10]
for some scalings of m(ε).

In the case m0 > 0 existence of weak solutions for large times was shown in
[4]. In the case m0 = 0 this is an open problem. So far only short time existence
of strong solutions and existence of varifold solutions globally in time are known,
cf. [7, 13], [1, 2], respectively. In order to obtain weak solutions using methods
from geometric measure theory, it is essential that sufficiently smooth solutions of
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(5)-(9) satisfy

d

dt
E(v(t),Γ(t)) = −

∫

Ω

ν(χ)|Dv|2 dx−m0

∫

Ω

|∇µ|2 dx

where E(v(t),Γ(t)) = 1
2‖v(t)‖22+σHd−1(Γ(t)). In the case m0 > 0 this gives some

control of µ and the curvature of the interface Γ(t), which is sufficient to apply a
result by Schätzle [11] and to obtain weak solutions.
Conclusion: Comparing diffuse and sharp interface models it is important to
realize that there are two new parameters ε > 0, which measure the interface
thickness, and m > 0, which is a mobility coefficient. In particular, since m > 0,
new diffusion effects occur in comparison with the classical sharp interface model,
which corresponds to the case ε = m = 0. More precisely, in the case m = 0, the
interface is just transported by mean velocity of the mixture v, while in the case
m > 0 the evolution of the interface is given by a (non-local) transport-diffusion
equation. Therefore the choice of m = m(ε) > 0 influences the behavior of the
diffuse interface model a lot and the scaling of m(ε) as ε→ 0 influences the limit
system. Moreover, we note that in the casem > 0 new effects like Ostwald ripening
occur, which was observed numerically. On the other hand the existence of global
weak solutions was only shown in the case m > 0 (both for ε > 0 and ε = 0).
In this case the energy estimate provides an estimate of the chemical potential
µ, which gives some control of the (“diffuse”) curvature of the interface. This
control is essential for the construction of global weak solutions. Therefore in the
case m > 0 the system has much better analytical properties. (It is a completely
parabolic system in this case.) But choosing m = m(ε) > 0 new phenomena
related to diffusion in the system occur, which still have to be understood more
rigorously.
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Minimal timelike lorentzian submanifolds as limits of singularly
perturbed wave equations

Giovanni Bellettini

(joint work with M. Novaga and G. Orlandi)

I have described a recent convergence result [2] as ǫ → 0+ of solutions of the
hyperbolic problems

(1) utt −∆u+
1

ǫ2
∇W (u) = 0.

Here
u : R× Rn → Rk, n ≥ 1, k = 1, 2,

and W (u) is a suitable potential vanishing only on the unit circle if k = 2 and
on ±1 if k = 1, for instance W (u) = 1

4 (1 − |u|2)2 if n ≤ 4 and k = 2. Our
starting point was a computation made by Neu in [8] where he showed, using a
formal argument and assuming k = 1, that there are solutions of (1) which take
the constant values ±1 out of a transition region of thickness ǫ, provided such a
region is close to a timelike lorentzian minimal surface (of codimension one), also
called classical string.

Given a solution uǫ to (1) a relevant quantity to be analyzed in the limit ǫ→ 0+

is the rescaled lagrangian density

ℓǫ(uǫ) := ck(ǫ)

(−|uǫt|2 + |∇uǫ|2
2

+
W (uǫ)

ǫ2

)
where ck(ǫ) :=

{
ǫ if k = 1,

1
| log ǫ| if k = 2.

Our convergence result shows that ℓǫ(uǫ) concentrates on a k-codimensional set
as ǫ → 0+, which is a timelike lorentzian stationary varifold. This theorem is
obtained under rather strong assumptions (see [2] for the details) and its proof is
based on a strategy used by Ambrosio and Soner [1] for the k = 2 corresponding
parabolic problems, which in turn is related to the paper [5] of Ilmanen for the
k = 1 parabolic case. Convergence results for solutions to (1) were also obtained
by Jerrard, see [6], [7].

Neu [8] also exhibited an example showing that suitably perturbing an initial
circle with small oscillations (not dissipated in time) may cause the corresponding
sequence of lorentzian minimal surfaces not to converge to a lorentzian minimal
surface as the oscillation scale tends to zero. Our assumptions on the initial data
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of (1), stated at the approximate ǫ-level, should prevent such phenomena. See
also the paper [4] of Brenier for related results. In the paper [3] we continue the
analysis of Brenier, and discuss an example of lorentzian minimal surface starting
from a square with zero initial velocity. Being this latter surface only Lipschitz,
still a notion of weak solution should be used, in order to describe the stationarity
condition.
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Transport processes at fluidic interfaces

Dieter Bothe

(joint work with Jan Prüss)

Fluidic interfaces are mobile and deformable phase boundaries between a liquid
phase and another liquid or gas phase. They appear as free boundaries of fluidic
particles such as drops or bubbles, or as free surfaces of liquids and play a promi-
nent role in numerous applications like multiphase chemical reactors, fuel engines,
atomization, drying of liquid sprays, heat exchange and ink-jet printing etc.

We consider sharp-interface models, where the hydrodynamics is described by
the two-phase balances of mass and momentum which read as

∂tρ+ div (ρu) = 0 in Ω \ Γ(t), [[u]] = [[ 1ρ ]] jnΓ on Γ(t),

∂t(ρu)+∇·(ρu⊗u)=∇·T in Ω \ Γ(t), [[u]] j − [[T]]·nΓ = σκΓnΓ on Γ(t),

where ρ is the mass density, u the velocity and σ the surface tension assumed to be
constant here. The interface is denoted as Γ which depends on time and is to be
found as part of the solution. The interface normal is nΓ and κΓ := divΓ(−nΓ) is
the sum of the principal curvatures. The relations on Γ are transmission conditions
which involve the jump of certain quantities across Γ which is defined as

[[φ]](t, x) := lim
h→0+

(φ(t, x+ hnΓ)− φ(t, x− hnΓ)) for x ∈ Γ(t).
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The two fluids are assumed to be Newtonian and we focus on the case of incom-
pressible flows, i.e. T = −pI + S with the viscous stress S = η(∇u + ∇uT) and
the first equation reduces to divu = 0. Note that the material parameters ρ and
η depend on the phase. We allow for phase change and therefore the transmission
conditions involve the mass transfer flux density j defined on Γ as

j = ρ(u− uΓ) · nΓ,

where uΓ is the interface velocity. The latter differs from the adjacent bulk veloc-
ities if mass and, hence, phase transfer occurs and this leads to a so-called Stefan
flow. In this situation the normal velocity VΓ of the interface is related to the
phase velocities through

VΓ = u · nΓ + j/ρ.

We are interested in sharp-interface models for mass transfer driven by devi-
ations from chemical equilibrium. For this purpose the above model has to be
extended to multicomponent two-phase fluid mixtures. Such a mixture is com-
posed of chemical components A1, . . . , An, say, which are partially miscible. As
an example consider air bubbles in water: then the gas phase contains oxygen,
nitrogen, carbon dioxide but also water vapor. The liquid phase is mainly water,
but with dissolved quantities of oxygen, nitrogen and carbon dioxide. If the gas
components dissolve, the bubble shrinks and may finally even disappear.

The continuum thermodynamical sharp-interface model is based on the mass
and momentum balances of the individual components. Still, a single common mo-
mentum balance is usually employed. Hence the two-phase Navier-Stokes system
above is complemented by species equations of the form

ρ(∂tyi + u · ∇yi) + div Ji = 0 in Ω \ Γ(t), [[yi]] j + [[Ji]] · nΓ = 0 on Γ(t),

where Ji denotes the diffusive (molecular) fluxes which have to be modeled by
means of constitutive equations and yi := ρi/ρ are the mass fractions.

The model is not complete and a constitutive interfacial relation is missing,
where our argumentation essentially follows the line on given in [1]. Consider the
total energy

E =

∫

Ω

ρ
(1
2
|u|2 + ψ

)
dx+

∫

Γ

σdo

of the system, where ρψ(T, ρ1, . . . , ρn) is the free (available) energy density with
T the absolute temperature. The chemical potentials of the components are then
given as

µi =
∂(ρψ)

∂ρi
.

For simplicity, let us focus on the isothermal case. Assuming no-slip and no-flux
boundary conditions, direct computation of ∂tE displays an interfacial contribu-
tion to the energy dissipation of the form

∫

Γ

j
(
[[
1

2ρ2
]] j2 − [[nΓ · SnΓ/ρ]]

)
do+

∫

Γ

∑

i

[[µi]] jido.
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Now, since the interface is considered massless, we assume no dissipation on Γ.
Elimination of one of the individual mass transfer fluxes ji by means of the relation∑

i ji = j, this yields the additional jump condition

[[µi]] = [[nΓ · SnΓ/ρ]]− [[
1

2ρ2
]] j2 for all i.

In many technically relevant cases, the right-hand side is negligible, i.e. the as-
sumption of continuity of chemical potentials across the interface results.

A thermodynamically consistent closure of the diffusive fluxes is not trivial.
For instance, naive usage of Fick’s law of the form Ji = −di∇yi with constant Di

leads to contradictions in the multicomponent case unless all diffusion coefficients
are equal; cf. [2]. We employ the Maxwell-Stefan approach to multicomponent
diffusion (see, e.g., [3]). Formulated in terms of mass densities, the fluxes are then
implicitly given by the system

ρ
yi

MiRT
∇µi = −

∑

j 6=i

yjJi − yiJj
MiMjDij

for i = 1, . . . , n

with molar mass Mi and Maxwell-Stefan diffusivities Dij which are symmetric.
Here R is the universal gas constant. The fluxes are not independent but satisfy
the relation

∑
i Ji = 0.

With this thermodynamically consistent model of cross-diffusion effects, the aim
of our current work in progress is local-in-time wellposedness and stability prop-
erties of the full multicomponent two-phase system, allowing for mass transfer
across the fluidic interface. We currently focus on the incompressible and isother-
mal case, where we are able to prove that the differential operator associated to
the cross-diffusion system with Maxwell-Stefan constitutive relations is normally
elliptic and that the transmission and jump conditions at the interface satisfy the
Lopatinskii-Shapiro conditions.
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Optimal Control of PDEs. Topics and Methods

Eduardo Casas

In this talk I give an introduction to the Optimal Control Theory. The elements
of an optimal control problem are stated: the control, the state, the state equation
and the cost functional. Then, the goals of the theory are pointed out as follows

• Existence of a solution
• First and second order optimality conditions
• Numerical approximation
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• Numerical resolution of the discrete control problem

Only the first three points are analyzed in this talk, which is done through the
following model control problem

(P)





Minimize J(u) =

∫

Ω

L(x, yu(x), u(x))dx

u ∈ K = {u ∈ L∞(Ω) : α ≤ u(x) ≤ β a.e. x ∈ Ω},
where −∞ < α < β < +∞ and yu is the solution of the state equation

Ay = −
n∑

i,j=1

∂xj
(aij(x)∂xi

y(x)) + a0(x)y(x),

with aij ∈ C0,1(Ω̄) and a0 ∈ L∞(Ω) satisfy





∃m > 0 s.t.
n∑

i,j=1

aij(x)ξiξj ≥ m|ξ|2 ∀ξ ∈ Rn ∀x ∈ Ω,

a0(x) ≥ 0 a.e. x ∈ Ω.

We state a theorem of existence of a solution, then we derive the first and second
order optimality conditions and finally, we apply the previous results to prove the
convergence of the numerical discretization of the control problem and to deduce
some error estimates for the optimal control as well as for the optimal state and
adjoint state.

An arrival time inverse problem for the eikonal equation

Klaus Deckelnick

(joint work with C.M. Elliott and V. Styles)

We are concerned with the formulation and numerical approximation of an
optimal control problem for the eikonal equation. Our work is motivated by ap-
plications in transmission travel-time tomography, where one tries to estimate the
wave-speed distribution in a subsurface region from measured first arrival times of
acoustic, seismic or electromagnetic signals. In order to formulate a mathematical
problem we consider the following eikonal equation

|∇u| = a(x), x ∈ Ω \ {x0};(1)

u(x0) = 0; u(x) = +∞, x ∈ ∂Ω.(2)

Here, Ω ⊂ Rn is a bounded domain with a Lipschitz boundary and x0 ∈ Ω rep-
resents the location of the signal source. For a given positive function a ∈ C0(Ω̄)
problem (1), (2) is solved uniquely by the function

ua(x) = inf{
∫ t

0

a(ξ(r))|ξ′(r)|dr | ξ ∈W 1,∞([0, t], Ω̄),

ξ(0) = x0, ξ(t) = x for some t ≥ 0}
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representing the travel time of the signal to go from x0 to x with velocity 1
a . The

function ua is a viscosity subsolution on Ω and a viscosity supersolution on Ω̄, see
[3], [1].
Let us suppose that first arrival time measurements are given in terms of a function
uobs : ∂Ω → R>0. Furthermore, let 0 < Am < AM < ∞ and choose functions

{φi}Li=1 ⊂ W 1,∞(Ω) satisfying φi(x) ≥ 0, i = 1, . . . , L and
∑L

i=1 φi(x) = 1, x ∈ Ω.
We introduce the set

K := {a : Ω → R | a(x) =
L∑

i=1

aiφi(x), Am ≤ ai ≤ AM , i = 1, . . . , L}

as a velocity model and consider the optimization problem

(3) min
a∈K

J (a) =
1

2

∫

∂Ω

|ua(x)− uobs(x)|2do.

It can be shown that (3) has at least one solution a∗ ∈ K. A numerical approach
to minimize J with the help of the adjoint method is presented in [2] and it is the
aim of the present work to analyze and justify this approach.
Our starting point is a discretization of (1), (2). For simplicity we assume that Ω =
(0, b1)× (0, b2) ⊂ R2 and consider the regular grid Z2

h := {xα = (h1α1, h2α2) |αi ∈
Z, i = 1, 2} with bi = hiNi, i = 1, 2 for some N1, N2 ∈ N. We set Ωh = Ω∩Z2

h,Γh =
(∂Ω∩Z2

h)\{(0, 0), (b1, 0), (0, b2), (b1, b2)} as well as Gh = Ωh∪Γh. For a grid point
xα ∈ Gh we denote by Nα its four neighbours if xα ∈ Ωh; if xα ∈ Γh, then Nα only
consists of the neighbour which belongs to Ωh. Given a positive function a ∈ C0(Ω̄)
we approximate (1), (2) as follows: Find U : Gh → R such that U(x0) = 0 and

∑

xβ∈Nα

{(U(xα)− U(xβ)

hαβ

)+}2

= a(xα)
2, xα ∈ Gh \ {x0},

where hαβ = |xα − xβ | and where we have assumed that x0 is a grid point. It
can be shown that the above problem has a unique solution U = Ua. Assuming in
addition that a is Lipschitz, we obtain the error bound

max
xα∈Gh

|u(xα)− Ua(xα)| ≤ C
√
h,

where C depends on Ω,minΩ̄ a and the Lipschitz constant of a. Hence it is natural
to approximate (3) by

(4) min
a∈K

Jh(a) =
1

2

(
h1

∑

xα∈Γ2∩Gh

+h2
∑

xα∈Γ1∩Gh

)
|Ua(xα)− uobs(xα)|2,

where Γk = {(x1, x2) ∈ ∂Ω |xk = 0 or xk = bk}, k = 1, 2. We can show that (4)
has a solution a∗h ∈ K and that there exists a sequence h ց 0 such that (a∗h)
converges to a solution of (3). The actual minimization of Jh can be carried out
with the help of a projected gradient method. Here, derivatives of Jh are given by

∂Jh
∂am

(a) = −h1h2
∑

xα∈Gh\{x0}

P (xα)a(xα)φm(xα), m = 1, . . . , L
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where the discrete adjoint P : Gh \ {x0} → R is the solution of

P (xα) =

∑
xβ∈Nα

P (xβ)
hαβ

(U(xβ)−U(xα)
hαβ

)+
∑

xβ∈Nα

1
hαβ

(U(xα)−U(xβ)
hαβ

)+ , xα ∈ Ωh \ {x0}(5)

P (xα) =
uobs(xα)− U(xα)∑
xβ∈Nα

(U(xα)−U(xβ)
hαβ

)+ , xα ∈ Γh.(6)

From (5) we see that the values of P can be successively calculated by ordering
the grid points with respect to the size of U(xα) starting with the largest value.
This information is available if the forward problem is solved with the help of the
Fast Marching Method.
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Surface finite elements for two phase geometric biomembranes

Charlie Elliott

(joint work with Bjoern Stinner)

Biomembranes consisting of multiple lipids may involve phase separation phenom-
ena leading to coexisting domains of different lipid compositions. The modelling
of such biomembranes involves an elastic or bending energy together with a line
energy associated with the phase interfaces. This leads to a free boundary problem
for the phase interface on the unknown equilibrium surface which minimizes an en-
ergy functional subject to volume and area constraints. In this talk we presented a
new computational tool for computing equilibria based on an L2 relaxation flow for
the total energy in which the line energy is approximated by a surface Ginzburg-
Landau phase field functional. The relaxation dynamics couple a nonlinear fourth
order geometric evolution equation of Willmore flow type for the membrane with a
surface Allen-Cahn equation describing the lateral decomposition. A novel system
is derived involving second order elliptic operators and in which the field variables
are the positions of material points of the surface, the mean curvature vector and
the surface phase field function. The resulting variational formulations use H1

spaces. We use triangulated surfaces and the surface finite element method with
H1 conforming surface finite elements. Quadratic surface finite elements are em-
ployed together with a semi-implicit time discretisation of the evolution equations
yielding an iterative scheme for computing stationary solutions using linear solvers.
Numerical experiments are presented which exhibit convergence and the power of
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this new method for two component geometric biomembranes by computing equi-
libria such as dumbells, discocytes and starfish with lateral phase separation. The
work described in the talk is based on [1, 2].
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Exponential-free a priori and a posteriori error estimates for finite
element approximations of diffuse interface equations for surface

evolution

Xiaobing Feng

(joint work with Andreas Prohl, Haijun Wu)

Let Γ0 be a given hypersurface (i.e., a codimension one manifold) in Rn+1, the
geometric evolution of surfaces is a family of one-parameter hypersurfaces {Γt}t≥0

which are governed by the geometric law Vn = Fint(λ1, λ2, · · · , λn) + Fext. Where
Vn stands for the normal velocity of Γt, {λj}nj=1 denote the principal curvatures
of Γt. Fint and Fext are two given functions and Fext depends on some external
variable(s)/field(s). Well-known examples of the geometric evolution of surfaces
(also known as moving interface problems) include the mean curvature flow (Fint =
−H =: −(λ1 +λ2 · · ·+λn), Fext ≡ 0), the inverse mean curvature flow (Fint =

1
H ,

Fext ≡ 0), the surface diffusion flow (Fint = −∆ΓH , Fext ≡ 0), the Willmore flow
(Fint = −∆ΓH − 2H(H2 − K), K := λ1λ2 · · ·λn, Fext ≡ 0), the Hele-Shaw flow
(Fint ≡ 0, Fext = 1

2 [∂nu]Γt
, the jump of the normal derivative of the velocity of

the fluids across Γt, u|Γt
= σH), and the generalized Stefan problem (Fint ≡ 0,

Fext =
1
2 [∂nu]Γt

, u|Γt
= γ(H − αVn)).

To analytically and numerically study such a geometric evolution (or moving
interface) problem, one first needs to adopt some formulation to describe the prob-
lem. Different formulations not only lead to different mathematical solution theo-
ries but also lead to different numerical methods and algorithms for approximating
and computing the solutions. The best known types of formulations include (i)
the parametric formulation; (ii) the level set formulation (and method); (iii) the
diffuse interface (or phase field) formulation (and method). It is self-explained that
the parametric formulation describes the points on the hypersurface by a set of
parametric equations. The level set formulation expresses the hypersurface as the
zero-level set of a level set function and the evolution of the hypersurface is sought
indirectly through evolving the level set function. The diffuse interface formula-
tion is based on the idea of using a non-zero width interface to approximate the
hypersurface and using the zero-level set of a phase function, which is contained
in the diffuse interface, as the representation of the diffuse interface. Like in the
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level set method, the evolution of the hypersurface is sought indirectly through
evolving the phase function (cf. [24, 25, 23, 19, 28, 10, 11]).

In the past thirty years extensive studies have been carried out on developing
the diffuse interface (or phase field) theory and on developing various types of
numerical methods, in particular, adaptive grid methods, for computing the solu-
tions of the diffuse interface models. Rigorous and formal connections have been
established for many well-known geometric evolution problems and their diffuse
interface models, among them are the mean curvature flow and the Allen-Cahn
equation [20, 8], the Hele-Shaw flow and the Cahn-Hilliard equation [27, 2], the sur-
face diffusion flow and the Cahn-Hilliard equation with concentration-dependent
mobility [3], and the generalized Stefan problem and the classical phase field model
[18, 4]. On the other hand, there were very few results on convergence of numerical
methods and numerical interfaces obtained based on the diffuse interface method-
ology [26, 7, 22], although there have had a very large amount of literature on
numerical simulations and computer implementations of various numerical meth-
ods for diffuse interface models. As the convergence results of [26, 7, 22] were
established using the discrete maximum principle, it is not feasible to extend these
results to the diffuse interface models which involve the Cahn-Hilliard equations
or systems of equations because the maximum principle does not hold for these
equations.

To overcome the difficulty, a new approach/technique, which was first proposed
in [12], has emerged and developed in the past ten years. The key to this approach
is so-called exponential-free error estimates, which means to derive (a priori and/or
a posteriori) error bounds for uε − uεh that depend on ε−1 only polynomially
(instead of exponentially). Where uε and uεh denote respectively the solutions of
the diffuse interface model and its numerical approximation. Such an exponential-
free error estimate and the triangle inequality ‖u0 − uεh‖ ≤ ‖u0 − uε‖+ ‖uε − uεh‖
immediately infer the convergence of uεh to the solution u0 of the limiting sharp
interface problem, which in turn implies the convergence of the numerical interface
to the sharp interface. To establish the desired exponential-free error estimates,
the key idea is to utilize (and to establish its discrete analogue) the spectrum
estimate result [1, 9, 5] for the linearized operator (at the diffuse interface solution)
associated with the diffuse interface model.

In the past ten years, exponential-free a priori and a posteriori error estimates
and convergence of numerical interfaces have been established for the following
pairs of sharp-diffuse interface problems: the Allen-Cahn equation and the mean
curvature flow [12, 21, 16], the Cahn-Hilliard equation and the Hele-Shaw flow
[13, 14, 17], the classical phase field model and the generalized Stefan problem [15].
This talk intends to give an overview of these results and the main ideas behind
of these results. Moreover, recent attempts and ideas for extending these results
past the singularities (or topological changes) are also reviewed and commented.
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The Stefan Problem with anisotropic Gibbs–Thomson law

Harald Garcke

(joint work with Stefan Schaubeck)

The Stefan problem is a free boundary problem in which one seeks a temperature
distribution u together with the interface between a liquid and a solid phase. In the
bulk a diffusion equation for the temperature has to hold and at the interface the
Stefan condition guarantees energy conservation across the interface taking latent
heat release into account. In addition a thermodynamical equilibrium condition
has to hold. If surface energy effects are important this condition is given by the
Gibbs–Thomson law. As most materials have an anisotropic surface energy also
the Gibbs–Thomson law should take anisotropy into account. But most known
results for the Stefan problem consider an isotropic Gibbs–Thomson law. As a
pioneering work we mention in particular a result by Luckhaus [4] who was able to
show a global existence result for the Stefan problem with Gibbs–Thomson law.
The arguments of Luckhaus relied on the isotropy of the surface energy and it
is the goal of this contribution to present a result which generalizes the work of
Luckhaus to the anisotropic situation.

Given a time interval (0, T ) and a bounded domain Ω ⊂ Rn with C1–boundary
we define ΩT := (0, T ) × Ω. We now seek for the temperature u : ΩT → R

and a phase function χ : ΩT → {0, 1} where the liquid phase is given as the set
{(t, x) ∈ ΩT |χ(t, x) = 1} and the solid phase is given as {(t, x) ∈ ΩT |χ(t, x) = 0}.
Denoting by f : ΩT → R given heat sources, the energy balance law is now given
as

(1) ∂t(u+ χ)−∆u = f

where this identity has to be understood in its distributional form.
To formulate the Gibbs-Thomson law in its anisotropic form we need to intro-

duce the anisotropic interfacial free energy

F(Γ) :=

∫

Γ

γ(ν) dHn−1
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for a hypersurface Γ with unit normal ν pointing into the solid phase. We assume
that γ is a one-homogeneous, convex function.

The L2–gradient of F is now given as

Hγ := divΓ (Dγ(ν))

where Dγ is the gradient of γ and the anisotropic Gibbs-Thomson law is given as

u = Hγ on Γ .

The anisotropic Gibbs-Thomson law u = Hγ has the weak formulation

∫

Ω

(div ξ γ(ν)− ν ·DξDγ(ν)) d|∇χ| =
∫

Ω

div (uξ)χdx

which has to hold for all ξ ∈ C1(Ω,Rn) with ξ · ν∂Ω = 0.
Our approach will be based on a distributional definition of the anisotropic

surface energy
∫
Γ
γ(ν)dHn−1. Introducing a function γ0 : Rn → R+

0 with the
properties

γ0 ∈ C2(Rn \ {0}), γ0(p) > 0 for all p ∈ Rn \ {0} ,(2)

γ0 is positively homogeneous of degree 1, i.e.:

γ0(λp) = λγ0(p) for all λ > 0 and p ∈ Rn \ {0} ,(3)

there exists a d0 > 0 such that

(D2γ0)(p)q · q ≥ d0|q|2 for all p, q ∈ Rn, |p| = 1, p · q = 0 ,(4)

we define for f ∈ BV (Ω)

(5)

∫

Ω

|∇f |γ := sup

{∫

Ω

fdivϕdx | ϕ ∈ C1
0 (Ω,R

n), γ0(ϕ(x)) ≤ 1 a.e.

}
.

We now assume that γ is given as

(6) γ(q) = sup
p∈Rn\{0}

p · q
γ0(p)

,

and it turns out, see [1], that for all f ∈ BV (Ω) we obtain

(7)

∫

Ω

|∇f |γ =

∫

Ω

γ(νf ) d|∇f |

where νf = − ∇f
|∇f | for |∇f | a.e. x ∈ Ω. It turns out that (5) and (7) will be crucial

in the existence proof.
The existence result is now given as follows.

Theorem (see [3]). Let the following assumptions hold:

(A1) Ω ⊂ Rn is a bounded domain with C1–boundary, T > 0.
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(A2) The initial data u0, χ0, the boundary data uD and the right hand side f
fulfill

u0 ∈ L∞(Ω) ∩H1,2(Ω) ,

χ0 ∈ BV (Ω; {0, 1}) ,
uD ∈ H1,2(Ω),

f ∈ L∞(ΩT ) .

(A3) The anisotropy γ is given by (6), where γ0 : Rn → R fulfills (2)-(4).

Then there exist functions

χ ∈ L1(ΩT , {0, 1})
such that ess sup

t∈(0,T )

∫
Ω
|∇χ|(t) <∞ and

u ∈ [uD + L2(0, T ;H1,2
0 (Ω))] ∩ L∞(0, T ;L2(Ω))

such that

(i)

∫

ΩT

(u+χ)∂tϕd(t, x)+

∫

Ω

(u0+χ0)ϕ(0) dx =

∫

ΩT

∇u·∇ϕd(t, x)−
∫

ΩT

fϕ d(t, x)

for all ϕ ∈ C∞
0 ([0, T )× Ω), and

(ii)

∫ T

0

∫

Ω

(div ξDγ(ν) · ν − ν ·DξDγ(ν)) d|∇χ(t)|dt −
∫

ΩT

div (uξ)χd(t, x) = 0

for all ξ ∈ C1(ΩT ,R
n) with ξ · ν∂Ω = 0 on ∂Ω.

As in the paper of Luckhaus [4] we use an implicit time discretization to con-
struct approximate solutions. In order to show that time discrete solutions con-
verge to solutions of the continuous problem it is easy to handle the discrete version
of the diffusion equation (1).

It will turn out that the main difficulty will be to pass to the limit in the discrete
version of the term ∫

Ω

(div ξγ(ν) − ν ·DξDγ(ν)) d|∇χ| .

In the isotropic case a lemma of Reshetnyak can be used to show that the approx-
imate normals from the time discrete problems converge, see Luckhaus [4]. In the
anisotropic case such a reasoning is not possible and we will use the crucial fact
that ∫

Ω

γ(νh) d|∇χh| →
∫

Ω

γ(ν) d|∇χ| ,

νh being approximate normals, implies that Dγ(νh) → Dγ(ν) in some appropriate
sense. This fact will be important in order to pass to the limit in an approximate
version of the weak form of the Gibbs-Thomson law.

Numerical computations showing the importance of anisotropy in the Gibbs–
Thomson law can be found in [2] or in the abstract of Robert Nürnberg for the
same workshop.
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On scale–independent extinction time estimates for total variation
flows

Yoshikazu Giga

(joint work with Robert V. Kohn, Courant–NYU)

A total variation flow is a gradient flow of the total variation and is often used
in image analysis for denoising and restoring image. It is often used in materials
science to describe evolution of crystal surface.

We consider two models. One is an L2-gradient flow of the total variation, i.e.,

ut = div (∇u/|∇u|) (1)

and the other is an H−1-gradient flow, i.e.,

ut = −∆ div (∇u/|∇u|). (2)

Both equations have a strong diffusivity effect for the surface with slope zero and
the solution becomes flat in finite time. For (1) it is known but for (2) it was not
yet proved rigrously. We are interested in estimating extinction time both for (1)
and (2). To fix idea we impose for example a periodic boundary condition with
zero average condition. In this talk for a given initial data u0 we derive on upper
bound for the extinction time T ∗(u0), the first time when the solution u vanishes
indetically zero. Such a time is important since it is the time that all pattern
disappears.

Our goal is to derive a scale-independent estimate for T ∗(u0) from above both
(1) and (2). The estimate for (1) is more or less known. The extinction time is
estimated by

T ∗(u0) ≤ Sn||u0||Ln ,

where Sn is the best Sobolev constant when the space dimension is n. For (2)
the estimate is more involved and we are only successful for lower dimensions
1 ≤ n ≤ 4. Even T ∗(u0) <∞ is a new result. Our estimate for n = 4 is

T ∗(u0) ≤ C||u0||Ḣ−1

while for 1 ≤ n ≤ 3

T ∗(u0) ≤ C||u0||1/θ−1

Ẇ−3,p
||u0||2−1/θ

Ḣ−1
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with (4 − n + n/p)θ = 2 − n/2 + n/p, 1/2 < θ ≤ 1, 1 ≤ p < ∞. Here the norm

|| · ||Ẇ−m,p denotes the dual norm of homogeneous Wm,p′ space with 1/p+1/p′ =

1 so that Ḣ−1 = Ẇ−1,2. The constant C is of course independent of u0 and
moreover, it is dilation invariant. The constant C depends only on θ (and blows
up as θ ↓ 1/2). The exponents θ and p are chosen so that the estimate is invariant
under all scaling transformations which makes the equation (2) invariant.

A key observation is a new interpolation inequality

||u||Ḣ−1 ≤ C∗||(−∆)−1u||1−θ
Ẇ−1,p

(∫
|∇u|

)θ

and the growth estimate of the solution

d

dt
||(−∆)−1u||Ẇ−1,p ≤ (volume of periodic cell)1/p

together with an energy estimate

1

2

d

dt
||u||2

Ḣ−1 = −
∫

|∇u|,

where
∫
|∇u| denotes the total variation of the measure ∇u.

Optimal Control of Variational Inequalties: Stationarity; -ies and
Numerics

M. Hintermüller

(joint work with I. Kopacka)

1. Problem formulation

We focus on a new stationarity concept and the design of multigrid algorithms
for the following minimization problem (P):

min J(y, u) =
1

2
‖y − yd‖2L2 +

ν

2
‖u‖2L2 over y ∈ V, u ∈ L2(Ω)

s.t. (subject to) y ∈ K, a(y, v − y) ≥ (f + u, v − y) ∀v ∈ K,(1.1a)

u ∈ Uad(1.1b)

where Uad = {v ∈ L2(Ω) : a ≤ v ≤ b a.e. in Ω}, and Ω ⊂ Rn, n ≤ 3, is an open,
bounded domain that is either convex and polygonal or has a C1,1-boundary ∂Ω.
Further a(·, ·) : V × V → R, with V = H1

0 (Ω), denotes the bilinear form

a(v, w) =

n∑

i,j=1

∫

Ω

aij
∂v

∂xj

∂w

∂xi
dx+

n∑

i=1

∫

Ω

bi
∂v

∂xi
w dx+

∫

Ω

cvw dx,

for all v, w ∈ V , where bi, c ∈ L∞(Ω), aij ∈ C0,1(Ω̄) and c ≥ 0. We assume
that a(·, ·) is bounded and coercive, and denote by A : V → V ∗ = H−1(Ω) the
associated operator. The variational inequality (VI) constraint (1.1a) involves the
cone K = {v ∈ V : v ≥ 0 a.e. in Ω}. By (·, ·) and ‖·‖ we denote the scalar product
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and norm, respectively, in L2(Ω) and by 〈·, ·〉 the duality pairing between V and
V ∗. Moreover, yd, f ∈ L2(Ω) are given, ν > 0 is fixed, and the bounds on the
control variable u are a, b ∈ L2(Ω)∪{−∞,∞} with (b−a) > 0. The state variable
is denoted by y. Note that our notation allows us to choose a ≡ −∞, b ≡ ∞ if no
lower or upper bound acts on the control. Further, the cone K may be replaced by
Kψ = {v ∈ V : v ≥ ψ a.e. in Ω}, with ψ ∈ H2(Ω), ψ|∂Ω ≤ 0, and the subsequent
results remain true.

2. Penalization of the variational inequality

A common technique for solving a VI of the form (1.1a) is by penalization, where
the VI is approximated by a sequence of nonlinear boundary value problems. In
our case, the approximating problems read

(2.2) a(y, v) +
1

α
〈−max(0,−y), v〉 = (f + u, v) ∀v ∈ V,

with α > 0 being the penalty parameter. Due to the monotonicity of the max-
operator, (2.2) has a unique solution yα(u). Furthermore, it is well known that

(2.3) yα(u) → y(u) in V as α ↓ 0,

where y(u) denotes the unique solution of the original VI.
For a fixed smoothing parameter ε > 0 we define the following regularized or

smoothed max-operators:
(2.4)

max gε(0, r) :=





r − ε
2 if r ≥ ε

r2

2ε if r ∈ (0, ε),

0 if r ≤ 0

max lε(0, r) :=





r if r ≥ ε

r2

4ε +
r
2 + ε

4 if r ∈ (−ε, ε),
0 if r ≤ −ε

Both regularizations are C1-functions that smooth the kink of the max-operator.
Concering the involved parameters we invoke the following assumption .

Assumption 2.1. For each α > 0 let ε(α) > 0 be given such that

(i) {ε(α)} is bounded if max gε or maxGε is used and

(ii) ε(α)
α → 0 for α→ 0 if max lε is used.

3. The optimal control problem

We solve (P) by approximating the lower-level problem, i.e., the variational
inequality, using the techniques developed in the previous section. For each set of
parameters (α, ε) > 0 we therefore consider (Pα,ε)

(3.5)

min J(y, u) =
1

2
‖y − yd‖2L2 +

ν

2
‖u‖2L2 over y ∈ V, u ∈ L2(Ω)

s.t. Ay − 1

α
max ε(0,−y) = u+ f,

a ≤ u ≤ b a.e. in Ω,
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where max ε is a generic notation that stands for either of the regularizations
introduced in Section 2. The existence of a solution of (3.5) can be established
by standard arguments. Moreover, under Assumption 2.1 it can be shown that
a sequence of global solutions of (3.5) converges to a global solution of (1.1) as
α→ 0.

Next we study stationarity principles. For the sake of brevity we set Ω+ :=
{x ∈ Ω : y(x) > 0} and introduce the notion of E -almost C-stationarity.

Definition 3.1. The point (y, u) ∈ V ×L2(Ω) is called E -almost C-stationary for
problem (1.1), if there exist ξ ∈ L2(Ω), p ∈ V and λ ∈ V ∗ such that the following
system is satisfied:

y − λ+A∗p = yd,(3.6a)

Ay − u− ξ = f,(3.6b)

u ∈ Uad, (νu− p, v − u) ≥ 0 ∀v ∈ Uad,(3.6c)

ξ ≥ 0 a.e., y ≥ 0, (y, ξ) = 0,(3.6d)

p = 0 a.e. in {ξ > 0},(3.6e)

〈λ, p〉 ≤ 0, 〈λ, y〉 = 0,(3.6f)

and furthermore for every τ > 0 there exists a subset Eτ ⊂ Ω+ with meas(Ω+ \
Eτ ) ≤ τ such that

(3.7) 〈λ, φ〉 = 0 ∀φ ∈ V, φ = 0 a.e. in Ω \ Eτ .

We now state the main result describing the convergence properties of station-
ary points of the smoothed penalized problem with respect to the penalty and
smoothing parameters.

Theorem 3.2. Consider the smooth penalized problem with bounds a, b ∈ L2(Ω)
and a C1-regularization of the max-operator. Let {α} and {ε(α)} satisfy Assump-
tion 2.1. For every α > 0 let (yα, uα) ∈ V × L2(Ω) be stationary points of the
smooth penalized problem (3.5) with corresponding adjoint state pα ⊂ V .

Then there exist (ỹ, ũ, ξ̃, p̃, λ̃) ∈ V × L2(Ω) × L2(Ω) × V × V ∗ and a sub-
sequence (again denoted by {α}) such that yα → ỹ in V , uα → ũ in L2(Ω),
1
α max ε(α)(0,−yα) → ξ̃ in V ∗, pα ⇀ p̃ in V and − 1

α max′ε(α)(0,−yα)pα ⇀ λ̃ in

V ∗, where (ỹ, ũ) is E -almost C-stationary for the MPEC (1.1).

4. The Algorithm

The constructive nature of Theorem 3.2 implies an infinite dimensional solution
algorithm for the MPEC problem (P), where the solution is approximated by the
solution of the smoothed penalized problems (Pα,ε) along a sequence {(α, ε(α))}.
This outer algorithm is described in Algorithm 1. Theorem 3.2 then yields the
convergence of the iterates to a point that is E -almost C-stationary for the MPEC
problem.
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Algorithm 1 (Outer Algorithm)

Data: yd, f , α0, ε0.
1: Choose (y0, u0, p0) and set k := 0.
2: repeat
3: Solve the first order system associated with (3.5) with (α, ε) = (αk, εk), to

obtain (yk+1, uk+1, pk+1) using initial values (yk, uk, pk) for solution algo-
rithm.

4: Choose αk+1 < αk and εk+1.
5: Set k:=k+1.
6: until some stopping rule is satisfied.

4.1. Solving the subproblem by the full approximation scheme. In the
optimality system of (3.5) the control u can be eliminated. The resulting reduced
nonlinear system reads

(4.8)
y +A∗p+ 1

α max ′
ε(0,−y)p = yd,

Ay − 1
α max ε(0,−y)− 1

ν p+max(0, 1ν p− b)−max(0,− 1
ν p+ a) = f.

For a given sequence of equidistant grids let h denote the size of the current
grid and H > h denote the mesh size of the next coarser grid. Furthermore let
Uh and UH denote the finite dimensional subspaces of L2(Ω) corresponding to

the mesh sizes h and H . Let IHh : Uh → UH and ÎHh : Uh → UH denote the
restriction operators using full weighting and straight injection, respectively, and
let IhH : UH → Uh denote the interpolation operator using linear interpolation.
Let yhd , f

h denote the discretized data and let hmax > 0 be the grid size of the
coarsest mesh, i.e., the mesh on which the system is solved exactly. Then the FAS-
algorithm for solving the discrete optimality conditions is given by Algorithm 2.

For further details on the FAS scheme, such as the choice of the relaxation
scheme, and numerical results we refer to [1]. Moreover, in this reference one also
finds a comparison of the FAS-based solver with a solver relying on Hackbusch’s
multigrid method of the second kind. An alternative relaxation scheme for deriving
first order conditions and an associated numerical scheme are studied in [2].
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Algorithm 2 (FAS-algorithm)

Data: (yhd , f
h), initial values (yh, ph).

1: if h = hmax then
2: solve (4.8) exactly.
3: else
4: Do νpre pre-smoothing steps.
5: Compute residuals rha = yhd − yh − (Ah)∗ph − 1

α max ′
ε(0,−yh)ph and rhs =

fh −Ahyh + 1
α max ε(0,−yh)− 1

ν p
h.

6: Restrict residuals to coarser grid using full weighting rHa = IHh r
h
a , r

H
s =

IHh r
h
s .

7: Restrict (yh, ph) to coarser grid using straight injection yH = ÎHh y
h, pH =

ÎHh p
h.

8: Compute right hand sides for coarse problem yHd = rHa + yH + (AH)∗pH +
1
α max ε

′(0,−yH)pH , fH = rHs +AHyH − 1
α max ε(0,−yH)− 1

ν p
H .

9: Apply γ-times the FAS-algorithm to coarse grid problem with h = H , right
hand side (yHd , f

H) and initial values (yH , pH) to compute new approxima-
tion (ỹH , p̃H).

10: Coarse grid correction: yh = yh + IhH(ỹH − yH), ph = ph + IhH(p̃H − pH),
where IhH denotes the interpolation operator using linear interpolation.

11: Do νpost post-smoothing steps.
12: end if

Motion of phase boundaries by geometric evolution equations

Yoshihito Kohsaka

(joint work with Harald Garcke, Kazuo Ito)

The surface diffusion equation

V = −∆ΓH

is a geometric evolution equation for an evolving hypersurface Γ = {Γt}t≥0. Here,
V is the normal velocity of the surface, H is the mean curvature of the surface, and
∆Γ is the Laplace-Beltrami operator of the surface. This equation was introduced
by Mullins [2] to model the motion of interfaces in the case that the motion of
interfaces is governed purely by mass diffusion within the interfaces (for simplicity
we set the diffusion constant to 1). Also, the surface diffusion equation is derived
as the H−1-gradient flow of the area functional for the surface (see [3]), so that an
evolving hypersurface Γ has the property that the perimeter of the enclosed volume
decreases whereas the volume is conserved. On the other hand, when viewing the
surface diffusion equation as a partial differential equation (PDE), this equation
is a fourth order nonlinear parabolic PDE. Thus, the maximum principle, which
is a useful tool of analyzing second order parabolic PDEs, does not work.

In this paper we study the motion of three curves Γit (i = 1, 2, 3) by surface
diffusion. These three curves are contained in a bounded domain Ω ⊂ R2 with
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the conditions that each one of the end points of Γit (i = 1, 2, 3) is connected at
a triple junction p(t) ∈ Ω and the other end points intersect with ∂Ω. Then the
motion of Γit (i = 1, 2, 3) are governed by

V i = −mi(γiκi)ss on Γit

with the boundary conditions at a triple junction p(t)

(1)





∠(Γ1
t ,Γ

2
t ) = θ3, ∠(Γ2

t ,Γ
3
t ) = θ1, ∠(Γ3

t ,Γ
1
t ) = θ2,

γ1κ1 + γ2κ2 + γ3κ3 = 0,

m1(γ1κ1)s = m2(γ2κ2)s = m3(γ3κ3)s,

and at Γit ∩ ∂Ω
(2) Γit⊥∂Ω, (γiκi)s = 0.

Here, V i is the normal velocity of Γit, κ
i is the curvature of Γit, and s is an arc-

length parameter of Γit. Further, m
i and γi are positive constants concerning the

mobility and the surface energy, respectively. In addition, θi are positive constants
satisfying

sin θ1

γ1
=

sin θ2

γ2
=

sin θ3

γ3
,

which is called Young’s law. The boundary conditions (1) and (2) are the natural
boundary conditions when viewing the flow as the H−1-gradient flow of the energy
functional

E[Γt] :=

3∑

i=1

γiL[Γit],

where Γt =
⋃3
i=1 Γ

i
t and L[Γ

i
t] is the length functional of Γit. Indeed, set

M(Γ) :=
{
(u1, u2, u3) ∈ H

1(Γ)
∣∣u1 + u2 + u3 = 0 at triple junction,
∫

Γ1

u1 ds =

∫

Γ2

u2 ds =

∫

Γ3

u3 ds
}

with H1(Γ) := H1(Γ1) × H1(Γ2) × H1(Γ3). Then the H−1-inner product corre-
sponding to this system is given by

(v1,v2)−1 :=
3∑

i=1

mi

∫

Γi

∂su
i
v1
∂su

i
v2
ds,

where uvj
= (u1

vj
, u2

vj
, u3

vj
) ∈ M(Γ) (j = 1, 2) is a weak solution of

(3)






−mi∂2su
i
v
= vi on Γi (i = 1, 2, 3),

u1
v
+ u2

v
+ u3

v
= 0 at triple junction,

m1∂su
1
v
= m2∂su

2
v
= m3∂u3

v
at triple junction,

∂su
i
v
= 0 at Γi ∩ ∂Ω (i = 1, 2, 3)
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for vj = (v1j , v
2
j , v

3
j ) ∈ X(Γ) :=

{
(v1, v2, v3) ∈ (H1)′(Γ) | 〈v1, 1〉 = 〈v2, 1〉 = 〈v3, 1〉

}
.

Here 〈·, ·〉 is the duality pairing between (H1(Γi))′ and H1(Γi). Since a Poincaré-
type inequality holds for u ∈ M(Γ), we can prove that (3) has a unique weak
solution for v ∈ X(Γ).

Our goal here is to obtain a linearized stability criterion of stationary curves. To

mention it, we introduce some notation. Let Γ∗ =
⋃3
i=1 Γ

i
∗ be stationary curves.

That is, Γi∗ is a part of circle or a line segment. Then we denote by ℓi∗ the length
of Γi∗, by κ

i
∗ the curvature of Γi∗, and by hi∗ the curvature of ∂Ω at Γi∗ ∩ ∂Ω. Now

we are ready to state our results. Since space is lacking to explain fully, we show
only one case. With regard to the other cases and details, see [1].

Theorem. Let γ1 = γ2 = γ3 = 1, κ1∗ = 0, κ2∗ = −κ3∗ = −1/2, ℓ1∗ =
√
3, and

ℓ3∗ = 4π/3. Also, set

Λ(h1∗, h
2
∗, h

3
∗) := a123h

1
∗h

2
∗h

3
∗+a12h

1
∗h

2
∗+a23h

2
∗h

3
∗+a31h

3
∗h

1
∗+a1h

1
∗+a2h

2
∗+a3h

3
∗+a0,

where a123, a12, · · · , a0 are constants depending continuously on ℓ2∗ and satisfying

4(ajak − ajka0)(akiaij − a123ai)− (akiaj + aijak − a123a0 − ajkai)
2 = 0,

akiaij − a123ai ≥ 0

for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2) and 0 < ℓ2∗ < 8π/3. Further, let NU be the
number of positive eigenvalues for the linearized operator around Γ∗, and set

R1 := {(h1∗, h2∗, h3∗) ∈ R+ |hi∗ > hi∗,a (i = 1, 2, 3)}, R3 := R+ \R1,

R4 := {(h1∗, h2∗, h3∗) ∈ R− |hi∗ < hi∗,a (i = 1, 2, 3)}, R2 := R− \R4,

whereR+ := {(h1∗, h2∗, h3∗) |Λ(h1∗, h2∗, h3∗) > 0},R− := {(h1∗, h2∗, h3∗) |Λ(h1∗, h2∗, h3∗) <
0}, and hi∗,a := −ajk/a123 for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2). Then we obtain

(i) NU = 0 if (h1∗, h
2
∗, h

3
∗) ∈ R1, (ii) NU = 1 if (h1∗, h

2
∗, h

3
∗) ∈ R2,

(iii) NU = 2 if (h1∗, h
2
∗, h

3
∗) ∈ R3, (iv) NU = 3 if (h1∗, h

2
∗, h

3
∗) ∈ R4.

That is, in the case (i), Γ∗ is linearly stable.

Remark. When (h1∗, h
2
∗, h

3
∗) is included in S := {(h1∗, h2∗, h3∗) |Λ(h1∗, h2∗, h3∗) = 0},

zero eigenvalues of the linearized operator appear and their multiplicity is one
except in the case (h1∗, h

2
∗, h

3
∗) = (h1∗,c, h

2
∗,c, h

3
∗,c), where

hi∗,c := −akiaj + aijak − a123a0 − ajkai
2(akiajk − a123ai)

for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2). At (h1∗,c, h
2
∗,c, h

3
∗,c) the multiplicity of zero

eigenvalue is two. Also, taking account of the sign of hi∗,a − hi∗,c (i = 1, 2, 3), we
obtain that the configuration of S is classified into two type (see Figure 1 & 2).
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Figure 2 : The configuration of S (= S1 ∪S2 ∪S3).
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Nonsmooth Schur Newton Methods for Nonsmooth Saddle Point
Problems

Ralf Kornhuber

(joint work with Carsten Gräser, Uli Sack)

The numerical simulation of the coarsening of binary alloys based on the Cahn-
Larchè equations requires fast, reliable and robust solvers for Cahn-Hilliard equa-
tions with logarithmic potential. After semi-implicit time discretization as intro-
duced by Blowey and Elliott 92, the resulting spatial problem can be reformulated
as a non-smooth pde-constrained optimal control problem with cost functional in-
duced by the Laplacian. The associated Karush-Kuhn-Tucker conditions take the
form of a nonsmooth saddle point problem degenerating to a variational inclusion
in the deep quench limit.
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Our considerations are based on recent work of Gräser & Kornhuber 09 and the
upcoming dissertation of Gräser 10. The starting point is the elimination of the
primal variable leading to a nonlinear Schur complement which turns out to be the
Frćhèt derivative of a convex functional. Now so-called nonsmooth Schur-Newton
methods can be derived as gradient-related descent methods applied to this func-
tional. In the discrete case we can show global convergence for an exact and
an inexact version independent of any regularization parameters. Local quadratic
convergence or finite termination can be shown for piecewise smooth nonlinearities
or in the deep quench limit respectively. The algorithm can be reinterpreted as a
preconditioned Uzawa method and generalizes the well-known primal-dual active
set strategy by Kunisch, Ito, and Hintermüller 03. A (discrete) Allen-Cahn-type
problem and a linear saddle point problem have to be solved (approximately) in
each iteration step. In numerical computations we observe mesh-independent local
convergence for initial iterates provided by nested iteration. In the deep quench
limit, the numerical complexity of the (approximate) solution of the arising linear
saddle point problem dominates the detection of the actual active set.

Recent related approaches to nonsmooth saddle point problems by Baňas &
Nürnberg 09, Blank, Butz & Garcke 09, and Hintermüller, Hinze & Tber 09 were
also discussed.

Self-similar rupture in thin films with slip

Barbara Niethammer

(joint work with A. Münch, D. Peschka)

We consider rupture of thin viscous films in the strong-slip regime with small
Reynolds numbers in a model derived in [1]. Numerical simulations indicate self-
similar behaviour near the rupture point. More precisely, they suggest that viscos-
ity and van-der-Waals forces are dominant and that there are self-similar solutions
of the second kind [2], that is the scaling in the spatial variable is not a-priori
determined by a balance of force terms in the equation. More precisely, the film
thickness h and the horizontal velocity u follow

h(t, y) ∼ (t∗ − t)αH(η) and u(t, y) ∼ (t∗ − t)β−1U(η) ,

where η = (y − y∗)/(t∗ − t)β and y∗, t∗ denote the point and time of rupture
respectively. The scaling exponent α is 1/3, while β is not determined by the
balance of the dominant terms.

Second-kind similarity solutions also appear in simple models for inertialess
jet pinch-off. In [5] convergence to these solutions is discussed. Under strong
assumptions on the evolution of the jet the authors show that the selection of the
self-similar solution in this model is solely determined by the behaviour of the
initial data around their minimum. This behaviour is expected, but a rigorous
analysis without a priori assumptions on the solutions has still been elusive.

Our goal in [3] is to provide such an analysis for viscosity dominated thin-film
rupture that is also directly applicable to the model of jet pinch-off considered in
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[5]. For a simplified model, where only terms accounting for viscous and van-der-
Waals forces are kept, we rigorously establish finite time rupture in [2] following
ideas of Renardy [4, 5] for jet pinch-off. In [3] we rigorously study the self-similar
nature of the rupture. We show that for each β > 0 there exists a unique self-
similar solution and equivalently these self-similar solutions can be uniquely char-
acterized by their behaviour H̄(η) = H̄0+H̄ρη

ρ as η → 0, where ρ = ρ(β) ∈ (0,∞).
Next, we investigate whether solutions of the time-dependent problem converge to
a self-similar shape and, in case they do, which self-similar solution, i.e. which ρ
(or β), is selected. As expected, the long-time asymptotics are completely deter-
mined by the behaviour of the initial profile h(0, y) at its minimum. We establish
a necessary and sufficient condition for convergence to any of the self-similar so-
lutions with 0 < ρ < 3/2. The precise criterion is that the solution converges if
and only if the data are regularly varying at their minimum with index ρ. The
corresponding scaling is the one associated to the self-similar solution up to some
slowly varying function given by the initial data. These results are very similar in
nature to the dynamics in mean-field models for domain coarsening and coagula-
tion, where the long-time behaviour depends sensitively on the tail of the initial
distribution functions.

We can prove the analogous characterization of domains of attraction for every
positive ρ under an additional assumption, namely that an associated nonlocal
functional converges sufficiently fast. Presently we have no proof whether this
assumption is satisfied for regularly varying data. Numerical results indicate that
it is, but they also show that the situation is much more involved than in the case
of 0 < ρ < 3/2 and the details of the convergence proof must be different.
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Parametric approximation of geometric evolution equations and
applications to the modelling of snowflake growth

Robert Nürnberg

(joint work with John W. Barrett, Harald Garcke)

Geometric evolution equations in general arise as gradient flows for a free energy
for a curve or surface. In applications these hypersurfaces often play the role of an
interface or a free boundary. In this talk, we review a variational formulation for
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such geometric evolution laws that leads to discretizations with very good mesh
properties, and we indicate how these formulations can be extended to situations
where the interface evolution is coupled to a bulk equation.

Given a parameterization ~x(ρ, t) : I × [0, T ] → R2, I := R/Z, of the family of
closed curves Γ(t) ⊂ R2, we note that the L2- and H−1-gradient flow of length,
i.e. the curvature flow and the surface diffusion flow, respectively, can be written
as

(1) ~xt . ~ν =

{
κ

−κss
, κ ~ν = ~xss ,

with κ the curvature of Γ and ~ν a unit normal. Note that the formulation (1)
is independent of the tangential component, ~xt . ~xs, of the velocity ~xt. However,
when (1) is discretized with the help of piecewise linear finite elements, then the
corresponding discrete tangential velocity is no longer arbitrary. In fact, the spa-
tially discrete solutions are such that the polygonal curves Γh(t), where they are
not locally flat, are equidistributed at every time t > 0.

On introducing the appropriate spaces V h and V h of periodic piecewise lin-
ear vector- and scalar-valued parametric finite elements, we obtain the following
semidiscrete continuous-in-time approximation of (1). Given Γh(0), for t ∈ (0, T ]

find Γh(t) = ~Xh(I, t), with ~Xh(t) ∈ V h, and κh(t) ∈ V h such that

〈 ~Xh
t , χ ~ν

h〉hh −
{
〈κh, χ〉hh
〈κhs , χs〉h

= 0 ∀ χ ∈ V h,(2a)

〈κh ~νh, ~η〉hh + 〈 ~Xh
s , ~ηs〉m = 0 ∀ ~η ∈ V h;(2b)

where 〈f, g〉h :=
∫
Γh(t)

f . g ds =
∫
I
f . g | ~Xh

ρ (t)| dρ with 〈·, ·〉hm the mass lumped in-

ner product. It is now straightforward to show that (2b) implies that neighbouring

elements of Γh(t) = ~Xh(I, t) have the same length or are parallel. When introduc-
ing fully discrete approximations, it is possible to use semi-implicit time stepping
or a fully implicit approach. In the former case, we obtain linear schemes that in-
trinsically move mesh points tangentially so that e.g. numerical steady states are
always equidistributed, while the latter leads to highly nonlinear approximations
that truly equistribute at each time level; see [1, 2] and [9], respectively. Both
variants are unconditionally stable.

An advantage of our scheme (2a,b), that follows from the formulation (1), is
that other geometric evolution laws can be handled easily. For example, nonlinear
curvature flow, including the inverse curvature flow, area preserving curvature
flow, Willmore flow (or elastic flow) for curves, as well as higher codimension flows
of curves in Rd, d ≥ 3, and geodesic flows of curves flowing on a given manifold,
can all be considered; see [1, 2, 10] for details.

The approximation (2a,b) can also be generalized to cover the geometric evolu-
tion of curve networks, where different curves move by their given normal velocities
and where certain conditions have to hold at triple junctions, where three curves
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meet at a point. It turns out that the natural generalization of the weak formula-
tion used to derive (2a,b) approximates all the necessary triple junction conditions
correctly; see [1, 2].

Replacing the isotropic curve length |Γ| :=
∫
Γ
1 ds with a weighted length of

the form |Γ|γ :=
∫
Γ
γ(~ν) ds, where γ : R2 \{~0} → R>0 is a given one-homogeneous

anisotropy function, yields the anisotropic analogues of the geometric evolution
equations of curvature flow and surface diffusion, i.e.

(3) ~xt . ~ν =

{
β(~ν)κγ

−(β(~ν) [κγ ]s)s
, κγ ~ν = [γ′(~ν)]⊥s ,

where ~ν = −~x⊥s , κγ is the weighted curvature, and β : S1 → R>0 is an anisotropic
mobility. The finite element approximations based on (2a,b) can now be extended
to approximate the flows (3). The fully discrete schemes can be shown to be
unconditionally stable for arbitrary smooth convex anisotropies, in the case of a
fully implicit time discretization ([9]), and for anisotropies of the form

(4) γ(~p) =

[
L∑

ℓ=1

[γ(ℓ)(~p)]r

] 1
r

=

[
L∑

ℓ=1

[~p .G(ℓ) ~p]
r
2

] 1
r

,

whereG(ℓ) ∈ R2×2, ℓ = 1 → L, are symmetric and positive definite, and r ∈ [1,∞);
see [3, 10].

Moreover, the ideas presented above naturally generalize to the approximation
of geometric evolution equations for hypersurfaces in R3. Examples are the mean
curvature flow, nonlinear mean curvature flow and surface diffusion for isotropic
(see [4]) and anisotropic surface energies (see [6]), the Willmore flow and Helfrich
flow (see [5]), as well as the evolution of surface clusters with triple junction lines
and quadruple junction points (see [7]). In all of the isotropic cases, we can show
that our semidiscrete continuous-in-time approximations produce triangulations
with very good mesh qualities, so called conformal polyhedral surfaces; see [4, §4]
for details. Such surfaces are characterized by the fact that the two popular notions
of discrete vertex normals, given by the directions of steepest descent of area and
volume, respectively, coincide; which in turn means that the triangulation cannot
be bad. Related properties can be derived for anisotropic surface energies.

Finally, we can also consider situations where the interface evolution is coupled
to an equation that needs to hold in a bulk domain. For instance, the evolution of
a solidifying front Γ(t) in a Stefan problem with anisotropic Gibbs-Thomson law
and kinetic undercooling can be expressed as

(5) ρ (~xt . ~ν) = β(~ν) [ακγ − a u] on Γ(t),

where u, usually a rescaled temperature, satisfies a heat equation in the bulk do-
main Ω, with an energy balance at the interface leading to jumps in the gradient
of u across Γ(t). Coupling our natural parametric finite element approximation of
(5) to a finite element approximation of the evolution of u in the bulk, we are able
to introduce stable fully discrete schemes which mimic the underlying Lyapunov
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Figure 1. Solid plates and sectored plates.

structure of the continuous problem, see [8]. When u is interpreted as a concentra-
tion, then the studied Stefan problem can be used to model the solidification from
a supersaturated solution, which is relevant for snowflake growth. An example
computation, for a surface energy of the form (4) with a hexagonal prism Wulff
shape, can be seen in Figure 1.
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Level set method for spiral crystal growth and surface evolution

Takeshi Ohtsuka

This is a brief introduction to a level set formulation for spiral patterns evolving
by a mean curvature flow with driving force, and numerical simulations for crystal
growth with aid of screw dislocations, which is called spiral crystal growth (see [1]).
When partial displacements in the lattice of atoms, that is called screw dislocation,
across the surface of a crystal, then steps are provided on the surface. The steps
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evolve and climb up on the helical surface due to screw dislocations with drawing
spiral patterns, and thus the crystal grows. According to the theory of [1] the
velocity V of the steps is of the form

(1) V = v∞(1− ρcκ),

where κ is the curvature of the curve describing by spiral steps, v∞ and ρc are
constants denoting a velocity of a straight line step and critical radius, repectively.
For the evolution of spiral patterns, phase field models are proposed by Karma–
Plapp ([6]), Kobayashi [7], and a level set formulation is proposed by Smereka [9],
repectively. However, Smereka’s formulation is not convenience to describe, for
example, a case of multiple spirals from single center. Thus, our goal is to propose
a new level set formulation which is based on the idea of sheet structure functions
due to [6] or [7]. We also give some numerical simulations for the growth rate of the
crystal surface for the case of two screw dislocations with opposite orientations.

Let Ω ⊂ R2 be a bounded domain denoting a evolving crystal surface. We
denote a center of screw dislocations by a1, . . . , aN ∈ Ω and their closed neigh-
borhoods Bj ⊂ Ω, where N ≥ 1. Assume that Bi ∩ Bj = ∅ if i 6= j and thus

W = Ω \⋃N
j=1 Bj has smooth boundary. We set a spiral pattern Γt by

(2) Γt := {x ∈W ; u(t, x)− θ(x) ≡ 0 mod 2πZ},

where θ(x) =
∑N

j=1mj arg(x − aj), and mj ∈ Z \ {0} for j = 1, . . . , N . We
require that θ is a multiple valued function to describe a spiral pattern completely.
However, θ is locally regarded as a single valued and smooth function in some
neighborhood of Γt, and thus we define the orientation of steps ~n, which is a
continuous unit normal vector field of Γt, is given by

(3) ~n = − ∇(u− θ)

|∇(u− θ)| .

The function θ is sheet structure function, which denotes a helical surface struc-
ture of the lattice of atoms, due to [7] or [6] for N = 1 with θ = arg x. The
characteristic structure of our problem is that the spiral pattern has not only its
evovling orientation ~n, but also rotational orientation with respect to each screw
dislocations. We denote the rotational orientation by sgn(mj). The number of
steps attached to aj is denoted by |mj |. The sheet structure function is related
to the crystal surface including the screw dislocations. In fact, by the dislocation
theory and the linear elasticity the surface height h(t, x) satisfies

(4) ∆h = −h0divδΓt
~n,

if the displacement of lattice is only in the vertical direction of the surface and
small enough, where δΓt

is the dirac’s delta measure of Γt and h0 is the unit height
of the steps. In our case a branch of (h0/2π)θ whose discontinuities are only on
Γt is a solution of (4).

To determine the motion of spiral patterns we postulate the Neumann boundary
condition for spiral patterns as Γt ⊥ ∂W . Then, by similar argument as the usual
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level set method (see [5]) we obtain the level set equation as follows;

(5)






ut − v∞|∇(u− θ)|
{
1 + ρcdiv

∇(u− θ)

|∇(u− θ)|

}
= 0 in (0, T )×W,

〈~ν,∇(u− θ)〉 = 0 on (0, T )× ∂W,

u|t=0 = u0 on W,

where ~ν is the outer unit normal vector field of ∂W , 〈·, ·〉 is the usual inner product
in R2, and u0 is an initial datum satisfying

(6) Γ0 = {x ∈ W ; u0(x)− θ(x) ≡ 0 mod 2πZ}.
We can define a viscosity solution to (5) in usual way (see [3]). The comparison,
existence and uniqueness of viscosity solutions global-in-time for u0 ∈ C(W ) is
obtained by [8]. However, it is not clear the existence of u0 ∈ C(W ) satisfying (6).
Goto, Nakagawa and the author prove the existence of u0 ∈ C(W ) for suitable
initial pattern Γ0. Moreover, they prove the uniqueness of Γt obtained from our
level set formulation with respect to the initial pattern Γ0. The basic strategy of
the proofs are based on the method as in [2] or [4].

It is convenience for understanding our formulation to introduce a covering
space which is based on θ. Formally we now introduce

X := {(x, z); z ≡ θ(x) mod 2πZ}.
Then we find that X is divided into three regions as follows;

Γ̃t := {(x, z) ∈ X ; u(t, x)− z = 0},
Ĩt := {(x, z) ∈ X ; u(t, x)− z > 0},
Õt := {(x, z) ∈ X ; u(t, x)− z < 0}.

We observe that Γt is the image of Γ̃t by the projection (x, z) 7→ x, and also (3)

is determined from Ĩt and Õt; we consider steps evolve from Ĩt’s side to Õt’s side.
The covering space is very convenient to remove the difficulties which come from
the multiplicity of θ, that is the crucial difficulty of our problem. In particular, the

uniqueness of Γt is obtained from the comparison of Ĩt and Õt between viscosity
sub- and supersolution.

The covering space X is also useful to obtain the surface height h(t, x). Once

we obtain a solution u to (5), we set h̃ : [0,∞)×X → R as

ζ̃(t, x, z) = z − 2πk if (x, z) ∈ {(y, η) ∈ X ; u(t, x)− z ∈ [2πk, 2π(k + 1))}.

Let Θj(x) ∈ [0, 2π) is the principal value of arg(x−aj) and Θ(x) =
∑N
j=1mjΘj(x).

We set

ζ(t, x) = ζ̃(t, x,Θ(x)).

Then, we observe that ζ ≡ θ mod 2πZ and the discontinuities of ζ lie only on Γt.

Moreover, we obtain that Ĩt = {(x, z) ∈ X ; ζ(t, x) + π− z > 0}. Consequently, we
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set the height function h as

h(t, x) =
h0
2π

(ζ(t, x) + π).

The growth height of the surface is calculated as

Rh(t; t0) =
1

|W |

∫

W

[h(t, x)− h(t0, x)]dx.

The growth rate of the surface is calculated as R′
h(t; t0) if Rh is smooth.

In this talk we propose a numerical results of the growth height in the case
N = 2, m1 = −m2 = 1, and W = Ω \ (Bρ(a1) ∪ Bρ(a2)), where Bρ(a) is the
closed disc whose center and radius is a and ρ, repectively. In [1] it is pointed
out that the pair whose rotational orientations are opposite have no activity if
|a1 − a2| < 2ρc. We call such a pair inactive pair. The existence of inactive pairs
are not only verified numerically but also proved mathemtaically.

Theorem. Let Ω be a bounded domain such that B4ρc(0) ⊂ Ω. Let W =
Ω \ (Bρ(a1) ∪Bρ(a2)), θ(x) = arg(x− a1)− arg(x − a2), a1 = (−r, 0), a2 = (r, 0)
with r ∈ (0, ρc), and ρ ∈ (0, ρc). Then, for any viscosity solution u to (5), there
exists M > 0 such that u(t, x) < M for t > 0 and x ∈W .

The idea of the proof is to construct a stationary solution to (5) by θ. We know
that C(b) := {x ∈ R2; |x− b| = ρc} for b ∈ R2 is a stationary solution of (1), and
there exist b ∈ R2 and a part of C(b) satisfying ∂W ⊥ C(b) if |a1 − a2| < 2ρc.
Then, we obtain that θC(b), that is one of branches of θ whose discontinuities are
only on C(b), is a viscosity solution of (5) by direct calculation.
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FEM approximation of the anisotropic mean curvature flow in higher
codimension

P. Pozzi

Anisotropic mean curvature flow has been widely studied, both analytically and
numerically. Much of the research concentrated so far on the case of codimension
equal to one, i.e. on the flow for hypersurfaces. In this talk we present recent
progress for the case of higher codimension.

After discussing the concept of anisotropic area functional, we consider the
anisotropic mean curvature flow for parametric curves and two dimensional sur-
faces in Rn for arbitraty n ≥ 3 and study its numerical approximation by finite
elements.

Stabilization of a fluid – structure model

Jean-Pierre Raymond

We study a system coupling the incompressible Navier-Stokes equations in 2D
bounded domains with a damped Euler-Bernoulli beam equation, where the beam
is a part of the upper boundary of the domain occupied by the fluid. We also study
similar systems in 3D domains, in that case the structure equation is a damped
plate equation. Due to the deformation of the beam (or the plate in 3D) the fluid
domain at time t depends on t. We are interested in exponential stabilization of
such systems, locally about a stationary solution, by controls acting either in the
fluid equation or in the beam equation.

These results are obtained by studying stabilizability results for linearized sys-
tems. In order to derive linearized systems, we first rewrite the nonlinear models
in a cylindrical domain Ω × (0,∞), by using a change of variable defined thanks
to the deformation of the structure. In the 2D case, the model linearized about
the null solution reads as follows

(1)

vt − div σ(v, p) = fχO, div v = 0 in Q∞,

v = η2~e2 on Σs∞, v = 0 on Σ0
∞, v(0) = v0 in Ω,

η1,t = η2, η2,t − βη1,xx − δη2,xx + αMsη1,xxxx =Ms(ρ1p+ g) on Σs∞,

η1 = 0 and η1,x = 0 on
{
0, L

}
× (0,∞),

η1(0) = η01 and η2(0) = η02 in Γs,

where Q∞ = Ω× (0,∞), Ω is a simply connected bounded domain with boundary
Γ, for simplicity we assume that Ω ⊂ {(x, y) | y < 1}, Γs = (0, L)×{1} is a flat part
of the boundary Γ, ~e2 = (0, 1)T , Σs∞ = Γs×(0,∞), Σ0

∞ = Γ0×(0,∞), Γ0 = Γ\Γs,
Ms is the orthogonal projection in L2(Γs) onto L

2
0(Γs) = {η ∈ L2(Γs) |

∫
Γs
η = 0},

σ(v, p) = ν(∇v+∇vT )− p I, ν > 0 is the fluid viscosity, α > 0, β ≥ 0, and δ > 0
are the adimensional rigidity, stretching, and friction coefficients of the beam, ρ1 is
a positive constant related to the densities of the fluid and of the structure, f is a
control acting in the fluid equation, χO is the characteristic function of an open set
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O ⊂ Ω, g is a control acting in the beam equation. To simplify the presentation,
we assume that either Ω is of class C2 or Ω is the rectangle (0, L)× (0, 1).

Let us introduce the spaces

L2
0(Ω) =

{
p ∈ L2(Ω) |

∫
Ω
p = 0

}
, Hσ(Ω) = Hσ(Ω) ∩ L2

0(Ω) for σ ≥ 0,

V0
n(Ω) =

{
v ∈ L2(Ω;R2) | div v = 0, v · n = 0 on Γ

}
,

V0(Ω) =
{
v ∈ L2(Ω;R2) | div v = 0

}
and V2

n(Ω) = H2(Ω;R2) ∩V0
n(Ω).

We introduce the Leray projector P : L2(Ω;R2) 7→ V0
n(Ω) and the Stokes operator

A0 = νP ∆ with domain D(A0) = H2(Ω;R2) ∩ H1
0 (Ω;R

2) ∩ V0
n(Ω). We want

to study system (1) when v0 ∈ V0(Ω), η01 ∈ H2
0 (Γs) ∩ L2

0(Γs), η
0
2 ∈ L2

0(Γs),
g ∈ L2(0,∞;L2(Γs)), f ∈ L2(0,∞;L2(Ω;R2)), and when the initial data satisfy
the compatibility condition

(2) v0 · n = η02 χΓs
.

For that, we have to study the semigroup corresponding to system (1). We denote
by N ∈ L(H−1/2(Γ),H1(Ω)) the Neumann operator defined by N(g) = q, where
q is the solution of

∆q = 0 in Ω,
∂q

∂n
= g on Γ

(n is the unit normal to Γ outward Ω), and by D ∈ L(H−1/2(Γ;R2),V0(Ω)) the
Dirichlet operator defined by D(g) = w, where w is the solution of

−ν∆w +∇π = 0, divw = 0 in Ω, w = g on Γ.

We also need Ns(g) = N (g χΓs
) and γs(q) = Ms(q|Γs

) (χΓs
is the characteristic

function of Γs). When f = 0 and g = 0, we may rewrite system (1) in the form

(3)

Pvt = A0Pv + (−A0)PD(η2~e2 χΓs
), v(0) = v0 in Ω,

(I − P )v = (I − P )D(η2~e2 χΓs
),

η1,t = η2,

(I + γsNs)η2,t − βη1,xx − δη2,xx + αMsη1,xxxx = γsN(∆Pv · n) on Σs∞,

η1 = 0 and η1,x = 0 on
{
0, L

}
× (0,∞),

η1(0) = η01 and η2(0) = η02 in Γs.

System (3) is of the form

d

dt




Pv

η1

η2


 = A




Pv

η1

η2


 , (I − P )v = (I − P )D(η2~e2 χΓs

),
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with

A =




I 0 0

0 I 0

0 0 (I + γsNs)
−1







A0 0 (−A0)PD

0 0 I

γsN(∆(·) · n) Aα,β δ∆s


 ,

D(Aα,β) = H4(Γs) ∩H2
0 (Γs) ∩ L2

0(Γs), Aα,βη = βηxx − αηxxxx, ∆sη = ηxx,

and

D(A) =
{
(Pv, η1, η2) ∈ V2

n(Ω)× (H4 ∩H2
0 ∩ L2

0)(Γs)× (H2
0 ∩ L2

0)(Γs)

| P (v −D(η2~e2 χΓs
)) ∈ H1

0 (Ω;R
2)
}
.

Theorem 1. The operator (A,D(A)) is the infinitesimal generator of an analytic
semigroup on H = V0

n(Ω) × (H2
0 (Γs) ∩ L2

0(Γs)) × L2
0(Γs), and the resolvent of A

is compact.
This type of result can be extended to the 3D case.

Theorem 2. (Exponential stabilization with an internal control acting in the fluid
equation) Assume that Ω is of class C2 and that g = 0. Then, for all ω > 0, there
exists a positive constant Cω such that, for all v0 ∈ V0(Ω), η01 ∈ H2

0 (Γs)∩L2
0(Γs),

η02 ∈ L2
0(Γs) satisfying (2), there exists a control f ∈ L2(0,∞;L2(Ω;R2)) for which

the solution of system (1) obeys

(4)
‖(v(t), η1(t), η2(t))‖V0(Ω)×H2

0 (Γs)×L2
0(Γs)

≤ Cωe
−ωt‖(v0, η01 , η

0
2)‖V0(Ω)×H2

0 (Γs)×L2
0(Γs).

The proof of Theorem 2 relies on Theorem 1 and on a unique continuation result
proved in [1]. This type of result can be extended to the 3D case.

Theorem 3. (Exponential stabilization with a control acting in the structure
equation) Assume that Ω = (0, L)×(0, 1) and that f = 0. Then, for all ω > 0, there
exists a positive constant Cω such that, for all v0 ∈ V0(Ω), η01 ∈ H2

0 (Γs)∩L2
0(Γs),

η02 ∈ L2
0(Γs) satisfying (2), there exists a control g ∈ L2(0,∞;L2(Γs)) for which

the solution of system (1) obeys (4).
The proof of Theorem 3 relies on Theorem 1 and on a unique continuation

result proved in [2]. This type of result can be extended to other domains in the
2D case by using unique continuation results proved in [3], but there is no similar
result proved in the 3D case.

Thanks to Theorem 3, we can prove that the nonlinear system coupling the
Navier-Stokes equations with the damped beam equation is exponentially stabiliz-
able, locally about the null solution, with any prescribed decay rate, by a feedback
control corresponding to a force term in the beam equation [4]. The feedback is
applied on the whole structure and it is determined, via a Riccati equation, by
solving an infinite time horizon control problem for the linearized model.

Thanks to Theorem 2, we can prove that the nonlinear system coupling the
Navier-Stokes equations with the damped beam equation is exponentially stabiliz-
able, locally about the null solution, with any prescribed decay rate, by a feedback
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control corresponding to a force term in the fluid equation. We think that similar
results could be obtained in the 3D case, but this is not yet done.
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Numerical methods for surfactant transport in two-phase
incompressible flows

Arnold Reusken

(joint work with P. Esser, J. Grande, S. Groß, M. Olshanskii)

1. A model for two-phase incompressible flows

We consider a two-phase flow problem with mass transport between the phases
and transport of a surfactant (“surface active agent”) on the interface between the
phases. We briefly introduce a (standard) model for this type of flow problem.

Fluid dynamics. The domain Ω ⊂ Rd, d = 2 or d = 3, contains two different
immiscible incompressible phases (fluid-fluid or fluid-gas) which may move in time
and have different material properties ρi (density) and µi (viscosity), i = 1, 2. For
each point in time, t ∈ [0, T ], Ω is partitioned into two open bounded subdomains
Ω1(t) and Ω2(t), Ω = Ω1(t) ∪ Ω2(t), Ω1(t) ∩ Ω2(t) = ∅, each of them containing
one of the phases. These phases are separated from each other by the interface
Γ(t) = Ω1(t) ∩ Ω2(t). We assume isothermal conditions and that both phases are
pure substances. Furthermore, we do not consider reaction or phase transition. We
introduce the normal velocity VΓ = VΓ(x, t) ∈ R which denotes the magnitude of
the velocity of the interface Γ at x ∈ Γ(t) in normal direction. The immiscibility
assumption is modeled by the condition VΓ = u · nΓ at the interface, with nΓ

the unit normal on Γ pointing from Ω1 to Ω2. We consider the following standard
model (in strong formulation) for the fluid dynamics of a two-phase incompressible
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flow:



ρi(

∂u

∂t
+ (u · ∇)u) = divσi + ρig

divu = 0
in Ωi, i = 1, 2,(1)

[σnΓ] = −τκnΓ −∇Γτ on Γ,(2)

[u] = 0 on Γ,(3)

VΓ = u · nΓ on Γ.(4)

with the stress tensor σi = −pI+ µi
(
∇u+ (∇u)T

)
. The density and viscosity, ρi

and µi, i = 1, 2, are assumed to be constant in each phase. The operator ∇Γ is
the tangential gradient. The parameter τ is the surface tension coefficient and κ
is the mean curvature of Γ, i.e., κ(x) = divnΓ(x) for x ∈ Γ. To make the problem
well-posed one needs suitable initial and boundary conditions for u.

Mass transport. We assume that one or both phases contain a dissolved species that
is transported due to convection and diffusion and does not adhere to the interface.
The concentration of this species is denoted by c(x, t). This flow problem can be
modeled by the equations (1)-(4) for the flow variables and a convection-diffusion
equation for the concentration c. At the interface we need interface conditions for
c. The first interface condition comes from mass conservation, which implies flux
continuity. The second condition results from a constitutive equation known as
Henry’s law. The model is as follows:

∂c

∂t
+ u · ∇c = div(Di∇c) in Ωi, i = 1, 2,(5)

[Di∇c · nΓ] = 0 on Γ,

c1 = CHc2 on Γ.

The diffusion coefficient Di is assumed to be piecewise constant. In the interface
condition we use the notation ci for c|Ωi

restricted to the interface. The constant
CH > 0 is given (Henry’s constant). In general CH 6= 1, i.e. we have a disconti-
nuity in c across Γ.

Surfactant transport. We assume that there is a species (called tenside or sur-
factant) which adheres to the interface and is transported on the interface due to
convection (movement of the interface) and due to diffusion (molecular diffusion on
the interface). For simplicity we assume that there are no adsorption and desorp-
tion effects. The concentration of this surfactant is denoted by S(x, t), x ∈ Γ(t). A
partial differential equation for this quantity can be derived from the conservation
of mass principle. This results in the convection-diffusion problem

(6) Ṡ + S divΓu = divΓ(DΓ∇ΓS) on Γ.

Here Ṡ denotes the material derivative and divΓ is the tangential divergence op-
erator.
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In the talk we presented an overview of numerical methods for treating the cou-
pled model (1)-(6). Key ingredients are a level set method for interface capturing,
finite element discretizations on a nested locally refined hierarchy of tetrahedral
grids and problem adapted preconditioners. A detailed overview is given in [3]. A
new finite element method for discretization of the surfactant transport equation
(6) has been developed. The main idea is presented in section 2.

2. A new finite element method for the surfactant transport
problem

We outline the main idea of a new Eulerian finite element method for dis-
cretization of the surfactant equation introduced in [1], for a simplified prob-
lem, namely the Laplace-Beltrami problem. In weak formulation this problem
is as follows: For given f ∈ L2

0(Γ) := {v ∈ L2(Γ) |
∫
Γ
v ds = 0}, determine

u ∈ H1
∗ (Γ) := {v ∈ H1(Γ) |

∫
Γ v ds = 0} such that

(7)

∫

Γ

∇Γu · ∇Γv ds =

∫

Γ

fv ds for all v ∈ H1
∗ (Γ).

We assume a stationary surface Γ and an approximation Γh of Γ. We assume that
this approximate surface is constructed as follows. Let {Th}h>0 be a family of
tetrahedral triangulations of a fixed domain Ω ⊂ R3 that contains Γ. These tri-
angulations are assumed to be regular, consistent and stable. Take Th ∈ {Th}h>0.
We assume that Γh is a C0,1 surface without boundary and Γh can be partitioned
in planar segments, triangles or quadrilaterals, consistent with the outer triangu-
lation Th. For any tetrahedron ST ∈ Th such that meas2(ST ∩ Γh) > 0 define
T = ST ∩ Γh. We assume that each T is planar, i.e., either a triangle or a quadri-
lateral. Let Fh be the set of all triangles or quadrilaterals T such that T = ST ∩Γh
is nonempty for some tetrahedron ST ∈ Th and Γh = ∪T∈Fh

T .
The main new idea of the method is that for discretization of the problem (7) we

use a finite element space induced by the continuous linear finite elements on Th.
This is done as follows. We define a subdomain that contains Γh: ωh := ∪T∈Fh

ST .
This subdomain in R3 is connected and partitioned in tetrahedra that form a subset
of Th. We introduce the finite element space

Vh := { vh ∈ C(ωh) | v|ST
∈ P1 for all T ∈ Fh }.

This space induces the following space on Γh:

(8) V Γ
h := {ψh ∈ H1(Γh) | ∃ vh ∈ Vh : ψh = vh|Γh

},
which is used for a Galerkin discretization of (7): determine uh ∈ V Γ

h with∫
Γh
uh ds = 0 such that

(9)

∫

Γh

∇Γh
uh∇Γh

ψh ds =

∫

Γh

fhψh ds for all ψh ∈ V Γ
h ,

with fh a suitable extension of f such that
∫
Γh
fh ds = 0. Due the Lax-Milgram

lemma this problem has a unique solution uh. The paper [1] presents a discretiza-
tion error analysis of this method that shows that under reasonable assumptions



Simulation, Control and Analysis for Interfaces and Free Boundaries 301

we have optimal error bounds. In the talk we present these error bounds. Results of
numerical experiments confirm the theoretical analysis. We remark that the family
{Th}h>0 is shape-regular but the family {Fh}h>0 in general is not shape-regular.
In practice Fh contains a significant number of strongly deteriorated triangles that
have very small angles. Moreover, neighboring triangles can have very different
areas.

We briefly address the issue of conditioning of the mass and stiffness, inves-
tigated in [2]. Numerical experiments in two- and three-dimensional examples
indicate that in the 3D case both for the diagonally scaled mass and stiffness ma-
trix (effective) spectral condition numbers behave as O(h−2) and in the 2D case
the behaviour of these condition numbers is O(h−3) and O(h−2), respectively.
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The Allen–Cahn action functional and forced mean curvature flow

Matthias Röger

(joint work with L. Mugnai)

For the stochastically perturbed Allen–Cahn equation

ε∂tu
δ
ε = ε∆uδε −

1

ε
F ′(uδε) + δη,

where η (formally) is a space-time white noise, the probability of being close to
a deterministic path u : [0, T ] × U → R is in the vanishing noise limit δ → 0
controlled by the Allen–Cahn action functional

Sε(u) :=

∫ T

0

∫

U

(√
ε∂tu+

1√
ε

(
− ε∆u+

1

ε
F ′(u)

))2

dx dt.

In the sharp interface limit ε → 0 an asymptotic reduction was proposed [1]: For
an evolution Γ = (Γt)t∈(0,T ) that is up to finitely many nucleation times a smooth
evolution of smooth hypersurfaces Γt the reduced action functional is given by

S0

(
Γ
)
= c0

∫ T

0

∫

Γt

∣∣v −H
∣∣2 dHn−1(x) dt + 4c0Hn−1(nucleated surface area).

For small space dimensions n = 2, 3 we prove [2] the compactness of sequences
uε that are uniformly bounded in action, give a generalized formulation of the
reduced action functional, and show a general lower bound estimate.
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In subsequent work [3] we used this result to prove a general convergence result
for deterministically perturbed Allen–Cahn equations

ε∂tuε = ε∆uε −
1

ε
F ′(uε) + gε,

with suitable initial and boundary conditions. Under the assumption that n = 2, 3
and that

∫ T

0

∫

U

1

ε
gε(t, x)

2 dxdt ≤ Λ.

we prove that solutions uε converge to a generalized solution of forced mean cur-
vature flow H(t, ·) = v(t, ·) + g(t, ·). Here the limiting forcing term is given by

lim
ε→0

∫

UT

−η · gε∇uε =

∫

UT

η · g dµt dt, µt = lim
ε→0

( ε
2
|∇uε|2 +

1

ε
F ′(uε)

)
(t, ·)Ln.

The generalized formulations are in the sense of geometric measure theory, see [3].
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An Analysis of a Bar Code Deconvolution Problem

Fadil Santosa

(joint work with Selim Esedoḡlu)

In this work, we consider the problem of bar code reading using a laser-based
scanner. The problem amounts to a deconvolution after we model the sensing
process. The method discussed in this work could potentially be applied to analysis
of camera-based scanners, with some modifications.

A bar code consists of black bars over a white back ground. A scanner sends out
a narrow laser beam which moves across the bar code. The scanner is equipped
with a light detector. Therefore, when the laser beam is on the black part of the
bar, little light is reflected and so little light is detected. When the beam is on
the white part, more light is detected. If the beam moves across the bar code at
a constant speed, the amount of light detected, when converted into voltage, is a
signal. The peaks of the signal occur when there is a lot of reflection (white parts
of the bar code) and the valleys correspond to when there is little reflection (black
parts of the bar code). Thus the signal is an imprint of the bar code.

The challenge comes from the fact that the laser beam is of finite width and
has an intensity profile across the beam. Thus, the reading of the bar code by the
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laser is “non-local”. A simple model for the relationship between a bar code and
its signal is a convolution.

We start by describing the bar code as a binary function, taking on values of 0
or 1

z(t) ∈ {0, 1}, a.e., z ∈ BV.

The effect of the laser on the bar code is modeled by a point-spread function. For
simplicity, we will take it to be a scaled Gaussian

gα,σ =
α√
2πσ2

e−t
2/2σ2

.

The parameters α captures how image intensity is converted to voltage, whereas σ
describes the ‘width’ of the laser beam – smaller σ makes the beam have a smaller
footprint while preserving the amount of energy. The signal recorded from a bar
code z(t) is

(1) h(t) =

∫
gα,σ(t− τ)z(τ) + r(t),

where r(t) is the noise. We will assume that the noise is bounded in L2.
The inverse problem is to determine, to the extent possible, the bar code z(t),

and the scanner parameters α and σ given a signal h(t).
Esedoḡlu [1] was the first to provide a mathematically rigorous study of the bar

code inverse problem. In his work, he showed that under the above convolutional
model, a bar code is uniquely determined by its signal. He further showed that
the bar code reconstruction problem may be posed as a variational problem, and
provided precise mathematical formulations which admits solutions. The paper
presents a computational approach which is based on the Modica-Mortola, or the
phase field, approximation of the bar code. The computational results contained
in the paper demonstrated the effectiveness of this approach.

The computational approach put forward in [1] is based on minizing the follow-
ing energy

(2) E(u) =

∫
ǫ|u′|2 + 1

ǫ
W (u) + λ‖gα,σ ∗ u− h‖2.

Here, ǫ is a small parameter, chosen by the user, and λ is a penalty parameter.
The function W (u) is a double potential given by

W (u) = u2(1 − u)2.

Therefore, the first term, which can be recognized as the Modica-Mortola energy,
enforces the binary nature of the solution u. The second term, which is referred
to as the fidelity term, weighs the importance of fitting the data.

Esedoglu solves (2) for u, α and σ, using an alternating direction method con-
sisting of a gradient flow for (α, σ) fixed, followed by updates of (α, σ) for u fixed.
In this work, we will assume that α = 1 and that σ is known. Thus, our simplified
problem is just that of deconvolution of a binary signal.
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Our analysis shows that the variational formulation recovers a smoothed version
of the bar code. To be more precise, let

v = z ∗ φs
where φs(t) is a molifier with a smoothing characterized by the parameter s. We
show that it is possible to choose penalty parameter λ = O(1/ǫ) and smoothing s
such that the estimate

‖u− v‖2 ≤ Knǫ

holds when the noise level ‖r‖2 = O(ǫ). Here K is some constant and n is the
number of jumps (changes from white to black or from black to white) in the bar
code.

The proof relies an integral identity due to Mortola [2], and on showing that
the solution to the variational problem (2) for u is in BV . Details of the proof will
appear in a separate publication.
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Finite element simulation of solid-liquid phase transitions with a free
melt surface

Alfred Schmidt

(joint work with Eberhard Bänsch, Thilo Moshagen, and Jordi Paul)

Introduction. The Collaborative Research Centre 747 “Micro cold forming” stud-
ies aspects of the production of micro components. Motivated by the engineering
application of melting the end of thin wires by laser heating in order to accumulate
material for a subsequent forming process, we study the melting and solidification
of material with a free capillary melt surface. The model leads to a coupled system
of Stefan and Navier-Stokes equations, where the solution of the Stefan problem
defines the solid subdomain Ωs(t) and the solution of Navier-Stokes with capillary
boundary gives the shape of the liquid subdomain Ωl(t). An Arbitrary Lagrangian
Eulerian Finite Element method is presented that is able to compute a numerical
solution without spurious oscillations.

Mathematical Model. The nondimensional system of equations for tempera-
ture θ, pressure p, velocity field u and time-dependent domain Ω(t) = Ωs(t) ∪
Ωl(t) ∪ ΓS(t) (see Figure 1) consists of a Stefan problem for the temperature,

∂

∂t
θ + u · ∇θ − 1

RePr
∆θ = 0 in Ωl(t),

∂

∂t
θ − 1

RePr

κs
κl

∆θ = 0 in Ωs(t),
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with Stefan boundary conditions on the solid-liquid interface ΓS(t) = Ω̄l(t)∩ Ω̄s(t)

θ = 0,
St

RePr

[
∂νθ|Ωl

− κs
κl
∂νθ|Ωs

]
= VΓS

on ΓS(t)

and heat flux condition including laser heating and radiation on the outer boundary

∂νθ = La Il + Em(θ4a − (θm + θ)4) on ∂Ω(t),

coupled with Navier-Stokes equations in the liquid subdomain Ωl(t)

∂

∂t
u+ u · ∇u−∇ ·

(
1

Re
D(u)− p I

)
= −Bo

We
ez +

Gr

Re2
θ ez, ∇ · u = 0

with no-slip condition u = 0 on the solid-liquid interface ΓS(t) and capillary con-
dition on the free melt surface ΓC(t) = ∂Ωl(t) \ ΓS(t)

u · ν = VΓC
, σν =

1

We
Hν, on ΓC(t).

Here, Re, Pr, Bo, We, Gr, and St denote the Reynolds, Prandtl, Bond, Weber,
Grasshoff, and Stefan numbers, La and Em the laser power and emissivity con-
stants, Il is the intensity distribution of the laser heating, H the mean curvature
of the capillary boundary.

Finite element methods. The finite element discretization of this system can
be done separately for the Stefan problem in an enthalpy formulation as studied in
[3] and for the Navier-Stokes system as in [1]. For an application without capillary
boundary (Bridgman growth of a semiconducter crystal), the coupled numerical
method was demonstrated sucessfully in [2]. There, on a fixed mesh, the discrete
liquid subdomain is given by all mesh elements, where the temperature is above
melting temperature (nondimensional, θ > 0).

When the capillary boundary meets the phase boundary in a triple line (or
point in 2D), a coupled method of the type mentioned above is possible, too, but
can easily produce spurious velocity oscillations. This is due to the fact that whole
mesh elements change from solid to liquid and thus parts of the outer boundary
change from solid to capillary boundary. The capillary forces directly push the
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ΓC

ΓS

Figure 1. Left: material accumulation from experiment; right:
solid and liquid subdomains Ωs and Ωl, interface ΓS and capillary
surface ΓC .
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boundary element into a different position, which produces a strong local velocity.
Thus, a new approach had to be developed.

The new method presented here uses a representation of the phase boundary
by mesh lines (in 2D, faces in 3D) and a front tracking method. Using the strong
formulation of the Stefan problem, the velocity of the phase boundary can be
computed from the jump of temperature gradients. Moving local mesh points by
the velocity of the interface (which is a non-material velocity), we end up in an
Arbitrary Lagrangian Eulerian (ALE) formulation of the coupled system. A similar
approach is used for moving the mesh with the capillary surface. Special attention
must be directed to the triple junction where capillary surface and solid-liquid
interface meet.

As the moving mesh degenerates when the liquid subdomain changes much,
as in our application, remeshing is necessary at certain times. In order to not
reduce the resolution of free boundaries, we keep the mesh points on the capillary
boundary and interface and generate a new mesh only for the interior of the solid
and liquid subdomains.

Numerical results. Both a 2D and a 2D axial symmetric implementation of the
algorithm were done based on the Navier code [1], the remeshing is done using by
Triangle [5]. Figure 2 shows a zoom into the mesh around the solid-liquid interface
at two different times from a 2D axial symmetric simulation. The interface lies in
the light gray region. Mesh lines at the interface were moved together with it, and
the bulk was remeshed between the two time instances.

Figure 2. Meshes from two different time steps. Gray shade
indicates temperature, the interface lies in the light region.

Work in progress. As the front tracking approach is applicable only when al-
ready some liquid pool exists, a combination with the enthalpy formulation FEM
is needed in the beginning of the process, until some material is molten.
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Some open questions and related future work regard the optimization of mi-
crostructure in the re-solidified material by a time-dependent control of laser
power.
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E. Bänsch and J. Paul: AM3, Department Mathematik, Universität Erlangen-Nürnberg,

T. Moshagen and A. Schmidt: Zentrum für Technomathematik, FB 3, Universität Bremen.

Large Scale Aerodynamic Shape Optimization

Stephan Schmidt

(joint work with Volker Schulz)

The talk presents the problem of aerodynamic shape optimization as a free bound-
ary problem. Techniques from shape calculus are used to deform the interface be-
tween the fluid and the solid wall in such a manner that a given objective function
is minimized. The Hadamard structure theorem states the existence of a gradi-
ent expression, which lives on the interface alone, enabling very fast numerical
methods. Special emphasis also lies on higher order optimization methods, which
results in the employment of a “Shape-Newton” method. To this end several fluid
models are studied.

First, the incompressible Navier–Stokes equations are considered. The shape
gradient in Hadamard form is derived for a wide array of possible objective func-
tions. In the viscous limit of the Stokes equations, the shape Hessian is derived
and its operator symbol is studied both analytically for the Stokes equations and
numerically for the Navier–Stokes equations. The resulting Shape-Newton method
is shown to show very fast convergence during the minimization of a fluid obstacle
in a channel.
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Next, the talk continous with aerodynamic design based on the compressible
Euler equations as a model for the inviscid fluid. The optimization of both several
airfoils and an Onera M6 flying wing is presented and the Shape-Newton method
is used to deform the entire wing surface, i.e. the interface between the inviscid
slip wall and the fluid. The flow and adjoint solution are computed using the DLR
hybird finite volume flow solver TAU. The optimization of the wing is conducted
using a multi-level discretization with adaptive mesh refinement, such that the
coarse surface is discretized using 18, 285 nodes and the finer mesh features 36, 806
nodes. Each of these nodes defines the shape of the wing, i.e. the fluid interface,
and is used as a design parameter during the optimization. Special attention
is also given to the lift constraint, such that the optimized wing maintains its
aerodynamic lift coefficient.

References

[1] K. Eppler, S. Schmidt, V. Schulz, and C. Ilic. Preconditioning the pressure tracking in fluid
dynamics by shape Hessian information. Journal of Optimization Theory and Applications,
141(3):513–531, 2009.

[2] S. Schmidt, C. Ilic, N. Gauger, and V. Schulz. Shape gradients and their smoothness for prac-
tical aerodynamic design optimization. Technical Report Preprint SPP1253-10-03, DFG-
SPP 1253, 2008. submitted (OPTE).

[3] S. Schmidt and V. Schulz. Impulse response approximations of discrete shape Hessians with
application in CFD. SIAM Journal on Control and Optimization, 48(4):2562–2580, 2009.

[4] S. Schmidt and V. Schulz. Shape derivatives for general objective functions and the incom-
pressible Navier–Stokes equations. Technical Report Preprint SPP1253-10-05, DFG-SPP
1253, 2009.

Analysis of Adaptive Finite Elements for Control Constrained
Optimal Control Problems

Kunibert G. Siebert

(joint work with Kristina Kohls and Arnd Rösch)

Continuous Problem. We consider optimal control problems with constrained
distributed control of the form

(1) min
u∈Uad

1

2
‖y − yd‖2U +

α

2
‖u‖2

U
subject to B[y, v] = 〈u, v〉U ∀ v ∈ Y.

Hereafter, Y is an L2 based Hilbert space over a bounded, polygonal domain
Ω ⊂ Rd, ∅ 6= Uad ⊂ U := L2(Ω;Rn) ⊂ Y∗ is a convex and bounded set of
admissible controls for suitable n ≥ 1, yd ∈ U is a desired state, α > 0 is a cost
parameter, and B : Y×Y → R is a continuous bilinear form satisfying the inf-sup
condition

(2) inf
v∈Y

‖v‖Y=1

sup
w∈Y

‖w‖Y=1

B[v, w] = inf
w∈Y

‖w‖Y=1

sup
v∈Y

‖v‖Y=1

B[v, w] = γ > 0.

The inf-sup condition (2) is equivalent to solvability of the state equation

(3) ȳ ∈ Y : B[ȳ, v] = 〈f, v〉 ∀ v ∈ Y
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for any f ∈ Y∗ as well as solvability of the dual problem

(4) p̄ ∈ Y : B[w, p̄] = 〈g, w〉 ∀w ∈ Y

for any g ∈ Y∗ [7, 8].
For given p ∈ Y let Π(p) be the the best approximation of − 1

αp in Uad. Then
the unique solution (û, ŷ) = (Π(p̂), ŷ) of (1) is characterized by the reduced first
order optimality system

(5)
B[ŷ, v] = 〈Π(p̂), v〉 ∀ v ∈ Y,

B[w, p̂] = 〈ŷ − yd, w〉 ∀w ∈ Y,

compare with [3, 10].

Discrete Problem. Let T be a conforming triangulation of Ω and let Y(T ) ⊂ Y

be a piecewise polynomial conforming finite element space over T such that

inf
V ∈Y(T )
‖V ‖Y=1

sup
W∈Y(T )
‖W‖Y=1

B[V, W ] = inf
W∈Y(T )
‖W‖Y=1

sup
V ∈Y(T )
‖V ‖Y=1

B[V, W ] ≥ γ > 0.

The discrete solution (Ŷ , P̂ , Û) is given as the unique solution of the discretized
reduced first order optimality system

(6)
B[Ŷ , V ] = 〈Π(P̂ ), V 〉 ∀V ∈ Y(T ),

B[W, P̂ ] = 〈Ŷ − yd, W 〉 ∀W ∈ Y(T ).

The discrete control Û = Π(P̂ ) is in general not a finite element function. Efficient
solution techniques for (6) are described in [2].

Examples. We next give two examples of spaces Y and bilinear forms B. The
variational formulation of the Poisson problem

−∆y = f in Ω, y = 0 on ∂Ω

utilizes on Y = H1
0 (Ω) the coercive and continuous bilinear form

B[v, w] =
∫

Ω

∇v · ∇w dx.

Coercivity of B implies the inf-sup condition (2). The standard discretization of
the Poisson problem utilizes Lagrange finite elements of order ℓ ∈ N. Coercivity
of B on Y is inherited to any subspace.

The weak form of the Stokes problem

−∆y +∇π = f in Ω, ∇ · y = 0 in Ω, y = 0 on ∂Ω

is formulated in Y = H1
0 (Ω;R

d)× L2
0(Ω) with the continuous bilinear form

B[(v, r), (w, q)] :=
∫

Ω

∇v :∇w dx−
∫

Ω

r∇ ·w dx −
∫

Ω

∇ · v q dx,

which satisfies an inf-sup condition. We discretize the Stokes problem with the
Taylor-Hood element of order ℓ ≥ 2, which is a stable stable discretization, i. e., the
bilinear form B satisfies a uniform inf-sup condition in Y(T ) on any shape-regular
triangulation T .
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A typical example for Uad are box-constraints, namely

Uad := {u ∈ L2(Ω;Rn) | a ≤ u ≤ b in Ω},
where a ≤ b are given functions in L2(Ω;Rn). In case of the Poisson problem we
let n = 1 and for the Stokes problem we use n = d. In the later case the constraint
a ≤ u ≤ b has to be read component-wise. For the Stokes problem we could also
use a norm constraint

Uad := {u ∈ L2(Ω;Rd) | |u|2 ≤ r in Ω}.

A Posteriori Error Analysis. The a posteriori error analysis for optimal control
problems was initiated by Liu and Yan at the beginning of this century [4], compare
also with [1, 5]. We next present a unified framework for the a posteriori error
analysis of (1) solely based on estimators for the linear problems (3) and (4). We
would like to stress that there exists a well-established theory of different kinds of
estimators for a huge class of linear problems.

Denote by Ȳ , P̄ ∈ Y(T ) the Galerkin approximations to the solutions ȳ, p̄ ∈ Y

of the linear problems (3) respectively (4) with given right hand sides f and g.
Furthermore, let ET (Ȳ , f ; T ) and E∗

T (P̄ , g; T ) be reliable and efficient estimators
for the primal respectively dual problem, i. e.,

‖Ȳ − ȳ‖Y 4 ET (Ȳ , f ; T ) 4 ‖Ȳ − ȳ‖Y + oscT ,

‖P̄ − p̄‖Y 4 E∗
T (P̄ , g; T ) 4 ‖P̄ − p̄‖Y + osc∗T .

Hereafter, oscT , osc
∗
T are the typical oscillation terms in the lower bound. Note,

that the constants hidden in ‘4’ only depend on the bilinear form B and the shape
regularity of T but not the right hand sides f and g. We then prove that the sum
of these estimators give a reliable and efficient estimator for the optimal control
problem (1), i. e., if (ŷ, p̂) is the solution of (5) and (Ŷ , P̂ ) the solution of (6) then

there hold with û = Π(p̂) and Û = Π(P̂ ) the error bounds

‖(Ŷ , P̂ , Û)− (ŷ, p̂, û)‖Y×Y×U 4 ET (Ŷ , Û ; T ) + E∗
T (P̂ , Ŷ − yd; T )

ET (Ŷ , Û ; T ) + E∗
T (P̂ , Ŷ − yd; T ) 4 ‖(Ŷ , P̂ , Û)− (ŷ, p̂, û)‖Y×Y×U + õscT .

The oscillation term õscT depends on oscT and osc∗T and an additional term that
encodes the approximability of û in a suitable finite element space over T .

Convergence Analysis. Using the standard adaptive iteration

(7) SOLVE −→ ESTIMATE −→ MARK −→ REFINE

we obtain a sequence {(Ŷk, P̂k, Ûk)}k≥0 of discrete solutions. Applying the tech-
niques from [6, 9] we finally show under very mild assumptions on the modules of
(7) convergence, i. e., there holds

lim
k→∞

‖(Ŷk, P̂k, Ûk)−(ŷ, p̂, û)‖Y×Y×U = lim
k→∞

Ek(Ŷk, Ûk; Tk)+E∗
k (P̂k, Ŷk−yd; Tk) = 0.



Simulation, Control and Analysis for Interfaces and Free Boundaries 311

References

[1] M. Hintermüller, R. H. Hoppe, Y. Iliash, and M. Kieweg, An a posteriori error analy-
sis of adaptive finite element methods for distributed elliptic control problems with control
constraints, ESAIM, Control Optim. Calc. Var., 14 (2008), pp. 540–560.

[2] M. Hinze and M. Vierling, Variational discretization and semi-smooth Newton methods;
implementation, convergence and globalization in PDE constrained optimization with con-
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Technical and Mathematical Problems in the Czochralski Growth of
Single Crystals

Jürgen Sprekels

(joint work with Wolfgang Dreyer (WIAS Berlin), P.-E. Druet (WIAS Berlin),
O. Klein (WIAS Berlin), F. Tröltzsch (TU Berlin), I. Yousept (TU Berlin))
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The most important industrial technique
for growing bulk semiconductor single
crystals (GaAs, Si, Ge) from the melt is
the Czochralski method. In this method,
a rotating crystal seed is dipped into the
melt that is contained in a rotating cru-
cible. The seed is then slowly pulled out
of the melt, and a single crystal solidifies.

A typical growth apparatus is depicted
in the figure; here, the left side shows
the geometry, while the right side shows
the temperature distribution during a
growth run calculated with the software
WIAS-HiTNIHS developed at the Weier-
strass Institute for Applied Analysis and
Stochastics (WIAS) in Berlin.

In the Czochralski process, the melt flow
is turbulent, which creates the problem
that impurities can find their way into the

crystal, lowering its quality. Also, crystal growers want the solid–liquid interface
to have a certain shape, and the temperature oscillations below the crystal should
have small amplitudes and not too small frequencies. Since the melt is electrically
conducting, electromagnetic fields can play the role of a control, since a Lorentz
force is induced into the melt in their presence.

In the project KRISTM̃AG
R©

of the Technologiestiftung Berlin, a consortium was
formed in which a technological breakthrough was achieved by demonstrating that
traveling magnetic fields can be successfully applied for the task of controlling the
turbulent melt. Several patents were filed, and the groundbreaking nature of these

developments was recognized when the KRISTM̃AG
R©

consortium was awarded
the Innovation Prize Berlin–Brandenburg 2008.

An important role for the success of the KRISTM̃AG
R©

project played mathemati-
cal modeling and simulation. This part was covered by members of the Weierstrass
Institute for Applied Analysis and Stochastics (WIAS) in Berlin.

From the mathematical point of view, an extremely complicated system of partial
differential equations had to be solved, namely:
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• Maxwell’s equations for the electromagnetic fields
• the equations of temperature-dependent magnetohydrodynamics in the
melt

• the balance of energy in the whole growth apparatus.

The complexity of the mathematical problem was increased by the fact that

• due to temperatures of up to 2000 K, many of the physical constants
depend on temperature,

• physical coefficients and boundary conditions jump between the different
materials,

• the geometry of the apparatus is very complex,
• the main energy transport in the gas cavities is due to radiation.

The latter complication presents a particular challenge, since it leads to both
nonlocal and nonlinear boundary conditions for the temperature in the gas cavities.

In a series of papers (see [1, 2, 3]), P.-E. Druet studied the full problem sketched
above, culminating in an existence proof for weak solutions. Associated optimal
control aspects were treated in [4, 7, 8], and the results of numerical simulations
were presented in [5, 6].
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Preconditioning for Allen-Cahn variational inequalities with non-local
constraints

Martin Stoll

(joint work with Lavinia Sarbu, Luise Blank)

Recently, Blank et al. [1] proposed the use of the semi-smooth Newton method
to solve Allen-Cahn variational inequalities with mass constraints. Problems of
this type arise in a variety of applications (see [6, 3]). In the scalar case, the
Allen-Cahn equation with interface thickness ε

(1) ε∂tu = γε△u− γ

ε
ψ′(u)

with homogeneous Neumann boundary conditions on ∂Ω has to be solved with the
additional condition of mass conservation, i.e., under the constraint that −

∫
Ω u = m,

where −
∫
Ω f(x)dx := 1

|Ω|

∫
Ω f(x)dx with |Ω| being the Lesbesque measure of Ω.

In the vector-valued case a similar constraint for each phase is introduced. The
discretization using finite elements and the use of the semi-smooth Newton method
leads in both cases to the solution of a linear system in saddle point form, which
in the scalar case has the following form

(2) K :=

[
( ε

2

τ − γ)M + ε2γK −m
−mT 0

]

where K is the stiffness and M the mass matrix, m is the moment vector, τ the
time-step and γ an interfacial energy parameter. The efficient solution of this

(a) An intermediate so-
lution of the Allen-Cahn
equation with mass con-
straints and adaptive mesh
refinement.
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(b) Scalar-case: Average number of MINRES iterations
for each time step for the first 30 time steps.

linear system typically is at the bottleneck for the fast solution of the variational
inequality. We propose to employ Krylov subspace methods, namely the Minimal
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Residual method (MINRES) [4], in combination with a block-diagonal precondi-
tioner

(3) P =

[
L̃ 0
0 1

]

where L̃ is an approximation to the matrix ( ε
2

τ − γ)M + ε2γK. Typically, a good

choice for L̃ is a geometric or algebraic multigrid method for L. Also, other Krylov
subspace methods such as a non-standard conjugate gradients (CG) method can
be applied [2, 5] to the system K.

References

[1] L. Blank, H. Garcke, L. Sarbu, and V. Styles, Primal-dual active set methods for Allen-
Cahn variational inequalities with non-local constraints, Preprint SPP1253-09-01.

[2] J. H. Bramble and J. E. Pasciak, A preconditioning technique for indefinite systems re-
sulting from mixed approximations of elliptic problems, Math. Comp, 50 (1988), pp. 1–17.

[3] H. Garcke, B. Nestler, B. Stinner, and F. Wendler, Allen-Cahn systems with volume
constraints, Math. Models Methods Appl. Sci., 18 (2008), pp. 1347–1381.

[4] C. C. Paige and M. A. Saunders, Solutions of sparse indefinite systems of linear equations,
SIAM J. Numer. Anal, 12 (1975), pp. 617–629.

[5] T. Rees and M. Stoll, Block triangular preconditioners for PDE constrained optimization,
Numer. Linear Algebra Appl. to appear, (2009).

[6] J. E. Taylor and J. W. Cahn, Linking anisotropic sharp and diffuse surface motion laws
via gradient flows, J. Statist. Phys., 77 (1994), pp. 183–197.

Finite element methods for interface flows with surfactants

Lutz Tobiska

(joint work with Sashikumaar Ganesan)

The accurate numerical computation of two-phase flows is a challenging task. An
important issue is the precise inclusion of the surface force which compresses the
surface/interface tension and the local curvature on the free surface/interface.
Surfactants are surface active agents which lower the surface/interfacial tension
on the liquid-gas/liquid-liquid interface. In addition, nonuniform distributions
of surfactants on the surface/interface induce Marangoni forces. Adsorption and
desorption of surfactants between the interface and the bulk phase may take place
in the soluble surfactant case. Thus, the presents of surfactants influences the
dynamics of the free surface/interface [5, 7, 8].

We consider a mathematical model for two-phase flows consisting of the incom-
pressible Navier-Stokes equation

ρk

(
∂u

∂t
+ (u · ∇)u

)
−∇ · Sk(u, p) = ρke in Ωk(t) ⊂ R3,

∇ · u = 0 in Ωk(t) ⊂ R3,

[u] = 0, ν · [S(u, p)] · ν + σ(cΓ)K = 0 on ΓF (t),

u = w, τi · [S(u, p)] · ν − τi · ∇σ(cΓ) = 0 on ΓF (t),
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a transport equation for the surfactant concentration in the outer phase

∂C

∂t
+ (u · ∇)C = Dc∆C in Ω1(t) ⊂ R3,

−Dc(ν · ∇C) = S(cΓ, C) on ΓF (t),

with appropriate boundary conditions on the remaining part of the boundary, and
a transport equation for the surfactant concentration on the interface

∂cΓ
∂t

+ U · ∇cΓ + cΓ∇ · u = Ds∆cΓ + S(cΓ, C) on ΓF (t).

The coupling term S(cΓ, C) is often modeled by

S(cΓ, C) = kaC

(
1− cΓ

cΓ,∞

)
− kdcΓ.

Following notations have been used above: Sk(u, p) = µkD(u)− pI, e = (0, 0,−g),
u - velocity, U -tangential velocity, p - pressure, t - time, ρk - density, µk - dynamic
viscosity, σ - surface tension, g - gravity. C - surfactant in outer phase, Dc -
diffusion coefficient of C, cΓ - surfactant on interface, Ds - diffusion coefficient of
cΓ, ka - adsorption coefficient, kd - desorption coefficient, cΓ,∞ - maximum surface
packing surfactant concentration.

The Navier-Stokes equations are solved together with the bulk and interface
concentration equations using the coupled ALE-Lagrangian method in 3D-axi-
symmetric configuration [4]. Contrary to Eulerian methods, the interface in the
arbitrary Lagrangian-Eulerian (ALE) approach is resolved by the computational
mesh and tracked over time by a moving mesh. Thus, the surface/interface force
can be incorporated more accurately. In our numerical scheme, we replace the
curvature in the surface force by the Laplace-Beltrami operator. Then, applying
integration by parts we reduce one order of differentiation associated with the
curvature [6]. Suppressing the spurious velocities is another challenge in com-
puting interface flows. By choosing an appropriate finite element spaces for the
discretization of pressure in an interface resolved mesh, we can suppress the spuri-
ous velocities up to machine precision. A detailed study on the choice of different
finite element spaces for the pressure and different approximations of the curvature
in computations of interface flows has been done in [1].

In our numerical scheme, we use continuous, piecewise polynomials of second
order enriched by cubic bubble functions and discontinuous, piecewise polynomials
of first order (P b2 /P

disc
1 ) for the discretization of the velocity and pressure, respec-

tively. Continuous, piecewise polynomials of second order (P2) have been used
to discretize the bulk and interface concentrations. Further, the fractional step-ϑ
scheme has been used for the temporal discretization of these equations. To handle
the moving mesh, the elastic-solid technique has been applied [2]. The numerical
scheme has been validated for the free surface flows with a constant surface tension
in [3] and with insoluble surfactants in [4]. The influence of surfactants on a freely
oscillating bubble has been also studied in [4].

This work has been partially supported by the German Research Foundation
(DFG) through grant TO 143/9-1.
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Anisotropic adaptive finite element methds for interface problems

Ningning Yan

(joint work with Duan Wang and Ruo Li)

In the singular or nearly singular problems, the structures of singularity often
exhibit ”low-dimensional” feature that the solutions vary significantly in some
directions but mildly in other directions. To numerically approximate such so-
lutions efficiently, no doubt we prefer anisotropic meshes, which are of different
length scales in different directions so that to fit the anisotropic feature of the
solutions. Numerous examples, including interface discontinuities, have shown the
efficiency of anisotropic elements in reducing computational cost and improving
approximation accuracy.

The main focus of this talk is to discuss the approximations of the elliptic in-
terface problem with homogeneous and non-homogeneous jump conditions, which
attracts a lot of interests as it is omnipresent in many scientific and engineering
problems, including multi-phase flows, nano-electronic devices, electromagnetic
wave propagation in heterogeneous waves, implicit solvent models in structural
biology, biological membrane, etc.

To resolve this layer anisotropy, we develop an anisotropic adaptive finite el-
ement method, which can be effective not only for the interface problem, but
also for problems with global anisotropy. Compared with isotropic elements, the
indicators of anisotropic meshes adaptivity need more information. Take two-
dimensional triangular element as example, its anisotropy should be measured in
two main aspects. One is orientation, which is roughly the direction of its longest
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side. The other is the aspect ratio, which measures how thin the triangle is. The
first quantity is supposed to be more crucial to the success of the anisotropic finite
element methods, a wrong direction may lead to non-convergence.

In order to construct an efficient and useful anisotropic adaptive finite ele-
ment methods, we proposed an indicator for anisotropic adaptive mesh refinement,
which depends on only the first order derivatives of u(uh). The new indicator pro-
vides the information to mark not only the preferred refinement elements, but also
the preferred refinement edges (or faces). For each element with indicator above
the given tolerance, one edge is chosen as the preferred refinement edge.

For a posteriori error estimates, the affine map from the reference element
to the actual element plays an essential role in anisotropic error analysis. In
[1], Formaggia et al proved that the sum of error gradient projection onto two
principal axes of the affine map is an upper bound of the element error. And
in [2], a posteriori error estimators are provided based on the anisotropic error
analysis. Different with these methods, we project the error gradient onto the
element edges to search the preferred refinement edge. Since the Jacobian matrix
of the affine map can be expressed by edge vectors when we use the unit reference
triangle, the sum of error gradient projection onto the three edges is again an
upper bound of the element error. To reduce this upper bound error estimate, the
most efficient mesh adaptation is to refine the edge with the maximal contribution
to the estimate. As an application, we consider a 2nd order elliptic immersed-
interface problem with homogeneous and non-homogeneous jump conditions. In
this case, the simple recovery-type Zienkiewicz-Zhu error estimator [4] is adopted
as the adaptation indicator.

Based on the theoretical analysis, we provide some numerical examples in the
talk. The standard conforming finite element methods are used, and the a posteri-
ori error estimator provided in the talk is applied for adaptive mesh refinement. It
is shown that the new schemes are more efficient than the adaptive isotropic finite
element methods for the interface problems, almost optimal convergence orders
are obtained in our numerical examples.
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A diffuse-interface approach for solving coupled bulk/surface PDEs in
complex evolving domains

Axel Voigt

(joint work with Sebastian Aland, Andreas Rätz, John Lowengrub)

Many problems in the biological, physical and engineering sciences involve systems
of equations that need to be solved in evolving domains with complex shapes. In
addition, the solution in the bulk domain may couple with the surface through
adsorption of mass from the bulk to the surface and desorption from the surface
to the bulk. Furthermore, the evolution of the domain boundary may depend on
the distribution of the surface concentration through the modification of interfacial
forces. Examples include biomembranes where transmembrane proteins play an
important role in intra- and extra-cellular dynamics, epitaxially grown thin films
where adsorbing/desorbing adatoms affect the dynamics and coarsening of the
thin film, electrochemical dissolution of binary alloys where one component is
removed selectively and dissolved in an electrolyte solution, and two-phase flow
with surfactants, where amphiphilic organic compounds may adsorb to and desorp
from a liquid/liquid or liquid/gas interface and lower the surface tension of the
interface.

From a numerical point of view, solving a coupled bulk/surface system of equa-
tions on a moving, complex domain is highly challenging; the domain boundary
may strech, break-up or coalesce with other interfaces. The available numerical
methods for solving these problems can roughly be divided into two categories:
interface tracking and interface capturing methods, where the first use either a
seperate grid for the interface, or a set of interconnected points to mark the in-
terface, while the second defines the interface only implicitly, which decouples the
solution from the underlying grid and thus greatly simplifies gridding, discretiza-
tion, and handling of topological changes.

Within a diffuse-interface approach, which is a interface capturing method,
the complex domain is represented implicitly by a phase-field function, which
is an approximation of the characteristic function of the domain. The domain
boundary is replaced by a narrow diffuse interface layer such that the phase-field
function rapidly transitions from one inside the domain to zero in the exterior
of the domain. The boundary can thus be represented as an isosurface of the
phase-field function. The bulk and surface PDEs are then extended on a larger,
regular doamin with additional terms that approximate the adsorption-desorption
flux boundary conditions and source terms for the bulk and surface equations,
respectively.

General diffuse-interface methods have been developed for solving PDEs on
stationary surface [1], evolving surface [2, 3] and for solving PDEs in complex
evolving domains with Dirichlet, Neumann and Robin boundary conditions [4].

Combining these approaches allows to solve coupled bulk/surface systems of
equations on moving, complex domains in a straight forward manner. As an
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exampel we consider the following coupled bulk/surface system:

ft +∇Γ · (uf) = ∆Γf + j on Γ(t)(1)

Ft +∇ · (uF ) = ∆F in Ω1(t)(2)

∇F · n = −j = raF − rdf on Γ(t)(3)

with f a surface concentration on Γ, which is assumed to be constantly extended
in normal direction. F a bulk concentration in Ω1 and ra and rd attachment and
detachment coefficients modeling the coupling between f and F . u is the velocity
field, which is here assumed to be given for simplicity. Formulating this problem
within the diffuse-domain approach reads on the time-independent domain Ω:

(B(c)f)t +∇ · (B(c)uf) = ∇ · (B(c)∇f) +B(c)j in Ω(4)

(cF )t +∇ · (cuF ) = ∇ · (c∇F ) − |∇c|j in Ω(5)

−j = raF − rdf in Ω(6)

ct + u · ∇c = ∇ · (M(c)∇µ) in Ω(7)

µ = G′(c)− ǫ2∆c in Ω(8)

with a phase-field function c approximating Ω1, a function B(c) = 4G(c) approxi-

mating δΓ, M(c) =
√
B(c) a mobility function and G(c) = 0.25c2(1− c)2 a double

well potential. ǫ is a parameter measuring the width of the diffuse interface. Us-
ing matched asymptotics the convergence of the system to the original system can
be shown for ǫ → 0. For details on the numerical solution of this system and
convergence studies see [5].

The described approach is applicable to a wide range of applications and allows
to reformulate complicated coupled bulk/surface problems into a system of PDEs
in a time-independent domain, which can be solved using standard tool.
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